
1 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

[MS-ES3]:

Microsoft JScript ECMA-262-1999 ECMAScript Language
Specification Standards Support Document

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this

documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.

However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map.
 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Revision Summary

Date
Revision
History

Revision
Class Comments

3/26/2010 1.0 New Released new document.

5/26/2010 1.2 None Introduced no new technical or language changes.

9/8/2010 1.3 Major Significantly changed the technical content.

2/10/2011 2.0 Minor Clarified the meaning of the technical content.

2/28/2011 2.1 Major Significantly changed the technical content.

2/15/2012 2.2 Minor Clarified the meaning of the technical content.

7/25/2012 3.0 Minor Clarified the meaning of the technical content.

6/26/2013 4.0 Major Significantly changed the technical content.

8/8/2013 4.1 Minor Clarified the meaning of the technical content.

7/7/2015 4.3 Minor Clarified the meaning of the technical content.

11/2/2015 4.3 None
No changes to the meaning, language, or formatting of the
technical content.

3/22/2016 4.4 Minor Clarified the meaning of the technical content.

4/19/2016 4.5 Minor Clarified the meaning of the technical content.

11/2/2016 4.5 None
No changes to the meaning, language, or formatting of the
technical content.

3/14/2017 4.5 None
No changes to the meaning, language, or formatting of the
technical content.

10/3/2017 4.5 None
No changes to the meaning, language, or formatting of the
technical content.

2/22/2018 4.5 None
No changes to the meaning, language, or formatting of the
technical content.

3/23/2018 4.5 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 7

1.3 Microsoft Implementations .. 8
1.4 Conformance Requirements ... 9
1.5 Notation .. 9

2 Standards Support Statements .. 11
2.1 Normative Variations .. 11

2.1.1 [ECMA-262-1999] Section 6, Source Text .. 11
2.1.2 [ECMA-262-1999] Section 7, Lexical Conventions ... 11
2.1.3 [ECMA-262-1999] Section 7.1, Unicode Format-Control Characters 11
2.1.4 [ECMA-262-1999] Section 7.3, Line Terminators .. 12
2.1.5 [ECMA-262-1999] Section 7.4, Comments ... 12
2.1.6 [ECMA-262-1999] Section 7.5.3, Future Reserved Words 12
2.1.7 [ECMA-262-1999] Section 7.8.4, String Literals.. 13
2.1.8 [ECMA-262-1999] Section 7.8.5, Regular Expression Literals 15
2.1.9 [ECMA-262-1999] Section 8, Types .. 17
2.1.10 [ECMA-262-1999] Section 8.5, The Number Type ... 17
2.1.11 [ECMA-262-1999] Section 8.6.2, Internal Properties and Methods 17
2.1.12 [ECMA-262-1999] Section 8.6.2.2, [[Put]] (P, V) .. 17
2.1.13 [ECMA-262-1999] Section 8.7, The Reference Type .. 18
2.1.14 [ECMA-262-1999] Section 8.7.1, GetValue (V) ... 18
2.1.15 [ECMA-262-1999] Section 9.1, ToPrimitive .. 19
2.1.16 [ECMA-262-1999] Section 9.2, To Boolean .. 19
2.1.17 [ECMA-262-1999] Section 9.3, ToNumber ... 20
2.1.18 [ECMA-262-1999] Section 9.8, ToString .. 20
2.1.19 [ECMA-262-1999] Section 9.9, ToObject ... 21
2.1.20 [ECMA-262-1999] Section 10.1.3, Variable Instantiation 22
2.1.21 [ECMA-262-1999] Section 10.1.8, Arguments Object 23
2.1.22 [ECMA-262-1999] Section 10.2, Entering an Execution Context 23
2.1.23 [ECMA-262-1999] Section 10.2.1, Global Code ... 23
2.1.24 [ECMA-262-1999] Section 10.2.2, Eval Code ... 24
2.1.25 [ECMA-262-1999] Section 10.2.3, Function Code ... 24
2.1.26 [ECMA-262-1999] Section 11.1.4, Array Initialiser .. 24
2.1.27 [ECMA-262-1999] Section 11.1.5, Object Initialiser .. 26
2.1.28 [ECMA-262-1999] Section 11.2.1, Property Accessors 27
2.1.29 [ECMA-262-1999] Section 11.4.1, The delete Operator 27
2.1.30 [ECMA-262-1999] Section 11.4.3, The typeof Operator 28
2.1.31 [ECMA-262-1999] Section 11.6.1, The Addition Operator (+) 28
2.1.32 [ECMA-262-1999] Section 11.8.2, The Greater-than Operator (>) 29
2.1.33 [ECMA-262-1999] Section 11.8.3, The Less-than-or-equal Operator (<=) 30
2.1.34 [ECMA-262-1999] Section 11.8.5, The Abstract Relational Comparison Algorithm 30
2.1.35 [ECMA-262-1999] Section 11.9.3, The Abstract Equality Comparison Algorithm . 31
2.1.36 [ECMA-262-1999] Section 11.9.6, The Strict Equality Comparison Algorithm 33
2.1.37 [ECMA-262-1999] Section 12, Statements ... 33
2.1.38 [ECMA-262-1999] Section 12.1, Block ... 34
2.1.39 [ECMA-262-1999] Section 12.6.3, The for Statement 34
2.1.40 [ECMA-262-1999] Section 12.6.4, The for-in Statement 36
2.1.41 [ECMA-262-1999] Section 12.11, The switch Statement 38
2.1.42 [ECMA-262-1999] Section 12.14, The try Statement 40
2.1.43 [ECMA-262-1999] Section 13, Function Definition ... 41
2.1.44 [ECMA-262-1999] Section 13.2, Creating Function Objects 46

4 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.45 [ECMA-262-1999] Section 13.2.2, [[Construct]] ... 47
2.1.46 [ECMA-262-1999] Section 15, Native ECMAScript Objects 47
2.1.47 [ECMA-262-1999] Section 15.1, The Global Object ... 47
2.1.48 [ECMA-262-1999] Section 15.1.2.1, eval(x) ... 48
2.1.49 [ECMA-262-1999] Section 15.1.2.2, parseInt (string, radix) 48
2.1.50 [ECMA-262-1999] Section 15.2.1.1, Object ([value]) 49
2.1.51 [ECMA-262-1999] Section 15.2.2.1, new Object ([value]) 49
2.1.52 [ECMA-262-1999] Section 15.2.3, Properties of the Object Constructor 50
2.1.53 [ECMA-262-1999] Section 15.2.4.2, Object.prototype.toString () 50
2.1.54 [ECMA-262-1999] Section 15.2.4.3, Object.prototyope.toLocaleString () 50
2.1.55 [ECMA-262-1999] Section 15.2.4.4, Object.prototype.valueOf () 50
2.1.56 [ECMA-262-1999] Section 15.2.4.5, Object.prototype.hasOwnProperty (V) 51
2.1.57 [ECMA-262-1999] Section 15.2.4.6, Object.prototype.isPrototypeOf (V) 51
2.1.58 [ECMA-262-1999] Section 15.2.4.7, Object.prototype.propertyIsEnumerable (V) 51
2.1.59 [ECMA-262-1999] Section 15.3.4. Properties of the Function Prototype Object ... 52
2.1.60 [ECMA-262-1999] Section 15.3.4.2, Function.prototype.toString () 52
2.1.61 [ECMA-262-1999] Section 15.3.4.3, Function.prototype.apply (thisArg, argArray)53
2.1.62 [ECMA-262-1999] Section 15.3.4.4, Function.prototype.call (thisArg [, arg1 [,

arg2, ...]]) ... 53
2.1.63 [ECMA-262-1999] Section 15.3.5.2, prototype ... 54
2.1.64 [ECMA-262-1999] Section 15.4.2.1, new Array ([item0 [, item1 [, …]]]) ... 54
2.1.65 [ECMA-262-1999] Section 15.4.4.3, Array.prototype.toLocaleString () 54
2.1.66 [ECMA-262-1999] Section 15.4.4.4, Array.prototype.concat ([item1 [, item2 [, …

]]]) .. 55
2.1.67 [ECMA-262-1999] Section 15.4.4.5, Array.prototype.join (separator) 56
2.1.68 [ECMA-262-1999] Section 15.4.4.6, Array.prototype.pop () 57
2.1.69 [ECMA-262-1999] Section 15.4.4.7, Array.prototype.push ([item1 [, item2 [, …]

]]) .. 58
2.1.70 [ECMA-262-1999] Section 15.4.4.8, Array.prototype.reverse () 59
2.1.71 [ECMA-262-1999] Section 15.4.4.9, Array.prototype.shift () 61
2.1.72 [ECMA-262-1999] Section 15.4.4.10, Array.prototype.slice (start, end) 62
2.1.73 [ECMA-262-1999] Section 15.4.4.11, Array.prototype.sort (comparefn) 63
2.1.74 [ECMA-262-1999] Section 15.4.4.12, Array.prototype.splice (start, deleteCount [,

item1 [, item2 [, ...]]]) .. 65
2.1.75 [ECMA-262-1999] Section 15.4.4.13, Array.prototype.unshift ([item1 [, item2 [,

...]]]) .. 68
2.1.76 [ECMA-262-1999] Section 15.4.5.1, [[Put]] (P, V) .. 69
2.1.77 [ECMA-262-1999] Section 15.4.5.2, length .. 70
2.1.78 [ECMA-262-1999] Section 15.5.3.2, String.fromCharCode ([char0 [, char1 [, …]

]]) .. 71
2.1.79 [ECMA-262-1999] Section 15.5.4, Properties of the String Prototype Object 71
2.1.80 [ECMA-262-1999] Section 15.5.4.3, String.prototype.valueOf () 71
2.1.81 [ECMA-262-1999] Section 15.5.4.7, String.prototype.indexOf (searchString,

position) .. 71
2.1.82 [ECMA-262-1999] Section 15.5.4.8, String.prototype.lastIndexOf (searchString,

position) .. 72
2.1.83 [ECMA-262-1999] Section 15.5.4.9, String.prototype.localeCompare (that) 72
2.1.84 [ECMA-262-1999] Section 15.5.4.10, String.prototype.match (regexp) 72
2.1.85 [ECMA-262-1999] Section 15.5.4.11, String.prototype.replace (searchValue,

replaceValue) ... 73
2.1.86 [ECMA-262-1999] Section 15.5.4.12, String.prototype.search (regexp)............. 73
2.1.87 [ECMA-262-1999] Section 15.5.4.13, String.prototype.slice (start, end) 73
2.1.88 [ECMA-262-1999] Section 15.5.4.14, String.prototype.split (separator, limit) 73
2.1.89 [ECMA-262-1999] Section 15.5.4.17, String.prototype.toLocaleLowerCase () 75
2.1.90 [ECMA-262-1999] Section 15.5.4.19, String.prototype.toLocaleUpperCase () 76
2.1.91 [ECMA-262-1999] Section 15.7.4, Properties of the Number Prototype Object.... 76
2.1.92 [ECMA-262-1999] Section 15.7.4.2, Number.prototype.toString (radix) 76
2.1.93 [ECMA-262-1999] Section 15.7.4.3, Number.prototype.toLocaleString () 77

5 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.94 [ECMA-262-1999] Section 15.7.4.4, Number.prototype.valueOf () 77
2.1.95 [ECMA-262-1999] Section 15.7.4.5, Number.prototype.toFixed (fractionDigits) .. 77
2.1.96 [ECMA-262-1999] Section 15.7.4.6, Number.prototype.toExponential

(fractionDigits) ... 79
2.1.97 [ECMA-262-1999] Section 15.7.4.7, Number.prototype.toPrecision (precision) ... 80
2.1.98 [ECMA-262-1999] Section 15.8.2, Function Properties of the Math Object 82
2.1.99 [ECMA-262-1999] Section 15.9.1.8, Local Time Zone Adjustment..................... 82
2.1.100 [ECMA-262-1999] Section 15.9.1.9, Daylight Saving Time Adjustment 82
2.1.101 [ECMA-262-1999] Section 15.9.1.14, TimeClip (time) 82
2.1.102 [ECMA-262-1999] Section 15.9.4.2, Date.parse (string) 83
2.1.103 [ECMA-262-1999] Section 15.9.4.3, Date.UTC (year, month [, date [, hours [,

minutes [, seconds [, ms]]]]]) .. 92
2.1.104 [ECMA-262-1999] Section 15.9.5, Properties of the Date Prototype Object 92
2.1.105 [ECMA-262-1999] Section 15.9.5.2, Date.prototype.toString () 92
2.1.106 [ECMA-262-1999] Section 15.9.5.3, Date.prototype.toDateString () 94
2.1.107 [ECMA-262-1999] Section 15.9.5.4, Date.prototype.toTimeString () 94
2.1.108 [ECMA-262-1999] Section 15.9.5.5, Date.prototype.toLocaleString () 94
2.1.109 [ECMA-262-1999] Section 15.9.5.6, Date.prototype.toLocaleDateString () 95
2.1.110 [ECMA-262-1999] Section 15.9.5.7, Date.prototype.toLocaleTimeString () 95
2.1.111 [ECMA-262-1999] Section 15.9.5.28, Date.prototype.setMilliseconds (ms) 96
2.1.112 [ECMA-262-1999] Section 15.9.5.29, Date.prototype.setUTCMilliseconds (ms) ... 96
2.1.113 [ECMA-262-1999] Section 15.9.5.30, Date.prototype.setSeconds (sec [, ms]) . 97
2.1.114 [ECMA-262-1999] Section 15.9.5.31, Date.prototype.setUTCSeconds (sec [, ms])

 97
2.1.115 [ECMA-262-1999] Section 15.9.5.33, Date.prototype.setMinutes (min [, sec [, ms]

]) .. 98
2.1.116 [ECMA-262-1999] Section 15.9.5.34, Date.prototype.setUTCMinutes (min [, sec [,

ms]]) ... 98
2.1.117 [ECMA-262-1999] Section 15.9.5.35, Date.prototype.setHours (hour [, min [, sec [,

ms]]]) ... 99
2.1.118 [ECMA-262-1999] Section 15.9.5.36, Date.prototype.setUTCHours (hour [, min [,

sec [, ms]]]) .. 99
2.1.119 [ECMA-262-1999] Section 15.9.5.36, Date.prototype.setDate (date) 100
2.1.120 [ECMA-262-1999] Section 15.9.5.37, Date.prototype.setUTCDate (date) 100
2.1.121 [ECMA-262-1999] Section 15.9.5.38, Date.prototype.setMonth (month [, date])

 100
2.1.122 [ECMA-262-1999] Section 15.9.5.39, Date.prototype.setUTCMonth (month [, date]

) .. 101
2.1.123 [ECMA-262-1999] Section 15.9.5.40, Date.prototype.setFullYear (year [, month [,

date]]) .. 101
2.1.124 [ECMA-262-1999] Section 15.9.5.41, Date.prototype.setUTCFullYear (year [, month

[, date]]) ... 102
2.1.125 [ECMA-262-1999] Section 15.10.1, Patterns ... 102
2.1.126 [ECMA-262-1999] Section 15.10.2.1, Notation .. 103
2.1.127 [ECMA-262-1999] Section 15.10.2.2, Pattern .. 103
2.1.128 [ECMA-262-1999] Section 15.10.2.3, Disjunction .. 104
2.1.129 [ECMA-262-1999] Section 15.10.2.5, Term... 104
2.1.130 [ECMA-262-1999] Section 15.10.2.7, Quantifier .. 106
2.1.131 [ECMA-262-1999] Section 15.10.2.8, Atom .. 106
2.1.132 [ECMA-262-1999] Section 15.10.2.9, AtomEscape ... 106
2.1.133 [ECMA-262-1999] Section 15.10.2.12, CharacterClassEscape 107
2.1.134 [ECMA-262-1999] Section 15.10.2.13, CharacterClass 107
2.1.135 [ECMA-262-1999] Section 15.10.2.15, NonemptyClassRanges 108
2.1.136 [ECMA-262-1999] Section 15.10.2.19, ClassEscape 108
2.1.137 [ECMA-262-1999] Section 15.10.4.1, new RegExp (pattern, flags) 108
2.1.138 [ECMA-262-1999] Section 15.10.6, Properties of the RegExp Prototype Object . 109
2.1.139 [ECMA-262-1999] Section 15.10.6.2, RegExp.prototype.exec (string) 109
2.1.140 [ECMA-262-1999] Section 15.10.6.4, RegExp.prototype.toString () 111

6 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.141 [ECMA-262-1999] Section 15.11.1.1, Error (message) 111
2.1.142 [ECMA-262-1999] Section 15.11.2.1, new Error (message) 111
2.1.143 [ECMA-262-1999] Section 15.11.4, Properties of the Error Prototype Object 112
2.1.144 [ECMA-262-1999] Section 15.11.4.3, Error.prototype.message 112
2.1.145 [ECMA-262-1999] Section 15.11.4.4, Error.prototype.toString ()..................... 112
2.1.146 [ECMA-262-1999] Section 15.11.5, Properties of Error Instances 113
2.1.147 [ECMA-262-1999] Section 15.11.6.2, RangeError .. 113
2.1.148 [ECMA-262-1999] Section 15.11.6.4, SyntaxError ... 113
2.1.149 [ECMA-262-1999] Section 15.11.6.5, TypeError .. 114
2.1.150 [ECMA-262-1999] Section 15.11.7, NativeError Object Structure..................... 114
2.1.151 [ECMA-262-1999] Section 15.11.7.2, NativeError (message) 115
2.1.152 [ECMA-262-1999] Section 15.11.7.4, New NativeError (message) 115
2.1.153 [ECMA-262-1999] Section 15.11.7.10, NativeError.prototype.message 115
2.1.154 [ECMA-262-1999] Section 16, Errors ... 115
2.1.155 [ECMA-262-1999] Section A.1, Lexical Grammar ... 116
2.1.156 [ECMA-262-1999] Section A.3, Expressions .. 118
2.1.157 [ECMA-262-1999] Section A.4, Statements ... 118
2.1.158 [ECMA-262-1999] Section A.5, Functions and Programs 119
2.1.159 [ECMA-262-1999] Section A.7, Regular Expressions....................................... 120
2.1.160 [ECMA-262-1999] Section B.1.2, String Literals .. 120
2.1.161 [ECMA-262-1999] Section B.2, Additional Properties 121
2.1.162 [ECMA-262-1999] Section B.2.3, String.prototype.substr (start, length) 121
2.1.163 [ECMA-262-1999] Section B.2.4, Date.prototype.getYear () 121
2.1.164 [ECMA-262-1999] Section B.2.5, Date.prototype.setYear (year) 122

2.2 Clarifications .. 122
2.2.1 [ECMA-262-1999] Section 7.8.5, Regular Expression Literals 122
2.2.2 [ECMA-262-1999] Section 8.6.2, Internal Properties and Methods 123
2.2.3 [ECMA-262-1999] Section 10.1.1, Function Objects 123
2.2.4 [ECMA-262-1999] Section 15.1.2.2, parseInt (string, radix) 123

2.3 Error Handling .. 123
2.4 Security ... 123

3 Change Tracking .. 124

4 Index ... 125

7 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1 Introduction

The JScript 5.x language is a dialect of the ECMAScript programming language. The JScript 5.x dialect

is based upon the ECMAScript Language Specification (Standard ECMA-262) Third Edition [ECMA-262-

1999] , published December 1999. This document describes the level of support provided by JScript

5.x for that specification.

There are several variants of the JScript 5.x language:

 JScript 5.7 first shipped with Windows® Internet Explorer® 7

 JScript 5.8 first shipped with Windows® Internet Explorer® 8

Within this document, JScript 5.x refers to any version of the JScript 5 language, beginning with

JScript 5.7. JScript 5.7 and JScript 5.8 are used to refer to characteristics that are unique to those

specific versions.

The [ECMA-262-1999] specifications contain guidance for authors of webpages, browser users, and

user agents (browser applications). This conformance document considers only normative language

from the related specifications that applies directly to user agents.

1.1 Glossary

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[ECMA-262-1999] Ecma International, "ECMAScript Language Specification", Standard ECMA-262 3rd

Edition - December 1999, http://www.ecma-international.org/publications/files/ECMA-ST-
ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-ES3EX] Microsoft Corporation, "Microsoft JScript Extensions to the ECMAScript Language
Specification Third Edition".

[MS-ES3] Microsoft Corporation, "Microsoft JScript ECMA-262-1999 ECMAScript Language
Specification Standards Support Document".

[MS-ES5EX] Microsoft Corporation, "Internet Explorer Extensions to the ECMA-262 ECMAScript

Language Specification (Fifth Edition)".

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a
%5bMS-ES3%5d.pdf#Section_8aea05e38c1e4a9a961431f71e679462
%5bMS-ES3%5d.pdf#Section_8aea05e38c1e4a9a961431f71e679462
%5bMS-ES5EX%5d.pdf#Section_a6028f4d030b49e4b128f0abac70912f
%5bMS-ES5EX%5d.pdf#Section_a6028f4d030b49e4b128f0abac70912f

8 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

[MS-ES5] Microsoft Corporation, "Internet Explorer ECMA-262 ECMAScript Language Specification
(Fifth Edition) Standards Support Document".

1.3 Microsoft Implementations

The following Microsoft products implement some portion of the ECMAScript Third Edition specification

[ECMA-262-1999]:

 Windows Internet Explorer 7 – implements the JScript 5.7 Language for all documents.

 Windows Internet Explorer 8 – implements the JScript 5.8 Language when loading documents in

IE8 mode and the JScript 5.7 Language when loading documents in IE7 mode or quirks mode.

 Windows Internet Explorer 9 – implements the JScript 5.8 Language when loading documents in

IE8 mode and the JScript 5.7 Language when loading documents in IE7 mode or quirks mode.

 Windows Internet Explorer 10 – implements the JScript 5.8 Language when loading documents in

IE8 mode and the JScript 5.7 Language when loading documents in IE7 mode or quirks mode.

 Internet Explorer 11 – implements the JScript 5.8 Language when loading documents in IE8 mode

and the JScript 5.7 Language when loading documents in IE7 mode or quirks mode.

 Internet Explorer 11 for Windows 10 – implements the JScript 5.8 Language when loading

documents in IE8 mode and the JScript 5.7 Language when loading documents in IE7 mode or

quirks mode.

Each version of Windows Internet Explorer implements multiple document modes, which can vary

individually in their support of the standard. The following table lists the document modes available:

Browser Version Document Modes Supported

Internet Explorer 7 Quirks mode (JScript 5.7)

Standards mode (JScript 5.7)

Internet Explorer 8 Quirks mode (JScript 5.7)

IE7 mode (JScript 5.7)

IE8 mode (JScript 5.8)

Internet Explorer 9

Quirks mode (JScript 5.7)

IE7 mode (JScript 5.7)

IE8 mode (JScript 5.8)

Internet Explorer 10 Quirks mode (JScript 5.7)

IE7 mode (JScript 5.7)

IE8 mode (JScript 5.8)

Internet Explorer 11 Quirks mode (JScript 5.7)

IE7 mode (JScript 5.7)

IE8 mode (JScript 5.8)

Internet Explorer 11 for Windows 10 Quirks mode (JScript 5.7)

IE7 mode (JScript 5.7)

IE8 mode (JScript 5.8)

Throughout this document, JScript 5.x refers to any implementation of JScript 5.8 or JScript 5.7.

"JScript 5.7" and "JScript 5.8" are used to refer to characteristics that are unique to implementations

of those specific versions in the respective document modes in each version of Internet Explorer.

%5bMS-ES5%5d.pdf#Section_6d0575502e6144048dc2587a2fd997e7
%5bMS-ES5%5d.pdf#Section_6d0575502e6144048dc2587a2fd997e7
https://go.microsoft.com/fwlink/?LinkId=153655

9 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1.4 Conformance Requirements

To conform to [ECMA-262-1999] , a user agent must provide and support all the types, values,

objects, properties, functions, and program syntax and semantics described in the specification (See

[ECMA-262-1999] section 2, Conformance). Any optional portions that have been implemented must

also be implemented as described by the specification. Normative language is usually used to define

both required and optional portions. (For more information, see [RFC2119].)

The following table lists the sections of [ECMA-262-1999] and whether they are considered normative

or informative.

Sections Normative/Informative

1 Informative

2-3 Normative

4 Informative

5-15 Normative

Annex A Informative

Annex B Informative

Relationship to Standards and Other Extensions

The following documents describe variations and extensions from versions 3 and 5 of the ECMAScript

Language:

Document
Type Reference Title

Variations [MS-ES3] Internet Explorer ECMA-262 ECMAScript Language Specification Standards
Support Document

Variations [MS-ES5] Internet Explorer ECMA-262 ECMAScript Language Specification (Fifth Edition)
Standards Support Document

Extensions [MS-
ES3EX]

Microsoft JScript Extensions to the ECMAScript Language Specification Third
Edition

Extensions [MS-
ES5EX]

Internet Explorer Extensions to the ECMA-262 ECMAScript Language
Specification (Fifth Edition)

1.5 Notation

The following notations are used in this document to differentiate between notes of clarification,

variation from the specification, and extension points:

Notation Explanation

C#### This identifies a clarification of ambiguity in the target specification. This includes imprecise
statements, omitted information, discrepancies, and errata. This does not include data formatting
clarifications.

V#### This identifies an intended point of variability in the target specification such as the use of MAY,
SHOULD, or RECOMMENDED. (See [RFC2119] .) This does not include extensibility points.

E#### Identifies extensibility points (such as optional implementation-specific data) in the target
specification, which can impair interoperability.

https://go.microsoft.com/fwlink/?LinkId=153655
%5bMS-ES3%5d.pdf#Section_8aea05e38c1e4a9a961431f71e679462
%5bMS-ES5%5d.pdf#Section_6d0575502e6144048dc2587a2fd997e7
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a
%5bMS-ES5EX%5d.pdf#Section_a6028f4d030b49e4b128f0abac70912f
%5bMS-ES5EX%5d.pdf#Section_a6028f4d030b49e4b128f0abac70912f
https://go.microsoft.com/fwlink/?LinkId=90317

10 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Throughout this document, variations from the original [ECMA-262-1999] specification are indicated

as follows:

 Double-underline – Text added to describe JScript 5.x behavior.

 Strikethrough – Portions that are not supported by JScript 5.x.

Underlined and strikethrough sections are used together to indicate where JScript 5.x differs from the

behavior described in [ECMA-262-1999] .

For browser version and JScript version notation, see section 1.3.

https://go.microsoft.com/fwlink/?LinkId=153655

11 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2 Standards Support Statements

This section contains all variations and clarifications for the Microsoft implementation of [ECMA-262-

1999].

 Section 2.1 describes normative variations from the MUST requirements of the specification.

 Section 2.2 describes clarifications of the MAY and SHOULD requirements.

 Section 2.3 considers error handling aspects of the implementation.

 Section 2.4 considers security aspects of the implementation.

2.1 Normative Variations

The following subsections describe normative variations from the MUST requirements of [ECMA-262-

1999].

2.1.1 [ECMA-262-1999] Section 6, Source Text

V0001:

SourceCharacter ::

any Unicode character

ECMAScript source text can contain any of the Basic Multilingual Plane Unicode characters. All Unicode
white space characters are treated as white space, and all Unicode line/paragraph separators are
treated as line separators. Non-Latin Unicode characters are allowed in identifiers, string literals,

regular expression literals and comments.

V0002:

In string literals, regular expression literals and identifiers, any Basic Multilingual Plane character
(code point) may also be expressed as a Unicode escape sequence consisting of six characters,
namely \u plus four hexadecimal digits. Within a comment, such an escape sequence is effectively
ignored as part of the comment. Within a string literal or regular expression literal, the Unicode escape

sequence contributes one character to the value of the literal. Within an identifier, the escape
sequence contributes one character to the identifier.

2.1.2 [ECMA-262-1999] Section 7, Lexical Conventions

V0003:

JScript 5.x also supports a "conditional compilation" feature which enables the inclusion of conditional
text spans, within an ECMAScript source text, that are either not converted into input elements or

which are replaced by alternative text spans prior to conversion into input elements. When converting
source text into input elements, JScript 5.x first does the processing necessary to remove or replace
any conditional text spans and then does the input element conversion, using the results of that
processing as the actual input to the lexical conversion process described below.

2.1.3 [ECMA-262-1999] Section 7.1, Unicode Format-Control Characters

V0004:

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655

12 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

The Unicode format-control characters (i.e., the characters in category "Cf" in the Unicode Character

Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to

control the formatting of a range of text in the absence of higher-level protocols for this (such as

mark-up languages). It is useful to allow these in source text to facilitate editing and display.

The format control characters can occur anywhere in the source text of an ECMAScript program. These

characters are removed from the source text before applying the lexical grammar. Since these
characters are removed before processing string and regular expression literals, one must use a.
Unicode escape sequence (see 7.6) to include a Unicode format-control character inside a string or
regular expression literal.

JScript 5.x does not remove category Cf characters from the source text before

applying the lexical grammar.

2.1.4 [ECMA-262-1999] Section 7.3, Line Terminators

V0005:

The following characters are considered to be line terminators:

Code Point Value Name Formal Name

\u000A Line Feed <LF>

\u000D Carriage Return <CR>

\u2028 Line separator <LS>

\u2029 Paragraph separator <PS>

V0006:

LineTerminator ::

<LF>
<CR>
<LS>
<PS>

JScript 5.x does not consider <LS> and <PS> to be line terminator characters.

2.1.5 [ECMA-262-1999] Section 7.4, Comments

V0007:

Syntax:

MultiLineNotAsteriskChar ::

SourceCharacter but not asterisk * or <NUL>

MultiLineNotForwardSlashOrAsteriskChar ::

SourceCharacter but not forward-slash / or asterisk * or <NUL>

2.1.6 [ECMA-262-1999] Section 7.5.3, Future Reserved Words

V0008:

13 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

The following words are used as keywords in proposed extensions and are therefore reserved to allow
for the possibility of future adoption of those extensions.

Syntax:

FutureReservedWord :: one of

abstract enum int short

boolean export interface static

byte extends long super

char final native synchronized

class float package throws

const goto private transient

debugger implements protected volatile

double import Public

JScript 5.x only considers the following to be FutureReservedWords: class, const,

debugger, enum, export, extends, import, super.

