
1 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

[MS-ES3EX]:

Microsoft JScript Extensions to the ECMAScript Language
Specification Third Edition

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of

this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,

person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

3/26/2010 1.0 New Released new document.

4/16/2010 1.1 Minor Clarified the meaning of the technical content.

5/26/2010 1.2 None Introduced no new technical or language changes.

9/8/2010 1.3 Major Significantly changed the technical content.

10/13/2010 1.4 Minor Clarified the meaning of the technical content.

2/10/2011 2.0 Minor Clarified the meaning of the technical content.

2/22/2012 3.0 Major Significantly changed the technical content.

7/25/2012 3.1 Minor Clarified the meaning of the technical content.

3/31/2014 3.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/22/2015 4.0 Major Updated for new product version.

7/7/2015 4.1 Minor Clarified the meaning of the technical content.

11/2/2015 4.2 Minor Clarified the meaning of the technical content.

1/20/2016 4.3 Minor Clarified the meaning of the technical content.

3/22/2016 4.4 Minor Clarified the meaning of the technical content.

11/2/2016 4.4 None
No changes to the meaning, language, or formatting of the
technical content.

3/14/2017 4.4 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 6

1.3 Extension Overview (Synopsis) .. 7
1.3.1 Organization of This Documentation .. 8

1.4 Relationship to Standards and Other Extensions .. 8
1.5 Applicability Statement ... 8

2 Extensions ... 9
2.1 Conditional Source Text Processing .. 9

2.1.1 Global State ... 9
2.1.2 Conditional Processing Algorithm .. 10

2.2 Extensions to Types ... 19
2.2.1 SafeArray Type .. 19
2.2.2 VarDate Type ... 19

2.3 Extensions to Statements .. 19
2.3.1 debugger Statement ... 19

2.4 Extensions to Native ECMAScript Objects .. 20
2.4.1 Function Properties of the Global Object .. 20

2.4.1.1 ScriptEngine ... 20
2.4.1.2 ScriptEngineBuildVersion ... 20
2.4.1.3 ScriptEngineMajorVersion... 20
2.4.1.4 ScriptEngineMinorVersion ... 20
2.4.1.5 CollectGarbage ... 20
2.4.1.6 RuntimeObject .. 21
2.4.1.7 GetObject .. 22

2.4.2 Constructor Properties of the Global Object .. 22
2.4.3 Object Functions in JScript 5.8 ... 23

2.4.3.1 Object.getOwnPropertyDescriptor (O, P) .. 23
2.4.3.2 Object.defineProperty (O, P, Attributes) ... 24

2.4.4 Properties of Function Instances ... 27
2.4.4.1 The arguments Property .. 27
2.4.4.2 The caller Property .. 27
2.4.4.3 The [[Get]] (P) Method of a Function Object ... 27

2.4.5 String.prototype HTML Wrapper Properties .. 28
2.4.5.1 String.prototype.anchor(name)... 28
2.4.5.2 String.prototype.big() ... 28
2.4.5.3 String.prototype.blink() .. 28
2.4.5.4 String.prototype.bold() ... 28
2.4.5.5 String.prototype.fixed() .. 28
2.4.5.6 String.prototype.fontcolor(color) ... 29
2.4.5.7 String.prototype.fontsize(size) .. 29
2.4.5.8 String.prototype.italics() ... 29
2.4.5.9 String.prototype.link(url) ... 29
2.4.5.10 String.prototype.small() ... 29
2.4.5.11 String.prototype.strike() ... 29
2.4.5.12 String.prototype.sub() .. 29
2.4.5.13 String.prototype.sup() .. 29

2.4.6 Date Time String Format for JSON .. 29
2.4.6.1 Extended Years ... 30
2.4.6.2 Date.prototype.getVarDate () .. 31
2.4.6.3 Date.prototype.toJSON ().. 31

2.4.7 Properties of the RegExp Constructor .. 31

4 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4.7.1 RegExp.index ... 31
2.4.7.2 RegExp.input .. 31
2.4.7.3 RegExp.lastIndex .. 31
2.4.7.4 RegExp.lastMatch .. 31
2.4.7.5 RegExp.lastParen .. 32
2.4.7.6 RegExp.leftContext ... 32
2.4.7.7 RegExp.rightContext ... 32
2.4.7.8 RegExp.$1 - RegExp.$9 ... 32
2.4.7.9 RegExp.$_ ... 32
2.4.7.10 RegExp['$&'] .. 32
2.4.7.11 RegExp['$+'] .. 32
2.4.7.12 RegExp["$`"] ... 32
2.4.7.13 RegExp["$'"] .. 33

2.4.8 Properties of the RegExp Prototype Object ... 33
2.4.8.1 RegExp.prototype.compile(pattern, flags) .. 33

2.4.9 Properties of the RegExp Instances ... 33
2.4.9.1 options .. 34

2.4.10 The Error Constructor .. 34
2.4.10.1 new Error () ... 34
2.4.10.2 new Error(number, message) ... 34

2.4.11 Properties of Error Instances .. 34
2.4.11.1 description ... 34
2.4.11.2 number.. 34

2.4.12 Native Error Types Used in This Standard .. 35
2.4.12.1 RegExpError ... 35
2.4.12.2 ConversionError .. 35

2.4.13 Properties of NativeError Instances ... 35
2.4.13.1 description ... 35
2.4.13.2 number.. 35

2.4.14 The JSON Object .. 35
2.4.14.1 The JSON Grammar... 36

2.4.14.1.1 The JSON Lexical Grammar... 36
2.4.14.1.2 The JSON Syntactic Grammar ... 37

2.4.14.2 parse (text [, reviver]) .. 37
2.4.14.3 stringify (value [, replacer [, space]]) .. 39

2.4.15 The Debug Object ... 45
2.4.15.1 Function Properties of the Debug Object .. 46

2.4.15.1.1 write ([item1 [, item2 [, …]]]) .. 46
2.4.15.1.2 writeln ([item1 [, item2 [, …]]])) .. 46

2.4.16 Enumerator Objects .. 46
2.4.16.1 The Enumerator Constructor Called as a Function 46
2.4.16.2 The Enumerator Constructor .. 46

2.4.16.2.1 new Enumerator ([collection]) ... 46
2.4.16.3 Properties of the Enumerator Constructor .. 47

2.4.16.3.1 Enumerator.prototype .. 47
2.4.16.4 Properties of the Enumerator Prototype Object ... 47

2.4.16.4.1 Enumerator.prototype.constructor ... 47
2.4.16.4.2 Enumerator.prototype.atEnd () .. 47
2.4.16.4.3 Enumerator.prototype.item () .. 47
2.4.16.4.4 Enumerator.prototype.moveFirst ()... 48
2.4.16.4.5 Enumerator.prototype.moveNext () .. 48

2.4.16.5 Properties of Enumerator Instances ... 48
2.4.17 VBArray Objects ... 48

2.4.17.1 The VBArray Constructor Called as a Function .. 48
2.4.17.1.1 VBArray (value) ... 48

2.4.17.2 The VBArray Constructor .. 49
2.4.17.2.1 new VBArray (value) .. 49

2.4.17.3 Properties of the VBArray Constructor ... 49

5 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4.17.3.1 VBArray.prototype ... 49
2.4.17.4 Properties of the VBArray Prototype Object .. 49

2.4.17.4.1 VBArray.prototype.constructor .. 49
2.4.17.4.2 VBArray.prototype.dimensions () .. 49
2.4.17.4.3 VBArray.prototype.getItem (dim1 [, dim2, [dim3, …]]) 50
2.4.17.4.4 VBArray.prototype.lbound ([dimension]) .. 50
2.4.17.4.5 VBArray.prototype.toArray () ... 50
2.4.17.4.6 VBArray.prototype.ubound ([dimension]) ... 51
2.4.17.4.7 VBArray.prototype.valueOf () ... 51

2.4.17.5 Properties of VBArray Instances .. 51
2.4.18 ActiveXObject Objects ... 51

2.4.18.1 The ActiveXObject Constructor Called as a Function 51
2.4.18.1.1 ActiveXObject (name [, location])) ... 52

2.4.18.2 The ActiveXObject Constructor ... 52
2.4.18.2.1 new ActiveXObject ((name [, location])) .. 52

2.4.18.3 Properties of the ActiveXObject Constructor ... 53
2.4.18.3.1 ActiveXObject.prototype ... 53

2.4.18.4 Properties of the ActiveXObject Prototype Object 53
2.4.18.4.1 ActiveXObject.prototype.constructor .. 53

2.4.18.5 Properties of ActiveXObject Instances .. 53

3 Security Considerations ... 54

4 Appendix A: Product Behavior ... 55

5 Change Tracking .. 56

6 Index ... 57

6 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

1 Introduction

This document describes extensions provided by JScript 5.x in these modes of Windows Internet
Explorer: Quirks Mode, IE7 Mode, and IE8 Mode. The JScript 5.x dialects of ECMAScript are based on
the ECMAScript Language Specification 3rd Edition [ECMA-262-1999], published in 1999.

Section 2 of this specification is normative. All other sections and examples in this specification are
informative.

1.1 Glossary

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[ECMA-262-1999] ECMA International, "Standard ECMA-262 ECMAScript Language Specification", 3rd
edition (December 1999), http://www.ecma-international.org/publications/files/ECMA-ST-
ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf

[ECMA-262/5] ECMA International, "Standard ECMA-262 ECMAScript Language Specification", 5th

Edition (December 2009), http://www.ecma-international.org/publications/files/ECMA-ST-
ARCH/ECMA-262%205th%20edition%20December%202009.pdf

[ISO-8601] International Organization for Standardization, "Data Elements and Interchange Formats -

Information Interchange - Representation of Dates and Times", ISO/IEC 8601:2004, December 2004,
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874&ICS1=1&ICS2=1
40&ICS3=30

Note There is a charge to download the specification.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4627] Crockford, D., "The application/json Media Type for JavaScript Object Notation (JSON)",
RFC 4627, July 2006, http://www.rfc-editor.org/rfc/rfc4627.txt

1.2.2 Informative References

[MS-ES3EX] Microsoft Corporation, "Microsoft JScript Extensions to the ECMAScript Language
Specification Third Edition".

[MS-ES3] Microsoft Corporation, "Microsoft JScript ECMA-262-1999 ECMAScript Language
Specification Standards Support Document".

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=89920
http://go.microsoft.com/fwlink/?LinkId=89920
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=140879
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a
%5bMS-ES3%5d.pdf#Section_8aea05e38c1e4a9a961431f71e679462
%5bMS-ES3%5d.pdf#Section_8aea05e38c1e4a9a961431f71e679462

7 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

[MS-ES5EX] Microsoft Corporation, "Internet Explorer Extensions to the ECMA-262 ECMAScript
Language Specification (Fifth Edition)".

[MS-ES5] Microsoft Corporation, "Internet Explorer ECMA-262 ECMAScript Language Specification
(Fifth Edition) Standards Support Document".

1.3 Extension Overview (Synopsis)

The extensions described in this document were selected for their applicability to [ECMA-262-1999].
Portions of this document also refer to [ECMA-262/5], the ECMAScript Language Specification 5th
Edition, December 2009.

These extensions are organized based on sections of [ECMA-262-1999] as follows.

Section 2.1, Lexical Conventions

 Global State

 Conditional Processing Algorithm

Section 2.2, Types

Section 2.3, Statements

Section 2.4, Native ECMAScript Objects

 Function Properties of the Global Object

 Constructor Properties of the Global Object

 Object Functions in JScript 2.4.3

 Properties of Function Instances

 String.prototype HTML Wrapper Properties

 Date Time String Format for JSON

 Properties of the RegExp Constructor

 Properties of the RegExp Prototype Object

 Properties of the RegExp Instances

 The Error Constructor

 Properties of Error Instances

 Native Error Types Used in This Standard

 Properties of NativeError Instances

 The JSON Object

 The Debug Object

 Enumerator Objects

 VBArray Objects

 ActiveXObject Objects

%5bMS-ES5EX%5d.pdf#Section_a6028f4d030b49e4b128f0abac70912f
%5bMS-ES5EX%5d.pdf#Section_a6028f4d030b49e4b128f0abac70912f
%5bMS-ES5%5d.pdf#Section_6d0575502e6144048dc2587a2fd997e7
%5bMS-ES5%5d.pdf#Section_6d0575502e6144048dc2587a2fd997e7
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=185963

8 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

1.3.1 Organization of This Documentation

This document is organized as follows:

 Conditional Source Text Processing: Processing of source text by JScript 5.x.

 Extensions to Types: Types defined by JScript 5.x that supplement types of [ECMA-262-1999].

 Extensions to Statements: A statement defined by JScript 5.x that supplements statements of
[ECMA-262-1999].

 Extensions to Native ECMAScript Objects: Object extensions defined by JScript 5.x are listed
according to object at the highest level.

 Properties: The object properties defined by JScript 5.x, typically functions, methods, or data
formats, are described at the next levels.

1.4 Relationship to Standards and Other Extensions

This document defines extensions to [ECMA-262-1999]. Variations from [ECMA-262-1999] are defined
in [MS-ES3].

