
1 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

[MS-ES5]:

Internet Explorer ECMA-262 ECMAScript Language
Specification (Fifth Edition) Standards Support Document

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this

documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.

However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map.
 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Revision Summary

Date
Revision
History

Revision
Class Comments

9/8/2010 0.1 New Released new document.

10/13/2010 0.2 Minor Clarified the meaning of the technical content.

2/10/2011 1.0 Major Significantly changed the technical content.

3/23/2011 1.1 Minor Clarified the meaning of the technical content.

2/22/2012 2.0 Major Significantly changed the technical content.

7/25/2012 2.1 Minor Clarified the meaning of the technical content.

2/6/2013 2.2 Minor Clarified the meaning of the technical content.

6/26/2013 3.0 Major Significantly changed the technical content.

3/31/2014 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/22/2015 4.0 Major Updated for new product version.

7/7/2015 4.1 Minor Clarified the meaning of the technical content.

11/2/2015 4.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/20/2016 4.2 Minor Clarified the meaning of the technical content.

3/22/2016 4.2 None
No changes to the meaning, language, or formatting of the
technical content.

7/19/2016 4.3 Minor Clarified the meaning of the technical content.

11/2/2016 4.3 None
No changes to the meaning, language, or formatting of the
technical content.

3/14/2017 4.3 None
No changes to the meaning, language, or formatting of the
technical content.

10/3/2017 4.3 None
No changes to the meaning, language, or formatting of the
technical content.

2/22/2018 4.3 None
No changes to the meaning, language, or formatting of the
technical content.

3/23/2018 4.3 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Table of Contents

1 Introduction .. 4
1.1 Glossary ... 4
1.2 References .. 4

1.2.1 Normative References ... 4
1.2.2 Informative References ... 4

1.3 Microsoft Implementations .. 4
1.4 Standards Support Requirements ... 5
1.5 Notation .. 6

2 Standards Support Statements .. 7
2.1 Normative Variations .. 7

2.1.1 [ECMA-262/5] Section 7.6, Identifier Names and Identifiers 7
2.1.2 [ECMA-262/5] Section 10.1.1, Strict Mode Code ... 7
2.1.3 [ECMA-262/5] Section 11.4.3, The typeof Operator .. 7
2.1.4 [ECMA-262/5] Section 12.15, The debugger statement 8
2.1.5 [ECMA-262/5] Section 15.1, The Global Object .. 8
2.1.6 [ECMA-262/5] Section 15.2.2.1, newObject ([value]) .. 8
2.1.7 [ECMA-262/5] Section 15.2.4.4, Object.prototype.valueOf () 9
2.1.8 [ECMA-262/5] Section 15.3.4.2, Function.prototype.toString () 9
2.1.9 [ECMA-262/5] Section 15.4.4.3, Array.prototype.toLocaleString () 10
2.1.10 [ECMA-262/5] Section 15.5.4.9, String.prototype.localeCompare (that) 11
2.1.11 [ECMA-262/5] Section 15.7.4.5, Number.prototype.toFixed (fractionDigits) 11
2.1.12 [ECMA-262/5] Section 15.7.4.6, Number.prototype.toExponential (fractionDigits)11
2.1.13 [ECMA-262/5] Section 15.7.4.7, Number.prototype.toPrecision (precision) 12
2.1.14 [ECMA-262/5] Section 15.9.1.8, Daylight Saving Time Adjustment 12
2.1.15 [ECMA-262/5] Section 15.9.1.14, TimeClip (time) .. 13
2.1.16 [ECMA-262/5] Section 15.9.4.2, Date.parse (string) 13
2.1.17 [ECMA-262/5] Section 15.9.4.3, Date.UTC (year, month [, date [, hours [, minutes

[, seconds [, ms]]]]]) ... 24
2.1.18 [ECMA-262/5] Section 15.9.5.2, Date.prototype.toString () 24
2.1.19 [ECMA-262/5] Section 15.10.1, Patterns ... 26
2.1.20 [ECMA-262/5] Section 15.10.2.5, Term ... 28
2.1.21 [ECMA-262/5] Section 15.10.2.8, Atom ... 29
2.1.22 [ECMA-262/5] Section 15.10.2.17, ClassAtom .. 29
2.1.23 [ECMA-262/5] Section 15.10.2.18, ClassAtomNoDash 29
2.1.24 [ECMA-262/5] Section B.1.2, String Literals ... 30

2.2 Clarifications ... 31
2.2.1 [ECMA-262/5] Section 8.5, The Number Type .. 31
2.2.2 [ECMA-262/5] Section 12.6, Iteration Statements .. 31
2.2.3 [ECMA-262/5] Section 15.7.4.3, Number.prototype.toLocaleString () 31
2.2.4 [ECMA-262/5] Section 15.9.5.3, Date.prototype.toDateString () 32
2.2.5 [ECMA-262/5] Section 15.9.5.4, Date.prototype.toTimeString () 33
2.2.6 [ECMA-262/5] Section 15.9.5.5, Date.prototype.toLocaleString () 33
2.2.7 [ECMA-262/5] Section 15.9.5.6, Date.prototype.toLocaleDateString () 34
2.2.8 [ECMA-262/5] Section 15.9.5.7, Date.prototype.toLocaleTimeString () 34
2.2.9 [ECMA-262/5] Section 15.9.5.42, Date.prototype.toUTCString () 35

2.3 Error Handling ... 35
2.4 Security .. 35

3 Change Tracking .. 36

4 Index ... 37

4 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1 Introduction

The ECMAScript of the Microsoft web browsers is a dialect of the language defined in the ECMAScript
Language Specification (Standard ECMA-262) Fifth Edition [ECMA-262/5], published December 2009.
This document describes the level of support provided by the browsers for that specification.

The [ECMA-262/5] specifications contain guidance for authors of webpages, browser users, and user
agents (browser applications). This conformance document considers only normative language from

the related specifications that applies directly to user agents.

1.1 Glossary

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[ECMA-262/5] Ecma International, "ECMAScript Language Specification", Standard ECMA-262 5th
Edition / December 2009, http://www.ecma-international.org/publications/files/ECMA-ST-
ARCH/ECMA-262%205th%20edition%20December%202009.pdf

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-ES3EX] Microsoft Corporation, "Microsoft JScript Extensions to the ECMAScript Language
Specification Third Edition".

[MS-ES3] Microsoft Corporation, "Microsoft JScript ECMA-262-1999 ECMAScript Language
Specification Standards Support Document".

[MS-ES5EX] Microsoft Corporation, "Internet Explorer Extensions to the ECMA-262 ECMAScript
Language Specification (Fifth Edition)".

