
1 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

[MS-ES2016]:

Microsoft Edge ECMA-262 ECMAScript Language
Specification (7th Edition) Standards Support Document

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this

documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.

However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map.
 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

Revision Summary

Date
Revision
History

Revision
Class Comments

5/17/2017 1.0 New Released new document.

10/3/2017 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

12/5/2017 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/23/2018 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 5

1.2.1 Normative References ... 5
1.2.2 Informative References ... 5

1.3 Microsoft Implementations .. 5
1.4 Standards Support Requirements ... 6
1.5 Notation .. 6

2 Standards Support Statements .. 7
2.1 Normative Variations .. 7

2.1.1 [ECMA-262/7] Section 7.1.1 ToPrimitive (input [, PreferredType]) 7
2.1.2 [ECMA-262/7] Section 7.4.6 IteratorClose (iterator, completion) 7
2.1.3 [ECMA-262/7] Section 9.2.7 AddRestrictedFunctionProperties (F, realm) 8
2.1.4 [ECMA-262/7] Section 11.8.6 Template Literal Lexical Components 8
2.1.5 [ECMA-262/7] Section 11.9.1 Rules of Automatic Semicolon Insertion 9
2.1.6 [ECMA-262/7] Section 12.4.4.1 Runtime Semantics: Evaluation 10
2.1.7 [ECMA-262/7] Section 12.4.5.1 Runtime Semantics: Evaluation 11
2.1.8 [ECMA-262/7] Section 12.4.6.1 Runtime Semantics: Evaluation 11
2.1.9 [ECMA-262/7] Section 12.4.7.1 Runtime Semantics: Evaluation 12
2.1.10 [ECMA-262/7] Section 12.10.4 Runtime Semantics: InstanceofOperator(O, C) ... 12
2.1.11 [ECMA-262/7] Section 12.15.4 Runtime Semantics: Evaluation 13
2.1.12 [ECMA-262/7] Section 13 ECMAScript Language: Statements and Declarations .. 15
2.1.13 [ECMA-262/7] Section 13.2.1 Static Semantics: Early Errors............................ 15
2.1.14 [ECMA-262/7] Section 13.7.4.1 Static Semantics: Early Errors 16
2.1.15 [ECMA-262/7] Section 13.7.5.1 Static Symantics: Early Errors 17
2.1.16 [ECMA-262/7] Section 13.7.5.12 Runtime Semantics: ForIn/OfHeadEvaluation (

TDZnames, expr, iterationKind) .. 17
2.1.17 [ECMA-262/7] Section 13.13 Labelled Statements .. 18
2.1.18 [ECMA-262/7] Section 14.1.2 Static Semantics: Early Errors............................ 18
2.1.19 [ECMA-262/7] Section 14.3.8 Runtime Semantics: DefineMethod 19
2.1.20 [ECMA-262/7] Section 14.5.14 Runtime Semantics: ClassDefinitionEvaluation ... 20
2.1.21 [ECMA-262/7] Section 15.1.1 Static Semantics: Early Errors............................ 20
2.1.22 [ECMA-262/7] Section 16.2 Forbidden Extensions ... 21
2.1.23 [ECMA-262/7] Section 19.1.2.18 Object.setPrototypeOf (O, proto) 21
2.1.24 [ECMA-262/7] Section 19.1.3.2 Object.prototype.hasOwnProperty (V) 22
2.1.25 [ECMA-262/7] Section 19.1.3.5 Object.prototype.toLocaleString ([reserved1 [,

reserved2]]) ... 22
2.1.26 [ECMA-262/7] Section 19.1.3.6 Object.prototype.toString ()........................... 22
2.1.27 [ECMA-262/7] Section 19.2.3.2 Function.prototype.bind (thisArg, ...args) 23
2.1.28 [ECMA-262/7] Section 19.2.3.6 Function.prototype [@@hasInstance] (V) 23
2.1.29 [ECMA-262/7] Section 19.2.4.1 length .. 24
2.1.30 [ECMA-262/7] Section 19.4.2 Properties of the Symbol Constructor 24
2.1.31 [ECMA-262/7] Section 19.4.3.4 Symbol.prototype [@@toPrimitive] (hint) 25
2.1.32 [ECMA-262/7] Section 19.4.3.5 Symbol.prototype [@@toStringTag] 25
2.1.33 [ECMA-262/7] Section 19.5.3 Properties of the Error Prototype Object 26
2.1.34 [ECMA-262/7] Section 20.3.1.15 TimeClip (time) ... 26
2.1.35 [ECMA-262/7] Section 20.3.1.16 Date Time String Format 26
2.1.36 [ECMA-262/7] Section 20.3.4 Properties of the Date Prototype Object 27
2.1.37 [ECMA-262/7] Section 21.1.3.22 String.prototype.toLowerCase () 27
2.1.38 [ECMA-262/7] Section 21.1.3.24 String.prototype.toUpperCase () 28
2.1.39 [ECMA-262/7] Section 21.2.1 Patterns .. 28
2.1.40 [ECMA-262/7] Section 21.2.1.1 Static Semantics: Early Errors 29
2.1.41 [ECMA-262/7] Section 21.2.2 Pattern Semantics .. 29
2.1.42 [ECMA-262/7] Section 21.2.2.8.2 Runtime Semantics: Canonicalize (ch) 30

4 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

2.1.43 [ECMA-262/7] Section 21.2.2.10 CharacterEscape .. 30
2.1.44 [ECMA-262/7] Section 21.2.5 Properties of the RegExp Prototype Object 31
2.1.45 [ECMA-262/7] Section 21.2.5.2.3 AdvanceStringIndex (S, index, unicode) 32
2.1.46 [ECMA-262/7] Section 21.2.6.1 lastIndex .. 32
2.1.47 [ECMA-262/7] Section 22.1.3.1.1 Runtime Semantics: IsConcatSpreadable (O) 32
2.1.48 [ECMA-262/7] Section 22.1.3.3 Array.prototype.copyWithin (target, start [, end])

 33
2.1.49 [ECMA-262/7] Section 22.1.3.18 Array.prototype.push (...items) 34
2.1.50 [ECMA-262/7] Section 22.1.3.25 Array.prototype.sort (comparefn) 34
2.1.51 [ECMA-262/7] Section 22.1.3.27 Array.prototype.toLocaleString ([reserved1 [,

reserved2]]) ... 35
2.1.52 [ECMA-262/7] Section 25.4.4 Properties of the Promise Constructor 35
2.1.53 [ECMA-262/7] Section 25.4.4.1 Promise.all (iterable) 36

2.2 Clarifications ... 36
2.3 Extensions .. 36

2.3.1 [ECMA-262/7] Section 7.3.18 Invoke (V, P [, argumentsList]) 36
2.3.2 [ECMA-262/7] Section 19.2.3.2 Function.prototype.bind (thisArg, ...args) 37
2.3.3 [ECMA-262/7] Section 21.2.4 Properties of the RegExp Constructor 38

2.4 Error Handling ... 44
2.5 Security .. 44

3 Change Tracking .. 45

4 Index ... 46

5 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

1 Introduction

This document describes the level of support provided by Microsoft Edge for the ECMAScript® 2016
Language Specification, [ECMA-262/7], published June 2016.

This specification is the seventh edition of the ECMAScript Language Specification. Since publication of
the first edition in 1997, ECMAScript has grown to be one of the most widely used general purpose
programming languages. It is best known as the language embedded in web browsers but has also

been widely adopted for server and embedded applications.

1.1 Glossary

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[ECMA-262/7] Ecma International, "ECMAScript®2016 Language Specification", Standard ECMA-262
7th Edition / June 2016, https://go.microsoft.com/fwlink/p/?linkid=846935

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

None.

1.3 Microsoft Implementations

The following Microsoft web browsers implement some portion of the [ECMA-262/7] specification:

 Microsoft Edge

Each browser version may implement multiple document rendering modes. The modes vary from one
to another in support of the standard. The following table lists the document modes supported by each

browser version.

Browser Version Document Modes Supported

Microsoft Edge EdgeHTML Mode

For each variation presented in this document there is a list of the document modes and browser
versions that exhibit the behavior described by the variation. All combinations of modes and versions
that are not listed conform to the specification. For example, the following list for a variation indicates
that the variation exists in three document modes in all browser versions that support these modes:

https://go.microsoft.com/fwlink/p/?linkid=846935
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/p/?linkid=846935
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/p/?linkid=846935

6 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

Quirks Mode, IE7 Mode, and IE8 Mode (All Versions)

1.4 Standards Support Requirements

To conform to [ECMA-262/7], a user agent must implement all required portions of the specification.
Any optional portions that have been implemented must also be implemented as described by the
specification. Normative language is usually used to define both required and optional portions. (For
more information, see [RFC2119].)

The following table lists the sections of [ECMA-262/7] and whether they are considered normative or
informative.

Sections Normative/Informative

1-6 Informative

7-26 Normative

Annex A Informative

Annex B Normative

Annex C, Annex D, Annex E,
Annex F, Annex G

Informative

1.5 Notation

The following notations are used in this document to differentiate between notes of clarification,
variation from the specification, and points of extensibility.

Notation Explanation

C#### This identifies a clarification of ambiguity in the target specification. This includes imprecise
statements, omitted information, discrepancies, and errata. This does not include data formatting
clarifications.

V#### This identifies an intended point of variability in the target specification such as the use of MAY,
SHOULD, or RECOMMENDED. (See [RFC2119].) This does not include extensibility points.

E#### Because the use of extensibility points (such as optional implementation-specific data) can impair
interoperability, this profile identifies such points in the target specification.

For document mode and browser version notation, see also section 1.3.

https://go.microsoft.com/fwlink/p/?linkid=846935
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90317

7 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

2 Standards Support Statements

This section contains all variations, clarifications, and extensions for the Microsoft implementation of
[ECMA-262/7].

 Section 2.1 describes normative variations from the MUST requirements of the specification.

 Section 2.2 describes clarifications of the MAY and SHOULD requirements.

 Section 2.3 describes extensions to the requirements.

 Section 2.4 considers error handling aspects of the implementation.

 Section 2.5 considers security aspects of the implementation.

2.1 Normative Variations

The following subsections describe normative variations from the MUST requirements of [ECMA-
262/7].