The following documents describe variations and extensions from versions 3 and 5 of the ECMAScript
Language:

Document
Type Reference Title

Variations [MS-ES3] Internet Explorer ECMA-262 ECMAScript Language Specification Standards
Support Document

Variations [MS-ES5] Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition)
Standards Support Document

Extensions [MS-ES3EX] Microsoft JScript Extensions to the ECMAScript Language Specification Third
Edition

Extensions [MS-ES5EX] Internet Explorer Extensions to the ECMA-262 ECMAScript Language
Specification (Fifth Edition)

1.5 Applicability Statement

This document specifies a set of extensions to the [ECMA-262-1999] specifications. The extensions in
this document provide access to some features that are unique to Internet Explorer when it loads a
document in Quirks Mode, IE7 Mode, or IE8 Mode.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
%5bMS-ES3%5d.pdf#Section_8aea05e38c1e4a9a961431f71e679462
%5bMS-ES5%5d.pdf#Section_6d0575502e6144048dc2587a2fd997e7
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a
%5bMS-ES5EX%5d.pdf#Section_a6028f4d030b49e4b128f0abac70912f
http://go.microsoft.com/fwlink/?LinkId=153655

9 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2 Extensions

This section specifies extensions to [ECMA-262-1999] that are available in Windows Internet Explorer
7, Windows Internet Explorer 8, Windows Internet Explorer 9, Windows Internet Explorer 10, Internet
Explorer 11, and Internet Explorer 11 for Windows 10.

The extensions are as follows:

 Conditional Source Text Processing

 Extensions to Types

 Extensions to Statements

 Extensions to Native ECMAScript Objects

2.1 Conditional Source Text Processing

When converting source text into input elements, JScript 5.x first does the processing necessary to
remove or replace any conditional text spans and then does the input element conversion using the
results of that processing as the actual source text input to the identification of lexical input elements.

Each Program (see [ECMA-262-1999] section 14), whether presented as either a discrete source text
or as the argument to the eval built-in function, and each FunctionBody (see [ECMA-262-1999]
section 13) processed by the standard built-in Function constructor ([ECMA-262-1999] section

15.3.2.1) has conditional source text processing performed independently upon it.

NOTE

This specification defines conditional source text processing as if it were performed over an entire
source text prior to any input element identification. It is an unobservable implementation detail
whether this processing is actually performed in that manner or whether it is performed incrementally
interweaved with input element identification.

2.1.1 Global State

The following state is shared by the conditional source text processing of all independent source texts
that make up an ECMAScript program (see [ECMA-262-1999] section 14). The state is initialized prior
to the first such processing as follows:

 SubstitutionEnabled Boolean flag with an initial value of false.

 CCvariables A set of association between string valued keys and values. The keys are
strings. The values may be either ECMAScript Number ([ECMA-262-1999] section 8.5) or Boolean
([ECMA-262-1999] section 8.3) values. The initial associations are defined in the following table.

Key Initial Value

"_win32" Defined as true if this JScript 5.x implementation is a Microsoft 32-bit–based

implementation. Otherwise, this association is not initially defined.

"_win64" Defined as true if this JScript 5.x implementation is a Microsoft 64-bit–based

implementation. Otherwise, this association is not initially defined.

"_x86" Defined as true when running on a processor using the x86-based

architecture. Otherwise, this association is not initially defined.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

10 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

Key Initial Value

"_ia64" Defined as true when running on a processor using the Itanium 64-bit

architecture. Otherwise, this association is not initially defined.

"_amd64" Defined as true when running on a processor using the x64 architecture.

Otherwise, this association is not initially defined.

"_jscript" true.

"_jscript_build" Number value that identifies the specific build of the JScript 5.x

implementation that is running.

"_jscript_version" Number value representing the version of the JScript 5.x language
implementation. The value 5.7 indicates that the implementation only
supports features of the JScript 5.7 language. The value 5.8 indicates that
the implementation supports both 5.7 and 5.8 language features.

"_microsoft" Defined as true when running on a JScript 5.x implementation provided by
Microsoft. Otherwise, this association is not initially defined.

2.1.2 Conditional Processing Algorithm

For each source text to be processed, let source be the original source text (a sequence of Unicode
characters) and let output initially be an empty sequence of Unicode characters. Let IfNestingLevel be
0.

Processing of source proceeds by recognizing specific input elements from source and then taking
specified actions. The processing is organized into several states. The specific input elements that are
recognized and the subsequent semantic action that is taken varies among states. The semantic action

taken for a recognized input element may include transitioning to a different state. Processing of a
source text begins by recognizing CCInputElementState0 if SubstitutionEnabled is false and
CCInputElementState1 if SubstitutionEnabled is true.

The input elements for conditional processing are defined by the following grammar, which has
Unicode characters as terminal symbols. Some rules of the grammar are defined using rules of the
ECMAScript lexical grammar.

Syntax

NOTE:

CCInputElementState0 is recognized during top-level conditional processing when SubstitutionEnabled
is false. When recognizing a RegularExpressionLiteral in this state, the contextual distinction between
RegularExpressionLiteral and DivPunctuator (see [ECMA-262] section 7) must be respected.

CCInputElementState0 ::

RegularExpressionLiteral

StringLiteral

CCOn

CCSet0

11 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

CCIf0

CCMultiLineComment0

CCSingleLinecomment0

SourceCharacter

CCOn ::

@ CCOnId

/*@ CCOnId

//@ CCOnId

CCOnId ::

cc_on [lookahead IdentifierPart]

CCSet0 ::

@set [lookahead IdentifierPart]

CCIf0 ::

@if [lookahead IdentifierPart]

CCMultiLineComment0 ::

/* [lookahead ≠ CCOnId] MultiLineCommentCharsopt */

SingleLineComment0 ::

// [lookahead ≠ CCOnId] SingleLineCommentCharsopt

Semantics

If CCInputElementState0 cannot be recognized because there are no remaining characters in source,
then Conditional Source processing is completed and the characters of the output supply the Unicode
characters for subsequent input element processing. If CCInputElementState0 cannot be recognized
and there are characters in source a SyntaxError exception is raised.

The productions CCInputElementState0 :: RegularExpressionLiteral, CCInputElementState0 ::
StringLiteral, CCInputElementState0 :: CCMultiLineComment0, CCInputElementState0 ::
CCSingleLinecomment0, and CCInputElementState0 :: SourceCharacter upon recognition perform the
following actions:

0. Append to the end of output, in left-to-right sequence, the Unicode characters from source that
were recognized by the production. Remove the recognized characters from source.

1. Use CCInputElementState0 to recognize the next input element from source.

The production CCInputElementState0 :: CCOn upon recognition performs the following actions:

1. Set SubstitutionEnable to true.

2. Append a <SP> character to the end of output. Remove the recognized characters from source.

3. Use CCInputElementState1 to recognize the next input element from source.

The production CCInputElementState0 :: CCSet0 upon recognition performs the following actions:

12 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

1. Set SubstitutionEnable to true.

2. Append a <SP> character to the end of output. Remove the recognized characters from source.

3. Use CCInputElementStateSetLHS to recognize the next input element from source.

The production CCInputElementState0 :: CCIf0 upon recognition performs the following actions:

1. Set SubstitutionEnable to true.

2. Append a <SP> character to the end of output. Remove the recognized characters from source.

3. Increment the value of IfNestingLevel by 1.

4. Use CCInputElementStateIfPredicate to recognize the next input element from source.

Syntax

NOTE:

CCInputElementState1 is recognized during active conditional processing when SubstitutionEnabled is

true. This may be at the top level or in the clause of an @if statement that represents the "true"
condition. When recognizing a RegularExpressionLiteral in this state the contextual distinction between
RegularExpressionLiteral and DivPunctuator (see [ECMA-262] section 7) must be respected.

CCInputElementState1 ::

RegularExpressionLiteralStringLiteralCCOnCCSet1CCIf1CCElif1CCElse1CCEnd1CCSubstitution1
CCStartMarkerCCEndMarkerCCMultiLineComment1CCSingleLinecomment1SourceCharacter

CCSet1 ::

@set [lookahead IdentifierPart]/*@set [lookahead IdentifierPart]//@set [lookahead

IdentifierPart]

CCIf1 ::

@if [lookahead IdentifierPart]/*@if [lookahead IdentifierPart]//@if [lookahead

IdentifierPart]

CCElif1 ::

@elif [lookahead IdentifierPart]/*@elif [lookahead IdentifierPart]//@elif [lookahead

IdentifierPart]

CCElse1 ::

@else [lookahead IdentifierPart]/*@else [lookahead IdentifierPart]//@else [lookahead

IdentifierPart]

CCEnd1 ::

@end [lookahead IdentifierPart]/*@end [lookahead IdentifierPart]//@end [lookahead

IdentifierPart]

CCSubstitution1 ::

@ CCSubIdentifier/*@ CCSubIdentifier//@ CCSubIdentifier

CCStartMarker ::

/*@ //@

13 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

CCEndMarker ::

@*/

CCMultiLineComment1 ::

/* [lookahead ≠ @] MultiLineCommentCharsopt */

SingleLineComment1 ::

// [lookahead ≠ @] SingleLineCommentCharsopt

CCSubIdentifer ::

 [lookahead CCKeyword] IdentifierName

CCKeyword ::

cc_on setifelif elseend

Semantics

If CCInputElementState1 cannot be recognized because there are no remaining characters in source

then Conditional Source processing is completed and the characters of the output supply the Unicode
characters for subsequent input element processing. If CCInputElementState1 cannot be recognized
and there are characters in source a SyntaxError exception is raised.

The productions CCInputElementState1 :: RegularExpressionLiteral, CCInputElementState1 ::
StringLiteral, CCInputElementState1 :: CCMultiLineComment1, CCInputElementState1 ::
CCSingleLinecomment1, and CCInputElementState1 :: SourceCharacter upon recognition perform the
following actions:

1. Append to the end of output, in left-to-right sequence, the Unicode characters from source that
were recognized by the production. Remove the recognized characters from source.

2. Use CCInputElementState1 to recognize the next input element from source.

The productions CCInputElementState1 :: CCOn, CCInputElementState1 :: CCStartMarker,
CCInputElementState1 :: CCEndMarker upon recognition perform the following actions:

1. Append a <SP> character to the end of output. Remove the recognized characters from source.

2. Use CCInputElementState1 to recognize the next input element from source.

The production CCInputElementState1 :: CCSet1 upon recognition performs the following actions:

1. Append a <SP> character to the end of output. Remove the recognized characters from source.

2. Use CCInputElementStateSetLHS to recognize the next input element from source.

The production CCInputElementState1 :: CCIf1 upon recognition performs the following actions:

1. Append a <SP> character to the end of output. Remove the recognized characters from source.

2. Increment the value of IfNestingLevel by 1.

3. Use CCInputElementStateIfPredicate to recognize the next input element from source.

The production CCInputElementState1 :: CCElif1 upon recognition performs the following actions:

1. Remove the recognized characters from source.

2. If IfNestingLevel is 0, raise a SyntaxError exception.

14 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

3. Use CCInputElementStateFalseIfTail to recognize the next input element from source.

The production CCInputElementState1 :: CCElse1 upon recognition performs the following actions:

1. Remove the recognized characters from source.

2. If IfNestingLevel is 0, raise a SyntaxError exception.

3. Use CCInputElementStateFalseIfTail to recognize the next input element from source.

The production CCInputElementState1 :: CCEnd upon recognition performs the following actions:

1. Append a <SP> character to the end of output. Remove the recognized characters from source.

2. If IfNestingLevel is 0, raise a SyntaxError exception.

3. Decrement the value of IfNestingLevel by 1.

4. Use CCInputElementState1 to recognize the next input element from source.

The production CCInputElementState1 :: CCSubstitution1 upon recognition performs the following

actions:

1. Let var be the string of characters recognized as the CCSubIdentifier element of CCSubstitution1.

2. If the value of var is a key of CCVariables, then let the value be the associated value. Otherwise,
let value be the string "NaN"

3. Let value be ToString(value)

4. Append the characters of the string value of value to the end of output.

5. Remove the recognized characters from source.

6. Use CCInputElementStateIfPredicate to recognize the next input element from source.

Syntax

NOTE:

CCInputElementStateSetLHS is recognized during active conditional processing of the body of an @set
statement.

CCInputElementStateSetLHS ::

WhiteSpaceopt @ IdentifierName WhiteSpaceopt = CCExpression

Semantics

If CCInputElementStateSetLHS cannot be recognized a SyntaxError exception is raised.

The production CCInputElementStateSetLHS :: WhiteSpaceopt @ IdentifierName WhiteSpaceopt =
CCExpression upon recognition performs the following actions:

1. Let setName be the string of characters recognized as the IdentifierName element of
CCSubstitution1.

2. Let value be the result of evaluating CCExpression.

3. Create an association within CCVariables where the key is the string value of setName and where
the value is value. If an association with that key already exists, replace it.

4. Remove the recognized characters from source.

15 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

5. Use CCInputElementState1 to recognize the next input element from source.

Syntax

NOTE:

CCInputElementStateIfPredicate is recognized during active conditional processing of the predicate

portion of an @if or @elif statement.

CCInputElementStateIfPredicate ::

WhiteSpaceopt (CCExpression WhiteSpaceopt)

Semantics

If CCInputElementStateIfPredicate cannot be recognized a SyntaxError exception is raised.

The production CCInputElementStateSetIfPredicate :: WhiteSpaceopt (CCExpression WhiteSpaceopt)
upon recognition performs the following actions:

1. Let predicate be the result of evaluating CCExpression.

2. Increment the value of IfNestingLevel by 1.

3. Set SkippedIfNestingLevel to 0.

4. Remove the recognized characters from source.

5. If ToBoolean(predicate) is true, then use CCInputElementState1 to recognize the next
input element from source.

6. Otherwise, use CCInputElementStateFalseThen to recognize the next input element from
source.

Syntax

NOTE:

CCInputElementStateFalseThen is recognized during processing of false clauses of an @if statement
for which the true clause has not yet been processed. The current clause may be a "then" clause, an
@elif clause, or an @else clause.

CCInputElementStateFalseThen ::

@if [lookahead IdentifierPart]@elif [lookahead IdentifierPart]@else [lookahead

IdentifierPart]@end [lookahead IdentifierPart]SourceCharacter

Semantics

If CCInputElementStateFalseThen cannot be recognized a SyntaxError exception is raised.