1.3 Microsoft Implementations

The following Microsoft web browser versions implement some portion of the [ECMA-262/5]
specification:

 Windows Internet Explorer 9

 Windows Internet Explorer 10

 Internet Explorer 11

https://go.microsoft.com/fwlink/?LinkId=185963
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=185963
https://go.microsoft.com/fwlink/?LinkId=185963
https://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a
%5bMS-ES3%5d.pdf#Section_8aea05e38c1e4a9a961431f71e679462
%5bMS-ES3%5d.pdf#Section_8aea05e38c1e4a9a961431f71e679462
%5bMS-ES5EX%5d.pdf#Section_a6028f4d030b49e4b128f0abac70912f
%5bMS-ES5EX%5d.pdf#Section_a6028f4d030b49e4b128f0abac70912f
https://go.microsoft.com/fwlink/?LinkId=185963

5 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 Internet Explorer 11 for Windows 10

 Microsoft Edge

Each browser version may implement multiple document rendering modes. The modes vary from one
to another in support of the standard. The following table lists the document modes in each browser

version that support the [ECMA-262/5] specification.

Browser Version Document Modes Supported

Internet Explorer 9 IE9 Mode

Internet Explorer 10 IE9 Mode
IE10 Mode

Internet Explorer 11 IE9 Mode
IE10 Mode
IE11 Mode

Internet Explorer 11 for Windows

10

IE9 Mode

IE10 Mode
IE11 Mode

Microsoft Edge EdgeHTML Mode

For each variation presented in this document there is a list of the document modes and browser
versions that exhibit the behavior described by the variation. All combinations of modes and versions

that are not listed conform to the specification. For example, the following list for a variation indicates
that the variation exists in four document modes in all browser versions that support these modes:

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

1.4 Standards Support Requirements

To conform to [ECMA-262/5], a user agent must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in the specification (See [ECMA-
262/5] section 2, Conformance). Any optional portions that have been implemented must also be

implemented as described by the specification. Normative language is usually used to define both
required and optional portions. (For more information, see [RFC2119].)

The following table lists the sections of [ECMA-262/5] and whether they are considered normative or
informative.

Sections Normative/Informative

1 Informative

2-3 Normative

4 Informative

5-15 Normative

Annex A–Annex E Informative

Relationship to Standards and Other Extensions

The following documents describe variations and extensions from versions 3 and 5 of the ECMAScript
Language:

https://go.microsoft.com/fwlink/?LinkId=185963
https://go.microsoft.com/fwlink/?LinkId=90317

6 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Document
Type Reference Title

Variations [MS-ES3] Internet Explorer ECMA-262 ECMAScript Language Specification Standards
Support Document

Extensions [MS-ES3EX] Microsoft JScript Extensions to the ECMAScript Language Specification Third
Edition

Extensions [MS-ES5EX] Internet Explorer Extensions to the ECMA-262 ECMAScript Language
Specification (Fifth Edition)

1.5 Notation

The following notations are used in this document to differentiate between notes of clarification,

variation from the specification, and points of extensibility.

Notation Explanation

C#### This identifies a clarification of ambiguity in the target specification. This includes imprecise
statements, omitted information, discrepancies, and errata. This does not include data formatting
clarifications.

V#### This identifies an intended point of variability in the target specification such as the use of MAY,
SHOULD, or RECOMMENDED. (See [RFC2119].) This does not include extensibility points.

E#### Because the use of extensibility points (such as optional implementation-specific data) can impair
interoperability, this profile identifies such points in the target specification.

For document mode and browser version notation, see also section 1.3.

%5bMS-ES3%5d.pdf#Section_8aea05e38c1e4a9a961431f71e679462
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a
%5bMS-ES5EX%5d.pdf#Section_a6028f4d030b49e4b128f0abac70912f
https://go.microsoft.com/fwlink/?LinkId=90317

7 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2 Standards Support Statements

This section contains all variations and clarifications for the Microsoft implementation of [ECMA-
262/5].

 Section 2.1 describes normative variations from the MUST requirements of the specification.

 Section 2.2 describes clarifications of the MAY and SHOULD requirements.

 Section 2.3 considers error handling aspects of the implementation.

 Section 2.4 considers security aspects of the implementation.

2.1 Normative Variations

The following subsections describe normative variations from the MUST requirements of [ECMA-

262/5].

2.1.1 [ECMA-262/5] Section 7.6, Identifier Names and Identifiers

V0043:

The specification states:

 ECMAScript implementations may recognise identifier characters defined in later editions of
the Unicode Standard. If portability is a concern, programmers should only employ identifier

characters defined in Unicode 3.0.

IE9 Mode, IE10 Mode, and IE11 Mode (All Versions)

Unicode 2.1 is supported. Later Unicode standards are not supported.

2.1.2 [ECMA-262/5] Section 10.1.1, Strict Mode Code

V0001:

The specification states:

 Strict Mode Code
 An ECMAScript Program syntactic unit may be processed using either unrestricted or strict
mode syntax and semantics.

IE9 Mode, IE10 Mode, and IE11 Mode (All Versions)

No code is interpreted as strict mode code. For more information about strict mode, see Annex C of
[ECMA-262/5].

2.1.3 [ECMA-262/5] Section 11.4.3, The typeof Operator

V0002:

The specification states:

 Table 20 – typeof Operator Results lists the strings returned when the production
UnaryExpression : typeof UnaryExpression is evaluated. When the type of value is:

https://go.microsoft.com/fwlink/?LinkId=185963
https://go.microsoft.com/fwlink/?LinkId=185963
https://go.microsoft.com/fwlink/?LinkId=185963
https://go.microsoft.com/fwlink/?LinkId=185963
https://go.microsoft.com/fwlink/?LinkId=185963

8 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 Object (host and does not implement [[Call]])

 The result is:

 Implementation-defined except may not be "undefined", "boolean", "number", or "string".

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

"object" is returned for all host objects, including those objects that do not implement [[Call]].

2.1.4 [ECMA-262/5] Section 12.15, The debugger statement

V0003:

The specification states:

 1. If an implementation defined debugging facility is available and enabled, then
 a. Perform an implementation defined debugging action.
 b. Let result be an implementation defined Completion value.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

If a debugger is attached to the currently executing program, step 1.a suspends execution and passes
control to the debugger. If the debugger resumes execution of the program, step 1.b produces the
Completion value of (normal, empty, empty).

2.1.5 [ECMA-262/5] Section 15.1, The Global Object

V0005:

The specification states:

 The values of the [[Prototype]] and [[Class]] internal properties of the global object are
implementation-dependent.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The [[Class]] internal property of the global object is "WindowPrototype" and the [[Prototype]]

internal property is an implementation-provided prototype object.

2.1.6 [ECMA-262/5] Section 15.2.2.1, newObject ([value])

V0006:

The specification states:

 1. If value is supplied, then
 a. If Type(value) is Object, then
 i. If the value is a native ECMAScript object, do not create a new object but simply
return value.

 ii. If the value is a host object, then actions are taken and a result is returned in
an implementation-dependent manner that may depend on the host object.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

9 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

value is returned if the value is a host object.

2.1.7 [ECMA-262/5] Section 15.2.4.4, Object.prototype.valueOf ()

V0007:

The specification states:

 2. If O is the result of calling the Object constructor with a host object (15.2.2.1), then

 a. Return either O or another value such as the host object originally passed to the
constructor. The specific result that is returned is implementation-defined.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

When O is the result of calling the Object constructor with a host object, the this value is returned.