2.1.1 [ECMA-262/7] Section 7.1.1 ToPrimitive (input [, PreferredType])

V0164: @@toPrimitive is not implemented

The specification states:

 7.1.1 ToPrimitive (input [, PreferredType])

 The abstract operation ToPrimitive takes an input argument and an optional argument
 PreferredType. The abstract operation ToPrimitive converts its input argument to a
 non-Object type. If an object is capable of converting to more than one primitive
 type, it may use the optional hint PreferredType to favour that type. Conversion
 occurs according to ...:

 ...
 ... Type(input) is Object ...
 ...
 ... Let exoticToPrim be ? GetMethod(input, @@toPrimitive).

EdgeHTML Mode

@@toPrimitive is not implemented.

2.1.2 [ECMA-262/7] Section 7.4.6 IteratorClose (iterator, completion)

V0187: IteratorClose is not correctly implemented

The specification states:

 7.4.6 IteratorClose(iterator, completion)

 The abstract operation IteratorClose with arguments iterator and completion is used
 to notify an iterator that it should perform any actions it would normally perform
 when it has reached its completed state:

 ... Assert: Type(iterator) is Object.
 ... Assert: completion is a Completion Record.

https://go.microsoft.com/fwlink/p/?linkid=846935
https://go.microsoft.com/fwlink/p/?linkid=846935
https://go.microsoft.com/fwlink/p/?linkid=846935

8 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 ... Let return be ? GetMethod(iterator, "return").
 ... If return is undefined, return Completion(completion).
 ... Let innerResult be Call(return, iterator, « »).
 ... If completion.[[type]] is throw, return Completion(completion).
 ... If innerResult.[[type]] is throw, return Completion(innerResult).
 ... If Type(innerResult.[[value]]) is not Object, throw a TypeError exception.
 ... Return Completion(completion).

EdgeHTML Mode

IteratorClose is not correctly implemented. It behaves as follows:

 7.4.6 IteratorClose(iterator, completion)

 1. Assert: Type(iterator) is Object.

 2. Assert: completion is a Completion Record.

 3. Return Completion(completion).

2.1.3 [ECMA-262/7] Section 9.2.7 AddRestrictedFunctionProperties (F, realm)

V0188: The caller and arguments properties are set incorrectly

The specification states:

 9.2.7 AddRestrictedFunctionProperties (F, realm)

 The abstract operation AddRestrictedFunctionProperties is called with a function
 object F and Realm Record realm as its argument. It performs the following steps:
 ...
 3. Perform ! DefinePropertyOrThrow(F, "caller", PropertyDescriptor {[[Get]]:
 thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: true}).
 4. Return ! DefinePropertyOrThrow(F, "arguments", PropertyDescriptor {[[Get]]:
 thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: true}).

EdgeHTML Mode

The caller and arguments properties are set incorrectly:

 3. Perform ! DefinePropertyOrThrow(F, "caller", PropertyDescriptor {[[Get]]:

 thrower, [[Set]]: undefined, [[Enumerable]]: false, [[Configurable]]: false}).

 4. Return ! DefinePropertyOrThrow(F, "arguments", PropertyDescriptor {[[Get]]:

 thrower, [[Set]]: undefined, [[Enumerable]]: false, [[Configurable]]: false}).

2.1.4 [ECMA-262/7] Section 11.8.6 Template Literal Lexical Components

V0040: The escape sequence \0 is treated as a legacy octal escape sequence and a SyntaxError is
thrown

The specification states:

9 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 11.8.6 Template Literal Lexical Components

 Syntax

 Template ::
 NoSubstitutionTemplate
 TemplateHead

 NoSubstitutionTemplate ::
 ` TemplateCharactersopt `

 TemplateHead ::
 ` TemplateCharactersopt ${

 TemplateSubstitutionTail ::
 TemplateMiddle
 TemplateTail

 TemplateMiddle ::
 } TemplateCharactersopt ${

 TemplateTail ::
 } TemplateCharactersopt `

 TemplateCharacters ::
 TemplateCharacter TemplateCharactersopt

 TemplateCharacter ::
 $ [lookahead ≠ {]
 \ EscapeSequence
 LineContinuation
 LineTerminatorSequence
 SourceCharacter but not one of ` or \ or $ or LineTerminator

 ...

 A conforming implementation must not use the extended definition of EscapeSequence
 described in B.1.2 when parsing a TemplateCharacter.

 NOTE TemplateSubstitutionTail is used by the InputElementTemplateTail alternative
 lexical goal.

EdgeHTML Mode

The escape sequence \0 is treated as a legacy octal escape sequence and a SyntaxError is thrown;
instead it should be translated into a null character.

2.1.5 [ECMA-262/7] Section 11.9.1 Rules of Automatic Semicolon Insertion

V0041: Automatic semicolon insertion is not applied to yield* productions

The specification states:

 11.9.1 Rules of Automatic Semicolon Insertion

 In the following rules, “token” means the actual recognized lexical token determined
 using the current lexical goal symbol as described in clause 11.

 There are three basic rules of semicolon insertion:

 ...

 3. When ... a token is encountered that is allowed by some production of the

10 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 grammar, but the production is a restricted production and the token would be
 the first token for a terminal or nonterminal immediately following the
 annotation “[no LineTerminator here]” within the restricted production (and
 therefore such a token is called a restricted token), and the restricted
 token is separated from the previous token by at least one LineTerminator,
 then a semicolon is automatically inserted before the restricted token.

EdgeHTML Mode

Rule 3 is not applied to yield* productions.

 var obj = {

 *g() {

 yield

 * 1

 }

 };

A semicolon should be inserted in the yield* production as follows:

 yield;*1

This would throw a SyntaxError.

2.1.6 [ECMA-262/7] Section 12.4.4.1 Runtime Semantics: Evaluation

V0189: The reference is retrieved twice

The specification states:

 12.4.4.1 Runtime Semantics: Evaluation

 UpdateExpression : LeftHandSideExpression ++

 1. Let lhs be the result of evaluating LeftHandSideExpression.
 2. Let oldValue be ? ToNumber(? GetValue(lhs)).
 3. Let newValue be the result of adding the value 1 to oldValue, using the same
 rules as for the + operator (see 12.8.5).
 4. Perform ? PutValue(lhs, newValue).
 5. Return oldValue.

EdgeHTML Mode

Between steps 2 and 3, the following steps are added:

 a. If Type(lhs) is a Reference and if IsUnresolvableReference(_lhs_) is false and
IsPropertyReference(_lhs_) is false:

 1. Assert: lhs is a reference to an Environment Record.

 2. Let hs be the result of evaluating an Identifier _id_ whose StringValue is
GetReferencedName(lhs) as if _id_ were a LeftHandSideExpression.

11 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 3. ReturnIfAbrupt(lhs);

As a result, the reference is retrieved twice.

2.1.7 [ECMA-262/7] Section 12.4.5.1 Runtime Semantics: Evaluation

V0190: The reference is retrieved twice

The specification states:

 12.4.5.1 Runtime Semantics: Evaluation

 UpdateExpression : LeftHandSideExpression --

 1. Let lhs be the result of evaluating LeftHandSideExpression.
 2. Let oldValue be ? ToNumber(GetValue(lhs)).
 3. Let newValue be the result of subtracting the value 1 from oldValue, using
 the same rules as for the - operator (see 12.8.5).
 4. Perform ? PutValue(lhs, newValue).
 5. Return oldValue.

EdgeHTML Mode

Between steps 2 and 3 the following steps are added:

 a. If Type(lhs) is a Reference and if IsUnresolvableReference(_lhs_) is false and
IsPropertyReference(_lhs_) is false:

 1. Assert: lhs is a reference to an Environment Record.

 2. Let hs be the result of evaluating an Identifier _id_ whose StringValue is
GetReferencedName(lhs) as if _id_ were a LeftHandSideExpression.

 3. ReturnIfAbrupt(lhs);

As a result, the reference is retrieved twice.

2.1.8 [ECMA-262/7] Section 12.4.6.1 Runtime Semantics: Evaluation

V0191: The reference is returned twice

The specification states:

 12.4.6.1 Runtime Semantics: Evaluation

 UpdateExpression : ++ UnaryExpression

 1. Let expr be the result of evaluating UnaryExpression.
 2. Let oldValue be ? ToNumber(? GetValue(expr)).
 3. Let newValue be the result of adding the value 1 to oldValue, using the same
 rules as for the + operator (see 12.8.5).
 5. Perform ? PutValue(expr, newValue).
 5. Return newValue.

EdgeHTML Mode

12 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

Between steps 2 and 3 the following steps are added:

 a. If Type(expr) is a Reference and if IsUnresolvableReference(_expr_) is false:

 1. Assert: expr is a reference to an Environment Record.

 2. Let hs be the result of evaluating an Identifier _id_ whose StringValue is

GetReferencedName(expr) as if _id_ were a LeftHandSideExpression.

 3. ReturnIfAbrupt(expr);

As a result, the reference is returned twice.

2.1.9 [ECMA-262/7] Section 12.4.7.1 Runtime Semantics: Evaluation

V0192: The reference is retrieved twice

The specification states:

 12.4.7.1 Runtime Semantics: Evaluation

 UpdateExpression : -- UnaryExpression

 1. Let expr be the result of evaluating UnaryExpression.
 2. Let oldValue be ? ToNumber(? GetValue(expr)).
 3. Let newValue be the result of subtracting the value 1 from oldValue, using
 the same rules as for the - operator (see 12.8.5).
 4. Perform ? PutValue(expr, newValue).
 5. Return newValue.

EdgeHTML Mode

Between steps 3 and 4 the following steps are added:

 a. If Type(expr) is Reference and if IsUnresolvableReference(_expr_) is false and
IsPropertyReference(_expr_) is false then

 1. Assert: expr is a reference to an Environment Record.

 2. Let expr be the result of evaluating an Identifier _id_ whose StringValue is
GetReferencedName(expr) as if _id_ were a LeftHandSideExpression.

 3. ReturnIfAbrupt(expr);

As a result, the reference is retrieved twice.

2.1.10 [ECMA-262/7] Section 12.10.4 Runtime Semantics: InstanceofOperator(O, C)

V0193: The abstract operation InstanceofOperator(O, C) is not implemented

The specification states:

 12.10.4 Runtime Semantics: InstanceofOperator(O, C)

 The abstract operation InstanceofOperator(O, C) implements the generic algorithm for
 determining if an object O inherits from the inheritance path defined by constructor

13 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 C. This abstract operation performs the following steps:

 1. If Type(C) is not Object, throw a TypeError exception.
 2. Let instOfHandler be ? GetMethod(C,@@hasInstance).
 3. If instOfHandler is not undefined, then
 a. Return ToBoolean(? Call(instOfHandler, C, «O»)).
 5. If IsCallable(C) is false, throw a TypeError exception.
 6. Return OrdinaryHasInstance(C, O).

