[bookmark: _GoBack][MS-ES5EX]:
Internet Explorer Extensions to the ECMA-262 ECMAScript Language Specification (Fifth Edition)

Intellectual Property Rights Notice for Open Specifications Documentation
· Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.
· Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.
· No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
· Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
· License Programs. To see all of the protocols in scope under a specific license program and the associated patents, visit the Patent Map.
· Trademarks. The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
· Fictitious Names. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.
Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.
Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.
Support. For questions and support, please contact dochelp@microsoft.com.
Revision Summary
	Date
	Revision History
	Revision Class
	Comments

	9/8/2010
	0.1
	New
	Released new document.

	10/13/2010
	0.2
	Minor
	Clarified the meaning of the technical content.

	2/10/2011
	1.0
	Minor
	Clarified the meaning of the technical content.

	2/28/2011
	1.1
	Minor
	Clarified the meaning of the technical content.

	2/22/2012
	2.0
	Major
	Significantly changed the technical content.

	7/25/2012
	2.1
	Minor
	Clarified the meaning of the technical content.

	6/26/2013
	3.0
	Major
	Significantly changed the technical content.

	3/31/2014
	3.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	1/22/2015
	4.0
	Major
	Updated for new product version.

	7/7/2015
	4.1
	Minor
	Clarified the meaning of the technical content.

	11/2/2015
	4.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	1/20/2016
	4.2
	Minor
	Clarified the meaning of the technical content.

	3/22/2016
	4.3
	Minor
	Clarified the meaning of the technical content.

	11/2/2016
	4.3
	None
	No changes to the meaning, language, or formatting of the technical content.

	3/14/2017
	4.3
	None
	No changes to the meaning, language, or formatting of the technical content.

	10/3/2017
	4.3
	None
	No changes to the meaning, language, or formatting of the technical content.

Table of Contents
1	Introduction	7
1.1	Glossary	7
1.2	References	7
1.2.1	Normative References	7
1.2.2	Informative References	7
1.3	Extension Overview (Synopsis)	8
1.3.1	Organization of This Documentation	9
1.4	Relationship to Standards and Other Extensions	9
1.5	Applicability Statement	9
2	Extensions	10
2.1	Extensions to Lexical Conventions	10
2.1.1	Conditional Source Text Processing	10
2.1.1.1	Global State	11
2.1.1.2	Conditional Processing Algorithm	11
2.1.2	Extensions to Numeric Literals	20
2.1.3	Extensions to String Literals	21
2.2	Extensions to Types	21
2.2.1	SafeArray Type	21
2.2.2	VarDate Type	21
2.3	Extensions to Type Conversion and Testing	21
2.4	Extensions to Executable Code and Execution Contexts	22
2.4.1	Extensions to Declaration Binding Instantiation	22
2.5	Extensions to Expressions	22
2.5.1	Extensions to typeof Operator	22
2.6	Extensions to Statements	23
2.6.1	Extension Grammar Production for Statement	23
2.7	Extensions to Function Definition	23
2.7.1	Function Definition Used As a Statement	23
2.7.2	Event Handler Function Definitions	23
2.8	Extensions to Native ECMAScript Objects	25
2.8.1	Function Properties of the Global Object	25
2.8.1.1	ScriptEngine	25
2.8.1.2	ScriptEngineBuildVersion	25
2.8.1.3	ScriptEngineMajorVersion	25
2.8.1.4	ScriptEngineMinorVersion	25
2.8.1.5	CollectGarbage	25
2.8.2	Constructor Properties of the Global Object	26
2.8.3	Properties of Function Instances	26
2.8.3.1	The arguments Property	26
2.8.3.2	The caller Property	26
2.8.3.3	The [[Get]] (P) Method of a Function Object	26
2.8.4	String.prototype HTML Wrapper Properties	27
2.8.4.1	String.prototype.anchor(name)	27
2.8.4.2	String.prototype.big()	28
2.8.4.3	String.prototype.blink()	28
2.8.4.4	String.prototype.bold()	28
2.8.4.5	String.prototype.fixed()	28
2.8.4.6	String.prototype.fontcolor(color)	28
2.8.4.7	String.prototype.fontsize(size)	28
2.8.4.8	String.prototype.italics()	28
2.8.4.9	String.prototype.link(url)	28
2.8.4.10	String.prototype.small()	28
2.8.4.11	String.prototype.strike()	28
2.8.4.12	String.prototype.sub()	28
2.8.4.13	String.prototype.sup()	28
2.8.5	Properties of the Date Prototype Object	28
2.8.5.1	Date.prototype.getVarDate ()	29
2.8.6	Properties of the RegExp Constructor	29
2.8.6.1	RegExp.input	29
2.8.6.2	RegExp.lastIndex	29
2.8.6.3	RegExp.lastMatch	29
2.8.6.4	RegExp.lastParen	29
2.8.6.5	RegExp.leftContext	29
2.8.6.6	RegExp.rightContext	29
2.8.6.7	RegExp.$1 - RegExp.$9	30
2.8.6.8	RegExp.$_	30
2.8.6.9	RegExp['$&']	30
2.8.6.10	RegExp['$+']	30
2.8.6.11	RegExp["$`"]	30
2.8.6.12	RegExp["$'"]	30
2.8.7	Properties of the RegExp Prototype Object	30
2.8.7.1	RegExp.prototype.compile(pattern, flags)	30
2.8.8	Properties of RegExp Instances	31
2.8.8.1	options	31
2.8.9	The Error Constructor	31
2.8.9.1	new Error ()	31
2.8.9.2	new Error(number, message)	31
2.8.10	Properties of Error Instances	32
2.8.10.1	description	32
2.8.10.2	number	32
2.8.11	Properties of NativeError Instances	32
2.8.11.1	description	32
2.8.11.2	number	32
2.8.12	The Debug Object	32
2.8.12.1	Function Properties of the Debug Object	33
2.8.12.1.1	write ([item1 [, item2 [, …]]])	33
2.8.12.1.2	writeln ([item1 [, item2 [, …]]]))	33
2.8.13	Enumerator Objects	33
2.8.13.1	The Enumerator Constructor Called as a Function	33
2.8.13.2	The Enumerator Constructor	33
2.8.13.2.1	new Enumerator ([collection])	33
2.8.13.3	Properties of the Enumerator Constructor	34
2.8.13.3.1	Enumerator.prototype	34
2.8.13.4	Properties of the Enumerator Prototype Object	34
2.8.13.4.1	Enumerator.prototype.constructor	34
2.8.13.4.2	Enumerator.prototype.atEnd ()	34
2.8.13.4.3	Enumerator.prototype.item ()	35
2.8.13.4.4	Enumerator.prototype.moveFirst ()	35
2.8.13.4.5	Enumerator.prototype.moveNext ()	35
2.8.13.5	Properties of Enumerator Instances	35
2.8.14	VBArray Objects	35
2.8.14.1	The VBArray Constructor Called as a Function	35
2.8.14.1.1	VBArray (value)	35
2.8.14.2	The VBArray Constructor	36
2.8.14.2.1	new VBArray (value)	36
2.8.14.3	Properties of the VBArray Constructor	36
2.8.14.3.1	VBArray.prototype	36
2.8.14.4	Properties of the VBArray Prototype Object	36
2.8.14.4.1	VBArray.prototype.constructor	36
2.8.14.4.2	VBArray.prototype.dimensions ()	36
2.8.14.4.3	VBArray.prototype.getItem (dim1 [, dim2, [dim3, …]])	36
2.8.14.4.4	VBArray.prototype.lbound ([dimension])	37
2.8.14.4.5	VBArray.prototype.toArray ()	37
2.8.14.4.6	VBArray.prototype.ubound ([dimension])	37
2.8.14.4.7	VBArray.prototype.valueOf ()	38
2.8.14.5	Properties of VBArray Instances	38
2.8.15	ActiveXObject Objects	38
2.8.15.1	The ActiveXObject Constructor Called as a Function	38
2.8.15.1.1	ActiveXObject (name [, location]))	38
2.8.15.2	The ActiveXObject Constructor	38
2.8.15.2.1	new ActiveXObject ((name [, location]))	39
2.8.15.3	Properties of the ActiveXObject Constructor	39
2.8.15.3.1	ActiveXObject.prototype	39
2.8.15.4	Properties of the ActiveXObject Prototype Object	39
2.8.15.4.1	ActiveXObject.prototype.constructor	40
2.8.15.5	Properties of ActiveXObject Instances	40
2.9	Extensions to ECMAScript 5.1	40
2.9.1	Typed Arrays	40
2.9.1.1	ArrayBuffer Objects	40
2.9.1.1.1	The ArrayBuffer constructor called as a function	40
2.9.1.1.2	The ArrayBuffer constructor	40
2.9.1.1.2.1	New Array (len)	40
2.9.1.1.3	Properties of the ArrayBuffer constructor	40
2.9.1.1.3.1	ArrayBuffer.isView(arg)	41
2.9.1.1.3.2	ArrayBuffer.Prototype	41
2.9.1.1.4	Properties of the ArrayBuffer Prototype Object	41
2.9.1.1.4.1	ArrayBuffer.prototype.constructor	41
2.9.1.1.4.2	ArrayBuffer.prototype.slice(start, end)	41
2.9.1.1.5	Properties of ArrayBuffer Instances	42
2.9.1.1.5.1	byteLength	42
2.9.1.2	TypeArray Objects	42
2.9.1.2.1	The TypeArray Constructor Called as a Function	43
2.9.1.2.2	The TypeArray Constructor	43
2.9.1.2.2.1	New TypeArray (arg0 [, arg1, [, arg2])	43
2.9.1.2.3	Properties of the TypeArray Constructor	44
2.9.1.2.3.1	TypeArray.prototype	44
2.9.1.2.3.2	typeArray.BYTES_PER_ELEMENT	44
2.9.1.2.4	Properties of the TypeArray Prototype Object	44
2.9.1.2.4.1	TypeArray.prototype.constructor	45
2.9.1.2.4.2	TypeArray.prototype.set(Array [, offset])	45
2.9.1.2.4.3	TypeArray.prototype.subarray(begin [, end])	45
2.9.1.2.5	Properties of TypeArray Instances	45
2.9.1.2.5.1	[[DefineOwnProperty]] (P, Desc, Throw)	45
2.9.1.2.5.2	[[GetOwnProperty]] (P)	46
2.9.1.2.5.3	length	47
2.9.1.2.5.4	byteLength	47
2.9.1.2.5.5	buffer	47
2.9.1.2.5.6	byteOffset	47
2.9.1.3	DataView Objects	47
2.9.1.3.1	The DataView Constructor called as a function	47
2.9.1.3.2	The DataView Constructor	47
2.9.1.3.2.1	New DataView (buffer [, byteOffset [, byteLength]])	47
2.9.1.3.3	Properties of the DataView Constructor	48
2.9.1.3.3.1	DataView.prototype	48
2.9.1.3.4	Properties of the DataView Prototype Object	48
2.9.1.3.4.1	DataView.prototype.constructor	48
2.9.1.3.4.2	DataView.prototype.GetInt8(byteOffset)	48
2.9.1.3.4.3	DataView.prototype.GetUInt8(byteOffset)	49
2.9.1.3.4.4	DataView.prototype.GetInt16(byteOffset, littleEndian)	49
2.9.1.3.4.5	DataView.prototype.GetUInt16(byteOffset, littleEndian)	49
2.9.1.3.4.6	DataView.prototype.GetInt32(byteOffset, littleEndian)	49
2.9.1.3.4.7	DataView.prototype.GetUInt32(byteOffset, littleEndian)	49
2.9.1.3.4.8	DataView.prototype.GetFloat32(byteOffset, littleEndian)	49
2.9.1.3.4.9	DataView.prototype.GetFloat64(byteOffset, littleEndian)	50
2.9.1.3.4.10	DataView.prototype.SetInt8(byteOffset, value)	50
2.9.1.3.4.11	DataView.prototype.SetUInt8(byteOffset, value)	50
2.9.1.3.4.12	DataView.prototype.SetInt16(byteOffset, value, littleEndian)	50
2.9.1.3.4.13	DataView.prototype.SetUInt16(byteOffset, value, littleEndian)	50
2.9.1.3.4.14	DataView.prototype.SetInt32(byteOffset, value, littleEndian)	50
2.9.1.3.4.15	DataView.prototype.SetUInt32(byteOffset, value, littleEndian)	50
2.9.1.3.4.16	DataView.prototype.SetFloat32(byteOffset, value, littleEndian)	51
2.9.1.3.4.17	DataView.prototype.SetFloat64(byteOffset, value, littleEndian)	51
2.9.1.3.4.18	byteLength	51
2.9.1.3.4.19	buffer	51
2.9.1.3.4.20	byteOffset	51
2.9.1.3.5	Properties of DataView Instances	51
2.9.2	Properties of Error Constructor	51
2.9.2.1	stackTraceLimit	51
2.9.3	Properties of Error Instances	51
2.9.3.1	stack	52
2.9.4	Properties of the Object Prototype Object	52
2.9.4.1	Object.prototype.__defineGetter__(propertyName, functionObject)	52
2.9.4.2	Object.prototype.__defineSetter__(propertyName, functionObject)	52
2.9.4.3	Object.prototype.__lookupGetter__(propertyName)	53
2.9.4.4	Object.prototype.__lookupSetter__(propertyName)	53
3	Security Considerations	54
4	Appendix A: Product Behavior	55
5	Change Tracking	56
6	Index	57

