[MS-ES20161:

Microsoft Edge ECMA-262 ECMAScript Language
Specification (7th Edition) Standards Support Document

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

1/46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision

Date History Class Comments

5/17/2017 | 1.0 New Released new document.
No changes to the meaning, language, or formatting of the

10/3/2017 | 1.0 None technical content.

12/5/2017 | 1.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

1/23/2018 | 1.0 None No changes to the meaning, language, or formatting of the

technical content.

[MS-ES2016] - v20180123

2/46

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

Table of Contents

B N 112 1o T [T T ot f ' Y 4 5
1.1 [0 T1== 1 PP 5
1.2 3] =T =T g Lol PP 5

1.2.1 NOrMative RefEIENCES . ovii ittt e e e e e e e anans 5
1.2.2 INfOrmMative REFEIENCES ...vitiitiii i e e e e e e e 5
1.3 Microsoft ImMplemeENntatioNsiiiiii i e 5
1.4 Standards SUPPOrt REQUINEMENTSuviiiiiiii e e eaeeaes 6
1.5 [N\ T0) = o o 6

2 Standards Support Statements.....ccicciiiiiiiiiiiiiis i s nn 7

2.1 NOrmMative Variations ..o e e e 7
2.1.1 [ECMA-262/7] Section 7.1.1 ToPrimitive (input [, PreferredType])ccvvvvinennen. 7
2.1.2 [ECMA-262/7] Section 7.4.6 IteratorClose (iterator, completion)cocoeevnins 7
2.1.3 [ECMA-262/7] Section 9.2.7 AddRestrictedFunctionProperties (F, realm) 8
2.1.4 [ECMA-262/7] Section 11.8.6 Template Literal Lexical Components.................... 8
2.1.5 [ECMA-262/7] Section 11.9.1 Rules of Automatic Semicolon Insertion 9
2.1.6 [ECMA-262/7] Section 12.4.4.1 Runtime Semantics: Evaluation....................... 10
2.1.7 [ECMA-262/7] Section 12.4.5.1 Runtime Semantics: Evaluation....................... 11
2.1.8 [ECMA-262/7] Section 12.4.6.1 Runtime Semantics: Evaluation....................... 11
2.1.9 [ECMA-262/7] Section 12.4.7.1 Runtime Semantics: Evaluation....................... 12
2.1.10 [ECMA-262/7] Section 12.10.4 Runtime Semantics: InstanceofOperator(O, C)... 12
2.1.11 [ECMA-262/7] Section 12.15.4 Runtime Semantics: Evaluation........................ 13
2.1.12 [ECMA-262/7] Section 13 ECMAScript Language: Statements and Declarations.. 15
2.1.13 [ECMA-262/7] Section 13.2.1 Static Semantics: Early Errors........c.cccvevviviieinnnns 15
2.1.14 [ECMA-262/7] Section 13.7.4.1 Static Semantics: Early Errors..........ccvvevvvinnnns 16
2.1.15 [ECMA-262/7] Section 13.7.5.1 Static Symantics: Early Errors..........cccvevvivinenns 17
2.1.16 [ECMA-262/7] Section 13.7.5.12 Runtime Semantics: ForIn/OfHeadEvaluation (

TDZnames, expr, iterationKind)ccoiiiiiiii s 17
2.1.17 [ECMA-262/7] Section 13.13 Labelled Statements........cccooiiiiiiiiiiiiiiiiicien 18
2.1.18 [ECMA-262/7] Section 14.1.2 Static Semantics: Early Errors........c.cevvvinvinninnnns 18
2.1.19 [ECMA-262/7] Section 14.3.8 Runtime Semantics: DefineMethod 19
2.1.20 [ECMA-262/7] Section 14.5.14 Runtime Semantics: ClassDefinitionEvaluation ... 20
2.1.21 [ECMA-262/7] Section 15.1.1 Static Semantics: Early Errors........c.ccovevviiiiiinnnns 20
2.1.22 [ECMA-262/7] Section 16.2 Forbidden EXteNnSIONS........covviiiiiiiiiiiiiiiiieieneeene 21
2.1.23 [ECMA-262/7] Section 19.1.2.18 Object.setPrototypeOf (O, proto)ccuvvnee. 21
2.1.24 [ECMA-262/7] Section 19.1.3.2 Object.prototype.hasOwnProperty (V)............ 22
2.1.25 [ECMA-262/7] Section 19.1.3.5 Object.prototype.toLocaleString ([reservedl [,

L STY T mVZ=Te 17 TS 22
2.1.26 [ECMA-262/7] Section 19.1.3.6 Object.prototype.toString ().....coevvvviiieiinnnnnnn. 22
2.1.27 [ECMA-262/7] Section 19.2.3.2 Function.prototype.bind (thisArg, ...args) 23
2.1.28 [ECMA-262/7] Section 19.2.3.6 Function.prototype [@@hasInstance] (V) 23
2.1.29 [ECMA-262/7] Section 19.2.4.1 1engthccooiiiiiiiiii e 24
2.1.30 [ECMA-262/7] Section 19.4.2 Properties of the Symbol Constructor.................. 24
2.1.31 [ECMA-262/7] Section 19.4.3.4 Symbol.prototype [@@toPrimitive] (hint) 25
2.1.32 [ECMA-262/7] Section 19.4.3.5 Symbol.prototype [@@toStringTag J............... 25
2.1.33 [ECMA-262/7] Section 19.5.3 Properties of the Error Prototype Object.............. 26
2.1.34 [ECMA-262/7] Section 20.3.1.15 TimeClip (£ime) ..cccvvieiiiiiniiiiiiee e 26
2.1.35 [ECMA-262/7] Section 20.3.1.16 Date Time String Formatccvevviiviiennnnnnn. 26
2.1.36 [ECMA-262/7] Section 20.3.4 Properties of the Date Prototype Object 27
2.1.37 [ECMA-262/7] Section 21.1.3.22 String.prototype.toLowerCase ().....c.cocvuvunene. 27
2.1.38 [ECMA-262/7] Section 21.1.3.24 String.prototype.toUpperCase ().......c.ccvevnvne. 28
2.1.39 [ECMA-262/7] Section 21.2.1 Patternsccciieiiiiiiii i e e 28
2.1.40 [ECMA-262/7] Section 21.2.1.1 Static Semantics: Early Errors...........cccoovvevnene. 29
2.1.41 [ECMA-262/7] Section 21.2.2 Pattern SemantiCScuvviiiriiiiiiiiiiiiiinienaeen 29
2.1.42 [ECMA-262/7] Section 21.2.2.8.2 Runtime Semantics: Canonicalize (ch)......... 30