The production CCInputElementStateFalseThen :: @if [lookahead IdentifierPart] upon recognition

performs the following actions:

1. Increment the value of SkippedIfNestingLevel by 1.

2. Remove the recognized characters from source.

3. Use CCInputElementStateFalseThen to recognize the next input element from source.

The production CCInputElementStateFalseThen :: @elif [lookahead IdentifierPart] upon recognition

performs the following actions:

16 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

1. Remove the recognized characters from source.

2. If SkippedIfNestingLevel > 0, then use CCInputElementStateFalseThen to recognize the next input

element from source.

3. Otherwise, use CCInputElementStateIfPredicate to recognize the next input element from source.

The production CCInputElementStateFalseThen :: @else [lookahead IdentifierPart] upon recognition

performs the following actions:

1. Remove the recognized characters from source.

2. If SkippedIfNestingLevel > 0, then use CCInputElementStateFalseThen to recognize the next input
element from source.

3. Otherwise, use CCInputElementState1 to recognize the next input element from source.

The production CCInputElementStateFalseThen :: @end [lookahead IdentifierPart] upon recognition

performs the following actions:

1. Remove the recognized characters from source.

2. If SkippedIfNestingLevel is 0, then go to step 6.

3. Decrement the value of SkippedIfNestingLevel by 1.

4. Use CCInputElementStateFalseThen to recognize the next input element from source.

5. Return.

6. Decrement the value of IfNestingLevel by 1.

7. Use CCInputElementState1 to recognize the next input element from source.

The production CCInputElementStateFalseThen :: SourceCharacter upon recognition performs the
following actions:

1. Remove the recognized characters from source.

2. Use CCInputElementStateFalseThen to recognize the next input element from source.

Syntax

NOTE:

CCInputElementStateFalseThen is recognized during processing of false clauses of an @if statement
for which the true clause has already been processed. It is also used during processing of all clauses of

a @if statement that is nested within a false clause of an enclosing @if statement. The current clause
may be a "then" clause, an @elif clause or an @else clause.

CCInputElementStateFalseIfTail ::

@if [lookahead IdentifierPart]@elif [lookahead IdentifierPart]@else [lookahead

IdentifierPart]@end [lookahead IdentifierPart]SourceCharacter

Semantics

If CCInputElementStateFalseIfTail cannot be recognized a SyntaxError exception is raised.

The production CCInputElementStateFalseIfTail :: @if [lookahead IdentifierPart] upon recognition

performs the following actions:

17 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

1. Increment the value of SkippedIfNestingLevel by 1.

2. Remove the recognized characters from source.

3. Use CCInputElementStateFalseIfTail to recognize the next input element from source.

The productions CCInputElementStateFalseIfTail :: @elif [lookahead IdentifierPart] and

CCInputElementStateFalseIfTail :: @else [lookahead IdentifierPart] upon recognition perform the

following actions:

1. Remove the recognized characters from source.

2. Use CCInputElementStateFalseIfTail to recognize the next input element from source.

The production CCInputElementStateFalseIfTail :: @end [lookahead IdentifierPart] upon recognition

performs the following actions:

1. Remove the recognized characters from source.

2. If SkippedIfNestingLevel is 0, then go to step 6.

3. Decrement the value of SkippedIfNestingLevel by 1.

4. Use CCInputElementStateFalseIfTail to recognize the next input element from source.

5. Return.

6. Decrement the value of IfNestingLevel by 1.

7. Use CCInputElementState1 to recognize the next input element from source.

The production CCInputElementStateFalseIfTail :: SourceCharacter upon recognition performs the
following actions:

1. Remove the recognized characters from source.

2. Use CCInputElementStateFalseIfTail to recognize the next input element from source.

Syntax

CCExpression ::

CCLogicalANDExpression

CExpression WhiteSpaceopt || CCLogicalANDExpression

CCLogicalANDExpression ::

CCBitwiseORExpressionCCcLogicalANDExpression WhiteSpaceopt && CCBitwiseORExpression

CCBitwiseORExpression ::

CCBitwiseXORExpressionCCBitwiseORExpression WhiteSpaceopt | CCBitwiseXORExpression

CCBitwiseXORExpression ::

CCBitwiseANDExpressionCCBitwiseXORExpression WhiteSpaceopt ^ CCBitwiseANDExpression

CCBitwiseANDExpression ::

CCEqualityExpressionCCBitwiseANDExpression WhiteSpaceopt & CCEqualityExpression

CCEqualityExpression ::

18 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

CCRelationalExpressionCCEqualityExpression WhiteSpaceopt ==
CCRelationalExpressionCCEqualityExpression WhiteSpaceopt!=

CCRelationalExpressionCCEqualityExpression WhiteSpaceopt ===
CCRelationalExpressionCCEqualityExpression WhiteSpaceopt !== CCRelationalExpression

CCRelationalExpression ::

CCShiftExpressionCCRelationalExpression WhiteSpaceopt <
CCShiftExpressionCCRelationalExpression WhiteSpaceopt >
CCShiftExpressionCCRelationalExpression WhiteSpaceopt <=
CCShiftExpressionCCRelationalExpression WhiteSpaceopt >= CCShiftExpression

CCShiftExpression ::

CCAdditiveExpressionCCShiftExpression WhiteSpaceopt <<

CCAdditiveExpressionCCShiftExpression WhiteSpaceopt >>
CCAdditiveExpressionCCShiftExpression WhiteSpaceopt >>> CCAdditiveExpression

CCAdditiveExpression ::

CCMultiplicativeExpressionCCAdditiveExpression WhiteSpaceopt +
CCMultiplicativeExpressionCCAdditiveExpression WhiteSpaceopt – CCMultiplicativeExpression

CCMultiplicativeExpression ::

CCUnaryExpressionCCMultiplicativeExpression WhiteSpaceopt *
CCUnaryExpressionCCMultiplicativeExpression WhiteSpaceopt /
CCUnaryExpressionCCMultiplicativeExpression WhiteSpaceopt % CCUnaryExpression

UnaryExpression ::

CCPrimaryExpressionWhiteSpaceopt + CCUnaryExpressionWhiteSpaceopt –
CCUnaryExpressionWhiteSpaceopt ~ CCUnaryExpressionWhiteSpaceopt! CCUnaryExpression

CCPrimaryExpression ::

CCVariableCCLiteralWhiteSpaceopt (Expression)

CCLiteral ::

WhiteSpaceopt true [lookahead IdentifierPart]WhiteSpaceopt false [lookahead

IdentifierPart]WhiteSpaceopt Infinity [lookahead IdentifierPart]WhiteSpaceopt

NumericLiteral

CCVariable ::

WhiteSpaceopt @ IdentifierName

Semantics

Unless otherwise specified in this section, the productions of CCExpression are evaluated using the
same semantic rules as the analogous productions of the ECMAScript syntactic grammar for

Expression in [ECMA-262] section 11. However, only values of types Number and Boolean can occur
during the evaluation of CCExpression productions so any semantic steps that are relative to other
types of values are not relevant.

The production CCLiteral :: WhiteSpaceopt true [lookahead IdentifierPart] is evaluated by returning

the value true.

The production CCLiteral :: WhiteSpaceopt false [lookahead IdentifierPart] is evaluated by returning

the value false.

19 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

The production CCLiteral :: WhiteSpaceopt Infinity [lookahead IdentifierPart] is evaluated by

returning the value +∞.

The production CCVariable :: WhiteSpaceopt @ IdentifierName is evaluated by performing the
following steps:

1. Let var be the string of characters recognized as the IdentifierName element of CCVariable.

2. If the value of var is a key of CCVariables, then let value be the associated value. Otherwise, let

value be NaN.

3. Return value.

2.2 Extensions to Types

JScript 5.x defines extensions to types of [ECMA-262-1999] that are described in the following
sections.

2.2.1 SafeArray Type

The SafeArray type is the set of all references to Microsoft COM SAFEARRAY data structures.

SafeArray values can be created only by host objects and host functions. SafeArray values can be

manipulated similarly to other ECMAScript data types.

2.2.2 VarDate Type

The VarDate type is the set of all references to Microsoft COM VARIANT data structures that have a

VARTYPE enumeration value of VT_DATE.

VarDate values can be created only by host objects and host functions, or by calling the getVarDate

method by using the prototype property of the Date object: Date.prototype.getVarDate. VarDate

values can be manipulated similarly to other ECMAScript data types.

2.3 Extensions to Statements

JScript 5.x defines an extension to statements of [ECMA-262-1999] that is described in the following
section.

2.3.1 debugger Statement

The debugger statement causes a breakpoint to be entered if a debugger is available. If a debugger
does not exist or is not active, this statement has no observable effect.

Semantics

In JScript 5.x implementations, the debugger statement is evaluated as follows:

 If a debugger is not available or is not active for this statement, return (normal, empty, empty).

 Otherwise, suspend execution and enter the debugger.

 When the debugging action is complete, if the debugger supplies a completion result, return that
result; otherwise, return (normal, empty, empty).

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

20 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4 Extensions to Native ECMAScript Objects

JScript 5.x defines extensions to the native ECMAScript objects of [ECMA-262-1999]. These
extensions are described in the following sections.

2.4.1 Function Properties of the Global Object

JScript 5.x defines additional properties of the Global object of [ECMA-262-1999]. These properties
are described in the following sections.

2.4.1.1 ScriptEngine

When the ScriptEngine function is called, it returns a string value that specifies the implementation-
defined name of the ECMAScript implementation that is executing the call. The JScript 5.x
implementations within Internet Explorer 7 and Internet Explorer 8 always return the string 'JScript.'

2.4.1.2 ScriptEngineBuildVersion

When the ScriptEngineBuildVersion function is called, it returns a value that uniquely identifies the
specific build of the ECMAScript implementation that is executing the call.

2.4.1.3 ScriptEngineMajorVersion

When the ScriptEngineMajorVersion function is called, it returns a value that identifies the major
revision level of the implementation, not the revision level of the ECMAScript or JScript language
specification that is currently supported by the implementation. This return value cannot be used as a

reliable indicator of the availability or lack of availability of specific language features.

The JScript 5.x implementations within Internet Explorer 7 and Internet Explorer 8 always return a
value of 5.

2.4.1.4 ScriptEngineMinorVersion

When the ScriptEngineMinorVersion function is called, it returns a value that identifies the minor
revision level of the implementation, not the revision level of the ECMAScript or JScript language
specification that is currently supported by the implementation. An implementation of JScript 5.x that
supports distinct modes that separately implement JScript 5.7 and JScript 5.8 functionality may return
a single value that does not vary among modes and that does not reflect the language level
implemented by the current mode. This return value cannot be used as a reliable indicator of the
availability or lack of availability of specific language features.

The JScript 5.x implementation within Microsoft Internet Explorer 7 always returns a value of 7. The
JScript 5.x implementation within Microsoft Internet Explorer 8 always returns a value of 8, even when
Internet Explorer 8 is operating in IE7 compatibility mode.

2.4.1.5 CollectGarbage

When the CollectGarbage function is called, the JScript 5.x implementation may attempt to reclaim
unused or unneeded resources that are associated with the currently running application. Whether or
not any action is actually taken depends on the current state of the execution environment and the
resource management strategies and heuristics used by the implementation. An application may call
this function to request that any such pending reclamation activities be completed immediately.
However, a JScript 5.x implementation is not required to honor such a request.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

21 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4.1.6 RuntimeObject

The RuntimeObject function is used to search a global object for properties with names that match a
specified pattern. The function only locates properties of the global object that were explicitly created

by VariableStatement or FunctionDeclaration functions, or that were implicitly created by
appearing as an identifier on the left side of an assignment operator. The function does not locate
properties that were created by means of explicit property access on the global object.

When the RuntimeObject function is called, the following steps are taken:

0. If pattern is present, set name to "*" and go to step 6.

1. Call the function toPrimitive(pattern, hint Number).

2. If the type of Result(2) is not String, raise a TypeError exception.

3. If Result(2) is the empty string, set name to "*" and go to step 6.

4. Set name = pattern.

5. Set the values of both leftWild and rightWild to false.

6. If the first character of name is "*", let leftWild be true, and remove the first character from
name.

7. If the last character of name is "*", let rightWild be true, and remove the last character from

name.

8. Let obj be a new ECMAScript object created as if by the expression new Object(), where Object

is the original built-in constructor with that name.

9. Let enum be an enumeration of the names of the properties of the global object.

10. Let n be the next element of enum. If there are no more elements, return obj.

11. If n is the name of a built-in property defined by [ECMA-262-1999] Section 15.1, or by the
implementation or the host environment, go to step 11.

12. If n was not created by variable instantiation ([ECMA-262-1999] Section 10.1.3), or by an

assignment operator in which the left side was the identifier n, go to step 11.

13. If name is the empty string, go to step 19.

14. Search for the first substring name within n, and let left be the position within n of the first
character of the matched substring, and let right be the position within n of the last character of
the matched substring.

15. If a substring match was not found, go to step 11.

16. If leftWild is false and left is not 1, go to step 11.

17. If rightWild is false and right is not the last character position of n, go to step 11.

18. Let value be the result of calling the [[Get]] property of the global object, passing n as the
argument.

19. If value is undefined, go to step 11.

20. Call the [[Put]] method of obj, passing n and value as arguments.

21. Go to step 11.

http://go.microsoft.com/fwlink/?LinkId=153655

22 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

The length property of the RuntimeObject function has a value of 1.