[bookmark: section_45584e011d5b42389f872db2a905b699][bookmark: _Toc494257614]Introduction
This document describes extensions to the ECMAScript language implemented in Microsoft web browsers. The extensions are in these rendering modes: IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode. IE9 Mode is based on ECMAScript Language Specification 5th Edition [ECMA-262/5]; the other modes are based on ECMAScript Language Specification 5.1 Edition [ECMA-262/51].
Section 2 of this specification is normative. All other sections and examples in this specification are informative.
[bookmark: section_8870e32de3504ccf97d1a2d0869a808b][bookmark: _Toc494257615]Glossary
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
[bookmark: section_a377fb3727db4abf83c4864fdf5d62da][bookmark: _Toc494257616]References
Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.
[bookmark: section_483513c0bf8a41d8892c4ea2801ff239][bookmark: _Toc494257617]Normative References
We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.
[ECMA-262/51] Ecma International, "ECMAScript® Language Specification", Standard ECMA-262 5.1 Edition / June 2011, http://www.ecma-international.org/ecma-262/5.1/index.html
[ECMA-262/5] Ecma International, "ECMAScript Language Specification", Standard ECMA-262 5th Edition / December 2009, http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205th%20edition%20December%202009.pdf
[MS-ES51] Microsoft Corporation, "Internet Explorer ECMA-262 ECMAScript Language Specification (5.1 Edition) Standards Support".
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt
[bookmark: section_3896f553a76a47818b79057563715243][bookmark: _Toc494257618]Informative References
[MS-ES3EX] Microsoft Corporation, "Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition".
[MS-ES3] Microsoft Corporation, "Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document".
[MS-ES5EX] Microsoft Corporation, "Internet Explorer Extensions to the ECMA-262 ECMAScript Language Specification (Fifth Edition)".
[MS-ES5] Microsoft Corporation, "Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document".
[bookmark: section_9a91f42dcab241a0af7f92a8afa6d7e0][bookmark: _Toc494257619]Extension Overview (Synopsis)
IE9 Mode extends the [ECMA-262/5] specification. The extensions are described in the following sections of this document. The relevant section of the specification is shown in parentheses.
2.1 Lexical Conventions (section 7)
· 2.1.1 Conditional Source Text Processing
· 2.1.2 Numeric Literals (section 7.8.3)
· 2.1.3 String Literals (section 7.8.4)
2.2 Types (section 8)
2.3 Type Conversion and Testing (section 9)
2.4 Executable Code and Execution Contexts (section 10)
2.5 Expressions (section 11)
2.6 Statements (section 12)
2.7 Function Definition (section 13)
2.8 Native ECMAScript Objects (section 15)
· 2.8.1 Function Properties of the Global Object (section 15.1.2)
· 2.8.2 Constructor Properties of the Global Object (section 15.1.4)
· 2.8.3 Properties of Function Instances (section 15.3.5)
· 2.8.4 String.prototype HTML Wrapper Properties
· 2.8.5 Properties of the Date Prototype Object (section 15.9.5)
· 2.8.6 Properties of the RegExp Constructor (section 15.10.5)
· 2.8.7 Properties of the RegExp Prototype Object (section 15.10.6)
· 2.8.8 Properties of RegExp Instances (section 15.10.7)
· 2.8.9 The Error Constructor (section 15.11.2)
· 2.8.10 Properties of Error Instances (section 15.11.5)
· 2.8.11 NativeError Instances (section 15.11.6)
· 2.8.12 The Debug Object
· 2.8.13 Enumerator Objects
· 2.8.14 VBArray Objects
· 2.8.15 ActiveXObject Objects
Modes other than IE9 Mode extend the [ECMA-262/51] specification. The extensions are described in the following sections of this document. The relevant section of the specification is shown in parentheses.
2.9 ECMAScript 5.1
· 2.9.1 Typed Arrays
· 2.9.2 Properties of Error Constructor (section 15.11.2)
· 2.9.3 Properties of Error Instances (section 15.11.5)
· 2.9.4 Properties of the Object Prototype Object (section 15.2.4)
[bookmark: section_8e6f354cc139413087b28f88e663134a][bookmark: _Toc494257620]Organization of This Documentation
This document is organized as follows:
1. Conditional Source Text Processing: Processing of source text by Internet Explorer ECMAScript.
2. Extensions to Types: Types defined by Internet Explorer ECMAScript that supplement types of [ECMA-262/5].
3. Extensions to Statements: A statement defined by Internet Explorer ECMAScript that supplements statements of [ECMA-262/5].
4. Extensions to Native ECMAScript Objects: Object extensions defined by Internet Explorer ECMAScript are listed according to object at the highest level.
5. Properties: The object properties defined by Internet Explorer ECMAScript, typically functions, methods, or data formats, are described at the next levels.
[bookmark: section_c03c9be42cb2479badaf6bf0e1fe2581][bookmark: _Toc494257621]Relationship to Standards and Other Extensions
This document defines extensions to [ECMA-262/5] and [ECMA-262/51]. Variations from [ECMA-262/5] are defined in [MS-ES5]. Variations from [ECMA-262/51] are defined in [MS-ES51].
The following documents describe variations and extensions from versions 3 and 5 of the ECMAScript Language:
	Document Type
	Reference
	Title

	Variations
	[MS-ES3]
	Internet Explorer ECMA-262 ECMAScript Language Specification Standards Support Document

	Variations
	[MS-ES5]
	Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document

	Extensions
	[MS-ES3EX]
	Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

	Extensions
	[MS-ES5EX]
	Internet Explorer Extensions to the ECMA-262 ECMAScript Language Specification (Fifth Edition)

[bookmark: section_15f9f8c833ab43568d9ddbce006446a3][bookmark: _Toc494257622]Applicability Statement
This document specifies a set of extensions to the [ECMA-262/5] and [ECMA-262/51] specifications. The extensions provide features for these modes of Windows Internet Explorer and Microsoft Edge: IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode.
[bookmark: section_e60ebbf86c014c3c970581ab3031bea8][bookmark: _Toc494257623]Extensions
IE9 Mode is based on ECMAScript Language Specification 5th Edition [ECMA-262/5]. Sections 2.1 to 2.8 of this document specify extensions to that standard that are available in IE9 Mode.
Later modes (IE10 Mode, IE11 Mode, and EdgeHTML Mode) are based on ECMAScript Language Specification 5.1 Edition [ECMA-262/51]. Section 2.9 of this document specifies extensions to that standard that are available in these modes. The extensions in IE9 Mode described in sections 2.1 to 2.8 are available in these modes also. However there are these exceptions:
· The extensions in section 2.9.4 are not available in IE9 Mode or IE10 Mode.
· The extensions in section 2.1.1 are not available in IE11 Mode or EdgeHTML Mode.
· The extensions in sections 2.1.1.1, 2.1.1.2, 2.7.2, 2.8.2, 2.8.13 and 2.8.15 are not available in EdgeHTML Mode.
The extensions are as follows:
· Extensions to Lexical Conventions
· Extensions to Types
· Extensions to Type Conversion and Testing
· Extensions to Executable Code and Execution Contexts
· Extensions to Expressions
· Extensions to Statements
· Extensions to Function Definition
· Extensions to Native ECMAScript Objects
[bookmark: section_fdff7e89098d41ba8bb2150c264e8336][bookmark: _Toc494257624]Extensions to Lexical Conventions
The following section defines Internet Explorer ECMAScript extensions to [ECMA-262/5] lexical conventions.
The extensions are as follows:
· Conditional Source Text Processing
· Global State
· Conditional Processing Algorithm
· Extensions to Numeric Literals
· Extensions to String Literals
[bookmark: section_f94355dbecb94d7081adcb0f5b0fa55f][bookmark: _Toc494257625]Conditional Source Text Processing
Conditional source text processing is available only in IE9 Mode and IE10 Mode.
When converting source text into input elements, Internet Explorer ECMAScript first does the processing necessary to remove or replace any conditional text spans and then does the input element conversion using the results of that processing as the actual source text input to the identification of lexical input elements.
Each Program (see [ECMA-262/5] section 14), whether presented as either a discrete source text or as the argument to the eval built-in function, and each FunctionBody (see [ECMA-262/5] section 13) processed by the standard built-in Function constructor ([ECMA-262/5] section 15.3.2.1) has conditional source text processing performed independently upon it.
NOTE
This specification defines conditional source text processing as if it were performed over an entire source text prior to any input element identification. It is an unobservable implementation detail whether this processing is actually performed in that manner or whether it is performed incrementally interweaved with input element identification.
[bookmark: section_cc650be4e5454bc3ac4fa5a5a202ba39][bookmark: _Toc494257626]Global State
The state value extensions described in this section are not available in EdgeHTML Mode.
The following state is shared by the conditional source text processing of all independent source texts that make up an ECMAScript program (see [ECMA-262/5] section 14). The state is initialized prior to the first such processing as follows:
1. SubstitutionEnabled Boolean flag with an initial value of false.
2. CCvariables A set of associations between string valued keys and values. The keys are strings. The values may be either ECMAScript Number ([ECMA-262/5] section 8.5) or Boolean ([ECMA-262/5] section 8.3) values. The initial associations are defined in the following table.
	Key
	Initial Value

	"_win32"
	Defined as true if this Internet Explorer ECMAScript implementation is a Microsoft 32-bit–based implementation. Otherwise, this association is not initially defined.

	"_win64"
	Defined as true if this Internet Explorer ECMAScript implementation is a Microsoft 64-bit–based implementation. Otherwise, this association is not initially defined.

	"_x86"
	Defined as true when running on a processor using the x86-based architecture. Otherwise, this association is not initially defined.

	"_ia64"
	Defined as true when running on a processor using the Itanium 64-bit architecture. Otherwise, this association is not initially defined.

	"_amd64"
	Defined as true when running on a processor using the x64 architecture. Otherwise, this association is not initially defined.

	"_jscript"
	true

	"_jscript_build"
	Number value that identifies the specific build of the Internet Explorer ECMAScript implementation that is running.

	"_jscript_version"
	Number value that represents the version of the Internet Explorer ECMAScript language implementation. The value 9 indicates that the implementation only supports features of the Internet Explorer 9 ECMAScript language.

	"_microsoft"
	Defined as true when running on a Microsoft ECMAScript implementation provided by Microsoft. Otherwise, this association is not initially defined.