EdgeHTML Mode

The abstract operation InstanceofOperator(O, C) is not implemented.

2.1.11 [ECMA-262/7] Section 12.15.4 Runtime Semantics: Evaluation

V0194: After an assignment, the name of the function is the empty string

The specification states:

 12.15.4 Runtime Semantics: Evaluation

 AssignmentExpression : LeftHandSideExpression = AssignmentExpression

 1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral,
 then
 a. Let lref be the result of evaluating LeftHandSideExpression.
 b. ReturnIfAbrupt(lref).
 c. Let rref be the result of evaluating AssignmentExpression.
 d. Let rval be ? GetValue(rref).
 e. If IsAnonymousFunctionDefinition(AssignmentExpression) and IsIdentifierRef
 of LeftHandSideExpression are both true, then
 i. Let hasNameProperty be ? HasOwnProperty(rval, "name").
 ii. If hasNameProperty is false, perform SetFunctionName(rval,
 GetReferencedName(lref)).

EdgeHTML Mode

After the following assignment:

 var f = function () {}

the name of the function held in f is the empty string.

V0195: The reference is retrieved twice

The specification states:

 12.15.4 Runtime Semantics: Evaluation

 AssignmentExpression : LeftHandSideExpression = AssignmentExpression

 1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral,
 then
 a. Let lref be the result of evaluating LeftHandSideExpression.
 b. ReturnIfAbrupt(lref).
 c. Let rref be the result of evaluating AssignmentExpression.
 d. Let rval be ? GetValue(rref).
 e. If IsAnonymousFunctionDefinition(AssignmentExpression) and IsIdentifierRef

14 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 of LeftHandSideExpression are both true, then
 i. Let hasNameProperty be ? HasOwnProperty(rval, "name").
 ii. If hasNameProperty is false, perform SetFunctionName(rval,
 GetReferencedName(lref)).
 f. Perform ? PutValue(lref, rval).
 g. Return rval.
 ...

 AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

 1. Let lref be the result of evaluating LeftHandSideExpression.
 2. Let lval be ? GetValue(lref).
 3. Let rref be the result of evaluating AssignmentExpression.
 4. Let rval be ? GetValue(rref).
 5. Let op be the @ where AssignmentOperator is @=
 6. Let r be the result of applying op to lval and rval as if evaluating the
 expression lval op rval.
 7. Perform ? PutValue(lref, r).
 8. Return r.

EdgeHTML Mode

In the algorithm for

 AssignmentExpression : LeftHandSideExpression = AssignmentExpression

the following steps are added before step1f:

 i. Type(lref) is Reference and if IsUnresolvableReference(_lref_) is false and

IsPropertyReference(_lref_) is false then

 1. Assert: lref is a reference to an Environment Record.

 2. Let lref be the result of evaluating an Identifier _id_ whose StringValue is
GetReferencedName(lref) as if _id_ were a LeftHandSidelrefession.

 3. ReturnIfAbrupt(lref);

As a result, the reference is retrieved twice.

In the algorithm for

 Assignmentlrefession : LeftHandSidelrefession AssignmentOperator Assignmentlrefession

the following steps are added between steps 4 and 5:

 a. Type(lref) is Reference and if IsUnresolvableReference(_lref_) is false and
IsPropertyReference(_lref_) is false then

 i. Assert: lref is a reference to an Environment Record.

 ii. Let lref be the result of evaluating an Identifier _id_ whose StringValue is

GetReferencedName(lref) as if _id_ were a LeftHandSidelrefession.

 iii. ReturnIfAbrupt(lref);

As a result, the reference is retrieved twice.

15 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

2.1.12 [ECMA-262/7] Section 13 ECMAScript Language: Statements and Declarations

V0056: HoistableDeclaration is treated as a production of Statement, not Declaration

The specification states:

 13 ECMAScript Language: Statements and Declarations

 Statement[Yield, ... Return] :
 BlockStatement[?Yield, ... ?Return]
 ...
 DebuggerStatement

 Declaration[Yield ...] :
 HoistableDeclaration[?Yield ,,,]
 ClassDeclaration[?Yield ...]
 LexicalDeclaration[...In, ?Yield ...]

 HoistableDeclaration[Yield, ... Default] :
 FunctionDeclaration[?Yield, ... ?Default]
 GeneratorDeclaration[?Yield, ... ?Default]

EdgeHTML Mode

HoistableDeclaration is treated as a production of Statement, not Declaration.

 Statement[Yield, ... Return] :

 BlockStatement[?Yield, ... ?Return]

 ...

 DebuggerStatement

 HoistableDeclaration[?Yield ...]

 Declaration[Yield ...] :

 ClassDeclaration[?Yield ...]

 LexicalDeclaration[...In, ?Yield ...]

 HoistableDeclaration[Yield, ... Default] :

 FunctionDeclaration[?Yield, ... ?Default]

 GeneratorDeclaration[?Yield, ... ?Default]

2.1.13 [ECMA-262/7] Section 13.2.1 Static Semantics: Early Errors

V0057: No error is issued if an element of LexicallyDeclaredNames also occurs in VarDeclaredNames

The specification states:

 13.2.1 Static Semantics: Early Errors

 Block : { StatementList }

 • It is a Syntax Error if the LexicallyDeclaredNames of StatementList contains
 any duplicate entries.

16 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 • It is a Syntax Error if any element of the LexicallyDeclaredNames of
 StatementList also occurs in the VarDeclaredNames of StatementList.

EdgeHTML Mode

No error is issued if an element of LexicallyDeclaredNames also occurs in VarDeclaredNames. For
example:

 {

 let x;

 var x; // should be a syntax error but is not

 }

V0058: Functions and generator functions are allowed to have duplicates in LexicallyDeclaredNames

The specification states:

 13.2.1 Static Semantics: Early Errors

 Block : { StatementList }

 • It is a Syntax Error if the LexicallyDeclaredNames of StatementList contains
 any duplicate entries.
 • It is a Syntax Error if any element of the LexicallyDeclaredNames of
 StatementList also occurs in the VarDeclaredNames of StatementList.

EdgeHTML Mode

Functions and generator functions are allowed to have duplicates in LexicallyDeclaredNames.

2.1.14 [ECMA-262/7] Section 13.7.4.1 Static Semantics: Early Errors

V0061: It is not a Syntax Error for BoundNames of LexicalDeclaration to contain let or const

The specification states:

 13.7.4.1 Static Semantics: Early Errors

 IterationStatement : for (LexicalDeclaration Expression; Expression) Statement

 • It is a Syntax Error if any element of the BoundNames of LexicalDeclaration
 also occurs in the VarDeclaredNames of Statement.

EdgeHTML Mode

It is not a Syntax Error for BoundNames of LexicalDeclaration to contain let or const.

17 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

2.1.15 [ECMA-262/7] Section 13.7.5.1 Static Symantics: Early Errors

V0129: It is not a Syntax Error if an element of the BoundNames of ForDeclaration also occurs in the
VarDeclaredNames of Statement

The specification states:

 13.7.5.1 Static Semantics: Early Errors
 ...
 IterationStatement :
 for (ForDeclaration in Expression) Statement
 for (ForDeclaration of AssignmentExpression) Statement

 • It is a Syntax Error if the BoundNames of ForDeclaration contains "let".
 • It is a Syntax Error if any element of the BoundNames of ForDeclaration also
 occurs in the VarDeclaredNames of Statement.
 • It is a Syntax Error if the BoundNames of ForDeclaration contains any duplicate
 entries.

EdgeHTML Mode

It is not a Syntax Error if an element of the BoundNames of ForDeclaration also occurs in the
VarDeclaredNames of Statement.

2.1.16 [ECMA-262/7] Section 13.7.5.12 Runtime Semantics: ForIn/OfHeadEvaluation

(TDZnames, expr, iterationKind)

V0208: ForIn/OfHeadEvaluation does not return an AbruptCompletion when exprValue.[[value]] is null
or undefined

The specification states:

 13.7.5.12 Runtime Semantics: ForIn/OfHeadEvaluation (TDZnames, expr, iterationKind)

 The abstract operation ForIn/OfHeadEvaluation is called with arguments TDZnames,
 expr, and iterationKind. The value of iterationKind is either enumerate or iterate.
 ...
 6. If iterationKind is enumerate, then
 a. If exprValue.[[value]] is undefined or null, then
 i. Return Completion{[[type]]: break, [[value]]: empty, [[target]]:
 empty}.
 b. Let obj be ! ToObject(exprValue).
 c. Return ? EnumerateObjectProperties(obj).
 7. Else,
 a. Assert: iterationKind is iterate.
 b. Return ? GetIterator(exprValue).

EdgeHTML Mode

Logic in the If branch is also executed in the Else branch:

 7. Else,

 -. If exprValue.[[value]] is null or undefined, then

 i. Return Completion{[[type]]: break, [[value]]: empty, [[target]]: empty}.

 a. Assert: iterationKind is iterate.

18 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 b. Return ? GetIterator(exprValue).

Therefore ForIn/OfHeadEvaluation does not return an abrupt completion for iterationKind is iterate

when exprValue.[[value]] is null or undefined. For example, the following statements do not throw

errors:

 for (let x of null) {}

 for (let x of undefined) {}

2.1.17 [ECMA-262/7] Section 13.13 Labelled Statements

V0062: The LabelledItem production replaces FunctionDeclaration with Declaration

The specification states:

 13.13 Labelled Statements

 Syntax

 LabelledStatement[Yield, ... Return] :
 LabelIdentifier[?Yield ...] : LabelledItem[?Yield, ... ?Return]

 LabelledItem[Yield, ... Return] :
 Statement[?Yield, ... ?Return]
 FunctionDeclaration[?Yield ...]

EdgeHTML Mode

The LabelledItem production replaces FunctionDeclaration with Declaration.

 LabelledItem[Yield, ... Return] :

 Statement[?Yield, ... ?Return]

 Declaration[?Yield ...]