2.4.1.7 GetObject

The GetObject function is similar to the ActiveXObject constructor in that it provides a mechanism
for creating and interacting with host objects provided by Microsoft Windows ActiveX automation
servers. GetObject is used when a current automation object is already active, or if an automation
object is to be retrieved from a file. When the GetObject constructor is called with one or more
arguments, the following steps are taken:

1. Call toPrimitive(nameOrPath, hint Number).

2. If the type of Result(1) is not String, raise a TypeError exception.

3. If Result(1) is the empty string, raise a TypeError exception.

4. If name is not present, go to step 7.

5. Call the function toPrimitive(name, hint Number).

6. If the type of Result(5) is not String, raise a TypeError exception.

7. If only one argument was passed to this function, the string value of Result(1) may be an

implementation-dependent file locator or an implementation-dependent automation object name.
If two arguments were passed, Result(1) is a file locator, and Result(5) is the automation object
name. If only one argument was passed, Step 8 first attempts to interpret Result(1) as a file path;
if not successful, Step 8 attempts to interpret Result(1) as an automation object name.

8. Attempt to create or retrieve a host object that can be used to communicate with the application
and application-specific object identified by Result(1) and Result(5).

9. If any error occurs during Step(8) such that the host object cannot be created or retrieved, raise

an Error exception.

10. Return Result(8).

The format of the string values passed as arguments to this function are defined by the host operating
system.

The length property of the GetObject function has a value of 1.

2.4.2 Constructor Properties of the Global Object

JScript 5.x defines the following additional constructor properties of the Global object:

 RegExpError

 ConversionError

 JSON

 Debug

 Enumerator

 VBArray

 ActiveXObject

23 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4.3 Object Functions in JScript 5.8

The following two functions implement functionality similar to that of the like-named functions defined
in the ECMAScript, 5th Edition Specification ([ECMA-262/5]). In the definition of these functions, the

term "data property" means a normal ECMAScript 3rd Edition property as defined in [ECMA-262-1999]
section 4.3.3. The term "accessor property" means a property that has two function objects associated
with it, such that accessing the property using its object's [[Get]] and [[Put]] internal methods
cause one of the functions to be implicitly invoked. The associated function that is invoked when the
[[Get]] method is called is known as the "get" function of the accessor property. The value that the
get function returns is used as the return value of the [[Get]] method. The associated function that is
invoked when the [[Put]] method is called is known as the "set" function of the accessor property.

The second argument of the [[Put]] method is passed as the argument to the set function.

2.4.3.1 Object.getOwnPropertyDescriptor (O, P)

This function is not defined for JScript 5.7. It exists only in JScript 5.8.

1. When the getOwnProperty function is called, the following steps are taken:

2. If the Type(O) is not Object, raise a TypeError exception.

3. If the O is not a host object that supports property access using this function, raise a TypeError
exception.

4. Let name be ToString(P)

5. If O does not have an own property named name, return a new object created as if by evaluating
the ECMAScript expressions: {configurable:true,enumerable: true,value: undefined,

writable: true}

6. Let desc be a new object created as by evaluating the expression { }.

7. If the own property named name of O has the DontEnum attribute, let flag be true; if it does not
have the DontEnum attribute, let flag be false.

8. Call the [[Put]] method of desc passing "enumerable" and flag as arguments.

9. If the own property named name of O has the DontDelete attribute, let flag be false; if it does
not, have the DontEnum attribute let flag be true.

10. Call the [[Put]] method of desc passing "configurable" and flag as arguments.

11. If the own property named name of O is an accessor property, go to step 16.

12. Let value be the current value of the own property named name of O.

13. Call the [[Put]] method of desc passing "value" and value as arguments.

14. If the own property named name of O has the ReadOnly attribute, let flag be false; if it does not
have the ReadOnly attribute, let flag be true.

15. Call the [[Put]] method of desc passing "writable" and flag as arguments.

16. Return desc.

17. If the own accessor property named name of O has a defined get function, let func be that
function object; otherwise, let func be undefined.

18. Call the [[Put]] method of desc passing "get" and func as arguments.

http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=153655

24 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

19. If the own accessor property named name of O has a defined set function, let func be that
function object; otherwise, let func be undefined.

20. Call the [[Put]] method of desc passing "set" and func as arguments.

21. Return desc.

2.4.3.2 Object.defineProperty (O, P, Attributes)

This function is not defined for JScript 5.7. It exists only in JScript 5.8.

When the defineProperty function is called, the following steps are taken:

1. If the Type(O) is not Object, raise a TypeError exception.

2. If the O is not a host object that supports property creation using this function, raise a TypeError
exception.

3. Let name be ToString(P).

4. Let attrs be ToObject(Attributes).

5. Let enumerable be undefined.

6. If the result of calling the [[HasProperty]] internal method of O with argument "enumerable"

is false, go to step 9.

7. Let val be the result of calling the [[Get]] internal method of O with "enumerable".

8. Let enumerable be ToBoolean(val).

9. Let configurable be undefined.

10. If the result of calling the [[HasProperty]] internal method of O with argument "configurable"
is false, go to step 13.

11. Let val be the result of calling the [[Get]] internal method of O with "configurable".

12. Let configurable be ToBoolean(val).

13. Let valuePresent be false.

14. If the result of calling the [[HasProperty]] internal method of O with argument "value" is false,
go to step 17.

15. Let value be the result of calling the [[Get]] internal method of O with "value".

16. Let valuePresent be true.

17. Let writable be undefined.

18. If the result of calling the [[HasProperty]] internal method of O with argument "writable" is

false, go to step 21.

19. Let val be the result of calling the [[Get]] internal method of O with "writable".

20. Let writable be ToBoolean(val).

21. Let getPresent be false.

22. If the result of calling the [[HasProperty]] internal method of O with argument "get" is false,

go to step 27.

25 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

23. Let getter be the result of calling the [[Get]] internal method of O with "get".

24. Let getPresent be true.

25. If getter is undefined, go to step 27.

26. If getter is not a function, raise a TypeError exception.

27. Let setPresent be false.

28. If the result of calling the [[HasProperty]] internal method of O with argument "set" is false,
go to step 33.

29. Let setter be the result of calling the [[Get]] internal method of O with "set".

30. Let setPresent be true.

31. If setter is undefined, go to step 33.

32. If setter is not a function, raise a TypeError exception.

33. If getPresent is false, let setter be undefined.

34. If setPresent is false, let setter be undefined.

35. If O does not have an own property named name, go to step 50.

36. If either getPresent or setPresent is true, go to step 44.

37. If valuePresent is false, return O.

38. If the own property named name of O is an accessor property, go to step 42.

39. If writable is false, raise a TypeError exception.

40. If configurable is false, raise a TypeError exception.

41. If enumerable is false, raise a TypeError exception.

42. Create a data property of O named name that has a value of value and with no attributes.

43. Return O.

44. If configurable is false, raise a TypeError exception.

45. If enumerable is true, raise a TypeError exception.

46. If writable is not undefined, raise a TypeError exception.

47. If valuePresent is true, raise a TypeError exception.

48. Create an accessor property of O named name that has a set function of setter, a get function of
getter, and that has the DontEnum attribute.

49. Return O.

50. If the own property named name of O is an accessor property, go to step 65.

51. If either getPresent or setPresent is true, go to step 59.

52. If valuePresent is false, return O.

53. Call the [[Put]] method of desc, passing "value" and value as arguments.

26 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

54. If configurable is false, raise a TypeError exception.

55. If writable is false, raise a TypeError exception.

56. If enumerable is false, raise a TypeError exception.

57. Set the value of the data property of O named name to value.

58. Return O.

59. If configurable is false, raise a TypeError exception.

60. If enumerable is true, raise a TypeError exception.

61. If writable is not undefined, raise a TypeError exception.

62. If valuePresent is true, raise a TypeError exception.

63. Convert the own property of O named name into an accessor property that has a set function of

setter, a get function of getter, and that has the DontEnum attribute.

64. Return O.

65. If valuePresent is true, go to step 73.

66. If neither getPresent nor setPresent is true, return O.

67. If configurable is false, raise a TypeError exception.

68. If enumerable is true, raise a TypeError exception.

69. If writable is not undefined, raise a TypeError exception.

70. If setPresent is true, set the set function of the accessor property of O named name to setter.

71. If getPresent is true, set the get function of the accessor property of O named name to getter.

72. Return O.

73. If either getPresent or setPresent is true, go to step 79.

74. If configurable is false, raise a TypeError exception.

75. If writable is false, raise a TypeError exception.

76. If enumerable is false, raise a TypeError exception.

77. Call the [[Put]] method of O passing name and value as arguments.

78. Return O.

79. If configurable is false, raise a TypeError exception.

80. If enumerable is true, raise a TypeError exception.

81. If writable is not undefined, raise a TypeError exception.

82. Raise a TypeError exception.

27 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4.4 Properties of Function Instances

JScript 5.x defines additional properties of Function instances of [ECMA-262-1999]. These properties
are described in the following sections.

2.4.4.1 The arguments Property

The value of the arguments property of a function instance is null. This property has the attributes
{ DontDelete, ReadOnly, DontEnum }. However, function instances also have a special [[Get]]
internal method which in certain circumstances will return a value other than null when accessing the

arguments property.

2.4.4.2 The caller Property

The value of the caller property of a function instance is null. This property has the attributes

{ DontDelete, ReadOnly, DontEnum }. However,function instances also have a special [[Get]]
internal method which in certain circumstances will return a value other than null when accessing the

caller property.

2.4.4.3 The [[Get]] (P) Method of a Function Object

Assume F is a Function object.

When the [[Get]] method of F is called with value P, the following steps are taken:

1. If P is not the string 'arguments' then go to step 6.

2. If an active execution context for F does not exist, go to step 13.

3. Let X be the most recently created active execution context for F.

4. If X is marked as having a partially accessible arguments object, let A be the original arguments

object for X; otherwise, let A be the value of the property named 'arguments' of X’s variable

object.

5. Return A.

6. If P is not the string 'caller', go to step 13.

7. Let X be the most recently created active execution context for F.

8. If X does not have an execution context to which it could normally exit, return null.

9. Let R be the execution context which would become the current execution context if X exited

normally (not via an exception).

10. If R is an execution context for a built-in function or a host object function, return null.

11. If R is an execution context for global code or for eval code, return null.

12. R must be an execution context for function code, so return the function object with the call that

caused R to be created.

13. Return the result of calling the default [[Get]] method ([ECMA-262-1999] section 8.6.2.1)

passing P as the argument.

Note: JScript 5.x under Internet Explorer 9 marks the current execution context as having a partially

accessible arguments object when the function’s FormalParameterList contains the name 'arguments'

or the function’s FunctionBody contains a direct reference to the function’s original arguments object

or the function’s FunctionBody contains a direct call to eval.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

28 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

JScript 5.x under Internet Explorer 7 or 8 marks the current execution context as having a partially

accessible arguments object when the function’s FormalParameterList contains the name 'arguments'.

2.4.5 String.prototype HTML Wrapper Properties

JScript 5.x defines String.prototype functions that wrap the string value of a this value with an
HTML tag. The following abstraction is used to specify the behavior of these functions.

The abstract operation WrapWithHTML is called with arguments body, tag, attribute, and data. The tag
and attribute arguments must be strings; attribute and data may be obmitted. The following steps are
performed:

1. Append the character "<" to the characters of tag.

2. If attribute is not present, go to Step 7.

3. Append to Result(1) a single-space character followed by the characters of attribute.

4. Append to Result(3) the characters "=" and """.

5. Append to Result(4) the characters of the string returned by ToString(data).

6. Append to Result(5) the character """.

7. If attribute is present, use Result(6); otherwise, use Result(1).

8. Append to Result(7) the character ">".

9. Append to Result(8) the characters of the string returned by ToString(body).

10. Append to Result(9) the characters "<" and "/".

11. Append to Result(10) the characters of tag.

12. Append to Result(11) the character ">".

13. Return the string value of the characters from Result(12).

2.4.5.1 String.prototype.anchor(name)

Return the result of WrapWithHTML(this value, "A", "NAME", name).

2.4.5.2 String.prototype.big()

Return the result of WrapWithHTML(this value, "BIG").

2.4.5.3 String.prototype.blink()

Return the result of WrapWithHTML(this value, "BLINK").

2.4.5.4 String.prototype.bold()

Return the result of WrapWithHTML(this value, "B").

2.4.5.5 String.prototype.fixed()

Return the result of WrapWithHTML(this value, "TT").

29 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4.5.6 String.prototype.fontcolor(color)

Return the result of WrapWithHTML(this value, "FONT", "COLOR", color).

2.4.5.7 String.prototype.fontsize(size)

Return the result of WrapWithHTML(this value, "FONT", "SIZE", size).

2.4.5.8 String.prototype.italics()

Return the result of WrapWithHTML(this value, "I").

2.4.5.9 String.prototype.link(url)

Return the result of WrapWithHTML(this value, "A", "HREF", url).

2.4.5.10 String.prototype.small()

Return the result of WrapWithHTML(this value, "SMALL").

2.4.5.11 String.prototype.strike()

Return the result of WrapWithHTML(this value, "STRIKE").

2.4.5.12 String.prototype.sub()

Return the result of WrapWithHTML(this value, "SUB").

2.4.5.13 String.prototype.sup()

Return the result of WrapWithHTML(this value, "SUP").

2.4.6 Date Time String Format for JSON

This section is based upon the ECMAScript 5th Edition Specification, [ECMA-262/5]. The format

defined here is used only by JScript 5.8 for the Date.prototype.toJSON method.

ECMAScript defines a string interchange format for date-times based upon a simplification of the [ISO-
8601] Extended Format, which is YYYY-MM-DDTHH:mm:ss.sssZ

These fields are defined in the following table:

Field Definition

YYYY Decimal digits of the year in the Gregorian calendar.

- The character "-" (hyphen) appears literally twice in the string.

MM Month of the year from 01 (January) to 12 (December).

DD Day of the month from 01 to 31.