2.1.7 [ECMA-262-1999] Section 7.8.4, String Literals

V0009:

Syntax:

StringLiteral ::

" DoubleStringCharactersopt "
' SingleStringCharactersopt '

DoubleStringCharacters ::

DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::

SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::

SourceCharacter but not double-quote " or backslash \ or LineTerminator or <NUL>
\ EscapeSequence
LineContinuation

SingleStringCharacter ::

SourceCharacter but not single-quote ' or backslash \ or LineTerminator or <NUL>

\ EscapeSequence
LineContinuation

JScript 5.x does not allow StringLiterals to contain the <NUL> (\u0000) character.

V0010:

LineContinuation ::

\ LineTerminatorSequence

LineTerminatorSequence ::

14 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

<LF>
<CR> [lookahead ≠ <LF>]

<CR> <LF>

EscapeSequence ::

CharacterEscapeSequence
OctalEscapeSequence 0 [lookahead DecimalDigit]

HexEscapeSequence
UnicodeEscapeSequence
8
9

JScript 5.x also supports OctalEscapeSequence as specified in [ECMA-262-1999]

Annex B.1.2. That extension replaces the rule EscapeSequence :: 0 [lookahead

DecimalDigit] with the rule EscapeSequence :: OctalEscapeSequence. See section

2.1.160.

V0011:

CharacterEscapeSequence ::

SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of

' " \ b f n r t v

JScript 5.x does not consider v to be a SingleEscapeCharacter

V0012:

A string literal stands for a value of the String type. The string value (SV) of the literal is described in

terms of character values (CV) contributed by the various parts of the string literal. As part of this

process, some characters within the string literal are interpreted as having a mathematical value
(MV), as described below or in [ECMA-262-1999] section 7.8.3.

 The SV of StringLiteral :: "" is the empty character sequence.

 The SV of StringLiteral :: '' is the empty character sequence.

 The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.

 The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.

 The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one character, the CV
of DoubleStringCharacter.

 The SV of LineContinuation :: \ LineTerminatorSequence is the empty character sequence.

V0013:

 The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the

CharacterEscapeSequence.

 The CV of EscapeSequence :: 0 [lookahead DecimalDigit] is a <NUL> character (Unicode value

0000).

 The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

https://go.microsoft.com/fwlink/?LinkId=153655

15 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

 The CV of EscapeSequence :: 8 is an 8 character (Unicode value 0038).

 The CV of EscapeSequence :: 9 is a 9 character (Unicode value 0039).

V0014:

 The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code point

value is determined by the SingleEscapeCharacter according to the following table:

Escape Sequence Code Point Value Name Symbol

\b \u0008 backspace <BS>

\t \u0009 horizontal tab <HT>

\n \u000A Line feed (new line) <LF>

\v \u000B vertical tab <VT>

\f \u000C form feed <FF>

\r \u000D carriage return <CR>

\" \u0022 double quote "

\' \u0027 single quote '

\\ \u005C backslash \

JScript 5.x does not consider v to be a SingleEscapeCharacter.

V0015:

NOTE

A 'LineTerminator' character cannot appear in a string literal, even if preceded by a backslash \. The
correct way to cause a line terminator character to be part of the string value of a string literal is to
use an escape sequence such as \n or \u000A.

JScript 5.x allows a string literal to continue across multiple lines by including a \ as

the last character of each continued line. The \ and the LineTerminatorSequence that

follow it are not included in the value of the string literal.

2.1.8 [ECMA-262-1999] Section 7.8.5, Regular Expression Literals

V0016:

The productions below describe the syntax for a regular expression literal and are used by the input

element scanner to find the end of the regular expression literal. The strings of characters comprising

the RegularExpressionBody and the RegularExpressionFlags are passed uninterpreted to the regular

expression constructor, which interprets them according to its own, more stringent grammar. An

implementation may extend the regular expression constructor's grammar, but it should not extend

the RegularExpressionBody and RegularExpressionFlags productions or the productions used by these

productions.

Contrary to the above restriction, JScript 5.x extends the RegularExpressionBody

production by excluding the occurrence of <NUL> as a RegularExpressionchars or
RegularExpressionFirstChar. It also changes the RegularExpressonFlags production to

exclude all possible flag characters other than 'g', 'i', and 'm'

V0017:

16 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Syntax:

RegularExpressionLiteral ::

/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::

RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::

[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::

NonTerminator but not * or \ or / or <NUL>
BackslashSequence

RegularExpressionClass

RegularExpressionChar ::

NonTerminator but not \ or / or <NUL>
BackslashSequence
RegularExpressionClass

BackslashSequence ::

\ NonTerminator

JScript 5.x throws a RegExpError exception rather than a SyntaxError exception if

the NonTerminator position of a BackslashSequence is occupied by a LineTerminator.

V0018:

Syntax:

NonTerminator ::

SourceCharacter but not LineTerminator

JScript 5.x allows <LS> and <PS> to occur in regular expression literals because it

does not consider them to be line terminator characters.

V0019:

Syntax:

RegularExpressionClass ::

[RegularExpressionClassChars]

RegularExpressionClassChars ::

[empty]

RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::

17 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

NonTerminator but not] or \ or <NUL>

BackslashSequence

RegularExpressionFlags ::

[empty]

RegularExpressionFlags IdentifierPart RegExpFlag

RegExpFlag :: one of

g i m

2.1.9 [ECMA-262-1999] Section 8, Types

V0020:

A value is an entity that takes on one of nine eleven types. There are nine eleven types (Undefined,

Null, Boolean, String, Number, Object, SafeArray, VarDate, Reference, List, and Completion). Values

of type Reference, List, and Completion are used only as intermediate results of expression evaluation

and cannot be stored as properties of objects.

2.1.10 [ECMA-262-1999] Section 8.5, The Number Type

V0021:

In some implementations, external code might be able to detect a difference between various Not-a-

Number values, but such behaviour is implementation-dependent; to ECMAScript code, all NaN values

are indistinguishable from each other.

JScript 5.x does not normalize all internal NaN values to a single canonical NaN;

therefore, external code may be able to observe multiple distinct NaN values.

2.1.11 [ECMA-262-1999] Section 8.6.2, Internal Properties and Methods

V0022:

The value of the [[Prototype]] property must be either an object or null, and every [[Prototype]]

chain must have finite length (that is, starting from any object, recursively accessing the

[[Prototype]] property must eventually lead to a null value). Whether or not a native object can

have a host object as its [[Prototype]] depends on the implementation.

JScript 5.x does not permit a native object to have a host object as its [[Prototype]].

2.1.12 [ECMA-262-1999] Section 8.6.2.2, [[Put]] (P, V)

V0023:

When the [[Put]] method of O is called with property P and value V, the following steps are taken:

1. Call the [[CanPut]] method of O with name P.

2. If Result(1) is false, return.

3. If O doesn't have a property with name P, go to step 6.

4. Set the value of the property to V. The attributes of the property are not changed.

18 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

5. Return.

6. Create a property with name P, set its value to V and give it empty attributes.

1. Let q be the same value as O.

2. Let q be the value of the [[Prototype]] property of q.

3. If q is null, return.

4. If q doesn't have a property with name P, go to step 6.2.

5. If the property of q with name P does not have the DontEnum attribute, return.

6. Give the property with the name P of O the DontEnum attribute.

7. Return.

In JScript 5.x a property created using [[Put]] is given the DontEnum attribute if it

shadows a prototype property with the same name that already has the DontEnum

attribute.

2.1.13 [ECMA-262-1999] Section 8.7, The Reference Type

V0024:

A Reference is a reference to a property of an object. A Reference consists of two components, the

base object and the property name.

The following abstract operations are used in this specification to access the components of

references:

 GetBase(V). Returns the base object component of the reference V; however if the type of the

base object component is String return the result of calling ToObject with the base object

component as the argument.

 GetPropertyName(V). Returns the property name component of the reference V.

2.1.14 [ECMA-262-1999] Section 8.7.1, GetValue (V)

V0025:

1. If Type(V) is not Reference, return V.

1. If the type of the base object component of V is String, then go to step 6.

2. Call GetBase(V).

3. If Result(2) is null, throw a ReferenceError TypeError exception.

4. Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property name.

5. Return Result(4).

6. Let str be the String that is the base object component of V.

7. Call GetPropertyName(V).

8. If Result(6) is not an array index, then go to step 2.

19 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

9. Let index be ToUint32(Result(6)).

10. If index is greater or equal to the number of characters in str, then go to step 2

11. Return a String of length 1 that has as its only character the character at position index of str.

JScript 5.x throws a TypeError rather than ReferenceError when an attempt is

made to get the value of a Reference value with a null base. This typically occurs when

accessing an undeclared variable or function name.

Steps 6 to 11 permit the individual characters of a String value to be retrieved as if

they were properties of an object. Note that JScript 5.x only supports property access

to individual characters for String values. It does not support such property access for

String wrapper objects.

2.1.15 [ECMA-262-1999] Section 9.1, ToPrimitive

V0026:

The operator ToPrimitive takes a Value argument and an optional argument PreferredType. The

operator ToPrimitive converts its value argument to a non-Object type. If an object is capable of

converting to more than one primitive type, it may use the optional hint PreferredType to favour that

type. Conversion occurs according to the following table:

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

SafeArray The result equals the input argument (no conversion).

VarDate The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is
retrieved by calling the internal [[DefaultValue]] method of the object,
passing the optional hint PreferredType. The behaviour of the

[[DefaultValue]] method is defined by this specification for all native
ECMAScript objects ([ECMA-262-1999] section 8.6.2.6).

2.1.16 [ECMA-262-1999] Section 9.2, To Boolean

V0027:

The operator ToBoolean converts its argument to a value of type Boolean according to the following

table:

Input Type Result

Undefined false

https://go.microsoft.com/fwlink/?LinkId=153655

20 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Input Type Result

Null false

Boolean The result equals the input argument (no conversion).

Number The result is false if the argument is +0, -0, or NaN; otherwise the result is
true.

String The result is false if the argument is the empty string (its length is zero);
otherwise the result is true.

SafeArray false

VarDate false

Object true

2.1.17 [ECMA-262-1999] Section 9.3, ToNumber

V0028:

The operator ToNumber converts its argument to a value of type Number according to the following

table:

Input Type Result

Undefined NaN

Null +0

Boolean The result is 1 if the argument is true. The result is +0 if the argument is
false.

Number The result equals the input argument (no conversion).

String See grammar and note below.

SafeArray Throw a TypeError exception.

VarDate The result is the Number that represents the internal numerical value of the
VT Date value.

Object Apply the following steps:

1. Call ToPrimitive(input argument, hint Number).

2. Call ToNumber(Result(1)).

3. Return Result(2).

2.1.18 [ECMA-262-1999] Section 9.8, ToString

V0029:

The operator ToString converts its argument to a value of type String according to the following table:

21 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Input Type Result

Undefined "undefined"

Null "null"

Boolean If the argument is true, then the result is "true".

If the argument is false, then the result is "false".

Number See note below.

String Return the input argument (no conversion)

SafeArray Apply the following steps:

1. Call ToObject(input argument).

2. Call ToString(Result(1)).

3. Return Result(2).

VarDate Return a String with contents representing the VarDate value, using the
same representation format as that which is used by

Date.prototype.toString ([ECMA-262-1999] section 15.9.5.2).

Object Apply the following steps:

1. Call ToPrimitive(input argument, hint String).

2. Call ToString(Result(1)).

3. Return Result(2).

2.1.19 [ECMA-262-1999] Section 9.9, ToObject

V0030:

The operator ToObject converts its argument to a value of type Object according to the following

table:

Input Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Create a new Boolean object whose [[value]] property is set to the value of
the boolean. See [ECMA-262-1999] section 15.6 for a description of Boolean
objects.

Number Create a new Number object whose [[value]] property is set to the value of
the number. See [ECMA-262-1999] section 15.7 for a description of Number
objects.

String Create a new String object whose [[value]] property is set to the value of
the string. See [ECMA-262-1999] section 15.5 for a description of String
objects.

SafeArray Create a new VBArray object as if by executing the ECMAScript expression:
new VBArray(argument), where argument is the SafeArray value. See [MS-

ES3EX] section VBArray Objects for a description of VBArray objects.

VarDate Throw a TypeError exception.

Object The result is the input argument (no conversion).

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a

22 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.20 [ECMA-262-1999] Section 10.1.3, Variable Instantiation

V0031:

 For function code: for each formal parameter, as defined in the FormalParameterList, create a

property of the variable object whose name is the Identifier and whose attributes are determined

by the type of code. The values of the parameters are supplied by the caller as arguments to

[[Call]]. If the caller supplies fewer parameter values than there are formal parameters, the

extra formal parameters have value undefined. If two or more formal parameters share the same

name, hence the same property, the corresponding property is given the value that was supplied

for the last parameter with this name. If the value of this last parameter was not supplied by the

caller, the value of the corresponding property is undefined. If any formal parameter has the

name arguments, mark the current execution context as having a partially accessible arguments

object. This state is used in [MS-ES3EX] section VBArray Objects.

V0032:

 For each FunctionDeclaration or FunctionExpression in the code, in source text order, do one of

the following depending upon the form of the FunctionDeclaration or FunctionExpression: create a

property of the variable object whose name is the Identifier in the FunctionDeclaration, whose

value is the result returned by creating a Function object as described in [ECMA-262-1999] section

13, and whose attributes are determined by the type of code. If the variable object already has a

property with this name, replace its value and attributes. Semantically, this step must follow the

creation of FormalParameterList properties.

 If the production is of the form FunctionDeclaration : function (FormalParameterListopt) {

FunctionBody } or FunctionExpression : function (FormalParameterListopt) { FunctionBody }

do nothing.

 If the production is of the form FunctionDeclaration : function Identifier

(FormalParameterListopt) { FunctionBody } or FunctionExpression : function Identifier (

FormalParameterListopt) { FunctionBody } create a property of the variable object whose

name is the Identifier in the FunctionDeclaration or FunctionExpression, whose value is the

result returned by creating a Function object as described in [ECMA-262-1999] section 13,

and whose attributes are determined by the type of code. If the variable object already has a

property with this name, replace its value and attributes. Semantically, this step must follow

the creation of FormalParameterList properties.

 If the production is of the form FunctionDeclaration : JScriptFunction or FunctionExpression :

JScriptFunction perform the following steps:

1. Let func be the result returned by creating a Function object as described in [ECMA-262-

1999] section 13.

2. Process the FunctionBindingList element of the JScriptFunction as described in [ECMA-262-
1999] section 13 and using func and the attributes for the current type of code as

processing arguments.

In JScript 5.x each FunctionExpression is also included in the above processing step.

This means that the value of such a FunctionExpression may be referenced by name

within the code that contains it.

V0033:

%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a
https://go.microsoft.com/fwlink/?LinkId=153655

23 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 For each Catch, VariableDeclaration or VariableDeclarationNoIn in the code, create a property of

the variable object whose name is the Identifier in the Catch, VariableDeclaration or

VariableDeclarationNoIn, whose value is undefined and whose attributes are determined by the

type of code. If there is already a property of the variable object with the name of a declared

variable, the value of the property and its attributes are not changed. Semantically, this step must

follow the creation of the FormalParameterList and FunctionDeclaration properties. In particular, if

a declared variable has the same name as a declared function or formal parameter, the variable

declaration does not disturb the existing property.

2.1.21 [ECMA-262-1999] Section 10.1.8, Arguments Object

V0034:

When control enters an execution context for function code, an arguments object is created and

initialised as follows:

 The value of the internal [[Prototype]] property of the arguments object is the original Object

prototype object, the one that is the initial value of Object.prototype (see [ECMA-262-1999]

section 15.2.3.1).

 A property is created with name callee and property attributes { DontEnum }. The initial value of

this property is the Function object being executed. This allows anonymous functions to be

recursive.

 A property is created with name caller and property attributes { DontEnum }. Let C be the

execution context that performed the call that caused the current execution context to be entered.

The initial value of the caller property is null if C is an execution context for global code, eval

code, or a built-in or host function object. Otherwise C is an execution context for function code

and the initial value of the caller property is arguments object that was created when C was

entered.

2.1.22 [ECMA-262-1999] Section 10.2, Entering an Execution Context

V0035:

In JScript 5.x the sharing of storage between the properties of the arguments object

and the corresponding properties to the activation object ceases when execution of the

execution context that created the arguments object completes.

2.1.23 [ECMA-262-1999] Section 10.2.1, Global Code

V0036:

 The scope chain is created and initialised to contain the global object and no others.

 Variable instantiation is performed using the global object as the variable object and using

property attributes { DontEnum, DontDelete }.

 The this value is the global object.

JScript 5.x variable instantiations creates properties of the global object that have the

DontEnum attribute.

https://go.microsoft.com/fwlink/?LinkId=153655

24 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.24 [ECMA-262-1999] Section 10.2.2, Eval Code

V0037:

When control enters an execution context for eval code, the previous active execution context,

referred to as the calling context, is used to determine the scope chain, the variable object, and the

this value. If there is no calling context, then initialising the scope chain, variable instantiation, and

determination of the this value are performed just as for global code.

If the value of the eval property is used in any way other than a direct call as specified

in [ECMA-262-1999] section 15.1.2.1, Jscript 5.x under Windows Internet Explorer 9

initializes the execution context as if it were the global execution context.

 The scope chain is initialised to contain the same objects, in the same order, as the calling

context's scope chain. This includes objects added to the calling context's scope chain by with

statements and catch clauses.

 Variable instantiation is performed using the calling context's variable object and using empty

property attributes.

 The this value is the same as the this value of the calling context.

In JScript 5.x an additional object with no properties is added to the front of the scope

chain for eval code. This object is called the eval scope. Eval code may get, but may

not put to, the value of a property of the calling context's variable object that has the

name arguments and which is the actual arguments object of the calling context. The

first time the eval code attempts to put to such a property a new property named

arguments is added to the eval scope.

2.1.25 [ECMA-262-1999] Section 10.2.3, Function Code

V0038:

 The scope chain is initialised to contain the activation object followed by the objects in the scope

chain stored in the [[Scope]] property of the Function object.

 Variable instantiation is performed using the activation object as the variable object and using

property attributes { DontDelete }.

 The caller provides the this value. If the this value provided by the caller is null or undefined,

or if the Type of the this value is VarDate not an object (including the case where it is null), then

the this value is the global object. Otherwise, the result of calling ToObject with the caller-

provided this value as the argument is used as the this value for the execution context.

JScript 5.x performs ToObject conversion as part of establishing an execution context

for function code rather than performing the conversions as part of the

Function.prototype.apply and Function.prototype.call methods. Because of this

difference, built-in functions and host functions may receive non-object values as their

this value.

2.1.26 [ECMA-262-1999] Section 11.1.4, Array Initialiser

V0039:

Elision :

https://go.microsoft.com/fwlink/?LinkId=153655

25 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

,

Elision ,

Semantics

The production ArrayLiteral : [Elisionopt] is evaluated as follows:

1. Create a new array as if by the expression new Array().

2. Evaluate Elision; if not present, use the numeric value zero.

3. Call the [[Put]] method of Result(1) with arguments "length" and Result(2).

4. Return Result(1).

JScript 5.x sets the length property in step 3 to Result(2)+1. For example, an

ArrayLiteral of the form [,] will have a length of 2 instead of 1 as specified above.

V0040:

The production ArrayLiteral : [ElementList , Elisionopt] is evaluated as follows:

1. Evaluate ElementList.

2. Evaluate Elision; if not present, use the numeric value zero.

3. Call the [[Get]] method of Result(1) with argument "length".

4. Call the [[Put]] method of Result(1) with arguments "length" and (Result(2)+Result(3)).

5. Return Result(1).

If Elision is present, JScript 5.x uses the result of evaluating Elision+1 as Result(2).

For example, an ArrayLiteral of the form [1,2,] has a length of 3 instead of 2 as

specified above.

V0041:

The production ElementList : Elisionopt AssignmentExpression is evaluated as follows:

1. Create a new array as if by the expression new Array().

2. Evaluate Elision; if not present, use the numeric value zero.

3. Evaluate AssignmentExpression.

4. Call GetValue(Result(3)).

1. If Result(4) is not the value undefined, go to step 5.

2. Call the [[Put]] method of Result(1) with arguments "length" and (Result(2)+1).

3. Return Result(1).

5. Call the [[Put]] method of Result(1) with arguments Result(2) and Result(4).

6. Return Result(1)

V0042:

26 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

The production ElementList : ElementList , Elisionopt AssignmentExpression is evaluated as

follows:

1. Evaluate ElementList.

2. Evaluate Elision; if not present, use the numeric value zero.

3. Evaluate AssignmentExpression.

4. Call GetValue(Result(3)).

5. Call the [[Get]] method of Result(1) with argument "length".

1. If Result(4) is not the value undefined, go to step 6.

2. If the browser is Windows Internet Explorer 7 or Windows Internet Explorer 8:

1. Call the [[Put]] method of Result(1) with arguments "length" and

(Result(2)+Result(5)+1).

2. Return Result(1).

6. Call the [[Put]] method of Result(1) with arguments (Result(2)+Result(5)) and

Result(4).

7. Return Result(1).

If the value of an AssignmentExpression in ElementList is undefined, JScript 5.x

under Internet Explorer 7 or Internet Explorer 8 treats it as an elision. It does not

create its own property of the array object corresponding to that array element.

However, the length of the array is adjusted to include that element position.

2.1.27 [ECMA-262-1999] Section 11.1.5, Object Initialiser

V0043:

Syntax

ObjectLiteral :

{ }

{ PropertyNameAndValueList }

{ PropertyNameAndValueList , }

JScript 5.8 supports the occurrence of a single trailing comma as the last item within

an ObjectLiteral. JScript 5.7 does not support this extension.

V0044:

Semantics

The productions ObjectLiteral : { PropertyNameAndValueList } and {
PropertyNameAndValueList , } are is evaluated as follows:

1. Evaluate PropertyNameAndValueList.

2. Return Result(1);

27 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.28 [ECMA-262-1999] Section 11.2.1, Property Accessors

V0045:

The production MemberExpression : MemberExpression [Expression] is evaluated as follows:

1. Evaluate MemberExpression.

2. Call GetValue(Result(1)).

3. Evaluate Expression.

4. Call GetValue(Result(3)).

5. If the type of Result(2) is String use Result(2), otherwise use the result of calling Call

ToObject(Result(2)).

6. Call ToString(Result(4)).

7. Return a value of type Reference whose base object is Result(5) and whose property name is

Result(6).

The change to step 5 is necessary to allow the individual characters of String values to

be accessed as properties.

2.1.29 [ECMA-262-1999] Section 11.4.1, The delete Operator

V0046:

The production UnaryExpression : delete UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.

1. If UnaryExpression consists entirely of the identifier this, throw a TypeError exception.

2. If Type(Result(1)) is not Reference, return true throw a TypeError exception.

3. Call GetBase(Result(1)).

1. If Result(3) is the global object, throw a TypeError exception.

4. Call GetPropertyName(Result(1)).

5. Call the [[Delete]] method on Result(3), providing Result(4) as the property name to delete.

6. Return Result(5).

In JScript 5.x, if UnaryExpression is the identifier this or an explicit reference to a

property of the global object, a TypeError exception is thrown. For example, delete

this.prop or delete window.prop would produce such an exception regardless of

whether or not prop actually exists or how it was created. If UnaryExpression is a

simple Identifier that resolves to a property of the global object, the above algorithm

applies.

JScript also throws a TypeError if the value of the UnaryExpression is any Type of

ECMAScript value other than Reference.

28 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.30 [ECMA-262-1999] Section 11.4.3, The typeof Operator

V0047:

The production UnaryExpression : typeof UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.

2. If Type(Result(1)) is not Reference, go to step 4.

3. If GetBase(Result(1)) is null, return "undefined".

4. Call GetValue(Result(1)).

5. Return a string determined by Type(Result(4)) according to the following table:

Type Result

Undefined "undefined"

Null "object"

Boolean "boolean"

Number "number"

String "string"

SafeArray "unknown"

VarDate "date"

Object (native and doesn't
implement [[Call]])

"object"

Object (native and implements
[[Call]])

"function"

Object (host) Implementation-dependent

JScript 5.x returns object

for all host objects
including those that
implement [[Call]].

2.1.31 [ECMA-262-1999] Section 11.6.1, The Addition Operator (+)

V0048:

The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression : AdditiveExpression + MultiplicativeExpression is evaluated as

follows:

1. Evaluate AdditiveExpression.

2. Call GetValue(Result(1)).

3. Evaluate MultiplicativeExpression.

29 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

4. Call GetValue(Result(3)).

5. Call ToPrimitive(Result(2)).

1. If an exception was thrown during step 5 but not caught, return undefined (execution now

proceeds as if no exception were thrown).

6. Call ToPrimitive(Result(4)).

1. If an exception was thrown during step 6 but not caught, return Result(5) (execution now

proceeds as if no exception were thrown).

7. If Type(Result(5)) is String or Type(Result(6)) is String, go to step 12. (Note that this step differs

from step 3 in the comparison algorithm for the relational operators, by using or instead of and.)

8. Call ToNumber(Result(5)).

9. Call ToNumber(Result(6)).

10. Apply the addition operation to Result(8) and Result(9). See the note below ([ECMA-262-1999]

section 11.6.3).

11. Return Result(10).

12. Call ToString(Result(5)).

13. Call ToString(Result(6)).

14. Concatenate Result(12) followed by Result(13).

15. Return Result(14).

The behavior described by steps 5.1 and 6.1 is an unintentional implementation defect

that is present in all versions of JScript 5.x up to and including JScript 5.8.

2.1.32 [ECMA-262-1999] Section 11.8.2, The Greater-than Operator (>)

V0049:

The production RelationalExpression : RelationalExpression > ShiftExpression is evaluated as follows:

1. Evaluate RelationalExpression.

2. Call GetValue(Result(1)).

3. Evaluate ShiftExpression.

4. Call GetValue(Result(3)).

5. Perform the comparison Result(4) < Result(2) with the LeftFirst flag set to false. (see [ECMA-

262-1999] section 11.8.5).

6. If Result(5) is undefined, return false. Otherwise, return Result(5).

ECMAScript generally uses a left-to-right evaluation order; however the [ECMA-262-

1999] specification of the > operator results in an observable partial right-to-left

evaluation order when the application of ToPrimitive on both operands has visible side

effects. JScript 5.x implements strict left-to-right evaluation order for the operands of

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655

30 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

>. Any ToPrimitive side effects caused by evaluating the left operand are visible before

ToPrimitive is applied to the right operand.

2.1.33 [ECMA-262-1999] Section 11.8.3, The Less-than-or-equal Operator (<=)

V0050:

The production RelationalExpression : RelationalExpression <= ShiftExpression is evaluated as

follows:

1. Evaluate RelationalExpression.

2. Call GetValue(Result(1)).

3. Evaluate ShiftExpression.

4. Call GetValue(Result(3)).

5. Perform the comparison Result(4) < Result(2) with the LeftFirst flag set to false. (see [ECMA-

262-1999] section 11.8.5).

6. If Result(5) is true or undefined, return false. Otherwise, return true.

ECMAScript generally uses a left-to-right evaluation order; however, the ES3

specification of the <= operator results in an observable partial right-to-left evaluation

order when the application of ToPrimitive on both operands has visible side effects.

JScript 5.x implements strict left-to-right evaluation order for the operands of <=. Any

ToPrimitive side effects caused by evaluating the left operand are visible before

ToPrimitive is applied to the right operand.

2.1.34 [ECMA-262-1999] Section 11.8.5, The Abstract Relational Comparison

Algorithm

V0051:

The comparison x < y, where x and y are values, produces true, false, or undefined (which
indicates that at least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag

named LeftFirst as a parameter. The flag is used to control the order in which operations with
potentially visible side effects are performed upon x and y. It is necessary to ensure left-to-right
evaluation of expressions. The default value of LeftFirst is true and indicates that the x parameter
corresponds to an expression that occurs to the left of the y parameter's corresponding expression. If
LeftFirst is false, the reverse is the case and operations must be performed upon y before x. Such a
comparison is performed as follows:

(The bulleted steps are added before step 1)

 If the LeftFirst flag is true, then

 Let px be the result of calling Call ToPrimitive(x, hint Number).

 Let py be the result of calling Call ToPrimitive(x, hint Number).

 Else the order of evaluation needs to be reversed to preserve let-to-right evaluation

 Let py be the result of calling Call ToPrimitive(x, hint Number).

 Let px be the result of calling Call ToPrimitive(x, hint Number).

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655

31 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1. Call ToPrimitive(x, hint Number). Use the value of px.

2. Call ToPrimitive(y, hint Number). Use the value of py.

3. If Type(Result(1)) is String and Type(Result(2)) is String, go to step 16. (Note that this step

differs from step 7 in the algorithm for the addition operator + in using and instead of or.)

4. Call ToNumber(Result(1)).

5. Call ToNumber(Result(2)).

6. If Result(4) is NaN, return undefined.

7. If Result(5) is NaN, return undefined.

8. If Result(4) and Result(5) are the same number value, return false.

9. If Result(4) is +0 and Result(5) is -0, return false.

10. If Result(4) is -0 and Result(5) is +0, return false.

11. If Result(4) is +∞, return false.

12. If Result(5) is +∞, return true.

13. If Result(5) is -∞, return false.

14. If Result(4) is -∞, return true.

15. If the mathematical value of Result(4) is less than the mathematical value of Result(5)—note that

these mathematical values are both finite and not both zero—return true. Otherwise, return

false.

16. If Result(2) is a prefix of Result(1), return false. (A string value p is a prefix of string value q if q

can be the result of concatenating p and some other string r. Note that any string is a prefix of

itself, because r may be the empty string.)

17. If Result(1) is a prefix of Result(2), return true.

18. Let k be the smallest nonnegative integer such that the character at position k within Result(1) is

different from the character at position k within Result(2). (There must be such a k, for neither

string is a prefix of the other.)