[bookmark: section_bdcc3daac45844769a6b437ec80e4ad6][bookmark: _Toc494257627]Conditional Processing Algorithm
The conditional compilation extension described in this section is not available in EdgeHTML Mode.
For each source text to be processed, let source be the original source text (a sequence of Unicode characters) and let output initially be an empty sequence of Unicode characters. Let IfNestingLevel be 0.
Processing of source proceeds by recognizing specific input elements from source and then taking specified actions. The processing is organized into several states. The specific input elements that are recognized and the subsequent semantic action that is taken varies among states. The semantic action taken for a recognized input element may include transitioning to a different state. Processing of a source text begins by recognizing CCInputElementState0 if SubstitutionEnabled is false and CCInputElementState1 if SubstitutionEnabled is true.
The input elements for conditional processing are defined by the following grammar, which has Unicode characters as terminal symbols. Some rules of the grammar are defined using rules of the ECMAScript lexical grammar.
Syntax
NOTE:
CCInputElementState0 is recognized during top-level conditional processing when SubstitutionEnabled is false. When recognizing a RegularExpressionLiteral in this state, the contextual distinction between RegularExpressionLiteral and DivPunctuator (see [ECMA-262/5] section 7) must be respected.
CCInputElementState0 ::
RegularExpressionLiteralStringLiteralCCOnCCSet0CCIf0CCMultiLineComment0CCSingleLinecomment0SourceCharacter
CCOn ::
@ CCOnId
/*@ CCOnId
//@ CCOnId
CCOnId ::
cc_on [lookahead IdentifierPart]
CCSet0 ::
@set [lookahead IdentifierPart]
CCIf0 ::
@if [lookahead IdentifierPart]
CCMultiLineComment0 ::
/* [lookahead ≠ CCOnId] MultiLineCommentCharsopt */
SingleLineComment0 ::
// [lookahead ≠ CCOnId] SingleLineCommentCharsopt
Semantics
If CCInputElementState0 cannot be recognized because there are no remaining characters in source, then Conditional Source processing is completed and the characters of the output supply the Unicode characters for subsequent input element processing. If CCInputElementState0 cannot be recognized and there are characters in source, a SyntaxError exception is thrown.
The productions CCInputElementState0 :: RegularExpressionLiteral, CCInputElementState0 :: StringLiteral, CCInputElementState0 :: CCMultiLineComment0, CCInputElementState0 :: CCSingleLinecomment0, and CCInputElementState0 :: SourceCharacter upon recognition perform the following actions:
1. Append to the end of output, in left-to-right sequence, the Unicode characters from source that were recognized by the production. Remove the recognized characters from source.
2. Use CCInputElementState0 to recognize the next input element from source.
The production CCInputElementState0 :: CCOn upon recognition performs the following actions:
1. Set SubstitutionEnable to true.
2. Append a <SP> character to the end of output. Remove the recognized characters from source.
3. Use CCInputElementState1 to recognize the next input element from source.
The production CCInputElementState0 :: CCSet0 upon recognition performs the following actions:
1. Set SubstitutionEnable to true.
2. Append a <SP> character to the end of output. Remove the recognized characters from source.
3. Use CCInputElementStateSetLHS to recognize the next input element from source.
The production CCInputElementState0 :: CCIf0 upon recognition performs the following actions:
1. Set SubstitutionEnable to true.
2. Append a <SP> character to the end of output. Remove the recognized characters from source.
3. Increment the value of IfNestingLevel by 1.
4. Use CCInputElementStateIfPredicate to recognize the next input element from source.
Syntax
NOTE:
CCInputElementState1 is recognized during active conditional processing when SubstitutionEnabled is true. This may be at the top level or in the clause of an @if statement that represents the "true" condition. When recognizing a RegularExpressionLiteral in this state the contextual distinction between RegularExpressionLiteral and DivPunctuator (see [ECMA-262/5] section 7) must be respected.
CCInputElementState1 ::
RegularExpressionLiteralStringLiteralCCOnCCSet1CCIf1CCElif1CCElse1CCEnd1CCSubstitution1CCStartMarkerCCEndMarkerCCMultiLineComment1CCSingleLinecomment1SourceCharacter
CCSet1 ::
@set [lookahead IdentifierPart]
/*@set [lookahead IdentifierPart]
//@set [lookahead IdentifierPart]
CCIf1 ::
@if [lookahead IdentifierPart]
/*@if [lookahead IdentifierPart]
//@if [lookahead IdentifierPart]
CCElif1 ::
@elif [lookahead IdentifierPart]
/*@elif [lookahead IdentifierPart]
//@elif [lookahead IdentifierPart]
CCElse1 ::
@else [lookahead IdentifierPart]
/*@else [lookahead IdentifierPart]
//@else [lookahead IdentifierPart]
CCEnd1 ::
@end [lookahead IdentifierPart]
/*@end [lookahead IdentifierPart]
//@end [lookahead IdentifierPart]
CCSubstitution1 ::
@ CCSubIdentifier
/*@ CCSubIdentifier
//@ CCSubIdentifier
CCStartMarker ::
/*@
//@
CCEndMarker ::
@*/
CCMultiLineComment1 ::
/* [lookahead ≠ @] MultiLineCommentCharsopt */
SingleLineComment1 ::
// [lookahead ≠ @] SingleLineCommentCharsopt
CCSubIdentifer ::
 [lookahead CCKeyword] IdentifierName
CCKeyword ::
cc_on setifelif
elseend
Semantics
If CCInputElementState1 cannot be recognized because there are no remaining characters in source, then Conditional Source processing is completed and the characters of the output supply the Unicode characters for subsequent input element processing. If CCInputElementState1 cannot be recognized and there are characters in source, a SyntaxError exception is thrown.
The productions CCInputElementState1 :: RegularExpressionLiteral, CCInputElementState1 :: StringLiteral, CCInputElementState1 :: CCMultiLineComment1, CCInputElementState1 :: CCSingleLinecomment1, and CCInputElementState1 :: SourceCharacter upon recognition perform the following actions:
1. Append to the end of output, in left-to-right sequence, the Unicode characters from source that were recognized by the production. Remove the recognized characters from source.
2. Use CCInputElementState1 to recognize the next input element from source.
The productions CCInputElementState1 :: CCOn, CCInputElementState1 :: CCStartMarker, CCInputElementState1 :: CCEndMarker upon recognition perform the following actions:
1. Append a <SP> character to the end of output. Remove the recognized characters from source.
2. Use CCInputElementState1 to recognize the next input element from source.
The production CCInputElementState1 :: CCSet1 upon recognition performs the following actions:
1. Append a <SP> character to the end of output. Remove the recognized characters from source.
2. Use CCInputElementStateSetLHS to recognize the next input element from source.
The production CCInputElementState1 :: CCIf1 upon recognition performs the following actions:
1. Append a <SP> character to the end of output. Remove the recognized characters from source.
2. Increment the value of IfNestingLevel by 1.
3. Use CCInputElementStateIfPredicate to recognize the next input element from source.
The production CCInputElementState1 :: CCElif1 upon recognition performs the following actions:
1. Remove the recognized characters from source.
2. If IfNestingLevel is 0, throw a SyntaxError exception.
3. Use CCInputElementStateFalseIfTail to recognize the next input element from source.
The production CCInputElementState1 :: CCElse1 upon recognition performs the following actions:
1. Remove the recognized characters from source.
2. If IfNestingLevel is 0, throw a SyntaxError exception.
3. Use CCInputElementStateFalseIfTail to recognize the next input element from source.
The production CCInputElementState1 :: CCEnd upon recognition performs the following actions:
1. Append a <SP> character to the end of output. Remove the recognized characters from source.
2. If IfNestingLevel is 0, throw a SyntaxError exception.
3. Decrement the value of IfNestingLevel by 1.
4. Use CCInputElementState1 to recognize the next input element from source.
The production CCInputElementState1 :: CCSubstitution1 upon recognition performs the following actions:
1. Let var be the string of characters recognized as the CCSubIdentifier element of CCSubstitution1.
2. If the value of var is a key of CCVariables, then let the value be the associated value. Otherwise, let value be the string "NaN".
3. Let value be ToString(value).
4. Append the characters of the string value of value to the end of output.
5. Remove the recognized characters from source.
6. Use CCInputElementStateIfPredicate to recognize the next input element from source.
Syntax
NOTE:
CCInputElementStateSetLHS is recognized during active conditional processing of the body of an @set statement.
CCInputElementStateSetLHS ::
WhiteSpaceopt @ IdentifierName WhiteSpaceopt = CCExpression
Semantics
If CCInputElementStateSetLHS cannot be recognized a SyntaxError exception is thrown.
The production CCInputElementStateSetLHS :: WhiteSpaceopt @ IdentifierName WhiteSpaceopt = CCExpression upon recognition performs the following actions:
1. Let setName be the string of characters recognized as the IdentifierName element of CCSubstitution1.
2. Let value be the result of evaluating CCExpression.
3. Create an association within CCVariables where the key is the string value of setName and where the value is value. If an association with that key already exists, replace it.
4. Remove the recognized characters from source.
5. Use CCInputElementState1 to recognize the next input element from source.
Syntax
NOTE:
CCInputElementStateIfPredicate is recognized during active conditional processing of the predicate portion of an @if or @elif statement.
CCInputElementStateIfPredicate ::
WhiteSpaceopt (CCExpression WhiteSpaceopt)
Semantics
If CCInputElementStateIfPredicate cannot be recognized, a SyntaxError exception is thrown.
The production CCInputElementStateSetIfPredicate :: WhiteSpaceopt (CCExpression WhiteSpaceopt) upon recognition performs the following actions:
1. Let predicate be the result of evaluating CCExpression.
2. Increment the value of IfNestingLevel by 1.
3. Set SkippedIfNestingLevel to 0.
4. Remove the recognized characters from source.
5. If ToBoolean(predicate) is true, then use CCInputElementState1 to recognize the next input element from source.
6. Otherwise, use CCInputElementStateFalseThen to recognize the next input element from source.
Syntax
NOTE:
CCInputElementStateFalseThen is recognized during processing of false clauses of an @if statement for which the true clause has not yet been processed. The current clause may be a "then" clause, an @elif clause, or an @else clause.
CCInputElementStateFalseThen ::
@if [lookahead IdentifierPart]
@elif [lookahead IdentifierPart]
@else [lookahead IdentifierPart]
@end [lookahead IdentifierPart]
SourceCharacter
Semantics
If CCInputElementStateFalseThen cannot be recognized, a SyntaxError exception is thrown.
The production CCInputElementStateFalseThen :: @if [lookahead IdentifierPart] upon recognition performs the following actions:
1. Increment the value of SkippedIfNestingLevel by 1.
2. Remove the recognized characters from source.
3. Use CCInputElementStateFalseThen to recognize the next input element from source.
The production CCInputElementStateFalseThen :: @elif [lookahead IdentifierPart] upon recognition performs the following actions:
1. Remove the recognized characters from source.
2. If SkippedIfNestingLevel > 0, then use CCInputElementStateFalseThen to recognize the next input element from source.
3. Otherwise, use CCInputElementStateIfPredicate to recognize the next input element from source.
The production CCInputElementStateFalseThen :: @else [lookahead IdentifierPart] upon recognition performs the following actions:
1. Remove the recognized characters from source.
2. If SkippedIfNestingLevel > 0, then use CCInputElementStateFalseThen to recognize the next input element from source.
3. Otherwise, use CCInputElementState1 to recognize the next input element from source.
The production CCInputElementStateFalseThen :: @end [lookahead IdentifierPart] upon recognition performs the following actions:
1. Remove the recognized characters from source.
2. If SkippedIfNestingLevel is 0, then go to step 6.
3. Decrement the value of SkippedIfNestingLevel by 1.
4. Use CCInputElementStateFalseThen to recognize the next input element from source.
5. Return.
6. Decrement the value of IfNestingLevel by 1.
7. Use CCInputElementState1 to recognize the next input element from source.
The production CCInputElementStateFalseThen :: SourceCharacter upon recognition performs the following actions:
1. Remove the recognized characters from source.
2. Use CCInputElementStateFalseThen to recognize the next input element from source.
Syntax
NOTE:
CCInputElementStateFalseThen is recognized during processing of false clauses of an @if statement for which the true clause has already been processed. It is also used during processing of all clauses of a @if statement that is nested within a false clause of an enclosing @if statement. The current clause may be a "then" clause, an @elif clause or an @else clause.
CCInputElementStateFalseIfTail ::
@if [lookahead IdentifierPart]
@elif [lookahead IdentifierPart]
@else [lookahead IdentifierPart]
@end [lookahead IdentifierPart]
SourceCharacter
Semantics
If CCInputElementStateFalseIfTail cannot be recognized, a SyntaxError exception is thrown.
The production CCInputElementStateFalseIfTail :: @if [lookahead IdentifierPart] upon recognition performs the following actions:
1. Increment the value of SkippedIfNestingLevel by 1.
2. Remove the recognized characters from source.
3. Use CCInputElementStateFalseIfTail to recognize the next input element from source.
The productions CCInputElementStateFalseIfTail :: @elif [lookahead IdentifierPart] and CCInputElementStateFalseIfTail :: @else [lookahead IdentifierPart] upon recognition perform the following actions:
1. Remove the recognized characters from source.
2. Use CCInputElementStateFalseIfTail to recognize the next input element from source.
The production CCInputElementStateFalseIfTail :: @end [lookahead IdentifierPart] upon recognition performs the following actions:
1. Remove the recognized characters from source.
2. If SkippedIfNestingLevel is 0, then go to step 6.
3. Decrement the value of SkippedIfNestingLevel by 1.
4. Use CCInputElementStateFalseIfTail to recognize the next input element from source.
5. Return.
6. Decrement the value of IfNestingLevel by 1.
7. Use CCInputElementState1 to recognize the next input element from source.
The production CCInputElementStateFalseIfTail :: SourceCharacter upon recognition performs the following actions:
1. Remove the recognized characters from source.
2. Use CCInputElementStateFalseIfTail to recognize the next input element from source.
Syntax
CCExpression ::
 CCLogicalANDExpression CCExpression WhiteSpaceopt || CCLogicalANDExpression
CCLogicalANDExpression ::
CCBitwiseORExpressionCCcLogicalANDExpression WhiteSpaceopt && CCBitwiseORExpression
CCBitwiseORExpression ::
CCBitwiseXORExpressionCCBitwiseORExpression WhiteSpaceopt | CCBitwiseXORExpression
CCBitwiseXORExpression ::
CCBitwiseANDExpressionCCBitwiseXORExpression WhiteSpaceopt ^ CCBitwiseANDExpression
CCBitwiseANDExpression ::
CCEqualityExpressionCCBitwiseANDExpression WhiteSpaceopt & CCEqualityExpression
CCEqualityExpression ::
CCRelationalExpressionCCEqualityExpression WhiteSpaceopt == CCRelationalExpressionCCEqualityExpression WhiteSpaceopt!= CCRelationalExpressionCCEqualityExpression WhiteSpaceopt === CCRelationalExpressionCCEqualityExpression WhiteSpaceopt !== CCRelationalExpression
CCRelationalExpression ::
CCShiftExpressionCCRelationalExpression WhiteSpaceopt < CCShiftExpressionCCRelationalExpression WhiteSpaceopt > CCShiftExpressionCCRelationalExpression WhiteSpaceopt <= CCShiftExpressionCCRelationalExpression WhiteSpaceopt >= CCShiftExpression
CCShiftExpression ::
CCAdditiveExpressionCCShiftExpression WhiteSpaceopt << CCAdditiveExpressionCCShiftExpression WhiteSpaceopt >> CCAdditiveExpressionCCShiftExpression WhiteSpaceopt >>> CCAdditiveExpression
CCAdditiveExpression ::
CCMultiplicativeExpressionCCAdditiveExpression WhiteSpaceopt + CCMultiplicativeExpressionCCAdditiveExpression WhiteSpaceopt – CCMultiplicativeExpression
CCMultiplicativeExpression ::
CCUnaryExpressionCCMultiplicativeExpression WhiteSpaceopt * CCUnaryExpressionCCMultiplicativeExpression WhiteSpaceopt / CCUnaryExpressionCCMultiplicativeExpression WhiteSpaceopt % CCUnaryExpression
UnaryExpression ::
CCPrimaryExpressionWhiteSpaceopt + CCUnaryExpressionWhiteSpaceopt - CCUnaryExpressionWhiteSpaceopt ~ CCUnaryExpressionWhiteSpaceopt! CCUnaryExpression
CCPrimaryExpression ::
CCVariableCCLiteralWhiteSpaceopt (Expression)
CCLiteral ::
WhiteSpaceopt true [lookahead IdentifierPart]
WhiteSpaceopt false [lookahead IdentifierPart]
WhiteSpaceopt Infinity [lookahead IdentifierPart]
WhiteSpaceopt NumericLiteral
CCVariable ::
WhiteSpaceopt @ IdentifierName
Semantics
Unless otherwise specified in this section, the productions of CCExpression are evaluated using the same semantic rules as the analogous productions of the ECMAScript syntactic grammar for Expression in [ECMA-262/5] section 11. However, only values of types Number and Boolean can occur during the evaluation of CCExpression productions, so any semantic steps that are relative to other types of values are not relevant.
The production CCLiteral :: WhiteSpaceopt true [lookahead IdentifierPart] is evaluated by returning the value true.
The production CCLiteral :: WhiteSpaceopt false [lookahead IdentifierPart] is evaluated by returning the value false.
The production CCLiteral :: WhiteSpaceopt Infinity [lookahead IdentifierPart] is evaluated by returning the value +∞.
The production CCVariable :: WhiteSpaceopt @ IdentifierName is evaluated by performing the following steps:
1. Let var be the string of characters recognized as the IdentifierName element of CCVariable.
2. If the value of var is a key of CCVariables, then let value be the associated value. Otherwise, let value be "NaN".
3. Return value.
[bookmark: section_05671fc2e4424c749c54cb7d39fcc16f][bookmark: _Toc494257628]Extensions to Numeric Literals
Internet Explorer ECMAScript supports the Numeric Literal extensions that are defined by [ECMA-262/5] Annex B, section B.1.1.
[bookmark: section_174eac8fa16c44e2801d5aae9abe403b][bookmark: _Toc494257629]Extensions to String Literals
Internet Explorer ECMAScript supports the String Literal extensions that are defined by [ECMA-262/5] Annex B, section B.1.2.
In addition, the production EscapeSequence is extended to include the characters 8 and 9 as right-hand-side alternatives, as follows:
EscapeSequence ::
CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence
8
9
The character values (CV) are defined as follows:
1. The CV of EscapeSequence :: 8 is a character 8 (Unicode value 0038).
2. The CV of EscapeSequence :: 9 is a character 9 (Unicode value 0039).
[bookmark: section_a93e233f99dc4288acfa89defd92215c][bookmark: _Toc494257630]Extensions to Types
The following section defines an Internet Explorer ECMAScript extension to [ECMA-262/5] types.
[bookmark: section_8eb7287beca1467ebdf3d8455aa4f965][bookmark: _Toc494257631]SafeArray Type
The SafeArray type is the set of all references to Microsoft COM SAFEARRAY data structures.
SafeArray values can be created only by host objects and host functions. SafeArray values can be manipulated similarly to other ECMAScript data types.
[bookmark: section_f096994e32aa4385894e4c79122e17b6][bookmark: _Toc494257632]VarDate Type
The VarDate type is the set of all references to Microsoft COM VARIANT data structures that have a VARTYPE enumeration value of VT_DATE.
VarDate values can be created only by host objects and host functions, or by calling the getVarDate method by using the prototype property of the Date object: Date.prototype.getVarDate. VarDate values can be manipulated similarly to other ECMAScript data types.
[bookmark: section_af2b7c15125a407988ec43d83c7e4248][bookmark: _Toc494257633]Extensions to Type Conversion and Testing
The following extensions to [ECMA-262/5] are necessary to support the SafeArray and VarDate extended types.
	Conversion operation
	Argument type
	Operation

	ToPrimitive
	SafeArray
	Returns the input argument (no conversion is applied).

	ToPrimitive
	VarDate
	Returns the input argument (no conversion is applied).

	ToBoolean
	SafeArray
	Returns a value of false.

	ToBoolean
	VarDate
	Returns a value of false.

	ToNumber
	SafeArray
	Throws a TypeError exception.

	ToNumber
	VarDate
	Returns the Number value that represents the internal numerical value of the VT_Date value.

	ToString
	SafeArray
	Applies the following steps:
Let objValue be ToObject(input argument).
Returns the value of ToString(objValue).

	ToString
	VarDate
	Returns a String value that contains a representation of the VarDate value in the same representational format as Date.prototype.toString.
For more information, see[ECMA-262/5], Section 15.9.5.2.

	ToObject
	SafeArray
	Creates a new VBArray object in the same manner as the following ECMAScript expression:
new VBArray(argument)
In this case, argument is a value of type SafeArray.

	ToObject
	VarDate
	Throws a TypeError exception.

	CheckObjectCoercible
	SafeArray
	Returns with no return value.

	CheckObjectCoercible
	VarDate
	Throws a TypeError exception.