T The character "T" appears literally in the string, to indicate the beginning of the time
element.

http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=89920
http://go.microsoft.com/fwlink/?LinkId=89920

30 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

Field Definition

HH Number of complete hours that have passed since midnight as two decimal digits.

: The character ":" (colon) appears literally twice in the string.

mm Number of complete minutes since the start of the hour as two decimal digits.

Ss Number of complete seconds since the start of the minute as two decimal digits.

. The character "." (dot) appears literally in the string. The "." field may be omitted.

sss Number of complete milliseconds since the start of the second as three decimal digits.
The milliseconds field may be omitted.

Z Time zone offset is specified as "Z" (for UTC), or either "+" or "-" followed by a time
expression hh:mm

This format includes date-only forms:

YYYY

YYYY-MM

YYYY-MM-DD

It also includes time-only forms with an optional time zone offset appended:

THH:mm

THH:mm:ss

THH:mm:ss.sss

Also included are "date-times," which may be any combination of the above.

All numbers must be decimal (base 10).

Illegal values (out-of-bounds as well as syntax errors) in a format string means that the format string
is not a valid instance of this format.

Because each day both starts and ends with midnight, the two notations 00:00 and 24:00 are
available to distinguish the two midnights that can be associated with one date. This means that the
following two notations refer to exactly the same moment in time: 1995-02-04T24:00 and 1995-02-
05T00:00

There exists no international standard that specifies abbreviations for civil time zones such as CET,
EST, PDT, and so on. Sometimes the same abbreviation is even used for two very different time
zones. For this reason, [ISO-8601] and this format specify entirely numeric representations of date
and time.

2.4.6.1 Extended Years

The ECMAScript 3rd Edition Specification [ECMA-262-1999] requires the ability to specify 6-digit years
(extended years). This amounts to approximately 285,616 years, either forward or backward, from 01
January, 1970 UTC. To represent years before 0 or after 9999, [ISO-8601] permits the expansion of
the year representation, but only by prior agreement between the sender and the receiver. In the
simplified ECMAScript format, such an expanded year representation shall have 2 extra year digits and

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=89920

31 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

is always prefixed with a plus (+) or minus (–) sign. The year 0 is considered positive and therefore is
prefixed with a plus (+) sign.

2.4.6.2 Date.prototype.getVarDate ()

The getVarDate method is implemented as follows:

1. Let t be the time value.

2. It t is NaN, return a date value in VT_DATE format for which the value of ToNumber is NaN.

3. Otherwise, return a date value in VT_DATE format that corresponds to the time value t.

2.4.6.3 Date.prototype.toJSON ()

The toJSON method returns a String value that represents the instance in time that corresponds to
the current Date object. All fields are present in the String. The time zone is always specified in UTC,

denoted by the suffix Z. If this time value is not finite, null is returned.

This method is only defined for JScript 5.8.

2.4.7 Properties of the RegExp Constructor

JScript 5.x defines additional properties of the RegExp constructor of [ECMA-262-1999]. These
properties are described in the following sections.

2.4.7.1 RegExp.index

The initial value of the RegExp.index property is the number −1. This property shall have the
attributes { DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its
value may be modified by calls to RegExp.prototype.exec.

2.4.7.2 RegExp.input

The initial value of RegExp.input is the empty string. This property shall have the attributes
{ DontEnum, DontDelete }. The value of this property may be modified by calls to
RegExp.prototype.exec. The properties RegExp.input and RegExp.$_ always have the same

value. When one is set to some value, the other is automatically also set to that same value. Unlike
most other RegExp constructor properties, this property is does not have the ReadOnly attribute.

2.4.7.3 RegExp.lastIndex

The initial value of RegExp.lastIndex is the number −1. This property shall have the attributes

{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be
modified by calls to RegExp.prototype.exec.

2.4.7.4 RegExp.lastMatch

The initial value of RegExp.lastMatch is the empty string. This property shall have the attributes

{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be
modified by calls to RegExp.prototype.exec.

http://go.microsoft.com/fwlink/?LinkId=153655

32 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4.7.5 RegExp.lastParen

The initial value of RegExp.lastParen is the empty string. This property shall have the attributes
{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be

modified by calls to RegExp.prototype.exec.

2.4.7.6 RegExp.leftContext

The initial value of RegExp.leftContext is the empty string. This property shall have the attributes
{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be

modified by calls to RegExp.prototype.exec.

2.4.7.7 RegExp.rightContext

The initial value of RegExp.rightContext is the empty string. This property shall have the attributes

{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be
modified by calls to RegExp.prototype.exec.

2.4.7.8 RegExp.$1 - RegExp.$9

The initial value of RegExp.rightContext is the empty string. This property shall have the attributes

{ DontEnum, DontDelete, ReadOnly }. Even though these are ReadOnly properties, their values
may be modified by calls to RegExp.prototype.exec.

2.4.7.9 RegExp.$_

The initial value of each of the properties RegExp.$1, RegExp.$2, RegExp.$3, RegExp.$4,
RegExp.$5, RegExp.$6, RegExp.$7, RegExp.$8, and RegExp.$9 is the empty string. These
properties shall have the attributes { DontEnum, DontDelete, ReadOnly}. The value of this
property may be modified by calls to RegExp.prototype.exec. The properties RegExp.input and
RegExp.$_ always have the same value. When one of these properties is set to some value, the other
is automatically also set to that same value. Unlike most other RegExp constructor properties, this

property does not have the ReadOnly attribute.

2.4.7.10 RegExp['$&']

The initial value of RegExp['$&'] is the empty string. This property shall have the attributes
{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be
modified by calls to RegExp.prototype.exec.

2.4.7.11 RegExp['$+']

The initial value of RegExp['$+'] is the empty string. This property shall have the attributes
{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be

modified by calls to RegExp.prototype.exec.

2.4.7.12 RegExp["$`"]

The initial value of RegExp["$`"] is the empty string. This property shall have the attributes
{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be

modified by calls to RegExp.prototype.exec.

33 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4.7.13 RegExp["$'"]

The initial value of RegExp["$'"] is the empty string. This property shall have the attributes
{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be

modified by calls to RegExp.prototype.exec.

2.4.8 Properties of the RegExp Prototype Object

JScript 5.x defines additional properties of the RegExp Prototype Object of [ECMA-262-1999]. These
properties are described in the following sections.

2.4.8.1 RegExp.prototype.compile(pattern, flags)

If pattern is an object R that has a [[Class]] property "RegExp" and flags is undefined, let P be the
pattern used to construct R and let F be the flags used to construct R. If pattern is an object R that

has a [[Class]] property "RegExp" and flags is not undefined, raise a RegExpError exception.
Otherwise, let P be the empty string if pattern is undefined and ToString(pattern) otherwise, and let

F be the empty string if flags is undefined and ToString(flags) otherwise.

The global property of this RegExp object is set to a Boolean value that is true if F contains the
character "g" and that is false otherwise.

The ignoreCase property of this RegExp object is set to a Boolean value that is true if F contains the
character "i" and that is false otherwise.

The multiline property of this RegExp object is set to a Boolean value that is true if F contains the
character "m" and that is false otherwise.

If F contains any character other than "g", "i", or "m", raise a RegExpError exception.

If P's characters do not have the form Pattern, raise a RegExpError exception. Otherwise, let the
newly constructed object have a [[Match]] property obtained by evaluating ("compiling") Pattern.
Note that evaluating Pattern may raise a RegExpError exception. (Note: if pattern is a StringLiteral,

the usual escape sequence substitutions are performed before the string is processed by RegExp. If

pattern must contain an escape sequence to be recognized by RegExp, the "\" character must be
escaped within the StringLiteral to prevent its being removed when the contents of the StringLiteral
are formed.)

The source property of this RegExp object is set as follows:

When pattern is an object R that has a [[Class]] property of "RegExp", this RegExp object is set to
the same string value as the value of the source property of pattern. Otherwise, the source property

of this RegExp object is set to P.

The lastIndex property of this RegExp object is set to 0.

The options property of this RegExp object is set as described in section 2.4.9.1.

This RegExp object is optimized using the assumption that it will be executed multiple times.

2.4.9 Properties of the RegExp Instances

JScript 5.x defines an additional property of the RegExp instances of [ECMA-262-1999]. This property
is described in the following section.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

34 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4.9.1 options

The value of the options property is a string that specifies the values of the global, ignoreCase, and
multiline properties of this RegExp instance. If the value of the ignoreCase property is true, the

string contains the character "i". If the value of the global property is true, the string contains the
character "g". If the value of the multiline property is true, the string contains the character "i".
When present, the characters appear in the order "igm". If all of the global, ignoreCase, and
multiline properties have the value false, the value of this property is the empty string. This
property shall have the attributes { DontDelete, ReadOnly, DontEnum }.

2.4.10 The Error Constructor

JScript 5.x defines additional behaviors of the Error constructor of [ECMA-262-1999]. These behaviors
are described in the following sections.

2.4.10.1 new Error ()

When the Error constructor is called with no arguments, the call is equivalent to calling the Error
constructor and passing the number 0 as the only argument.

2.4.10.2 new Error(number, message)

When the Error constructor is called with two or more arguments, the following steps are taken:

0. The [[Prototype]] property of the newly constructed object is set to the original Error prototype
object, the one that is the initial value of Error.prototype ([ECMA-262-1999] Section 15.11.3.1).

1. The [[Class]] property of the newly constructed Error object is set to "Error".

2. Let num be ToNumber(number).

3. Let msg be ToString(message).

4. The description property of the newly constructed object is set to msg.

5. The message property of the newly constructed object is set to msg.

6. The name property of the newly constructed object is set to "Error".

7. The number property of the newly constructed object is set to num.

8. Return the newly constructed object.

2.4.11 Properties of Error Instances

JScript 5.x defines additional error instances inherited from the [[Prototype]] object of [ECMA-262-
1999]. These error instances are described in the following sections.

2.4.11.1 description

The initial value of description is the same as the initial value of message.

2.4.11.2 number

An Error instance only initially has a number property if the first argument passed to the Error
constructor was a number or could be converted to a number. The initial value of number is the
number value passed to the constructor.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

35 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4.12 Native Error Types Used in This Standard

JScript 5.x defines additional native error types of [ECMA-262-1999]. These error instances are
described in the following sections.

2.4.12.1 RegExpError

Indicates that a regular expression could not be parsed or that an error occurred while matching a
regular expression. See [ECMA-262-1999] Sections 7.8.5, 15.10.2.2, 15.10.2.5, 15.10.2.15,
15.10.4.1, and 15.10.6.4.

2.4.12.2 ConversionError

This NativeError object is defined by JScript 5.x, but it is not raised by the JScript 5.x
implementation or by any built-in objects.

2.4.13 Properties of NativeError Instances

Error instances inherit properties from their [[Prototype]] object and Error prototype as specified
previously. In addition, those NativeError instances that are created to represent a runtime error
that is detected by the JScript 5.x implementation have the following properties:

2.4.13.1 description

An Error instance only initially has a description property if it is created by the JScript 5.x
implementation in response to the occurrence of a runtime error. The initial value of description is

the same as the initial value of message.

2.4.13.2 number

An Error instance only initially has a number property if it is created by the JScript 5.x

implementation in response to the occurrence of a runtime error. The initial value of number is the

number value passed to the constructor.

2.4.14 The JSON Object

JScript 5.8 provides support for processing objects represented using the JSON Data Interchange
Format. The JSON support in JScript 5.8 is an implementation of the JSON APIs defined in the

ECMAScript 5th Edition Language Specification [ECMA-262/5]. The text in the sections that follow is a
copy of the JSON specification text from clause 15.12 of [ECMA-262/5]. Additions or deletions to this
text reflect variances between the JScript 5.8 JSON support and the original [ECMA-262/5]
specification, and the differences between specification techniques used by the two base
specifications.

The JSON object and its properties are not defined for JScript 5.7. They exist only in JScript 5.8.

The JSON object is a single object that contains two functions, parse and stringify, that are used to
parse and construct JSON texts. The JSON Data Interchange Format is described in[RFC4627]. The
JSON interchange format used in this specification is exactly that described by [RFC4627] with two
exceptions:

1. The top level JSONText production of the ECMAScript JSON grammar may consist of any
JSONValue, rather than being restricted to either a JSONObject or a JSONArray as specified by
[RFC4627].

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=140879

36 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2. Conforming implementations of JSON.parse and JSON.stringify must support the exact
interchange format described in this specification without any deletions or extensions to the

format. This differs from [RFC4627], which permits a JSON parser to accept non-JSON forms and
extensions.

The value of the [[Prototype]] internal property of the JSON object is the standard built-in Object
prototype object ([ECMA-262-1999] Section 15.2.4). The value of the [[Class]] internal property of
the JSON object is "JSON". The value of the [[Extensible]] internal property of the JSON object is
set to true.

The JSON object does not have a [[Construct]] internal property; it is not possible to use the JSON
object as a constructor with the new operator.

The JSON object does not have a [[Call]] internal property; it is not possible to invoke the JSON

object as a function.

2.4.14.1 The JSON Grammar

JSON.stringify produces a String that conforms to the following JSON grammar. JSON.parse

accepts a String that conforms to the JSON grammar.

2.4.14.1.1 The JSON Lexical Grammar

JSON is similar to ECMAScript source text in that it consists of a sequence of characters conforming to
the rules of SourceCharacter. The JSON Lexical Grammar defines the tokens that make up a JSON text
similar to the manner that the ECMAScript lexical grammar defines the tokens of an ECMAScript
source test. The JSON Lexical grammar recognizes only the white space character specified by the

production JSONWhiteSpace. The JSON lexical grammar shares some productions with the ECMAScript
lexical grammar. All nonterminal symbols of the grammar that do not begin with the characters
"JSON" are defined by productions of the ECMAScript lexical grammar.