19. Let m be the integer that is the code point value for the character at position k within Result(1).

20. Let n be the integer that is the code point value for the character at position k within Result(2).

21. If m < n, return true. Otherwise, return false.

2.1.35 [ECMA-262-1999] Section 11.9.3, The Abstract Equality Comparison Algorithm

V0052:

The comparison x == y, where x and y are values, produces true or false. Such a comparison is

performed as follows:

(The bulleted steps are added before step 1)

 If Type(x) is SafeArray or Type(y) is SafeArray, return false.

 If Type(x) is VarDate or Type(y) is VarDate, return false.

32 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1. If Type(x) is different from Type(y), go to step 14.

2. If Type(x) is Undefined, return true.

3. If Type(x) is Null, return true.

4. If Type(x) is not Number, go to step 11.

5. If x is NaN, return false.

6. If y is NaN, return false.

7. If x is the same number value as y, return true.

8. If x is +0 and y is -0, return true.

9. If x is -0 and y is +0, return true.

10. Return false.

11. If Type(x) is String, then return true if x and y are exactly the same sequence of characters

(same length and same characters in corresponding positions). Otherwise, return false.

12. If Type(x) is Boolean, return true if x and y are both true or are both false. Otherwise, return

false.

13. Return true if x and y refer to the same object or if they refer to objects joined to each other (see

[ECMA-262-1999] section 13.1.2). Otherwise, return false.

14. If x is null and y is undefined, return true.

15. If x is undefined and y is null, return true.

16. If Type(x) is Number and Type(y) is String, return the result of the comparison x ==

ToNumber(y).

17. If Type(x) is String and Type(y) is Number, return the result of the comparison ToNumber(x) ==

y.

18. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y.

19. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).

20. If Type(x) is either String or Number and Type(y) is Object, return the result of the comparison x

== ToPrimitive(y).

21. If Type(x) is Object and Type(y) is either String or Number, return the result of the comparison

ToPrimitive(x) == y.

22. Return false.

For JScript 5.x, if either x or y is a host object then the "same object" determination in

step 13 is implementation defined and dependent upon characteristics of the specific

host objects. The method of determination used may be different from the "same

object" determination made in step 13 of the Strict Equality Comparison Algorithm

([ECMA-262-1999] section 11.9.6). If x or y are host objects then interchanging their

values may produce a different result.

https://go.microsoft.com/fwlink/?LinkId=153655

33 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.36 [ECMA-262-1999] Section 11.9.6, The Strict Equality Comparison Algorithm

V0053:

The comparison x === y, where x and y are values, produces true or false. Such a comparison is

performed as follows:

1. If Type(x) is different from Type(y), return false.

1. If Type(x) is SafeArray or Type(y) is VarDate, return false.

2. If Type(x) is Undefined, return true.

3. If Type(x) is Null, return true.

4. If Type(x) is not Number, go to step 11.

5. If x is NaN, return false.

6. If y is NaN, return false.

7. If x is the same number value as y, return true.

8. If x is +0 and y is -0, return true.

9. If x is -0 and y is +0, return true.

10. Return false.

11. If Type(x) is String, then return true if x and y are exactly the same sequence of characters

(same length and same characters in corresponding positions); otherwise, return false.

12. If Type(x) is Boolean, return true if x and y are both true or are both false; otherwise, return

false.

13. Return true if x and y refer to the same object or if they refer to objects joined to each other (see

[ECMA-262-1999] section 13.1.2). Otherwise, return false.

For JScript 5.x, if either x or y is a host object then the "same object" determination in

step 13 is implementation defined and dependent upon characteristics of the specific

host objects. The method of determination used may be different from the "same

object" determination made in step 13 of the Abstract Equality Comparison Algorithm

([ECMA-262-1999] section 11.9.3). If x or y are host objects, the fact that step 13

returns true does not imply that step 13 of the Abstract Equality Comparison Algorithm

would also return true for the same values. If x or y are host objects, interchanging

their values may produce a different result.

2.1.37 [ECMA-262-1999] Section 12, Statements

V0054:

Syntax

Statement :

Block
VariableStatement
EmptyStatement

ExpressionStatement

https://go.microsoft.com/fwlink/?LinkId=153655

34 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

IfStatement
IterationStatement

ContinueStatement
BreakStatement

ReturnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowStatement
TryStatement
DebuggerStatement

FunctionDeclaration

JScript 5.x allows a FunctionDeclaration to occur as a Statement.

2.1.38 [ECMA-262-1999] Section 12.1, Block

V0055:

Syntax

Block :

{ StatementListopt }

In JScript 5.x any ambiguity between Block and the sequence Block EmptyStatement

are resolved as Block.

V0056:

Semantics

The productions Block : { } and Block : { }; are is evaluated as follows:

1. Return (normal, empty, empty).

The productions Block : { StatementList } and Block : { StatementListopt }; are is evaluated

as follows:

1. Evaluate StatementList.

2. Return Result(1).

2.1.39 [ECMA-262-1999] Section 12.6.3, The for Statement

V0057:

The production IterationStatement : for (ExpressionNoInopt ; Expressionopt ; Expressionopt) Statement

is evaluated as follows:

Step 1 below contains a specification error that is documented in ES3 Errata. JScript

5.x implements the following algorithm as corrected in the errata document.

1. If the first Expression ExpressionNoIn is not present, go to step 4.

2. Evaluate ExpressionNoIn.

35 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

3. Call GetValue(Result(2)). (This value is not used.)

4. Let V = empty.

5. If the first Expression is not present, go to step 10.

6. Evaluate the first Expression.

7. Call GetValue(Result(6)).

8. Call ToBoolean(Result(7)).

9. If Result(8) is false, go to step 19.

10. Evaluate Statement.

11. If Result(10).value is not empty, let V = Result(10).value

12. If Result(10).type is break and Result(10).target is in the current label set, go to step 19.

13. If Result(10).type is continue and Result(10).target is in the current label set, go to step 15.

14. If Result(10) is an abrupt completion, return Result(10).

15. If the second Expression is not present, go to step 5.

16. Evaluate the second Expression.

17. Call GetValue(Result(16). (This value is not used.)

18. Go to step 5.

19. Return (normal, V, empty).

V0058:

The production IterationStatement : for (var VariableDeclarationListNoIn ; Expressionopt ;

Expressionopt) Statement is evaluated as follows:

Step 7 below contains a specification error that is documented in ES3 Errata. JScript

5.x implements the following algorithm as corrected in the errata document.

1. Evaluate VariableDeclarationListNoIn.

2. Let V = empty.

3. If the first Expression is not present, go to step 8.

4. Evaluate the first Expression.

5. Call GetValue(Result(4)).

6. Call ToBoolean(Result(5)).

7. If Result(6) is false, go to step 1417.

8. Evaluate Statement.

9. If Result(8).value is not empty, let V = Result(8).value.

10. If Result(8).type is break and Result(8).target is in the current label set, go to step 17.

36 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

11. If Result(8).type is continue and Result(8).target is in the current label set, go to step 13.

12. If Result(8) is an abrupt completion, return Result(8).

13. If the second Expression is not present, go to step 3.

14. Evaluate the second Expression.

15. Call GetValue(Result(14)). (This value is not used.)

16. Go to step 3.

17. Return (normal, V, empty).

2.1.40 [ECMA-262-1999] Section 12.6.4, The for-in Statement

V0059:

The production IterationStatement : for (LeftHandSideExpression in Expression) Statement is

evaluated as follows:

1. Evaluate the Expression.

2. Call GetValue(Result(1)).

1. If Type(Result(2) is VarDate, return (normal, empty, empty).

2. If Result(2) is either null or undefined, return (normal, empty, empty).

3. Call ToObject(Result(2)).

4. Let V = empty.

5. Get the name of the next property of Result(3) that doesn't have the DontEnum attribute. If there
is no such property, go to step 14.

6. Evaluate the LeftHandSideExpression (it may be evaluated repeatedly).

7. Call PutValue(Result(6), Result(5)).

8. Evaluate Statement.

9. If Result(8).value is not empty, let V = Result(8).value.

10. If Result(8).type is break and Result(8).target is in the current label set, go to step 14.

11. If Result(8).type is continue and Result(8).target is in the current label set, go to step 5.

12. If Result(8) is an abrupt completion, return Result(8).

13. Go to step 5.

14. Return (normal, V, empty).

V0060:

The production IterationStatement : for (var VariableDeclarationNoIn in Expression) Statement is
evaluated as follows:

1. Evaluate VariableDeclarationNoIn.

2. Evaluate Expression.

37 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1. If Type(Result(2)) is VarDate, return (normal, empty, empty).

2. If Result(2) is either null or undefined, return (normal, empty, empty).

3. Call GetValue(Result(2)).

4. Call ToObject(Result(3)).

5. Let V = empty.

6. Get the name of the next property of Result(4) that doesn't have the DontEnum attribute. If there
is no such property, go to step 15.

7. Evaluate Result(1) as if it were an Identifier; see [ECMA-262-1999] 11.1.2. (yes, it may be
evaluated repeatedly).

8. Call PutValue(Result(7), Result(6)).

9. Evaluate Statement.

10. If Result(9).value is not empty, let V = Result(9).value.

11. If Result(9).type is break and Result(9).target is in the current label set, go to step 15.

12. If Result(9).type is continue and Result(9).target is in the current label set, go to step 6.

13. If Result(8) is an abrupt completion, return Result(8).

14. Go to step 6.

15. Return (normal, V, empty).

In JScript 5.x no interations of the Statement are performed and no exception is

thrown if the value of Expression is either null or undefined.

V0061:

The mechanics of enumerating the properties (step 5 in the first algorithm, step 6 in the second) is

implementation dependent. The order of enumeration is defined by the object. Properties of the object

being enumerated may be deleted during enumeration. If a property that has not yet been visited

during enumeration is deleted, then it will not be visited. If new properties are added to the object

being enumerated during enumeration, the newly added properties are not guaranteed to be visited in

the active enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the

prototype of the prototype, and so on, recursively; but a property of a prototype is not enumerated if

it is "shadowed" because some previous object in the prototype chain has a property with the same

name.

Note that JScript 5.x under Internet Explorer 7 or 8 defines properties such that their

DontEnum attribute is inherited from prototype properties with the same name. As a

result of this, any properties that have the same name as built-in properties of a

prototype object that have the DontEnum attribute are not included in an

enumeration. However JScript 5.x under Internet Explorer 9 includes the properties

that have the same name as built-in properties of a prototype object in an

enumeration.

In JScript 5.x the order of property enumeration is highly dependent upon dynamic

characteristics of a program including the order in which properties are created and

https://go.microsoft.com/fwlink/?LinkId=153655

38 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

the order in which individual properties are accessed. These dynamic effects are most

pronounced when enumerable properties are inherited from prototypes. For this

reason, is not possible to provide a generalized specification of properties enumeration

order that applies to all objects. However, in JScript 5.x, if an object inherits no

enumerable properties from its prototypes, the object's properties will be enumerated

in the order in which they were created. The order of property enumeration in JScript

5.x under Internet Explorer 9 may be different from the order returned by JScript 5.x

under Internet Explorer 7 or 8.

2.1.41 [ECMA-262-1999] Section 12.11, The switch Statement

V0062:

Semantics

The ES3 errata state that the following algorithm contains many errors. JScript 5.x

implements the revised algorithms provided by the errata document.

The production CaseBlock : { CaseClauses DefaultClause CaseClauses } is given an input parameter,

input, and is evaluated as follows:

1. Let A be the list of CaseClause items in the first CaseClauses, in source text order.

2. For the next CaseClause in A, evaluate CaseClause. If there is no such CaseClause, go to step 7.

3. If input is not equal to Result(2), as defined by the !== operator, go to step 2.

4. Evaluate the StatementList of this CaseClause.

5. If Result(4) is an abrupt completion then return Result(4).

6. Go to step 13.

7. Let B be the list of CaseClause items in the second CaseClauses, in source text order.

8. For the next CaseClause in B, evaluate CaseClause. If there is no such CaseClause, go to step 15.

9. If input is not equal to Result(8), as defined by the !== operator, go to step 8.

10. Evaluate the StatementList of this CaseClause.

11. If Result(10) is an abrupt completion then return Result(10)

12. Go to step 18.

13. For the next CaseClause in A, evaluate the StatementList of this CaseClause. If there is no such

CaseClause, go to step 15.

14. If Result(13) is an abrupt completion then return Result(13).

15. Execute the StatementList of DefaultClause.

16. If Result(15) is an abrupt completion then return Result(15)

17. Let B be the list of CaseClause items in the second CaseClauses, in source text order.

18. For the next CaseClause in B, evaluate the StatementList of this CaseClause. If there is no such

CaseClause, return (normal, empty, empty).

39 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

19. If Result(18) is an abrupt completion then return Result(18).

20. Go to step 18.

The production CaseBlock : { CaseClausesopt } is given an input parameter, input, and is evaluated as

follows:

1. Let V = empty.

2. Let A be the list of CaseClause items in source text order.

3. Let C be the next CaseClause in A. If there is no such CaseClause, then go to step 16.

4. Evaluate C.

5. If input is not equal to Result(4) as defined by the !== operator, then go to step 3.

6. If C does not have a StatementList, then go to step 10.

7. Evaluate C's StatementList and let R be the result.

8. If R is an abrupt completion, then return R.

9. Let V = R.value.

10. Let C be the next CaseClause in A. If there is no such CaseClause, then go to step 16.

11. If C does not have a StatementList, then go to step 10.

12. Evaluate C's StatementList and let R be the result.

13. If R.value is not empty, then let V = R.value.

14. If R is an abrupt completion, then return (R.type, V, R.target).

15. Go to step 10.

16. Return (normal, V, empty).

V0063:

The production CaseBlock : { CaseClausesopt DefaultClause CaseClausesopt } is given an input

parameter, input, and is evaluated as follows:

1. Let V = empty.

2. Let A be the list of CaseClause items in the first CaseClauses, in source text order.

3. Let C be the next CaseClause in A. If there is no such CaseClause, then go to step 11.

4. Evaluate C.

5. If input is not equal to Result(4) as defined by the !== operator, then go to step 3.

6. If C does not have a StatementList, then go to step 20.

7. Evaluate C's StatementList and let R be the result.

8. If R is an abrupt completion, then return R.

9. Let V = R.value.

40 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

10. Go to step 20.

11. Let B be the list of CaseClause items in the second CaseClauses, in source text order.

12. Let C be the next CaseClause in B. If there is no such CaseClause, then go to step 26.

13. Evaluate C.

14. If input is not equal to Result(13) as defined by the !== operator, then go to step 12.

15. If C does not have a StatementList, then go to step 31.

16. Evaluate C's StatementList and let R be the result.

17. If R is an abrupt completion, then return R.

18. Let V = R.value.

19. Go to step 31.

20. Let C be the next CaseClause in A. If there is no such CaseClause, then go to step 26.

21. If C does not have a StatementList, then go to step 20.

22. Evaluate C's StatementList and let R be the result.

23. If R.value is not empty, then let V = R.value.

24. If R is an abrupt completion, then return (R.type, V, R.target).

25. Go to step 20.

26. If the DefaultClause does not have a StatementList, then go to step 30.

27. Evaluate the DefaultClause's StatementList and let R be the result.

28. If R.value is not empty, then let V = R.value.

29. If R is an abrupt completion, then return (R.type, V, R.target).

30. Let B be the list of CaseClause items in the second CaseClauses, in source text order.

31. Let C be the next CaseClause in B. If there is no such CaseClause, then go to step 37.

32. If C does not have a StatementList, then go to step 31.

33. Evaluate C's StatementList and let R be the result.

34. If R.value is not empty, then let V = R.value.

35. If R is an abrupt completion, then return (R.type, V, R.target).

36. Go to step 31.

37. Return (normal, V, empty).

2.1.42 [ECMA-262-1999] Section 12.14, The try Statement

V0064:

The production TryStatement : try Block Catch Finally is evaluated as follows:

41 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Step 5 below contains a specification error that is documented in the ES3 errata.

JScript 5.x implements the following algorithm as corrected in the errata document.

1. Evaluate Block.

2. Let C = Result(1).

3. If Result(1).type is not throw, go to step 6.

4. Evaluate Catch with parameter Result(1).

5. If Result(4).type is not normal, Let C = Result(4).

6. Evaluate Finally.

7. If Result(6).type is normal, return C.

8. Return Result(6).

V0065:

The production Catch : catch (Identifier) Block is evaluated as follows:

1. Let C be the parameter that has been passed to this production.

2. Create a new object as if by the expression new Object().

3. Create a property in the object Result(2). The property's name is Identifier, value is C.value,

and attributes are { DontDelete }.

1. Evaluate Identifier as described in [ECMA-262-1999] section 11.1.2.

2. Call PutValue(Result(t2),C).

4. Add Result(2) to the front of the scope chain.

5. Evaluate Block.

6. Remove Result(2) from the front of the scope chain.

7. Return Result(5).

JScript 5.x does not create a new scope chain element to contain the binding of a

Catch parameter. Instead variable instantiation (see [ECMA-262-1999] section 10.1.3)

creates variables in the current variable object for all Catch parameters. The

parameter variable of each Catch is initialized, as if by a Simple Assignment, to the

actual parameter value before evaluating the Catch's Block.

2.1.43 [ECMA-262-1999] Section 13, Function Definition

V0066:

Syntax

FunctionDeclaration :

function Identifier (FormalParameterListopt) { FunctionBody } JScriptFunction

FunctionExpression :

https://go.microsoft.com/fwlink/?LinkId=153655

42 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

function Identifieropt (FormalParameterListopt) { FunctionBody } JScriptFunction

In JScript 5.x the Identifier of a FunctionDeclaration is optional. However, a

FunctionDeclaration without an Identifier is not instantiated during variable

instantiation ([ECMA-262-1999] 10.1.3) and hence has no observable effect upon the

evaluation of an ECMAScript program.

Any ambiguities between the alternatives of FunctionDeclaration and

FunctionExpression are resolved in favour of the first alternative rather than the

JScriptFunction alternative.

JScriptFunction :

function FunctionBindingList (FormalParameterListopt) { FunctionBody }

FunctionBindingList :

FunctionBinding
FunctionBindingList

FunctionBinding

FunctionBinding :

SimpleFunctionBinding

MethodBinding

EventHandlerBinding

SimpleFunctionBinding :

Identifier [lookahead {NameQualifier, EventDesignator}]

MethodBinding :

ObjectPath NameQualifier Identifier [lookahead {NameQualifier, EventDesignator}]

EventHandlerBinding :

ObjectPath EventDesignator Identifier

ObjectPath :

Identifier

ObjectPath NameQualifier Identifier

NameQualifier : .

EventDesignator : ::

FormalParameterList :

Identifier

FormalParameterList , Identifier

FunctionBody :

SourceElements

V0067:

https://go.microsoft.com/fwlink/?LinkId=153655

43 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Semantics

The productions FunctionDeclaration : function Identifier (FormalParameterListopt) {

FunctionBody } and FunctionExpression : function Identifier (FormalParameterListopt) {
FunctionBody } are is processed for variable instantiation function declarations as follows:

Step 1 below contains a specification error that is documented in the ES3 Errata.

JScript 5.x implements the following algorithm as corrected in the errata document.

1. Create a new Function object as specified in [ECMA-262-1999] section 13.2 with

parameters specified by FormalParameterListopt, and body specified by FunctionBody. Pass

in the scope chain of the running execution context as the Scope.

2. Create a property of the current variable object (as specified in [ECMA-262-1999] section

10.1.3) with name Identifier and value Result(1).

V0068:

The productions FunctionDeclaration : JScriptFunction and FunctionExpression :

JScriptFunction are processed for variable instantiation as follows:

1. Create a new Function object as specified in [ECMA-262-1999] section 13.2 with

parameters specified by the FormalParameterListopt element of the JScriptFunction and
body specified by the FunctionBody element. Pass in the scope chain of the running
execution context as the Scope.

2. Return the value Result(1).

A FunctionDeclaration may be evaluated as a Statement. When either the production

FunctionDeclaration : function Identifier (FormalParameterListopt) { FunctionBody } or the

production FunctionDeclaration : JScriptFunction is evaluated the following step is performed:

1. Return (normal, empty, empty).

V0069:

The production FunctionExpression : function (FormalParameterListopt) { FunctionBody } is

evaluated as follows:

Step 2 below contains a specification error that is documented in the ES3 Errata.

JScript 5.x implements the following algorithm as corrected in the errata document.

1. Create a new Function object as specified in [ECMA-262-1999] section 13.2 with parameters

specified by FormalParameterListopt and body specified by FunctionBody. Pass in the scope chain

of the running execution context as the Scope.

2. Return Result(21).

V0070:

The productions FunctionExpression : function Identifier (FormalParameterListopt) {

FunctionBody } and the production FunctionExpression : JScriptFunction are is evaluated as

follows:

1. Create a new object as if by the expression new Object().

2. Add Result(1) to the front of the scope chain.

44 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

3. Create a new Function object as specified in [ECMA-262-1999] section 13.2 with

parameters specified by FormalParameterListopt and body specified by FunctionBody. Pass

in the scope chain of the running execution context as the Scope.

4. Create a property in the object Result(1). The property's name is Identifier, value is

Result(3), and attributes are { DontDelete, ReadOnly }.

5. Remove Result(1) from the front of the scope chain.

6. Return Result(3).

V0071:

NOTE

The Identifier in a FunctionExpression can be referenced from inside the FunctionExpression's

FunctionBody to allow the function to call itself recursively. However, unlike in a

FunctionDeclaration, the Identifier in a FunctionExpression cannot be referenced from and

does not affect the scope enclosing the FunctionExpression.

In JScript 5.x FunctionExpressions are processed during variable instantiation ([ECMA-

262-1999] section 10.1.3) and their names may affect the enclosing scope.

When evaluating a FunctionExpression, JScript 5.x does not create the local scope

object in step 1 above and does not create a local binding for the Identifier of the

FunctionExpression (step 4). This means that a reference to the Identifier from within

the FunctionBody of such a FunctionExpression may evaluate to a different value from

the evaluated function object.

V0072:

The production FunctionBindingList : FunctionBindingList, FunctionBinding is processed during

variable instantiation as follows when passed a function object func and the attributes attrs as

arguments:

1. Process the FunctionBindingList passing func and attrs as the arguments.

2. Process the FunctionBinding passing func and attrs as the arguments.

V0073:

The production FunctionBindingList : FunctionBindingList, FunctionBinding is processed during

variable instantiation as follows when passed a function object func and the attributes attrs as

arguments:

1. Process the FunctionBinding passing func and attrs as the arguments.

V0074:

The production FunctionBinding : SimpleFunctionBinding is processed during variable

instantiation as follows when passed a function object func and the attributes attrs as

arguments:

1. Let id be the Identifier element of the SimpleFunctionBinding.

2. If id is arguments, return.

45 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

3. Create a property of the variable object of the running execution context with a name if id,

a value of func, and with the attributes that are contained in attrs. If the variable object

already has a property with this name, replace its value and attributes.

V0075:

The production FunctionBinding : MethodBinding is processed during variable instantiation as

follows when passed a function object func and the attributes attrs as arguments:

1. Let objRef be the result of evaluating the ObjectPath element of MethodBinding.

2. Call PutValue(objRef,func).

3. Return.

V0076:

The production FunctionBinding : EventHandlerBinding is processed during variable

instantiation as follows when passed a function object func and the attributes attrs as

arguments:

1. Let objRef be the result of evaluating the ObjectPath element of MethodBinding.

2. Call GetValue(Result(1)).

3. Call ToObject(Result(2)).

4. If Result(3) is not a host object that supports event attachment return.

5. Let eventName be a string containing the text of the Identifier element of

EventHandlerBinding.

6. Perform the host specific action that will associate func as an event handler on Result(3)

for the event named eventName. This action may throw exceptions.

7. Return.

If the host is Internet Explorer, step 6 above is equivalent to invoking the

attachEvent method of Result(3) passing eventName and func as the arguments.

V0077:

The production ObjectPath : Identifier is evaluated identically to the manner that the

production PrimaryExpression : Identifier would be evaluated for the same Identifier (see

[ECMA-262-1999] section10.1.4).

The production ObjectPath : ObjectPath NameQualifier Identifier is evaluated as follows:

1. Evaluate ObjectPath.

2. Call GetValue(Result(1)).

3. Call ToObject(Result(2)).

4. Return a value of type Reference that has a base object of Result(3) and a property name
of Identifier.

46 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.44 [ECMA-262-1999] Section 13.2, Creating Function Objects

V0078:

Given an optional parameter list specified by FormalParameterList, a body specified by FunctionBody,

and a scope chain specified by Scope, a Function object is constructed as follows:

1. If there already exists an object E that was created by an earlier call to this section's algorithm,

and if that call to this section's algorithm was given a FunctionBody that is equated to the

FunctionBody given now, then go to step 13. (If there is more than one object E satisfying these

criteria, choose one at the implementation's discretion.)

2. Create a new native ECMAScript object and let F be that object.

3. Set the [[Class]] property of F to "Function".

4. Set the [[Prototype]] property of F to the original Function prototype object as specified in

[ECMA-262-1999] section 15.3.3.1.

5. Set the [[Call]] property of F as described in [ECMA-262-1999] section 13.2.1.

6. Set the [[Construct]] property of F as described in [ECMA-262-1999] section 13.2.2.

7. Set the [[Scope]] property of F to a new scope chain ([ECMA-262-1999] section 10.1.4) that

contains the same objects as Scope.

8. Set the length property of F to the number of formal properties specified in FormalParameterList.

If no parameters are specified, set the length property of F to 0. This property is given attributes

as specified in [ECMA-262-1999] section 15.3.5.1.

9. Create a new object as would be constructed by the expression new Object().

10. Set the constructor property of Result(9) to F. This property is given attributes { DontEnum }.

11. Set the prototype property of F to Result(9). This property is given attributes as specified in

[ECMA-262-1999] section 15.3.5.2.

12. Return F.

13. At the implementation's discretion, go to either step 2 or step 14.

14. Create a new native ECMAScript object joined to E and let F be that object. Copy all non-internal

properties and their attributes from E to F so that all non-internal properties are identical in E and

F.

15. Set the [[Class]] property of F to "Function".

16. Set the [[Prototype]] property of F to the original Function prototype object as specified in

[ECMA-262-1999] section 15.3.3.1.

17. Set the [[Call]] property of F as described in [ECMA-262-1999] section 13.2.1.

18. Set the [[Construct]] property of F as described in [ECMA-262-1999] section 13.2.2.

19. Set the [[Scope]] property of F to a new scope chain ([ECMA-262-1999] section 10.1.4) that

contains the same objects as Scope.

20. Return F.

https://go.microsoft.com/fwlink/?LinkId=153655

47 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

JScript 5.x never joins function objects. Step 13 of the above algorithm always goes to

step 2.

2.1.45 [ECMA-262-1999] Section 13.2.2, [[Construct]]

V0079:

When the [[Construct]] property for a Function object F is called, the following steps are taken:

1. Create a new native ECMAScript object.

2. Set the [[Class]] property of Result(1) to "Object".

3. Get the value of the prototype property of the F.

4. If Result(3) is an native object, set the [[Prototype]] property of Result(1) to Result(3).

5. If Result(3) is a host object or is not an object, set the [[Prototype]] property of Result(1) to the

original Object prototype object as described in [ECMA-262-1999] 15.2.3.1.

6. Invoke the [[Call]] property of F, providing Result(1) as the this value and providing the

argument list passed into [[Construct]] as the argument values.

7. If Type(Result(6)) is Object then return Result(6).

8. Return Result(1).

2.1.46 [ECMA-262-1999] Section 15, Native ECMAScript Objects

V0080:

Unless otherwise specified in the description of a particular function, if a function or constructor

described in this section is given more arguments than the function is specified to allow, the behaviour

of the function or constructor is undefined. In particular, an implementation is permitted (but not
required) to throw a TypeError exception in this case.

JScript does not throw an exception when a built-in function is called with extra

arguments. The extra arguments are ignored by the function, which otherwise

behaves as specified in this section.

2.1.47 [ECMA-262-1999] Section 15.1, The Global Object

V0081:

The global object does not have a [[Construct]] property; it is not possible to use the global object
as a constructor with the new operator.

The global object does not have a [[Call]] property; it is not possible to invoke the global object as a

function.

The values of the [[Prototype]] and [[Class]] properties of the global object are implementation-
dependent.

In JScript 5.x the global object is a host object rather than a native object. The

[[Class]] property of the global object has the value Object. The JScript 5.x global

object does not actually have a [[Prototype]] property but for all situations described

in this specification it behaves as if it had a [[Prototype]] property whose value was

https://go.microsoft.com/fwlink/?LinkId=153655

48 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

null. The global object does not inherit any properties from the built-in

Object.prototype object.

2.1.48 [ECMA-262-1999] Section 15.1.2.1, eval(x)

V0082:

If value of the eval property is used in any way other than a direct call (that is, other than by the

explicit use of its name as an Identifier which is the MemberExpression in a CallExpression), or if the
eval property is assigned to, an EvalError exception may be thrown.

JScript 5.x does not restrict usage of the function that is the initial value of the eval

property or restrict assignment to the eval property. It does not throw EvalError in

the situations.

2.1.49 [ECMA-262-1999] Section 15.1.2.2, parseInt (string, radix)

V0083:

When the parseInt function is called, the following steps are taken:

1. Call ToString(string).

2. Let S be a newly created substring of Result(1) consisting of the first character that is not a

StrWhiteSpaceChar and all characters following that character. (In other words, remove leading

white space.)

3. Let sign be 1.

4. If S is not empty and the first character of S is a minus sign -, let sign be -1.

5. If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the

first character from S.

6. Let R = ToInt32(radix).

7. If R = 0, go to step 11.

8. If R < 2 or R > 36, then return NaN.

9. If R = 16, go to step 13.

10. Go to step 14.

11. Let R = 10.

12. If the length of S is at least 1 and the first character of S is "0", then at the implementation's

discretion either let R = 8 or leave R unchanged. JScript 5.x always sets R = 8 in this situation.

13. If the length of S is at least 2 and the first two characters of S are either "0x" or "0X", then

remove the first two characters from S and let R = 16.

14. If S contains any character that is not a radix-R digit, then let Z be the substring of S consisting of

all characters before the first such character; otherwise, let Z be S.