3/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

2.1.43 [ECMA-262/7] Section 21.2.2.10 CharacterESCape.....c.cvvvvriiiiiiiiiieiniiiiniienenens 30
2.1.44 [ECMA-262/7] Section 21.2.5 Properties of the RegExp Prototype Object 31
2.1.45 [ECMA-262/7] Section 21.2.5.2.3 AdvanceStringIndex (S, index, unicode) 32
2.1.46 [ECMA-262/7] Section 21.2.6.1 1aStINdeX ...ciiiiiiiiiiiiiiiiii i aen e eaeas 32
2.1.47 [ECMA-262/7] Section 22.1.3.1.1 Runtime Semantics: IsConcatSpreadable (O) 32
2.1.48 [ECMA-262/7] Section 22.1.3.3 Array.prototype.copyWithin (target, start [, end])
33
2.1.49 [ECMA-262/7] Section 22.1.3.18 Array.prototype.push (...items)ccoevnine. 34
2.1.50 [ECMA-262/7] Section 22.1.3.25 Array.prototype.sort (comparefn) 34
2.1.51 [ECMA-262/7] Section 22.1.3.27 Array.prototype.toLocaleString ([reservedl [,
=TT aV4=Te 172 N I T PPN 35
2.1.52 [ECMA-262/7] Section 25.4.4 Properties of the Promise Constructor................. 35
2.1.53 [ECMA-262/7] Section 25.4.4.1 Promise.all (iterable).......c.coovviiiiiiiiinnnn. 36
2.2 (O] g1 o= o To] o 1= PP 36
2.3 < 1= Lo 1N 36
2.3.1 [ECMA-262/7] Section 7.3.18 Invoke (V, P [, argumentsList])....c.covvviniiiiinnnns 36
2.3.2 [ECMA-262/7] Section 19.2.3.2 Function.prototype.bind (thisArg, ...args) 37
2.3.3 [ECMA-262/7] Section 21.2.4 Properties of the RegExp Constructor.................. 38
2.4 =] o] ol e =Y o o | 115 o [PP 44
2.5 ST = ol 1 o P 44
3 Change TracKiNg..icicuivramrarsmmaranmersssarsnsassassssssassassssssasssssssssassassssasassnssssasassnsasnnsansns 45
I 1 5 e 1= T 46
4/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

1 Introduction

This document describes the level of support provided by Microsoft Edge for the ECMAScript® 2016
Language Specification, [ECMA-262/7], published June 2016.

This specification is the seventh edition of the ECMAScript Language Specification. Since publication of
the first edition in 1997, ECMAScript has grown to be one of the most widely used general purpose
programming languages. It is best known as the language embedded in web browsers but has also
been widely adopted for server and embedded applications.

1.1 Glossary
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[ECMA-262/7] Ecma International, "ECMAScript®2016 Language Specification", Standard ECMA-262
7th Edition / June 2016, https://go.microsoft.com/fwlink/p/?linkid=846935

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

None.

1.3 Microsoft Implementations
The following Microsoft web browsers implement some portion of the [ECMA-262/7] specification:
= Microsoft Edge

Each browser version may implement multiple document rendering modes. The modes vary from one
to another in support of the standard. The following table lists the document modes supported by each
browser version.

Browser Version Document Modes Supported

Microsoft Edge EdgeHTML Mode

For each variation presented in this document there is a list of the document modes and browser
versions that exhibit the behavior described by the variation. All combinations of modes and versions
that are not listed conform to the specification. For example, the following list for a variation indicates
that the variation exists in three document modes in all browser versions that support these modes:

5/46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

https://go.microsoft.com/fwlink/p/?linkid=846935
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/p/?linkid=846935
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/p/?linkid=846935

Quirks Mode, IE7 Mode, and IE8 Mode (All Versions)

1.4 Standards Support Requirements

To conform to [ECMA-262/7], a user agent must implement all required portions of the specification.
Any optional portions that have been implemented must also be implemented as described by the
specification. Normative language is usually used to define both required and optional portions. (For
more information, see [RFC2119].)

The following table lists the sections of [ECMA-262/7] and whether they are considered normative or
informative.

Sections Normative/Informative
1-6 Informative

7-26 Normative

Annex A Informative

Annex B Normative

Annex C, Annex D, Annex E, Informative

Annex F, Annex G

1.5 Notation

The following notations are used in this document to differentiate between notes of clarification,
variation from the specification, and points of extensibility.

Notation | Explanation

CH### This identifies a clarification of ambiguity in the target specification. This includes imprecise
statements, omitted information, discrepancies, and errata. This does not include data formatting
clarifications.

V#### This identifies an intended point of variability in the target specification such as the use of MAY,
SHOULD, or RECOMMENDED. (See [RFC2119].) This does not include extensibility points.

E#### Because the use of extensibility points (such as optional implementation-specific data) can impair
interoperability, this profile identifies such points in the target specification.

For document mode and browser version notation, see also section 1.3.

6 /46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

https://go.microsoft.com/fwlink/p/?linkid=846935
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90317

2 Standards Support Statements

This section contains all variations, clarifications, and extensions for the Microsoft implementation of

ECMA-262/7].

= Section 2.1 describes normative variations from the MUST requirements of the specification.
= Section 2.2 describes clarifications of the MAY and SHOULD requirements.

= Section 2.3 describes extensions to the requirements.

= Section 2.4 considers error handling aspects of the implementation.

= Section 2.5 considers security aspects of the implementation.

2.1 Normative Variations

The following subsections describe normative variations from the MUST requirements of [ECMA-
262/7].

2.1.1 [ECMA-262/7] Section 7.1.1 ToPrimitive (input [, PreferredType])
V0164: @@toPrimitive is not implemented

The specification states:

7.1.1 ToPrimitive (input [, PreferredType])
The abstract operation ToPrimitive takes an input argument and an optional argument
PreferredType. The abstract operation ToPrimitive converts its input argument to a
non-Object type. If an object is capable of converting to more than one primitive
type, 1t may use the optional hint PreferredType to favour that type. Conversion
occurs according to ...:

. Type (input) is Object ...

. Let exoticToPrim be ? GetMethod (input, @@toPrimitive).

EdgeHTML Mode

@@toPrimitive is not implemented.

2.1.2 [ECMA-262/7] Section 7.4.6 IteratorClose (iterator, completion)
V0187: IteratorClose is not correctly implemented

The specification states:

7.4.6 IteratorClose(iterator, completion)

The abstract operation IteratorClose with arguments iterator and completion is used
to notify an iterator that it should perform any actions it would normally perform
when it has reached its completed state:

. Assert: Type(iterator) is Object.
. Assert: completion is a Completion Record.

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

7/ 46

https://go.microsoft.com/fwlink/p/?linkid=846935
https://go.microsoft.com/fwlink/p/?linkid=846935
https://go.microsoft.com/fwlink/p/?linkid=846935

. Let return be ? GetMethod(iterator, "return").
. If return is undefined, return Completion (completion).
. Let innerResult be Call (return, iterator, « »).

. If completion.[[type]] is throw, return Completion (completion).
. If innerResult.[[type]] is throw, return Completion (innerResult) .
. If Type(innerResult.[[value]]) is not Object, throw a TypeError exception.

. Return Completion (completion) .

EdgeHTML Mode
IteratorClose is not correctly implemented. It behaves as follows:
7.4.6 IteratorClose(iterator, completion)
1. Assert: Type(iterator) is Object.
2. Assert: completion is a Completion Record.

3. Return Completion(completion).

2.1.3 [ECMA-262/7] Section 9.2.7 AddRestrictedFunctionProperties (F, realm)
V0188: The caller and arguments properties are set incorrectly

The specification states:

9.2.7 AddRestrictedFunctionProperties (F, realm)

The abstract operation AddRestrictedFunctionProperties is called with a function
object F and Realm Record realm as its argument. It performs the following steps:

3. Perform ! DefinePropertyOrThrow(F, "caller", PropertyDescriptor {[[Get]]:
thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]l]: true}).