Syntax

JSONWhiteSpace ::

<TAB><CR><LF><SP>

JSONString ::

"JSONStringCharactersopt "

JSONStringCharacters ::

JSONStringCharacter JSONStringCharactersopt

JSONStringCharacter ::

SourceCharacter but not double-quote " or backslash \ or U+0000 thru U+001F

\ JSONEscapeSequence

JSONEscapeSequence ::

JSONEscapeCharacter

UnicodeEscapeSequence

JSONEscapeCharacter :: one of

" / \ b f n r t

http://go.microsoft.com/fwlink/?LinkId=153655

37 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

JSONNumber ::

-opt DecimalIntegerLiteral JSONFractionopt ExponentPartopt

JSONFraction ::

. [lookahead DecimalDigit]

. DecimalDigits

JSONNullLiteral ::

NullLiteral

JSONBooleanLiteral ::

BooleanLiteral

2.4.14.1.2 The JSON Syntactic Grammar

The JSON Syntactic Grammar defines a valid JSON text in terms of tokens defined by the JSON lexical

grammar. The goal symbol of the grammar is JSONText.

Syntax

JSONText :

JSONValue

JSONValue :

JSONNullLiteralJSONBooleanLiteralJSONObjectJSONArrayJSONStringJSONNumber

JSONObject :

{ }

{ JSONMemberList }

JSONMember :

JSONString : JSONValue

JSONMemberList :

JSONMember JSONMemberList , JSONMember

JSONArray :

[]
[JSONElementList]

JSONElementList :

JSONValueJSONElementList , JSONValue

2.4.14.2 parse (text [, reviver])

The parse function parses a JSON text (a JSON-formatted String) and produces an ECMAScript value.
The JSON format is a restricted form of ECMAScript literal. JSON objects are realized as ECMAScript
objects. JSON arrays are realized as ECMAScript arrays. JSON strings, numbers, booleans, and null
are realized as ECMAScript Strings, Numbers, Booleans, and null. JSON uses a more limited set of

38 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

white space characters than WhiteSpace, and allows Unicode code points U+2028 and U+2029 to
directly appear in JSONString literals without using an escape sequence. The process of parsing is

similar to [ECMA-262/5] sections 11.1.4 and 11.1.5 as constrained by the JSON grammar.

The optional reviver parameter is a function that takes two parameters, (key and value). It can filter

and transform the results. It is called with each of the key/value pairs produced by the parse, and its
return value is used instead of the original value. If it returns what it received, the structure is not
modified. If it returns undefined, the property is deleted from the result.

1. Let JText be ToString(text).

2. Parse JText using the grammars in [ECMA-262/5] section 15.12.1. Raise a SyntaxError exception
if JText did not conform to the JSON grammar for the goal symbol JSONText.

3. Let unfiltered be the result of parsing and evaluating JText as if it was the source text of an

ECMAScript program (see [ECMA-262-1999] section 14) but using JSONString in place of
StringLiteral. Note that since JText conforms to the JSON grammar, this result will be either a
primitive value or an object that is defined by either an ArrayLiteral or an ObjectLiteral.

4. If (reviver) has a [[Call]] internal property, then

1. Let root be a new object created as if by the expression new Object(), where Object is the
standard built-in constructor with that name.

2. Call the [[Put]] internal method of root with the empty String and unfiltered as arguments.

3. Return the result of calling the abstract operation Walk, passing root and the empty String.
The abstract operation Walk is described later in this section.

5. Else

1. Return unfiltered.

The abstract operation Walk is a recursive abstract operation that takes two parameters: a holder
object and the String name of a property in that object. Walk uses the value of reviver that was

originally passed to the previous parse function.

1. Let val be the result of calling the [[Get]] internal method of holder with argument name.

2. If val is an object, then

1. If the [[Class]] internal property of val is "Array"

1. Set I to 0.

2. Let len be the result of calling the [[Get]] internal method of val with argument
"length".

3. Repeat while I < len,

1. Let newElement be the result of calling the abstract operation Walk, passing val and
ToString(I).

2. If newElement is undefined, then

1. Call the [[Delete]] internal method of val with ToString(I).

3. Else

1. Call the [[Put]] internal method of val with arguments ToString(I) and
newElement.

http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=153655

39 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

4. Add 1 to I.

2. Else

1. Let keys be an internal list of String values consisting of the names of all the own
properties of val that do not have the DontEnum attribute. The ordering of the Strings

should be the same as that used by the for-in statement.

Note that JScript 5.x defines properties (see [ECMA-262-1999] 8.6.2.2) such that their
DontEnum attribute is inherited from prototype properties with the same name. As a result
of this, any own properties of value that have the same name as built-in properties that
have the DontEnum attribute are not included in keys.

2. For each String P in keys do,

1. Let newElement be the result of calling the abstract operation Walk, passing val and P.

2. If newElement is undefined, then

1. Call the [[Delete]] internal method of val with argument P.

3. Else

1. Call the [[Put]] internal method of val with arguments P and newElement.

3. Return the result of calling the [[Call]] internal method of reviver passing holder as the
this value and with an argument list consisting of name and val.

It is not permitted for a conforming implementation of JSON.parse to extend the JSON grammars. If
an implementation wants to support a modified or extended JSON interchange format, it must do so
by defining a different parse function.

NOTE: In the case where there are duplicate name Strings within an object, lexically preceding values
for the same key shall be overwritten.

2.4.14.3 stringify (value [, replacer [, space]])

The stringify function returns a String in JSON format representing an ECMAScript value. It can take
three parameters. The first parameter is required. The value parameter is an ECMAScript value, which
is usually an object or array, although it can also be a String, Boolean, Number, or null. The optional
replacer parameter is either a function that alters the way objects and arrays are stringified, or an

array of Strings and Numbers that acts as a white list for selecting the object properties that will be
stringified. The optional space parameter is a String or Number that allows the result to have white
space injected into it to improve human readability.

These are the steps in stringifying an object:

1. Let stack be an empty List.

2. Let indent be the empty String.

3. Let PropertyList and ReplacerFunction be undefined.

4. If Type(replacer) is Object, then

1. If replacer has a [[Call]] internal property, then

1. Let ReplacerFunction be replacer.

2. Else if the [[Class]] internal property of replacer is "Array", then

40 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

1. Let PropertyList be an empty internal List.

2. For each value v of a property of replacer that has an array index property name. The

properties are enumerated in the ascending array index order of their names.

1. Let item be undefined.

2. If Type(v) is String then let item be v.

3. Else if Type(v) is Object then,

1. If the [[Class]] internal property of v is "String" or "Number", let item be
ToString(v).

4. If item is not undefined and item is not currently an element of PropertyList then,

1. Append item to the end of PropertyList.

5. If Type(space) is Object then,

1. If the [[Class]] internal property of space is "Number" then,

1. Let space be ToNumber(space).

2. Else if the [[Class]] internal property of space is "String" then,

1. Let space be ToString(space).

6. If Type(space) is Number

1. Let space be min(10, ToInteger(space)).

2. Set gap to a String containing space space characters. This will be the empty String if space is
less than 1.

7. Else if Type(space) is String

1. If the number of characters in space is 10 or less, set gap to space; otherwise, set gap to a
String consisting of the first 10 characters of space.

8. Else

1. Set gap to the empty String.

9. Let wrapper be a new object created as if by the expression new Object(), where Object is the
standard built-in constructor with that name.

10. Call the [[Put]] internal method of wrapper with arguments the empty String and value.

11. Return the result of calling the abstract operation Str with the empty String and wrapper.

The abstract operation Str(key, holder) has access to ReplacerFunction from the invocation of the
stringify method. Its algorithm is as follows:

1. Let value be the result of calling the [[Get]] internal method of holder with argument key.

2. If Type(value) is Object, then

1. If value is a host object, return undefined.

2. Let toJSON be the result of calling the [[Get]] internal method of value with argument
"toJSON".

41 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

3. If toJSON has a [[Call]] internal property

1. Let value be the result of calling the [[Call]] internal method of toJSON, passing value as

the this value and with an argument list consisting of key.

3. If ReplacerFunction is not undefined, then

1. Let value be the result of calling the [[Call]] internal method of ReplacerFunction, passing
holder as the this value and with an argument list consisting of key and value.

4. If Type(value) is Object, then

1. If the [[Class]] internal property of value is "Number", then

1. Let value be ToNumber(value).

2. Else if the [[Class]] internal property of value is "String", then

1. Let value be ToString(value).

3. Else if the Class]] internal property of value is "Boolean", then

1. Let value be the value of the [[Value]] internal property of value.

5. If value is null then return "null".

6. If value is true then return "true".

7. If value is false then return "false".

8. If Type(value) is String, then return the result of calling the abstract operation Quote with

argument value.

9. If Type(value) is Number

1. If value is finite, return ToString(value).

2. Else return "null".

10. If Type(value) is Object, and value does not have a [[Call]] internal property

1. If the [[Class]] internal property of value is "Array", then

1. Return the result of calling the abstract operation JA with argument value.

2. Else, return the result of calling the abstract operation JO with argument value.

11. Return undefined.

The abstract operation Quote(value) wraps a String value in double quotation marks and escapes
characters within it.

1. Let product be the double quotation mark character.

2. For each character C in value

1. If C is the double quotation mark character or the backslash character

1. Let product be the concatenation of product and the backslash character.

2. Let product be the concatenation of product and C.

2. Else if C is backspace, formfeed, newline, carriage return, or tab

42 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

1. Let product be the concatenation of product and the backslash character.

2. Let abbrev be the character corresponding to the value of C as follows:

1. backspace "b"

2. formfeed "f"

3. newline "n"

4. carriage return "r"

5. tab "t"

3. Let product be the concatenation of product and abbrev.

3. Else if C is a control character having a code unit value less than the space character

1. Let product be the concatenation of product and the backslash character.

2. Let product be the concatenation of product and "u".

3. Let hex be the result of converting the numeric code unit value of C to a String of four
hexadecimal digits.

4. Let product be the concatenation of product and hex.

4. Else

1. Let product be the concatenation of product and C.

3. Let product be the concatenation of product and the double quotation mark character.

4. Return product.

The abstract operation JO(value) serializes an object. It has access to the stack, indent, gap,

PropertyList, ReplacerFunction, and space of the invocation of the stringify method.

1. If stack contains value, raise a TypeError exception because the structure is cyclical.

2. Append value to stack.

3. Let stepback be indent.

4. Let indent be the concatenation of indent and gap.

5. If PropertyList is not undefined, then

1. Let K be PropertyList.

6. Else

1. Let K be an internal List of Strings consisting of the names of all the own properties of

value that do not have the DontEnum attribute. The ordering of the Strings should be the
same as that used by the for-in statement.

Note that JScript 5.x defines properties such that their DontEnum attribute is inherited

from prototype properties with the same name. As a result of this, any own properties of
value that have the same name as built-in properties that have the DontEnum attribute
are not included in K.

7. Let partial be an empty List.

43 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

8. For each element P of K.

1. Let strP be the result of calling the abstract operation Str with arguments P and value.

1. If PropertyList is undefined and the call to Str caused new properties to be added
to value, add the names of those properties to the end of K.

2. If strP is not undefined

1. Let member be the result of calling the abstract operation Quote with argument P.

2. Let member be the concatenation of member and the colon character.

3. If gap is not the empty String

1. Let member be the concatenation of member and the space character.

4. Let member be the concatenation of member and strP.

5. Append member to partial.

9. If partial is empty, then

1. Let final be "{}".

10. Else

1. If gap is the empty String

1. Let properties be a String formed by concatenating all the element Strings of
partial with each adjacent pair of Strings separated with the comma character. A

comma is not inserted either before the first String or after the last String.

2. Let final be the result of concatenating "{", properties, and "}".

2. Else if gap is not the empty String

1. Let separator be the result of concatenating the comma character, the line feed
character, and indent.

2. Let properties be a String formed by concatenating all the element Strings of
partial with each adjacent pair of Strings separated with separator. The separator

String is not inserted either before the first String or after the last String.

3. Let final be the result of concatenating "{", the line feed character, indent,
properties, the line feed character, stepback, and "}".

11. Remove the last element of stack.

12. Let indent be stepback.

13. Return final.

The abstract operation JA(value) serializes an array. It has access to the stack, indent, gap, and space

of the invocation of the stringify method. The representation of arrays includes only the elements
between zero and array.length – 1 inclusive. Named properties are excluded from the stringification.
An array is stringified as an open left bracket, elements separated by commas, and a closing right
bracket.

1. If stack contains value, raise a TypeError exception because the structure is cyclical.

2. Append value to stack.

44 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

3. Let stepback be indent.

4. Let indent be the concatenation of indent and gap.

5. Let partial be an empty List.

6. Let len be the result of calling the [[Get]] internal method of value with argument "length".

7. Let index be 0.

8. Repeat while index < len

1. Let strP be the result of calling the abstract operation Str with arguments ToString(index) and
value.

2. If strP is undefined

1. Append "null" to partial.

3. Else

1. Append strP to partial.

4. Increment index by 1.

9. If partial is empty, then

1. Let final be "[]".

10. Else

1. If gap is the empty String

1. Let properties be a String formed by concatenating all the element Strings of partial with
each adjacent pair of Strings separated with the comma character. A comma is not
inserted either before the first String or after the last String.

2. Let final be the result of concatenating "[", properties, and "]".

2. Else

1. Let separator be the result of concatenating the comma character, the line feed character,
and indent.

2. Let properties be a String formed by concatenating all the element Strings of partial with
each adjacent pair of Strings separated with separator. The separator String is not
inserted either before the first String or after the last String.

3. Let final be the result of concatenating "[", the line feed character, indent, properties, the
line feed character, stepback, and "[".