15. If Z is empty, return NaN.

16. Compute the mathematical integer value that is represented by Z in radix-R notation, using the

letters A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more

49 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

than 20 significant digits, every significant digit after the 20th may be replaced by a 0 digit, at the

option of the implementation (JScript 5.x replaces digits after the 20th by a 0); and if R is not 2,

4, 8, 10, 16, or 32, then Result(16) may be an implementation-dependent approximation to the

mathematical integer value that is represented by Z in radix-R notation. No approximations are

used for values of R.)

17. Compute the number value for Result(16).

18. Return sign × Result(17).

2.1.50 [ECMA-262-1999] Section 15.2.1.1, Object ([value])

V0084:

When the Object function is called with no arguments or with one argument value, the following steps

are taken:

1. If value is null, undefined or not supplied, or if Type(value) is VarDate, create and return a new

Object object exactly as if the object constructor had been called with the same arguments
([ECMA-262-1999] section 15.2.2.1).

2. Return ToObject(value).

2.1.51 [ECMA-262-1999] Section 15.2.2.1, new Object ([value])

V0085:

When the Object constructor is called with no arguments or with one argument value, the following

steps are taken:

1. If value is not supplied, go to step 8.

2. If the type of value is not Object, go to step 5.

3. If the value is a native ECMAScript object, do not create a new object but simply return value.

4. If the value is a host object, then actions are taken and a result is returned in an implementation-

dependent manner that may depend on the host object.

JScript 5.x simply returns value if it is a host object.

5. If the type of value is String, return ToObject(value).

6. If the type of value is Boolean, return ToObject(value).

7. If the type of value is Number, return ToObject(value).

8. (The argument value was not supplied or its type was SafeArray, VarDate, Null, or Undefined.)

Create a new native ECMAScript object.

The [[Prototype]] property of the newly constructed object is set to the Object prototype object.

The [[Class]] property of the newly constructed object is set to "Object".

The newly constructed object has no [[Value]] property.

Return the newly created native object.

https://go.microsoft.com/fwlink/?LinkId=153655

50 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.52 [ECMA-262-1999] Section 15.2.3, Properties of the Object Constructor

V0086:

The value of the internal [[Prototype]] property of the Object constructor is the Function prototype

object.

Besides the internal properties and the length property (whose value is 1 0), the Object constructor

has the following properties:

2.1.53 [ECMA-262-1999] Section 15.2.4.2, Object.prototype.toString ()

V0087:

When the toString method is called, the following steps are taken:

(The bulleted steps are added before step 1)

 (0.1) If the Type of the this value is VarDate, return "[object Object]".

 (0.2) If the this value is null or undefined use the global object, otherwise use the result of

calling ToObject with the this value as the argument.

 (0.3) If the value in 0.2 is a host object, return "[object Object]".

1. Get the [[Class]] property of the value in 0.2 this object.

2. Compute a string value by concatenating the three strings "[object ", Result(1), and "]".

3. Return Result(2).

2.1.54 [ECMA-262-1999] Section 15.2.4.3, Object.prototyope.toLocaleString ()

V0088:

This function returns the result of calling toString(). the following steps:

1. If the this object is a host object, return "[object]".

2. If the Type of the this value is a VarDate, throw a TypeError exception.

3. Call ToObject with the this value as the argument.

4. If toStr does not have a [[Call]] method, throw a TypeError exception.

5. Return the result of calling the [[Call]] method of toStr passing Result(3) as the this value and

with no other arguments.

2.1.55 [ECMA-262-1999] Section 15.2.4.4, Object.prototype.valueOf ()

V0089:

The valueOf method returns its this value. If the object is the result of calling the Object constructor

with a host object ([ECMA-262-1999] section 15.2.2.1), it is implementation-defined whether valueOf

returns its this value or another value such as the host object originally passed to the constructor.

JScript 5.x returns its this value without applying any coercions to it. If this method is

called using the JScript 5.x implementations of the Function.prototype.call or

https://go.microsoft.com/fwlink/?LinkId=153655

51 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Function.prototype.apply methods and passing either null or undefined as the

this argument, the result is not the global object. If a primitive Number, String, or

Boolean value is passed as the this argument the result is the passed primitive value

rather than a corresponding wrapper object.

2.1.56 [ECMA-262-1999] Section 15.2.4.5, Object.prototype.hasOwnProperty (V)

V0090:

When the hasOwnProperty method is called with argument V, the following steps are taken:

1. Let O be this object the result of calling ToObject passing the this value as the argument.

2. Call ToString(V).

3. If O doesn't have a property with the name given by Result(2), return false.

4. Return true.

NOTE

Unlike [[HasProperty]] ([ECMA-262-1999] section 8.6.2.4), this method does not consider objects

in the prototype chain.

2.1.57 [ECMA-262-1999] Section 15.2.4.6, Object.prototype.isPrototypeOf (V)

V0091:

When the isPrototypeOf method is called with argument V, the following steps are taken:

1. Let O be this object the result of calling ToObject passing the this value as the argument.

2. If V is not an object, return false.

1. If O and V refer to the same object, return true.

3. Let V be the value of the [[Prototype]] property of V.

4. if V is null, return false

5. If O and V refer to the same object or if they refer to objects joined to each other ([ECMA-262-

1999] section 13.1.2), return true.

6. Go to step 3.

In JScript 5.x, the isPrototypeOf method returns true rather than false if the this

value and the argument are the same object.

2.1.58 [ECMA-262-1999] Section 15.2.4.7, Object.prototype.propertyIsEnumerable

(V)

V0092:

When the propertyIsEnumerable method is called with argument V, the following steps are taken:

1. Let O be this object the result of calling ToObject passing the this value as the argument.

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655

52 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1. If O is a host object, throw a TypeError exception.

2. Call ToString(V).

3. If O doesn't have a property with the name given by Result(2), return false.

4. If the property has the DontEnum attribute, return false.

5. Return true.

NOTE

This method does not consider objects in the prototype chain.

2.1.59 [ECMA-262-1999] Section 15.3.4. Properties of the Function Prototype Object

V0093:

The Function prototype object is itself a Function object (its [[Class]] is "Function") that, when

invoked, accepts any arguments and returns undefined.

The value of the internal [[Prototype]] property of the Function prototype object is the Object

prototype object ([ECMA-262-1999] section 15.3.2.1).

It is a function with an "empty body"; if it is invoked, it merely returns undefined.

The Function prototype object does not have a valueOf property of its own; however, it inherits the

valueOf property from the Object prototype Object.

From the above specification language it is unclear whether or not the Function

prototype object has all the properties of a Function instance as described in [ECMA-

262-1999] section 15.3.5. In addition, [ECMA-262-1999] section 15 states: "None of

the built-in functions described in this section shall implement the internal

[[Construct]] method unless otherwise specified in the description of a particular

function. None of the built-in functions described in this section shall initially have a

prototype property unless otherwise specified in the description of a particular

function." The Function prototype object is itself such a built-in function.

In JScript 5.x the Function prototype object does not have a prototype property. It

also does not have [[Construct]] or [[HasInstance]] properties. Because of the

lack of these properties applying the new operator to the Function prototype object or

using the Function prototype object as the right hand operand of the instanceof

operator throws a TypeError exception.

2.1.60 [ECMA-262-1999] Section 15.3.4.2, Function.prototype.toString ()

V0094:

An implementation-dependent representation of the function is returned. This representation has the

syntax of a FunctionDeclaration FunctionExpression. Note in particular that the use and placement of

white space, line terminators, and semicolons within the representation string is implementation-

dependent.

The representation of a function implemented using ECMAScript code is the exact

sequence of characters used to define the function. The first character of the

representation is the 'f' of function, and the final character is the final '}' of the

function definition. However, if the function was defined using a FunctionExpression

https://go.microsoft.com/fwlink/?LinkId=153655

53 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

which is immediately surrounded by one or more levels of grouping operators ([ECMA-

262-1999] section 11.1.6) then the first character of the representation is the '(' of

the outermost such grouping operator and the final character is the ')' of the

outermost such grouping operator.

If the function was created by the Function constructor ([ECMA-262-1999] section

15.3.2.1) the representation of the function consists of the string 'function

anonymous(', immediately followed by the value of P used in step 16 of the [ECMA-

262-1999] section 15.3.2.1 algorithm that created the function, immediately followed

by the string ') {', immediately followed by a <LF> character, immediate followed by

the value of body used in step 16 of the algorithm, immediately followed by a <LF>

character and the character '}'.

If the function is not implemented using ECMAScript code (it is a built-in function or a

host object function), the FunctionBody of the generated representation does not

conform to ECMAScript syntax. Instead, the FunctionBody consists of the text

"[native code]".

The format of the representation generated by JScript 5.x is most appropriately

described as having the syntax of a standard ECMAScript, Third Edition

FunctionExpression rather than a FunctionDeclaration. This is because in the case of

anonymous functions created via a FunctionExpression that does not include the

optional Identifier) the generated syntax does not include the optional Identifier and

hence does not conform to the base standard's definition of FunctionExpression.

2.1.61 [ECMA-262-1999] Section 15.3.4.3, Function.prototype.apply (thisArg,

argArray)

V0095:

The apply method takes two arguments, thisArg and argArray, and performs a function call using the

[[Call]] property of the object. If the object does not have a [[Call]] property, a TypeError

exception is thrown.

If thisArg is null or undefined, the called function is passed the global object as the this value.

Otherwise, the called function is passed ToObject(thisArg) as the this value. If no arguments are

present, the global object is used as the value of thisArg.

2.1.62 [ECMA-262-1999] Section 15.3.4.4, Function.prototype.call (thisArg [, arg1 [,

arg2, ...]])

V0096:

The call method takes one or more arguments, thisArg and (optionally) arg1, arg2 etc, and performs

a function call using the [[Call]] property of the object. If the object does not have a [[Call]]

property, a TypeError exception is thrown. The called function is passed arg1, arg2, etc. as the

arguments.

If thisArg is null or undefined, the called function is passed the global object as the this value.

Otherwise, the called function is passed ToObject(thisArg) as the this value. If no arguments are

present, the global object is used as the value of thisArg.

The length property of the call method is 1.

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655

54 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.63 [ECMA-262-1999] Section 15.3.5.2, prototype

V0097:

The value of the prototype property is used to initialise the internal [[Prototype]] property of a

newly created object before the Function object is invoked as a constructor for that newly created

object. This property has the attribute { DontDelete DontEnum }.

2.1.64 [ECMA-262-1999] Section 15.4.2.1, new Array ([item0 [, item1 [, …]]])

V0098:

The 0 property of the newly constructed object is set to item0 (if supplied); the 1 property of the

newly constructed object is set to item1 (if supplied); and, in general, for as many arguments as there

are, the k property of the newly constructed object is set to argument k, where the first argument is

considered to be argument number 0. If the value of an argument item is undefined, an own

property of the newly constructed object corresponding to that argument is not created.

2.1.65 [ECMA-262-1999] Section 15.4.4.3, Array.prototype.toLocaleString ()

V0099:

The elements of the array are converted to strings using their toLocaleString methods, and these

strings are then concatenated, separated by occurrences of a separator string that has been derived in

an implementation-defined locale-specific way. The result of calling this function is intended to be

analogous to the result of toString, except that the result of this function is intended to be locale-

specific.

The result is calculated as follows:

1. Call the [[Get]] method of this object with argument "length".

2. Call ToUint32(Result(1)).

3. Let separator be the list-separator string appropriate for the host environment's current locale

(this is derived in an implementation-defined way).

4. Call ToString(separator).

5. If Result(2) is zero, return the empty string.

6. Call the [[Get]] method of this object with argument "0".

1. If Type(Result(6)) is VarDate, let R be "[object Object]" and then go to step 9.

7. If Result(6) is undefined or null, use the empty string; otherwise, call

ToObject(Result(6)).toLocaleString(). If the recursive call to toLocaleString would cause a non-

terminating recursion use the empty string as the result of this step.

8. Let R be Result(7).

9. Let k be 1.

10. If k equals Result(2), return R.

11. Let S be a string value produced by concatenating R and Result(4).

12. Call the [[Get]] method of this object with argument ToString(k).

55 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1. If Type(Result(12)) is VarDate, use "[object Object]" as Result(13) and then go to step 14.

13. If Result(12) is undefined or null, use the empty string; otherwise, call

ToObject(Result(12)).toLocaleString(). If the recursive call to toLocaleString would cause a non-

terminating recursion use the empty string as the result of this step.

14. Let R be a string value produced by concatenating S and Result(13).

15. Increase k by 1.

16. Go to step 10.

The toLocaleString function is not generic; it throws a TypeError exception if its this value is not an

Array object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

JScript 5.x determines the separator in step 3 by using the Windows GetLocaleInfo

system function and requesting the LOCALE_SLIST value for the current user locale.

2.1.66 [ECMA-262-1999] Section 15.4.4.4, Array.prototype.concat ([item1 [, item2 [

, …]]])

When the concat method is called with zero or more arguments item1, item2, etc., it returns an array

containing the array elements of the object followed by the array elements of each argument in order.

The following steps are taken:

1. Let A be a new array created as if by the expression new Array().

2. Let n be 0.

1. Let biasN = 0.

3. Let E be this object.

4. If E is not an Array object, go to step 16.

5. Let k be 0.

1. Let biasK = 0.

6. Call the [[Get]] method of E with argument "length".

7. If k equals Result(6) go to step 19.

8. Call ToString(k-biasK).

9. If E has a property named by Result(8), go to step 10, but if E has no property named by

Result(8), go to step 13.

10. Call ToString(n-biasN).

11. Call the [[Get]] method of E with argument Result(8).

12. Call the [[Put]] method of A with arguments Result(10) and Result(11).

13. Increase n by 1.

1. If n > 2147483647, then let biasN = 4294967296; else let biasN = 0.

14. Increase k by 1.

56 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1. If k > 2147483647, then let biasK = 4294967296; else let biasK = 0.

15. Go to step 7.

16. Call ToString(n-biasN).

17. Call the [[Put]] method of A with arguments Result(16) and E.

18. Increase n by 1.

1. If n > 2147483647, then let biasN = 4294967296; else let biasN = 0.

19. Get the next argument in the argument list; if there are no more arguments, go to step 22.

20. Let E be Result(19).

21. Go to step 4.

22. Call the [[Put]] method of A with arguments "length" and n.

23. Return A.

The length property of the concat method is 1.

As specified above in step 3, JScript 5.x uses the passed this value without applying a

ToObject coercion to it. If this method is called using the JScript 5.x implementations

of the Function.prototype.call or Function.prototype.apply methods and passing

either null or undefined as the this argument, the global object is not used as the

this value. If a Number, String, or Boolean value is passed as the this argument the

passed value rather than a corresponding wrapper object is used as the this value.

V0100:

NOTE

The concat function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the concat
function can be applied successfully to a host object is implementation-dependent.

In JScript 5.x the concat function handles array index property names with numeric

values greater than 231-1 differently from numerically smaller array index property

names. As this behavior differs from the base specification and from the probable user

intent the use of this function on objects containing such properties should be avoided.

2.1.67 [ECMA-262-1999] Section 15.4.4.5, Array.prototype.join (separator)

V0101:

The elements of the array are converted to strings, and these strings are then concatenated,

separated by occurrences of the separator. If no separator is provided, a single comma is used as the

separator.

In JScript 5.7, if the value undefined is explicitly provided as the separator argument,

the string "undefined" is used as the separator.

The join method takes one argument, separator, and performs the following steps:

(The bulleted steps are added before step 1)

57 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 Let O be the result of calling ToObject with the this value as the argument.

 If O is a host object, throw a TypeError exception.

1. Call the [[Get]] method of O this object with argument "length".

2. Call ToUint32(Result(1)).

1. If JScript 5.7 and the separator argument is not present, let separator be the single character

",".

2. If JScript 5.7, go to step 4.

3. If separator is undefined, let separator be the single-character string ",".

4. Call ToString(separator).

5. If Result(2) is zero, return the empty string.

6. Call the [[Get]] method of O this object with argument "0".

7. If Result(6) is undefined or null, use the empty string; otherwise, call ToString(Result(6)). If the

call to ToString would cause a non-terminating recursion use the empty string as the result of this

step.

8. Let R be Result(7).

9. Let k be 1.

10. If k equals Result(2), return R.

11. Let S be a string value produced by concatenating R and Result(4).

12. Call the [[Get]] method of O this object with argument ToString(k).

13. If Result(12) is undefined or null, use the empty string; otherwise, call ToString(Result(12)). If

the call to ToString would cause a nonterminating recursion use the empty string as the result of

this step.

14. Let R be a string value produced by concatenating S and Result(13).

15. Increase k by 1.

16. Go to step 10.

The length property of the join method is 1.

V0102:

NOTE

The join function is intentionally generic; it does not require that its this value be an Array object.
Therefore, it can be transferred to other kinds of objects for use as a method. Whether the join
function can be applied successfully to a host object is implementation-dependent. JScript 5.x does
not allow the join function to be applied to a host object.

2.1.68 [ECMA-262-1999] Section 15.4.4.6, Array.prototype.pop ()

V0103:

The last element of the array is removed from the array and returned.

58 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

(The bulleted steps are added before step 1)

 Let O be the result of calling ToObject with the this value as the argument.

 If O is a host object, throw a TypeError exception.

1. Call the [[Get]] method of O this object with argument "length".

2. Call ToUint32(Result(1)).

3. If Result(2) is not zero, go to step 6.

4. Call the [[Put]] method of O this object with arguments "length" and Result(2).

5. Return undefined.

6. Call ToString(Result(2)-1).

7. Call the [[Get]] method of O this object with argument Result(6).

8. Call the [[Delete]] method of O this object with argument Result(6).

9. Call the [[Put]] method of O this object with arguments "length" and (Result(2)-1).

1. If JScript 5.x under Internet Explorer 7 or 8 and Result(2) > 2147483648, return undefined.

10. Return Result(7).

V0104:

NOTE

The pop function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the pop
function can be applied successfully to a host object is implementation-dependent. JScript 5.x does
not allow the pop function to be applied to a host object.

2.1.69 [ECMA-262-1999] Section 15.4.4.7, Array.prototype.push ([item1 [, item2 [,

…]]])

V0105:

The arguments are appended to the end of the array, in the order in which they appear. The new

length of the array is returned as the result of the call.

When the push method is called with zero or more arguments item1, item2, etc., the following steps

are taken:

(The bulleted steps are added before step 1)

 Let O be the result of calling ToObject with the this value as the argument.

 If O is a host object, throw a TypeError exception.

 If JScript 5.7 and if false is the result of calling the [[HasProperty]] method of O with name

"length", return undefined.

1. Call the [[Get]] method of O this object with argument "length".

2. Let n be the result of calling ToUint32(Result(1)).

59 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

3. Get the next argument in the argument list; if there are no more arguments, go to step 7.

1. If JScript.X under Internet Explorer 9 and n < 2147483648 then let indx be n; else throw a

RangeError exception.

2. If JScript.X under Internet Explorer 7 or 8 and n < 2147483648 then let indx be n; else let

indx be n-4294967296.

4. Call the [[Put]] method of O this object with arguments ToString(indx n) and Result(3).

5. Increase n by 1.

6. Go to step 3.

7. Call the [[Put]] method of O this object with arguments "length" and n.

8. If JScript.X under Internet Explorer 9, return Return n.

9. If JScript.X under Internet Explorer 7 or 8 and n < 2147483648 return n; else return n-

4294967296.

JScript 5.x under Internet Explorer 7 or 8 does not conform to the base specification in

situations where the initial value of the array's length property after conversion using

ToUint32 is greater than 2147483647 (which is 231-1) or where the push method's

base specification operation would cause the array's length to exceed that value. In

such situations, any array elements that would have been created with indices greater

than 2147483647 are instead created with properties names that are the string

representation of the negative integer that is the 32-bit 2's complement interpretation

of 32-bit encoding of the index value. The length property is adjusted normally in

conformance to the base specification; however, if the final length value is greater

than 2147483647, the return value is the negative integer that is the 32-bit 2's

complement interpretation of 32-bit encoding of the final length value.

2.1.70 [ECMA-262-1999] Section 15.4.4.8, Array.prototype.reverse ()

V0106:

The elements of the array are arranged so as to reverse their order. The object is returned as the
result of the call.

(The bulleted steps are added before step 1)

 Let O be the result of calling ToObject with the this value as the argument.

 If O is a host object, throw a TypeError exception.

1. Call the [[Get]] method of O this object with argument "length".

2. Call ToUint32(Result(1)).

3. Compute floor(Result(2)/2).

4. Let k be 0.

5. If k equals Result(3), return O this object.

6. Compute Result(2)-k-1.

1. If k > 2147483647, then let biasLower = 4294967296; else let biasLower = 0.

60 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2. If Result(6) > 2147483647, then let biasUpper = 4294967296; else let biasUpper = 0.

7. Call ToString(k-biasLower).

8. Call ToString(Result(6)-biasUpper).

9. Call the [[Get]] method of O this object with argument Result(7).

10. Call the [[Get]] method of O this object with argument Result(8).

11. If this object does not have a property named by Result(8), go to step 19.

12. If this object does not have a property named by Result(7), go to step 16.

13. Call the [[Put]] method of O this object with arguments Result(7) and Result(10).

14. Call the [[Put]] method of O this object with arguments Result(8) and Result(9).

15. Go to step 25.

16. Call the [[Put]] method of O this object with arguments Result(7) and Result(10).

17. Call the [[Delete]] method on O this object, providing Result(8) as the name of the property to
delete.

18. Go to step 25.

19. If this object does not have a property named by Result(7), go to step 23.

20. Call the [[Delete]] method on O this object, providing Result(7) as the name of the property to
delete.

21. Call the [[Put]] method of O this object with arguments Result(8) and Result(9).

22. Go to step 25.

23. Call the [[Delete]] method on O this object, providing Result(7) as the name of the property to
delete.

24. Call the [[Delete]] method on O this object, providing Result(8) as the name of the property to
delete.

25. Increase k by 1.

26. Go to step 5.

V0107:

NOTE

The reverse function is intentionally generic; it does not require that its this value be an Array
object. Therefore, it can be transferred to other kinds of objects for use as a method. Whether the
reverse function can be applied successfully to a host object is implementation-dependent. JScript 5.x

does not allow the reverse function to be applied to a host object.

In JScript 5.x the reverse function handles array index property names with numeric

values greater than 231-1 differently from numerically smaller array index property
names. As this behavior differs from the base specification and from the probable user
intent the use of this function on objects containing such properties should be avoided.

61 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.71 [ECMA-262-1999] Section 15.4.4.9, Array.prototype.shift ()

V0108:

The first element of the array is removed from the array and returned.

(The bulleted steps are added before step 1)

 Let O be the result of calling ToObject with the this value as the argument.

 If O is a host object, throw a TypeError exception.

 If JScript 5.7 and if false is the result of calling the [[HasProperty]] method of O with name
"length", return undefined.

1. Call the [[Get]] method of O this object with argument "length".

2. Call ToUint32(Result(1)).

3. If Result(2) is not zero, go to step 6.

4. Call the [[Put]] method of O this object with arguments "length" and Result(2).

5. Return undefined.

6. Call the [[Get]] method of O this object with argument 0.

7. Let k be 1.

8. If k equals Result(2), go to step 18.

1. If k > 2147483647, then let biasSrc = 4294967296; else let biasSrc = 0.

2. If k-1 > 2147483647, then let biasDst = 4294967296; else let biasDst = 0.

9. Call ToString(k-biasSrc).

10. Call ToString(k-1-biasDst).

11. If O this object has a property named by Result(9), go to step 12; but if O this object has no
property named by Result(9), then go to step 15.

12. Call the [[Get]] method of O this object with argument Result(9).

13. Call the [[Put]] method of O this object with arguments Result(10) and Result(12).

14. Go to step 16.

15. Call the [[Delete]] method of O this object with argument Result(10).

16. Increase k by 1.

17. Go to step 8.

18. If JScript 5.8 call the [[Delete]] method of O this object with argument ToString(Result(2)-1).

19. Call the [[Put]] method of O this object with arguments "length" and (Result(2)-1).

20. Return Result(6).

V0109:

NOTE

62 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

The shift function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the shift

function can be applied successfully to a host object is implementation-dependent. Jscript 5.x does not
allow the shift function to be applied to a host object.

In Jscript 5.x the shift function handles array index property names with numeric

values greater than 231-1 differently from numerically smaller array index property
names. As this behavior differs from the base specification and from probable user
intent, the use of this function on objects containing such properties should be
avoided.

2.1.72 [ECMA-262-1999] Section 15.4.4.10, Array.prototype.slice (start, end)

V0110:

The slice method takes two arguments, start and end, and returns an array containing the elements

of the array from element start up to, but not including, element end (or through the end of the array

if end is not present undefined). If start is negative, it is treated as (length+start) where length is

the length of the array. If end is negative, it is treated as (length+end) where length is the length of

the array. The following steps are taken:

(The bulleted steps are added before step 1)

 Let O be the result of calling ToObject with the this value as the argument.

 If O is a host object, throw a TypeError exception.

1. Let A be a new array created as if by the expression new Array().

2. Call the [[Get]] method of O this object with argument "length".

3. Call ToUint32(Result(2)).

1. If end is not present, set end to Result(3).

4. Call ToInteger(start).

5. If Result(4) is negative, use max((Result(3)+Result(4)),0); else use min(Result(4),Result(3)).

6. Let k be Result(5).

7. If end is undefined, use 0 Result(3); else use ToInteger(end).

8. If Result(7) is negative, use max((Result(3)+Result(7)),0); else use min(Result(7),Result(3)).

9. Let n be 0.

10. If k is greater than or equal to Result(8), go to step 19.

1. If k > 2147483647, then let biasSrc = 4294967296; else let biasSrc = 0.

2. If n > 2147483647, then let biasDst = 4294967296; else let biasDst = 0.

11. Call ToString(k-biasSrc).

12. If O this object has a property named by Result(11), go to step 13; but if O this object has no

property named by Result(11), then go to step 16.

13. Call ToString(n-biasSrc).

63 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

14. Call the [[Get]] method of O this object with argument Result(11).

15. Call the [[Put]] method of A with arguments Result(13) and Result(14).

16. Increase k by 1.

17. Increase n by 1.

18. Go to step 10.

19. Call the [[Put]] method of A with arguments "length" and n.

20. Return A.

The length property of the slice method is 2.

V0111:

NOTE

The slice function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the slice
function can be applied successfully to a host object is implementation-dependent. JScript 5.x does

not allow the slice function to be applied to a host object.

In JScript 5.x the slice function handles array index property names with numeric

values greater than 231-1 differently from numerically smaller array index property

names. As this behavior differs from the base specification and from probable user

intent, the use of this function on objects containing such properties should be

avoided.

2.1.73 [ECMA-262-1999] Section 15.4.4.11, Array.prototype.sort (comparefn)

V0112:

The elements of this array are sorted. The sort is not necessarily stable (that is, elements that

compare equal do not necessarily remain in their original order). If comparefn is present not

undefined, it should be a function that accepts two arguments x and y and returns a negative value if

x < y, zero if x = y, or a positive value if x > y.

If comparefn is present not undefined and is not a consistent comparison function for the elements of

this array (see below), the behaviour of sort is implementation-defined. Let len be

ToUint32(this.length). If there exist integers i and j and an object P such that all of the conditions

below are satisfied then the behaviour of sort is implementation-defined:

 0 ≤ i < len

 0 ≤ j < len

 this does not have a property with name ToString(i)

 P is obtained by following one or more [[Prototype]] properties starting at this

 P has a property with name ToString(j)

V0113:

Otherwise the following steps are taken.

(The bulleted steps are added before step 1)

64 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 Let obj be the result of calling ToObject with the this value as the argument.

 If obj is a host object, throw a TypeError exception.

 If false is the result of calling the [[HasProperty]] method of obj with name "length", return

obj.

1. Call the [[Get]] method of obj this object with argument "length".

2. Call ToUint32(Result(1)).

3. Perform an implementation-dependent sequence of calls to the [[Get]], [[Put]], and [[Delete]]

methods of obj this object and to SortCompare (described below), where the first argument for

each call to [[Get]], [[Put]], or [[Delete]] is a nonnegative integer less than Result(2) and

where the arguments for calls to SortCompare are results of previous calls to the [[Get]] method.

4. Return obj this object.

V0114:

The returned object must have the following two properties.

 There must be some mathematical permutation π of the nonnegative integers less than Result(2),

such that for every nonnegative integer j less than Result(2), if property old[j] existed, then

new[π(j)] is exactly the same value as old[j], but if property old[j] did not exist, then

new[π(j)] does not exist.

 Then for all nonnegative integers j and k, each less than Result(2), if SortCompare(j,k) < 0 (see

SortCompare below), then π(j) < π(k).

Here the notation old[j] is used to refer to the hypothetical result of calling the [[Get]] method of

obj this object with argument j before this function is executed, and the notation new[j] to refer to

the hypothetical result of calling the [[Get]] method of obj this object with argument j after this

function has been executed.

V0115:

When the SortCompare operator is called with two arguments j and k, the following steps are taken:

1. Call ToString(j).

2. Call ToString(k).

3. If obj this object does not have a property named by Result(1), and obj this object does not have

a property named by Result(2), return +0.

4. If obj this object does not have a property named by Result(1), return 1.

5. If obj this object does not have a property named by Result(2), return -1.

6. Call the [[Get]] method of obj this object with argument Result(1).

7. Call the [[Get]] method of obj this object with argument Result(2).

8. Let x be Result(6).

9. Let y be Result(7).

10. If x and y are both undefined, return +0.

11. If x is undefined, return 1.

65 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

12. If y is undefined, return -1.

1. If the argument comparefn is not present or the value null, go to step 16.

13. If the argument comparefn is not a function undefined, throw a TypeError exception go to step

16.

14. Call comparefn with arguments x and y.

1. If Result(14) is a Number, return Result(14).

2. Call ToPrimitive with argument Result(14) and hint Number.

3. If browser is Internet Explorer 7 or 8 and Result(14.1) is undefined, throw a TypeError

exception.