2.1.8 [ECMA-262/5] Section 15.3.4.2, Function.prototype.toString ()

V0008:

The specification states:

 An implementation-dependent representation of the function is returned. This representation
has the syntax of a FunctionDeclaration. Note in particular that the use and placement of

white space, line terminators, and semicolons within the representation String is

implementation-dependent.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The following variations apply:

 The implementation-dependent representation has the syntax of a FunctionExpression function
object.

 The representation of a function that is implemented by using ECMAScript code is the exact
sequence of characters that is used to define the function. The first character of the representation
is the letter "f" of function, and the final character is the final closing brace ("}") of the function
definition. However, if the function is defined by using a FunctionExpression function object that
is immediately surrounded by one or more levels of grouping operators ([ECMA-262/5] section

11.1.6), the first character of the representation is the opening parenthesis ("(") of the innermost
such grouping operator and the final character is the closing parenthesis (")") of the innermost
such grouping operator.

If the function is created by the Function constructor ([ECMA-262/5] section 15.3.2.1), the
representation of the function consists of the following elements in this order:

1. The string "function anonymous("

2. The value of P that is used in step 16 of the [ECMA-262/5] section 15.3.2.1 algorithm
that created the function

3. The string ") {"

4. A <LF> character

5. The value of body that is used in step 16 of the algorithm

https://go.microsoft.com/fwlink/?LinkId=185963

10 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

6. A <LF> character and a closing brace ("}").

If the function is not implemented by using ECMAScript code (that is, it is a built-in function or

a host object function), the FunctionBody function object of the generated representation
does not conform to ECMAScript syntax. Instead, the FunctionBody function object consists
of the string "[native code]".

The format of the representation that is generated has the syntax of a standard ECMAScript,
Fifth Edition FunctionExpression function object rather than a FunctionDeclaration

function object. For anonymous functions that are created through a FunctionExpression
function object that does not include the optional Identifier, the generated syntax does not
include the optional Identifier and does not conform to the base standard’s definition of
FunctionExpression.

2.1.9 [ECMA-262/5] Section 15.4.4.3, Array.prototype.toLocaleString ()

V0010:

The specification states:

 8. Else

 …

 d. Let R be the result of calling the [[Call]] internal method of func

 providing elementObj as the this value and an empty arguments list.
 …
 10. Repeat, while k < len

…

 d. Else

 …

 iv. Let R be the result of calling the [[Call]] internal method of func

 providing elementObj as the this value and an empty arguments list.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

For the steps that are described in steps 8.d and 10.d.iv, if a recursive call to toLocaleString would
cause a non-terminating recursion, the empty string is used as the result.

V0011:

The specification states:

 When the toString method is called, the following steps are taken:
 1. Let array be the result of calling ToObject on the this value.
 2. Let func be the result of calling the [[Get]] internal method of array with argument
"join".

 3. If IsCallable(func) is false, then let func be the standard built-in method
Object.prototype.toString (15.2.4.2).

 4. Return the result of calling the [[Call]] internal method of func providing array as the
this value and an empty arguments list.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

11 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

In step 4, the separator character is determined by using the Microsoft Windows GetLocaleInfo
system function and requesting the LOCALE_LIST value for the current user locale.

2.1.10 [ECMA-262/5] Section 15.5.4.9, String.prototype.localeCompare (that)

V0032:

The specification states:

 The actual return values are implementation-defined to permit implementers to encode
additional information in the value, but the function is required to define a total ordering

on all Strings and to return 0 when comparing Strings that are considered canonically

equivalent by the Unicode standard.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The returned value is determined as follows:

1. Call the Microsoft Windows CompareString system function, passing S, that, and the current

locale information as arguments.

2. Pass the value 0 as the dwCmpFlags argument.

3. Return result (1).

2.1.11 [ECMA-262/5] Section 15.7.4.5, Number.prototype.toFixed (fractionDigits)

V0033:

The specification states:

 An implementation is permitted to extend the behaviour of toFixed for values of
fractionDigits less than 0 or greater than 20. In this case toFixed would not necessarily

throw RangeError for such values.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

If any value of the fractionDigits function is converted to an integer and it is equal to +∞ or -∞, this

value is treated as if it is the value 0.

2.1.12 [ECMA-262/5] Section 15.7.4.6, Number.prototype.toExponential

(fractionDigits)

V0034:

The specification states:

 An implementation is permitted to extend the behaviour of toExponential for values of
fractionDigits less than 0 or greater than 20. In this case toExponential would not

necessarily throw RangeError for such values.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

If any value of the fractionDigits function is converted to an integer and it is equal to +∞ or -∞, this

value is treated as if it is the value 0.

12 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.13 [ECMA-262/5] Section 15.7.4.7, Number.prototype.toPrecision (precision)

V0035:

The specification states:

 An implementation is permitted to extend the behaviour of toPrecision for values of precision
less than 1 or greater than 21. In this case toPrecision would not necessarily throw

RangeError for such values.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The behavior of the toPrecision function is not extended to values of the precision property that are
less than 1 or greater than 21.

2.1.14 [ECMA-262/5] Section 15.9.1.8, Daylight Saving Time Adjustment

V0036:

The specification states:

 If the host environment provides functionality for determining daylight saving
 time, the implementation of ECMAScript is free to map the year in question to an
 equivalent year (same leap-year-ness and same starting week day for the year) for
 which the host environment provides daylight saving time information. The only
 restriction is that all equivalent years should produce the same result.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

To determine adjustments for daylight savings time, equivalent years are mapped to the current year
by using the following values.

Day of
the week
for
January
1

0
(Sunday)

1
(Monday)

2
(Tuesday)

3
(Wednesday)

4
(Thursday)

5
(Friday)

6
(Saturday)

Non-leap
years
before
2007

1995 1979 1991 1975 1987 1971 1983

Leap
years
before
2007

1984 1996 1980 1992 1976 1988 1972

2007 and
non-leap
years
after
2007

2023 2035 2019 2031 2015 2027 2011

Leap
years
after
2007

2012 2024 2036 2020 2032 2016 2028

13 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.15 [ECMA-262/5] Section 15.9.1.14, TimeClip (time)

V0037:

The specification states:

 The operator TimeClip calculates a number of milliseconds from its argument, which must be an
ECMAScript Number value. This operator functions as follows:

 1. If time is not finite, return NaN.
 2. If abs(time) > 8.64 x 1015, return NaN.
 3. Return an implementation-dependent choice of either ToInteger(time) or ToInteger(time) +
(+0). (Adding a positive zero converts −0 to +0.)

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

In step 3, ToInteger(time) is returned.

2.1.16 [ECMA-262/5] Section 15.9.4.2, Date.parse (string)

V0038:

The specification states:

 The parse function applies the ToString operator to its argument and interprets the resulting
String as a date and time; it returns a Number, the UTC time value corresponding to the date

and time. The String may be interpreted as a local time, a UTC time, or a time in some other

time zone, depending on the contents of the String. The function first attempts to parse the

format of the String according to the rules called out in Date Time String Format

(15.9.1.15). If the String does not conform to that format the function may fall back to any

implementation-specific heuristics or implementation-specific date formats. Unrecognizable

Strings or dates containing illegal element values in the format String shall cause

Date.parse to return NaN.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

If the argument string for the parse function does not conform to the Date Time String Format, the
parse function tries to parse the string value and it produces a value in accordance with the following
grammar and rules. If the string cannot be recognized starting with the DateString production, the
NaN number value is returned.