4. Return ! DefinePropertyOrThrow (F, "arguments", PropertyDescriptor {[[Get]]:
thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: true}).

EdgeHTML Mode
The caller and arguments properties are set incorrectly:
3. Perform ! DefinePropertyOrThrow(F, "caller", PropertyDescriptor {[[Get]]:
thrower, [[Set]]: undefined, [[Enumerable]]: false, [[Configurable]]: false}).
4. Return ! DefinePropertyOrThrow(F, "arguments", PropertyDescriptor {[[Get]]:

thrower, [[Set]]: undefined, [[Enumerable]]: false, [[Configurable]]: false}).

2.1.4 [ECMA-262/7] Section 11.8.6 Template Literal Lexical Components

V0040: The escape sequence \0 is treated as a legacy octal escape sequence and a SyntaxError is
thrown

The specification states:

8/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

11.8.6 Template Literal Lexical Components
Syntax
Template
NoSubstitutionTemplate

TemplateHead

NoSubstitutionTemplate
TemplateCharactersopt

TemplateHead
TemplateCharactersopt ${

TemplateSubstitutionTail
TemplateMiddle
TemplateTail

TemplateMiddle
} TemplateCharactersopt ${

TemplateTail
} TemplateCharactersopt

TemplateCharacters
TemplateCharacter TemplateCharactersopt

TemplateCharacter
S [lookahead # {]
\ EscapeSequence
LineContinuation

LineTerminatorSequence
SourceCharacter but not one of ° or \ or $ or LineTerminator

A conforming implementation must not use the extended definition of EscapeSequence
described in B.1.2 when parsing a TemplateCharacter.

NOTE TemplateSubstitutionTail is used by the InputElementTemplateTail alternative
lexical goal.

EdgeHTML Mode

The escape sequence \0 is treated as a legacy octal escape sequence and a SyntaxError is thrown;
instead it should be translated into a null character.

2.1.5 [ECMA-262/7] Section 11.9.1 Rules of Automatic Semicolon Insertion
V0041: Automatic semicolon insertion is not applied to yield* productions

The specification states:

11.9.1 Rules of Automatic Semicolon Insertion

In the following rules, “token” means the actual recognized lexical token determined
using the current lexical goal symbol as described in clause 11.

There are three basic rules of semicolon insertion:

3. When ... a token is encountered that is allowed by some production of the

9/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

grammar, but the production is a restricted production and the
the first token for a terminal or nonterminal immediately foll
annotation “[no LineTerminator here]” within the restricted pr
therefore such a token is called a restricted token), and the
token is separated from the previous token by at least one Lin
then a semicolon is automatically inserted before the restrict

”

EdgeHTML Mode
Rule 3 is not applied to yield* productions.
var obj = {
*g0 {
yield
*1
¥
3
A semicolon should be inserted in the yield* production as follows:
yield;*1

This would throw a SyntaxError.

token would be
owing the
oduction (and
restricted
eTerminator,
ed token.

2.1.6 [ECMA-262/7] Section 12.4.4.1 Runtime Semantics: Evaluation

V0189: The reference is retrieved twice

The specification states:

12.4.4.1 Runtime Semantics: Evaluation
UpdateExpression : LeftHandSideExpression ++
1. Let lhs be the result of evaluating LeftHandSideExpression.
2. Let oldValue be ? ToNumber (? GetValue (lhs)).
3. Let newValue be the result of adding the value 1 to oldValue,
rules as for the + operator (see 12.8.5).

4. Perform ? PutValue(lhs, newValue).
5. Return oldValue.

EdgeHTML Mode
Between steps 2 and 3, the following steps are added:

a. If Type(lhs) is a Reference and if IsUnresolvableReference(_lhs_) is false and
IsPropertyReference(_lhs_) is false:

1. Assert: |hs is a reference to an Environment Record.

2. Let hs be the result of evaluating an Identifier _id_ whose StringValue is
GetReferencedName(lhs) as if _id_ were a LeftHandSideExpression.

using the same

[MS-ES2016] - v20180123

10/ 46

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document

Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

3. ReturnIfAbrupt(lhs);

As a result, the reference is retrieved twice.

2.1.7 [ECMA-262/7] Section 12.4.5.1 Runtime Semantics: Evaluation
V0190: The reference is retrieved twice

The specification states:

12.4.5.1 Runtime Semantics: Evaluation
UpdateExpression : LeftHandSideExpression --

1. Let lhs be the result of evaluating LeftHandSideExpression.
2. Let oldvValue be ? ToNumber (GetValue (lhs)) .
3. Let newValue be the result of subtracting the value 1 from oldvValue, using
the same rules as for the - operator (see 12.8.5).
4. Perform ? PutValue(lhs, newValue).
5. Return oldValue.
EdgeHTML Mode
Between steps 2 and 3 the following steps are added:

a. If Type(lhs) is a Reference and if IsUnresolvableReference(_lhs_) is false and
IsPropertyReference(_lhs_) is false:

1. Assert: |hs is a reference to an Environment Record.

2. Let hs be the result of evaluating an Identifier _id_ whose StringValue is
GetReferencedName(lhs) as if _id_ were a LeftHandSideExpression.

3. ReturnIfAbrupt(lhs);

As a result, the reference is retrieved twice.

2.1.8 [ECMA-262/7] Section 12.4.6.1 Runtime Semantics: Evaluation
V0191: The reference is returned twice

The specification states:

12.4.6.1 Runtime Semantics: Evaluation

UpdateExpression : ++ UnaryExpression
1. Let expr be the result of evaluating UnaryExpression.
2. Let oldvValue be ? ToNumber (? GetValue (expr)) .
3. Let newValue be the result of adding the value 1 to oldValue, using the same
rules as for the + operator (see 12.8.5).
5. Perform ? PutValue (expr, newValue).
5. Return newValue.

EdgeHTML Mode

11/46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

Between steps 2 and 3 the following steps are added:
a. If Type(expr) is a Reference and if IsUnresolvableReference(_expr_) is false:
1. Assert: expr is a reference to an Environment Record.

2. Let hs be the result of evaluating an Identifier _id_ whose StringValue is
GetReferencedName(expr) as if _id_ were a LeftHandSideExpression.

3. ReturnIfAbrupt(expr);

As a result, the reference is returned twice.

2.1.9 [ECMA-262/7] Section 12.4.7.1 Runtime Semantics: Evaluation
V0192: The reference is retrieved twice

The specification states:

12.4.7.1 Runtime Semantics: Evaluation

UpdateExpression : -- UnaryExpression
1. Let expr be the result of evaluating UnaryExpression.
2. Let oldvValue be ? ToNumber (? GetValue (expr)) .
3. Let newValue be the result of subtracting the value 1 from oldValue, using
the same rules as for the - operator (see 12.8.5).
4. Perform ? PutValue (expr, newValue).
5. Return newValue.

EdgeHTML Mode
Between steps 3 and 4 the following steps are added:

a. If Type(expr) is Reference and if IsUnresolvableReference(_expr_) is false and
IsPropertyReference(_expr_) is false then

1. Assert: expr is a reference to an Environment Record.

2. Let expr be the result of evaluating an Identifier _id_ whose StringValue is
GetReferencedName(expr) as if _id_ were a LeftHandSideExpression.

3. ReturnIfAbrupt(expr);

As a result, the reference is retrieved twice.