[bookmark: section_f3b31624812e42068995175c4799c4cf][bookmark: _Toc494257634]Extensions to Executable Code and Execution Contexts
The following section defines Internet Explorer ECMAScript extensions to [ECMA-262/5] executable code and execution contexts.
The extensions are as follows:
· Extensions to Declaration Binding Instantiation
[bookmark: section_9975ceff4d0346bfaf208a1a159593aa][bookmark: _Toc494257635]Extensions to Declaration Binding Instantiation
Internet Explorer ECMAScript allows a FunctionDeclaration language syntactic element to appear anywhere that a Statement can appear. FunctionDeclaration items are processed during step 5 of the Declaration Binding Instantiation algorithm (which is defined by [ECMA-262/5], section 10.5). However, a FunctionDeclaration item that defines an event handler is excluded from the processing of step 5. Such a FunctionDeclaration item is evaluated when an ECMAScript SourceElement production is evaluated.
[bookmark: section_d97c9e7caf4f4376b0703d1c2ac0b9c5][bookmark: _Toc494257636]Extensions to Expressions
The following section defines Internet Explorer ECMAScript extensions to [ECMA-262/5] expressions.
[bookmark: section_4bb7d565d7374ce7a4c0bd90c1059869][bookmark: _Toc494257637]Extensions to typeof Operator
Internet Explorer ECMAScript adds the following typeof operator results to Table 20 in [ECMA-262/5], section 11.4.3.
	Typeof val
	Result

	SafeArray
	"unknown"

	VarDate
	"date"

[bookmark: section_7c5d65f43dbb4b55bc654157bf2ea396][bookmark: _Toc494257638]Extensions to Statements
The following section defines an Internet Explorer ECMAScript extension to [ECMA-262/5] statements.
[bookmark: section_1a0ea2ebca7e4a1f9d11eb57ab1c75a5][bookmark: _Toc494257639]Extension Grammar Production for Statement
Internet Explorer ECMAScript adds a FunctionDeclaration language syntactic element as an additional alternative to the Statement grammar production of [ECMA-262/5], section 12:
Syntax Extension
Statement:
FunctionDeclaration
A FunctionDeclaration element can occur in any context where a Statement production is required. The semantics of such declarations are specified in section 2.4.1 of this document.
[bookmark: section_09e969b9729c4d519f9ec3c7df81d6c7][bookmark: _Toc494257640]Extensions to Function Definition
The following section defines an Internet Explorer ECMAScript extension to [ECMA-262/5] functions.
[bookmark: section_193d64ff130c49ed838d4341f9be7761][bookmark: _Toc494257641]Function Definition Used As a Statement
Semantic Extensions
Internet Explorer ECMAScript allows a FunctionDeclaration element to be evaluated as a Statement production, as follows:
FunctionDeclaration : function Identifier (FormalParameterListopt) { FunctionBody }
When this production is evaluated, the following step is performed:
1. Return (normal, empty, empty).
[bookmark: section_fbd64a60717f4a8cbb1d0c85cf9ede26][bookmark: _Toc494257642]Event Handler Function Definitions
The extensions described in this section are not available in EdgeHTML Mode.
Internet Explorer ECMAScript adds an additional alternative to the FunctionDeclaration grammar production of [ECMA-262/5], section 13, as follows:
Syntax Extension
FunctionDeclaration :
function Identifier (FormalParameterListopt) { FunctionBody }
function ObjectPath :: Identifier (FormalParameterListopt) { FunctionBody }
ObjectPath :
Identifier
ObjectPath NameQualifier Identifier
NameQualifier : .
Semantic Extensions
Internet Explorer ECMAScript allows a FunctionDeclaration element to be evaluated as a Statement production, as follows:
FunctionDeclaration : function ObjectPath :: Identifier (FormalParameterListopt) { FunctionBody }
When this production is evaluated, the following steps are performed:
1. Let p be the result of the evaluation of ObjectPath.
2. Let o be ToObject(GetValue(p)).
3. If o is not a host object that supports event attachment, throw a TypeError exception.
4. Let eventName be a string that contains the text of Identifier.
5. Let h be the result of creating a new Function object, as specified in [ECMA-262/5], section 13.2, with the parameters specified by FormalParameterListopt and the body specified by FunctionBody.
1. Pass in the VariableEnvironment component of the running execution context as the Scope.
2. Pass in a value of true as the Strict flag if the FunctionDeclaration element is contained in strict code or if its FunctionBody element is strict code.
6. Perform event handler attachment of h to o by using eventName as the event name.
7. Return (normal, empty, empty).
An event handler function h is attached to a host object o with eventName n as follows:
1. If o implements the IBindEventHandler COM interface (http://msdn.microsoft.com/en-us/library/56zc7scb(VS.85).aspx), perform the following actions:
1. Call the BindHandler COM method of o, passing arguments n and the function entry point h. This call hooks up the direct event.
2. Return.
2. If o does not implement the IBindEventHandler COM interface, retain the information (o, n, and h), and defer the event binding until the script engine is placed into "connected" mode, as defined by the SCRIPTSTATE_CONNECTED constant value of the Microsoft Windows Script Technologies SCRIPTSTATE enumeration (http://msdn.microsoft.com/en-us/library/f7z7cxxa(VS.85).aspx). When the script engine is placed into the connected mode, the retained information is used to bind the event with an event sinking process. The event binding is performed immediately if the script is already in connected mode.
3. Return.
The IConnectionPointContainer COM interface (http://msdn.microsoft.com/en-us/library/ms683857(VS.85).aspx) is used to perform the event binding in step 2, regardless of whether the binding is performed immediately or is deferred.
[bookmark: section_6c334491467d42f1b7151991625700ee][bookmark: _Toc494257643]Extensions to Native ECMAScript Objects
Internet Explorer ECMAScript defines extensions to the native ECMAScript objects of [ECMA-262/5]. These extensions are described in the following sections.
[bookmark: section_1538a9996bd343b8b44ce7053f023bcd][bookmark: _Toc494257644]Function Properties of the Global Object
Internet Explorer ECMAScript defines additional properties of the Global object of [ECMA-262/5]. These properties are described in the following sections.
[bookmark: section_cdbbf4e26e2a46fb9d9b9738ff3dfdb6][bookmark: _Toc494257645]ScriptEngine
When the ScriptEngine function is called, it returns a string value that specifies the implementation-defined name of the ECMAScript implementation that is executing the call. The Internet Explorer ECMAScript implementations within Internet Explorer 9 always return the string "JScript".
[bookmark: section_3ce517a7510847e3ba7f4241a43fb88d][bookmark: _Toc494257646]ScriptEngineBuildVersion
When the ScriptEngineBuildVersion function is called, it returns a value that uniquely identifies the specific build of the ECMAScript implementation that is executing the call.
[bookmark: section_67b0aae3d306485b90f5ba9c306bb62d][bookmark: _Toc494257647]ScriptEngineMajorVersion
When the ScriptEngineMajorVersion function is called, it returns a value that identifies the major revision level of the implementation, not the revision level of the ECMAScript or JavaScript language specification that is currently supported by the implementation.
An implementation of Internet Explorer ECMAScript that supports distinct document modes (that separately implement other versions of the language, such as JScript 5.7 and JScript 5.8 functionality) can return a single value that does not vary among modes. The return value cannot be used as a reliable indicator of the availability or lack of availability of specific language features.
The ECMAScript implementations within Internet Explorer 9 always return a value of 9, even when Internet Explorer 9 is operating in Quirks, IE7, or IE8 document modes.
[bookmark: section_7f0fdb32aa97478a972708e1f9af77d4][bookmark: _Toc494257648]ScriptEngineMinorVersion
When the ScriptEngineMinorVersion function is called, it returns a value that identifies the minor revision level of the implementation, not the revision level of the ECMAScript or JavaScript language specification that is currently supported by the implementation. This return value cannot be used as a reliable indicator of the availability or lack of availability of specific language features.
The ECMAScript implementation within Microsoft Internet Explorer 9 always returns a value of 0, even when Internet Explorer 9 is operating in Quirks, IE7, or IE8 document modes.
[bookmark: section_9a53093a8694433faebf2aa95fa92a80][bookmark: _Toc494257649]CollectGarbage
When the CollectGarbage function is called, the Internet Explorer ECMAScript implementation may attempt to reclaim unused or unneeded resources that are associated with the currently running application. Whether or not any action is actually taken depends on the current state of the execution environment and the resource management strategies and heuristics used by the implementation. An application may call this function to request that any such pending reclamation activities be completed immediately. However, an Internet Explorer ECMAScript implementation is not required to honor such a request.
[bookmark: section_840ef86db3f542d3ba94a12f363d6da8][bookmark: _Toc494257650]Constructor Properties of the Global Object
The Enumerator and ActiveXObject constructor property extensions of the Global object are not available in EdgeHTML Mode.
Internet Explorer ECMAScript defines the following additional constructor properties of the Global object:
1. Debug
2. Enumerator
3. VBArray
4. ActiveXObject
[bookmark: section_6a6203362b3c41f1b655ea37ecdcce1b][bookmark: _Toc494257651]Properties of Function Instances
Internet Explorer ECMAScript defines additional properties of Function instances of [ECMA-262/5]. These properties are described in the following sections.
[bookmark: section_38020a03c16f45d191692c67a87db0b0][bookmark: _Toc494257652]The arguments Property
The value of the arguments property of a function instance is null. This property has the attributes { [[Configurable]]: true, [[Writable]]: false, [[Enumerable]]: false }. However, function instances also have a special [[Get]] internal method which in certain circumstances will return a value other than null when accessing the arguments property.
[bookmark: section_cee0e71521e04d9ebb0b64b1fd7dcf31][bookmark: _Toc494257653]The caller Property
The value of the caller property of a function instance is null. This property has the attributes { [[Configurable]]: true, [[Writable]]: false, [[Enumerable]]: false }. However, function instances also have a special [[Get]] internal method which in certain circumstances will return a value other than null when accessing the caller property.
[bookmark: section_718a1441e3cf4c37ba9c4aa601bbf160][bookmark: _Toc494257654]The [[Get]] (P) Method of a Function Object
When the [[Get]] method of F is called with value P, the following steps are taken:
1. If P is the string 'arguments', take the following steps:
1. If an active execution context for F does not exist, go to step 3.
2. Let X be the most recently created active execution context for F.
3. If X is marked as having a partially accessible arguments object, let A be the original arguments object for X; otherwise, let A be the value of the property named 'arguments' of the variable object of X.
Note: JScript 5.x under Internet Explorer 9 (in all document modes) marks the current execution context as having a partially accessible arguments object when the function’s FormalParameterList contains the name 'arguments' or the function’s FunctionBody contains a direct reference to the function’s original arguments object or the function’s FunctionBody contains a direct call to eval.