4. Call ToNumber with argument Result(14.1).

15. Return Result(14.4).

16. Call ToString(x).

17. Call ToString(y).

18. If Result(16) < Result(17), return -1.

19. If Result(16) > Result(17), return 1.

20. Return +0.

V0116:

NOTE 2

The sort function is intentionally generic; it does not require that its this value be an Array object.

Therefore, it can be transferred to other kinds of objects for use as a method. Whether the sort

function can be applied successfully to a host object is implementation-dependent. JScript 5.x does

not allow the sort function to be applied to a host object.

2.1.74 [ECMA-262-1999] Section 15.4.4.12, Array.prototype.splice (start, deleteCount

[, item1 [, item2 [, ...]]])

V0117:

When the splice method is called with two or more arguments start, deleteCount and (optionally)

item1, item2, etc., the deleteCount elements of the array starting at array index start are replaced by

the arguments item1, item2, etc. The following steps are taken:

(The bulleted steps are added before step 1)

 Let O be the result of calling ToObject with the this value as the argument.

 If O is a host object, throw a TypeError exception.

 If JScript 5.7 and if false is the result of calling the [[HasProperty]] method of O with name

"length", return undefined.

1. Let A be a new array created as if by the expression new Array().

2. Call the [[Get]] method of O this object with argument "length".

66 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

3. Call ToUint32(Result(2)).

4. Call ToInteger(start).

5. If Result(4) is negative, use max((Result(3)+Result(4)),0); else use min(Result(4),Result(3)).

6. Compute min(max(ToInteger(deleteCount),0),Result(3)-Result(5)).

7. Let k be 0.

8. If k equals Result(6), go to step 16.

1. If Result(5)+k > 2147483647, then let biasSrc = 4294967296; else let biasSrc = 0.

2. If k > 2147483647, then let biasK = 4294967296; else let biasK = 0.

9. Call ToString(Result(5)+k-biasSrc).

10. If O this object has a property named by Result(9), go to step 11; but if O this object has no

property named by Result(9), then go to step 14.

11. Call ToString(k-biasK).

12. Call the [[Get]] method of O this object with argument Result(9).

13. Call the [[Put]] method of A with arguments Result(11) and Result(12).

14. Increment k by 1.

15. Go to step 8.

16. Call the [[Put]] method of A with arguments "length" and Result(6).

17. Compute the number of additional arguments item1, item2, etc.

18. If Result(17) is equal to Result(6), go to step 48.

19. If Result(17) is greater than Result(6), go to step 37.

20. Let k be Result(5).

21. If k is equal to (Result(3)-Result(6)), go to step 31.

1. If k+Result(6) > 2147483647, then let biasSrc = 4294967296; else let biasSrc = 0.

2. If k+Result(17) > 2147483647, then let biasDst = 4294967296; else let biasDst = 0.

22. Call ToString(k+Result(6)-biasSrc).

23. Call ToString(k+Result(17)-biasDst).

24. If O this object has a property named by Result(22), go to step 25; but if O this object has no

property named by Result(22), then go to step 28.

25. Call the [[Get]] method of O this object with argument Result(22).

26. Call the [[Put]] method of O this object with arguments Result(23) and Result(25).

27. Go to step 29.

28. Call the [[Delete]] method of O this object with argument Result(23).

67 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

29. Increase k by 1.

30. Go to step 21.

31. Let k be Result(3).

32. If k is equal to (Result(3)-Result(6)+Result(17)), go to step 48.

33. Call ToString(k-1).

34. Call the [[Delete]] method of this object with argument Result(33).

35. Decrease k by 1.

36. Go to step 32.

37. Let k be (Result(3)-Result(6)).

38. If k is equal to Result(5), go to step 48.

1. If k+Result(6)-1 > 2147483647, then let biasSrc = 4294967296; else let biasSrc = 0.

2. If k+Result(17)-1 > 2147483647, then let biasDst = 4294967296; else let biasDst = 0.

39. Call ToString(k+Result(6)-1-biasSrc).

40. Call ToString(k+Result(17)-1-biasDst)

41. If O this object has a property named by Result(39), go to step 42; but if O this object has no

property named by Result(39), then go to step 45.

42. Call the [[Get]] method of O this object with argument Result(39).

43. Call the [[Put]] method of O this object with arguments Result(40) and Result(42).

44. Go to step 46.

45. Call the [[Delete]] method of O this object with argument Result(40).

46. Decrease k by 1.

47. Go to step 38.

48. Let k be Result(5).

49. Get the next argument in the part of the argument list that starts with item1; if there are no more

arguments, go to step 52.1 53.

1. If k > 2147483647, then let biasK = 4294967296; else let biasK = 0.

50. Call the [[Put]] method of O this object with arguments ToString(k-biasK) and Result(49).

51. Increase k by 1.

52. Go to step 49.

1. If Result(6) ≠ Result(17), then go to step 54.

53. Call the [[Put]] method of O this object with arguments "length" and (Result(3)-

Result(6)+Result(17)).

54. Return A.

68 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

The length property of the splice method is 2.

V0118:

NOTE

The splice function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the splice
function can be applied successfully to a host object is implementation-dependent. JScript 5.x does
not allow the splice function to be applied to a host object.

In JScript 5.x the splice function handles array index property names with numeric

values greater than 231-1 differently from numerically smaller array index property

names. As this behavior differs from the base specification and from probable user

intent, the use of this function on objects containing such properties should be

avoided.

2.1.75 [ECMA-262-1999] Section 15.4.4.13, Array.prototype.unshift ([item1 [, item2

[, ...]]])

V0119:

The arguments are prepended to the start of the array, such that their order within the array is the

same as the order in which they appear in the argument list.

When the unshift method is called with zero or more arguments item1, item2, etc., the following

steps are taken:

(The bulleted steps are added before step 1)

 Let O be the result of calling ToObject with the this value as the argument.

 If O is a host object, throw a TypeError exception.

 If JScript 5.7 and if false is the result of calling the [[HasProperty]] method of O with name

"length", return undefined.

1. Call the [[Get]] method of O this object with argument "length".

2. Call ToUint32(Result(1)).

3. Compute the number of arguments.

4. Let k be Result(2).

5. If k is zero, go to step 15.

1. If k-1 > 2147483647, then let biasSrc = 4294967296; else let biasSrc = 0.

2. If k+Result(3)-1 > 2147483647, then let biasDst = 4294967296; else let biasDst = 0.

6. Call ToString(k-1-biasSrc).

7. Call ToString(k+Result(3)-1-biasDest).

8. If O this object has a property named by Result(6), go to step 9; but if O this object has no

property named by Result(6), then go to step 12.

9. Call the [[Get]] method of O this object with argument Result(6).

69 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

10. Call the [[Put]] method of O this object with arguments Result(7) and Result(9).

11. Go to step 13.

12. Call the [[Delete]] method of O this object with argument Result(7).

13. Decrease k by 1.

14. Go to step 5.

15. Let k be 0.

16. Get the next argument in the part of the argument list that starts with item1; if there are no more

arguments, go to step 20.1 21.

17. Call ToString(k).

18. Call the [[Put]] method of O this object with arguments Result(17) and Result(16).

19. Increase k by 1.

20. Go to step 16.

1. If Result(3) is zero, then go to step 21.1.

21. Call the [[Put]] method of O this object with arguments "length" and (Result(2)+Result(3)).

1. If Jscript 5.7, return undefined.

22. Return (Result(2)+Result(3)).

The length property of the unshift method is 1.

V0120:

NOTE

The unshift function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the unshift

function can be applied successfully to a host object is implementation-dependent. Jscript 5.x does not
allow the unshift function to be applied to a host object.

In Jscript 5.x the unshift function handles array index property names with numeric

values greater than 231-1 differently from numerically smaller array index property

names. As this behavior differs from the base specification and from probable user

intent, the use of this function on objects containing such properties should be

avoided.

2.1.76 [ECMA-262-1999] Section 15.4.5.1, [[Put]] (P, V)

V0121:

Array objects use a variation of the [[Put]] method used for other native ECMAScript objects ([ECMA-

262-1999] section 8.6.2.2).

Assume A is an Array object and P is a string.

When the [[Put]] method of A is called with property P and value V, the following steps are taken:

(The bulleted step is added before step 1)

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655

70 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 If JScript 5.7 and P is "length", go to step 12.

1. Call the [[CanPut]] method of A with name P.

2. If Result(1) is false, return.

3. If A doesn't have a property with name P, go to step 7.

4. If P is "length", go to step 12.

5. Set the value of property P of A to V.

6. Go to step 8.

7. Create a property with name P, set its value to V and give it empty attributes.

8. If P is not an array index and not '4294967295', return.

1. If P is '4294967295', go to step 17.

9. If ToUint32(P) is less than the value of the length property of A, then return.

10. Change (or set) the value of the length property of A to ToUint32(P)+1.

11. Return.

12. Compute ToUint32(V).

1. If 0 ≤ ToNumber(V) < 4294967296, go to step 14.

13. If Result(12) is not equal to ToNumber(V), throw a RangeError exception.

14. For every integer k that is less than the value of the length property of A but not less than

Result(12), if A itself has a property (not an inherited property) named ToString(k), then delete

that property.

15. Set the value of property P of A to Result(12).

16. Return.

17. For every integer k that is less than the value of the length property of A but not less than 0, if A

itself has a property (not an inherited property) named ToString(k), then delete that property.

18. Change (or set) the value of the length property of A to 0.

19. Return.

V0122:

JScript 5.x does not throw a RangeError if an attempt is made to set the length

property of an array object to a positive, non-integer value less than 232. If the

property named '4294967295' of an array object is set, the length property of the

array is set to 0 and any existing array index named properties are deleted if their

names are array indices smaller than the former value of the length property.

2.1.77 [ECMA-262-1999] Section 15.4.5.2, length

V0123:

71 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

The length property of this Array object is always numerically greater than the name of every

property whose name is an array index.

The length property has the attributes { DontEnum, DontDelete }. However, for JScript 5.7 the

length property in addition has the ReadOnly attribute.

The existence of the ReadOnly attribute for JScript 5.7 does not prevent modification

of the value of the length property of array instances because the [[Put]] method for

array objects as defined in [ECMA-262-1999] section 15.4.5.1 does not call

[[CanPut]] for the length property. However, the existence of the ReadOnly

attribute does affect the result of the [[CanPut]] method in any situations where it is

actually called. In particular, any object that inherits its length property from an array

instance has a ReadOnly length property.

2.1.78 [ECMA-262-1999] Section 15.5.3.2, String.fromCharCode ([char0 [, char1 [,

…]]])

V0124:

Returns a string value containing as many characters as the number of arguments. Each argument

specifies one character of the resulting string, with the first argument specifying the first character,

and so on, from left to right. An argument is converted to a character by applying the operation

ToUint16 ([ECMA-262-1999] section 9.7) and regarding the resulting 16-bit integer as the code point

value of a character. If no arguments are supplied, the result is the empty string.

The length property of the fromCharCode function is 1 0.

2.1.79 [ECMA-262-1999] Section 15.5.4, Properties of the String Prototype Object

V0125:

The String prototype object is itself a String object (its [[Class]] is "String") whose value is an

empty string. For JScript 5.x, the [[Class]] of the String prototype object is "Object".

The value of the internal [[Prototype]] property of the String prototype object is the Object

prototype object ([ECMA-262-1999] section 15.2.3.1).

2.1.80 [ECMA-262-1999] Section 15.5.4.3, String.prototype.valueOf ()

V0126:

Returns this string value.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a String

or a String object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

2.1.81 [ECMA-262-1999] Section 15.5.4.7, String.prototype.indexOf (searchString,

position)

V0127:

The length property of the indexOf method is 1 2.

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655

72 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.82 [ECMA-262-1999] Section 15.5.4.8, String.prototype.lastIndexOf (searchString,

position)

V0128:

The length property of the lastIndexOf method is 1 2.

2.1.83 [ECMA-262-1999] Section 15.5.4.9, String.prototype.localeCompare (that)

V0129:

The actual return values are left implementation-defined to permit implementers to encode additional

information in the result value, but the function is required to define a total ordering on all strings and

to return 0 when comparing two strings that are considered canonically equivalent by the Unicode

standard.

For JScript 5.x running on Windows, the returned value is determined as follows:

1. Call ToString passing the this object as the argument.

2. Call ToString passing that as the argument.

3. Call the Windows CompareString system function passing Result(1), Result(2) and

the current locale information as arguments. The value 0 is passed as the

dwCmpFlags argument.

4. Return Result(3).

2.1.84 [ECMA-262-1999] Section 15.5.4.10, String.prototype.match (regexp)

V0130:

Let string denote the result of converting the this value to a string using ToString.

If regexp is not present, return null.

If regexp is not an object whose [[Class]] property is "RegExp", it is replaced with the result of the

expression new RegExp(regexp). Let string denote the result of converting the this value to a

string. Then do one of the following:

 If regexp.global is false: Return the result obtained by invoking RegExp.prototype.exec (see

[ECMA-262-1999] section 15.10.6.2) on regexp with string as parameter.

 If regexp.global is true: Set the regexp.lastIndex property to 0 and invoke

RegExp.prototype.exec repeatedly until there is no match. If there is a match with an empty

string (in other words, if the value of regexp.lastIndex is left unchanged), increment

regexp.lastIndex by 1. Let n be the number of matches. If n = 0, then the value returned is

null; otherwise the The value returned is an array with the length property set to n and

properties 0 through n-1 corresponding to the first elements of the results of all matching

invocations of RegExp.prototype.exec.

The above change corrects a specification error that is documented in the ES3 errata.

JScript 5.x implements the correction.

Because the above function is defined to use the RegExp object and its methods, the

output of this function is subject to all of the variances from the base specification that

are specified in [ECMA-262-1999] section 15.10 and its subsections.

https://go.microsoft.com/fwlink/?LinkId=153655

73 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.85 [ECMA-262-1999] Section 15.5.4.11, String.prototype.replace (searchValue,

replaceValue)

V0131:

Let string denote the result of converting the this value to a string using ToString.

If replaceValue is a not function, let newstring denote the result of converting replaceValue to a string

using ToString.

JScript 5.x converts replaceValue to a string prior to converting searchValue to a

string.

V0132:

Otherwise, let newstring denote the result of converting replaceValue to a string. If searchValue is not

a regular expression, the result is a string value derived from the original input string by replacing

each matched substring with searchString. Otherwise, the The result is a string value derived from the

original input string by replacing each matched substring with a string derived from newstring by

replacing characters in newstring by replacement text as specified in the following table. These $

replacements are done left-to-right, and, once such a replacement is performed, the new replacement

text is not subject to further replacements. For example, "$1,$2".replace(/(\$(\d))/g, "$$1-

$1$2") returns "$1-$11,$1$22". A $ in newstring that does not match any of the forms below is

left as is.

The length property of the replace method is 1 rather than 2.

2.1.86 [ECMA-262-1999] Section 15.5.4.12, String.prototype.search (regexp)

V0133:

Let string denote the result of converting the this value to a string using ToString.

If regexp is not present, return null.

If regexp is not an object whose [[Class]] property is "RegExp", it is replaced with the result of the

expression new RegExp(regexp). Let string denote the result of converting the this value to a

string.

The value string is searched from its beginning for an occurrence of the regular expression pattern

regexp. The result is a number indicating the offset within the string where the pattern matched, or -1

if there was no match.

The length property of the search method is 0 rather than 1.

2.1.87 [ECMA-262-1999] Section 15.5.4.13, String.prototype.slice (start, end)

V0134:

The length property of the slice method is 2 0.

2.1.88 [ECMA-262-1999] Section 15.5.4.14, String.prototype.split (separator, limit)

V0135:

74 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

If separator is a regular expression that contains capturing parentheses, then each time separator is

matched the results (including excluding any undefined empty string results) of the capturing

parentheses are spliced into the output array. (For example,

"Aboldand<CODE>coded</CODE>".split(/<(\/)?([^<>]+)>/) evaluates to the

array ["A", undefined, "B", "bold", "/", "B", "and", undefined, "CODE", "coded", "/",

"CODE", ""].)

JScript 5.x does not include empty-string capturing parentheses result values in the

output array. Note that such results would be undefined result values according to

the base specification however, as specified in [ECMA-262-1999] section 15.10 and its

subsections. JScript produces empty string values for unmatched capturing

parentheses.

V0136:

When the split method is called, the following steps are taken:

1. Let S = ToString(this).

2. Let A be a new array created as if by the expression new Array().

3. If limit is undefined or null, let lim = 232-1 and go to step 4; else let lim = ToUint32(limit).

1. Let lim = ToInteger(limit) however if an exception is thrown while performing ToInteger

ignore the exception and let lim = 0.

2. If lim is NaN, let lim = 0 and go to step 4 (not step 3.4).

3. If lim is negative, let lim = 232-1 and go to step 4 (not step 3.4).

4. Let lim be the smaller of lim and 232-1.

4. Let s be the number of characters in S.

5. Let p = 0.

6. If separator is a RegExp object (its [[Class]] is "RegExp"), let R = separator; otherwise let R =

ToString(separator).

7. If lim = 0, return A.

8. If separator is undefined, go to step 33.

9. If s = 0, go to step 31.

10. Let q = p.

11. If q = s, go to step 28.

12. Call SplitMatch(R, S, q) and let z be its MatchResult result.

13. If z is failure, go to step 26.

14. z must be a State. Let e be z's endIndex and let cap be z's captures array.

15. If e = p, go to step 26.

16. Let T be a string value equal to the substring of S consisting of the characters at positions p

(inclusive) through q (exclusive).

https://go.microsoft.com/fwlink/?LinkId=153655

75 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1. If T is the empty string, then go to step 19.

17. Call the [[Put]] method of A with arguments A.length and T.

18. If A.length = lim, return A.

19. Let p = e.

20. Let i = 0.

21. If i is equal to the number of elements in cap, go to step 10.

22. Let i = i+1.

1. If cap[i] is the empty string or undefined, go to step 21.

23. Call the [[Put]] method of A with arguments A.length and cap[i].

24. If A.length = lim, return A.

25. Go to step 21.

26. Let q = q+1.

27. Go to step 11.

28. Let T be a string value equal to the substring of S consisting of the characters at positions p

(inclusive) through s (exclusive).

29. Call the [[Put]] method of A with arguments A.length and T.

30. Return A.

31. Call SplitMatch(R, S, 0) and let z be its MatchResult result.

32. If z is not failure, return A.

33. Call the [[Put]] method of A with arguments "0" and S.

34. Return A.

2.1.89 [ECMA-262-1999] Section 15.5.4.17, String.prototype.toLocaleLowerCase ()

V0137:

This function works exactly the same as toLowerCase except that its result is intended to yield the

correct result for the host environment's current locale, rather than a locale-independent result. There

will only be a difference in the few cases (such as Turkish) where the rules for that language conflict

with the regular Unicode case mappings.

For JScript 5.x running on Windows, the returned string is determined as follows:

1. Call ToString passing the this object as the argument.

2. Call the Windows LCMapString system function passing Result(1) and the current

locale information. The value LC_MAP_LOWERCASE is passed as the map flags

argument.

3. Return Result(2).

76 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.90 [ECMA-262-1999] Section 15.5.4.19, String.prototype.toLocaleUpperCase ()

V0138:

This function works exactly the same as toUpperCase except that its result is intended to yield the

correct result for the host environment's current locale, rather than a locale-independent result. There

will only be a difference in the few cases (such as Turkish) where the rules for that language conflict

with the regular Unicode case mappings.

For JScript 5.x running on Windows, the returned string is determined as follows:

1. Call ToString passing the this object as the argument.

2. Call the Windows LCMapString system function passing Result(1) and the current

locale information. The value LC_MAP_UPPERCASE is passed as the map flags

argument.

3. Return Result(2).

2.1.91 [ECMA-262-1999] Section 15.7.4, Properties of the Number Prototype Object

V0139:

In the following descriptions of functions that are properties of the Number prototype object, the

phrase "this Number object" refers to the object that is the this value for the invocation of the

function, if the this value is an object; a TypeError exception is thrown if the this value is neither a

number nor not an object for which the value of the internal [[Class]] property is "Number". Also,

the phrase "this number value" refers to the number that is the this value or the number value

represented by this Number object, that is, the value of the internal [[Value]] property of this

Number object.

2.1.92 [ECMA-262-1999] Section 15.7.4.2, Number.prototype.toString (radix)

V0140:

If radix is null or undefined, throw a TypeError exception.

Let radNumber be the result of calling ToNumber with radix as the argument.

If radNumber is NaN, throw a TypeError exception.

Let radInteger be the result of calling ToInteger with radNumber as the argument.

If radix is not present or radInteger is the number 10 or undefined, then this number value is given as

an argument to the ToString operator; the resulting string value is returned.

If radInteger radix is an integer from 2 to 36, but not 10, the result is a string, the choice of which is

implementation-dependent.

For JScript 5.x the result string consists of a representation of this number value

expressed using the radix that is the value of radInteger. Letters a-z are used for

digits with values 10 through 35. The algorithm used to generate the string

representation is the algorithm specified in [ECMA-262-1999] section 9.8.1

generalized for radixes other than 10.

Otherwise throw a TypeError exception.

https://go.microsoft.com/fwlink/?LinkId=153655

77 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

The toString function is not generic; it throws a TypeError exception if its this value is not a

Number or a Number object. Therefore, it cannot be transferred to other kinds of objects for use as a

method.

2.1.93 [ECMA-262-1999] Section 15.7.4.3, Number.prototype.toLocaleString ()

V0141:

Produces a string value that represents the value of the Number formatted according to the

conventions of the host environment's current locale. This function is implementation-dependent, and

it is permissible, but not encouraged, for it to return the same thing as toString.

For JScript 5.x running on Windows, the string is determined as follows:

1. If this number value is an integer, return the result of calling ToString with this

number value as the argument.

2. If this number value is NaN, then return the string value "NaN".

3. If this number value is +Infinity or -Infinity, then return the statically localized

string that describes such a value.

4. Create a string value using the algorithm of Number.prototype.toFixed with this

number value as the this value and the actual number of significant decimal digits

of this number value as the argument.

5. Call the Windows GetNumberFormat system function passing Result(4) and the

current locale information. The values 0 and NULL are passed as the format flags

and the lpFormat arguments.

6. If the call in step 5 succeeded, then return Result(5).

7. If the calls in either step 3 or step 5 failed, then return the result of calling the

standard built-in Date.prototype.toString with Result(1) as its this object.

8. Call the Windows OLE Automation function VariantChangeType passing Result(4)

and the current locale information.

9. Return the string value corresponding to Result(11).

2.1.94 [ECMA-262-1999] Section 15.7.4.4, Number.prototype.valueOf ()

V0142:

Returns this number value.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a Number

or a Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

2.1.95 [ECMA-262-1999] Section 15.7.4.5, Number.prototype.toFixed (fractionDigits)

V0143:

Return a string containing the number represented in fixed-point notation with fractionDigits digits

after the decimal point. If fractionDigits is undefined, 0 is assumed. Specifically, perform the

following steps:

78 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1. Let f be ToInteger(fractionDigits). (If fractionDigits is undefined, this step produces the value 0).

1. If f is +∞, or -∞, then let f be 0.

2. If f < 0 or f > 20, throw a RangeError exception.

3. Let x be this number value.

4. If x is NaN, return the string "NaN".

5. Let s be the empty string.

6. If x ≥ 0, go to step 9.

7. Let s be "-".

8. Let x = -x.

9. If x ≥ 1021, let m = ToString(x) and go to step 20.

1. Let scaledX be x*10f.

2. If scaledX ≥ 0.50 and scaledX < 0.95, let x be 0.

10. Let n be an integer for which the exact mathematical value of n×10f-x is as close to zero as

possible. If there are two such n, pick the larger n.

11. If n = 0, let m be the string "0". Otherwise, let m be the string consisting of the digits of the

decimal representation of n (in order, with no leading zeroes).

12. If f = 0, go to step 20.

13. Let k be the number of characters in m.

14. If k > f, go to step 18.

15. Let z be the string consisting of f+1-k occurrences of the character '0'.

16. Let m be the concatenation of strings z and m.

17. Let k = f + 1.

18. Let a be the first k-f characters of m, and let b be the remaining f characters of m.

19. Let m be the concatenation of the three strings a, ".", and b.

20. Return the concatenation of the strings s and m.

V0144:

An implementation is permitted to extend the behavior of toFixed for values of fractionDigits less

than 0 or greater than 20. In this case toFixed would not necessarily throw RangeError for such

values.

Jscript 5.x under Internet Explorer 7 or 8 treats as if it were the value 0 any value of fractionDigits

that when converted to an integer is equal to either +∞, or -∞.

In situations where the absolute value of the number value times 10f is in the interval

[0.50, 0.95), Jscript 5.x under Internet Explorer 7 or 8 produces its result as if the

number value were 0.

79 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.96 [ECMA-262-1999] Section 15.7.4.6, Number.prototype.toExponential

(fractionDigits)

V0145:

1. Let x be the this number value.

2. Let f be ToInteger(fractionDigits).

1. If browser is Internet Explorer 7 or 8 and f is +∞ or -∞, then let f be 0.

3. If x is NaN, return the string "NaN".

4. Let s be the empty string.

5. If x ≥ 0, go to step 8.

6. Let s be "-".

7. Let x = -x.

8. If x = +∞, let m = "Infinity" and go to step 30.

9. If fractionDigits was not passed as an argument is undefined, go to step 14.

10. If f < 0 or f > 20, throw a RangeError exception.

11. If x = 0, go to step 16.

12. Let e and n be integers such that 10f ≤ n < 10f+1 and for which the exact mathematical value of

n×10e-f-x is as close to zero as possible. If there are two such sets of e and n, pick the e and n for

which n×10e-f is larger.

13. Go to step 20.

14. If x ≠ 0, go to step 19.

15. Let f = 0.

16. Let m be the string consisting of f+1 occurrences of the character '0'.

17. Let e = 0.

18. Go to step 21.

19. Let e, n, and f be integers such that f ≥ 0, 10f ≤ n < 10f+1, the number value for n×10e-f is x, and

f is as small as possible. Note that the decimal representation of n has f+1 digits, n is not divisible

by 10, and the least significant digit of n is not necessarily uniquely determined by these criteria.

20. Let m be the string consisting of the digits of the decimal representation of n (in order, with no

leading zeroes).

21. If f = 0, go to step 24.

22. Let a be the first character of m, and let b be the remaining f characters of m.

23. Let m be the concatenation of the three strings a, ".", and b.

24. If e = 0, let c = "+" and d = "0" and go to step 29.

25. If e > 0, let c = "+" and go to step 28.

80 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

26. Let c = "-".

27. Let e = -e.

28. Let d be the string consisting of the digits of the decimal representation of e (in order, with no

leading zeroes).

29. Let m be the concatenation of the four strings m, "e", c, and d.

30. Return the concatenation of the strings s and m.

The length property of the toExponential method is 1.

V0146:

An implementation is permitted to extend the behaviour of toExponential for values of fractionDigits

less than 0 or greater than 20. In this case toExponential would not necessarily throw RangeError

for such values. JScript 5.x under Internet Explorer 7 or 8 treats as if it were the value 0 any value of

fractionDigits that when converted to an integer is equal to either +∞ or -∞.

2.1.97 [ECMA-262-1999] Section 15.7.4.7, Number.prototype.toPrecision (precision)

V0147:

Return a string containing the number represented either in exponential notation with one digit before

the significand's decimal point and precision-1 digits after the significand's decimal point or in fixed

notation with precision significant digits. If precision is undefined, call ToString ([ECMA-262-1999]

section 9.8.1) instead.

JScript 5.7 under Internet Explorer 7 or 8 throws a RangeError exception if

undefined is explicitly passed to this function as the precision argument. If does not

throw the exception if precision is undefined because no arguments were provided by

the caller.

V0148:

Specifically, perform the following steps:

1. Let x be the this number value.

1. If running JScript 5.7, and the value undefined was explicitly passed as the precision

argument, throw a RangeError exception.

2. If precision is undefined, return ToString(x).

3. Let p be ToInteger(precision).

4. If x is NaN, return the string "NaN".

5. Let s be the empty string.

6. If x ≥ 0, go to step 9.

7. Let s be "-".

8. Let x = -x.

9. If x = +∞, let m = "Infinity" and go to step 30.

https://go.microsoft.com/fwlink/?LinkId=153655

81 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

10. If p < 1 or p > 21, throw a RangeError exception.

11. If x ≠ 0, go to step 15.

12. Let m be the string consisting of p occurrences of the character '0'.

13. Let e = 0.

14. Go to step 18.

15. Let e and n be integers such that 10p-1 ≤ n < 10p and for which the exact mathematical value of

n×10e-p+1-x is as close to zero as possible. If there are two such sets of e and n, pick the e and n

for which n×10e-p+1 is larger.

16. Let m be the string consisting of the digits of the decimal representation of n (in order, with no

leading zeroes).

17. If e < -6 or e ≥ p, go to step 22.

18. If e = p-1, go to step 30.

19. If e ≥ 0, let m be the concatenation of the first e+1 characters of m, the character '.', and the

remaining p-(e+1) characters of m and go to step 30.

20. Let m be the concatenation of the string "0.", -(e+1) occurrences of the character '0', and the

string m.

21. Go to step 30.

22. Let a be the first character of m, and let b be the remaining p-1 characters of m.

23. Let m be the concatenation of the three strings a, ".", and b.

24. If e = 0, let c = "+" and d = "0" and go to step 29.

25. If e > 0, let c = "+" and go to step 28.

26. Let c = "-".

27. Let e = -e.

28. Let d be the string consisting of the digits of the decimal representation of e (in order, with no

leading zeroes).

29. Let m be the concatenation of the four strings m, "e", c, and d.

30. Return the concatenation of the strings s and m.

The length property of the toPrecision method is 1.

V0149:

An implementation is permitted to extend the behaviour of toPrecision for values of precision less

than 1 or greater than 21. In this case toPrecision would not necessarily throw RangeError for such

values.

JScript 5.x does not extend the behavior of toPrecision for values of precision less

than 1 or greater than 21.