2.1.10[ECMA-262/7] Section 12.10.4 Runtime Semantics: InstanceofOperator(O, C)
V0193: The abstract operation InstanceofOperator(O, C) is not implemented

The specification states:

12.10.4 Runtime Semantics: InstanceofOperator (0, C)

The abstract operation InstanceofOperator (0, C) implements the generic algorithm for
determining if an object O inherits from the inheritance path defined by constructor

12 /46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

C. This abstract operation performs the following steps:

N

If Type(C) 1is not Object, throw a TypeError exception.
Let instOfHandler be ? GetMethod(C,@@hasInstance).

If instOfHandler is not undefined, then

a. Return ToBoolean(? Call (instOfHandler, C, «O»)).

If IsCallable(C) is false, throw a TypeError exception.
Return OrdinaryHasInstance (C, O).

EdgeHTML Mode

The abstract operation InstanceofOperator(O, C) is not implemented.

2.1.11[ECMA-262/7] Section 12.15.4 Runtime Semantics: Evaluation

V0194: After an assignment, the name of the function is the empty string

The specification states:

12.15.4 Runtime Semantics: Evaluation

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

1.

If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral,
then
Let lref be the result of evaluating LeftHandSideExpression.
ReturnIfAbrupt (lref) .
Let rref be the result of evaluating AssignmentExpression.
Let rval be ? GetValue(rref).
If IsAnonymousFunctionDefinition (AssignmentExpression) and IsIdentifierRef
f LeftHandSideExpression are both true, then
i. Let hasNameProperty be ? HasOwnProperty(rval, "name").
ii. TIf hasNameProperty is false, perform SetFunctionName (rval,
GetReferencedName (lref)) .

o0 QoOow

EdgeHTML Mode

After the following assignment:

var f = function () {}

the name of the function held in f is the empty string.

V0195: The reference is retrieved twice

The specification states:

12.15.4 Runtime Semantics: Evaluation

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

1.

If LeftHandSideExpression is neither an ObjectLiteral nor an Arrayliteral,
then

a. Let lref be the result of evaluating LeftHandSideExpression.

b. ReturnIfAbrupt (lref).

c. Let rref be the result of evaluating AssignmentExpression.

d. Let rval be ? GetValue(rref).

e. If IsAnonymousFunctionDefinition (AssignmentExpression) and IsIdentifierRef

13/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

of LeftHandSideExpression are both true, then
i. Let hasNameProperty be ? HasOwnProperty(rval, "name").
ii. If hasNameProperty is false, perform SetFunctionName (rval,
GetReferencedName (1lref)) .

f. Perform ? PutValue (lref, rval).

g. Return rval.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

Let lref be the result of evaluating LeftHandSideExpression.

Let lval be ? GetValue(lref).

Let rref be the result of evaluating AssignmentExpression.

Let rval be ? GetValue (rref).

Let op be the @ where AssignmentOperator is @=

Let r be the result of applying op to lval and rval as if evaluating the
expression lval op rval.

Perform ? PutValue(lref, r).

8. Return r.

oUW N

~J

EdgeHTML Mode
In the algorithm for

AssignmentExpression : LeftHandSideExpression = AssignmentExpression
the following steps are added before stepif:

i. Type(lref) is Reference and if IsUnresolvableReference(_Iref) is false and
IsPropertyReference(_lIref_) is false then

1. Assert: Iref is a reference to an Environment Record.

2. Let Iref be the result of evaluating an Identifier _id_ whose StringValue is
GetReferencedName(Iref) as if _id_ were a LeftHandSidelrefession.

3. ReturnIfAbrupt(lref);
As a result, the reference is retrieved twice.
In the algorithm for
Assignmentlrefession : LeftHandSidelrefession AssignmentOperator Assignmentlrefession
the following steps are added between steps 4 and 5:

a. Type(lref) is Reference and if IsUnresolvableReference(_Iref_) is false and
IsPropertyReference(_lIref_) is false then

i. Assert: Iref is a reference to an Environment Record.

ii. Let Iref be the result of evaluating an Identifier _id_ whose StringValue is
GetReferencedName(lref) as if _id_ were a LeftHandSidelrefession.

iii. ReturnIfAbrupt(lref);

As a result, the reference is retrieved twice.

14 / 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

2.1.12[ECMA-262/7] Section 13 ECMAScript Language: Statements and Declarations
V0056: HoistableDeclaration is treated as a production of Statement, not Declaration

The specification states:

13 ECMAScript Language: Statements and Declarations

Statement [Yield, ... Return]
BlockStatement [?Yield, ... ?Return]

DebuggerStatement

Declaration[Yield ...] :
HoistableDeclaration[?Yield ,,,]
ClassDeclaration[?Yield ...]
LexicalDeclaration[...In, ?Yield ...]

HoistableDeclaration[Yield, ... Default]
FunctionDeclaration[?Yield, ... ?Default]
GeneratorDeclaration[?Yield, ... ?Default]

EdgeHTML Mode
HoistableDeclaration is treated as a production of Statement, not Declaration.
Statement[Yield, ... Return] :

BlockStatement[?Yield, ... ?Return]

DebuggerStatement
HoistableDeclaration[?Yield ...]
Declaration[Yield ...] :
ClassDeclaration[?Yield ...]
LexicalDeclaration[...In, ?Yield ...]
HoistableDeclaration[Yield, ... Default] :
FunctionDeclaration[?Yield, ... ?Default]

GeneratorDeclaration[?Yield, ... ?Default]

2.1.13[ECMA-262/7] Section 13.2.1 Static Semantics: Early Errors
V0057: No error is issued if an element of LexicallyDeclaredNames also occurs in VarDeclaredNames

The specification states:

13.2.1 Static Semantics: Early Errors
Block : { StatementList }

e It is a Syntax Error if the LexicallyDeclaredNames of StatementList contains
any duplicate entries.

15/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

e It is a Syntax Error if any element of the LexicallyDeclaredNames of
StatementList also occurs in the VarDeclaredNames of StatementList.

EdgeHTML Mode

No error is issued if an element of LexicallyDeclaredNames also occurs in VarDeclaredNames. For

example:

{
let x;

var x; // should be a syntax error but is not

V0058: Functions and generator functions are allowed to have duplicates in LexicallyDeclaredNames

The specification states:

13.2.1 Static Semantics: Early Errors
Block : { StatementList }

e It is a Syntax Error if the LexicallyDeclaredNames of StatementList contains
any duplicate entries.

e« It is a Syntax Error if any element of the LexicallyDeclaredNames of
StatementList also occurs in the VarDeclaredNames of StatementList.

EdgeHTML Mode

Functions and generator functions are allowed to have duplicates in LexicallyDeclaredNames.

2.1.14[ECMA-262/7] Section 13.7.4.1 Static Semantics: Early Errors
V0061: It is not a Syntax Error for BoundNames of LexicalDeclaration to contain let or const

The specification states:

13.7.4.1 Static Semantics: Early Errors
IterationStatement : for (LexicalDeclaration Expression; Expression) Statement

e It is a Syntax Error if any element of the BoundNames of LexicalDeclaration
also occurs in the VarDeclaredNames of Statement.

EdgeHTML Mode

It is not a Syntax Error for BoundNames of LexicalDeclaration to contain let or const.

