
1 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

[MS-VBAL]:

VBA Language Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

6/30/2008 0.9 Major
First release. Additional indexing and cross referencing as well as
minor editorial and technical edits anticipated prior to 1.0 release.

6/30/2009 0.95 Major
Updated to include preliminary information on the VBA language
from the pre-release version of VBA 7.

3/15/2010 1.0 Major Updated to include information on the VBA language as of VBA 7.

3/15/2012 1.01 Major
Updated to include information on the VBA language as of VBA 7.1,
as shipped in the Office 15 Technical Preview.

4/30/2014 1.02 Editorial Revised and edited technical content.

12/15/2016 1.02 None
No changes to the meaning, language, or formatting of the
technical content.

6/18/2019 1.3 Minor Clarified the meaning of the technical content.

9/24/2019 1.4 Minor Clarified the meaning of the technical content.

8/18/2020 1.5 Minor Clarified the meaning of the technical content.

11/17/2020 1.6 Minor Clarified the meaning of the technical content.

2/16/2021 1.7 Minor Clarified the meaning of the technical content.

2/20/2024 1.8 Minor Clarified the meaning of the technical content.

4/16/2024 2.0 Major Significantly changed the technical content.

5/21/2024 2.1 Minor Clarified the meaning of the technical content.

11/12/2024 2.2 Minor Clarified the meaning of the technical content.

3 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Table of Contents

1 Introduction .. 11
1.1 Glossary ... 11
1.2 References .. 11

1.2.1 Normative References ... 11
1.2.2 Informative References ... 11

1.3 VBA Language Specification Overview ... 12
1.4 Specification Conventions .. 12

2 VBA Computational Environment ... 14
2.1 Data Values and Value Types ... 14

2.1.1 Aggregate Data Values .. 16
2.2 Entities and Declared Types ... 17
2.3 Variables ... 19

2.3.1 Aggregate Variables .. 20
2.4 Procedures .. 21
2.5 Objects ... 21

2.5.1 Automatic Object Instantiation ... 22
2.6 Projects .. 22
2.7 Extended Environment .. 22

2.7.1 The VBA Standard Library .. 22
2.7.2 External Variables, Procedures, and Objects ... 23
2.7.3 Host Environment ... 23

3 Lexical Rules for VBA Programs ... 24
3.1 Character Encodings ... 24
3.2 Module Line Structure ... 24

3.2.1 Physical Line Grammar .. 24
3.2.2 Logical Line Grammar ... 25

3.3 Lexical Tokens ... 25
3.3.1 Separator and Special Tokens .. 25
3.3.2 Number Tokens .. 26
3.3.3 Date Tokens... 30
3.3.4 String Tokens ... 32
3.3.5 Identifier Tokens .. 33

3.3.5.1 Non-Latin Identifiers.. 33
3.3.5.1.1 Japanese Identifiers ... 34
3.3.5.1.2 Korean Identifiers .. 34
3.3.5.1.3 Simplified Chinese Identifiers .. 35
3.3.5.1.4 Traditional Chinese Identifiers ... 35

3.3.5.2 Reserved Identifiers and IDENTIFIER ... 35
3.3.5.3 Special Identifier Forms ... 37

3.4 Conditional Compilation .. 38
3.4.1 Conditional Compilation Const Directive ... 38
3.4.2 Conditional Compilation If Directives ... 39

4 VBA Program Organization .. 41
4.1 Projects .. 41
4.2 Modules .. 41

4.2.1 Module Extensibility .. 43

5 Module Bodies ... 44
5.1 Module Body Structure ... 44
5.2 Module Declaration Section Structure ... 44

5.2.1 Option Directives .. 45
5.2.1.1 Option Compare Directive .. 45
5.2.1.2 Option Base Directive .. 45

4 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.2.1.3 Option Explicit Directive ... 46
5.2.1.4 Option Private Directive ... 46