4. Return A.
2. If P is the string 'caller', take the following steps:
1. Let X be the most recently created active execution context for F.
2. If X does not have an execution context to which it could normally exit, return null.
3. Let R be the execution context which would become the current execution context if X exited normally (not via an exception).
4. If R is an execution context for a built-in function or a host object function, return null.
5. If R is an execution context for global code or for eval code, return null.
6. R must be an execution context for function code, so let rf be the function object that contains the call that caused R to be created.
7. If rf is a strict mode Function object, throw a TypeError exception.
8. Return rf.
3. Return the result of calling the default [[Get]] method ([ECMA-262/5] section 8.12.3), passing P as the argument.
[bookmark: section_760c861b004f4a1f929abf6e365bb7b3][bookmark: _Toc494257655]String.prototype HTML Wrapper Properties
Internet Explorer ECMAScript defines String.prototype functions that wrap the string value of a this value with an HTML tag. The following abstraction is used to specify the behavior of these functions.
The abstract operation WrapWithHTML is called with arguments body, tag, attribute, and data. The tag and attribute arguments must be strings; attribute and data may be omitted. The following steps are performed:
1. Append the character "<" to the characters of tag.
2. If attribute is not present, go to Step 7.
3. Append to Result(1) a single-space character followed by the characters of attribute.
4. Append to Result(3) the characters "=" and """.
5. Append to Result(4) the characters of the string returned by ToString(data).
6. Append to Result(5) the character """.
7. If attribute is present, use Result(6); otherwise, use Result(1).
8. Append to Result(7) the character ">".
9. Append to Result(8) the characters of the string returned by ToString(body).
10. Append to Result(9) the characters "<" and "/".
11. Append to Result(10) the characters of tag.
12. Append to Result(11) the character ">".
13. Return the string value of the characters from Result(12).
[bookmark: section_562a75a689e648d4a0d776c5a16bee16][bookmark: _Toc494257656]String.prototype.anchor(name)
Return the result of WrapWithHTML(this value, "A", "NAME", name).
[bookmark: section_78e6c7c56ea147e9bcc64afcf9ba26c1][bookmark: _Toc494257657]String.prototype.big()
Return the result of WrapWithHTML(this value, "BIG").
[bookmark: section_b512fa43af1d4ccbb7b3da738a7ba498][bookmark: _Toc494257658]String.prototype.blink()
Return the result of WrapWithHTML(this value, "BLINK").
[bookmark: section_8efd8655830046929210446bf63a1706][bookmark: _Toc494257659]String.prototype.bold()
Return the result of WrapWithHTML(this value, "B").
[bookmark: section_1353dccce92a4a0bba2eb927e9482461][bookmark: _Toc494257660]String.prototype.fixed()
Return the result of WrapWithHTML(this value, "TT").
[bookmark: section_a7bfeb861bdf448eab6d3166d66326fe][bookmark: _Toc494257661]String.prototype.fontcolor(color)
Return the result of WrapWithHTML(this value, "FONT", "COLOR", color).
[bookmark: section_ba3f1bc141014ba3bd13813e610e3c03][bookmark: _Toc494257662]String.prototype.fontsize(size)
Return the result of WrapWithHTML(this value, "FONT", "SIZE", size).
[bookmark: section_ac2664d26d68424b8a52eba0ef2e52c7][bookmark: _Toc494257663]String.prototype.italics()
Return the result of WrapWithHTML(this value, "I").
[bookmark: section_a31c1dfcc18245ddb1acb1d857b4013e][bookmark: _Toc494257664]String.prototype.link(url)
Return the result of WrapWithHTML(this value, "A", "HREF", url).
[bookmark: section_82941ab5a7ca41ceaf2ebeba9e46e345][bookmark: _Toc494257665]String.prototype.small()
Return the result of WrapWithHTML(this value, "SMALL").
[bookmark: section_7284e0e343b740d6aafd7486aab68a3d][bookmark: _Toc494257666]String.prototype.strike()
Return the result of WrapWithHTML(this value, "STRIKE").
[bookmark: section_136778eb8868418db464ccf67fc5c910][bookmark: _Toc494257667]String.prototype.sub()
Return the result of WrapWithHTML(this value, "SUB").
[bookmark: section_936676c755d34fefa8b0bdda67581a88][bookmark: _Toc494257668]String.prototype.sup()
Return the result of WrapWithHTML(this value, "SUP").
[bookmark: section_3f0dae5b214d4c1eaca7320f37389e87][bookmark: _Toc494257669]Properties of the Date Prototype Object
Internet Explorer ECMAScript defines an additional method of the Date prototype object of [ECMA-262/5]. This method is described in the following section.
[bookmark: section_4af9581e50ae454eb617e454073618b1][bookmark: _Toc494257670]Date.prototype.getVarDate ()
The getVarDate method is implemented as follows:
1. Let t be the time value.
2. It the value of t is "NaN", return a VarDate value for which the value of ToNumber is "NaN".
3. Otherwise, return a VarDate value that corresponds to the time value t.
[bookmark: section_530489df3f98467088e4824d70355ac3][bookmark: _Toc494257671]Properties of the RegExp Constructor
Internet Explorer ECMAScript defines additional properties of the RegExp constructor of [ECMA-262/5]. These properties are described in the following sections.
[bookmark: section_74450744d84a4fecbc43be2b85ca8064][bookmark: _Toc494257672]RegExp.input
The initial value of RegExp.input is the empty string. This property shall have the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: true }. The value of this property may be modified by calls to RegExp.prototype.exec. The properties RegExp.input and RegExp.$_ always have the same value. When one is set to some value, the other is automatically also set to that same value. Unlike most other RegExp constructor properties, this property is writable.
[bookmark: section_037bf789b26040e29187be8528df38c8][bookmark: _Toc494257673]RegExp.lastIndex
The initial value of RegExp.lastIndex is the number −1. This property shall have the attributes { DontEnum, DontDelete, ReadOnly }. Even though this property is {[[Writable]]: false}, its value may be modified by calls to RegExp.prototype.exec.
[bookmark: section_edf95e949eb149cc9a34f0cd5dd373cf][bookmark: _Toc494257674]RegExp.lastMatch
The initial value of RegExp.lastMatch is the empty string. This property shall have the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: false }. Even though this property is {[[Writable]]: false}, its value may be modified by calls to RegExp.prototype.exec.
[bookmark: section_9d040da094c64be39b9fc5cc4057dbc7][bookmark: _Toc494257675]RegExp.lastParen
The initial value of RegExp.lastParen is the empty string. This property shall have the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: false }. Even though this property is {[[Writable]]: false}, its value may be modified by calls to RegExp.prototype.exec.
[bookmark: section_9523ed8c838c46449ef0ba65cb996b88][bookmark: _Toc494257676]RegExp.leftContext
The initial value of RegExp.leftContext is the empty string. This property shall have the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: false }. Even though this property is {[[Writable]]: false}, its value may be modified by calls to RegExp.prototype.exec.
[bookmark: section_59695bdc457941fa93aebbeec20aaa6d][bookmark: _Toc494257677]RegExp.rightContext
The initial value of RegExp.rightContext is the empty string. This property shall have the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: false }. Even though this property is {[[Writable]]: false}, its value may be modified by calls to RegExp.prototype.exec.
[bookmark: section_e34b22055d824702b8e648fce4954856][bookmark: _Toc494257678]RegExp.$1 - RegExp.$9
The initial value of RegExp.rightContext is the empty string. This property shall have the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: false }. Even though these are {[[Writable]]: false} properties, their values may be modified by calls to RegExp.prototype.exec.
[bookmark: section_bbf9ed8f53e84a1cb3bc028a28069a0c][bookmark: _Toc494257679]RegExp.$_
The initial value of each of the properties RegExp.$1, RegExp.$2, RegExp.$3, RegExp.$4, RegExp.$5, RegExp.$6, RegExp.$7, RegExp.$8, and RegExp.$9 is the empty string. These properties shall have the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: false }. The value of this property may be modified by calls to RegExp.prototype.exec. The properties RegExp.input and RegExp.$_ always have the same value. When one of these properties is set to some value, the other is automatically also set to that same value. Unlike most other RegExp constructor properties, this property is writable.
[bookmark: section_c8b1323006f548b3941cb11d487f814f][bookmark: _Toc494257680]RegExp['$&']
The initial value of RegExp['$&'] is the empty string. This property shall have the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: false }. Even though this property is {[[Writable]]: false}, its value may be modified by calls to RegExp.prototype.exec.
[bookmark: section_0ac66eb5ed2f4f2bb931aabadfb18118][bookmark: _Toc494257681]RegExp['$+']
The initial value of RegExp['$+'] is the empty string. This property shall have the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: false }. Even though this property is {[[Writable]]: false}, its value may be modified by calls to RegExp.prototype.exec.
[bookmark: section_990c9f8cfc644be18a1b838ec4c834d1][bookmark: _Toc494257682]RegExp["$`"]
The initial value of RegExp["$`"] is the empty string. This property shall have the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: false }. Even though this property is {[[Writable]]: false}, its value may be modified by calls to RegExp.prototype.exec.
[bookmark: section_25d5220e8b634651b54f58db92811444][bookmark: _Toc494257683]RegExp["$'"]
The initial value of RegExp["$'"] is the empty string. This property shall have the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: false }. Even though this property is {[[Writable]]: false}, its value may be modified by calls to RegExp.prototype.exec.
[bookmark: section_9cbb21a9bd464b36a7d6970ba727cc42][bookmark: _Toc494257684]Properties of the RegExp Prototype Object
Internet Explorer ECMAScript defines additional properties of the RegExp prototype object of [ECMA-262/5] (see section 15.10.6). These properties are described in the following sections.
[bookmark: section_23f22a2fb9e94281bf736322e7b2d6d2][bookmark: _Toc494257685]RegExp.prototype.compile(pattern, flags)
If pattern is an object R that has a [[Class]] property "RegExp" and flags is undefined, let P be the pattern used to construct R, and let F be the flags used to construct R. If pattern is an object R that has a [[Class]] property "RegExp", and flags is not undefined, throw a SyntaxError exception. Otherwise, let P be "(?:)" if pattern is undefined and ToString(pattern) otherwise, and let F be the empty string if flags is undefined and ToString(flags) otherwise.
The global property of this RegExp object is set to a Boolean value that is true if F contains the character "g" and that is false otherwise.
The ignoreCase property of this RegExp object is set to a Boolean value that is true if F contains the character "i" and that is false otherwise.
The multiline property of this RegExp object is set to a Boolean value that is true if F contains the character "m" and that is false otherwise.
If F contains any character other than "g", "i", or "m", throw a SyntaxError exception.
If the characters in P do not have the form Pattern, throw a SyntaxError exception. Otherwise, let the newly constructed object have a [[Match]] property obtained by evaluating ("compiling") Pattern.
The source property of this RegExp object is set as follows:
1. When pattern is an object R that has a [[Class]] property of "RegExp", this RegExp object is set to the same string value as the value of the source property of pattern. Otherwise, the source property of this RegExp object is set to P.
2. The lastIndex property of this RegExp object is set to 0.
3. The options property of this RegExp object is set as described in section 2.8.8.1 of this document.
4. This RegExp object is optimized using the assumption that it will be executed multiple times.
[bookmark: section_cd0060715ab94a07b9a5c4d57ceb8c06][bookmark: _Toc494257686]Properties of RegExp Instances
Internet Explorer ECMAScript defines an additional property of the RegExp instances of [ECMA-262/5]. This property is described in the following section.
[bookmark: section_8967076ea6c34683b9cee6a1ed3182b6][bookmark: _Toc494257687]options
The value of the options property is a string that specifies the values of the global, ignoreCase, and multiline properties of this RegExp instance. If the value of the ignoreCase property is true, the string contains the character "i". If the value of the global property is true, the string contains the character "g". If the value of the multiline property is true, the string contains the character "i". When present, the characters appear in the order "igm". If all of the global, ignoreCase, and multiline properties have the value false, the value of this property is the empty string. This property shall have the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: false }.
[bookmark: section_8d4156c6f51d42019138325bc291591c][bookmark: _Toc494257688]The Error Constructor
Internet Explorer ECMAScript defines additional behaviors of the Error constructor of [ECMA-262/5].
These behaviors are described in the following sections:
· new Error ()
· new Error (number, message)
[bookmark: section_e2b87c3fd9dc4c6994a9c04ecb3cc0f5][bookmark: _Toc494257689]new Error ()
When the Error constructor is called with no arguments, the call is equivalent to calling the Error constructor and passing the number zero as the only argument.
[bookmark: section_db7d225bd38d44bfa29599982bfb6e36][bookmark: _Toc494257690]new Error(number, message)
When the Error constructor is called with two or more arguments, the following steps are taken:
1. The [[Prototype]] property of the newly constructed object is set to the original Error prototype object, the one that is the initial value of Error.prototype (see [ECMA-262/5] section 15.11.3.1).
2. The [[Class]] property of the newly constructed Error object is set to "Error".
3. Let num be ToNumber(number).
4. Let msg be ToString(message).
5. The description property of the newly constructed object is set to msg.
6. The message property of the newly constructed object is set to msg.
7. The name property of the newly constructed object is set to "Error".
8. The number property of the newly constructed object is set to num.
9. Return the newly constructed object.
[bookmark: section_d43e791b6bef41e0bbc51ae595bd0bff][bookmark: _Toc494257691]Properties of Error Instances
Internet Explorer ECMAScript defines additional error instances inherited from the [[Prototype]] object of [ECMA-262/5]. These error instances are described in the following sections.
[bookmark: section_5b84fe9c82394dd88a2318fb7f5913c8][bookmark: _Toc494257692]description
The initial value of description is the same as the initial value of message.
[bookmark: section_f95d502287d748668fe4e1599abf603d][bookmark: _Toc494257693]number
An Error instance only initially has a number property if the first argument passed to the Error constructor was a number or could be converted to a number. The initial value of number is the number value passed to the constructor.
[bookmark: section_84512321fa6e4b27a95c6d6d4de162cf][bookmark: _Toc494257694]Properties of NativeError Instances
Error instances inherit properties from their [[Prototype]] object and Error prototype as specified previously. In addition, those NativeError instances that are created to represent a runtime error that is detected by the Internet Explorer ECMAScript implementation have the following properties.
[bookmark: section_d16e981dbc8d4f1a8f344bb01e2f8b39][bookmark: _Toc494257695]description
An Error instance only initially has a description property if it is created by the Internet Explorer ECMAScript implementation in response to the occurrence of a runtime error. The initial value of description is the same as the initial value of message.
[bookmark: section_b4a04a9996b5482e84e5a7cf91a6da95][bookmark: _Toc494257696]number
An Error instance only initially has a number property if it is created by the Internet Explorer ECMAScript implementation in response to the occurrence of a runtime error. The initial value of number is the number value passed to the constructor.
[bookmark: section_21639852721246d3814b29cdad9d0070][bookmark: _Toc494257697]The Debug Object
The Debug object is a single object that has some named properties, all of which are functions.
The value of the internal [[Prototype]] property of the Debug object is the Object prototype object (15.2.3.1). The value of the internal [[Class]] property of the Debug object is "Object".
The Debug object does not have a [[Construct]] property; it is not possible to use the Debug object as a constructor with the new operator.
The Debug object does not have a [[Call]] property; it is not possible to invoke the Debug object as a function.
[bookmark: section_7732c95b6bd4443dbe9b76aa38048bf2][bookmark: _Toc494257698]Function Properties of the Debug Object
The Debug object inherits properties from the Object prototype object as specified previously, and also has the following properties.
[bookmark: section_9f8b66fa21b2442ba175002702907ae9][bookmark: _Toc494257699]write ([item1 [, item2 [, …]]])
If a host-dependent debugging facility is available, ToString is called once, in order, on each item argument. The result of the call is passed to the debugging facility with the intent that the result be output to the user without the addition of any line terminator characters. The function returns undefined regardless of whether or not a debugging facility is present.
The length property of the write function is 0.
[bookmark: section_45d72cb57e0f4ac9b2e035cb4f2e6f1a][bookmark: _Toc494257700]writeln ([item1 [, item2 [, …]]]))
If a host-dependent debugging facility is available, ToString is called once, in order, on each item argument. The result of the call is passed to the debugging facility with the intent that the result be output to the user without the insertion of any line terminator characters between item results. A line terminator should be output after the last item or if there are no item arguments. The function returns undefined regardless of whether a debugging facility is present.
The length property of the write function is 0.
[bookmark: section_c19b497892044923bd23b8bdf1372203][bookmark: _Toc494257701]Enumerator Objects
The Enumerator constructor property extension of the Global object is not available in EdgeHTML Mode.
Enumerator objects provide an alternative mechanism for iterating over the elements of Array instances and certain host objects.
For such objects, the order of enumeration is the same as occurs for the for-in statement (see [ECMA-262/5] section 12.6.4).
[bookmark: section_acc97d285630456db75598b9b4c29e4f][bookmark: _Toc494257702]The Enumerator Constructor Called as a Function
When Enumerator is called as a function rather than as a constructor, it returns undefined.
[bookmark: section_ad01851171c14cc2a52e823ea9989f4e][bookmark: _Toc494257703]The Enumerator Constructor
When Enumerator is called as part of a new expression, it is a constructor: it initializes the newly created object.
[bookmark: section_e7bed9968644436a9f383df360def263][bookmark: _Toc494257704]new Enumerator ([collection])
When the Enumerator constructor is called with zero or one argument, the following steps are taken:
1. If collection is not present, let collection be undefined, and then go to step 6.
2. If collection is an Array instance, go to step 5.
3. If collection is a host object that supports an implementation-dependent enumeration protocol, go to step 5.
4. Throw a TypeError exception.
5. The [[EnumerationState]] property of the newly created object is set to a state indicating that the enumeration is at the first item of the enumeration of collection. If collection has no enumerable items, the state will indicate that the end of the enumeration has been reached.
6. The [[Collection]] property of the newly created object is set to collection.
7. The [[Prototype]] property of the newly constructed object is set to the original Error prototype object, the one that is the initial value of Enumerator.prototype (see section 2.8.13.3.1 of this document).
8. The [[Class]] property of the newly constructed Enumerator object is set to "Object".
9. Return the newly constructed object.
[bookmark: section_ef0a4506b78c49809becb4780ba898e3][bookmark: _Toc494257705]Properties of the Enumerator Constructor
The value of the internal [[Prototype]] property of the Enumerator constructor is the Function prototype object (see [ECMA-262/5] section 15.3.4).
The value of the length property is 7 (seven). In addition, the Enumerator constructor has the following property.
[bookmark: section_3915c26377b944cd88430032076410fd][bookmark: _Toc494257706]Enumerator.prototype
The initial value of Enumerator.prototype is the Enumerator prototype object (see section 2.8.13.4 of this document).
This property has the attributes { [[Enumerable]]:false, [[Configurable]]:false, [[Writable]]:false }.
[bookmark: section_dd57751ff3d84c279e42ae2207acf70e][bookmark: _Toc494257707]Properties of the Enumerator Prototype Object
The Enumerator prototype object is itself an Enumerator object with a [[Collection]] property of undefined, and which does not have an [[EnumerationState]] property.
The value of the internal [[Prototype]] internal property of the Enumerator prototype object is the Object prototype object (see [ECMA-262/5] Section 15.2.3.1).
[bookmark: section_8883ff3ca69841cdac296e066b76ebbd][bookmark: _Toc494257708]Enumerator.prototype.constructor
The initial value of Enumerator.prototype.constructor is the built-in Enumerator constructor.
[bookmark: section_904fade65ca04936a93cef2f800a0481][bookmark: _Toc494257709]Enumerator.prototype.atEnd ()
1. If the this object is not an Enumerator object, throw a TypeError exception.
2. Let collection be the value of the this object’s [[Collection]] property.
3. If collection is undefined, return true.
4. Let state be the value of the this object’s [[EnumerationState]] property.