Date String Syntax

The following lexical grammar defines the tokens that make up date strings.

DateToken ::

 Separator

 NumericDateToken

 AlphaDateToken

 DateComment

 OffsetFlag

14 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Separator :: one of

 , : / <SP>

DateComment ::

 (DateCommentBodyopt)

DateCommentBody ::

 DateCommentChars DateCommentopt

 DateComment DateCommentBodyopt

DateCommentChars ::

 DateCommentChar DateCommentCharsopt

DateCommentChar ::

 DateChar but not (or)

OffsetFlag :: one of

 + -

AlphaDateToken ::

 AlphaDateComponent periodopt

AlphaDateComponent ::

 WeekDay

 Month

 TimeZone

 MilitaryTimeZone

 AmPmFlag

 AdBcFlag

period ::

 .

WeekDay ::

 Sunday

 Monday

 Tuesday

 Wednesday

 Thursday

 Friday

 Saturday

15 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Month ::

 January

 February

 March

 April

 May

 June

 July

 August

 September

 October

 November

 December

TimeZone ::

 est

 edt

 cst

 cdt

 mst

 mdt

 pst

 pdt

 gmt

 utc

MilitaryTimeZone ::

 a [lookahead {.m m d .d p u}]

 p [lookahead {.m m d s}]

 b [lookahead {.c c}]

 f [lookahead {e i}]

 m [lookahead {a d o s}]

 s [lookahead {a e u}]

16 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 o [lookahead ≠ c]

 n [lookahead ≠ o]

 d [lookahead ≠ e]

 t [lookahead {h u}]

 w [lookahead ≠ e]

 e [lookahead {d s}]

 c [lookahead {d s}]

 g [lookahead ≠ m]

 u [lookahead ≠ t

 UniqueMilitaryTimeZone

UniqueMilitaryTimeZone :: one of

 z y x v r q h i k l

AmPmFlag ::

 am

 a.m

 pm

 p.m

AdBcFlag ::

 ad

 a.d

 bc

 b.c

NumericDateToken ::

 NumericDateComponent -

 NumericDateComponent [lookahead ≠ -]

NumericDateComponent ::

 DateDigit [lookahead DateDigit]

 DateDigit DateDigit [lookahead DateDigit]

 DateDigit DateDigit DateDigit [lookahead DateDigit]

 DateDigit DateDigit DateDigit DateDigit [lookahead DateDigit]

 DateDigit DateDigit DateDigit DateDigit DateDigit [lookahead DateDigit]

17 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 DateDigit DateDigit DateDigit DateDigit DateDigit DateDigit [lookahead DateDigit]

DateDigit :: one of

 0 1 2 3 4 5 6 7 8 9

Sunday ::

 su

 sun

 sund

 sunda

 sunday

Monday ::

 mo

 mon

 mond

 monda

 monday

Tuesday ::

 tu

 tue

 tues

 tuesd

 tuesda

 tuesday

Wednesday ::

 we

 wed

 wedn

 wedne

 wednes

 wednesd

 wednesda

 wednesday

18 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Thursday ::

 th

 thu

 thur

 thurs

 thursd

 thursda

 thursday

Friday ::

 fr

 fri

 frid

 frida

 friday

Saturday ::

 sa

 sat

 satu

 satur

 saturd

 saturda

 saturday

January ::

 ja

 jan

 janu

 januar

 january

February ::

 fe

 feb

19 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 febr

 febru

 februa

 februar

 february

March ::

 ma

 mar

 marc

 march

April ::

 ap

 apr

 apri

 april

May ::

 ma

 may

June ::

 jun

 june

July ::

 ju

 jul

 july

August ::

 au

 aug

 augu

 augus

 august

20 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

September ::

 se

 sep

 sept

 septe

 septem

 septemb

 septembe

 september

October ::

 oc

 oct

 octo

 octob

 octobe

 october

November ::

 no

 nov

 nove

 novem

 novemb

 novembe

 november

December ::

 de

 dec

 dece

 decem

 decemb

 decembe

21 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 december

Parsing Rules for Date.parse Date Strings

1. The string to be parsed is converted to lowercase and then these rules are applied.

2. The preceding grammar syntax uses NumericDateToken literals or AlphaDateToken literals to
define the following components of a date object: weekday, year, month, date, hours, minutes,

seconds, time zone, AD/BC flag, and AM/PM flag.

3. Any date string must define at least year, month, and date components. No component can be
defined multiple times.

4. Components can be in any order, except for cases that are explicitly specified otherwise.

5. The following rules apply to the OffsetFlags literal:

 The plus sign (+) and minus sign (-) are offset classifiers, when they do not follow a
number. The next numeric component that follows an offset classifier is classified as an

offset value. The numeric component does not have to follow immediately after the plus
sign (+) or minus sign (-).

 The + offset and the – offset cannot be specified before the year field. + or - offsets refer
to the UTC time zone and set the time zone to UTC. A time zone component cannot follow
a + or - offset.

6. The colon (:) separator char acts as a time classifier for numeric components:

 A colon (:) that follows a number classifies the previous numeric component as hours.

 A colon (:) that follows a number that is classified as an hour classifies the next numeric

component as minutes. The next numeric component does not have to immediately follow
the colon.

 A colon (:) that follows a number that is classified as a minute classifies the next numeric

component as seconds. The next number does not have to immediately follow the colon.

7. The following rules define date classification for numeric components:

 A number that is not classified and that has a value that is greater than or equal to 70 is
always classified as years. Even when such a number is followed by a colon (:) and could

be classified as hours, the number is classified as years. In this case, the colon (:) is a
simple separator.

 A number that is not classified by a classifier is always classified as a date.

 Forward slash (/) and hyphen (-) separator chars can act as classifiers in the following
ways:

 A forward slash (/) or hyphen (-) that follows a numeric component classifies that
numeric component as months.

 A forward slash (/) or hyphen (-) that follows a numeric component that is classified
as a month classifies the next numeric component as a date. The next numeric
component does not have to immediately follow the forward slash or the hyphen.

 A forward slash (/) or hyphen (-) that follows a numeric component that is classified
as a date classifies the next numeric component as a year. The next numeric
component does not have to immediately follow the forward slash or the hyphen.

8. The week day is ignored regardless of whether it is correct or incorrect.

22 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

9. The default value for the AD/BC flag is AD.

10. When the AM/PM flag is not defined, the default interpretation for hours is 24-hour notation. The

AM flag is ignored when the time is greater than 13:00:00. When the PM flag is used, the time
must be less than 12:00.

Algorithm for Computing the Time Value

Numeric values are calculated for year, month, date, and time through classification, numeric
components, and alpha components. The following adjustments are done because of the flags, offsets,
and time zones:

1. If the BC/AD flag is BC, year = -year + 1.

Note 1 BC is year 0 and 2 BC is year -1.