5.2.2 Implicit Definition Directives .. 47
5.2.3 Module Declarations .. 48

5.2.3.1 Module Variable Declaration Lists .. 49
5.2.3.1.1 Variable Declarations ... 50
5.2.3.1.2 WithEvents Variable Declarations .. 51
5.2.3.1.3 Array Dimensions and Bounds ... 51
5.2.3.1.4 Variable Type Declarations ... 52
5.2.3.1.5 Implicit Type Determination .. 53

5.2.3.2 Const Declarations .. 53
5.2.3.3 User Defined Type Declarations .. 54
5.2.3.4 Enum Declarations .. 56
5.2.3.5 External Procedure Declaration ... 57
5.2.3.6 Circular Module Dependencies .. 58

5.2.4 Class Module Declarations.. 58
5.2.4.1 Non-Syntactic Class Characteristics ... 58

5.2.4.1.1 Class Accessibility and Instancing .. 58
5.2.4.1.2 Default Instance Variables Static Semantics .. 59

5.2.4.2 Implements Directive .. 60
5.2.4.3 Event Declaration .. 60

5.3 Module Code Section Structure .. 61
5.3.1 Procedure Declarations .. 62

5.3.1.1 Procedure Scope ... 63
5.3.1.2 Static Procedures .. 64
5.3.1.3 Procedure Names .. 64
5.3.1.4 Function Type Declarations .. 65
5.3.1.5 Parameter Lists... 65
5.3.1.6 Subroutine and Function Declarations .. 67
5.3.1.7 Property Declarations .. 67
5.3.1.8 Event Handler Declarations .. 68
5.3.1.9 Implemented Name Declarations .. 69
5.3.1.10 Lifecycle Handler Declarations .. 70
5.3.1.11 Procedure Invocation Argument Processing .. 71

5.4 Procedure Bodies and Statements .. 73
5.4.1 Statement Blocks ... 73

5.4.1.1 Statement Labels .. 74
5.4.1.2 Rem Statement .. 75

5.4.2 Control Statements ... 75
5.4.2.1 Call Statement .. 75
5.4.2.2 While Statement ... 76
5.4.2.3 For Statement .. 76
5.4.2.4 For Each Statement ... 78

5.4.2.4.1 Array Enumeration Order ... 79
5.4.2.5 Exit For Statement .. 79
5.4.2.6 Do Statement ... 79
5.4.2.7 Exit Do Statement ... 80
5.4.2.8 If Statement ... 81
5.4.2.9 Single-line If Statement ... 81
5.4.2.10 Select Case Statement .. 82
5.4.2.11 Stop Statement .. 83
5.4.2.12 GoTo Statement ... 83
5.4.2.13 On…GoTo Statement ... 84
5.4.2.14 GoSub Statement ... 84
5.4.2.15 Return Statement ... 85
5.4.2.16 On…GoSub Statement ... 85
5.4.2.17 Exit Sub Statement ... 85
5.4.2.18 Exit Function Statement ... 86

5 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.4.2.19 Exit Property Statement ... 86
5.4.2.20 RaiseEvent Statement ... 86
5.4.2.21 With Statement .. 87
5.4.2.22 End Statement ... 88
5.4.2.23 Assert Statement .. 88

5.4.3 Data Manipulation Statements .. 88
5.4.3.1 Local Variable Declarations ... 88
5.4.3.2 Local Constant Declarations.. 89
5.4.3.3 ReDim Statement.. 89
5.4.3.4 Erase Statement ... 90
5.4.3.5 Mid/MidB/Mid$/MidB$ Statement .. 91
5.4.3.6 LSet Statement... 92
5.4.3.7 RSet Statement .. 92
5.4.3.8 Let Statement .. 93
5.4.3.9 Set Statement .. 95

5.4.4 Error Handling Statements ... 96
5.4.4.1 On Error Statement ... 97
5.4.4.2 Resume Statement .. 97
5.4.4.3 Error Statement .. 98

5.4.5 File Statements .. 98
5.4.5.1 Open Statement ... 99

5.4.5.1.1 File Numbers ... 102
5.4.5.2 Close and Reset Statements .. 102
5.4.5.3 Seek Statement ... 103
5.4.5.4 Lock Statement ... 103
5.4.5.5 Unlock Statement .. 104
5.4.5.6 Line Input Statement ... 105
5.4.5.7 Width Statement .. 106
5.4.5.8 Print Statement ... 107