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

16 / 46

2.1.15[ECMA-262/7] Section 13.7.5.1 Static Symantics: Early Errors

V0129: It is not a Syntax Error if an element of the BoundNames of ForDeclaration also occurs in the
VarDeclaredNames of Statement

The specification states:

13.7.5.1 Static Semantics: Early Errors

IterationStatement :
for (ForDeclaration in Expression) Statement
for (ForDeclaration of AssignmentExpression) Statement

e It is a Syntax Error if the BoundNames of ForDeclaration contains "let".
e It is a Syntax Error if any element of the BoundNames of ForDeclaration also

occurs in the VarDeclaredNames of Statement.
e It is a Syntax Error if the BoundNames of ForDeclaration contains any duplicate

entries.

EdgeHTML Mode

It is not a Syntax Error if an element of the BoundNames of ForDeclaration also occurs in the
VarDeclaredNames of Statement.

2.1.16 [ECMA-262/7] Section 13.7.5.12 Runtime Semantics: ForIn/OfHeadEvaluation
(TDZnames, expr, iterationKind)

V0208: ForIn/OfHeadEvaluation does not return an AbruptCompletion when exprValue.[[value]] is null
or undefined

The specification states:

13.7.5.12 Runtime Semantics: ForIn/OfHeadEvaluation (TDZnames, expr, iterationKind)

The abstract operation ForIn/OfHeadEvaluation is called with arguments TDZnames,
expr, and iterationKind. The value of iterationKind is either enumerate or iterate.

6. If iterationKind is enumerate, then
a. If exprValue.[[value]] is undefined or null, then
i. Return Completion{[[typel]: break, [[valuel]: empty, [[target]]:
empty}.

b. Let obj be ! ToObject (exprValue) .

c. Return ? EnumerateObjectProperties (obj) .
7. Else,

a. Assert: iterationKind is iterate.

b. Return ? GetlIterator (exprValue).

EdgeHTML Mode
Logic in the If branch is also executed in the Else branch:
7. Else,
-. If exprValue.[[value]] is null or undefined, then

i. Return Completion{[[type]]: break, [[value]]: empty, [[target]]: empty?}.

a. Assert: iterationKind is iterate.

17/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

b. Return ? GetIterator(exprValue).

Therefore ForIn/OfHeadEvaluation does not return an abrupt completion for iterationKind is iterate
when exprValue. [[value]] is null or undefined. For example, the following statements do not throw

errors:
for (let x of null) {}
for (let x of undefined) {}

2.1.17 [ECMA-262/7] Section 13.13 Labelled Statements
V0062: The LabelledItem production replaces FunctionDeclaration with Declaration

The specification states:

13.13 Labelled Statements
Syntax

LabelledStatement([Yield, ... Return]
LabelIdentifier([?Yield ...] : LabelledItem[?Yield, ... ?Return]

LabelledItem[Yield, ... Return]

Statement [?Yield, ... ?Return]
FunctionDeclaration[?Yield ...]

EdgeHTML Mode

The LabelledItem production replaces FunctionDeclaration with Declaration.
LabelledItem[Yield, ... Return] :
Statement[?Yield, ... ?Return]

Declaration[?Yield ...]

2.1.18[ECMA-262/7] Section 14.1.2 Static Semantics: Early Errors

V0063: The LexicallyDeclaredNames of FunctionStatementList may have duplicate function and
generator function entries

The specification states:

14.1.2 Static Semantics: Early Errors
FunctionBody : FunctionStatementList

e It is a Syntax Error if the LexicallyDeclaredNames of FunctionStatementList

contains any duplicate entries.
e It is a Syntax Error if any element of the LexicallyDeclaredNames of

FunctionStatementList also occurs in the VarDeclaredNames of

FunctionStatementList.
e« It is a Syntax Error if ContainsDuplicatelLabels of FunctionStatementList with

argument « » is true.
e It is a Syntax Error if ContainsUndefinedBreakTarget of FunctionStatementList

with argument « » is true.

18/ 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document

Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

e It is a Syntax Error if ContainsUndefinedContinueTarget of
FunctionStatementList with arguments « » and « » is true.

EdgeHTML Mode

The LexicallyDeclaredNames of FunctionStatementList may have duplicate function and generator
function entries.

2.1.19[ECMA-262/7] Section 14.3.8 Runtime Semantics: DefineMethod
V0066: Object literal methods are created with a [[Construct]] slot

The specification states:

14.3.8 Runtime Semantics: DefineMethod
With parameters object and optional parameter functionPrototype.
MethodDefinition : PropertyName (StrictFormalParameters) { FunctionBody }

1. Let propKey be the result of evaluating PropertyName.
2. ReturnIfAbrupt (propKey) .

3. If the function code for this MethodDefinition is strict mode code, let
strict be true. Otherwise let strict be false.

4. Let scope be the running execution context’s LexicalEnvironment.

5. If functionPrototype was passed as a parameter, let kind be Normal; otherwise
let kind be Method.

6. Let closure be FunctionCreate (kind, StrictFormalParameters, FunctionBody,
scope, strict). If functionPrototype was passed as a parameter then pass its
value as the functionPrototype optional argument of FunctionCreate.

7. Perform MakeMethod(closure, object).

8. Return the Record{[[key]]: propKey, [[closure]]: closure}.

EdgeHTML Mode

Object literal methods are created with a [[Construct]] slot, contrary to DefineMethod. Therefore
the methods can successfully be used as the target of new expressions. In the following example, the
new expression should throw a TypeError, but doesn't.

var obj = { meth() { } };

new obj.meth();

V0067: Methods defined in object literals are created with their own property named prototype

The specification states:

14.3.8 Runtime Semantics: DefineMethod
With parameters object and optional parameter functionPrototype.
MethodDefinition : PropertyName (StrictFormalParameters) { FunctionBody }
1. Let propKey be the result of evaluating PropertyName.
ReturnIfAbrupt (propKey) .

3. If the function code for this MethodDefinition is strict mode code, let
strict be true. Otherwise let strict be false.

N

19/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

N

Let scope be the running execution context’s LexicalEnvironment.

5. If functionPrototype was passed as a parameter, let kind be Normal; otherwise
let kind be Method.

6. Let closure be FunctionCreate (kind, StrictFormalParameters, FunctionBody,
scope, strict). If functionPrototype was passed as a parameter then pass its
value as the functionPrototype optional argument of FunctionCreate.

7. Perform MakeMethod(closure, object).

8. Return the Record{[[key]]: propKey, [[closure]]: closure}.

EdgeHTML Mode

Methods defined in object literals are created with their own property named prototype, contrary to
DefineMethod. In the following example, false should be logged, but instead true is.

var obj = { method() { } };

console.log(Object.hasOwnProperty(obj.method, 'property"));

2.1.20[ECMA-262/7] Section 14.5.14 Runtime Semantics: ClassDefinitionEvaluation
V0021: ClassDefinitionEvaluation uses the lexical environment of the running execution context

The specification states:

Runtime Semantics: ClassDefinitionEvaluation
With parameter className.
ClassTail : ClassHeritage { ClassBody }

Let lex be the LexicalEnvironment of the running execution context.
Let classScope be NewDeclarativeEnvironment (lex) .

Let classScopeEnvRec be classScope’s EnvironmentRecord.

If className is not undefined, then

a. Perform classScopeEnvRec.CreateImmutableBinding(className, true).