11. Remove the last element of stack.

12. Let indent be stepback.

13. Return final.

NOTE 1:

JSON structures are allowed to be nested to any depth, but they must be acyclic. If value is or
contains a cyclic structure, the stringify function must raise a TypeError exception. This is an
example of a value that cannot be stringified:

45 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

a = [];

a[0] = a;

my_text = JSON.stringify(a); // This must raise a TypeError.

NOTE 2:

Symbolic primitive values are rendered as follows:

 The null value is rendered in JSON text as the String null.

 The undefined value is not rendered.

 The true value is rendered in JSON text as the String true.

 The value is rendered in JSON text as the String false.

NOTE 3:

String values are wrapped in double quotes. The characters " and \ are escaped with \ prefixes. The
characters " and \ are escaped with \ prefixes. Control characters are replaced with escape
sequences \uHHHH, or with the shorter forms, \b (backspace), \f (formfeed), \n (newline), \r
(carriage return), \t (tab).

NOTE 4:

Finite numbers are stringified as if by calling ToString(number). NaN and Infinity regardless of sign
are represented as the String null.

NOTE 5:

Values that do not have a JSON representation (such as undefined and functions) do not produce a
String. Instead they produce the undefined value. In arrays, these values are represented as the
String null. In objects, an unrepresentable value causes the property to be excluded from

stringification.

NOTE 6:

An object is rendered as an opening left brace followed by zero or more properties, separated with
commas, closed with a right brace. A property is a quoted String representing the key or property
name, a colon, and the stringified property value. An array is rendered as an opening left bracket
followed by zero or more values, separated with commas, closed with a right bracket.

This is the end of the JSON specification text from the [ECMA-262/5] standard.

2.4.15 The Debug Object

The Debug object is a single object that has some named properties, all of which are functions.

The value of the internal [[Prototype]] property of the Debug object is the Object prototype object

(15.2.3.1). The value of the internal [[Class]] property of the Debug object is "Object".

The Debug object does not have a [[Construct]] property; it is not possible to use the Debug
object as a constructor with the new operator.

The Debug object does not have a [[Call]] property; it is not possible to invoke the Debug object as
a function.

http://go.microsoft.com/fwlink/?LinkId=185963

46 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4.15.1 Function Properties of the Debug Object

The Debug object inherits properties from the Object prototype object as specified previously, and also
has the following properties.

2.4.15.1.1 write ([item1 [, item2 [, …]]])

If a host-dependent debugging facility is available, ToString is called once, in order, on each item
argument. The result of the call is passed to the debugging facility with the intent that the result be
output to the user without the addition of any line terminator characters. The function returns
undefined regardless of whether or not a debugging facility is present.

2.4.15.1.2 writeln ([item1 [, item2 [, …]]]))

If a host-dependent debugging facility is available, ToString is called once, in order, on each item
argument. The result of the call is passed to the debugging facility with the intent that the result be
output to the user without the insertion of any line terminator characters between item results. A line
terminator should be output after the last item or if there are no item arguments. The function returns

undefined regardless of whether a debugging facility is present.

The length property of the write function is 0.

2.4.16 Enumerator Objects

Enumerator objects provide an alternative mechanism for iterating over the elements of Array
instances and certain host objects.

For such objects, the order of enumeration is the same as occurs for the for-in statement ([ECMA-
262-1999] Section 12.6.4)

2.4.16.1 The Enumerator Constructor Called as a Function

When Enumerator is called as a function rather than as a constructor, it returns undefined.

2.4.16.2 The Enumerator Constructor

When Enumerator is called as part of a new expression, it is a constructor: it initializes the newly
created object.

2.4.16.2.1 new Enumerator ([collection])

When the Enumerator constructor is called with zero or one argument the following steps are taken:

1. If collection is not present, let collection be undefined and then go to step 6.

2. If collection is an Array instance, go to step 5.

3. If collection is a host object that supports an implementation-dependent enumeration protocol, go

to step 5.

4. Raise a TypeError exception.

5. The [[EnumerationState]] property of the newly created object is set to a state indicating that
the enumeration is at the first item of the enumeration of collection. If collection has no
enumerable items, the state will indicate that the end of the enumeration has been reached.

6. The [[Collection]] property of the newly created object is set to collection.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

47 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

7. The [[Prototype]] property of the newly constructed object is set to the original Error prototype
object, the one that is the initial value of Enumerator.prototype (15.12+2.3.1).

8. The [[Class]] property of the newly constructed Error object is set to "Object".

9. Return the newly constructed object.

2.4.16.3 Properties of the Enumerator Constructor

The value of the internal [[Prototype]] property of the Enumerator constructor is the Function
prototype object ([ECMA-262-1999] Section 15.3.4).

The value of the length property is 7 (seven). In addition, the Enumerator constructor has the
following property:

2.4.16.3.1 Enumerator.prototype

The initial value of Enumerator.prototype is the Enumerator prototype object (section 2.4.16.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

2.4.16.4 Properties of the Enumerator Prototype Object

The Enumerator prototype object is itself an Enumerator object with a [[Collection]] property of
undefined, and which does not have an [[EnumerationState]] property.

The value of the internal [[Prototype]] internal property of the Enumerator prototype object is the
Object prototype object ([ECMA-262/5] Section 15.2.3.1).

2.4.16.4.1 Enumerator.prototype.constructor

The initial value of Enumerator.prototype.constructor is the built-in Enumerator constructor.

2.4.16.4.2 Enumerator.prototype.atEnd ()

If the this object is not an Enumerator object, raise a TypeError exception.

1. Let collection be the value of the this object’s [[Collection]] property.

2. If collection is undefined, return true.

3. Let state be the value of the this object’s [[EnumerationState]] property.

4. If state indicates that the end of the enumeration has been reached, return true.

5. Return false.

2.4.16.4.3 Enumerator.prototype.item ()

If the this object is not an Enumerator object, raise a TypeError exception.

1. Let collection be the value of the this object’s [[Collection]] property.

2. If collection is undefined, return undefined.

3. Let state be the value of the this object’s [[EnumerationState]] property.

4. If state indicates that the end of the enumeration has been reached, return undefined.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=185963

48 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

5. Return the current enumeration item as indicated by state.

2.4.16.4.4 Enumerator.prototype.moveFirst ()

If the this object is not an Enumerator object raise a TypeError exception.

1. Let collection be the value of the this object’s [[Collection]] property.

2. If collection is undefined, return undefined.

3. Modify the [[EnumerationState]] property of the this object to a state indicating that the
current enumeration of collection is now positioned at the original first item of the enumeration. If
the current [[EnumerationState]] property indicates that the collection has no enumerable
items, the new state will indicate that the end of the enumeration has been reached.

4. Return undefined.

2.4.16.4.5 Enumerator.prototype.moveNext ()

If the this object is not an Enumerator object raise a TypeError exception.

1. Let collection be the value of the this object’s [[Collection]] property.

2. If collection is undefined, return undefined.

3. Let state be the value of the this object’s [[EnumerationState]] property.

4. If state indicates that the end of the enumeration has been reached, return undefined.

5. Modify state to a state indicating that the current enumeration of collection is now positioned at
the next item beyond the current item of the enumeration. The new state may indicate that the
end of the enumeration has been reached.

6. Update the [[EnumerationState]] property of the this object to state.

7. Return undefined.

2.4.16.5 Properties of Enumerator Instances

Enumerator instances inherit properties from their [[Prototype]] object as specified previously. In
addition, Enumerator instances have an internal [[Collection]] property, and may have an internal
[[EnumeratorState]] property.

2.4.17 VBArray Objects

Enumerator objects provide an alternative mechanism for iterating over the elements of Array
instances and certain host objects.

For such objects, the order of enumeration is the same as the for-in statement ([ECMA-262-1999]

section 12.6.4).

2.4.17.1 The VBArray Constructor Called as a Function

When VBArray is called as a function, it raises an exception if the argument is not a SafeArray
value.

2.4.17.1.1 VBArray (value)

When the VBArray function is called, the following steps are taken:

http://go.microsoft.com/fwlink/?LinkId=153655

49 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

1. If Type(value) is SafeArray, return value.

2. Raise a TypeError exception.

2.4.17.2 The VBArray Constructor

When VBArray is called as part of a new expression, it is a constructor: it initializes the newly created
object.

2.4.17.2.1 new VBArray (value)

When the VBArray constructor is called with an argument value of zero or one, the following steps

are taken:

1. If Type(value) is not SafeArray, raise a TypeError exception.

2. The [[SArray]] property of the newly created object is set to value.

3. The [[Prototype]] property of the newly constructed object is set to the initial value of the
VBArray prototype object (section 2.4.17.3.1).

4. The [[Class]] property of the newly constructed Error object is set to Object.

5. Return the newly constructed object.

2.4.17.3 Properties of the VBArray Constructor

The value of the internal [[Prototype]] property of the VBArray constructor is the Function
prototype object (section 2.4.17.4).

The value of the length property is 1. In addition, the VBArray constructor has the
VBArray.prototype property (section 2.4.17.3.1).

2.4.17.3.1 VBArray.prototype

The initial value of VBArray.prototype is the VBArray prototype object section 2.4.17.4.

This property has the attributes DontEnum, DontDelete, ReadOnly.

2.4.17.4 Properties of the VBArray Prototype Object

The VBArray prototype object is VBArray object with a [[SArray]] property that is a SafeArray that
references a COM SAFEARRAY with 0 dimensions.

The value of the internal [[Prototype]] property of the VBArray prototype object is the Object
prototype object ([ECMA-262-1999] section 15.2.3.1).

2.4.17.4.1 VBArray.prototype.constructor

The initial value of VBArray.prototype.constructor is the built-in VBArray constructor.

2.4.17.4.2 VBArray.prototype.dimensions ()

1. Call ToObject passing the this value as the argument.

2. If Result(1) is not a VBArray instance, raise a TypeError exception.

3. Get the value of the [[SArray]] property of Result(1).

http://go.microsoft.com/fwlink/?LinkId=153655

50 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

4. Return the Number that is the number of dimensions of the COM SAFEARRAY referenced by
Result(3).

2.4.17.4.3 VBArray.prototype.getItem (dim1 [, dim2, [dim3, …]])

1. Call ToObject passing the this value as the argument.

2. If Result(1) is not a VBArray instance, raise a TypeError exception.

3. Get the value of the [[SArray]] property of Result(1).

4. If no arguments were passed to this call, or if the number of arguments passed is greater than
Result(3), raise a RangeError exception.

5. For each argument dim1 through dimN, let IdimX be ToInteger(dimX) where X is the numeric
suffix of the argument name.

6. For each of Idim1 through IdimN, if IdimX is less than the lower bound of dimension X of the COM
SAFEARRAY referenced by Result(3) or if IdimX is greater than the upper bound of dimension X,

raise a RangeError exception.

7. Return the value of the element identified by array indices Idim1 through IdimN in the COM
SAFEARRAY referenced by Result(3).

The length property of the getItem function is 1.

2.4.17.4.4 VBArray.prototype.lbound ([dimension])

1. Call ToObject passing the this value as the argument.

2. If Result(1) is not a VBArray instance, raise a TypeError exception.

3. Get the value of the [[SArray]] property of Result(1).

4. If dimension is not defined, use 1; otherwise, use ToInteger(dimension).

5. Get the Number that is the number of dimensions of the COM SAFEARRAY referenced by

Result(3).

6. If Result(4) is less than 1 or greater than Result(5), raise a RangeError exception.

7. Return the Number that is the lower bound of dimension number Result(4) of the COM
SAFEARRAY referenced by Result(3).

The length property of the lbound function is 0.

2.4.17.4.5 VBArray.prototype.toArray ()

The method copies all the elements of a multi-dimensional COM SAFEARRAY into a one-dimensional
ECMAScript Array instance. When called with no arguments, toArray performs the following steps:

1. Call ToObject passing the this value as the argument.

2. If Result(1) is not a VBArray instance, raise a TypeError exception.

3. Get the value of the [[SArray]] property of Result(1).

4. Let SA be the COM SAFEARRAY referenced by Result(3).

5. Let dim be the number of dimensions of the SA.

51 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

6. If dim is zero, return a new Array object that is created as if by evaluating the expression new
Array(0) using the original Array constructor object.

7. Let size be the total number of array elements of SA.

8. Let A be a new Array object that is created as if by evaluating the expression new Array(size)

using the original Array constructor object.

9. Access the elements of SA in row-major order and store the elements into the array indexed
properties for A starting with property 0.

10. Return A.

2.4.17.4.6 VBArray.prototype.ubound ([dimension])

1. Call ToObject passing the this value as the argument.

2. If Result(1) is not a VBArray instance, raise a TypeError exception.

3. Get the value of the [[SArray]] property of Result(1).

4. If dimension is not defined, use 1; otherwise, use ToInteger(dimension).

5. Get the Number that is the number of dimensions of the COM SAFEARRAY referenced by
Result(3).

6. If Result(4) is less than 1 or greater than Result(5), raise a RangeError exception.

7. Return the Number that is the upper bound of dimension number Result(4) of the COM
SAFEARRAY referenced by Result(3).

The length property of the ubound function is 0.

2.4.17.4.7 VBArray.prototype.valueOf ()

1. Call ToObject, passing the this value as the argument.

2. If Result(1) is not a VBArray instance, raise a TypeError exception.

3. Get the value of the [[SArray]] property of Result(1).

4. Return Result(3).

2.4.17.5 Properties of VBArray Instances

VBArray instance inherits properties from the [[Prototype]] object as specified in

VBArray.prototype.valueOf () section 2.4.17.4.7. In addition, VBArray instances have an internal
[[SArray]] property with a value that is the SafeArray from which the instance was constructed.

2.4.18 ActiveXObject Objects

ActiveXObject objects provide a mechanism for creating and interacting with host objects provided
by Microsoft Windows ActiveX automation servers.