2.1.18 [ECMA-262/7] Section 14.1.2 Static Semantics: Early Errors

V0063: The LexicallyDeclaredNames of FunctionStatementList may have duplicate function and

generator function entries

The specification states:

 14.1.2 Static Semantics: Early Errors
 ...
 FunctionBody : FunctionStatementList

 • It is a Syntax Error if the LexicallyDeclaredNames of FunctionStatementList
 contains any duplicate entries.
 • It is a Syntax Error if any element of the LexicallyDeclaredNames of
 FunctionStatementList also occurs in the VarDeclaredNames of
 FunctionStatementList.
 • It is a Syntax Error if ContainsDuplicateLabels of FunctionStatementList with
 argument « » is true.
 • It is a Syntax Error if ContainsUndefinedBreakTarget of FunctionStatementList
 with argument « » is true.

19 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 • It is a Syntax Error if ContainsUndefinedContinueTarget of
 FunctionStatementList with arguments « » and « » is true.

EdgeHTML Mode

The LexicallyDeclaredNames of FunctionStatementList may have duplicate function and generator
function entries.

2.1.19 [ECMA-262/7] Section 14.3.8 Runtime Semantics: DefineMethod

V0066: Object literal methods are created with a [[Construct]] slot

The specification states:

 14.3.8 Runtime Semantics: DefineMethod

 With parameters object and optional parameter functionPrototype.

 MethodDefinition : PropertyName (StrictFormalParameters) { FunctionBody }

 1. Let propKey be the result of evaluating PropertyName.
 2. ReturnIfAbrupt(propKey).
 3. If the function code for this MethodDefinition is strict mode code, let
 strict be true. Otherwise let strict be false.
 4. Let scope be the running execution context’s LexicalEnvironment.
 5. If functionPrototype was passed as a parameter, let kind be Normal; otherwise
 let kind be Method.
 6. Let closure be FunctionCreate(kind, StrictFormalParameters, FunctionBody,
 scope, strict). If functionPrototype was passed as a parameter then pass its
 value as the functionPrototype optional argument of FunctionCreate.
 7. Perform MakeMethod(closure, object).
 8. Return the Record{[[key]]: propKey, [[closure]]: closure}.

EdgeHTML Mode

Object literal methods are created with a [[Construct]] slot, contrary to DefineMethod. Therefore

the methods can successfully be used as the target of new expressions. In the following example, the
new expression should throw a TypeError, but doesn't.

 var obj = { meth() { } };

 new obj.meth();

V0067: Methods defined in object literals are created with their own property named prototype

The specification states:

 14.3.8 Runtime Semantics: DefineMethod

 With parameters object and optional parameter functionPrototype.

 MethodDefinition : PropertyName (StrictFormalParameters) { FunctionBody }

 1. Let propKey be the result of evaluating PropertyName.
 2. ReturnIfAbrupt(propKey).
 3. If the function code for this MethodDefinition is strict mode code, let
 strict be true. Otherwise let strict be false.

20 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 4. Let scope be the running execution context’s LexicalEnvironment.
 5. If functionPrototype was passed as a parameter, let kind be Normal; otherwise
 let kind be Method.
 6. Let closure be FunctionCreate(kind, StrictFormalParameters, FunctionBody,
 scope, strict). If functionPrototype was passed as a parameter then pass its
 value as the functionPrototype optional argument of FunctionCreate.
 7. Perform MakeMethod(closure, object).
 8. Return the Record{[[key]]: propKey, [[closure]]: closure}.

EdgeHTML Mode

Methods defined in object literals are created with their own property named prototype, contrary to

DefineMethod. In the following example, false should be logged, but instead true is.

 var obj = { method() { } };

 console.log(Object.hasOwnProperty(obj.method, 'property'));

2.1.20 [ECMA-262/7] Section 14.5.14 Runtime Semantics: ClassDefinitionEvaluation

V0021: ClassDefinitionEvaluation uses the lexical environment of the running execution context

The specification states:

 ... Runtime Semantics: ClassDefinitionEvaluation

 With parameter className.

 ClassTail : ClassHeritage { ClassBody }

 1. Let lex be the LexicalEnvironment of the running execution context.
 2. Let classScope be NewDeclarativeEnvironment(lex).
 3. Let classScopeEnvRec be classScope’s EnvironmentRecord.
 4. If className is not undefined, then
 a. Perform classScopeEnvRec.CreateImmutableBinding(className, true).
 ...
 23. If className is not undefined, then
 a. Perform classScopeEnvRec.InitializeBinding(className, F).

EdgeHTML Mode

Step 2 is omitted; therefore ClassDefinitionEvaluation uses the lexical environment of the running
execution context.

2.1.21 [ECMA-262/7] Section 15.1.1 Static Semantics: Early Errors

V0069: Duplicate function and generator function entries are allowed in LexicallyDeclaredNames of
ScriptBody

The specification states:

 15.1.1 Static Semantics: Early Errors

 Script : ScriptBody

 • It is a Syntax Error if the LexicallyDeclaredNames of ScriptBody contains any

21 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 duplicate entries.
 • It is a Syntax Error if any element of the LexicallyDeclaredNames of ScriptBody
 also occurs in the VarDeclaredNames of ScriptBody.

EdgeHTML Mode

Duplicate function and generator function entries are allowed in LexicallyDeclaredNames of
ScriptBody.

2.1.22 [ECMA-262/7] Section 16.2 Forbidden Extensions

V0025: Functions created using the bind method are given caller and arguments restricted own
properties

The specification states:

 ... Forbidden Extensions

 An implementation must not extend this specification in the following ways:

 • Other than as defined in this specification, ECMAScript Function objects
 defined using syntactic constructors in strict mode code must not be created with
 own properties named "caller" or "arguments" other than those that are created by
 applying the AddRestrictedFunctionProperties abstract operation to the function.
 Such own properties also must not be created for function objects defined using
 an ArrowFunction, MethodDefinition, GeneratorDeclaration, GeneratorExpression,
 ClassDeclaration, or ClassExpression regardless of whether the definition is
 contained in strict mode code. Built-in functions, strict mode functions created
 using the Function constructor, generator functions created using the Generator
 constructor, and functions created using the bind method also must not be created
 with such own properties.

EdgeHTML Mode

Functions created using the bind method are given caller and arguments restricted own properties.

2.1.23 [ECMA-262/7] Section 19.1.2.18 Object.setPrototypeOf (O, proto)

V0196: Object.setPrototypeOf throws an error immediately if parameter O is not an object

The specification states:

 ... Object.setPrototypeOf (O, proto)

 When the setPrototypeOf function is called with arguments O and proto, the following
 steps are taken:

 1. Let O be ? RequireObjectCoercible(O).
 2. If Type(proto) is neither Object nor Null, throw a TypeError exception.
 3. If Type(O) is not Object, return O.
 4. Let status be ? O.[[SetPrototypeOf]](proto).
 5. If status is false, throw a TypeError exception.
 6. Return O.

EdgeHTML Mode

22 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

ToObject(O) is done instead of RequireObjectCoercible(O) in step 1. As a result,
Object.setPrototypeOf throws an error immediately if parameter O is not an object.

2.1.24 [ECMA-262/7] Section 19.1.3.2 Object.prototype.hasOwnProperty (V)

V0197: An error is thrown if the argument is a symbol

The specification states:

 19.1.3.2 Object.prototype.hasOwnProperty (V)

 When the hasOwnProperty method is called with argument V, the following steps are
 taken:

 1. Let P be ? ToPropertyKey(V).
 2. Let O ? be ToObject(this value).
 3. Return ? HasOwnProperty(O, P).

EdgeHTML Mode

In step 1, ToString is invoked instead of ToPropertyKey. Because of this, an error is thrown if V is a

symbol.

2.1.25 [ECMA-262/7] Section 19.1.3.5 Object.prototype.toLocaleString ([reserved1 [

, reserved2]])

V0198: Object.prototype.toLocaleString passes ToObject(this) to the toString method instead of this

The specification states:

 19.1.3.5 Object.prototype.toLocaleString ([reserved1 [, reserved2]])

 When the toLocaleString method is called, the following steps are taken:

 1. Let O be the this value.
 2. Return ? Invoke(O, "toString").

EdgeHTML Mode

Object.prototype.toLocaleString passes ToObject(this) to the toString method instead of this.

These are the steps:

 1. Let O be the this value.

 2. Let obj be ? ToObject(O).

 3. Return ToString(obj).

2.1.26 [ECMA-262/7] Section 19.1.3.6 Object.prototype.toString ()

V0199: @@toStringTag is not implemented

23 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

The specification states:

 19.1.3.6 Object.prototype.toString ()

 When the toString method is called, the following steps are taken:

 1. ...
 ...
 15. Let tag be ? Get (O, @@toStringTag).

EdgeHTML Mode

@@toStringTag is not implemented.

2.1.27 [ECMA-262/7] Section 19.2.3.2 Function.prototype.bind (thisArg, ...args)

V0200: The bound function name accessor calls the target function's counterpart

The specification states:

 19.2.3.2 Function.prototype.bind (thisArg , ...args)

 When the bind method is called with argument thisArg and zero or more args, it
 performs the following steps:

 1. Let Target be the this value.
 ...
 9. Let targetName be ? Get(Target, "name").
 10. If Type(targetName) is not String, let targetName be the empty string.
 11. Perform SetFunctionName(F, targetName, "bound").
 12. Return F.

EdgeHTML Mode

Steps 9 to 11 are replaced by:

 9. Let getName(Target) be a new dynamic function that does following:

 a. Let targetName be ? Get(Target, "name").

 b. Return "bound"+targetName

 10. Set (F, "name", getName)

Because of this, the bound function name accessor calls the target function's counterpart. Note that
steps 10 and 11 are deleted.

2.1.28 [ECMA-262/7] Section 19.2.3.6 Function.prototype [@@hasInstance] (V)

V0209: Calling @@hasInstance has no effect

The specification states:

 19.2.3.6 Function.prototype[@@hasInstance] (V)

24 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 When the @@hasInstance method of an object F is called with value V, the following
 steps are taken:

 1. Let F be the this value.
 2. Return ? OrdinaryHasInstance(F, V).

 The value of the name property of this function is "[Symbol.hasInstance]".

 This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
 [[Configurable]]: false }.
 ...
 This property is non-writable and non-configurable to prevent tampering that could be
 used to globally expose the target function of a bound function.

EdgeHTML Mode

Calling @@hasInstance has no effect.