SwWw N

23. If className is not undefined, then
a. Perform classScopeEnvRec.InitializeBinding(className, F).

EdgeHTML Mode

Step 2 is omitted; therefore ClassDefinitionEvaluation uses the lexical environment of the running
execution context.

2.1.21 [ECMA-262/7] Section 15.1.1 Static Semantics: Early Errors

V0069: Duplicate function and generator function entries are allowed in LexicallyDeclaredNames of
ScriptBody

The specification states:
15.1.1 Static Semantics: Early Errors

Script : ScriptBody

e It is a Syntax Error if the LexicallyDeclaredNames of ScriptBody contains any

20/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

duplicate entries.
e It is a Syntax Error if any element of the LexicallyDeclaredNames of ScriptBody
also occurs in the VarDeclaredNames of ScriptBody.

EdgeHTML Mode

Duplicate function and generator function entries are allowed in LexicallyDeclaredNames of
ScriptBody.

2.1.22[ECMA-262/7] Section 16.2 Forbidden Extensions

V0025: Functions created using the bind method are given caller and arguments restricted own
properties

The specification states:

Forbidden Extensions
An implementation must not extend this specification in the following ways:

¢ Other than as defined in this specification, ECMAScript Function objects
defined using syntactic constructors in strict mode code must not be created with
own properties named "caller" or "arguments" other than those that are created by
applying the AddRestrictedFunctionProperties abstract operation to the function.
Such own properties also must not be created for function objects defined using
an ArrowFunction, MethodDefinition, GeneratorDeclaration, GeneratorExpression,
ClassDeclaration, or ClassExpression regardless of whether the definition is
contained in strict mode code. Built-in functions, strict mode functions created
using the Function constructor, generator functions created using the Generator
constructor, and functions created using the bind method also must not be created
with such own properties.

EdgeHTML Mode

Functions created using the bind method are given caller and arguments restricted own properties.

2.1.23[ECMA-262/7] Section 19.1.2.18 Object.setPrototypeOf (O, proto)
V0196: Object.setPrototypeOf throws an error immediately if parameter O is not an object

The specification states:

Object.setPrototypeOf (O, proto)

When the setPrototypeOf function is called with arguments O and proto, the following
steps are taken:

Let O be ? RequireObjectCoercible (0) .

If Type(proto) is neither Object nor Null, throw a TypeError exception.
If Type(O) 1is not Object, return O.

Let status be ? O.[[SetPrototypeOf]] (proto) .

If status is false, throw a TypeError exception.

Return O.

o Uk WM

EdgeHTML Mode

21/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

ToObject(O) is done instead of RequireObjectCoercible(O) in step 1. As a result,
Object.setPrototypeOf throws an error immediately if parameter O is not an object.

2.1.24 [ECMA-262/7] Section 19.1.3.2 Object.prototype.hasOwnProperty (V)
V0197: An error is thrown if the argument is a symbol

The specification states:

19.1.3.2 Object.prototype.hasOwnProperty (V)

When the hasOwnProperty method is called with argument V, the following steps are
taken:

1. Let P be ? ToPropertyKey (V).
2. Let O ? be ToObject (this value).
3. Return ? HasOwnProperty (O, P).

EdgeHTML Mode

In step 1, ToString is invoked instead of ToPropertyKey. Because of this, an error is thrown if Vis a
symbol.

2.1.25[ECMA-262/7] Section 19.1.3.5 Object.prototype.toLocaleString ([reserved1 [
,reserved2]])

V0198: Object.prototype.toLocaleString passes ToObject(this) to the toString method instead of this

The specification states:

19.1.3.5 Object.prototype.tolLocaleString ([reservedl [, reserved2]])
When the tolLocaleString method is called, the following steps are taken:

1. Let O be the this value.
2. Return ? Invoke (O, "toString").
EdgeHTML Mode

Object.prototype.tolLocaleString passes ToObject(this) to the toString method instead of this.
These are the steps:

1. Let O be the this value.
2. Let obj be ? ToObject(O).
3. Return ToString(obj).

2.1.26 [ECMA-262/7] Section 19.1.3.6 Object.prototype.toString ()

V0199: @@toStringTag is not implemented

22/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

The specification states:

19.1.3.6 Object.prototype.toString ()
When the toString method is called, the following steps are taken:
1.

15. Let tag be ? Get (0O, @Q@toStringTag).

EdgeHTML Mode

@@toStringTag is not implemented.

2.1.27 [ECMA-262/7] Section 19.2.3.2 Function.prototype.bind (thisArg, ...args)
V0200: The bound function name accessor calls the target function's counterpart

The specification states:

19.2.3.2 Function.prototype.bind (thisArg , ...args)

When the bind method is called with argument thisArg and zero or more args, it
performs the following steps:

1. Let Target be the this wvalue.
9. Let targetName be ? Get (Target, "name").
10. If Type(targetName) is not String, let targetName be the empty string.
11. Perform SetFunctionName (F, targetName, "bound").
12. Return F.
EdgeHTML Mode
Steps 9 to 11 are replaced by:
9. Let getName(Target) be a new dynamic function that does following:
a. Let targetName be ? Get(Target, "name").
b. Return "bound"+targetName

10. Set (F, "name", getName)

Because of this, the bound function name accessor calls the target function's counterpart. Note that
steps 10 and 11 are deleted.

2.1.28[ECMA-262/7] Section 19.2.3.6 Function.prototype [@@hasInstance] (V)
V0209: Calling @@haslnstance has no effect

The specification states:

19.2.3.6 Function.prototype[@@hasInstance] (V)

23/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

When the Q@@hasInstance method of an object F is called with value V, the following

steps are taken:

1. Let F be the this value.
2. Return ? OrdinaryHasInstance(F, V).

The value of the name property of this function is "[Symbol.hasInstance]".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,

[[Configurable]]: false }.

This property is non-writable and non-configurable to prevent tampering that could be

used to globally expose the target function of a bound function.

EdgeHTML Mode

Calling @@hasInstance has no effect.

2.1.29 [ECMA-262/7] Section 19.2.4.1 length

V0074: The [[writable]] attribute of the length property cannot be set to true, regardless of the

setting of [[configurable]]

The specification states:

19.2.4.1 length

The value of the length property is an integer that indicates the typical number of

arguments expected by the function. However, the language permits the function to be
invoked with some other number of arguments. The behaviour of a function when invoked

on a number of arguments other than the number specified by its length property
depends on the function. This property has the attributes { [[Writable]]: false,

[[Enumerable]]: false, [[Configurable]]: true }.

EdgeHTML Mode

The [[writable]] attribute of the 1ength property cannot be set to true, regardless of the setting of

[[configurable]]. No error is thrown on an attempt to set it true.

2.1.30[ECMA-262/7] Section 19.4.2 Properties of the Symbol Constructor
V0161: Some properties of the Symbol constructor are not implemented

The specification states:

19.4.2 Properties of the Symbol Constructor

The value of the [[Prototypel] internal slot of the Symbol constructor is the
intrinsic object %$FunctionPrototype%

The Symbol constructor has the following properties:

EdgeHTML Mode

These properties of the symbol constructor are not implemented:

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document

Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

24/ 46

haslInstance
isConcatSpreadable
toPrimitive

toStringTag

2.1.31[ECMA-262/7] Section 19.4.3.4 Symbol.prototype [@@toPrimitive] (hint)

V0178: Symbol.prototype[@@toPrimitive] is not implemented because @@toPrimitive is not
implemented

The specification states:

19.4.3.4 Symbol.prototype [Q@Q@toPrimitive] (hint)
This function is called by ECMAScript language operators to convert a Symbol object
to a primitive value. The allowed values for hint are "default", "number",

and "string".