2. If the BC/AD flag is AD and the year value is less than 100, year = year+1900. This rule allows

the short form for the year value. For example, 99 stands for 1999.

3. The time value (that is, the time during the day) is calculated in seconds from the hour, minute,
and seconds components. The AM/PM flag can change the time value as follows:

 If no AM/PM flag is present, the time is considered to be in 24-hour notation and no

adjustment is done.

 If the time is greater than or equal to 12 * 3600 and the time is less than 13*3600 and if the
AM/PM flag is AM, time = time – 12*3600. For example, 12:45 AM means 0:45.

 If the AM/PM flag is PM and the time is less than 12*3600, time = time + 12 *3600. For
example, 2PM means 14:00.

4. Time zone adjustment. The time value (from rule 3) is adjusted by the zone display values that
are specified in the following tables. Check the TimeZone and MilitaryTimeZone values. If zone

is the value for a given zone, the time is adjusted by: time = time - zone * 60.

5. Offset adjustment. The offset value applies to the time in the UTC zone. Let nn be the value of the
numeric component that follows an offset. The following formulas define the offset value, in
seconds, that then add up to the UTC time:

 If nn <24: vOffset = 60* nn * 60

 If nn >=24: vOffset = 60* (nn modulo 100) + (floor (nn / 100)) * 60))

 time = Result(4) - vOffset * 60;

6. Date adjustment. Set date = date -1.

7. Month adjustment. Set month = (month-1).

8. Final time calculation:

 year = year + floor(month / 12);

 month = Remainder(month, 12)

 day = day + DayFromYear(year);

 day = day + DayNumbersForTheMonthOfALeapYear(month);

 If month is greater than or equal to 2 and the year is not a leap year, day = day - 1;

 result = day * 86400000 + time;

23 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

9. If no time zone is specified, consider the time to be in the current local time zone and then get the
UTC displacement of the time.

TimeZone value UTC displacement

est -5

edt -4

cst -6

cdt -5

mst -7

mdt -6

pst -8

pdt -7

gmt 0

utc 0

MilitaryTimeZone value UTC displacement

z 0

y 12

x 11

w 10

v 9

u 8

t 7

s 6

r 5

q 4

p 3

o 2

n 1

a -1

b -2

c -3

d -4

e -5

24 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

MilitaryTimeZone value UTC displacement

f -6

g -7

h -8

i -9

k -10

l -10

m 12

2.1.17 [ECMA-262/5] Section 15.9.4.3, Date.UTC (year, month [, date [, hours [,

minutes [, seconds [, ms]]]]])

V0039:

The specification states:

 When the UTC function is called with fewer than two arguments, the behaviour is

implementation-dependent.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

When the UTC function is called with less than two arguments, the following steps are taken:

1. If year is supplied, let y be ToNumber(year); otherwise, let y be 0.

2. If month is supplied, let m be ToNumber(month); otherwise, let m be 0.

3. If date is supplied, let dt be ToNumber(date); otherwise, let dt be 1.

4. If hours is supplied, let h be ToNumber(hours); otherwise, let h be 0.

5. If minutes is supplied, let min be ToNumber(minutes); otherwise, let min be 0.

6. If seconds is supplied, let s be ToNumber(seconds); otherwise, let s be 0.

7. If ms is supplied, let milli be ToNumber(ms); otherwise, let milli be 0.

8. If y is not NaN and 0 ≤ ToInteger(y) ≤ 99, let yr be 1900+ToInteger(y); otherwise, let yr be
y.

9. Return TimeClip(MakeDate(MakeDay(yr, m, dt), MakeTime(h, min, s, milli))).

2.1.18 [ECMA-262/5] Section 15.9.5.2, Date.prototype.toString ()

V0040:

The specification states:

25 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 This function returns a String value. The contents of the String are implementation-
dependent, but are intended to represent the Date in the current time zone in a convenient,

human-readable form.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The returned String value of the Date.prototype.toString method is determined from the following
steps:

1. Let tv be the time value.

2. If tv is NaN, return the string "NaN".

3. Let t be LocalTime(tv).

4. Using t, create a string value that has the following format, according to the items that are
defined in the following table:

 DDDbMMMbddbhh:mm:ssbzzzzzzbyyyyy

5. Return Result(4).

The following table defines the variables in the string value that is referenced in the preceding steps.

26 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Variable Description

DDD The day of the week abbreviation from the following set: Sun Mon Tue

Wed Thu Fri Sat.

b A single space character.

MMM The month name abbreviation from the following set: Jan Feb Mar Apr

May Jun Jul Aug Sep Oct Nov Dec.

dd The day of the month as a one-decimal or two-decimal number, from 1 to

31.

hh The number of complete hours since midnight as a two-decimal number.

: The colon character.

mm The number of complete minutes since the start of the hour, as a two-
decimal number.

ss The number of complete seconds since the start of the minute, as a two-
decimal number.

zzz or zzzzzzzz If the local time offset from UTC is an integral number of hours between -8
and -5 inclusive, this item is the standard abbreviation for the corresponding
North American time zone. This time zone is one of the following set: EST

EDT CST CDT MST MDT PST PDT. Otherwise, this item is the characters

UTC followed by a plus sign (+) or minus sign (–) character that corresponds

to the sign of the local offset from UTC followed by the two-decimal hours
part of the UTC offset and the two-decimal minutes part of the UTC offset.

yyyyy If YearFromTime(t) is greater than 0, this item is three or more digits from
the value of YearFromTime(t). Otherwise, this item is the one or more
numbers that correspond to the number that is 1-YearFromTime(t)
followed by a single space character and then followed by B.C.

, The comma character.

UTC The literal characters UTC.

2.1.19 [ECMA-262/5] Section 15.10.1, Patterns

V0083:

The specification states:

 Term ::
 Assertion
 Atom
 Atom Quantifier
 Atom ::
 PatternCharacter
 .
 \ AtomEscape
 CharacterClass
 (Disjunction)
 (? : Disjunction)
 PatternCharacter ::
 SourceCharacter but not one of
 ^ $ \ . * + ? () [] { } |
 Assertion ::
 ^
 $
 \ b

27 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 \ B
 (? = Disjunction)
 (? ! Disjunction)
 AtomEscape ::
 DecimalEscape
 CharacterEscape
 CharacterClassEscape
 CharacterEscape ::
 ControlEscape
 c ControlLetter
 HexEscapeSequence
 UnicodeEscapeSequence
 IdentityEscape
 IdentityEscape ::
 SourceCharacter but not IdentifierPart
 <ZWJ>
 <ZWNJ>
 NonemptyClassRanges ::
 ClassAtom
 ClassAtom NonemptyClassRangesNoDash
 ClassAtom - ClassAtom ClassRanges
 NonemptyClassRangesNoDash ::
 ClassAtom
 ClassAtomNoDash NonemptyClassRangesNoDash
 ClassAtomNoDash - ClassAtom ClassRanges
 ClassAtom ::
 -
 ClassAtomNoDash
 ClassAtomNoDash ::
 SourceCharacter but not one of \ or] or -
 \ ClassEscape
 ClassEscape ::
 DecimalEscape
 b
 CharacterEscape
 CharacterClassEscape