5.4.5.8.1 Output Lists ... 108
5.4.5.9 Write Statement .. 109
5.4.5.10 Input Statement .. 111
5.4.5.11 Put Statement ... 113
5.4.5.12 Get Statement ... 115

5.5 Implicit coercion ... 116
5.5.1 Let-coercion .. 116

5.5.1.1 Static semantics .. 117
5.5.1.2 Runtime semantics ... 117

5.5.1.2.1 Let-coercion between numeric types ... 117
5.5.1.2.1.1 Banker’s rounding ... 118

5.5.1.2.2 Let-coercion to and from Boolean ... 119
5.5.1.2.3 Let-coercion to and from Date .. 119
5.5.1.2.4 Let-coercion to and from String .. 119
5.5.1.2.5 Let-coercion to String * length (fixed-length strings) 123
5.5.1.2.6 Let-coercion to and from resizable Byte() .. 123
5.5.1.2.7 Let-coercion to and from non-Byte arrays .. 124
5.5.1.2.8 Let-coercion to and from a UDT .. 124
5.5.1.2.9 Let-coercion to and from Error ... 125
5.5.1.2.10 Let-coercion from Null ... 125
5.5.1.2.11 Let-coercion from Empty ... 126
5.5.1.2.12 Let-coercion to Variant .. 126
5.5.1.2.13 Let-coercion to and from a class or Object or Nothing 126

5.5.2 Set-coercion ... 127
5.5.2.1 Static semantics .. 127
5.5.2.2 Runtime semantics ... 127

5.5.2.2.1 Set-coercion to and from a class or Object or Nothing 127
5.5.2.2.2 Set-coercion to and from non-object types .. 127

5.6 Expressions .. 128

6 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.6.1 Expression Classifications ... 128
5.6.2 Expression Evaluation .. 129

5.6.2.1 Evaluation to a data value ... 129
5.6.2.2 Evaluation to a simple data value ... 131
5.6.2.3 Default Member Recursion Limits ... 131

5.6.3 Member Resolution .. 132
5.6.4 Expression Binding Contexts ... 132
5.6.5 Literal Expressions ... 133
5.6.6 Parenthesized Expressions .. 133
5.6.7 TypeOf…Is Expressions ... 133
5.6.8 New Expressions ... 134
5.6.9 Operator Expressions ... 134

5.6.9.1 Operator Precedence and Associativity .. 134
5.6.9.2 Simple Data Operators ... 135
5.6.9.3 Arithmetic Operators .. 135

5.6.9.3.1 Unary - Operator .. 139
5.6.9.3.2 + Operator .. 140
5.6.9.3.3 Binary - Operator ... 141
5.6.9.3.4 * Operator ... 142
5.6.9.3.5 / Operator ... 143
5.6.9.3.6 \ Operator and Mod Operator ... 145
5.6.9.3.7 ^ Operator .. 147

5.6.9.4 & Operator .. 148
5.6.9.5 Relational Operators ... 149

5.6.9.5.1 = Operator .. 152
5.6.9.5.2 <> Operator .. 152
5.6.9.5.3 < Operator .. 153
5.6.9.5.4 > Operator .. 153
5.6.9.5.5 <= Operator .. 153
5.6.9.5.6 >= Operator .. 153

5.6.9.6 Like Operator .. 154
5.6.9.7 Is Operator ... 156
5.6.9.8 Logical Operators ... 157

5.6.9.8.1 Not Operator.. 159
5.6.9.8.2 And Operator ... 160
5.6.9.8.3 Or Operator ... 161
5.6.9.8.4 Xor Operator .. 161
5.6.9.8.5 Eqv Operator ... 162
5.6.9.8.6 Imp Operator ... 163

5.6.10 Simple Name Expressions ... 163
5.6.11 Instance Expressions ... 166
5.6.12 Member Access Expressions .. 166
5.6.13 Index Expressions.. 168