5. If state indicates that the end of the enumeration has been reached, return true.
6. Return false.
[bookmark: section_a8bae3328216481aa5de71432dafd839][bookmark: _Toc494257710]Enumerator.prototype.item ()
1. If the this object is not an Enumerator object, throw a TypeError exception.
2. Let collection be the value of the this object’s [[Collection]] property.
3. If collection is undefined, return undefined.
4. Let state be the value of the this object’s [[EnumerationState]] property.
5. If state indicates that the end of the enumeration has been reached, return undefined.
6. Return the current enumeration item as indicated by state.
[bookmark: section_9d5405c8efb14b158688197e9ef85312][bookmark: _Toc494257711]Enumerator.prototype.moveFirst ()
1. If the this object is not an Enumerator object, throw a TypeError exception.
2. Let collection be the value of the this object’s [[Collection]] property.
3. If collection is undefined, return undefined.
4. Modify the [[EnumerationState]] property of the this object to a state indicating that the current enumeration of collection is now positioned at the original first item of the enumeration. If the current [[EnumerationState]] property indicates that collection has no enumerable items, the new state will indicate that the end of the enumeration has been reached.
5. Return undefined.
[bookmark: section_8e70bcfc31ce4d8ab102e98932c57e45][bookmark: _Toc494257712]Enumerator.prototype.moveNext ()
1. If the this object is not an Enumerator object, throw a TypeError exception.
2. Let collection be the value of the this object’s [[Collection]] property.
3. If collection is undefined, return undefined.
4. Let state be the value of the this object’s [[EnumerationState]] property.
5. If state indicates that the end of the enumeration has been reached, return undefined.
6. Modify state to a state indicating that the current enumeration of collection is now positioned at the next item beyond the current item of the enumeration. The new state may indicate that the end of the enumeration has been reached.
7. Update the [[EnumerationState]] property of the this object to state.
8. Return undefined.
[bookmark: section_fe3a4f1dcba34b42a04debed77fac105][bookmark: _Toc494257713]Properties of Enumerator Instances
Enumerator instances inherit properties from their [[Prototype]] object as specified previously. In addition, Enumerator instances have an internal [[Collection]] property, and they may have an internal [[EnumeratorState]] property.
[bookmark: section_887a15190d2f43818660e84c0befe03f][bookmark: _Toc494257714]VBArray Objects
Enumerator objects provide an alternative mechanism for iterating over the elements of Array instances and certain host objects.
For such objects, the order of enumeration is the same as the for-in statement (see [ECMA-262/5] section 12.6.4).
[bookmark: section_66747d5c160f4f13bbb59b46826cfe70][bookmark: _Toc494257715]The VBArray Constructor Called as a Function
When VBArray is called as a function, it throws an exception if the argument is not a SafeArray value.
[bookmark: section_18824c8c19d742aaaed7f602d64ae747][bookmark: _Toc494257716]VBArray (value)
When the VBArray function is called, the following steps are taken:
1. If Type(value) is SafeArray, return value.
2. Throw a TypeError exception.
[bookmark: section_94a559e0ba81493c904404c6a9306c5d][bookmark: _Toc494257717]The VBArray Constructor
When VBArray is called as part of a new expression, it is a constructor: it initializes the newly created object.
[bookmark: section_84f592e572ff41c889b2c4369223824c][bookmark: _Toc494257718]new VBArray (value)
When the VBArray constructor is called with an argument value of zero or one, the following steps are taken:
1. If Type(value) is not SafeArray, throw a TypeError exception.
2. The [[SArray]] property of the newly created object is set to value.
3. The [[Prototype]] property of the newly constructed object is set to the initial value of the VBArray prototype object (see section 2.8.14.3.1 of this document).
4. The [[Class]] property of the newly constructed Error object is set to Object.
5. Return the newly constructed object.
[bookmark: section_d96cf9b52ea142fa98c3fcc7fc595e57][bookmark: _Toc494257719]Properties of the VBArray Constructor
The value of the internal [[Prototype]] property of the VBArray constructor is the Function prototype object (see [ECMA-262/5] section 15.3.4).
The value of the length property is 1. In addition, the VBArray constructor has the VBArray.prototype property (see section 2.8.14.3.1 of this document).
[bookmark: section_d15551bcf0b24c6faf3462268a592b0d][bookmark: _Toc494257720]VBArray.prototype
The initial value of VBArray.prototype is the VBArray prototype object (see section 2.8.14.4 of this document).
This property has the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: true }.
[bookmark: section_7d8f20f932004466b28ba46e92e008de][bookmark: _Toc494257721]Properties of the VBArray Prototype Object
The VBArray prototype object is VBArray object with a [[SArray]] property that is a SafeArray that references a COM SAFEARRAY with zero dimensions.
The value of the internal [[Prototype]] property of the VBArray prototype object is the Object prototype object (see [ECMA-262/5] section 15.2.3.1).
[bookmark: section_fa396ccd8e194713aff19aeef9bac022][bookmark: _Toc494257722]VBArray.prototype.constructor
The initial value of VBArray.prototype.constructor is the built-in VBArray constructor.
[bookmark: section_461f2f9d7157469c994a9e864f1fa379][bookmark: _Toc494257723]VBArray.prototype.dimensions ()
1. Call ToObject, passing the this value as the argument.
2. If Result(1) is not a VBArray instance, throw a TypeError exception.
3. Get the value of the [[SArray]] property of Result(1).
4. Return the Number that is the number of dimensions of the COM SAFEARRAY referenced by Result(3).
[bookmark: section_498e028b340c4155bfd7759c8732064f][bookmark: _Toc494257724]VBArray.prototype.getItem (dim1 [, dim2, [dim3, …]])
1. Call ToObject, passing the this value as the argument.
2. If Result(1) is not a VBArray instance, throw a TypeError exception.
3. Get the value of the [[SArray]] property of Result(1).
4. If no arguments were passed to this call, or if the number of arguments passed is greater than Result(3), throw a RangeError exception.
5. For each argument dim1 through dimN, let IdimX be ToInteger(dimX) where X is the numeric suffix of the argument name.
6. For each of Idim1 through IdimN, if IdimX is less than the lower bound of dimension X of the COM SAFEARRAY referenced by Result(3), or if IdimX is greater than the upper bound of dimension X, throw a RangeError exception.
7. Return the value of the element identified by array indices Idim1 through IdimN in the COM SAFEARRAY referenced by Result(3).
The length property of the getItem function is 1.
[bookmark: section_07e3874608fe41b48007363c8f6948b7][bookmark: _Toc494257725]VBArray.prototype.lbound ([dimension])
1. Call ToObject, passing the this value as the argument.
2. If Result(1) is not a VBArray instance, throw a TypeError exception.
3. Get the value of the [[SArray]] property of Result(1).
4. If dimension is not defined, use a value of 1; otherwise, use ToInteger(dimension).
5. Get the Number that is the number of dimensions of the COM SAFEARRAY referenced by Result(3).
6. If Result(4) is less than 1 or greater than Result(5), throw a RangeError exception.
7. Return the Number that is the lower bound of dimension number Result(4) of the COM SAFEARRAY referenced by Result(3).
The length property of the lbound function is 0.
[bookmark: section_23be085e63ec47bdbc078489ec6c79ca][bookmark: _Toc494257726]VBArray.prototype.toArray ()
The method copies all the elements of a multi-dimensional COM SAFEARRAY into a one-dimensional ECMAScript Array instance. When called with no arguments, toArray performs the following steps:
1. Call ToObject, passing the this value as the argument.
2. If Result(1) is not a VBArray instance, throw a TypeError exception.
3. Get the value of the [[SArray]] property of Result(1).
4. Let SA be the COM SAFEARRAY referenced by Result(3).
5. Let dim be the number of dimensions of SA.
6. If dim is zero, return a new Array object that is created as if by evaluating the expression new Array(0) using the original Array constructor object.
7. Let size be the total number of array elements of SA.
8. Let A be a new Array object that is created as if by evaluating the expression new Array(size) using the original Array constructor object.
9. Access the elements of SA in row-major order, and store the elements in the array-indexed properties for A starting with property 0.
10. Return A.
[bookmark: section_042d9033539b4994a13627d3dbd478ba][bookmark: _Toc494257727]VBArray.prototype.ubound ([dimension])
1. Call ToObject, passing the this value as the argument.
2. If Result(1) is not a VBArray instance, throw a TypeError exception.
3. Get the value of the [[SArray]] property of Result(1).
4. If dimension is not defined, use a value of 1; otherwise, use ToInteger(dimension).
5. Get the Number that is the number of dimensions of the COM SAFEARRAY referenced by Result(3).
6. If Result(4) is less than 1 or greater than Result(5), throw a RangeError exception.
7. Return the Number that is the upper bound of dimension number Result(4) of the COM SAFEARRAY referenced by Result(3).
The length property of the ubound function is 0.
[bookmark: section_b015fb91c832418195dc194642619fbb][bookmark: _Toc494257728]VBArray.prototype.valueOf ()
1. Call ToObject, passing the this value as the argument.
2. If Result(1) is not a VBArray instance, throw a TypeError exception.
3. Get the value of the [[SArray]] property of Result(1).
4. Return Result(3).
[bookmark: section_7907d5b326d64f41a55cbef7de2bc543][bookmark: _Toc494257729]Properties of VBArray Instances
A VBArray instance inherits properties from the [[Prototype]] object, as specified in VBArray.prototype.valueOf () (see section 2.8.14.4.7 of this document). In addition, VBArray instances have an internal [[SArray]] property with a value that is the SafeArray from which the instance was constructed.
[bookmark: section_64528856d0ab4639a8a0625040a88c93][bookmark: _Toc494257730]ActiveXObject Objects
The ActiveXObject constructor property extension of the Global object is not available in EdgeHTML Mode.
ActiveXObject objects provide a mechanism for creating and interacting with host objects provided by Microsoft Windows ActiveX automation servers.
Note: For IE11 Mode in Internet Explorer 11, ActiveXObject is supported as described in this section except that ActiveXObject detection will fail when performed within a conditional statement.
[bookmark: section_681b1286566945f188ed0df7b39a2987][bookmark: _Toc494257731]The ActiveXObject Constructor Called as a Function
When ActiveXObject is called as a function, it performs the same argument validation that it performs when it is called as part of a new expression. After successfully completing validation, it always raises an Error exception.
[bookmark: section_9b84b3b4351c41a3b6e6df603ab7ce43][bookmark: _Toc494257732]ActiveXObject (name [, location]))
When the ActiveXObject function is called with one or more arguments, the following steps are taken:
1. Call toPrimitive(name, hint Number).
2. If the type of Result(1) is not String, raise a TypeError exception.
3. If Result(1) is an empty string, raise a TypeError exception.
4. If location is not present go to step 7.
5. Call toPrimitive(location, hint Number).
6. If the type of Result(5) is not String, raise a TypeError exception.
7. Raise an Error exception.
[bookmark: section_30326a2fb8a84046aca683ce8b9a3b0e][bookmark: _Toc494257733]The ActiveXObject Constructor
When ActiveXObject is called as part of a new expression, it attempts to create a host object that corresponds to a Microsoft Windows ActiveX automation object.
[bookmark: section_33c7c294269e4160b1b3990b0d50e45b][bookmark: _Toc494257734]new ActiveXObject ((name [, location]))
When the ActiveXObject constructor is called with one or more arguments, the following steps are taken:
1. Call toPrimitive(name, hint Number).
2. If the type of Result(1) is not String, raise a TypeError exception.
3. If Result(1) is an empty string, raise a TypeError exception.
4. If location is not present, go to step 7.
5. Call toPrimitive(location, hint Number).
6. If the type of Result(5) is not String, raise a TypeError exception.
7. Attempt to create a host object than can be used to communicate with the application and application-specific object identified by the Result(1) String. If location was present, Result(5) identifies the server where the application resides; otherwise, the default server (the current machine) is used as the location of the application.
8. If any error occurs during step 7, such that the host object cannot be created, raise an Error exception.
9. Return Result(7).
The format of the string values passed as arguments to this constructor are defined by the host operating system.
The object returned by this constructor is a host object. It is not an instance of ActiveXObject, and it does not inherit properties from the ActiveXObject prototype object or from Object.prototype. The specific properties of such objects will vary and are dependent upon the specific argument values passed to this constructor.
[bookmark: section_7765e634e25f498eb23a73d4210ff4ac][bookmark: _Toc494257735]Properties of the ActiveXObject Constructor
The value of the internal [[Prototype]] property of the ActiveXObject constructor is the Function prototype object (see [ECMA-262/5] section 15.3.4).
The value of the length property is 1. In addition, the ActiveXObject constructor has the ActiveXObject.prototype property (see section 2.8.15.3.1 of this document).
[bookmark: section_311d152e2da14eacb75c8b0eb3900fff][bookmark: _Toc494257736]ActiveXObject.prototype
The initial value of ActiveXObject.prototype is the ActiveXObject prototype object (see section section 2.8.15.4 of this document).
This property has the attributes { [[Enumerable]]: false, [[Configurable]]: false, [[Writable]]: false }.
The value of this property is not used by the ActiveXObject constructor. The value is not used as the [[Prototype]] value of host objects returned by ActiveXConstructor.
[bookmark: section_31256911041040f7bfddd4eb08b2d508][bookmark: _Toc494257737]Properties of the ActiveXObject Prototype Object
The ActiveXObject prototype object is an Object instance, not an ActiveXObject instance.
The value of the internal [[Prototype]] property of the ActiveXObject prototype object is the Object prototype object (see [ECMA-262/5] section 15.2.3.1).
[bookmark: section_61d57c61b3594c06888ff092a41f6bdb][bookmark: _Toc494257738]ActiveXObject.prototype.constructor
The initial value of ActiveXObject.prototype.constructor is the built-in ActiveXObject constructor.
[bookmark: section_ead279ce2d7346d6b7494f348f93532c][bookmark: _Toc494257739]Properties of ActiveXObject Instances
ActiveXObject has no instances. Objects created by the ActiveXObject constructor are host objects that have properties which are determined by the external application associated with the specific host object.
[bookmark: section_c4c74b37cbf242f3910a9c61fee40a98][bookmark: _Toc494257740]Extensions to ECMAScript 5.1
The extensions to [ECMA-262/51] described in this section are not available in IE9 Mode.
[bookmark: section_9e2afec1883e4fd083037337b93c22dd][bookmark: _Toc494257741]Typed Arrays
Typed arrays provide access to raw binary data and enables efficient byte-level programming ability to JavaScript developers. The functionality is implemented by the following three objects.
· ArrayBuffer: The ArrayBuffer object provides the ability to create and work with an opaque buffer of native memory.
· TypeArray: Each of the TypeArray objects provides a view over an ArrayBuffer based on the element Type, allowing typed access to the contents of the native buffer.
· DataView: The DataView object provides unstructured access to the contents of an ArrayBuffer, reading and writing basic data types and fixed offsets in the buffer.
[bookmark: section_52994dbc5b9d4016938efd388f1337b3][bookmark: _Toc494257742]ArrayBuffer Objects
This section describes ArrayBuffer Objects.
[bookmark: section_ffc98beef5c94047b06a093fe57e14a7][bookmark: _Toc494257743]The ArrayBuffer constructor called as a function
When ArrayBuffer is called as a function rather than as a constructor, it creates and initialises a new ArrayBuffer object. Thus the function call ArrayBuffer(…) is equivalent to the object creation expression new ArrayBuffer (…) with the same arguments.
[bookmark: section_3dede711c9e043b2a092ac88e9f87821][bookmark: _Toc494257744]The ArrayBuffer constructor
When ArrayBuffer is called as part of a new expression, it is a constructor: it initialises the newly created object.
[bookmark: section_6cd24aae849f4becad2aaf1712068c87][bookmark: _Toc494257745]New Array (len)
The [[Prototype]] internal property of the newly constructed object is set to the original ArrayBuffer prototype object, the one that is the initial value of ArrayBuffer.prototype (16.1.3.1). The [[Class]] internal property of the newly constructed object is set to "ArrayBuffer". The [[Extensible]] internal property of the newly constructed object is set to true.
The length property of the newly constructed object is set to ToUInt32(len).
A fresh native buffer nativeBuffer of length bytes is allocated. The contents of this native buffer are zero initialized. If the requested number of bytes could not be allocated, a RangeError is raised. The [[NativeBuffer]] internal property of the newly constructed object is set to nativeBuffer.
[bookmark: section_9449292d966444c5a477e0122886afdd][bookmark: _Toc494257746]Properties of the ArrayBuffer constructor
The value of the [[Prototype]] internal property of the ArrayBuffer constructor is the Function prototype object (15.3.4).
Besides the internal properties and the length property (whose value is 1), the ArrayBuffer constructor has the following properties:
[bookmark: section_23c90de52dcc4add923daa8d55f2d32c][bookmark: _Toc494257747]ArrayBuffer.isView(arg)
This applies to Internet Explorer 11 and later.
1. If Type(arg) is not Object, return false.
2. If arg has a [[ViewedArrayBuffer]] internal slot, return true.
3. Return false.
[bookmark: section_c3b0c83217c442b9925247f3b895d4ee][bookmark: _Toc494257748]ArrayBuffer.Prototype
The initial value of ArrayBuffer.prototype is the ArrayBuffer prototype object (16.1.4).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
[bookmark: section_86439c51cc0040318f650caa11bf3b1e][bookmark: _Toc494257749]Properties of the ArrayBuffer Prototype Object
The value of the [[Prototype]] internal property of the Array prototype object is the standard built-in Object prototype object (15.2.4). The [[Class]] internal property of the newly constructed object is set to "Object". The [[Extensible]] internal property of the newly constructed object is set to true.
[bookmark: section_cd7ec58f1b8947388b2264f632ebb25c][bookmark: _Toc494257750]ArrayBuffer.prototype.constructor
The initial value of ArrayBuffer.prototype.constructor is the standard built-in ArrayBuffer constructor.
[bookmark: section_871eb462a173426e92d05b470130fd9d][bookmark: _Toc494257751]ArrayBuffer.prototype.slice(start, end)
This applies to Internet Explorer 11 and later.
1. Let O be this value.
2. If the type of O is not Object, throw a TypeError exception.
3. If O does not have an [[ArrayBufferData]] internal slot throw a TypeError exception.
4. If the value of O’s [[ArrayBufferData]] internal slot is undefined or null, then throw a TypeError exception.
5. Let len be the value of O’s [[ArrayBufferByteLength]] internal slot.
6. Let relativeStart be ToInteger(start).
7. If relativeStart is negative, let first be max((len + relativeStart),0); else, let first be min(relativeStart, len).
8. If end is undefined, let relativeEnd be len; else let relativeEnd be ToInteger(end).
9. If relativeEnd is negative, let final be max((len + relativeEnd),0); else let final be min(relativeEnd, len).
10. Let newLen be max(final-first,0).
11. Let ctor be the result of calling [[Get]] on O with property name constructor.
12. If ctor does not have a [[construct]] internal method then throw a TypeError exception.
13. Let new be the result of calling the [[Construct]] internal method of ctor with a new List containing the single element newLen.
14. If new does not have an [[ArrayBufferData]] internal slot throw a TypeError exception.
15. If the value of new’s [[ArrayBufferData]] internal slot is undefined, then throw a TypeError exception.
16. If the value of new’s [[ArrayBufferByteLength]] < newLen, then throw a TypeError exception.
17. Let fromBuf be the value of O’s [[ArrayBufferData]] internal slot.
18. Let toBuf be the value of new’s [[ArrayBufferData]] internal slot.
19. Let fromSize be the number of bytes in fromBuf.
20. Let fromIndex be first.
21. Let toSize be the number of bytes in toBuf.
22. Let toIndex be 0.
23. Let count be newLen.
24. Repeat, while count>0:
1. Set toBuf [toIndex] to the value of fromBuf [fromIndex].
2. Increment toIndex and fromIndex each by 1.
3. Decrement count by 1.
25. Return new.
[bookmark: section_637a270aa87d439d8b5fe31c9f62b75b][bookmark: _Toc494257752]Properties of ArrayBuffer Instances
ArrayBuffer instances inherit properties from the ArrayBuffer prototype object and their [[Class]] internal property value is "ArrayBuffer". ArrayBuffer instances also have the following properties.
[bookmark: section_355fcd247c2c4bd381eb27510f0a5346][bookmark: _Toc494257753]byteLength
The byteLength property of this ArrayBuffer object is a data property whose value is the length of the ArrayBuffer in bytes, as fixed at construction time.
The length property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [Configurable]]: false }.
[bookmark: section_647345e9361e455396470022ccdc0754][bookmark: _Toc494257754]TypeArray Objects
For each Type in the following table, a separate TypeArray constructor object, with corresponding prototype and instances as described below is available.
	Type
	Array Name
	Size
	Description
	Equivalent C Type