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The pattern grammar is instead context sensitive for the productions listed below, and ambiguities are

introduced that are broken by ordering and contextual information. The following grammar is used,
with each alternative considered only if previous production alternatives do not match:

 Term ::
 Assertion
 AtomNoBrace Quantifier
 Atom
 QuantifiableAssertion Quantifier
 AtomNoBrace ::
 PatternCharacterNoBrace
 .
 \ AtomEscape
 CharacterClass
 (Disjunction)
 (? : Disjunction)
 Atom ::
 PatternCharacter
 .
 \ AtomEscape
 CharacterClass
 (Disjunction)
 (? : Disjunction)
 PatternCharacterNoBrace ::
 SourceCharacter but not one of
 ^ $ \ . * + ? () [] { } |

28 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 PatternCharacter ::
 SourceCharacter but not one of
 ^ $ \ . * + ? () [] |
 QuantifiableAssertion ::
 (? = Disjunction)
 (? ! Disjunction)
 Assertion ::
 ^
 $
 \ b
 \ B
 QuantifiableAssertion
 AtomEscape ::
 DecimalEscape but only if the integer value of DecimalEscape is <= NCapturingParens
 CharacterClassEscape
 CharacterEscape
 CharacterEscape ::
 ControlEscape
 c ControlLetter
 HexEscapeSequence
 UnicodeEscapeSequence
 OctalEscapeSequence
 IdentityEscape
 IdentityEscape ::
 SourceCharacter but not c
 <ZWJ>
 <ZWNJ>
 NonemptyClassRanges ::
 ClassAtom
 ClassAtom NonemptyClassRangesNoDash
 ClassAtomInRange - ClassAtomInRange ClassRanges
 NonemptyClassRangesNoDash ::
 ClassAtom
 ClassAtomNoDash NonemptyClassRangesNoDash
 ClassAtomNoDashInRange - ClassAtomInRange ClassRanges
 ClassAtom ::
 -
 ClassAtomNoDash
 ClassAtomNoDash ::
 SourceCharacter but not one of \ or] or -
 \ ClassEscape
 ClassAtomInRange ::
 -
 ClassAtomNoDashInRange
 ClassAtomNoDashInRange ::
 SourceCharacter but not one of \ or] or -
 \ ClassEscape but only if ClassEscape evaluates to a CharSet with exactly one character
 \ IdentityEscape
 ClassEscape ::
 DecimalEscape but only if the integer value of DecimalEscape is <= NCapturingParens
 b
 CharacterClassEscape
 CharacterEscape

2.1.20 [ECMA-262/5] Section 15.10.2.5, Term

V0084:

The specification defines the productions for Term.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

In addition to the existing productions for Term, the production Term :: QuantifiableAssertion
Quantifier evaluates as follows:

29 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1. Return the result of evaluating the term (? : QuantifiableAssertion) Quantifier

2.1.21 [ECMA-262/5] Section 15.10.2.8, Atom

V0085:

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The specification defines the productions for Atom.

In addition to the existing productions for Atom, include identical productions for AtomNoBrace, except
replacing Atom :: PatternCharacter with:

The production AtomNoBrace :: PatternCharacterNoBrace evaluates as follows:

 1. Let ch be the character represented by PatternCharacterNoBrace.
 2. Let A be a one-element CharSet containing the character ch.
 3. Call CharacterSetMatcher(A, false) and return its Matcher result.

2.1.22 [ECMA-262/5] Section 15.10.2.17, ClassAtom

V0086:

The specification states:

 The production ClassAtom :: - evaluates by returning the CharSet containing the one character
-.

 The production ClassAtom :: ClassAtomNoDash evaluates by evaluating ClassAtomNoDash to obtain
a CharSet and returning that CharSet.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The production ClassAtom :: - evaluates by returning the CharSet containing the one character -.

The production ClassAtom :: ClassAtomNoDash evaluates by evaluating ClassAtomNoDash to obtain a
CharSet and returning that CharSet.

The production ClassAtomInRange :: - evaluates by returning the CharSet containing the one
character -.

The production ClassAtomInRange :: ClassAtomNoDashInRange evaluates by evaluating

ClassAtomNoDashInRange to obtain a CharSet and returning that CharSet.

2.1.23 [ECMA-262/5] Section 15.10.2.18, ClassAtomNoDash

V0087:

The specification states:

 The production ClassAtomNoDash :: SourceCharacter but not one of \ or] or - evaluates by
returning a one element CharSet containing the character represented by SourceCharacter.

 The production ClassAtomNoDash :: \ ClassEscape evaluates by evaluating ClassEscape to obtain
a CharSet and returning that CharSet.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

30 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

The production ClassAtomNoDash :: SourceCharacter but not one of \ or] or - evaluates by
returning a one element CharSet containing the character represented by SourceCharacter.

The production ClassAtomNoDash :: \ ClassEscape evaluates by evaluating ClassEscape to obtain a
CharSet and returning that CharSet.

The production ClassAtomNoDashInRange :: SourceCharacter but not one of \ or] or - evaluates by
returning a one element CharSet containing the character represented by SourceCharacter.

The production ClassAtomNoDashInRange :: \ ClassEscape evaluates by evaluating ClassEscape to
obtain a CharSet and returning that CharSet.

The production ClassAtomNoDashInRange :: \ IdentityEscape evaluates by evaluating IdentityEscape
to obtain a CharSet and returning that CharSet.

2.1.24 [ECMA-262/5] Section B.1.2, String Literals

V0041:

The specification states:

 OctalEscapeSequence ::

 OctalDigit [lookahead DecimalDigit]

 ZeroToThree OctalDigit [lookahead DecimalDigit]
 FourToSeven OctalDigit
 ZeroToThree OctalDigit OctalDigit

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The syntax of the OctalEscapeSequence literal can be extended only as follows, with the lookahead
element characterized with respect to the OctalDigit set:

 OctalEscapeSequence ::

 OctalDigit [lookahead OctalDigit]

 ZeroToThree OctalDigit [lookahead OctalDigit]
 FourToSeven OctalDigit
 ZeroToThree OctalDigit OctalDigit

V0042:

The specification states:

 The CV of OctalEscapeSequence :: OctalDigit [lookahead ∉ DecimalDigit] is the character
whose code unit value is the MV of the OctalDigit.

 The CV of OctalEscapeSequence :: ZeroToThree OctalDigit [lookahead ∉ DecimalDigit] is the
character whose code unit value is (8 times the MV of the ZeroToThree) plus the MV of the

OctalDigit.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The semantics of the OctalEscapeSequence literal can be extended only as follows, with the
lookahead element characterized with respect to the OctalDigit set:

 The character value (CV) of OctalEscapeSequence :: OctalDigit [lookahead ∉ OctalDigit]

is the character whose code unit value is the mathematical value (MV) of the OctalDigit element.

31 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 The CV of OctalEscapeSequence :: ZeroToThree OctalDigit [lookahead ∉ OctalDigit] is

the character whose code unit value is 8 times the MV of the ZeroToThree element plus the MV

of the OctalDigit element.

2.2 Clarifications

The following subsections describe clarifications of the MAY and SHOULD requirements of [ECMA-
262/5].