2.4.18.1 The ActiveXObject Constructor Called as a Function

When ActiveXObject is called as a function, it performs the same argument validation that it

performs when it is called as part of a new expression. After successfully completing validation, it
always raises an Error exception.

52 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4.18.1.1 ActiveXObject (name [, location]))

When the ActiveXObject function is called with one or more arguments, the following steps are
taken:

1. Call toPrimitive(name, hint Number).

2. If the type of Result(1) is not String, raise a TypeError exception.

3. If Result(1) is an empty string, raise a TypeError exception.

4. If location is not present go to step 7.

5. Call toPrimitive(location, hint Number).

6. If the type of Result(5) is not String, raise a TypeError exception.

7. Raise an Error exception.

2.4.18.2 The ActiveXObject Constructor

When ActiveXObject is called as part of a new expression, it attempts to create a host object that
corresponds to a Microsoft Windows ActiveX automation object.

2.4.18.2.1 new ActiveXObject ((name [, location]))

When the ActiveXObject constructor is called with one or more arguments, the following steps are
taken:

1. Call toPrimitive(name, hint Number).

2. If the type of Result(1) is not String, raise a TypeError exception.

3. If Result(1) is an empty string, raise a TypeError exception.

4. If location is not present, go to step 7.

5. Call toPrimitive(location, hint Number).

6. If the type of Result(5) is not String, raise a TypeError exception.

7. Attempt to create a host object than can be used to communicate with the application and
application-specific object identified by the String Result(1). If location was present, Result(5)
identifies the server where the application resides; otherwise, the default server (the current
machine) is used as the location of the application.

8. If any error occurs during Step 7, such that the host object cannot be created, raise an Error
exception.

9. Return Result(7).

The format of the string values passed as arguments to this constructor are defined by the host
operating system.

The object returned by this constructor is a host object. It is not an instance of ActiveXObject and

does not inherit properties from the ActiveXObject prototype object or from Object.prototype. The
specific properties of such objects will vary and are dependent upon the specific argument values
passed to this constructor.

53 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

2.4.18.3 Properties of the ActiveXObject Constructor

The value of the internal [[Prototype]] property of the ActiveXObject constructor is the Function
prototype object ([ECMA-262-1999] section 15.3.4).

The value of the length property is 1. In addition, the ActiveXObject constructor has the
ActiveXObject.prototype property (section 2.4.18.3.1).

2.4.18.3.1 ActiveXObject.prototype

The initial value of ActiveXObject.prototype is the ActiveXObject prototype object ([ECMA-262-
1999] section 15.12+3.4).

This property has the attributes DontEnum, DontDelete, ReadOnly.

The value of this property is not used by the ActiveXObject constructor. The value is not used as the
[[Prototype]] value of host objects returned by the ActiveXConstructor.

2.4.18.4 Properties of the ActiveXObject Prototype Object

The ActiveXObject prototype object is an Object instance, not an ActiveXObject instance.

The value of the internal [[Prototype]] property of the ActiveXObject prototype object is the
Object prototype object ([ECMA-262-1999] section 15.2.3.1).

2.4.18.4.1 ActiveXObject.prototype.constructor

The initial value of ActiveXObject.prototype.constructor is the built-in ActiveXObject constructor.

2.4.18.5 Properties of ActiveXObject Instances

ActiveXObject has no instances. Objects created by the ActiveXObject constructor are host objects
that have properties which are determined by the external application associated with the specific host

object.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

54 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

3 Security Considerations

There are no additional security considerations.

55 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

4 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows Internet Explorer 7

 Windows Internet Explorer 8

 Windows Internet Explorer 9

 Windows Internet Explorer 10

 Internet Explorer 11

 Internet Explorer 11 for Windows 10

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears

with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears

with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

56 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

5 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

57 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

6 Index

A

ActiveXObject Constructor
 newActiveXObject 52
ActiveXObject Constructor Properties 53
 prototype 53
ActiveXObject Constructor, The 52
ActiveXObject function 52
ActiveXObject Instances Properties 53
ActiveXObject Objects 51
ActiveXObject Prototype Object Properties 53
 constructor 53
Applicability 8

C

Change tracking 56
Conditional processing algorithm 10

Conditional source text processing 9

D

Debug Object 45
Debug Object Function Properties 46
 write 46
 writeIn 46

E

Enumerator Constructor Properties 47
 prototype 47
Enumerator Constructor, The 46
Enumerator Instances Properties 48
Enumerator Objects 46
Enumerator Prototype Object Properties 47
 atEnd 47
 constructor 47
 item 47
 moveFirst 48
 moveNext 48
Error Constructor 34
 newError () 34
 newError(number, message) 34
Error Instances Properties 34
 number 34

F

Function Instance Properties
 arguments 27
 caller 27
Function Instances 27
Function Object Methods
 [[Get]] 27

G

Global Object Function Properties
 CollectGarbage 20
 GetObject 22
 RuntimeObject 21
 ScriptEngine 20

 ScriptEngineBuildVersion 20
 ScriptEngineMajorVersion 20
 ScriptEngineMinorVersion 20
Global state 9
Glossary 6

I

Implementer - security considerations 54
Informative references 6
Introduction 6

J

JSON Grammar, The 36
JSON Lexical Grammar, The 36
JSON methods
 date time string format (section 2.4.6 29, section

2.4.6.1 30)
 getVarDate 31
 toSJON 31
JSON Object Functions
 parse 37
 stringify 39
JSON Object, The 35
JSON Syntactic Grammar, The 37

N

Native Error Instances Properties 35
 description 35
 number 35
Native Error Types 35
 ConversionError 35
 RegExpError 35
newEnumerator 46
Normative references 6

O

Object Functions 23
 defineProperty 24
 getOwnPropertyDescriptor 23
Objects
 Global 20
Overview (synopsis) 7

P

Product behavior 55

R

References 6
 informative 6
 normative 6
RegExp constructor 31
RegExp constructor properties
 index 31
 input 31
 lastIndex 31
 lastMatch 31

58 / 58

[MS-ES3EX] - v20170314
Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition
Copyright © 2017 Microsoft Corporation
Release: March 14, 2017

 lastParen 32
 leftContext 32
 RegExp.$_ 32
 RegExp.$1 – RegExp.$9 32
 RegExp["$'"] 33
 RegExp["$`"] 32
 RegExp['$&'] 32
 RegExp['$+'] 32
 rightContext 32
RegExp Instances Properties 33
 options 34
RegExp Prototype Object Properties (section 2.4.8

33, section 2.4.8.1 33)

S

Security - implementer considerations 54

Statements
 debugger 19
String.prototype functions 28
 anchor 28
 big 28
 blink 28
 bold 28
 fixed 28
 fontcolor 29
 fontsize 29
 italics 29
 link 29
 small 29
 strike 29
 sub 29
 sup 29

T

Tracking changes 56
Types
 SafeArray 19
 VarDate 19

V

VBArray (value) 48
VBArray Constructor
 newArray (value) 49
VBArray Constructor Properties 49
 VBArray.prototype 49
VBArray Constructor, The 49
VBArray Instances Properties 51
VBArray Objects 48

VBArray Prototype Object Properties 49
 constructor (section 2.4.17.4.1 49, section

2.4.17.4.2 49)
 getItem 50
 lbound 50
 toArray 50
 ubound 51
 valueOf 51

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Extension Overview (Synopsis)
	1.3.1 Organization of This Documentation

	1.4 Relationship to Standards and Other Extensions
	1.5 Applicability Statement

	2 Extensions
	2.1 Conditional Source Text Processing
	2.1.1 Global State
	2.1.2 Conditional Processing Algorithm

	2.2 Extensions to Types
	2.2.1 SafeArray Type
	2.2.2 VarDate Type

	2.3 Extensions to Statements
	2.3.1 debugger Statement

	2.4 Extensions to Native ECMAScript Objects
	2.4.1 Function Properties of the Global Object
	2.4.1.1 ScriptEngine
	2.4.1.2 ScriptEngineBuildVersion
	2.4.1.3 ScriptEngineMajorVersion
	2.4.1.4 ScriptEngineMinorVersion
	2.4.1.5 CollectGarbage
	2.4.1.6 RuntimeObject
	2.4.1.7 GetObject

	2.4.2 Constructor Properties of the Global Object
	2.4.3 Object Functions in JScript 5.8
	2.4.3.1 Object.getOwnPropertyDescriptor (O, P)
	2.4.3.2 Object.defineProperty (O, P, Attributes)

	2.4.4 Properties of Function Instances
	2.4.4.1 The arguments Property
	2.4.4.2 The caller Property
	2.4.4.3 The [[Get]] (P) Method of a Function Object

	2.4.5 String.prototype HTML Wrapper Properties
	2.4.5.1 String.prototype.anchor(name)
	2.4.5.2 String.prototype.big()
	2.4.5.3 String.prototype.blink()
	2.4.5.4 String.prototype.bold()
	2.4.5.5 String.prototype.fixed()
	2.4.5.6 String.prototype.fontcolor(color)
	2.4.5.7 String.prototype.fontsize(size)
	2.4.5.8 String.prototype.italics()
	2.4.5.9 String.prototype.link(url)
	2.4.5.10 String.prototype.small()
	2.4.5.11 String.prototype.strike()
	2.4.5.12 String.prototype.sub()
	2.4.5.13 String.prototype.sup()

	2.4.6 Date Time String Format for JSON
	2.4.6.1 Extended Years
	2.4.6.2 Date.prototype.getVarDate ()
	2.4.6.3 Date.prototype.toJSON ()

	2.4.7 Properties of the RegExp Constructor
	2.4.7.1 RegExp.index
	2.4.7.2 RegExp.input
	2.4.7.3 RegExp.lastIndex
	2.4.7.4 RegExp.lastMatch
	2.4.7.5 RegExp.lastParen
	2.4.7.6 RegExp.leftContext
	2.4.7.7 RegExp.rightContext
	2.4.7.8 RegExp.$1 - RegExp.$9
	2.4.7.9 RegExp.$_
	2.4.7.10 RegExp['$&']
	2.4.7.11 RegExp['$+']
	2.4.7.12 RegExp["$`"]
	2.4.7.13 RegExp["$'"]

	2.4.8 Properties of the RegExp Prototype Object
	2.4.8.1 RegExp.prototype.compile(pattern, flags)

	2.4.9 Properties of the RegExp Instances
	2.4.9.1 options

	2.4.10 The Error Constructor
	2.4.10.1 new Error ()
	2.4.10.2 new Error(number, message)

	2.4.11 Properties of Error Instances
	2.4.11.1 description
	2.4.11.2 number

	2.4.12 Native Error Types Used in This Standard
	2.4.12.1 RegExpError
	2.4.12.2 ConversionError

	2.4.13 Properties of NativeError Instances
	2.4.13.1 description
	2.4.13.2 number

	2.4.14 The JSON Object
	2.4.14.1 The JSON Grammar
	2.4.14.1.1 The JSON Lexical Grammar
	2.4.14.1.2 The JSON Syntactic Grammar

	2.4.14.2 parse (text [, reviver])
	2.4.14.3 stringify (value [, replacer [, space]])

	2.4.15 The Debug Object
	2.4.15.1 Function Properties of the Debug Object
	2.4.15.1.1 write ([item1 [, item2 [, …]]])
	2.4.15.1.2 writeln ([item1 [, item2 [, …]]]))

	2.4.16 Enumerator Objects
	2.4.16.1 The Enumerator Constructor Called as a Function
	2.4.16.2 The Enumerator Constructor
	2.4.16.2.1 new Enumerator ([collection])

	2.4.16.3 Properties of the Enumerator Constructor
	2.4.16.3.1 Enumerator.prototype

	2.4.16.4 Properties of the Enumerator Prototype Object
	2.4.16.4.1 Enumerator.prototype.constructor
	2.4.16.4.2 Enumerator.prototype.atEnd ()
	2.4.16.4.3 Enumerator.prototype.item ()
	2.4.16.4.4 Enumerator.prototype.moveFirst ()
	2.4.16.4.5 Enumerator.prototype.moveNext ()

	2.4.16.5 Properties of Enumerator Instances

	2.4.17 VBArray Objects
	2.4.17.1 The VBArray Constructor Called as a Function
	2.4.17.1.1 VBArray (value)

	2.4.17.2 The VBArray Constructor
	2.4.17.2.1 new VBArray (value)

	2.4.17.3 Properties of the VBArray Constructor
	2.4.17.3.1 VBArray.prototype

	2.4.17.4 Properties of the VBArray Prototype Object
	2.4.17.4.1 VBArray.prototype.constructor
	2.4.17.4.2 VBArray.prototype.dimensions ()
	2.4.17.4.3 VBArray.prototype.getItem (dim1 [, dim2, [dim3, …]])
	2.4.17.4.4 VBArray.prototype.lbound ([dimension])
	2.4.17.4.5 VBArray.prototype.toArray ()
	2.4.17.4.6 VBArray.prototype.ubound ([dimension])
	2.4.17.4.7 VBArray.prototype.valueOf ()

	2.4.17.5 Properties of VBArray Instances

	2.4.18 ActiveXObject Objects
	2.4.18.1 The ActiveXObject Constructor Called as a Function
	2.4.18.1.1 ActiveXObject (name [, location]))

	2.4.18.2 The ActiveXObject Constructor
	2.4.18.2.1 new ActiveXObject ((name [, location]))

	2.4.18.3 Properties of the ActiveXObject Constructor
	2.4.18.3.1 ActiveXObject.prototype

	2.4.18.4 Properties of the ActiveXObject Prototype Object
	2.4.18.4.1 ActiveXObject.prototype.constructor

	2.4.18.5 Properties of ActiveXObject Instances

	3 Security Considerations
	4 Appendix A: Product Behavior
	5 Change Tracking
	6 Index