2.1.29 [ECMA-262/7] Section 19.2.4.1 length

V0074: The [[writable]] attribute of the length property cannot be set to true, regardless of the
setting of [[configurable]]

The specification states:

 19.2.4.1 length

 The value of the length property is an integer that indicates the typical number of
 arguments expected by the function. However, the language permits the function to be
 invoked with some other number of arguments. The behaviour of a function when invoked
 on a number of arguments other than the number specified by its length property
 depends on the function. This property has the attributes { [[Writable]]: false,
 [[Enumerable]]: false, [[Configurable]]: true }.

EdgeHTML Mode

The [[writable]] attribute of the length property cannot be set to true, regardless of the setting of

[[configurable]]. No error is thrown on an attempt to set it true.

2.1.30 [ECMA-262/7] Section 19.4.2 Properties of the Symbol Constructor

V0161: Some properties of the Symbol constructor are not implemented

The specification states:

 19.4.2 Properties of the Symbol Constructor

 The value of the [[Prototype]] internal slot of the Symbol constructor is the
 intrinsic object %FunctionPrototype%

 ... The Symbol constructor has the following properties:

EdgeHTML Mode

These properties of the Symbol constructor are not implemented:

25 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 hasInstance

 isConcatSpreadable

 toPrimitive

 toStringTag

2.1.31 [ECMA-262/7] Section 19.4.3.4 Symbol.prototype [@@toPrimitive] (hint)

V0178: Symbol.prototype[@@toPrimitive] is not implemented because @@toPrimitive is not

implemented

The specification states:

 19.4.3.4 Symbol.prototype [@@toPrimitive] (hint)

 This function is called by ECMAScript language operators to convert a Symbol object
 to a primitive value. The allowed values for hint are "default", "number",
 and "string".

 When the @@toPrimitive method is called with argument hint, the following steps are
 taken:

 1. Let s be the this value.
 2. If Type(s) is Symbol, return s.
 3. If Type(s) is not Object, throw a TypeError exception.
 4. If s does not have a [[SymbolData]] internal slot, throw
 a TypeError exception.
 5. Return s.[[SymbolData]].

 The value of the name property of this function is "[Symbol.toPrimitive]".

 This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
 [[Configurable]]: true }.

EdgeHTML Mode

Symbol.prototype[@@toPrimitive] is not implemented because @@toPrimitive is not implemented.

2.1.32 [ECMA-262/7] Section 19.4.3.5 Symbol.prototype [@@toStringTag]

V0179: Symbol.prototype[@@toStringTag] is not implemented because the @@toStringTag feature is
not implemented

The specification states:

 19.4.3.5 Symbol.prototype [@@toStringTag]

 The initial value of the @@toStringTag property is the String value "Symbol".

 This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
 [[Configurable]]: true }.

EdgeHTML Mode

26 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

Symbol.prototype[@@toStringTag] is not implemented because the @@toStringTag feature is not

implemented.

2.1.33 [ECMA-262/7] Section 19.5.3 Properties of the Error Prototype Object

V0182: The error prototype object is the intrinsic object %Error%

The specification states:

 19.5.3 Properties of the Error Prototype Object

 The Error prototype object is the intrinsic object %ErrorPrototype%. The Error
 prototype object is an ordinary object. It is not an Error instance and does not have
 an [[ErrorData]] internal slot.

 The value of the [[Prototype]] internal slot of the Error prototype object is the
 intrinsic object %ObjectPrototype%.

EdgeHTML Mode

The Error prototype object is the intrinsic object %Error%. It is an Error object. It is not an Error

instance and does have an [[ErrorData]] internal slot.

2.1.34 [ECMA-262/7] Section 20.3.1.15 TimeClip (time)

V0201: TimeClip does not convert negative zero to positive zero

The specification states:

 20.3.1.15 TimeClip (time)

 The abstract operation TimeClip calculates a number of milliseconds from its
 argument, which must be an ECMAScript Number value. This operator functions as
 follows:

 1. If time is not finite, return NaN.
 2. If abs(time) > 8.64 × 10^15, return NaN.
 3. Let clippedTime be ... ToInteger(time).
 4. If clippedTime is -0, set clippedTime to +0.
 5. Return clippedTime.

EdgeHTML Mode

TimeClip does not convert negative zero to positive zero (step 4).

2.1.35 [ECMA-262/7] Section 20.3.1.16 Date Time String Format

V0125: A date-time without a time zone offset is interpreted incorrectly

The specification states:

 20.3.1.16 Date Time String Format

27 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 ECMAScript defines a string interchange format for date-times based upon a
 simplification of the ISO 8601 Extended Format. The format is as follows:
 YYYY-MM-DDTHH:mm:ss.sssZ

 Where the fields are as follows:

 YYYY is the decimal digits of the year 0000 to 9999 in the Gregorian calendar.
 ...
 Z is the time zone offset specified as "Z" (for UTC) or either "+" or "-"
 followed by a time expression HH:mm

EdgeHTML Mode

When the date-time string does not include a time zone offset, the time is taken, incorrectly, to be
UTC, not local time. For example, if the date-time string is "2015-10-01", it is taken to mean:

 Wed Sep 30 2015 17:00:00 GMT-0700 (Pacific Daylight Time)

According to the specification, it should be taken as:

 Thu Oct 01 2015 00:00:00 GMT-0700 (Pacific Daylight Time)

2.1.36 [ECMA-262/7] Section 20.3.4 Properties of the Date Prototype Object

V0183: The Date prototype object is a Date instance and has a [[DateValue]] internal slot

The specification states:

 20.3.4 Properties of the Date Prototype Object

 The Date prototype object is the intrinsic object %DatePrototype%. The Date prototype
 object is itself an ordinary object. It is not a Date instance and does not have a
 [[DateValue]] internal slot.

EdgeHTML Mode

The Date prototype object is a Date instance and has a [[DateValue]] internal slot.

2.1.37 [ECMA-262/7] Section 21.1.3.22 String.prototype.toLowerCase ()

V0139: Results are derived according to the mappings in UnicodeData.txt, but not those in
SpecialCasings.txt.

The specification states:

 ... String.prototype.toLowerCase ()

 This function interprets a String value as a sequence of UTF-16 encoded code points,
 as described in 6.1.4. The following steps are taken:
 ...
 The result must be derived according to the locale-insensitive case mappings in
 the Unicode Character Database (this explicitly includes not only the
 UnicodeData.txt file, but also all locale-insensitive mappings in the
 SpecialCasings.txt file that accompanies it).

28 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

EdgeHTML Mode

Results are derived according to the mappings in UnicodeData.txt, but not those in SpecialCasings.txt.

V0140: Only characters in the Basic Multilingual Plane (values no greater than 0xFFFF) are converted

to lowercase

The specification states:

 21.1.3.22 String.prototype.toLowerCase ()

 This function interprets a String value as a sequence of UTF-16 encoded code points,
 as described in 6.1.4. The following steps are taken:

 ...
 ... Let cpList be a List containing in order the code points as defined in 6.1.4
 of S, starting at the first element of S.
 ... For each code point c in cpList, if the Unicode Character Database provides a
 language insensitive lower case equivalent of c then replace c in cpList with
 that equivalent code point(s).

EdgeHTML Mode

Only those characters in the Basic Multilingual Plane (values no greater than 0xFFFF) are converted to
lower case. Others are left unchanged.

2.1.38 [ECMA-262/7] Section 21.1.3.24 String.prototype.toUpperCase ()

V0185: Only characters in the Basic Multilingual Plane (values no greater than 0xFFFF) are converted
to uppercase

The specification states:

 ... String.prototype.toUpperCase ()

 This function interprets a String value as a sequence of UTF-16 encoded code points,
 as described in 6.1.4.

 This function behaves in exactly the same way as String.prototype.toLowerCase, except
 that code points are mapped to their uppercase equivalents as specified in the
 Unicode Character Database.

EdgeHTML Mode

Only those characters in the Basic Multilingual Plane (values no greater than 0xFFFF) are converted to
uppercase. Others are left unchanged.

2.1.39 [ECMA-262/7] Section 21.2.1 Patterns

V0078: If the contents of the braces in \u{...} is not a hexadecimal number, \u{...} is treated as a
regular string

The specification states:

29 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 21.2.1 Patterns

 The RegExp constructor applies the following grammar to the input pattern String. An
 error occurs if the grammar cannot interpret the String as an expansion of Pattern.

 Syntax
 ...
 RegExpUnicodeEscapeSequence[U] ::
 [+U] u LeadSurrogate \u TrailSurrogate
 [+U] u LeadSurrogate
 [+U] u TrailSurrogate
 [+U] u NonSurrogate
 [~U] u Hex4Digits
 [+U] u{ HexDigits }

EdgeHTML Mode

If the contents of the braces in \u{...} is not a hexadecimal number, \u{...} is treated as a regular

string, rather than a Unicode code point. For example, the following returns true but should throw a

SyntaxError exception:

 /\u{pp}/u.exec('\\u{pp}')

2.1.40 [ECMA-262/7] Section 21.2.1.1 Static Semantics: Early Errors

V0142: When the mathematical value of HexDigits is above 0x10FFFF, the \u{...} is not treated as a
Unicode code point

The specification states:

 21.2.1.1 Static Semantics: Early Errors

 RegExpUnicodeEscapeSequence :: u { HexDigits }

 • It is a Syntax Error if the MV of HexDigits > 0x10FFFF.

EdgeHTML Mode

When the mathematical value (MV) of HexDigits is above 0x10FFFF (decimal 1114111), the \u{...} is

treated as a regular string, not as a Unicode code point, and no Syntax Error exception is thrown.

2.1.41 [ECMA-262/7] Section 21.2.2 Pattern Semantics

V0079: The input string is not treated as Unicode code points even when the associated flags contain
a "u"

The specification states:

 21.2.2 Pattern Semantics
 ...
 A Pattern is either a BMP pattern or a Unicode pattern depending upon whether or not
 its associated flags contain a "u". A BMP pattern matches against a String
 interpreted as consisting of a sequence of 16-bit values that are Unicode code points
 in the range of the Basic Multilingual Plane. A Unicode pattern matches against a
 String interpreted as consisting of Unicode code points encoded using UTF-16. In the
 context of describing the behaviour of a BMP pattern “character” means a single

30 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 16-bit Unicode BMP code point. In the context of describing the behaviour of a
 Unicode pattern “character” means a UTF-16 encoded code point (6.1.4). In either
 context, “character value” means the numeric value of the corresponding non-encoded
 code point.