2.2.1 [ECMA-262/5] Section 8.5, The Number Type

C0008:

The specification states:

 In some implementations, external code might be able to detect a difference between various
Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code, all

NaN values are indistinguishable from each other.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

NaN values are not normalized to the same value.

2.2.2 [ECMA-262/5] Section 12.6, Iteration Statements

C0023:

The specification states:

If new properties are added to the object being enumerated during enumeration, the

newly added properties are not guaranteed to be visited in the active enumeration.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

Newly added properties are not visited in the active enumeration.

C0016:

The specification states:

 If new properties are added to the object being enumerated during enumeration, the newly
added properties are not guaranteed to be visited in the active enumeration.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

Newly added properties are not visited in the active enumeration.

2.2.3 [ECMA-262/5] Section 15.7.4.3, Number.prototype.toLocaleString ()

C0001:

The specification states:

https://go.microsoft.com/fwlink/?LinkId=185963
https://go.microsoft.com/fwlink/?LinkId=185963

32 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 Produces a string value that represents the value of this Number value formatted according to
the conventions of the host environment’s current locale. This function is implementation-

dependent, and it is permissible, but not encouraged, for it to return the same thing as

toString.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

Internet Explorer ECMAScript determines a string value as follows.

1. If the value of the Number object is an integer, return the result of calling the

Function.prototype.toString method with the Number value as the argument.

2. If this Number value is NaN, return the string value "NaN".

3. If this Number value is +Infinity or -Infinity, return the statically localized string that describes
such a value.

4. Create a string value by using the Number.prototype.toFixed algorithm in section 15.7.4.5 of

[ECMA-262/5]. Use this Number value as the this value. Use the actual number of significant
decimal fraction digits, fractionDigits, of this Number value as the argument. The fractionDigits
value is computed according to the ToString algorithm in section 9.8.1 of [ECMA-262/5].

5. Call the GetNumberFormat Microsoft Windows system function (http://msdn.microsoft.com/en-
us/library/dd318110(VS.85).aspx), passing it Result(4) and the current locale information. The
values zero and NULL are passed as the format flags and the lpFormat arguments.

6. If the call in step 5 succeeds, return Result(5).

7. If the calls in either step 4 or step 5 fail, return the result of calling the standard built-in
Date.prototype.toString method with Result(1) as the this object.

8. Call the VariantChangeType Windows OLE Automation function (http://msdn.microsoft.com/en-

us/library/aa910747.aspx), passing it Result(4) and the current locale information.

9. Return the string value that corresponds to Result(8).

2.2.4 [ECMA-262/5] Section 15.9.5.3, Date.prototype.toDateString ()

C0002:

The specification states:

 This function returns a String value. The contents of the String are implementation-
dependent, but are intended to represent the "date" portion of the Date in the current time

zone in a convenient, human-readable form.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The returned String value is determined from the following steps:

1. Let tv be the time value.

2. If tv is NaN, return the string "NaN".

3. Let t be LocalTime(tv).

4. Using t, create a string value that has the following format, according to the variables that are
defined in the table in section 2.1.18 of this document:

https://go.microsoft.com/fwlink/?LinkId=185963
http://msdn.microsoft.com/en-us/library/dd318110(VS.85).aspx)
http://msdn.microsoft.com/en-us/library/dd318110(VS.85).aspx)
http://msdn.microsoft.com/en-us/library/aa910747.aspx
http://msdn.microsoft.com/en-us/library/aa910747.aspx

33 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 DDDbMMMbddbyyyyy

5. Return Result(4).

2.2.5 [ECMA-262/5] Section 15.9.5.4, Date.prototype.toTimeString ()

C0003:

The specification states:

 This function returns a String value. The contents of the String are implementation-
dependent, but are intended to represent the "time" portion of the Date in the current time

zone in a convenient, human-readable form.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The returned String value is determined from the following steps:

1. Let tv be the time value.

2. If tv is NaN, return the string "NaN".

3. Let t be LocalTime(tv).

4. Using t, create a string value that has the following format, according to the items that are defined
in section 2.1.18 of this document:

 hh:mm:ssbzzzzzz

5. Return Result(4).

2.2.6 [ECMA-262/5] Section 15.9.5.5, Date.prototype.toLocaleString ()

C0004:

The specification states:

 This function returns a String value. The contents of the String are implementation-
dependent, but are intended to represent the Date in the current time zone in a convenient,

human-readable form that corresponds to the conventions of the host environment’s current

locale.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The returned String value is determined from the following steps:

1. Using the system locale settings, get the local time value that corresponds to the date value.
Apply any appropriate civil time adjustments.

2. If the year of Result(1) is less than or equal 1600 or is greater than or equal to 10000, return the

result of calling the standard built-in Date.prototype.toString method with Result(1) as its this
object.

3. Use the GetDateFormat Microsoft Windows system function (http://msdn.microsoft.com/en-
us/library/dd318086(VS.85).aspx), to format the date and time that correspond to Result(1). Pass
the default value of DATE_LONGDATE for format flags. However, if the current locale’s language is

Arabic or Hebrew, pass the value DATE_LONGDATE | Date_RTLREADING for format flags.

http://msdn.microsoft.com/en-us/library/dd318086(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd318086(VS.85).aspx

34 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

4. If the call in step 3 fails and the current locale language is Hebrew, throw a RangeError
exception.

5. Use the GetTimeFormat Windows system function (http://msdn.microsoft.com/en-
us/library/dd318130(VS.85).aspx) to format the date and time that correspond to Result(1). Pass

the default value of zero for format flags.

6. If the calls in steps 3 or 5 fail, return the result of calling the standard built-in
Date.prototype.toString method with Result(1) as its this object.

7. Return the string value that is the result of concatenating Result(3), a space character, and
Result(5).

2.2.7 [ECMA-262/5] Section 15.9.5.6, Date.prototype.toLocaleDateString ()

C0005:

The specification states:

 This function returns a String value. The contents of the String are implementation-
dependent, but are intended to represent the "date" portion of the Date in the current time

zone in a convenient, human-readable form that corresponds to the conventions of the host

environment’s current locale.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The returned String value is determined from the following steps:

1. Using the system locale settings, get the local time value that corresponds to the date value.
Apply any appropriate civil time adjustments.

2. If the year of Result(1) is less than or equal to 1600 or is greater than or equal to 10000, return
the result of calling the standard built-in Date.prototype.toString method with Result(1) as its

this object.

3. Use the GetDateFormat Microsoft Windows system function (http://msdn.microsoft.com/en-

us/library/dd318086(VS.85).aspx) to format the date and time that correspond to Result(1). Pass
the default value of DATE_LONGDATE for format flags. However, if the current locale’s language is

Arabic or Hebrew, pass the value DATE_LONGDATE | Date_RTLREADING for format flags.

4. If the call in step 3 fails and the current locale language is Hebrew, throw a RangeError
exception. Go to step 6.

5. If the call in step 3 fails, return the result of calling the standard built-in
Date.prototype.toString method with Result(1) as its this object.