When the Q@toPrimitive method is called with argument hint, the following steps are

taken:
1. Let s be the this value.
2. If Type(s) is Symbol, return s.
3. If Type(s) is not Object, throw a TypeError exception.
4. If s does not have a [[SymbolData]] internal slot, throw

a TypeError exception.
5. Return s.[[SymbolDatal].

The value of the name property of this function is "[Symbol.toPrimitive]".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: true }.
EdgeHTML Mode

Symbol.prototype[@@toPrimitive] is not implemented because @@toPrimitive is not implemented.

2.1.32[ECMA-262/7] Section 19.4.3.5 Symbol.prototype [@@toStringTag]

V0179: Symbol.prototype[@@toStringTag] is not implemented because the @@toStringTag feature is
not implemented

The specification states:

19.4.3.5 Symbol.prototype [@Q@toStringTag]
The initial value of the Q@@toStringTag property is the String value "Symbol".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: true }.

EdgeHTML Mode

25/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

Symbol.prototype[@@toStringTag] is not implemented because the @@toStringTag feature is not
implemented.

2.1.33[ECMA-262/7] Section 19.5.3 Properties of the Error Prototype Object
V0182: The error prototype object is the intrinsic object %Error%

The specification states:

19.5.3 Properties of the Error Prototype Object
The Error prototype object is the intrinsic object $ErrorPrototype%. The Error
prototype object is an ordinary object. It is not an Error instance and does not have

an [[ErrorDatal]] internal slot.

The value of the [[Prototype]] internal slot of the Error prototype object is the
intrinsic object %ObjectPrototype%.

EdgeHTML Mode

The Error prototype object is the intrinsic object $Error%. It is an Error object. It is not an Error
instance and does have an [[ErrorData]] internal slot.

2.1.34[ECMA-262/7] Section 20.3.1.15 TimeClip (time)
V0201: TimeClip does not convert negative zero to positive zero

The specification states:

20.3.1.15 TimeClip (time)

The abstract operation TimeClip calculates a number of milliseconds from its
argument, which must be an ECMAScript Number value. This operator functions as

follows:
1. If time is not finite, return NaN.
2. If abs(time) > 8.64 x 10715, return NaN.
3. Let clippedTime be ... ToInteger(time).
4. TIf clippedTime is -0, set clippedTime to +O0.
5. Return clippedTime.

EdgeHTML Mode

TimeClip does not convert negative zero to positive zero (step 4).

2.1.35[ECMA-262/7] Section 20.3.1.16 Date Time String Format
V0125: A date-time without a time zone offset is interpreted incorrectly

The specification states:

20.3.1.16 Date Time String Format

26 /46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

ECMAScript defines a string interchange format for date-times based upon a
simplification of the ISO 8601 Extended Format. The format is as follows:
YYYY-MM-DDTHH:mm:ss.sssZ
Where the fields are as follows:

YYYY is the decimal digits of the year 0000 to 9999 in the Gregorian calendar.

Z is the time zone offset specified as "zZ" (for UTC) or either "+" or
followed by a time expression HH:mm
EdgeHTML Mode

When the date-time string does not include a time zone offset, the time is taken, incorrectly, to be
UTC, not local time. For example, if the date-time string is "2015-10-01", it is taken to mean:

Wed Sep 30 2015 17:00:00 GMT-0700 (Pacific Daylight Time)
According to the specification, it should be taken as:

Thu Oct 01 2015 00:00:00 GMT-0700 (Pacific Daylight Time)

2.1.36 [ECMA-262/7] Section 20.3.4 Properties of the Date Prototype Object
V0183: The Date prototype object is a Date instance and has a [[DateValue]] internal slot

The specification states:

20.3.4 Properties of the Date Prototype Object
The Date prototype object is the intrinsic object %DatePrototype%. The Date prototype

object is itself an ordinary object. It is not a Date instance and does not have a
[[DateValue]] internal slot.

EdgeHTML Mode

The Date prototype object is a Date instance and has a [[Datevalue]] internal slot.

2.1.37 [ECMA-262/7] Section 21.1.3.22 String.prototype.toLowerCase ()

V0139: Results are derived according to the mappings in UnicodeData.txt, but not those in
SpecialCasings.txt.

The specification states:

. String.prototype.toLowerCase ()

This function interprets a String value as a sequence of UTF-16 encoded code points,
as described in 6.1.4. The following steps are taken:

The result must be derived according to the locale-insensitive case mappings in
the Unicode Character Database (this explicitly includes not only the
UnicodeData.txt file, but also all locale-insensitive mappings in the
SpecialCasings.txt file that accompanies it).

27/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

EdgeHTML Mode

Results are derived according to the mappings in UnicodeData.txt, but not those in SpecialCasings.txt.

V0140: Only characters in the Basic Multilingual Plane (values no greater than OxFFFF) are converted
to lowercase

The specification states:

21.1.3.22 String.prototype.toLowerCase ()
This function interprets a String value as a sequence of UTF-16 encoded code points,

as described in 6.1.4. The following steps are taken:

. Let cplist be a List containing in order the code points as defined in 6.1.4
of S, starting at the first element of S.

. For each code point ¢ in cpList, if the Unicode Character Database provides a
language insensitive lower case equivalent of c¢ then replace c¢ in cplList with
that equivalent code point(s).

EdgeHTML Mode

Only those characters in the Basic Multilingual Plane (values no greater than OxFFFF) are converted to
lower case. Others are left unchanged.

2.1.38[ECMA-262/7] Section 21.1.3.24 String.prototype.toUpperCase ()

V0185: Only characters in the Basic Multilingual Plane (values no greater than OxFFFF) are converted
to uppercase

The specification states:

. String.prototype.toUpperCase ()

This function interprets a String value as a sequence of UTF-16 encoded code points,
as described in 6.1.4.

This function behaves in exactly the same way as String.prototype.toLowerCase, except
that code points are mapped to their uppercase equivalents as specified in the
Unicode Character Database.

EdgeHTML Mode

Only those characters in the Basic Multilingual Plane (values no greater than OxFFFF) are converted to
uppercase. Others are left unchanged.

2.1.39[ECMA-262/7] Section 21.2.1 Patterns

V0078: If the contents of the braces in \u{...} is not a hexadecimal number, \u{...} is treated as a
regular string

The specification states:

28/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

21.2.1 Patterns

The RegExp constructor applies the following grammar to the input pattern String. An
error occurs if the grammar cannot interpret the String as an expansion of Pattern.

Syntax

RegExpUnicodeEscapeSequence [U]
[+U] u LeadSurrogate \u TrailSurrogate

[+U] u LeadSurrogate
[+U] u TrailSurrogate
[+U] u NonSurrogate
[~U] u Hex4Digits
[+U] u{ HexDigits }

EdgeHTML Mode

If the contents of the braces in \u{...} is not a hexadecimal number, \u{...} is treated as a regular
string, rather than a Unicode code point. For example, the following returns true but should throw a
SyntaxError exception:

/\u{pp}/u.exec("\\u{pp}")

2.1.40[ECMA-262/7] Section 21.2.1.1 Static Semantics: Early Errors

V0142: When the mathematical value of HexDigits is above 0x10FFFF, the \u{...} is not treated as a
Unicode code point

The specification states:

21.2.1.1 Static Semantics: Early Errors
RegExpUnicodeEscapeSequence :: u { HexDigits }

e It is a Syntax Error if the MV of HexDigits > Ox10FFFF.