EdgeHTML Mode

The input string is interpreted as consisting of a sequence of 16-bit values that are Unicode code
points in the range of the Basic Multilingual Plane, even when the associated flags contain a "u". For

example, the following returns false, not true:

 /\ud83d/u.test('\ud83d\udca8')

2.1.42 [ECMA-262/7] Section 21.2.2.8.2 Runtime Semantics: Canonicalize (ch)

V0172: Case-insensitive matching misses some characters

The specification states:

 21.2.2.8.2 Runtime Semantics: Canonicalize (ch)

 The abstract operation Canonicalize takes a character parameter ch and performs the
 following steps:

 1. If IgnoreCase is false, return ch.
 2. If Unicode is true,
 a. If the file CaseFolding.txt of the Unicode Character Database provides a
 simple or common case folding mapping for ch, return the result of applying
 that mapping to ch.
 b. Return ch.
 3. Else,
 a. Assert: ch is a UTF-16 code unit.
 b. Let s be the ECMAScript String value consisting of the single code unit ch.
 c. Let u be the same result produced as if by performing the algorithm for
 String.prototype.toUpperCase using s as the this value.
 d. Assert: u is a String value.
 e. If u does not consist of a single code unit, return ch.
 f. Let cu be u’s single code unit element.
 g. If ch's code unit value ≥ 128 and cu's code unit value < 128, return ch.
 h. Return cu.

EdgeHTML Mode

Some mappings in the Unicode Character Database are not handled. Therefore, case-insensitive
matching misses some characters.

For example, the following should be true, but is false:

 /\u0345/i.test('\u0399');

2.1.43 [ECMA-262/7] Section 21.2.2.10 CharacterEscape

V0175: Characters other than those matched by ControlLetter (non-alphabetic characters) are allowed

The specification states:

31 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 21.2.2.10 CharacterEscape
 ...
 The production CharacterEscape :: c ControlLetter evaluates as follows:

 1. Let ch be the character matched by ControlLetter.
 2. Let i be ch's character value.
 3. Let j be the remainder of dividing i by 32.
 4. Return the character whose character value is j.

EdgeHTML Mode

Characters other than those matched by ControlLetter (non-alphabetic characters) are allowed.

2.1.44 [ECMA-262/7] Section 21.2.5 Properties of the RegExp Prototype Object

V0081: The RegExp prototype object is a RegExp object

The specification states:

 21.2.5 Properties of the RegExp Prototype Object

 The RegExp prototype object is the intrinsic object %RegExpPrototype%. The RegExp
 prototype object is an ordinary object. It is not a RegExp instance and does not have
 a [[RegExpMatcher]] internal slot or any of the other internal slots of RegExp
 instance objects.

 The value of the [[Prototype]] internal slot of the RegExp prototype object is the
 intrinsic object %ObjectPrototype%.

EdgeHTML Mode

The RegExp prototype object is a RegExp object, and its [[Class]] is RegExp. The value of the

[[Prototype]] internal property is the standard built-in Object prototype object.

The initial values of the RegExp prototype object’s data properties are set as if the object were created

by the expression new RegExp() where RegExp is the standard built-in constructor with that name.

V0165: The RegExp prototype object is the intrinsic object %RegExp% and is not an ordinary object

The specification states:

 21.2.5 Properties of the RegExp Prototype Object

 The RegExp prototype object is the intrinsic object %RegExpPrototype%. The RegExp
 prototype object is an ordinary object. It is not a RegExp instance and does not have
 a [[RegExpMatcher]] internal slot or any of the other internal slots of RegExp
 instance objects.

EdgeHTML Mode

The RegExp prototype object is the intrinsic object %RegExp% and is not an ordinary object. It is a

RegExp instance with a [[RegExpMatcher]] internal slot and all other internal slots of RegExp instance

objects.

32 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

2.1.45 [ECMA-262/7] Section 21.2.5.2.3 AdvanceStringIndex (S, index, unicode)

V0173: AdvanceStringIndex advances the index by 1, not 2, when the unicode flag is specified

The specification states:

 21.2.5.2.3 AdvanceStringIndex (S, index, unicode)

 The abstract operation AdvanceStringIndex with arguments S, index, and unicode
 performs the following steps:

 1. Assert: Type(S) is String.
 2. Assert: index is an integer such that 0≤index≤2^53-1.
 3. Assert: Type(unicode) is Boolean.
 4. If unicode is false, return index+1.
 5. Let length be the number of code units in S.
 6. If index+1 ≥ length, return index+1.
 7. Let first be the code unit value at index index in S.
 8. If first < 0xD800 or first > 0xDBFF, return index+1.
 9. Let second be the code unit value at index index+1 in S.
 10. If second < 0xDC00 or second > 0xDFFF, return index+1.
 11. Return index+2.

EdgeHTML Mode

AdvanceStringIndex advances the index by 1, not 2 when the unicode flag is specified. For example,
the following should hold:

 /\udf06/u.exec('\ud834\udf06') == null

Instead exec returns \udf06; that is:

 /\udf06/u.exec('\ud834\udf06') == '\udf06'

2.1.46 [ECMA-262/7] Section 21.2.6.1 lastIndex

V0082: The [[Writable]] attribute of the lastIndex property cannot be changed from true to false

The specification states:

 21.2.6.1 lastIndex

 The value of the lastIndex property specifies the String index at which to start the
 next match. It is coerced to an integer when used (see 21.2.5.2.2). This property
 shall have the attributes { [[Writable]]: true, [[Enumerable]]: false,
 [[Configurable]]: false }.

EdgeHTML Mode

For lastIndex, [[Writable]] cannot be changed from true to false. This operation should be

allowed, even though [[Configurable]] is false (see 6.1.7.1).

2.1.47 [ECMA-262/7] Section 22.1.3.1.1 Runtime Semantics: IsConcatSpreadable (O)

V0202: @@isConcatSpreadable is not implemented

33 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

The specification states:

 22.1.3.1.1 Runtime Semantics: IsConcatSpreadable (O)

 The abstract operation IsConcatSpreadable with argument O performs the following
 steps:

 1. If Type(O) is not Object, return false.
 2. Let spreadable be ? Get(O, @@isConcatSpreadable).
 3. If spreadable is not undefined, return ToBoolean(spreadable).
 4. Return ? IsArray(O).

EdgeHTML Mode

@@isConcatSpreadable is not implemented.

2.1.48 [ECMA-262/7] Section 22.1.3.3 Array.prototype.copyWithin (target, start [,

end])

V0203: Under certain circumstances Array.prototype.copyWithin does not throw a TypeError when it
should

The specification states:

 22.1.3.3 Array.prototype.copyWithin (target, start [, end])
 ...
 The following steps are taken:
 ...
 12. Repeat, while count > 0
 a. Let fromKey be ! ToString(from).
 b. Let toKey be ! ToString(to).
 c. Let fromPresent be ? HasProperty(O, fromKey).
 d. If fromPresent is true, then
 i. Let fromVal be ? Get(O, fromKey).
 ii. Perform ? Set(O, toKey, fromVal, true).
 e. Else fromPresent is false,
 i. Perform ? DeletePropertyOrThrow(O, toKey).
 f. Let from be from + direction.
 g. Let to be to + direction.
 h. Let count be count − 1.
 13. Return O.

EdgeHTML Mode

The following steps are not executed:

 12. ...

 e. Else fromPresent is false,

 i. Perform ? DeletePropertyOrThrow(O, toKey).

As a result, under certain circumstances Array.prototype.copyWithin does not throw a TypeError

when it should.

34 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

2.1.49 [ECMA-262/7] Section 22.1.3.18 Array.prototype.push (...items)

V0204: Array.prototype.push does not throw TypeError on length overflow

The specification states:

 22.1.3.18 Array.prototype.push (...items)
 ...
 When the push method is called with zero or more arguments the following steps are
 taken:

 1. Let O be ? ToObject(this value).
 2. Let len be ? ToLength(? Get(O, "length")).
 3. Let items be a List whose elements are, in left to right order, the arguments
 that were passed to this function invocation.
 4. Let argCount be the number of elements in items.
 5. If len + argCount > 2^53-1, throw a TypeError exception.

EdgeHTML Mode

The following step is not executed:

 5. If len + argCount > 2^53-1, throw a TypeError exception.

As a result, Array.prototype.push does not throw TypeError on length overflow.

2.1.50 [ECMA-262/7] Section 22.1.3.25 Array.prototype.sort (comparefn)

V0205: Array.prototype.sort uses ToUint32 for length conversion

The specification states:

 22.1.3.25 Array.prototype.sort (comparefn)

 The elements of this array are sorted. The sort is not necessarily stable (that is,
 elements that compare equal do not necessarily remain in their original order). If
 comparefn is not undefined, it should be a function that accepts two arguments x and
 y and returns a negative value if x < y, zero if x = y, or a positive value if x > y.

 Upon entry, the following steps are performed to initialize evaluation of the sort
 function:

 1. Let obj be ? ToObject(this value).
 2. Let len be ? ToLength(? Get(obj, "length")).

EdgeHTML Mode

Array.prototype.sort uses ToUint32 for length conversion (step 2):

 1. Let obj be ToObject(this value).

 2. Let len be ? ToUint32(? Get(obj, "length")).

35 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

2.1.51 [ECMA-262/7] Section 22.1.3.27 Array.prototype.toLocaleString ([reserved1 [

, reserved2]])

V0206: Array.prototype.toLocaleString uses InvokeBuiltinMethod instead of Invoke

The specification states:

 22.1.3.27 Array.prototype.toLocaleString ([reserved1 [, reserved2]])

 An ECMAScript implementation that includes the ECMA-402 Internationalization API must
 implement the Array.prototype.toLocaleString method as specified in the ECMA-402
 specification. If an ECMAScript implementation does not include the ECMA-402 API the
 following specification of the toLocaleString method is used.
 ...
 The following steps are taken:
 ...
 7. Else
 a. Let R be ? ToString(? Invoke(firstElement, "toLocaleString")).
 ...
 9. Repeat, while k < len
 ...
 d. Else
 i. Let R be ? ToString(? Invoke(nextElement, "toLocaleString")).

EdgeHTML Mode

Array.prototype.toLocaleString uses InvokeBuiltinMethod instead of Invoke:

 ...

 7. Else

 a. Let R be ? ToString(? InvokeBuiltinMethod(firstElement, "toLocaleString")).