6. Return the string value that is Result(3).

2.2.8 [ECMA-262/5] Section 15.9.5.7, Date.prototype.toLocaleTimeString ()

C0006:

The specification states:

 This function returns a String value. The contents of the String are implementation-
dependent, but are intended to represent the "time" portion of the Date in the current time

zone in a convenient, human-readable form that corresponds to the conventions of the host

environment’s current locale.

http://msdn.microsoft.com/en-us/library/dd318130(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd318130(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd318110(VS.85).aspx)
http://msdn.microsoft.com/en-us/library/dd318086(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd318086(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd318110(VS.85).aspx)

35 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The returned String value is determined from the following steps:

1. Using the system locale settings, get the local time value that corresponds to the date value.
Apply any appropriate civil time adjustments.

2. If the year of Result(1) is less than or equal to 1600 or is greater than or equal to 10000, return
the result of calling the standard built-in Date.prototype.toString method with Result(1) as its
this object.

3. Use the GetTimeFormat Microsoft Windows system function (http://msdn.microsoft.com/en-
us/library/dd318130(VS.85).aspx) to format the date and time that correspond to Result(1). Pass
the default value of zero for format flags.

4. If the call in step 3 fails, return the result of calling the standard built-in

Date.prototype.toString method with Result(1) as its this object.

5. Return the string value that is Result(3).

2.2.9 [ECMA-262/5] Section 15.9.5.42, Date.prototype.toUTCString ()

C0007:

The specification states:

 This function returns a String value. The contents of the String are implementation-
dependent, but are intended to represent the Date in a convenient, human-readable form in

UTC.

IE9 Mode, IE10 Mode, IE11 Mode, and EdgeHTML Mode (All Versions)

The returned String value is determined from the following steps:

1. Let tv be the time value.

2. If tv is NaN, return the string "NaN".

3. Using tv, create a string value that has the following format, according to the items that are
defined in the table in section 2.1.18 of this document:

 DDD,bddbMMMbyyyyybhh:mm:ssbUTC

4. Return Result(3).

2.3 Error Handling

There are no additional error handling considerations.

2.4 Security

There are no additional security considerations.

http://msdn.microsoft.com/en-us/library/dd318130(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd318130(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd318110(VS.85).aspx)

36 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

3 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

37 / 37

[MS-ES5] - v20180323
Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

4 Index

A

Array.prototype.toLocaleString () 10
Atom 29

C

Change tracking 36
ClassAtom 29
ClassAtomNoDash 29

D

Date.parse (string) 13
Date.prototype.toDateString () 32
Date.prototype.toLocaleDateString () 34
Date.prototype.toLocaleString () 33
Date.prototype.toLocaleTimeString () 34
Date.prototype.toString () 24
Date.prototype.toTimeString () 33
Date.prototype.toUTCString () 35
Date.UTC (year - month [- date [- hours [-

minutes [- seconds [- ms]]]]]) 24
Daylight Saving Time Adjustment 12

F

Function.prototype.toString () 9

G

Glossary 4

I

Identifier Names and Identifiers 7
Informative references 4
Introduction 4
Iteration Statements 31

N

newObject ([value]) 8
Normative references 4
Number.prototype.toExponential (fractionDigits) 11
Number.prototype.toFixed (fractionDigits) 11
Number.prototype.toLocaleString () 31
Number.prototype.toPrecision (precision) 12

O

Object.prototype.valueOf () 9

P

Patterns 26

R

References
 informative 4

 normative 4

S

Strict Mode Code 7
String Literals 30
String.prototype.localeCompare (that) 11

T

Term 28
The debugger statement 8
The Global Object 8
The Number Type 31
The typeof Operator 7
TimeClip (time) 13
Tracking changes 36

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Microsoft Implementations
	1.4 Standards Support Requirements
	1.5 Notation

	2 Standards Support Statements
	2.1 Normative Variations
	2.1.1 [ECMA-262/5] Section 7.6, Identifier Names and Identifiers
	2.1.2 [ECMA-262/5] Section 10.1.1, Strict Mode Code
	2.1.3 [ECMA-262/5] Section 11.4.3, The typeof Operator
	2.1.4 [ECMA-262/5] Section 12.15, The debugger statement
	2.1.5 [ECMA-262/5] Section 15.1, The Global Object
	2.1.6 [ECMA-262/5] Section 15.2.2.1, newObject ([value])
	2.1.7 [ECMA-262/5] Section 15.2.4.4, Object.prototype.valueOf ()
	2.1.8 [ECMA-262/5] Section 15.3.4.2, Function.prototype.toString ()
	2.1.9 [ECMA-262/5] Section 15.4.4.3, Array.prototype.toLocaleString ()
	2.1.10 [ECMA-262/5] Section 15.5.4.9, String.prototype.localeCompare (that)
	2.1.11 [ECMA-262/5] Section 15.7.4.5, Number.prototype.toFixed (fractionDigits)
	2.1.12 [ECMA-262/5] Section 15.7.4.6, Number.prototype.toExponential (fractionDigits)
	2.1.13 [ECMA-262/5] Section 15.7.4.7, Number.prototype.toPrecision (precision)
	2.1.14 [ECMA-262/5] Section 15.9.1.8, Daylight Saving Time Adjustment
	2.1.15 [ECMA-262/5] Section 15.9.1.14, TimeClip (time)
	2.1.16 [ECMA-262/5] Section 15.9.4.2, Date.parse (string)
	2.1.17 [ECMA-262/5] Section 15.9.4.3, Date.UTC (year, month [, date [, hours [, minutes [, seconds [, ms]]]]])
	2.1.18 [ECMA-262/5] Section 15.9.5.2, Date.prototype.toString ()
	2.1.19 [ECMA-262/5] Section 15.10.1, Patterns
	2.1.20 [ECMA-262/5] Section 15.10.2.5, Term
	2.1.21 [ECMA-262/5] Section 15.10.2.8, Atom
	2.1.22 [ECMA-262/5] Section 15.10.2.17, ClassAtom
	2.1.23 [ECMA-262/5] Section 15.10.2.18, ClassAtomNoDash
	2.1.24 [ECMA-262/5] Section B.1.2, String Literals

	2.2 Clarifications
	2.2.1 [ECMA-262/5] Section 8.5, The Number Type
	2.2.2 [ECMA-262/5] Section 12.6, Iteration Statements
	2.2.3 [ECMA-262/5] Section 15.7.4.3, Number.prototype.toLocaleString ()
	2.2.4 [ECMA-262/5] Section 15.9.5.3, Date.prototype.toDateString ()
	2.2.5 [ECMA-262/5] Section 15.9.5.4, Date.prototype.toTimeString ()
	2.2.6 [ECMA-262/5] Section 15.9.5.5, Date.prototype.toLocaleString ()
	2.2.7 [ECMA-262/5] Section 15.9.5.6, Date.prototype.toLocaleDateString ()
	2.2.8 [ECMA-262/5] Section 15.9.5.7, Date.prototype.toLocaleTimeString ()
	2.2.9 [ECMA-262/5] Section 15.9.5.42, Date.prototype.toUTCString ()

	2.3 Error Handling
	2.4 Security

	3 Change Tracking
	4 Index