	Int8
	Int8Array
	1
	8-bit 2's complement signed integer
	signed char

	Uint8
	Uint8ClampedArray
	1
	8-bit 2's complement unsigned integer
	unsigned char

	Int16
	Int16Array
	2
	16-bit 2's complement signed integer
	Short

	Uint16
	Uint16Array
	2
	16-bit unsigned integer
	unsigned short

	Int32
	Int32Array
	4
	32-bit 2's complement signed integer
	Int

	Uint32
	Uint32Array
	4
	32-bit unsigned integer
	unsigned int

	Float32
	Float32Array
	4
	32-bit IEEE floating point
	Float

	Float64
	Float64Array
	8
	64-bit IEEE floating point
	Double

[bookmark: section_4c48790c3e04493ba6e8c7ce3d8e0659][bookmark: _Toc494257755]The TypeArray Constructor Called as a Function
When TypeArray is called as a function rather than as a constructor, it creates and initialises a new TypeArray object. Thus the function call TypeArray(…) is equivalent to the object creation expression new TypeArray (…) with the same arguments.
[bookmark: section_7bfc15503b16407485fadce12d234287][bookmark: _Toc494257756]The TypeArray Constructor
When TypeArray is called as part of a new expression, it is a constructor: it initialises the newly created object.
[bookmark: section_34612ba1959b4cec8a9c661b7ba309af][bookmark: _Toc494257757]New TypeArray (arg0 [, arg1, [, arg2])
The [[Prototype]] internal property of the newly constructed object is set to the original TypeArray prototype object, the one that is the initial value of TypeArray.prototype (16.2.3.1). The [[Class]] internal property of the newly constructed object is set to "TypeArray". The [[Extensible]] internal property of the newly constructed object is set to true.
The remaining properties of the newly constructed object are set as follows:
1. If the argument arg0 is a Number:
1. The length property of the newly constructed object is set to ToUInt32(arg0)
2. The byteLength property of the newly constructed object is set to length multiplied by the size in bytes of Type.
3. Let arrayBuffer be an object constructed as if by a call to the built-in ArrayBuffer constructor, as "new ArrayBuffer(byteLength)".
4. The buffer property of the newly constructed object is set to arrayBuffer.
5. The byteOffset property of the newly constructed object is set to 0.
2. Otherwise if the argument arg0 is an Object:
1. Let O be the result of calling ToObject(arg0).
2. Let class be the value of the [[Class]] internal property of O.
3. If class is "ArrayBuffer":
1. Let byteOffset be the result of calling ToUInt32 on arg1, if provided, or else 0.
2. If byteOffset is not an integer multiple of the size in byte of Type, raise a RangeError exception.
3. Let bufferLength be the result of calling [[Get]] on O with property name "byteLength".
4. Let byteLength be the result of calling ToUInt32 on arg2, if provided, or else bufferLength – byteOffset.
5. If byteOffset + byteLength is greater than bufferLength, raise a RangeError exception.
6. Let length be the result of dividing byteLength by the size in bytes of Type.
7. If ToUInt32(length) !== length, raise a RangeError exception.
8. The length property of the newly constructed object is set to length.
9. The byteLength property of the newly constructed object is set to byteLength.
10. The buffer property of the newly constructed object is set to O.
11. The byteOffset property of the newly constructed object is set to byteOffset.
4. Else:
1. Let n to be the result of calling [[Get]] on V with property name "length".
2. Let length be the result of calling ToUInt32(n).
3. The length property of the newly constructed object is set to length.
4. The byteLength property of the newly constructed object is set to length multiplied by the size in bytes of Type.
5. Let arrayBuffer be an object constructed as if by a call to the built-in ArrayBuffer constructor, as "new ArrayBuffer(byteLength)".
6. Initialize i to be 0.
7. While i < length:
1. Let x be the result of calling [[Get]] on arrayBuffer with property name ToString(i).
2. Let indexDesc be a property descriptor.
3. Set indexDesc.Writable to true.
4. Set indexDesc.Enumerable to true.
5. Set indexDesc.Configurable to false.
6. Set indexDesc.Value to x.
7. Call [[DefineOwnProperty]] on the newly constructed object with arguments ToString(i), indexDesc, and false.
8. Set i to i + 1.
8. The buffer property of the newly constructed object is set to arrayBuffer.
9. The byteOffset property of the newly constructed object is set to 0.
3. Otherwise:
1. Throw an exception
[bookmark: section_60197a5670444391863b41605b5b2976][bookmark: _Toc494257758]Properties of the TypeArray Constructor
The value of the [[Prototype]] internal property of the TypeArray constructor is the Function prototype object (15.3.4).
Besides the internal properties and the length property (whose value is 3), the TypeArray constructor has the following properties:
[bookmark: section_95424531a72a49c2aa2348d6aa5f7668][bookmark: _Toc494257759]TypeArray.prototype
The initial value of TypeArray.prototype is the TypeArray prototype object (16.2.4).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
[bookmark: section_53feedbe019a4c368abd2597554b9e6b][bookmark: _Toc494257760]typeArray.BYTES_PER_ELEMENT
The initial value of TypeArray.BYTES_PER_ELEMENT is the size in bytes of Type.
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
[bookmark: section_5f8e30407d384825be7750dc93984ece][bookmark: _Toc494257761]Properties of the TypeArray Prototype Object
The value of the [[Prototype]] internal property of the TypeArray prototype object is the standard built-in Object prototype object (15.2.4). It’s [[Class]] is "TypeArray".
[bookmark: section_622a03449bed4dadb2cd0e4fb66fe8f6][bookmark: _Toc494257762]TypeArray.prototype.constructor
The initial value of TypeArray.prototype.constructor is the standard built-in TypeArray constructor.
[bookmark: section_9287d8f9f0984efdb4bf2facb83d3a03][bookmark: _Toc494257763]TypeArray.prototype.set(Array [, offset])
Set multiple values in the TypedArray, reading from the array input., reading input values from the array. The optional offset value indicates the index in the current array where values are written. If omitted, it is assumed to be 0.
1. If this does not have class "TypeArray", throw a TypeError.
2. Let offsetIndex be ToUInt32(offset)
3. Let O be the result of calling ToObject(array).
4. Let srcLength be the result of calling [[Get]] on O with property name "length".
5. Let targetLength be the result of calling [[Get]] on this with property name "length"
6. If srcLength + offset > targetLength, throw a RangeError.
7. Let temp be a new TypeArray created as if by a call to "new TypeArray(srcLength)"
8. Let k be 0
9. While k < srcLength
1. Let v be the result of calling [[Get]] on src with property name toString(k)
2. Call [[Put]] on temp with arguments ToString(k), v, and false
10. Let k be offset
11. While k < targetLength
1. Let v be the result of calling [[Get]] on temp with property name ToString(k-offset)
2. Call [[Put]] on temp with arguments ToString(k), v, and false
[bookmark: section_61b2a4bfefa847af8e204c9837b66db0][bookmark: _Toc494257764]TypeArray.prototype.subarray(begin [, end])
Returns a new TypedArray view of the ArrayBuffer store for this TypedArray, referencing the elements at begin, inclusive, up to end, exclusive. If either begin or end is negative, it refers to an index from the end of the array, as opposed to from the beginning.
1. If this does not have class "TypeArray", throw a TypeError.
2. Let srcLength be the result of calling [[Get]] on this with property name "length"
3. Let beginInt be ToInt32(begin)
4. If beginInt < 0, let beginInt be srcLength + beginInt
5. Let beginIndex be min(srcLength, max(0, beginInt))
6. Let endInt be ToInt32(end) if end was provided, else srcLength.
7. If endInt <0,let endInt be srcLength + endInt
8. Let endIndex be max(0,min(srcLength, endInt))
9. If endIndex < beginIndex, let endIndex be beginIndex
10. Return a new TypeArray with the following values for it’s proeprties:
1. The length property of the newly constructed object is set to endIndex - beginIndex
2. The byteLength property of the newly constructed object is set to length multiplied by the size in bytes of Type.
3. The buffer property of the newly constructed object is set to this.buffer.
4. The byteOffset property of the newly constructed object is set to this.offset + beginIndex.
[bookmark: section_f5bd057046fb4f4f8b6a88c2f3fef6b9][bookmark: _Toc494257765]Properties of TypeArray Instances
TypeArray instances inherit properties from the TypeArray prototype object and their [[Class]] internal property value is "TypeArray". TypeArray instances also have the following properties.
[bookmark: section_32b3fb8c780147c582cedbcfc88144fa][bookmark: _Toc494257766][[DefineOwnProperty]] (P, Desc, Throw)
TypeArray objects use a variation of the [[DefineOwnProperty]] internal method used for other native ECMAScript objects (8.12.9).
When the [[DefineOwnProperty]] internal method of A is called with property P, Property Descriptor Desc and Boolean flag Throw, the following steps are taken:
1. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing P, Desc, and Throw as arguments.
2. If succeeded is false, return false.
3. If Desc contains a Value field, let newValue be Desc.Value
4. Let convertedValue to ToType(newValue)
5. Let index be ToUInt32(P)
6. Call the SetValueInBuffer internal operation with arguments A.buffer.[[NativeBuffer]], A.byteOffset, index, convertedValue, and Type.
7. Return true.
The internal operation SetValueInBuffer takes five parameters, a native buffer nativeBuffer, an integer byteOffset, an integer index, a value of type Type newValue, and a Type valueType. It operates as follows:
1. Let size be the size in bytes of the type valueType.
2. Let bytes be the array of bytes from nativeBuffer between offset byteOffset+(index*size) and offset byteOffset+((index+1)*size)-1 inclusive.
3. Let newValueBytes be the result of converting newValue to an array of bytes, using the platform endianness.
4. Set each byte of bytes from the corresponding byte of newValueBytes.
[bookmark: section_6e6774af385640188e4b2bfcaa4a2205][bookmark: _Toc494257767][[GetOwnProperty]] (P)
TypeArray objects use a variation of the [[GetOwnProperty]] internal method used for other native ECMAScript objects (8.12.1). This special internal method provides access to named properties corresponding to the individual index values of the TypeArray objects.
When the [[GetOwnProperty]] internal method of A is called with property name P, the following steps are taken:
1. Let desc be the result of calling the default [[GetOwnProperty]] internal method (8.12.1) on A with argument P.
2. If desc is not undefined return desc.
3. If ToString(abs(ToInteger(P))) is not the same value as P, return undefined.
4. Let length be the result of a calling [[Get]] on A with parameter "length"
5. Let index be ToInteger(P).
6. If length ≤ index, return undefined.
7. Let isLittleEndian be true if the platform endianness is little endian, else false.
8. Let value be the result of calling the GetValueFromBuffer internal operation with arguments A.buffer.[[NativeBuffer]], A.byteOffset, index, Type, and littleEndian.
9. Return a Property Descriptor { [[Value]]: value, [[Enumerable]]: true, [[Writable]]: true, [[Configurable]]: false }
The internal operation GetValueFromBuffer takes three parameters, a native buffer nativeBuffer, an integer byteOffset, an integer index, a Type valueType, and a boolean isLittleEndian. It operates as follows:
1. Let size be the size in bytes of the type valueType.
2. Let bytes be the array of bytes from nativeBuffer between offset byteOffset+(index*size) and offset byteOffset+((index+1)*size)-1 inclusive.
3. Let rawValue be the result of convert the array bytes to a value of type valueType, using little endian if isLittleEndian is true, otherwise big endian.
4. If valueType is Float32 and rawValue is a Float32 representation of IEEE754 NaN, return the NaN Number value.
5. Else, if valueType is Float64 and rawValue is a Float64 representation of IEEE754 NaN, return the NaN Number value.
6. Else, return the Number value that that represents the same numeric value as rawValue
[bookmark: section_bd83bd6726ce494a9fb7f831e131d262][bookmark: _Toc494257768]length
The value of the length property is the length of the TypeArray object, which was fixed at creation. This property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.
[bookmark: section_0ba227da33b348209bf4b63397eee179][bookmark: _Toc494257769]byteLength
The value of the byteLength property is the length of the TypeArray object, which was fixed at creation. This property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.
[bookmark: section_e2069aa5a6914247987f59c7d5e05981][bookmark: _Toc494257770]buffer
The value of the buffer property is the length of the TypeArray object, which was fixed at creation. This property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.
[bookmark: section_0c26a5c1b1244fdebe480cb38e67e7b6][bookmark: _Toc494257771]byteOffset
The value of the byteOffset property is the length of the TypeArray object, which was fixed at creation. This property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.
[bookmark: section_c81d597e2e7c4d75be3a45657d38ac61][bookmark: _Toc494257772]DataView Objects
This section describes DataView Objects.
[bookmark: section_da9a4b37141c43dfbb63d1fba37f1db0][bookmark: _Toc494257773]The DataView Constructor called as a function
When DataView is called as a function rather than as a constructor, it creates and initialises a new DataView object. Thus the function call DataView(…) is equivalent to the object creation expression new DataView(…) with the same arguments.
[bookmark: section_523390fa68fd4bada1f435d57ae6e6dc][bookmark: _Toc494257774]The DataView Constructor
When DataView is called as part of a new expression, it is a constructor: it initialises the newly created object.
[bookmark: section_ed4f661dfb0841678a12f14f076d8337][bookmark: _Toc494257775]New DataView (buffer [, byteOffset [, byteLength]])
The [[Prototype]] internal property of the newly constructed object is set to the original DataView prototype object, the one that is the initial value of DataView.prototype (16.1.3.1). The [[Class]] internal property of the newly constructed object is set to "DataView". The [[Extensible]] internal property of the newly constructed object is set to true.
The remaining proeprties are set as follows:
1. Let O be ToObject(buffer)
2. If the [[Class]] internal property of O is not "ArrayBuffer", raise a TypeError.
3. Let byteOffset be the result of calling ToUInt32 on byteOffset, if provided, or else 0.
4. Let bufferLength be the result of calling [[Get]] on O with property name "byteLength".
5. Let byteLength be the result of calling ToUInt32 on byteLength, if provided, or else bufferLength – byteOffset.
6. If byteOffset + byteLength is greater than bufferLength, raise a RangeError exception.
7. The byteLength property of the newly constructed object is set to byteLength.
8. The buffer property of the newly constructed object is set to O.
9. The byteOffset property of the newly constructed object is set to byteOffset.
[bookmark: section_676e2c82d98b424597ac9aca06b0ff76][bookmark: _Toc494257776]Properties of the DataView Constructor
The value of the [[Prototype]] internal property of the DataView constructor is the Function prototype object (15.3.4).
Besides the internal properties and the length property (whose value is 3), the DataView constructor has the following properties:
[bookmark: section_1ef09cd0f4e84c568cdaf60e7866fb63][bookmark: _Toc494257777]DataView.prototype
The initial value of DataView.prototype is the DataView prototype object (16.1.4).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
[bookmark: section_3f7769758cdb44eaaa0755b58de9bf06][bookmark: _Toc494257778]Properties of the DataView Prototype Object
The value of the [[Prototype]] internal property of the DataView prototype object is the standard built-in Object
prototype object (15.2.4). The [[Class]] internal property of the newly constructed object is set to "Object". The [[Extensible]] internal property of the newly constructed object is set to true.
The internal operation GetValue(byteOffset, isLittleEndian, type) used by functions on DataView instances is defined as follows:
1. Let byteOffsetInt be ToUInt32(byteOffset)
2. Let totalOffset be byteOffsetInt plus the result of calling [[Get]] on this with parameter "byteOffset"
3. Let byteLength be the result of calling [[Get]] on this with parameter "byteLength"
4. If totalOffset >= byteLength, raise a RangeError
5. Let value be the result of calling the GetValueFromBuffer internal operation with arguments this.buffer.[[NativeBuffer]], totalOffset, 0 and type.
6. Return value
The internal operation SetValue(byteOffset, isLittleEndian, type, value) used by functions on DataView instances is defined as follows:
1. Let byteOffsetInt be ToUInt32(byteOffset)
2. Let totalOffset be byteOffsetInt plus the result of calling [[Get]] on this with parameter "byteOffset"
3. Let byteLength be the result of calling [[Get]] on this with parameter "byteLength"
4. If totalOffset >= byteLength, raise a RangeError
5. Let value be the result of calling the SetValueInBuffer internal operation with arguments this.buffer.[[NativeBuffer]], totalOffset, 0, value and type.
6. Return value
[bookmark: section_bfef92a5aa684c3ab261cbce977df333][bookmark: _Toc494257779]DataView.prototype.constructor
The initial value of DataView.prototype.constructor is the standard built-in DataView constructor.
[bookmark: section_0fcc4ee16a5d4964af091295a5a717a5][bookmark: _Toc494257780]DataView.prototype.GetInt8(byteOffset)
Gets the Int8 value at offset byteOffset in the DataView.
1. Let O be ToObject(this)
2. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
3. Return GetValue(byteOffset, true, Int8)
[bookmark: section_90d2985b194f4f2aaab57e2c655ec506][bookmark: _Toc494257781]DataView.prototype.GetUInt8(byteOffset)
Gets the UInt8 value at offset byteOffset in the DataView.
1. Let O be ToObject(this)
2. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
3. Return GetValue(byteOffset, true, UInt8)
[bookmark: section_f58daa8450d74528ac8c84ca145d43ca][bookmark: _Toc494257782]DataView.prototype.GetInt16(byteOffset, littleEndian)
Gets the Int16 value at offset byteOffset in the DataView, using the provided endianness.
1. Let O be ToObject(this)
2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false
3. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
4. Return GetValue(byteOffset, isLittleEndian, Int16)
[bookmark: section_281a1bd3352946a0810878783694c806][bookmark: _Toc494257783]DataView.prototype.GetUInt16(byteOffset, littleEndian)
Gets the Uint16 value at offset byteOffset in the DataView, using the provided endianness.
1. Let O be ToObject(this)
2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false
3. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
4. Return GetValue(byteOffset, isLittleEndian, Uint16)
[bookmark: section_8e67096eb3ca41e58ef137522f89d99d][bookmark: _Toc494257784]DataView.prototype.GetInt32(byteOffset, littleEndian)
Gets the Int32 value at offset byteOffset in the DataView, using the provided endianness.
1. Let O be ToObject(this)
2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false
3. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
4. Return GetValue(byteOffset, isLittleEndian, Int32)
[bookmark: section_48284549df5f45478b0413a783baadf9][bookmark: _Toc494257785]DataView.prototype.GetUInt32(byteOffset, littleEndian)
Gets the Uint32 value at offset byteOffset in the DataView, using the provided endianness.
1. Let O be ToObject(this)
2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false
3. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
4. Return GetValue(byteOffset, isLittleEndian, Uint32)
[bookmark: section_d81e3056d87e4068ac5d90363a2887a8][bookmark: _Toc494257786]DataView.prototype.GetFloat32(byteOffset, littleEndian)
Gets the Float32 value at offset byteOffset in the DataView, using the provided endianness.
1. Let O be ToObject(this)
2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false
3. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
4. Return GetValue(byteOffset, isLittleEndian, Float32)
[bookmark: section_e6eee1244ca241b485047975526206e5][bookmark: _Toc494257787]DataView.prototype.GetFloat64(byteOffset, littleEndian)
Gets the Float64 value at offset byteOffset in the DataView, using the provided endianness.
1. Let O be ToObject(this)
2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false
3. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
4. Return GetValue(byteOffset, isLittleEndian, Float64)
[bookmark: section_fe2f368bfde84d5caffe7f3e70f60228][bookmark: _Toc494257788]DataView.prototype.SetInt8(byteOffset, value)
Sets the Int8 value at offset byteOffset in the DataView.
1. Let O be ToObject(this)
2. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
3. Return GetValue(byteOffset, true, Int8, ToInt8(value))
[bookmark: section_9b859f5b8a734b7b867962d5a486bc34][bookmark: _Toc494257789]DataView.prototype.SetUInt8(byteOffset, value)
Sets the Uint8 value at offset byteOffset in the DataView.
1. Let O be ToObject(this)
2. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
3. Return GetValue(byteOffset, true, Uint8, ToUint8(value))
[bookmark: section_6b5348606f0f4b56aa0816925ff50f89][bookmark: _Toc494257790]DataView.prototype.SetInt16(byteOffset, value, littleEndian)
Sets the Int16 value at offset byteOffset in the DataView.
1. Let O be ToObject(this)
2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false
3. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
4. Return GetValue(byteOffset, isLittleEndian, Int16, ToInt16(value))
[bookmark: section_fa598ce0c1cc4fdb8a1ca8f0c8106603][bookmark: _Toc494257791]DataView.prototype.SetUInt16(byteOffset, value, littleEndian)
Sets the Uint16 value at offset byteOffset in the DataView.
1. Let O be ToObject(this)
2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false
3. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
4. Return GetValue(byteOffset, isLittleEndian, Uint16, ToUint16(value))
[bookmark: section_e91ff116f5144afeaec2477d95e98cf6][bookmark: _Toc494257792]DataView.prototype.SetInt32(byteOffset, value, littleEndian)
Sets the Int32 value at offset byteOffset in the DataView.
1. Let O be ToObject(this)
2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false
3. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
4. Return GetValue(byteOffset, isLittleEndian, Int32, ToInt32(value))
[bookmark: section_d52a825eda8c45f59744e12716256cd6][bookmark: _Toc494257793]DataView.prototype.SetUInt32(byteOffset, value, littleEndian)
Sets the Uint32 value at offset byteOffset in the DataView.
1. Let O be ToObject(this)
2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false
3. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
4. Return GetValue(byteOffset, isLittleEndian, Uint32, ToUint32(value))
[bookmark: section_3acca86384904257b94d68bad500b67f][bookmark: _Toc494257794]DataView.prototype.SetFloat32(byteOffset, value, littleEndian)
Sets the Float32 value at offset byteOffset in the DataView.
1. Let O be ToObject(this)
2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false
3. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
4. Return GetValue(byteOffset, isLittleEndian, Float32, ToFloat32(value))
[bookmark: section_08b696d197f341f495ab0a08be6e9cd6][bookmark: _Toc494257795]DataView.prototype.SetFloat64(byteOffset, value, littleEndian)
Sets the Float64 value at offset byteOffset in the DataView.
1. Let O be ToObject(this)
2. Let isLittleEndian be ToBoolean(littleEndian) if provided, else false
3. If the [[Class]] internal property of O is not "DataView", raise a TypeError.
4. Return GetValue(byteOffset, isLittleEndian, Float64, ToFloat64(value))
[bookmark: section_b8a0f862d4de4e62b12afb1b41f87669][bookmark: _Toc494257796]byteLength
The value of the byteLength property is the length of the DataView object, which was fixed at creation. This property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.
[bookmark: section_920bfd92afb34b5197dc26ede64e3b18][bookmark: _Toc494257797]buffer
The value of the buffer property is the length of the DataView object, which was fixed at creation. This property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.
[bookmark: section_35c14da5f6d74f3db6847fd40232e61e][bookmark: _Toc494257798]byteOffset
The value of the byteOffset property is the length of the DataView object, which was fixed at creation. This property has attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:false }.
[bookmark: section_54babcb32e6d44caa9a1639903236ed3][bookmark: _Toc494257799]Properties of DataView Instances
DataView instances inherit properties from the DataView prototype object and their [[Class]] internal property value is "DataView".
[bookmark: section_5e63eae739874791bc3b432c94df3643][bookmark: _Toc494257800]Properties of Error Constructor
Internet Explorer 10 ECMAScript defines an additional property on Error constructor of [ECMA-262/5]. The additional property is described in the following section.
[bookmark: section_de6368e4c0f846e89fc112bb00603dc5][bookmark: _Toc494257801]stackTraceLimit
The initial value of stackTraceLimit is the numeric value 10. This property has the attributes { [[Enumerable]]:true, [[Configurable]]:true, [[Writable]]:true }.
[bookmark: section_217d06753157433ab61ed9f5d03485f3][bookmark: _Toc494257802]Properties of Error Instances
Internet Explorer ECMAScript defines additional error instances inherited from the [[Prototype]] object of [ECMA-262/5]. This error instance is described in the following section.
[bookmark: section_b234d36e43404086b7e2736923e83b3b][bookmark: _Toc494257803]stack
The initial value of stack is undefined. This property has the attributes { [[Enumerable]]:true, [[Configurable]]:true, [[Writable]]:true }. When an error is thrown the stack property is set to contain a string value which describes the stack frames formatted as described below.
"<Error Type>: <Error Description>
 at FunctionName (<Fully qualified file/URL>:<line#>:<col#>)
 at FunctionName (<Fully qualified file/URL>:<line#>:<col#>)
 at FunctionName (<Fully qualified file/URL>:<line#>:<col#>)
 at FunctionName (<Fully qualified file/URL>:<line#>:<col#>)
 at FunctionName (<Fully qualified file/URL>:<line#>:<col#>)
 at FunctionName (<Fully qualified file/URL>:<line#>:<col#>)
 at FunctionName (<Fully qualified file/URL>:<line#>:<col#>)
 at FunctionName (<Fully qualified file/URL>:<line#>:<col#>)
 at FunctionName (<Fully qualified file/URL>:<line#>:<col#>)
 at FunctionName (<Fully qualified file/URL>:<line#>:<col#>)"
The number of stack frames shown is controlled by the stackTraceLimit property defined on the Error constructor.
[bookmark: section_f3d44a29bf4548ff881dfbfa23b336de][bookmark: _Toc494257804]Properties of the Object Prototype Object
The extensions described in this section are not available in IE9 Mode or IE10 Mode.
This section defines additional methods of the Object prototype object of [ECMA-262/51] (see Section 15.2.4). These methods are described in the following sections.
· section 2.9.4.1
· section 2.9.4.2
· section 2.9.4.3
· section 2.9.4.4
[bookmark: section_4e0bdf098e9e4b0c8a3f0a96d09288ec][bookmark: _Toc494257805]Object.prototype.__defineGetter__(propertyName, functionObject)
When __defineGetter__ is called, the following steps are taken:
1. If the type of functionObject is not a function object, raise a TypeError exception
2. Let D be a newly created Property Descriptor with no fields
3. Set D.[[Enumerable]] to true
4. Set D.[[Configurable]] to true
5. Set D.[[Get]] to functionObject
6. If this value is undefined or null, let this be the global object
7. Call [[DefineOwnProperty]] on the this value with the arguments ToString(propertyName), propDesc, and false
[bookmark: section_10157cd1df5f48e4820093e08a3bc756][bookmark: _Toc494257806]Object.prototype.__defineSetter__(propertyName, functionObject)
When __defineSetter__ is called, the following steps are taken:
1. If the type of functionObject is not a function object, raise a TypeError exception
2. Let D be a newly created Property Descriptor with no fields
3. Set D.[[Enumerable]] to true
4. Set D.[[Configurable]] to true
5. Set D.[[Set]] to functionObject
6. If this value is undefined or null, let this be the global object
7. Call [[DefineOwnProperty]] on the this value with the arguments ToString(propertyName), propDesc, and false
[bookmark: section_e9e0ed94ea5d490abf3ca5d5e1f1e813][bookmark: _Toc494257807]Object.prototype.__lookupGetter__(propertyName)
1. Let O be ToObject(this)
2. Let D be the result of calling the [[GetProperty]] internal method of O with the argument ToString(propertyName)
3. Return D.[[Get]]
[bookmark: section_e62840d427894b58a185337e7f44c51d][bookmark: _Toc494257808]Object.prototype.__lookupSetter__(propertyName)
1. Let O be ToObject(this)
2. Let D be the result of calling the [[GetProperty]] internal method of O with the argument ToString(propertyName)
3. Return D.[[Set]]
[bookmark: section_03149a7c76434956b1bbcfbecffbe631][bookmark: _Toc494257809]Security Considerations
There are no additional security considerations.
[bookmark: section_9010e5bb151e453eaf0b43bbdc58abd4][bookmark: _Toc494257810]Appendix A: Product Behavior
The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include updates to those products.
· Windows Internet Explorer 9
· Windows Internet Explorer 10
· Internet Explorer 11
· Internet Explorer 11 for Windows 10
· Microsoft Edge
Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base (KB) number appears with a product name, the behavior changed in that update. The new behavior also applies to subsequent updates unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.
Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the product does not follow the prescription.
[bookmark: section_6a1d639fda2f47fba091ac361d001877][bookmark: _Toc494257811]Change Tracking
No table of changes is available. The document is either new or has had no changes since its last release.
[bookmark: section_211292b7627748fcb25f5c024e35852e][bookmark: _Toc494257812]Index
57 / 57
[MS-ES5EX] - v20171003
Internet Explorer Extensions to the ECMA-262 ECMAScript Language Specification (Fifth Edition)
Copyright © 2017 Microsoft Corporation
Release: October 3, 2017
A

Applicability 9

C

Change tracking 56

G

Glossary 7

I

Implementer - security considerations 54
Informative references 7
Introduction 7

N

Normative references 7

O

Overview (synopsis) 8

P

Product behavior 55

R

References 7
 informative 7
 normative 7

S

Security - implementer considerations 54

T

Tracking changes 56
[bookmark: EndOfDocument_ST]
54 / 54
[MS-ES5EX] - v20171003
Internet Explorer Extensions to the ECMA-262 ECMAScript Language Specification (Fifth Edition)
Copyright © 2017 Microsoft Corporation
Release: October 3, 2017