82 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.98 [ECMA-262-1999] Section 15.8.2, Function Properties of the Math Object

V0150:

Although the choice of algorithms is left to the implementation, it is recommended (but not specified

by this standard) that implementations use the approximation algorithms for IEEE 754 arithmetic

contained in fdlibm, the freely distributable mathematical library from Sun Microsystems (fdlibm-

comment@sunpro.eng.sun.com). This specification also requires specific results for certain argument

values that represent boundary cases of interest

JScript 5.x uses the implementation of these functions provided by the Windows

C/C++ Run-time Libraries.

2.1.99 [ECMA-262-1999] Section 15.9.1.8, Local Time Zone Adjustment

V0151:

An implementation of ECMAScript is expected to determine the local time zone adjustment. The local

time zone adjustment is a value LocalTZA measured in milliseconds which when added to UTC

represents the local standard time. Daylight saving time is not reflected by LocalTZA. The value

LocalTZA does not vary with time but depends only on the geographic location.

JScript 5.x uses the available facilities of the host operating system to determine the

local time zone adjustment.

2.1.100 [ECMA-262-1999] Section 15.9.1.9, Daylight Saving Time Adjustment

V0152:

If the host environment provides functionality for determining daylight saving time, the

implementation of ECMAScript is free to map the year in question to an equivalent year (same leap-

year-ness and same starting week day for the year) for which the host environment provides daylight

saving time information. The only restriction is that all equivalent years should produce the same

result.

JScript 5.x does equivalent year mapping to determine daylight savings time

adjustments. The equivalent year that is used is determined according to the following

table:

Week day of Jan. 1: 0 1 2 3 4 5 6

Non-leap years < 2007 1995 1979 1991 1975 1987 1971 1983

Leap years < 2007 1884 1996 1980 1992 1976 1988 1972

Non-leap years ≥ 2007 2023 2035 2019 2031 2015 2027 2011

Leap years ≥ 2007 2012 2024 2036 2020 2032 2016 2028

2.1.101 [ECMA-262-1999] Section 15.9.1.14, TimeClip (time)

V0153:

mailto:fdlibm-comment@sunpro.eng.sun.com
mailto:fdlibm-comment@sunpro.eng.sun.com

83 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

The operator TimeClip calculates a number of milliseconds from its argument, which must be an

ECMAScript number value. This operator functions as follows:

The change in step 3 below corrects an error in the base specification.

1. If time is not finite, return NaN.

2. If abs(Result(1)) > 8.64 x 1015, return NaN.

3. Return an implementation-dependent choice of either ToInteger(time Result(2)) or ToInteger(time

Result(2)) + (+0).

(Adding a positive zero converts -0 to +0.)

JScript 5.x returns ToInteger(time)

2.1.102 [ECMA-262-1999] Section 15.9.4.2, Date.parse (string)

V0154:

If string is not present or is the value null or undefined, the parse function returns NaN. Otherwise,

the The parse function applies the ToString ToPrimitive operator to its argument and then applies

ToString to that result and interprets the resulting string as a date; it returns a number, the UTC time

value corresponding to the date. The string may be interpreted as a local time, a UTC time, or a time

in some other time zone, depending on the contents of the string.

V0155:

JScript 5.x parses the string value and produces a value in accordance with the following grammar and

rules. If the string can not be recognized starting with the production DateString according to these

rules, the number value NaN is returned.

Date String Syntax

The following lexical grammar defines the tokens that make up date strings.

DateToken ::

Separator
NumericDateToken

AlphaDateToken
DateComment
OffsetFlag

Separator :: one of

, : / <SP>

DateComment ::

(DateCommentBodyopt)

DateCommentBody ::

DateCommentChars
DateCommentopt
DateComment
DateCommentBodyopt

84 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

DateCommentChars ::

DateCommentChar DateCommentCharsopt

DateCommentChar ::

DateChar but not (or)

OffsetFlag :: one of

+ -

AlphaDatetoken ::

AlphaDateComponent periodopt

AlphaDateComponent ::

WeekDay

Month

TimeZone
MilitaryTimeZone
AmPmFlag
AdBcFlag

period ::

.

V0156:

WeekDay ::

Sunday
Monday
Tuesday

Wednesday
Thursday

Friday
Saturday

Month ::

January
February
March
April

May
June
July
August

September
October

November
December

TimeZone ::

est
edt
cst

85 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

cdt
mst

mdt
pst

pdt
gmt
utc

MilitaryTimeZone ::

a [lookahead { .m m d .d p u}]

p [lookahead { .m m d s}]

b [lookahead { .c c}]

f [lookahead { e i}]

m [lookahead { a d o s}]

s [lookahead { a e u}]

o [lookahead ≠ c]

n [lookahead ≠ o]

d [lookahead ≠ e]
t [lookahead { h u}]

w [lookahead ≠ e]
e [lookahead { d s}]

c [lookahead { d s}]

g [lookahead ≠ m]
u [lookahead ≠ t]
UniqueMilitaryTimeZone

UniqueMilitaryTimeZone :: one of

 z y x v r q h i k l

AmPmFlag ::

am

a.m
pm
p.m

AdBcFlag ::

ad

a.d
bc
b.c

V0157:

NumericDateToken ::

NumericDateComponent -

NumericDateComponent [lookahead ≠ -]

NumericDateComponent ::

DateDigit [lookahead DateDigit]

DateDigit DateDigit [lookahead DateDigit]

DateDigit DateDigit DateDigit [lookahead DateDigit]

DateDigit DateDigit DateDigit DateDigit [lookahead DateDigit]

DateDigit DateDigit DateDigit DateDigit DateDigit [lookahead DateDigit]

DateDigit DateDigit DateDigit DateDigit DateDigit DateDigit [lookahead DateDigit]

86 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

DateDigit :: one of

0 1 2 3 4 5 6 7 8 9

V0158:

Sunday ::

su
sun
sund
sunda

sunday

Monday ::

mo
mon
mond

monda
monday

Tuesday ::

tu
tue
tues
tuesd
tuesda

tuesday

Wednesday ::

we
wed

wedn
wedne
wednes

wednesd
wednesda
wednesday

Thursday ::

th
thu
thur

thurs
thursd
thursda
thursday

Friday ::

fr

fri
frid
frida
friday

Saturday ::

87 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

sa
sat

satu
satur

saturd
saturda
saturday

V0159:

January ::

ja
jan

janu
janua
januar
january

February ::

fe

feb
febr
febru
februa
februar
february

March ::

ma
mar
marc

march

April ::

ap
apr

apri
april

May ::

ma
may

June ::

jun

june

July ::

ju
jul
july

August ::

88 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

au
aug

augu
augus

august

September ::

se
sep
sept
septe
septem

septemb
septembe
september

October ::

oc
oct

octo
octob
octobe
october

November ::

no
nov

nove
novem
novemb
novembe

november

December ::

de

dec
dece
decem
decemb
decembe
december

V0160:

Parsing rules for Date.parse Date strings:

1. The string to be parsed is converted to lower case before applying these rules.

2. The above grammar defines by means of NumericDateTokens or AlphaDateTokens the following

components of a date object: weekday, year, month, date, hours, minutes, seconds, time zone,

AD/BC flag, and AM/PM flag.

3. Any date string has to define at least year, month, and date components. No component can be

multiply defined.

4. Except for cases that are explicitly specified otherwise, the components can be in any order.

89 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

5. OffsetFlags:

'+' and '-' (when not following a number) act as offset classifier. The next numeric component

following an offset classifier is classified as an offset value. The numeric component doesn't

have to immediately follow '+/-'.

+offset and -offset cannot be specified before the year field. +/- offsets refers to UTC time

zone and set the time zone to UTC. It is an error to have a time zone component following a

+/- offset.

6. Time classification of numeric components. The separator char ':' acts as a time classifier:

': ' following a number classifies the previous numeric component as 'hour'.

':' following a number classified as 'hour' will classify the next numeric component as 'minute'.

The next numeric component doesn't have to follow immediately.

':' following a numeric component classified as 'minute' will classify the next numeric

component as 'seconds'. The next number doesn't have to follow immediately.

7. Date classification of numeric components.

A not classified number with value >= 70 is always classified as year. Even when it is followed

by a ':' and could be classified as hour. In this case ':' is a simple separator.

A number not classified by a classifier is always classified as a date.

'/' and '-' separator chars can act as classifiers:

'/' or '-' following a numeric component classifies that numeric component as month.

'/' or '-' following a numeric component classified as month will classify the next

numeric component as a date. The next numeric component does not have to follow

immediately.

'/' or '-' following a numeric component classified as date will classify the next

numeric component as a year. The next numeric component does not have to

follow immediately.

8. The week day is ignored regardless of whether it is correct or incorrect.

9. The default value for AD/BC flag is AD.

10. When AM/PM flag is not defined the default interpretation for hours is 24hr notation. The AM flag

is ignored when the time is > 13:00:00. When the PM flag is used the time has to be < 12:00.

V0161:

Algorithm for computing the time value:

Via classification, numeric components, and alpha components, numeric values are calculated for:

year, month, date, time. The following adjustments are done because of the flags, offsets, and

timezones:

1. If the BC/AD flag is BC, year = -year + 1. Note that 1 BC is year 0 and 2 BC is year - 1.

2. If the BC/AD flag is AD and the year value is < 100, then year = year + 1900. This rule allows the

short form for year. For example, 99 stands for 1999.

90 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

3. The time value (time in the day) is calculated in seconds from the hour, minute, and seconds

components. AM/PM flag can change the time value:

1. If no AM/PM flag is present the time is considered in 24hrs notation and no adjustment is

done.

2. If time >= 12 * 3600 and time < 13 * 3600 and AM then time = time – 12 * 3600 (for

example, 12:45 AM means 0:45).

3. If the PM and time < 12 * 3600, then time = time + 12 * 3600 (for example, 2PM means

14:00).

4. Zone adjustment. The result of 3 is adjusted by the zone disp values specified below. Check the

values for TimeZone and MilitaryTimeZone. If 'zone' is the value for a given zone, the time is

adjusted by: time = time - zone * 60.

5. Offset adjustment. The offset value applies to the time in UTC zone. Let nn be the value of the

numeric component following an offset. The formula for the value in seconds that adds up to the

UTC time is:

If nn <24

vOffset = 60 * nn * 60

If nn >= 24

vOffset = 60 * (nn modulo 100) + (floor (nn / 100)) * 60))

time = Result(4) - vOffset * 60

6. Date adjustment. Set date = date – 1.

7. Month adjustment. Set month = (month-1).

8. Final calculation:

year = year + floor(month / 12)

month = Remainder(month, 12)

day = day + DayFromYear(year)

day = day + DayNumbersForTheMonthOfALeapYear(month);

if month >= 2 && year is not a leap then day = day - 1

result = day * 86400000 + time

9. If no time zone was specified, consider this time in the current local time zone and get the UTC

displacement of the time.

Time Zone UTC displacement

est -5

91 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Time Zone UTC displacement

edt -4

cst -6

cdt -5

mst -7

mdt -6

pst -8

pdt -7

gmt 0

utc 0

Military Time Zone UTC displacement

z 0

y 12

x 11

w 10

v 9

u 8

t 7

s 6

r 5

q 4

p 3

o 2

n 1

a -1

b -2

c -3

d -4

e -5

f -6

g -7

h -8

92 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Military Time Zone UTC displacement

i -9

k -10

l -10

m 12

2.1.103 [ECMA-262-1999] Section 15.9.4.3, Date.UTC (year, month [, date [,

hours [, minutes [, seconds [, ms]]]]])

V0162:

The changes in the following algorithm specify JScript 5.x's behavior when this

function is called with fewer than two arguments.

1. If year is supplied use Call ToNumber(year) ; else use 0.

2. If month is supplied use Call ToNumber(month) ; else use 0.

3. If date is supplied use ToNumber(date); else use 1.

4. If hours is supplied use ToNumber(hours); else use 0.

5. If minutes is supplied use ToNumber(minutes); else use 0.

6. If seconds is supplied use ToNumber(seconds); else use 0.

7. If ms is supplied use ToNumber(ms); else use 0.

8. If Result(1) is not NaN and 0 ≤ ToInteger(Result(1)) ≤ 99, Result(8) is

1900+ToInteger(Result(1)); otherwise, Result(8) is Result(1).

9. Compute MakeDay(Result(8), Result(2), Result(3)).

10. Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).

11. Return TimeClip(MakeDate(Result(9), Result(10))).

The length property of the UTC function is 7.

2.1.104 [ECMA-262-1999] Section 15.9.5, Properties of the Date Prototype

Object

V0163:

The Date prototype object is itself a Date object (its [[Class]] is "Date") whose value is 0 NaN.

For JScript 5.x, the time value of the Date prototype object is 0 rather than NaN.

2.1.105 [ECMA-262-1999] Section 15.9.5.2, Date.prototype.toString ()

V0164:

93 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

This function returns a string value. The contents of the string are implementation-dependent, but are

intended to represent the Date in the current time zone in a convenient, human-readable form.

The string is determined as follows:

1. Let tv be this time value.

2. If tv is NaN, return the string "NaN".

3. Let t be LocalTime(tv).

4. Using t, create a string value with the following format, based upon the format
description below. The format is: DDDbMMMbddbhh:mm:ssbzzzzzzbyyyyy

5. Return Result(4).

The format is defined as follows:

Date part Meaning

DDD The day of the week abbreviation from the set: Sun Mon Tue Wed Thu Fri Sat

b A single space character

MMM The month name abbreviation from the set: Jan Feb Mar Apr May Jun Jul Aug
Sep Oct Nov Dec

dd The day of the month as one or two decimal digits, from 1 to 31.

hh The number of complete hours since midnight as two decimal digits.

: The colon character.

mm The number of complete minutes since the start of the hour as two decimal digits.

ss The number of complete seconds since the start of the minute as two decimal
digits.

zzzzzz If the local time offset from UTC is an integral number of hours between -8 and -5
inclusive, this is the standard abbreviation for the corresponding North American
time zone which is one of: EST EDT CST CDT MST MDT PST PDT. Otherwise this
is the characters UTC followed by a + or - character corresponding to the sign of
the local offset from UTC followed by the two decimal digit hours part of the UTC
offset and the two decimal digit minutes part of the UTC offset.

yyyyy If YearFromTime(t) is > then this is 3 or more digits that is the value of
YearFromTime(t). Otherwise, this is the one or more decimal digits corresponding
to the number that is 1 - YearFromTime(t) followed by a single space character
followed by the characters B.C.

V0165:

NOTE

For any Date value d with a milliseconds amount of zero, the result of Date.parse(d.toString()) is

equal to d.valueOf(). See [ECMA-262-1999] section 15.9.4.2. It is intended that for any Date value

d, the result of Date.prototype.parse(d.toString())(15.9.4.2) is equal to d.

The above change corrects a specification error that is documented in the ES3 errata.

JScript 5.x implements the correction.

https://go.microsoft.com/fwlink/?LinkId=153655

94 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.106 [ECMA-262-1999] Section 15.9.5.3, Date.prototype.toDateString ()

V0166:

This function returns a string value. The contents of the string are implementation-dependent, but are

intended to represent the "date" portion of the Date in the current time zone in a convenient, human-

readable form.

For JScript 5.x running on Windows, the string is determined as follows:

1. Let tv be this time value.

2. If tv is NaN, return the string "NaN".

3. Let t be LocalTime(tv).

4. Using t, create a string value with the following format, based upon the format

description given in [ECMA-262-1999] Section 15.9.5.3. The format is

DDDbMMMbddbyyyyy.

5. Return Result(4).

2.1.107 [ECMA-262-1999] Section 15.9.5.4, Date.prototype.toTimeString ()

V0167:

This function returns a string value. The contents of the string are implementation-dependent, but are

intended to represent the "time" portion of the Date in the current time zone in a convenient, human-

readable form.

For JScript 5.x running on Windows, the string is determined as follows:

1. Let tv be this time value.

2. If tv is NaN, return the string "NaN".

3. Let t be LocalTime(tv).

4. Using t, create a string value with the following format, based upon the format

description given in [ECMA-262-1999] Section 15.9.5.3. The format is:

hh:mm:ssbzzzzzz.

5. Return Result(4).

2.1.108 [ECMA-262-1999] Section 15.9.5.5, Date.prototype.toLocaleString ()

V0168:

This function returns a string value. The contents of the string are implementation-dependent, but are

intended to represent the Date in the current time zone in a convenient, human-readable form that

corresponds to the conventions of the host environment's current locale.

For JScript 5.x running on Windows, the string is determined as follows:

1. Using the system locale settings, get the local time value corresponding to the

date value. This may include applying any appropriate civil time adjustments.

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655

95 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2. If the year of Result(1) is <= 1600 or >=10000, then return the result of calling

the standard built-in Date.prototype.toString with Result(1) as its this object.

3. Use the Microsoft Windows GetDateFormat system function to format the date and

time corresponding to Result(1). The format flags passed to the function is

DATE_LONGDATE for most locales. However, if the current locale's language is

Arabic or Hebrew the flags passed are DATE_LONGDATE | DATE_RTLREADING.

4. If the call in step 3 failed and the current locale language is Hebrew, then throw a

RangeError exception.

5. Use the Microsoft Windows GetTimeFormat system function to format the date and

time corresponding to Result(1). The format flags passed to the default value, 0.

6. If the calls in either step 3 or step 5 failed, then return the result of calling the

standard built-in Date.prototype.toString with Result(1) as its this object.

7. Return the string value that is the result of concatenating Result(3), a space

character, and Result(5).

2.1.109 [ECMA-262-1999] Section 15.9.5.6, Date.prototype.toLocaleDateString

()

V0169:

This function returns a string value. The contents of the string are implementation-dependent, but are

intended to represent the "date" portion of the Date in the current time zone in a convenient, human-

readable form that corresponds to the conventions of the host environment's current locale.

For JScript 5.x running on Windows, the string is determined as follows:

1. Using the system locale settings, get the local time value corresponding to the

date value. This may include applying any appropriate civil time adjustments.

2. If the year of Result(1) is <= 1600 or >= 10000, then return the result of calling

the standard built-in Date.prototype.toString with Result(1) as its this object.

3. Use the Microsoft Windows GetDateFormat system function to format the date and

time corresponding to Result(1). The format flags passed to the function is

DATE_LONGDATE for most locales. However, if the current locale's language is

Arabic or Hebrew the flags passed are DATE_LONGDATE | DATE_RTLREADING.

4. If the call in step 3 failed and the current locale language is Hebrew, then throw a

RangeError exception.

5. If the call in step 3 failed, then return the result of calling the standard built-in

Date.prototype.toString with Result(1) as its this object.

6. Return the string value that is Result(3).

2.1.110 [ECMA-262-1999] Section 15.9.5.7, Date.prototype.toLocaleTimeString

()

V0170:

96 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

This function returns a string value. The contents of the string are implementation-dependent, but are

intended to represent the "time" portion of the Date in the current time zone in a convenient, human-

readable form that corresponds to the conventions of the host environment's current locale.

For JScript 5.x running on Windows, the string is determined as follows:

1. Using the system locale settings, get the local time value corresponding to the

date value. This may include applying any appropriate civil time adjustments.

2. If the year of Result(1) is <= 1600 or >= 10000, then return the result of calling

the standard built-in Date.prototype.toString with Result(1) as its this object.

3. Use the Windows GetTimeFormat system function to format the date and time

corresponding to Result(1). The format flags passed to the default value, 0.

4. If the call in step 3 failed, then return the result of calling the standard built-in

Date.prototype.toString with Result(1) as its this object.

5. Return the string value that is Result(3).

2.1.111 [ECMA-262-1999] Section 15.9.5.28, Date.prototype.setMilliseconds

(ms)

V0171:

(The bulleted step is added before step 1)

 If the argument ms is not present, throw a TypeError exception.

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(ms).

3. Compute MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), Result(2)).

4. Compute UTC(MakeDate(Day(t), Result(3))).

5. Set the [[Value]] property of the this value to TimeClip(Result(4)).

6. Return the value of the [[Value]] property of the this value.

2.1.112 [ECMA-262-1999] Section 15.9.5.29, Date.prototype.setUTCMilliseconds

(ms)

V0172:

(The bulleted step is added before step 1)

 If the argument ms is not present, throw a TypeError exception.

1. Let t be this time value.

2. Call ToNumber(ms).

3. Compute MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), Result(2)).

4. Compute MakeDate(Day(t), Result(3)).

97 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

5. Set the [[Value]] property of the this value to TimeClip(Result(4)).

6. Return the value of the [[Value]] property of the this value.

2.1.113 [ECMA-262-1999] Section 15.9.5.30, Date.prototype.setSeconds (sec [,

ms])

V0173:

If ms is not specified, this function behaves as if ms were specified with the value getMilliseconds().

(The bulleted step is added before step 1)

 If the argument sec is not present, throw a TypeError exception.

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(sec).

3. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).

4. Compute MakeTime(HourFromTime(t), MinFromTime(t), Result(2), Result(3)).

5. Compute UTC(MakeDate(Day(t), Result(4))).

6. Set the [[Value]] property of the this value to TimeClip(Result(5)).

7. Return the value of the [[Value]] property of the this value.

The length property of the setSeconds method is 2.

2.1.114 [ECMA-262-1999] Section 15.9.5.31, Date.prototype.setUTCSeconds (sec

[, ms])

V0174:

If ms is not specified, this function behaves as if ms were specified with the value getUTCMilliseconds(

).

(The bulleted step is added before step 1)

 If the argument sec is not present, throw a TypeError exception.

1. Let t be this time value.

2. Call ToNumber(sec).

3. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).

4. Compute MakeTime(HourFromTime(t), MinFromTime(t), Result(2), Result(3)).

5. Compute MakeDate(Day(t), Result(4)).

6. Set the [[Value]] property of the this value to TimeClip(Result(5)).

7. Return the value of the [[Value]] property of the this value.

The length property of the setUTCSeconds method is 2.

98 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.115 [ECMA-262-1999] Section 15.9.5.33, Date.prototype.setMinutes (min [,

sec [, ms]])

V0175:

If sec is not specified, this function behaves as if sec were specified with the value getSeconds().

If ms is not specified, this function behaves as if ms were specified with the value getMilliseconds().

(The bulleted step is added before step 1)

 If the argument min is not present, throw a TypeError exception.

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(min).

3. If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).

4. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).

5. Compute MakeTime(HourFromTime(t), Result(2), Result(3), Result(4)).

6. Compute UTC(MakeDate(Day(t), Result(5))).

7. Set the [[Value]] property of the this value to TimeClip(Result(6)).

8. Return the value of the [[Value]] property of the this value.

The length property of the setMinutes method is 3.

2.1.116 [ECMA-262-1999] Section 15.9.5.34, Date.prototype.setUTCMinutes (min

[, sec [, ms]])

V0176:

If sec is not specified, this function behaves as if sec were specified with the value getUTCSeconds().

If ms is not specified, this function behaves as if ms were specified with the value getUTCMilliseconds(

).

(The bulleted step is added before step 1)

 If the argument min is not present, throw a TypeError exception.

1. Let t be this time value.

2. Call ToNumber(min).

3. If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).

4. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).

5. Compute MakeTime(HourFromTime(t), Result(2), Result(3), Result(4)).

6. Compute MakeDate(Day(t), Result(5)).

7. Set the [[Value]] property of the this value to TimeClip(Result(6)).

8. Return the value of the [[Value]] property of the this value.

99 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

The length property of the setUTCMinutes method is 3.

2.1.117 [ECMA-262-1999] Section 15.9.5.35, Date.prototype.setHours (hour [,

min [, sec [, ms]]])

V0177:

If min is not specified, this function behaves as if min were specified with the value getMinutes().

If sec is not specified, this function behaves as if sec were specified with the value getSeconds().

If ms is not specified, this function behaves as if ms were specified with the value getMilliseconds().

(The bulleted step is added before step 1)

 If the argument hour is not present, throw a TypeError exception.

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(hour).

3. If min is not specified, compute MinFromTime(t); otherwise, call ToNumber(min).

4. If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).

5. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).

6. Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

7. Compute UTC(MakeDate(Day(t), Result(6))).

8. Set the [[Value]] property of the this value to TimeClip(Result(7)).

9. Return the value of the [[Value]] property of the this value.

The length property of the setHours method is 4.

2.1.118 [ECMA-262-1999] Section 15.9.5.36, Date.prototype.setUTCHours (hour

[, min [, sec [, ms]]])

V0178:

If min is not specified, this function behaves as if min were specified with the value getUTCMinutes().

If sec is not specified, this function behaves as if sec were specified with the value getUTCSeconds().

If ms is not specified, this function behaves as if ms were specified with the value getUTCMilliseconds(

).

(The bulleted step is added before step 1)

 If the argument hour is not present, throw a TypeError exception.

1. Let t be this time value.

2. Call ToNumber(hour).

3. If min is not specified, compute MinFromTime(t); otherwise, call ToNumber(min).

4. If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).

100 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

5. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).

6. Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

7. Compute MakeDate(Day(t), Result(6)).

8. Set the [[Value]] property of the this value to TimeClip(Result(7)).

9. Return the value of the [[Value]] property of the this value.

The length property of the setUTCHours method is 4.

2.1.119 [ECMA-262-1999] Section 15.9.5.36, Date.prototype.setDate (date)

V0179:

(The bulleted step is added before step 1)

 If the argument date is not present, throw a TypeError exception.

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(date).

3. Compute MakeDay(YearFromTime(t), MonthFromTime(t), Result(2)).

4. Compute UTC(MakeDate(Result(3), TimeWithinDay(t))).

5. Set the [[Value]] property of the this value to TimeClip(Result(4)).

6. Return the value of the [[Value]] property of the this value.

2.1.120 [ECMA-262-1999] Section 15.9.5.37, Date.prototype.setUTCDate (date)

V0180:

(The bulleted step is added before step 1)

 If the argument date is not present, throw a TypeError exception.

1. Let t be this time value.

2. Call ToNumber (date).

3. Compute MakeDay(YearFromTime(t), MonthFromTime(t), Result(2)).

4. Compute MakeDate(Result(3), TimeWithinDay(t)).

5. Set the [[Value]] property of the this value to TimeClip(Result(4)).

6. Return the value of the [[Value]] property of the this value.

2.1.121 [ECMA-262-1999] Section 15.9.5.38, Date.prototype.setMonth (month [,

date])

V0181:

If date is not specified, this function behaves as if date were specified with the value getDate().

101 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

(The bulleted step is added before step 1)

 If the argument month is not present, throw a TypeError exception.

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(month).

3. If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).

4. Compute MakeDay(YearFromTime(t), Result(2), Result(3)).

5. Compute UTC(MakeDate(Result(4), TimeWithinDay(t))).

6. Set the [[Value]] property of the this value to TimeClip(Result(5)).

7. Return the value of the [[Value]] property of the this value.

The length property of the setMonth method is 2.

2.1.122 [ECMA-262-1999] Section 15.9.5.39, Date.prototype.setUTCMonth

(month [, date])

V0182:

If date is not specified, this function behaves as if date were specified with the value getUTCDate().

(The bulleted step is added before step 1)

 If the argument month is not present, throw a TypeError exception.

1. Let t be this time value.

2. Call ToNumber(month).

3. If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).

4. Compute MakeDay(YearFromTime(t), Result(2), Result(3)).

5. Compute MakeDate(Result(4), TimeWithinDay(t)).

6. Set the [[Value]] property of the this value to TimeClip(Result(5)).

7. Return the value of the [[Value]] property of the this value.

The length property of the setUTCMonth method is 2.

2.1.123 [ECMA-262-1999] Section 15.9.5.40, Date.prototype.setFullYear (year [,

month [, date]])

V0183:

If month is not specified, this function behaves as if month were specified with the value getMonth().

If date is not specified, this function behaves as if date were specified with the value getDate().

(The bulleted step is added before step 1)

 If the argument year is not present, throw a TypeError exception.

102 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1. Let t be the result of LocalTime(this time value); but if this time value is NaN, let t be +0.

2. Call ToNumber(year).

3. If month is not specified, compute MonthFromTime(t); otherwise, call ToNumber(month).

4. If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).

5. Compute MakeDay(Result(2), Result(3), Result(4)).

6. Compute UTC(MakeDate(Result(5), TimeWithinDay(t))).

7. Set the [[Value]] property of the this value to TimeClip(Result(6)).

8. Return the value of the [[Value]] property of the this value.

The length property of the setFullYear method is 3.

2.1.124 [ECMA-262-1999] Section 15.9.5.41, Date.prototype.setUTCFullYear

(year [, month [, date]])

V0184:

If month is not specified, this function behaves as if month were specified with the value

getUTCMonth().

If date is not specified, this function behaves as if date were specified with the value getUTCDate().

(The bulleted step is added before step 1)

 If the argument year is not present, throw a TypeError exception.

1. Let t be this time value; but if this time value is NaN, let t be +0.

2. Call ToNumber(year).

3. If month is not specified, compute MonthFromTime(t); otherwise, call ToNumber(month).

4. If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).

5. Compute MakeDay(Result(2), Result(3), Result(4)).

6. Compute MakeDate(Result(5), TimeWithinDay(t)).

7. Set the [[Value]] property of the this value to TimeClip(Result(6)).

8. Return the value of the [[Value]] property of the this value.

The length property of the setUTCFullYear method is 3.

2.1.125 [ECMA-262-1999] Section 15.10.1, Patterns

V0185:

QuantifierPrefix ::

*

+

?

{ DecimalDigits }

103 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

{ DecimalDigits , }

{ DecimalDigits , DecimalDigits }

{ QuantZeroesopt 1} QuantifierPrefix

{ QuantZeroesopt 1, QuantZeroesopt 1} QuantifierPrefix

QuantZeroes ::

QuantZeroesopt 0

CharacterClass ::

[]ClassRanges]

[[lookahead {^}] NonemptyClassRanges]

[^ NonemptyClassRanges]

2.1.126 [ECMA-262-1999] Section 15.10.2.1, Notation

V0186:

Furthermore, the descriptions below use the following internal data structures:

 A CharSet is a mathematical set of characters.

 A State is an ordered pair (endIndex, captures) where endIndex is an integer and captures is an

internal array of NCapturingParens values. States are used to represent partial match states in the

regular expression matching algorithms. The endIndex is one plus the index of the last input

character matched so far by the pattern, while captures holds the results of capturing

parentheses. The nth element of captures is either a string that represents the value obtained by

the nth set of capturing parentheses or undefined the empty string if the nth set of capturing

parentheses hasn't been reached yet. Due to backtracking, many states may be in use at any time

during the matching process.