 ...

 9. Repeat, while k < len

 ...

 d. Else

 i. Let R be ? ToString(? InvokeBuiltinMethod(nextElement, "toLocaleString")).

2.1.52 [ECMA-262/7] Section 25.4.4 Properties of the Promise Constructor

V0106: The Promise.length property is not configurable

The specification states:

 25.4.4 Properties of the Promise Constructor

 The value of the [[Prototype]] internal slot of the Promise constructor is the
 intrinsic object %FunctionPrototype%.

 ... The Promise constructor has the following properties:

EdgeHTML Mode

36 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

The Promise.length property is not configurable.

2.1.53 [ECMA-262/7] Section 25.4.4.1 Promise.all (iterable)

V0207: Promise.all does not call IteratorClose

The specification states:

 25.4.4.1 Promise.all (iterable)

 The all function returns a new promise which is fulfilled with an array of
 fulfillment values for the passed promises, or rejects with the reason of the first
 passed promise that rejects. It resolves all elements of the passed iterable to
 promises as it runs this algorithm.

 1. Let C be the this value.
 2. If Type(C) is not Object, throw a TypeError exception.
 3. Let promiseCapability be ? NewPromiseCapability(C).
 4. Let iterator be GetIterator(iterable).
 5. IfAbruptRejectPromise(iterator, promiseCapability).
 6. Let iteratorRecord be Record {[[Iterator]]: iterator, [[Done]]: false}.
 7. Let result be PerformPromiseAll(iteratorRecord, C, promiseCapability).
 8. If result is an abrupt completion, then
 a. If iteratorRecord.[[Done]] is false, let result be IteratorClose(iterator,
 result).
 b. IfAbruptRejectPromise(result, promiseCapability).
 9. Return Completion(result).

EdgeHTML Mode

Step 8a is not done; the IteratorClose abstract operation is not implemented.

2.2 Clarifications

There are no clarifications of the MAY and SHOULD requirements of [ECMA-262/7].

2.3 Extensions

The following subsections describe extensions to the requirements of [ECMA-262/7].

2.3.1 [ECMA-262/7] Section 7.3.18 Invoke (V, P [, argumentsList])

E0009: Add InvokeBuiltinMethod(V,P [, argumentsList])

The specification states:

 7.3.18 Invoke(V,P [, argumentsList])

EdgeHTML Mode

Add the following section:

 7.3.18.1 InvokeBuiltinMethod(V,P [, argumentsList])

https://go.microsoft.com/fwlink/p/?linkid=846935
https://go.microsoft.com/fwlink/p/?linkid=846935

37 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 The abstract operation Invoke is used to call a built-in method property of an ECMAScript

language value. This operation behaves the same way as Invoke(V,P [, argumentsList]) except

that it always invokes the initial property P of V regardless of subsequent changes to the property.

2.3.2 [ECMA-262/7] Section 19.2.3.2 Function.prototype.bind (thisArg, ...args)

E0010: Function.prototype.bind() creates functions with additional caller and arguments properties

The specification states:

 4.3.34 own property

 property that is directly contained by its object

 8.2.2 CreateIntrinsics (realmRec)
 ...
 ...
 9. Let funcProto be CreateBuiltinFunction(realmRec, noSteps, objProto).
 10. Set intrinsics.[[%FunctionPrototype%]] to funcProto.
 11. Call thrower.[[SetPrototypeOf]](funcProto).
 12. Perform AddRestrictedFunctionProperties(funcProto, realmRec).

 9.2.5 FunctionCreate (kind, ParameterList, Body, Scope, Strict [, prototype])
 ...
 1. If the prototype argument was not passed, then
 a. Let prototype be the intrinsic object %FunctionPrototype%.

 9.2.7 AddRestrictedFunctionProperties (F, realm)
 ...
 ...
 3. Perform ! DefinePropertyOrThrow(F, "caller", PropertyDescriptor {[[Get]]:
 thrower, [[Set]]: thrower, [[Enumerable]]: false,
 [[Configurable]]: true}).
 4. Return ! DefinePropertyOrThrow(F, "arguments", PropertyDescriptor {[[Get]]:
 thrower, [[Set]]: thrower, [[Enumerable]]: false,
 [[Configurable]]: true}).

 9.3 Built-in Function Objects
 ...
 Unless otherwise specified every built-in function object has the %FunctionPrototype%
 object (19.2.3) as the initial value of its [[Prototype]] internal slot.

 9.4.1.3 BoundFunctionCreate (targetFunction, boundThis, boundArgs)
 ...
 ...
 2. Let proto ? be targetFunction.[[GetPrototypeOf]]().
 ...
 7. Set the [[Prototype]] internal slot of obj to proto.

 19.2.3.2 Function.prototype.bind (thisArg , ...args)
 ...
 ...
 4. Let F be ? BoundFunctionCreate(Target, thisArg, args).

EdgeHTML Mode

Function.prototype.bind() creates functions with additional caller and arguments properties.

These properties should be inherited from the Function prototype (%FunctionPrototype%).

The 5.1 Edition of the ECMAScript® Language Specification of the version of the spec said that bind

should add caller and Arguments own properties to the created bound function. However, later

specifications do not.

38 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

These are the relevant lines from the 5.1 Edition:

 15.3.4.5 Function.prototype.bind (thisArg [, arg1 [, arg2, …]])

 ...

 ...

 20. Call the [[DefineOwnProperty]] internal method of F with arguments "caller",

 PropertyDescriptor.

 {[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false},

 and false.

 21. Call the [[DefineOwnProperty]] internal method of F with arguments "arguments",

 PropertyDescriptor,

 {[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false},

 and false.

2.3.3 [ECMA-262/7] Section 21.2.4 Properties of the RegExp Constructor

E0001: The RegExp constructor has additional properties that represent the first nine groups of the
last successful match

The specification states:

 21.2.4 Properties of the RegExp Constructor

 The value of the [[Prototype]] internal slot of the RegExp constructor is the
 intrinsic object %FunctionPrototype%.

 ... the RegExp constructor has the following properties:

EdgeHTML Mode

The RegExp constructor has additional properties, $1, $2, ..., and $9, that represent the first nine

groups of the last successful match. Before a successful match, each property is set to the empty
string. For each group of the match (up to nine maximum), the corresponding property is set to a

value that represents the group. For example:

 var re = /(a|b)(c|d)/;

 // RegExp.$1 === ''

 // RegExp.$2 === ''

 // RegExp.$3 === ''

 // ...

 // RegExp.$9 === ''

 re.exec('ac'); // Successful match

39 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 // RegExp.$1 === 'a'

 // RegExp.$2 === 'c'

 // RegExp.$3 === ''

 // ...

 // RegExp.$9 === ''

 re.exec('yz'); // No match

 // $1-$9 are same as before

 // RegExp.$1 === 'a'

 // RegExp.$2 === 'c'

 // RegExp.$3 === ''

 // ...

 // RegExp.$9 === ''

 re.exec('bd'); // Successful match

 // $1-$2 are now different

 // RegExp.$1 === 'b'

 // RegExp.$2 === 'd'

 // RegExp.$3 === ''

 // ...

 // RegExp.$9 === ''

These properties are data properties and have the following attributes:

 {"writable":true,"enumerable":true,"configurable":false}

Even though the [[Writable]] attribute is true, the properties are read-only and it is not possible to

change their values directly.

E0002: The RegExp constructor has a property named input that represents the input string of the last

successful match

The specification states:

 21.2.4 Properties of the RegExp Constructor

 The value of the [[Prototype]] internal slot of the RegExp constructor is the
 intrinsic object %FunctionPrototype%.

 ... the RegExp constructor has the following properties:

EdgeHTML Mode

40 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

The RegExp constructor has a property named input that represents the input string of the last

successful match. Before a successful match, it is set to the empty string. For example:

 var re = /a|c/

 // RegExp.input === ''

 re.exec('az')

 // RegExp.input === 'az'

 re.exec('bz')

 // RegExp.input === 'az'

 re.exec('cz')

 // RegExp.input === 'cz'

This is a data property and has the following attributes:

 {"writable":true,"enumerable":true,"configurable":false}

Even though the [[Writable]] attribute is true, the property is read-only and it is not possible to

change its value directly.

RegExp constructor has a property named $_ which behaves the same way as the input property but

has the following attributes:

 {"writable":true,"enumerable":false,"configurable":false}

E0003: The RegExp constructor has a property named lastMatch that holds the matched substring for
the last successful match

The specification states:

 21.2.4 Properties of the RegExp Constructor

 The value of the [[Prototype]] internal slot of the RegExp constructor is the
 intrinsic object %FunctionPrototype%.

 ... the RegExp constructor has the following properties:

EdgeHTML Mode

The RegExp constructor has a property named lastMatch that holds the matched substring for the last

successful match. Before a successful match it is set to the empty string. For example:

 var re = /a|c/

 // RegExp.lastMatch === ''

 re.exec('az')

 // RegExp.lastMatch === 'a'

 re.exec('bz')

 // RegExp.lastMatch === 'a'

41 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 re.exec('cz')

 // RegExp.lastMatch === 'c'

lastMatch is a data property and has the following attributes:

 {"writable":true,"enumerable":true,"configurable":false}

Even though the [[Writable]] attribute is true, lastMatch is read-only and it is not possible to change

its value directly.

The RegExp constructor has a property named $& that behaves the same as lastMatch but has the

following attributes:

 {"writable":true,"enumerable":false,"configurable":false}

E0004: The RegExp constructor has a property named lastParen that represents the last group from

the last successful match

The specification states:

 21.2.4 Properties of the RegExp Constructor

 The value of the [[Prototype]] internal slot of the RegExp constructor is the
 intrinsic object %FunctionPrototype%.

 ... the RegExp constructor has the following properties:

EdgeHTML Mode

The RegExp constructor has a property named lastParen that represents the last group from the last

successful match. Before a successful match, it is set to the empty string. For example:

 var re = /(a|b)(c|d)?/

 // RegExp.lastParen === ''

 re.exec('ac')

 // RegExp.lastParen === 'c'

 re.exec('z')

 // RegExp.lastParen === 'c'

 re.exec('bd')

 // RegExp.lastParen === 'd'

lastParen is a data property and has the following attributes:

 {"writable":true,"enumerable":true,"configurable":false}

Even though the [[Writable]] attribute is true, lastParen is read-only and it is not possible to

change its value directly.