EdgeHTML Mode

When the mathematical value (MV) of HexDigits is above O0x10FFFF (decimal 1114111), the \u{...} is
treated as a regular string, not as a Unicode code point, and no Syntax Error exception is thrown.

2.1.41 [ECMA-262/7] Section 21.2.2 Pattern Semantics

V0079: The input string is not treated as Unicode code points even when the associated flags contain

a’'u

The specification states:

21.2.2 Pattern Semantics

A Pattern is either a BMP pattern or a Unicode pattern depending upon whether or not
its associated flags contain a "u". A BMP pattern matches against a String
interpreted as consisting of a sequence of 16-bit values that are Unicode code points
in the range of the Basic Multilingual Plane. A Unicode pattern matches against a
String interpreted as consisting of Unicode code points encoded using UTF-16. In the
context of describing the behaviour of a BMP pattern “character” means a single

29/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

16-bit Unicode BMP code point. In the context of describing the behaviour of a
Unicode pattern “character” means a UTF-16 encoded code point (6.1.4). In either

context,

“character value” means the numeric value of the corresponding non-encoded

code point.

EdgeHTML Mode

The input string is interpreted as consisting of a sequence of 16-bit values that are Unicode code
points in the range of the Basic Multilingual Plane, even when the associated flags contain a "u". For
example, the following returns false, not true:

/\ud83d/u.test("\ud83d\udca8')

2.1.42[ECMA-262/7] Section 21.2.2.8.2 Runtime Semantics: Canonicalize (ch)

V0172: Case-insensitive matching misses some characters

The specification states:

21.2.2.8.2 Runtime Semantics: Canonicalize (ch)

The abstract operation Canonicalize takes a character parameter ch and performs the
following steps:

1.
2.

If IgnoreCase is false, return ch.

If Unicode is true,

a. If the file CaseFolding.txt of the Unicode Character Database provides a
simple or common case folding mapping for ch, return the result of applying
that mapping to ch.

b. Return ch.

Else,

a. Assert: ch is a UTF-16 code unit.

b. Let s be the ECMAScript String value consisting of the single code unit ch.
c. Let u be the same result produced as if by performing the algorithm for
String.prototype.toUpperCase using s as the this value.

d. Assert: u is a String value.

If u does not consist of a single code unit, return ch.

Let cu be u’s single code unit element.

If ch's code unit value 2 128 and cu's code unit value < 128, return ch.
Return cu.

o Q D

EdgeHTML Mode

Some mappings in the Unicode Character Database are not handled. Therefore, case-insensitive
matching misses some characters.

For example, the following should be true, but is false:

/\u0345/i.test('\u0399");

2.1.43[ECMA-262/7] Section 21.2.2.10 CharacterEscape

V0175: Characters other than those matched by ControlLetter (non-alphabetic characters) are allowed

The specification states:

30/ 46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

21.2.2.10 CharacterEscape

The production CharacterEscape :: ¢ ControlLetter evaluates as follows:

1. Let ch be the character matched by ControlLetter.
2. Let i be ch's character value.

3. Let j be the remainder of dividing i by 32.

4. Return the character whose character value is j.

EdgeHTML Mode

Characters other than those matched by ControlLetter (non-alphabetic characters) are allowed.

2.1.44[ECMA-262/7] Section 21.2.5 Properties of the RegExp Prototype Object
V0081: The RegExp prototype object is a RegExp object

The specification states:

21.2.5 Properties of the RegExp Prototype Object
The RegExp prototype object is the intrinsic object %RegExpPrototype%. The RegExp
prototype object is an ordinary object. It is not a RegExp instance and does not have
a [[RegExpMatcher]] internal slot or any of the other internal slots of RegExp
instance objects.

The value of the [[Prototype]] internal slot of the RegExp prototype object is the
intrinsic object %$ObjectPrototype%.

EdgeHTML Mode

The RegExp prototype object is a RegExp object, and its [[Class]] is RegExp. The value of the
[[Prototype]] internal property is the standard built-in object prototype object.

The initial values of the RegExp prototype object’s data properties are set as if the object were created
by the expression new RegExp() where RegExp is the standard built-in constructor with that name.

V0165: The RegExp prototype object is the intrinsic object %RegExp% and is not an ordinary object

The specification states:

21.2.5 Properties of the RegExp Prototype Object

The RegExp prototype object is the intrinsic object %RegExpPrototype%. The RegExp
prototype object is an ordinary object. It is not a RegExp instance and does not have
a [[RegExpMatcher]] internal slot or any of the other internal slots of RegExp
instance objects.

EdgeHTML Mode

The RegExp prototype object is the intrinsic object $RegExp% and is not an ordinary object. It is a
RegExp instance with a [[RegExpMatcher]] internal slot and all other internal slots of RegExp instance
objects.

31/46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

2.1.45[ECMA-262/7] Section 21.2.5.2.3 AdvanceStringIndex (S, index, unicode)
V0173: AdvanceStringIndex advances the index by 1, not 2, when the unicode flag is specified

The specification states:

21.2.5.2.3 AdvanceStringIndex (S, index, unicode)

The abstract operation AdvanceStringIndex with arguments S, index, and unicode
performs the following steps:

Assert: Type(S) is String.

Assert: index is an integer such that 0<index<2753-1.

Assert: Type (unicode) is Boolean.

If unicode is false, return index+1.

Let length be the number of code units in S.

If index+l 2 length, return index+1.

Let first be the code unit value at index index in S.

If first < 0xD800 or first > OxDBFF, return index+1.

Let second be the code unit value at index index+l in S.
. If second < 0xDCO0 or second > O0xDFFF, return index+1.
. Return index+2.

P WOWOow-Jo Uldbd W

= o .

EdgeHTML Mode

AdvanceStringIndex advances the index by 1, not 2 when the unicode flag is specified. For example,
the following should hold:

/\udf06/u.exec("\ud834\udf06') == null
Instead exec returns \udf06; that is:

/\udf06/u.exec("\ud834\udf06') == "\udf06'

2.1.46 [ECMA-262/7] Section 21.2.6.1 lastIndex
V0082: The [[Writable]] attribute of the lastIndex property cannot be changed from true to false

The specification states:

21.2.6.1 lastIndex

The value of the lastIndex property specifies the String index at which to start the

next match. It is coerced to an integer when used (see 21.2.5.2.2). This property
shall have the attributes { [[Writable]]: true, [[Enumerable]]: false,
[[Configurable]]: false }.

EdgeHTML Mode

For 1lastIndex, [[Writable]] cannot be changed from true to false. This operation should be
allowed, even though [[Configurable]] is false (see 6.1.7.1).

2.1.47 [ECMA-262/7] Section 22.1.3.1.1 Runtime Semantics: IsConcatSpreadable (O)

V0202: @@isConcatSpreadable is not implemented

32 /46

[MS-ES2016] - v20180123

Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation

Release: January 23, 2018

The specification states:

22.1.3.1.1 Runtime Semantics: IsConcatSpreadable (O)

T