2.1.127 [ECMA-262-1999] Section 15.10.2.2, Pattern

V0187:

The production Pattern :: Disjunction evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.

2. Return an internal closure that takes two arguments, a string str and an integer index, and

performs the following:

1. Let Input be the given string str. This variable will be used throughout the functions in [ECMA-

262-1999] section 15.10.2.

2. Let InputLength be the length of Input. This variable will be used throughout the functions in

[ECMA-262-1999] section 15.10.2.

3. Let c be a Continuation that always returns its State argument as a successful MatchResult.

4. Let cap be an internal array of NCapturingParens undefined empty string values, indexed 1

through NCapturingParens.

5. Let x be the State (index, cap).

6. Call m(x, c) and return its result.

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655

104 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Informative comments: A Pattern evaluates ("compiles") to an internal function value.

RegExp.prototype.exec can then apply this function to a string and an offset within the string to

determine whether the pattern would match starting at exactly that offset within the string, and, if it

does match, what the values of the capturing parentheses would be. The algorithms in [ECMA-262-

1999] section 15.10.2 are designed so that compiling a pattern may throw a SyntaxError

RegExpError exception; on the other hand, once the pattern is successfully compiled, applying its

result function to find a match in a string cannot throw an exception (except for any host-defined

exceptions that can occur anywhere such as out-of-memory).

2.1.128 [ECMA-262-1999] Section 15.10.2.3, Disjunction

V0188:

Informative comments: The | regular expression operator separates two alternatives. The pattern

first tries to match the left Alternative (followed by the sequel of the regular expression); if it fails, it

tries to match the right Disjunction (followed by the sequel of the regular expression). If the left

Alternative, the right Disjunction, and the sequel all have choice points, all choices in the sequel are

tried before moving on to the next choice in the left Alternative. If choices in the left Alternative are

exhausted, the right Disjunction is tried instead of the left Alternative. Any capturing parentheses

inside a portion of the pattern skipped by | produce undefined empty string values instead of strings.

Thus, for example,

/a|ab/.exec("abc")

returns the result "a" and not "ab". Moreover,

/((a)|(ab))((c)|(bc))/.exec("abc")

returns the array

["abc", "a", "a", undefined "", "bc", undefined "", "bc"]

and not

["abc", "ab", undefined "", "ab", "c", "c", undefined ""]

2.1.129 [ECMA-262-1999] Section 15.10.2.5, Term

V0189:

The production Term :: Atom Quantifier evaluates as follows:

1. Evaluate Atom to obtain a Matcher m.

2. Evaluate Quantifier to obtain the three results: an integer min, an integer (or ∞) max, and

boolean greedy.

3. If max is finite and less than min, then throw a SyntaxError RegExpError exception.

4. Let parenIndex be the number of left capturing parentheses in the entire regular expression that

occur to the left of this production expansion's Term. This is the total number of times the Atom ::

(Disjunction) production is expanded prior to this production's Term plus the total number of

Atom :: (Disjunction) productions enclosing this Term.

5. Let parenCount be the number of left capturing parentheses in the expansion of this production's

Atom. This is the total number of Atom :: (Disjunction) productions enclosed by this production's

Atom.

105 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

6. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and

performs the following:

1. Call RepeatMatcher(m, min, max, greedy, x, c, parenIndex, parenCount) and return its result.

V0190:

The internal helper function RepeatMatcher takes eight parameters, a Matcher m, an integer min, an

integer (or ∞) max, a boolean greedy, a State x, a Continuation c, an integer parenIndex, and an

integer parenCount, and performs the following:

1. If max is zero, then call c(x) and return its result.

2. Create an internal Continuation closure d that takes one State argument y and performs the

following:

1. If min is zero and y's endIndex is equal to x's endIndex, then return failure.

2. If min is zero then let min2 be zero; otherwise let min2 be min-1.

3. If max is ∞, then let max2 be ∞; otherwise let max2 be max-1.

4. Call RepeatMatcher(m, min2, max2, greedy, y, c, parenIndex, parenCount) and return its

result.

3. Let cap be a fresh copy of x's captures internal array.

4. For every integer k that satisfies parenIndex < k and k ≤ parenIndex+parenCount, set cap[k] to

undefined.

5. Let e be x's endIndex.

6. Let xr be the State (e, cap).

7. If min is not zero, then call m(xr, d) and return its result.

8. If greedy is true, then go to step 12.

9. Call c(x) and let z be its result.

10. If z is not failure, return z.

11. Call m(xr, d) and return its result.

12. Call m(xr, d) and let z be its result.

13. If z is not failure, return z.

14. Call c(x) and return its result.

V0191:

The above ordering of choice points can be used to write a regular expression that calculates the

greatest common divisor of two numbers (represented in unary notation). The following example
calculates the gcd of 10 and 15:

"aaaaaaaaaa,aaaaaaaaaaaaaaa".replace(/^(a+)\1*,\1+$/,"$1")

which returns the gcd in unary notation "aaaaa".

106 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Step 4 of the RepeatMatcher clears Atom's captures each time t is repeated. We can see its

106oolean106 in the regular expression

/(z)((a+)?(b+)?(c))*/.exec("zaacbbbcac")

which returns the array

["zaacbbbcac", "z", "ac", "a", undefined, "c"]

and not

["zaacbbbcac", "z", "ac", "a", "bbb", "c"]

because each iteration of the outermost * clears all captured strings contained in the quantified

Atom, which in this case includes capture strings numbered 2, 3, and 4.

Jscript 5.x does not clear an Atom's captures each time the Atom is repeated.

2.1.130 [ECMA-262-1999] Section 15.10.2.7, Quantifier

V0192:

The productions QuantifierPrefix :: { QuantZeroesopt 1} QuantifierPrefix and QuantifierPrefix :: {

QuantZeroesopt 1, QuantZeroesopt 1} evaluate by returning the result of evaluating QuantifierPrefix.

2.1.131 [ECMA-262-1999] Section 15.10.2.8, Atom

V0193:

The form (?! Disjunction) specifies a zero-width negative lookahead. In order for it to succeed, the

pattern inside Disjunction must fail to match at the current position. The current position is not

advanced before matching the sequel. Disjunction can contain capturing parentheses, but

backreferences to them only make sense from within Disjunction itself. Backreferences to these

capturing parentheses from elsewhere in the pattern always return undefined the empty string

because the negative lookahead must fail for the pattern to succeed. For example,

/(.*?)a(?!(a+)b\2c)\2(.*)/.exec("baaabaac")

looks for an a not immediately followed by some positive number n of a's, a b, another n a's

(specified by the first \2) and a c. The second \2 is outside the negative lookahead, so it matches

against undefined and therefore always succeeds. The whole expression returns the array:

["baaabaac", "ba", undefined "", "abaac"]

2.1.132 [ECMA-262-1999] Section 15.10.2.9, AtomEscape

V0194:

The production AtomEscape :: DecimalEscape evaluates as follows:

1. Evaluate DecimalEscape to obtain an EscapeValue E.

2. If E is not a character then go to step 6.

3. Let ch be E's character.

107 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

4. Let A be a one-element CharSet containing the character ch.

5. Call CharacterSetMatcher(A, false) and return its Matcher result.

6. E must be an integer. Let n be that integer.

7. If n=0 or n>NCapturingParens then return failure throw a SyntaxError exception.

8. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and

performs the following:

1. Let cap be x's captures internal array.

2. Let s be cap[n].

3. If s is undefined the empty string, return failure then call c(x) and return its result.

4. Let e be x's endIndex.

5. Let len be s's length.

6. Let f be e+len.

7. If f>InputLength, return failure.

8. If there exists an integer i between 0 (inclusive) and len (exclusive) such that
Canonicalize(s[i]) is not the same character as Canonicalize(Input [e+i]), then return failure.

9. Let y be the State (f, cap).

10. Call c(y) and return its result.

V0195:

Informative comments: An escape sequence of the form \ followed by a nonzero decimal number n

matches the result of the nth set of capturing parentheses (see [ECMA-262-1999] section

15.10.2.11). It is an error if the regular expression has fewer than n capturing parentheses. If the

regular expression has n or more capturing parentheses but the nth one is undefined the empty

string because it hasn't captured anything, then the backreference always succeeds.

2.1.133 [ECMA-262-1999] Section 15.10.2.12, CharacterClassEscape

V0196:

The production CharacterClassEscape :: s evaluates by returning the set of characters containing the

characters that are on the right-hand side of the WhiteSpace (7.2) or LineTerminator ([ECMA-262-

1999] section 7.3) productions plus the characters <TAB>, <FF>, and <SP> < (characters \u0009,

\u000C, and \u0020).

In JScript 5.x, the regular expression \s does not match any Unicode category Zs

characters other than those explicitly listed in the preceding paragraph.

2.1.134 [ECMA-262-1999] Section 15.10.2.13, CharacterClass

V0197:

The production CharacterClass :: [] ClassRanges] evaluates by returning the result of unioning the

CharSet containing the one character] with the result of evaluating ClassRanges.

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655

108 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

V0198:

The production CharacterClass :: [[lookahead {^}] NonemptyClassRanges] evaluates by

evaluating NonemptyClassRanges to obtain a CharSet and returning that CharSet and the boolean

false.

V0199:

The production CharacterClass :: [^ NonemptyClassRanges] evaluates by evaluating

NonemptyClassRanges to obtain a CharSet and returning that CharSet and the boolean true.

2.1.135 [ECMA-262-1999] Section 15.10.2.15, NonemptyClassRanges

V0200:

The internal helper function CharacterRange takes two CharSet parameters A and B and performs the

following:

1. If A does not contain exactly one character or B does not contain exactly one character then throw

a SyntaxError RegExpError exception.

2. Let a be the one character in CharSet A.

3. Let b be the one character in CharSet B.

4. Let i be the code point value of character a.

5. Let j be the code point value of character b.

6. If i > j then throw a SyntaxError RegExpError exception.

7. Return the set containing all characters numbered i through j, inclusive.

2.1.136 [ECMA-262-1999] Section 15.10.2.19, ClassEscape

V0201:

The production ClassEscape :: DecimalEscape evaluates as follows:

1. Evaluate DecimalEscape to obtain an EscapeValue E.

2. If E is not a character then return the empty CharSet throw a SyntaxError exception.

3. Let ch be E's character.

4. Return the one-element CharSet containing the character ch.

V0202:

Informative comments: A ClassAtom can use any of the escape sequences that are allowed in the

rest of the regular expression except for \b, \B, and backreferences. Inside a CharacterClass, \b

means the backspace character, while \B and backreferences are ignored raise errors. Using a

backreference inside a ClassAtom causes an error.

2.1.137 [ECMA-262-1999] Section 15.10.4.1, new RegExp (pattern, flags)

V0203:

109 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

If pattern is an object R whose [[Class]] property is "RegExp" and flags is undefined, then let P be

the pattern used to construct R and let F be the flags used to construct R. If pattern is an object R

whose [[Class]] property is "RegExp" and flags is not undefined, then throw a TypeError

RegExpError exception. Otherwise, let P be the empty string if pattern is undefined and

ToString(pattern) otherwise, and let F be the empty string if flags is undefined and ToString(flags)

otherwise.

V0204:

If F contains any character other than "g", "i", or "m", or if it contains the same one more than

once, then throw a SyntaxError RegExpError exception.

V0205:

If P's characters do not have the form Pattern, then throw a SyntaxError RegExpError exception.

Otherwise let the newly constructed object have a [[Match]] property obtained by evaluating

("compiling") Pattern. Note that evaluating Pattern may throw a SyntaxError RegExpError

exception. (Note: if pattern is a StringLiteral, the usual escape sequence substitutions are performed

before the string is processed by RegExp. If pattern must contain an escape sequence to be

recognised by RegExp, the "\" character must be escaped within the StringLiteral to prevent its being

removed when the contents of the StringLiteral are formed.)

V0206:

The source property of the newly constructed object is set to an implementation-defined string value

in the form of a Pattern based on P.

For JScript 5.x, when pattern is an object R whose [[Class]] property is RegExp the

source property of the newly constructed object is set to the same string value as the

value of the source property of pattern. Otherwise, the source property of the newly

constructed object is set to P.

2.1.138 [ECMA-262-1999] Section 15.10.6, Properties of the RegExp Prototype

Object

V0208:

The value of the internal [[Prototype]] property of the RegExp prototype object is the Object

prototype. The value of the internal [[Class]] property of the RegExp prototype object is

"RegExp""Object".

2.1.139 [ECMA-262-1999] Section 15.10.6.2, RegExp.prototype.exec (string)

V0209:

Performs a regular expression match of string against the regular expression and returns an Array

object containing the results of the match, or null if the string did not match.

The string ToString(string) is searched for an occurrence of the regular expression pattern as follows:

1. Let S be the value of ToString(string).

2. Let length be the length of S.

3. Let lastIndex be the value of the lastIndex property.

110 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

4. Let i be the value of ToInteger(lastIndex). However if an exception is thrown while evaluating

ToInteger, let I = 0, or if Result(1) of the ToInteger algorithm is NaN, let I = -1.

5. If the global property is false, let i = 0.

6. If I i < 0 or I i > length then set lastIndex to 0 and return null.

7. Call [[Match]], giving it the arguments S and i. If [[Match]] returned failure, go to step 8;

otherwise let r be its State result and go to step 10.

8. Let i = i+1.

9. Go to step 6.

10. Let e be r's endIndex value.

11. If the global property is true, set Set lastIndex to e.

12. Let n be the length of r's captures array. (This is the same value as [ECMA-262-1999] section

15.10.2.1's NCapturingParens.)

1. The values of the RegExp.input and RegExp.$_ properties are set to S.

2. The value of the RegExp.index property is set to the position of the matched substring within

the complete string S.

3. The value of the RegExp.lastIndex property is set to e.

4. The values of the RegExp.lastMatch and RegExp['$&'] properties are set to the substring

of S that was matched.

5. If n is 0, set the values of the RegExp.lastParen and RegExp['$+'] properties are set to the

empty string, otherwise set them to the result of calling ToString on the last element of r's

captures array.

6. The values of the RegExp.leftContext and RegExp["$`"] properties are set to the substring

of S, starting at character position 0 and continuing up to but not including the position of the

matched substring within the complete string S.

7. The values of the RegExp.rightContext and RegExp["$'"] properties are set to the

substring of S, starting at character position e and continuing to the last character of S.

8. The value of each of the properties RegExp.$1, RegExp.$2, RegExp.$3, RegExp.$4,

RegExp.$5, RegExp.$6, RegExp.$7, RegExp.$8, and RegExp.$9 is set to the empty

string.

9. For each integer i such that i > 0 and i ≤ min(9,n), set the property of RegExp that has the

name of the string '$' concatenated with ToString(i) to the ith element of r's captures array.

13. Return a new array with the following properties:

 The index property is set to the position of the matched substring within the complete string

S.

 The input property is set to S.

 The lastIndex property is set to e.

 The length property is set to n + 1.

https://go.microsoft.com/fwlink/?LinkId=153655

111 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 The 0 property is set to the matched substring (i.e. the portion of S between offset i inclusive

and offset e exclusive).

 For each integer i such that I i > 0 and I i ≤ n, set the property named ToString(i) to the ith

element of r's captures array.

2.1.140 [ECMA-262-1999] Section 15.10.6.4, RegExp.prototype.toString ()

V0210:

Let src be a string in the form of a Pattern representing the current regular expression. src may or

may not be identical to the source property or to the source code supplied to the RegExp constructor;

however, if src were supplied to the RegExp constructor along with the current regular expression's

flags, the resulting regular expression must behave identically to the current regular expression.

For JScript 5.x, src is identical to the value of the source property.

V0211:

toString returns a string value formed by concatenating the strings "/", src, and "/"; plus "g" if the

global property is true, "i" if the ignoreCase property is true, and "m" if the multiline property is

true.

For JScript 5.x, the flag characters appear in the order "igm" rather than the order

"gim".

V0212:

NOTE

An implementation may choose to take advantage of src being allowed to be different from the source

passed to the RegExp constructor to escape special characters in src. For example, in the regular

expression obtained from new RegExp("/"), src could be, among other possibilities, "/" or "\/".

The latter would permit the entire result ("/\//") of the toString call to have the form

RegularExpressionLiteral.

JScript 5.x does not do such escaping.

2.1.141 [ECMA-262-1999] Section 15.11.1.1, Error (message)

V0213:

When Error is called as a function the call is equivalent to calling the Error constructor passing the

same arguments. The [[Prototype]] property of the newly constructed object is set to the original

Error prototype object, the one that is the initial value of Error.prototype (15.11.3.1).

The [[Class]] property of the newly constructed object is set to "Error".

If the argument message is not undefined, the message property of the newly constructed object is

set to ToString(message).

2.1.142 [ECMA-262-1999] Section 15.11.2.1, new Error (message)

V0214:

112 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

When the Error constructor is called with one argument the following steps are taken:

1. The [[Prototype]] property of the newly constructed object is set to the original Error prototype

object, the one that is the initial value of Error.prototype ([ECMA-262-1999] section 15.11.3.1).

2. The [[Class]] property of the newly constructed Error object is set to "Error".

3. Let message be the empty string.

4. Let number be NaN.

5. If messageOrNumber is undefined, then go to step 8.

6. Let number be ToNumber(messageOrNumber).

7. If number is not NaN, then go to step 9.

8. Let message be ToString(messageOrNumber).

9. The description property of the newly constructed object is set to message.

10. If the argument message is not undefined, the The message property of the newly constructed

object is set to ToString(message) message.

11. The name property of the newly constructed object is set to "Error".

12. If number is NaN, then go to step 14.

13. The number property of the newly constructed object is set to number.

14. Return the newly constructed object.

2.1.143 [ECMA-262-1999] Section 15.11.4, Properties of the Error Prototype

Object

V0215:

The Error prototype object is itself an Error object (its [[Class]] is "Error" "Object").

In JScript 5.x the [[Class]] of the Error prototype object is "Object".

The value of the internal [[Prototype]] property of the Error prototype object is the Object prototype

object ([ECMA-262-1999] section 15.2.3.1).

2.1.144 [ECMA-262-1999] Section 15.11.4.3, Error.prototype.message

V0216:

The initial value of Error.prototype.message is an implementation-defined string.

In JScript 5.x the initial value is the empty string.

2.1.145 [ECMA-262-1999] Section 15.11.4.4, Error.prototype.toString ()

Returns an implementation defined string.

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655

113 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

In JScript 5.8 under Internet Explorer 7 or 8, the returned string is determined as

follows:

1. Let name be the result of calling the [[Get]] method of the this object with

argument "name".

2. If name is not undefined, let name be ToString(name). If ToString throws an

exception, ignore the exception and set name to undefined.

3. Let message be the result of calling the [[Get]] method of the this object with

argument "message".

4. If message is not undefined, let message be ToString(message). If ToString

throws an exception ignore the exception and set message to undefined.

5. if name and message are both undefined, then return the string value "[object

Error]".

6. If name is undefined, return message.

7. If message is undefined, return name.

8. Concatenate name and the string value ": ".

9. Concatenate Result(8) and message.

10. Return Result(9)

In JScript 5.7 the returned string is determined as follows:

1. Return the string value "[object Error]".

2.1.146 [ECMA-262-1999] Section 15.11.5, Properties of Error Instances

V0217:

Error instances inherit properties from their [[Prototype]] object as specified above and also have

the following properties. Error instances have no special properties beyond those inherited from the

Error prototype object.

2.1.147 [ECMA-262-1999] Section 15.11.6.2, RangeError

V0218:

Indicates a numeric value has exceeded the allowable range. See [ECMA-262-1999] sections 15.4.2.2,

15.4.5.1, 15.7.4.5, 15.7.4.6, and 15.7.4.7.

Also see the following sections in [MS-ES3EX]:

 VBArray.prototype.getItem (dim1 [, dim2, [dim3, …]])

 VBArray.prototype.lbound ([dimension])

 VBArray.prototype.ubound ([dimension])

2.1.148 [ECMA-262-1999] Section 15.11.6.4, SyntaxError

V0219:

https://go.microsoft.com/fwlink/?LinkId=153655
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a

114 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Indicates that a parsing error has occurred. See [ECMA-262-1999] sections 7.9, 7.9.1, 7.9.2,

15.1.2.1, 15.3.2.1, 15.10.2.5, 15.10.2.9, 15.10.2.15, and 15.10.2.19, and 15.10.4.1.

Also see the following section in [MS-ES3EX]:

 parse (text [, reviver])

2.1.149 [ECMA-262-1999] Section 15.11.6.5, TypeError

V0220:

Indicates the actual type of an operand is different than the expected type. See [ECMA-262-1999]

sections 8.6.2, 8.6.2.6, 8.7.1, 9.9, 11.2.2, 11.2.3, 11.4.1, 11.8.6, 11.8.7, 15.2.4.7, 15.3.4, 15.3.4.2,

15.3.4.3, 15.3.4.4, 15.3.5.3, 15.4.4.2, 15.4.4.3, 15.4.4.5, 15.4.4.6, 15.4.4,7, 15.4.4.8, 15.4.4.9,

15.4.4.10, 15.4.4.11, 15.4.4.12, 15.4.4.13, 15.5.4.2, 15.5.4.3, 15.6.4, 15.6.4.2, 15.6.4.3, 15.7.4,

15.7.4.2, 15.7.4.4, 15.9.5, 15.9.5.9, 15.9.5.27, 15.9.5.28, 15.9.5.29, 15.9.5.30, 15.9.5.31,

15.9.5.33, 15.9.5.34, 15.9.5.35, 15.9.5.36, 15.9.5.37, 15.9.5.38, 15.9.5.39, 15.9.5.40, 15.9.5.41,

15.10.4.1, and 15.10.6.

Also see the following sections in [MS-ES3EX]:

 RuntimeObject

 GetObject

 stringify (value [, replacer [, space]])

 new Enumerator ([collection])

 Enumerator.prototype.atEnd ()

 Enumerator.prototype.item ()

 Enumerator.prototype.moveFirst ()

 Enumerator.prototype.moveNext ()

 VBArray (value)

 new VBArray (value)

 VBArray.prototype.dimensions ()

 VBArray.prototype.getItem (dim1 [, dim2, [dim3, …]])

 VBArray.prototype.lbound ([dimension])

 VBArray.prototype.toArray ()

 VBArray.prototype.ubound ([dimension])

 VBArray.prototype.valueOf ()

 ActiveXObject (name [, location]))

 new ActiveXObject (name [, location]))

2.1.150 [ECMA-262-1999] Section 15.11.7, NativeError Object Structure

V0221:

https://go.microsoft.com/fwlink/?LinkId=153655
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a
https://go.microsoft.com/fwlink/?LinkId=153655
%5bMS-ES3EX%5d.pdf#Section_a51500aa4fc543e2a79f2beac751f53a

115 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

When an ECMAScript implementation detects a runtime error, it throws an instance of one of the

NativeError objects defined in [ECMA-262-1999] section 15.11.6. Each of these objects has the

structure described below, differing only in the name used as the constructor name instead of

NativeError, in the name property of the prototype object, and in the implementation-defined

message property of the prototype object.

For each error object, references to NativeError in the definition should be replaced with the

appropriate error object name from [ECMA-262-1999] section 15.11.6.

2.1.151 [ECMA-262-1999] Section 15.11.7.2, NativeError (message)

V0222:

The [[Prototype]] property of the newly constructed object is set to the prototype object for this

error constructor. The [[Class]] property of the newly constructed object is set to "Error".

If the argument message is not undefined, the message property of the newly constructed object is

set to ToString(message). If the argument message is undefined the message property of the newly

constructed property is set to the empty string value.

2.1.152 [ECMA-262-1999] Section 15.11.7.4, New NativeError (message)

V0223:

The [[Prototype]] property of the newly constructed object is set to the prototype object for this

NativeError constructor. The [[Class]] property of the newly constructed object is set to "Error".

If the argument message is not undefined, the message property of the newly constructed object is

set to ToString(message). If the argument message is undefined the message property of the newly

constructed property is set to the empty string value.

2.1.153 [ECMA-262-1999] Section 15.11.7.10, NativeError.prototype.message

V0224:

The initial value of the message property of the prototype for a given NativeError constructor is an

implementation-defined string.

In JScript 5.x NativeError prototype objects do not have their own message property.

Instead they inherit their message property from Error.prototype.

2.1.154 [ECMA-262-1999] Section 16, Errors

V0266:

An implementation may treat any instance of the following kinds of runtime errors as a syntax error

and therefore report it early:

 Improper uses of return, break, and continue.

 Using the eval property other than via a direct call.

 Errors in regular expression literals that are not implementation-defined syntax extensions.

 Attempts to call PutValue on a value that is not a reference (for example, executing the

assignment statement 3= 4).

https://go.microsoft.com/fwlink/?LinkId=153655

116 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.1.155 [ECMA-262-1999] Section A.1, Lexical Grammar

V0225:

LineTerminator :: See [ECMA-262-1999] section 7.3

<LF>
<CR>
<LS>
<PS>

V0226:

MultiLineNotAsteriskChar :: See [ECMA-262-1999] section 7.4

SourceCharacter but not asterisk * or <NUL>

V0227:

MultiLineNotForwardSlashOrAsteriskChar :: See [ECMA-262-1999] section 7.4

SourceCharacter but not forward-slash / or asterisk * or <NUL>

V0228:

FutureReservedWord :: one of See [ECMA-262-1999] section 7.5.3

abstract enum int short

boolean export interface static

byte extends long super

char final native synchronized

class float package throws

const goto private transient

debugger implements protected volatile

double import public

V0229:

DoubleStringCharacter :: See [ECMA-262-1999] section 7.8.4

SourceCharacter but not double-quote " or backslash \ or LineTerminator or <NUL>
\ EscapeSequence
LineContinuation

V0230:

SingleStringCharacter :: See [ECMA-262-1999] section 7.8.4

SourceCharacter but not single-quote ' or backslash \ or LineTerminator or <NUL>
\ EscapeSequence
LineContinuation

V0231:

https://go.microsoft.com/fwlink/?LinkId=153655

117 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

LineContinuation :: See [ECMA-262-1999] section 7.8.4

\ LineTerminatorSequence

V0232:

LineTerminatorSequence :: See [ECMA-262-1999] section 7.8.4

<LF>
<CR> [lookahead <LF>]

<CR> <LF>

V0233:

EscapeSequence :: See [ECMA-262-1999] section 7.8.4

CharacterEscapeSequence
OctalEscapeSequence 0 [lookahead DecimalDigit]

HexEscapeSequence

UnicodeEscapeSequence
8
9

JScript 5.x also supports OctalEscapeSequence as specified in [ECMA-262-1999]

section Annex B.1.2. That extension replaces the rule EscapeSequence :: 0 [lookahead
 DecimalDigit] with the rule EscapeSequence :: OctalEscapeSequence.

V0234:

SingleEscapeCharacter :: one of See [ECMA-262-1999] section 7.8.4

' " \ b f n r t v

V0235:

RegularExpressionFirstChar :: See [ECMA-262-1999] section 7.8.5

NonTerminator but not * or \ or / or <NUL>

BackslashSequence

RegularExpressionClass

V0236:

RegularExpressionChar :: See [ECMA-262-1999] section 7.8.5

NonTerminator but not \ or / or <NUL>

BackslashSequence

RegularExpressionClass

V0237:

RegularExpressionClass :: See [ECMA-262-1999] section 7.8.5

[RegularExpressionClassChars]

V0238:

RegularExpressionClassChars :: See [ECMA-262-1999] section 7.8.5

118 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

[empty]

RegularExpressionClassChars RegularExpressionClassChar

V0239:

RegularExpressionClassChar :: See [ECMA-262-1999] section 7.8.5

NonTerminator but not] or \ or <NUL> BackslashSequence

V0240:

RegExpFlag :: one of

g i m See [ECMA-262-1999] section 7.8.5

2.1.156 [ECMA-262-1999] Section A.3, Expressions

V0241:

ObjectLiteral : See [ECMA-262-1999] section 11.1.5

{ }

{ PropertyNameAndValueList }

{ PropertyNameAndValueList , }

2.1.157 [ECMA-262-1999] Section A.4, Statements

V0242:

Statement : See [ECMA-262-1999] section 12

Block

VariableStatement

EmptyStatement

ExpressionStatement

IfStatement

IterationStatement

ContinueStatement

BreakStatement

ReturnStatement

WithStatement

LabelledStatement

SwitchStatement

ThrowStatement

TryStatement

DebuggerStatement

FunctionDeclaration

V0243:

Block : See [ECMA-262-1999] section 12.1

{ StatementListopt }

{ StatementListopt };

V0244:

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655

119 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

DebuggerStatement : See section 2.1.6

Debugger ;

2.1.158 [ECMA-262-1999] Section A.5, Functions and Programs

V0245:

FunctionDeclaration : See [ECMA-262-1999] section 13

function Identifieropt (FormalParameterListopt) { FunctionBody }

JScriptFunction

V0246:

FunctionExpression : See [ECMA-262-1999] section 13

function Identifieropt (FormalParameterListopt) { FunctionBody }

JScriptFunction

V0247:

JScriptFunction : See [ECMA-262-1999] section 13

function FunctionBindingList (FormalParameterListopt) { FunctionBody }

V0248:

FunctionBindingList : See [ECMA-262-1999] section 13

FunctionBinding

FunctionBindingList, FunctionBinding

V0249:

FunctionBinding : See [ECMA-262-1999] section 13

SimpleFunctionBinding

MethodBinding

EventHandlerBinding

V0250:

SimpleFunctionBinding : See [ECMA-262-1999] section 13

Identifier [lookahead {NameQualifier, EventDesignator}]

V0251:

MethodBinding : See [ECMA-262-1999] section 13

ObjectPath NameQualifier Identifier [lookahead {NameQualifier, EventDesignator}]

V0252:

EventHandlerBinding : See [ECMA-262-1999] section 13

ObjectPath EventDesignator Identifier

https://go.microsoft.com/fwlink/?LinkId=153655

120 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

V0253:

ObjectPath : See [ECMA-262-1999] section 13

Identifier

ObjectPath NameQualifier Identifier

V0254:

NameQualifier : .