The RegExp constructor has another property called $+ which behaves the same as lastParen but has

the following attributes:

42 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 {"writable":true,"enumerable":false,"configurable":false}

E0005: The RegExp constructor has a property named leftContext that holds the substring of the input
string that is to the left of the matched substring

The specification states:

 21.2.4 Properties of the RegExp Constructor

 The value of the [[Prototype]] internal slot of the RegExp constructor is the
 intrinsic object %FunctionPrototype%.

 ... the RegExp constructor has the following properties:

EdgeHTML Mode

The RegExp constructor has a property named leftContext that holds the substring of the input

string that is to the left of the matched substring of the last successful match. Before a successful
match, leftContext is set to the empty string. For example:

 var re = /world/g

 // RegExp.leftContext === ''

 re.exec('Hello world')

 // RegExp.leftContext === 'Hello '

 re.exec('failure')

 // RegExp.leftContext === 'Hello '

 re.exec('Another hello world')

 // RegExp.leftContext === 'Another hello '

leftContext is a data property and has the following attributes:

 {"writable":true,"enumerable":true,"configurable":false}

Even though the [[Writable]] attribute is true, leftContext is read-only and cannot be changed

directly.

The RegExp constructor also has a property named $` which behaves the same as leftContext but

has the following attributes:

 {"writable":true,"enumerable":false,"configurable":false}

E0006: The RegExp constructor has a property named rightContext that holds the substring of the
input string that is to the right of the matched substring

The specification states:

 21.2.4 Properties of the RegExp Constructor

 The value of the [[Prototype]] internal slot of the RegExp constructor is the
 intrinsic object %FunctionPrototype%.

43 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 ... the RegExp constructor has the following properties:

EdgeHTML Mode

The RegExp constructor has a property named rightContext that holds the substring of the input

string that is to the right of the matched substring of the last successful match. Before a successful
match, rightContext is set to the empty string. For example:

 var re = /test/g

 // RegExp.rightContext === ''

 re.exec('test right')

 // RegExp.rightContext === ' right'

 re.exec('failure')

 // RegExp.rightContext === ' right'

 re.exec('test right another')

 // RegExp.rightContext === ' right another'

rightContext is a data property and has the following attributes:

 {"writable":true,"enumerable":true,"configurable":false}

Even though the [[Writable]] attribute is true, rightContext is read-only and cannot be changed

directly.

The RegExp constructor also has a property named $' which behaves the same as rightContext but

has the following attributes:

 {"writable":true,"enumerable":false,"configurable":false}

E0007: The RegExp constructor has a property named index whose value is the starting index of the
matched substring of the last successful match

The specification states:

 21.2.4 Properties of the RegExp Constructor

 The value of the [[Prototype]] internal slot of the RegExp constructor is the
 intrinsic object %FunctionPrototype%.

 ... the RegExp constructor has the following properties:

EdgeHTML Mode

The RegExp constructor has a property named index whose value is the starting index of the matched

substring of the last successful match. Before a successful match, it is set to -1. For example:

 var re = /world/g

 // RegExp.index === -1

44 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

 re.exec('Hello world')

 // RegExp.index === 6

 re.exec('failure')

 // RegExp.index === 6

 re.exec('Another hello world')

 // RegExp.index === 14

index is a data property and has the following attributes:

 {"writable":true,"enumerable":false,"configurable":false}

Even though the [[Writable]]attribute is true, index is read-only and cannot be changed directly.

2.4 Error Handling

There are no additional error handling considerations.

2.5 Security

There are no additional security considerations.

45 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

3 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

46 / 46

[MS-ES2016] - v20180123
Microsoft Edge ECMA-262 ECMAScript Language Specification (7th Edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: January 23, 2018

4 Index

.

...args) (section 2.1.27 23, section 2.3.2 37)

C

C) 12
Change tracking 45
completion) 7

E

expr - iterationKind) 17

G

Glossary 5

I

index - unicode) 32
Informative references 5
Introduction 5

N

Normative references 5

P

P [- argumentsList]) 36
PreferredType]) 7
proto) 21

R

realm) 8
References
 informative 5
 normative 5
reserved2]]) (section 2.1.25 22, section 2.1.51 35)

S

start [- end]) 33

T

Tracking changes 45

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Microsoft Implementations
	1.4 Standards Support Requirements
	1.5 Notation

	2 Standards Support Statements
	2.1 Normative Variations
	2.1.1 [ECMA-262/7] Section 7.1.1 ToPrimitive (input [, PreferredType])
	2.1.2 [ECMA-262/7] Section 7.4.6 IteratorClose (iterator, completion)
	2.1.3 [ECMA-262/7] Section 9.2.7 AddRestrictedFunctionProperties (F, realm)
	2.1.4 [ECMA-262/7] Section 11.8.6 Template Literal Lexical Components
	2.1.5 [ECMA-262/7] Section 11.9.1 Rules of Automatic Semicolon Insertion
	2.1.6 [ECMA-262/7] Section 12.4.4.1 Runtime Semantics: Evaluation
	2.1.7 [ECMA-262/7] Section 12.4.5.1 Runtime Semantics: Evaluation
	2.1.8 [ECMA-262/7] Section 12.4.6.1 Runtime Semantics: Evaluation
	2.1.9 [ECMA-262/7] Section 12.4.7.1 Runtime Semantics: Evaluation
	2.1.10 [ECMA-262/7] Section 12.10.4 Runtime Semantics: InstanceofOperator(O, C)
	2.1.11 [ECMA-262/7] Section 12.15.4 Runtime Semantics: Evaluation
	2.1.12 [ECMA-262/7] Section 13 ECMAScript Language: Statements and Declarations
	2.1.13 [ECMA-262/7] Section 13.2.1 Static Semantics: Early Errors
	2.1.14 [ECMA-262/7] Section 13.7.4.1 Static Semantics: Early Errors
	2.1.15 [ECMA-262/7] Section 13.7.5.1 Static Symantics: Early Errors
	2.1.16 [ECMA-262/7] Section 13.7.5.12 Runtime Semantics: ForIn/OfHeadEvaluation (TDZnames, expr, iterationKind)
	2.1.17 [ECMA-262/7] Section 13.13 Labelled Statements
	2.1.18 [ECMA-262/7] Section 14.1.2 Static Semantics: Early Errors
	2.1.19 [ECMA-262/7] Section 14.3.8 Runtime Semantics: DefineMethod
	2.1.20 [ECMA-262/7] Section 14.5.14 Runtime Semantics: ClassDefinitionEvaluation
	2.1.21 [ECMA-262/7] Section 15.1.1 Static Semantics: Early Errors
	2.1.22 [ECMA-262/7] Section 16.2 Forbidden Extensions
	2.1.23 [ECMA-262/7] Section 19.1.2.18 Object.setPrototypeOf (O, proto)
	2.1.24 [ECMA-262/7] Section 19.1.3.2 Object.prototype.hasOwnProperty (V)
	2.1.25 [ECMA-262/7] Section 19.1.3.5 Object.prototype.toLocaleString ([reserved1 [, reserved2]])
	2.1.26 [ECMA-262/7] Section 19.1.3.6 Object.prototype.toString ()
	2.1.27 [ECMA-262/7] Section 19.2.3.2 Function.prototype.bind (thisArg, ...args)
	2.1.28 [ECMA-262/7] Section 19.2.3.6 Function.prototype [@@hasInstance] (V)
	2.1.29 [ECMA-262/7] Section 19.2.4.1 length
	2.1.30 [ECMA-262/7] Section 19.4.2 Properties of the Symbol Constructor
	2.1.31 [ECMA-262/7] Section 19.4.3.4 Symbol.prototype [@@toPrimitive] (hint)
	2.1.32 [ECMA-262/7] Section 19.4.3.5 Symbol.prototype [@@toStringTag]
	2.1.33 [ECMA-262/7] Section 19.5.3 Properties of the Error Prototype Object
	2.1.34 [ECMA-262/7] Section 20.3.1.15 TimeClip (time)
	2.1.35 [ECMA-262/7] Section 20.3.1.16 Date Time String Format
	2.1.36 [ECMA-262/7] Section 20.3.4 Properties of the Date Prototype Object
	2.1.37 [ECMA-262/7] Section 21.1.3.22 String.prototype.toLowerCase ()
	2.1.38 [ECMA-262/7] Section 21.1.3.24 String.prototype.toUpperCase ()
	2.1.39 [ECMA-262/7] Section 21.2.1 Patterns
	2.1.40 [ECMA-262/7] Section 21.2.1.1 Static Semantics: Early Errors
	2.1.41 [ECMA-262/7] Section 21.2.2 Pattern Semantics
	2.1.42 [ECMA-262/7] Section 21.2.2.8.2 Runtime Semantics: Canonicalize (ch)
	2.1.43 [ECMA-262/7] Section 21.2.2.10 CharacterEscape
	2.1.44 [ECMA-262/7] Section 21.2.5 Properties of the RegExp Prototype Object
	2.1.45 [ECMA-262/7] Section 21.2.5.2.3 AdvanceStringIndex (S, index, unicode)
	2.1.46 [ECMA-262/7] Section 21.2.6.1 lastIndex
	2.1.47 [ECMA-262/7] Section 22.1.3.1.1 Runtime Semantics: IsConcatSpreadable (O)
	2.1.48 [ECMA-262/7] Section 22.1.3.3 Array.prototype.copyWithin (target, start [, end])
	2.1.49 [ECMA-262/7] Section 22.1.3.18 Array.prototype.push (...items)
	2.1.50 [ECMA-262/7] Section 22.1.3.25 Array.prototype.sort (comparefn)
	2.1.51 [ECMA-262/7] Section 22.1.3.27 Array.prototype.toLocaleString ([reserved1 [, reserved2]])
	2.1.52 [ECMA-262/7] Section 25.4.4 Properties of the Promise Constructor
	2.1.53 [ECMA-262/7] Section 25.4.4.1 Promise.all (iterable)

	2.2 Clarifications
	2.3 Extensions
	2.3.1 [ECMA-262/7] Section 7.3.18 Invoke (V, P [, argumentsList])
	2.3.2 [ECMA-262/7] Section 19.2.3.2 Function.prototype.bind (thisArg, ...args)
	2.3.3 [ECMA-262/7] Section 21.2.4 Properties of the RegExp Constructor

	2.4 Error Handling
	2.5 Security

	3 Change Tracking
	4 Index