V0255:

EventDesignator : ::

 See [ECMA-262-1999] section 13

2.1.159 [ECMA-262-1999] Section A.7, Regular Expressions

V0256:

QuantifierPrefix :: See [ECMA-262-1999] section 15.10.1

*
+

?
{ DecimalDigits }
{ DecimalDigits , }
{ DecimalDigits , DecimalDigits }
{ QuantZeroesopt 1} QuantifierPrefix
{ QuantZeroesopt 1, QuantZeroesopt 1} QuantifierPrefix

V0257:

QuantZeroes :: See [ECMA-262-1999] section 15.10.1

QuantZeroesopt 0

V0258:

CharacterClass :: See [ECMA-262-1999] section 15.10.1

[]ClassRanges]
[[lookahead {^}] NonemptyClassRanges]

[^ NonemptyClassRanges]

2.1.160 [ECMA-262-1999] Section B.1.2, String Literals

V0259:

OctalEscapeSequence ::

OctalDigit [lookahead OctalDigit DecimalDigit]

ZeroToThree OctalDigit [lookahead OctalDigit DecimalDigit]

FourToSeven OctalDigit
ZeroToThree OctalDigit OctalDigit

V0260:

Semantics

https://go.microsoft.com/fwlink/?LinkId=153655

121 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

 The CV of EscapeSequence :: OctalEscapeSequence is the CV of the OctalEscapeSequence.

 The CV of OctalEscapeSequence :: OctalDigit [lookahead OctalDigit DecimalDigit] is the

character whose code point value is the MV of the OctalDigit.

 The CV of OctalEscapeSequence :: ZeroToThree OctalDigit [lookahead OctalDigit DecimalDigit] is

the character whose code point value is (8 times the MV of the ZeroToThree) plus the MV of the

OctalDigit.

2.1.161 [ECMA-262-1999] Section B.2, Additional Properties

V0261:

Some implementations of ECMAScript have included additional properties for some of the standard

native objects. This non-normative annex suggests uniform semantics for such properties without

making the properties or their semantics part of this standard.

JScript 5.x implements all of the properties listed in [ECMA-262-1999] section B.2.

However, in some cases identified below, the definition used by JScript 5.x differs from

that in the base specification.

2.1.162 [ECMA-262-1999] Section B.2.3, String.prototype.substr (start, length)

V0262:

The substr method takes two arguments, start and length, and returns a substring of the result of

converting this object to a string, starting from character position start and running for length

characters (or through the end of the string is length is undefined). If start is negative, it is treated

as zero (sourceLength+start) where sourceLength is the length of the string. The result is a string

value, not a String object.

V0263:

1. Call ToString, giving it the this value as its argument.

2. Call ToInteger(start).

3. If length is undefined, use +∞; otherwise call ToInteger(length).

4. Compute the number of characters in Result(1).

5. If Result(2) is positive or zero, use Result(2); else use zero max(Result(4)+Result(2),0).

6. Compute min(max(Result(3),0), Result(4)-Result(5)).

7. If Result(6) ≤ 0, return the empty string "".

8. Return a string containing Result(6) consecutive characters from Result(1) beginning with the

character at position Result(5).

The length property of the substr method is 2.

2.1.163 [ECMA-262-1999] Section B.2.4, Date.prototype.getYear ()

V0264:

When the getYear method is called with no arguments the following steps are taken:

https://go.microsoft.com/fwlink/?LinkId=153655

122 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return YearFromTime(LocalTime(t)) - 1900.

For JScript 5.x, Date.prototype.getYear is functionally identical to
Date.prototype.getFullYear.

2.1.164 [ECMA-262-1999] Section B.2.5, Date.prototype.setYear (year)

V0265:

When the setYear method is called with one argument year the following steps are taken:

(The bulleted step is added before step 1)

 If the argument year is not present, throw a TypeError exception.

1. Let t be the result of LocalTime(this time value); but if this time value is NaN, let t be +0.

2. Call ToNumber(year).

3. If Result(2) is NaN, set the [[Value]] property of the this value to NaN and return NaN.

4. If Result(2) is not NaN and 0 ≤ ToInteger(Result(2)) ≤ 99 then Result(4) is ToInteger(Result(2))

+ 1900. Otherwise, Result(4) is Result(2).

5. Compute MakeDay(Result(4), MonthFromTime(t), DateFromTime(t)).

6. Compute UTC(MakeDate(Result(5), TimeWithinDay(t))).

7. Set the [[Value]] property of the this value to TimeClip(Result(6)).

8. Return the value of the [[Value]] property of the this value.

For JScript 5.x, Date.prototype.setYear is functionally identical to

Date.prototype.setFullYear.

2.2 Clarifications

The following subsections describe clarifications of the MAY and SHOULD requirements of [ECMA-262-

1999].

2.2.1 [ECMA-262-1999] Section 7.8.5, Regular Expression Literals

C0001:

If the call to new RegExp generates an error, an implementation may, at its discretion, either report

the error immediately while scanning the program, or it may defer the error until the regular

expression literal is evaluated in the course of program execution.

JScript 5.x reports any errors new RegExp errors relating to a regular expression

literal while scanning the program.

https://go.microsoft.com/fwlink/?LinkId=153655
https://go.microsoft.com/fwlink/?LinkId=153655

123 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

2.2.2 [ECMA-262-1999] Section 8.6.2, Internal Properties and Methods

C0002:

The value of the [[Prototype]] property must be either an object or null, and every [[Prototype]]

chain must have finite length (that is, starting from any object, recursively accessing the

[[Prototype]] property must eventually lead to a null value). Whether or not a native object can

have a host object as its [[Prototype]] depends on the implementation.

JScript 5.x does not permit a native object to have a host object as its [[Prototype]].

2.2.3 [ECMA-262-1999] Section 10.1.1, Function Objects

C0003:

 Internal functions are built-in objects of the language, such as parseInt and Math.exp. An

implementation may also provide implementation-dependent internal functions that are not

described in this specification. These functions do not contain executable code defined by the

ECMAScript grammar, so they are excluded from this discussion of execution contexts.

In the above paragraph the phrase "internal function" is actually being used as a

synonym for "built-in objects" (as defined in [ECMA-262-1999] section 4.3.7) that are

functions. The implementation-dependent built-in functions provided by JScript 5.x are

described in [ECMA-262-1999] section 15.

2.2.4 [ECMA-262-1999] Section 15.1.2.2, parseInt (string, radix)

C0004:

NOTE

parseInt may interpret only a leading portion of the string as an integer value; it ignores any

characters that cannot be interpreted as part of the notation of an integer, and no indication is given

that any such characters were ignored.

When radix is 0 or undefined and the string's number begins with a 0 digit not followed by an x or X,
then the implementation may, at its discretion, interpret the number either as being octal or as being
decimal. Implementations are encouraged to interpret numbers in this case as being decimal.

Jscript 5.x interprets numbers in this case as being octal.

2.3 Error Handling

There are no additional error handling considerations.

2.4 Security

There are no additional security considerations.

https://go.microsoft.com/fwlink/?LinkId=153655

124 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

3 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

125 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

4 Index

[

[[Construct]] 47
[[Put]] (P - V) (section 2.1.12 17, section 2.1.76 69)

A

Additional Properties 121
Arguments Object 23
Array Initialiser 24
Array.prototype.concat ([item1 [- item2 [- …]]

]) 55
Array.prototype.join (separator) 56
Array.prototype.pop () 57
Array.prototype.push ([item1 [- item2 [- …]]]

) 58
Array.prototype.reverse () 59
Array.prototype.shift () 61

Array.prototype.slice (start - end) 62
Array.prototype.sort (comparefn) 63
Array.prototype.splice (start - deleteCount [- item1

[- item2 [- ...]]]) 65
Array.prototype.toLocaleString () 54
Array.prototype.unshift ([item1 [- item2 [- ...]]

]) 68
Atom 106
AtomEscape 106

B

Block 34

C

Change tracking 124
CharacterClass 107
CharacterClassEscape 107
ClassEscape 108
Comments 12
Creating Function Objects 46

D

Date.parse (string) 83
Date.prototype.getYear () 121

Date.prototype.setDate (date) 100
Date.prototype.setFullYear (year [- month [- date]

]) 101
Date.prototype.setHours (hour [- min [- sec [- ms

]]]) 99
Date.prototype.setMilliseconds (ms) 96
Date.prototype.setMinutes (min [- sec [- ms]])

98
Date.prototype.setMonth (month [- date]) 100
Date.prototype.setSeconds (sec [- ms]) 97
Date.prototype.setUTCDate (date) 100
Date.prototype.setUTCFullYear (year [- month [-

date]]) 102
Date.prototype.setUTCHours (hour [- min [- sec [-

ms]]]) 99
Date.prototype.setUTCMilliseconds (ms) 96

Date.prototype.setUTCMinutes (min [- sec [- ms]]
) 98

Date.prototype.setUTCMonth (month [- date]) 101
Date.prototype.setUTCSeconds (sec [- ms]) 97
Date.prototype.setYear (year) 122
Date.prototype.toDateString () 94
Date.prototype.toLocaleDateString () 95
Date.prototype.toLocaleString () 94
Date.prototype.toLocaleTimeString () 95
Date.prototype.toString () 92
Date.prototype.toTimeString () 94
Date.UTC (year - month [- date [- hours [-

minutes [- seconds [- ms]]]]]) 92
Daylight Saving Time Adjustment 82
Disjunction 104

E

Entering an Execution Context 23
Error (message) 111
Error.prototype.message 112
Error.prototype.toString () 112
Errors 115

Eval Code 24
eval(x) 48
Expressions 118

F

Function Code 24
Function Definition 41
Function Objects 123
Function Properties of the Math Object 82
Function.prototype.apply (thisArg - argArray) 53
Function.prototype.call (thisArg [- arg1 [- arg2 -

...]]) 53
Function.prototype.toString () 52
Functions and Programs 119
Future Reserved Words 12

G

GetValue (V) 18
Global Code 23
Glossary 7

I

Informative references 7
Internal Properties and Methods (section 2.1.11 17,

section 2.2.2 123)

Introduction 7

L

length 70
Lexical Conventions 11
Lexical Grammar 116
Line Terminators 12
Local Time Zone Adjustment 82

N

126 / 126

[MS-ES3] - v20180323
Microsoft JScript ECMA-262-1999 ECMAScript Language Specification Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: March 23, 2018

Native ECMAScript Objects 47
NativeError (message) 115
NativeError Object Structure 114
NativeError.prototype.message 115
new Array ([item0 [- item1 [- …]]]) 54
new Error (message) 111
New NativeError (message) 115
new Object ([value]) 49
new RegExp (pattern - flags) 108
NonemptyClassRanges 108
Normative references 7
Notation 103
Number.prototype.toExponential (fractionDigits) 79
Number.prototype.toFixed (fractionDigits) 77
Number.prototype.toLocaleString () 77
Number.prototype.toPrecision (precision) 80
Number.prototype.toString (radix) 76
Number.prototype.valueOf () 77

O

Object ([value]) 49
Object Initialiser 26
Object.prototyope.toLocaleString () 50
Object.prototype.hasOwnProperty (V) 51
Object.prototype.isPrototypeOf (V) 51
Object.prototype.propertyIsEnumerable (V) 51
Object.prototype.toString () 50
Object.prototype.valueOf () 50

P

parseInt (string - radix) (section 2.1.49 48, section

2.2.4 123)
Pattern 103
Patterns 102
Properties of Error Instances 113
Properties of the Date Prototype Object 92
Properties of the Error Prototype Object 112
Properties of the Number Prototype Object 76
Properties of the Object Constructor 50
Properties of the RegExp Prototype Object 109
Properties of the String Prototype Object 71
Property Accessors 27
prototype 54

Q

Quantifier 106

R

RangeError 113
References
 informative 7
 normative 7
RegExp.prototype.exec (string) 109
RegExp.prototype.toString () 111
Regular Expression Literals (section 2.1.8 15, section

2.2.1 122)
Regular Expressions 120

S

Source Text 11
Statements (section 2.1.37 33, section 2.1.157 118)
String Literals (section 2.1.7 13, section 2.1.160

120)
String.fromCharCode ([char0 [- char1 [- …]]])

71
String.prototype.indexOf (searchString - position) 71
String.prototype.lastIndexOf (searchString -

position) 72
String.prototype.localeCompare (that) 72
String.prototype.match (regexp) 72
String.prototype.replace (searchValue -

replaceValue) 73
String.prototype.search (regexp) 73
String.prototype.slice (start - end) 73
String.prototype.split (separator - limit) 73
String.prototype.substr (start - length) 121
String.prototype.toLocaleLowerCase () 75
String.prototype.toLocaleUpperCase () 76
String.prototype.valueOf () 71
SyntaxError 113

T

Term 104
The Abstract Equality Comparison Algorithm 31
The Abstract Relational Comparison Algorithm 30
The Addition Operator (+) 28
The delete Operator 27
The for Statement 34
The for-in Statement 36
The Global Object 47
The Greater-than Operator (>) 29
The Less-than-or-equal Operator (<=) 30
The Number Type 17
The Reference Type 18
The Strict Equality Comparison Algorithm 33
The switch Statement 38
The try Statement 40
The typeof Operator 28
TimeClip (time) 82
To Boolean 19
ToNumber 20
ToObject 21
ToPrimitive 19
ToString 20
Tracking changes 124
TypeError 114
Types 17

U

Unicode Format-Control Characters 11

V

Variable Instantiation 22

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Microsoft Implementations
	1.4 Conformance Requirements
	1.5 Notation

	2 Standards Support Statements
	2.1 Normative Variations
	2.1.1 [ECMA-262-1999] Section 6, Source Text
	2.1.2 [ECMA-262-1999] Section 7, Lexical Conventions
	2.1.3 [ECMA-262-1999] Section 7.1, Unicode Format-Control Characters
	2.1.4 [ECMA-262-1999] Section 7.3, Line Terminators
	2.1.5 [ECMA-262-1999] Section 7.4, Comments
	2.1.6 [ECMA-262-1999] Section 7.5.3, Future Reserved Words
	2.1.7 [ECMA-262-1999] Section 7.8.4, String Literals
	2.1.8 [ECMA-262-1999] Section 7.8.5, Regular Expression Literals
	2.1.9 [ECMA-262-1999] Section 8, Types
	2.1.10 [ECMA-262-1999] Section 8.5, The Number Type
	2.1.11 [ECMA-262-1999] Section 8.6.2, Internal Properties and Methods
	2.1.12 [ECMA-262-1999] Section 8.6.2.2, [[Put]] (P, V)
	2.1.13 [ECMA-262-1999] Section 8.7, The Reference Type
	2.1.14 [ECMA-262-1999] Section 8.7.1, GetValue (V)
	2.1.15 [ECMA-262-1999] Section 9.1, ToPrimitive
	2.1.16 [ECMA-262-1999] Section 9.2, To Boolean
	2.1.17 [ECMA-262-1999] Section 9.3, ToNumber
	2.1.18 [ECMA-262-1999] Section 9.8, ToString
	2.1.19 [ECMA-262-1999] Section 9.9, ToObject
	2.1.20 [ECMA-262-1999] Section 10.1.3, Variable Instantiation
	2.1.21 [ECMA-262-1999] Section 10.1.8, Arguments Object
	2.1.22 [ECMA-262-1999] Section 10.2, Entering an Execution Context
	2.1.23 [ECMA-262-1999] Section 10.2.1, Global Code
	2.1.24 [ECMA-262-1999] Section 10.2.2, Eval Code
	2.1.25 [ECMA-262-1999] Section 10.2.3, Function Code
	2.1.26 [ECMA-262-1999] Section 11.1.4, Array Initialiser
	2.1.27 [ECMA-262-1999] Section 11.1.5, Object Initialiser
	2.1.28 [ECMA-262-1999] Section 11.2.1, Property Accessors
	2.1.29 [ECMA-262-1999] Section 11.4.1, The delete Operator
	2.1.30 [ECMA-262-1999] Section 11.4.3, The typeof Operator
	2.1.31 [ECMA-262-1999] Section 11.6.1, The Addition Operator (+)
	2.1.32 [ECMA-262-1999] Section 11.8.2, The Greater-than Operator (>)
	2.1.33 [ECMA-262-1999] Section 11.8.3, The Less-than-or-equal Operator (<=)
	2.1.34 [ECMA-262-1999] Section 11.8.5, The Abstract Relational Comparison Algorithm
	2.1.35 [ECMA-262-1999] Section 11.9.3, The Abstract Equality Comparison Algorithm
	2.1.36 [ECMA-262-1999] Section 11.9.6, The Strict Equality Comparison Algorithm
	2.1.37 [ECMA-262-1999] Section 12, Statements
	2.1.38 [ECMA-262-1999] Section 12.1, Block
	2.1.39 [ECMA-262-1999] Section 12.6.3, The for Statement
	2.1.40 [ECMA-262-1999] Section 12.6.4, The for-in Statement
	2.1.41 [ECMA-262-1999] Section 12.11, The switch Statement
	2.1.42 [ECMA-262-1999] Section 12.14, The try Statement
	2.1.43 [ECMA-262-1999] Section 13, Function Definition
	2.1.44 [ECMA-262-1999] Section 13.2, Creating Function Objects
	2.1.45 [ECMA-262-1999] Section 13.2.2, [[Construct]]
	2.1.46 [ECMA-262-1999] Section 15, Native ECMAScript Objects
	2.1.47 [ECMA-262-1999] Section 15.1, The Global Object
	2.1.48 [ECMA-262-1999] Section 15.1.2.1, eval(x)
	2.1.49 [ECMA-262-1999] Section 15.1.2.2, parseInt (string, radix)
	2.1.50 [ECMA-262-1999] Section 15.2.1.1, Object ([value])
	2.1.51 [ECMA-262-1999] Section 15.2.2.1, new Object ([value])
	2.1.52 [ECMA-262-1999] Section 15.2.3, Properties of the Object Constructor
	2.1.53 [ECMA-262-1999] Section 15.2.4.2, Object.prototype.toString ()
	2.1.54 [ECMA-262-1999] Section 15.2.4.3, Object.prototyope.toLocaleString ()
	2.1.55 [ECMA-262-1999] Section 15.2.4.4, Object.prototype.valueOf ()
	2.1.56 [ECMA-262-1999] Section 15.2.4.5, Object.prototype.hasOwnProperty (V)
	2.1.57 [ECMA-262-1999] Section 15.2.4.6, Object.prototype.isPrototypeOf (V)
	2.1.58 [ECMA-262-1999] Section 15.2.4.7, Object.prototype.propertyIsEnumerable (V)
	2.1.59 [ECMA-262-1999] Section 15.3.4. Properties of the Function Prototype Object
	2.1.60 [ECMA-262-1999] Section 15.3.4.2, Function.prototype.toString ()
	2.1.61 [ECMA-262-1999] Section 15.3.4.3, Function.prototype.apply (thisArg, argArray)
	2.1.62 [ECMA-262-1999] Section 15.3.4.4, Function.prototype.call (thisArg [, arg1 [, arg2, ...]])
	2.1.63 [ECMA-262-1999] Section 15.3.5.2, prototype
	2.1.64 [ECMA-262-1999] Section 15.4.2.1, new Array ([item0 [, item1 [, …]]])
	2.1.65 [ECMA-262-1999] Section 15.4.4.3, Array.prototype.toLocaleString ()
	2.1.66 [ECMA-262-1999] Section 15.4.4.4, Array.prototype.concat ([item1 [, item2 [, …]]])
	2.1.67 [ECMA-262-1999] Section 15.4.4.5, Array.prototype.join (separator)
	2.1.68 [ECMA-262-1999] Section 15.4.4.6, Array.prototype.pop ()
	2.1.69 [ECMA-262-1999] Section 15.4.4.7, Array.prototype.push ([item1 [, item2 [, …]]])
	2.1.70 [ECMA-262-1999] Section 15.4.4.8, Array.prototype.reverse ()
	2.1.71 [ECMA-262-1999] Section 15.4.4.9, Array.prototype.shift ()
	2.1.72 [ECMA-262-1999] Section 15.4.4.10, Array.prototype.slice (start, end)
	2.1.73 [ECMA-262-1999] Section 15.4.4.11, Array.prototype.sort (comparefn)
	2.1.74 [ECMA-262-1999] Section 15.4.4.12, Array.prototype.splice (start, deleteCount [, item1 [, item2 [, ...]]])
	2.1.75 [ECMA-262-1999] Section 15.4.4.13, Array.prototype.unshift ([item1 [, item2 [, ...]]])
	2.1.76 [ECMA-262-1999] Section 15.4.5.1, [[Put]] (P, V)
	2.1.77 [ECMA-262-1999] Section 15.4.5.2, length
	2.1.78 [ECMA-262-1999] Section 15.5.3.2, String.fromCharCode ([char0 [, char1 [, …]]])
	2.1.79 [ECMA-262-1999] Section 15.5.4, Properties of the String Prototype Object
	2.1.80 [ECMA-262-1999] Section 15.5.4.3, String.prototype.valueOf ()
	2.1.81 [ECMA-262-1999] Section 15.5.4.7, String.prototype.indexOf (searchString, position)
	2.1.82 [ECMA-262-1999] Section 15.5.4.8, String.prototype.lastIndexOf (searchString, position)
	2.1.83 [ECMA-262-1999] Section 15.5.4.9, String.prototype.localeCompare (that)
	2.1.84 [ECMA-262-1999] Section 15.5.4.10, String.prototype.match (regexp)
	2.1.85 [ECMA-262-1999] Section 15.5.4.11, String.prototype.replace (searchValue, replaceValue)
	2.1.86 [ECMA-262-1999] Section 15.5.4.12, String.prototype.search (regexp)
	2.1.87 [ECMA-262-1999] Section 15.5.4.13, String.prototype.slice (start, end)
	2.1.88 [ECMA-262-1999] Section 15.5.4.14, String.prototype.split (separator, limit)
	2.1.89 [ECMA-262-1999] Section 15.5.4.17, String.prototype.toLocaleLowerCase ()
	2.1.90 [ECMA-262-1999] Section 15.5.4.19, String.prototype.toLocaleUpperCase ()
	2.1.91 [ECMA-262-1999] Section 15.7.4, Properties of the Number Prototype Object
	2.1.92 [ECMA-262-1999] Section 15.7.4.2, Number.prototype.toString (radix)
	2.1.93 [ECMA-262-1999] Section 15.7.4.3, Number.prototype.toLocaleString ()
	2.1.94 [ECMA-262-1999] Section 15.7.4.4, Number.prototype.valueOf ()
	2.1.95 [ECMA-262-1999] Section 15.7.4.5, Number.prototype.toFixed (fractionDigits)
	2.1.96 [ECMA-262-1999] Section 15.7.4.6, Number.prototype.toExponential (fractionDigits)
	2.1.97 [ECMA-262-1999] Section 15.7.4.7, Number.prototype.toPrecision (precision)
	2.1.98 [ECMA-262-1999] Section 15.8.2, Function Properties of the Math Object
	2.1.99 [ECMA-262-1999] Section 15.9.1.8, Local Time Zone Adjustment
	2.1.100 [ECMA-262-1999] Section 15.9.1.9, Daylight Saving Time Adjustment
	2.1.101 [ECMA-262-1999] Section 15.9.1.14, TimeClip (time)
	2.1.102 [ECMA-262-1999] Section 15.9.4.2, Date.parse (string)
	2.1.103 [ECMA-262-1999] Section 15.9.4.3, Date.UTC (year, month [, date [, hours [, minutes [, seconds [, ms]]]]])
	2.1.104 [ECMA-262-1999] Section 15.9.5, Properties of the Date Prototype Object
	2.1.105 [ECMA-262-1999] Section 15.9.5.2, Date.prototype.toString ()
	2.1.106 [ECMA-262-1999] Section 15.9.5.3, Date.prototype.toDateString ()
	2.1.107 [ECMA-262-1999] Section 15.9.5.4, Date.prototype.toTimeString ()
	2.1.108 [ECMA-262-1999] Section 15.9.5.5, Date.prototype.toLocaleString ()
	2.1.109 [ECMA-262-1999] Section 15.9.5.6, Date.prototype.toLocaleDateString ()
	2.1.110 [ECMA-262-1999] Section 15.9.5.7, Date.prototype.toLocaleTimeString ()
	2.1.111 [ECMA-262-1999] Section 15.9.5.28, Date.prototype.setMilliseconds (ms)
	2.1.112 [ECMA-262-1999] Section 15.9.5.29, Date.prototype.setUTCMilliseconds (ms)
	2.1.113 [ECMA-262-1999] Section 15.9.5.30, Date.prototype.setSeconds (sec [, ms])
	2.1.114 [ECMA-262-1999] Section 15.9.5.31, Date.prototype.setUTCSeconds (sec [, ms])
	2.1.115 [ECMA-262-1999] Section 15.9.5.33, Date.prototype.setMinutes (min [, sec [, ms]])
	2.1.116 [ECMA-262-1999] Section 15.9.5.34, Date.prototype.setUTCMinutes (min [, sec [, ms]])
	2.1.117 [ECMA-262-1999] Section 15.9.5.35, Date.prototype.setHours (hour [, min [, sec [, ms]]])
	2.1.118 [ECMA-262-1999] Section 15.9.5.36, Date.prototype.setUTCHours (hour [, min [, sec [, ms]]])
	2.1.119 [ECMA-262-1999] Section 15.9.5.36, Date.prototype.setDate (date)
	2.1.120 [ECMA-262-1999] Section 15.9.5.37, Date.prototype.setUTCDate (date)
	2.1.121 [ECMA-262-1999] Section 15.9.5.38, Date.prototype.setMonth (month [, date])
	2.1.122 [ECMA-262-1999] Section 15.9.5.39, Date.prototype.setUTCMonth (month [, date])
	2.1.123 [ECMA-262-1999] Section 15.9.5.40, Date.prototype.setFullYear (year [, month [, date]])
	2.1.124 [ECMA-262-1999] Section 15.9.5.41, Date.prototype.setUTCFullYear (year [, month [, date]])
	2.1.125 [ECMA-262-1999] Section 15.10.1, Patterns
	2.1.126 [ECMA-262-1999] Section 15.10.2.1, Notation
	2.1.127 [ECMA-262-1999] Section 15.10.2.2, Pattern
	2.1.128 [ECMA-262-1999] Section 15.10.2.3, Disjunction
	2.1.129 [ECMA-262-1999] Section 15.10.2.5, Term
	2.1.130 [ECMA-262-1999] Section 15.10.2.7, Quantifier
	2.1.131 [ECMA-262-1999] Section 15.10.2.8, Atom
	2.1.132 [ECMA-262-1999] Section 15.10.2.9, AtomEscape
	2.1.133 [ECMA-262-1999] Section 15.10.2.12, CharacterClassEscape
	2.1.134 [ECMA-262-1999] Section 15.10.2.13, CharacterClass
	2.1.135 [ECMA-262-1999] Section 15.10.2.15, NonemptyClassRanges
	2.1.136 [ECMA-262-1999] Section 15.10.2.19, ClassEscape
	2.1.137 [ECMA-262-1999] Section 15.10.4.1, new RegExp (pattern, flags)
	2.1.138 [ECMA-262-1999] Section 15.10.6, Properties of the RegExp Prototype Object
	2.1.139 [ECMA-262-1999] Section 15.10.6.2, RegExp.prototype.exec (string)
	2.1.140 [ECMA-262-1999] Section 15.10.6.4, RegExp.prototype.toString ()
	2.1.141 [ECMA-262-1999] Section 15.11.1.1, Error (message)
	2.1.142 [ECMA-262-1999] Section 15.11.2.1, new Error (message)
	2.1.143 [ECMA-262-1999] Section 15.11.4, Properties of the Error Prototype Object
	2.1.144 [ECMA-262-1999] Section 15.11.4.3, Error.prototype.message
	2.1.145 [ECMA-262-1999] Section 15.11.4.4, Error.prototype.toString ()
	2.1.146 [ECMA-262-1999] Section 15.11.5, Properties of Error Instances
	2.1.147 [ECMA-262-1999] Section 15.11.6.2, RangeError
	2.1.148 [ECMA-262-1999] Section 15.11.6.4, SyntaxError
	2.1.149 [ECMA-262-1999] Section 15.11.6.5, TypeError
	2.1.150 [ECMA-262-1999] Section 15.11.7, NativeError Object Structure
	2.1.151 [ECMA-262-1999] Section 15.11.7.2, NativeError (message)
	2.1.152 [ECMA-262-1999] Section 15.11.7.4, New NativeError (message)
	2.1.153 [ECMA-262-1999] Section 15.11.7.10, NativeError.prototype.message
	2.1.154 [ECMA-262-1999] Section 16, Errors
	2.1.155 [ECMA-262-1999] Section A.1, Lexical Grammar
	2.1.156 [ECMA-262-1999] Section A.3, Expressions
	2.1.157 [ECMA-262-1999] Section A.4, Statements
	2.1.158 [ECMA-262-1999] Section A.5, Functions and Programs
	2.1.159 [ECMA-262-1999] Section A.7, Regular Expressions
	2.1.160 [ECMA-262-1999] Section B.1.2, String Literals
	2.1.161 [ECMA-262-1999] Section B.2, Additional Properties
	2.1.162 [ECMA-262-1999] Section B.2.3, String.prototype.substr (start, length)
	2.1.163 [ECMA-262-1999] Section B.2.4, Date.prototype.getYear ()
	2.1.164 [ECMA-262-1999] Section B.2.5, Date.prototype.setYear (year)

	2.2 Clarifications
	2.2.1 [ECMA-262-1999] Section 7.8.5, Regular Expression Literals
	2.2.2 [ECMA-262-1999] Section 8.6.2, Internal Properties and Methods
	2.2.3 [ECMA-262-1999] Section 10.1.1, Function Objects
	2.2.4 [ECMA-262-1999] Section 15.1.2.2, parseInt (string, radix)

	2.3 Error Handling
	2.4 Security

	3 Change Tracking
	4 Index