5.6.13.1 Argument Lists .. 169
5.6.13.2 Argument List Queues .. 169

5.6.14 Dictionary Access Expressions ... 170
5.6.15 With Expressions ... 170
5.6.16 Constrained Expressions ... 170

5.6.16.1 Constant Expressions ... 170
5.6.16.2 Conditional Compilation Expressions ... 171
5.6.16.3 Boolean Expressions ... 172
5.6.16.4 Integer Expressions .. 172
5.6.16.5 Variable Expressions .. 172
5.6.16.6 Bound Variable Expressions ... 172
5.6.16.7 Type Expressions ... 172
5.6.16.8 AddressOf Expressions .. 173

6 VBA Standard Library .. 174

7 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

6.1 VBA Project .. 174
6.1.1 Predefined Enums .. 174

6.1.1.1 FormShowConstants ... 174
6.1.1.2 VbAppWinStyle .. 174
6.1.1.3 VbCalendar ... 174
6.1.1.4 VbCallType .. 174
6.1.1.5 VbCompareMethod ... 175
6.1.1.6 VbDateTimeFormat .. 175
6.1.1.7 VbDayOfWeek ... 175
6.1.1.8 VbFileAttribute ... 175
6.1.1.9 VbFirstWeekOfYear .. 176
6.1.1.10 VbIMEStatus ... 176
6.1.1.11 VbMsgBoxResult .. 177
6.1.1.12 VbMsgBoxStyle .. 177
6.1.1.13 VbQueryClose .. 178
6.1.1.14 VbStrConv .. 178
6.1.1.15 VbTriState ... 178
6.1.1.16 VbVarType .. 179

6.1.2 Predefined Procedural Modules .. 179
6.1.2.1 ColorConstants Module ... 180
6.1.2.2 Constants Module .. 180
6.1.2.3 Conversion Module ... 180

6.1.2.3.1 Public Functions ... 180
6.1.2.3.1.1 CBool .. 180
6.1.2.3.1.2 CByte .. 181
6.1.2.3.1.3 CCur ... 181
6.1.2.3.1.4 CDate / CVDate .. 182
6.1.2.3.1.5 CDbl .. 182
6.1.2.3.1.6 CDec ... 183
6.1.2.3.1.7 CInt .. 183
6.1.2.3.1.8 CLng ... 183
6.1.2.3.1.9 CLngLng .. 184
6.1.2.3.1.10 CLngPtr ... 184
6.1.2.3.1.11 CSng ... 185
6.1.2.3.1.12 CStr .. 185
6.1.2.3.1.13 CVar ... 185
6.1.2.3.1.14 CVErr .. 186
6.1.2.3.1.15 Error / Error$... 186
6.1.2.3.1.16 Fix .. 187
6.1.2.3.1.17 Hex / Hex$.. 188
6.1.2.3.1.18 Int .. 188
6.1.2.3.1.19 Oct / Oct$.. 189
6.1.2.3.1.20 Str / Str$... 190
6.1.2.3.1.21 Val .. 190

6.1.2.4 DateTime Module ... 191
6.1.2.4.1 Public Functions ... 191

6.1.2.4.1.1 DateAdd .. 191
6.1.2.4.1.2 DateDiff ... 192
6.1.2.4.1.3 DatePart .. 194
6.1.2.4.1.4 DateSerial .. 195
6.1.2.4.1.5 DateValue .. 196
6.1.2.4.1.6 Day ... 196
6.1.2.4.1.7 Hour ... 197
6.1.2.4.1.8 Minute ... 197
6.1.2.4.1.9 Month .. 197
6.1.2.4.1.10 Second .. 198
6.1.2.4.1.11 TimeSerial ... 198
6.1.2.4.1.12 TimeValue .. 199

8 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

6.1.2.4.1.13 Weekday ... 199
6.1.2.4.1.14 Year .. 200

6.1.2.4.2 Public Properties ... 200
6.1.2.4.2.1 Calendar .. 200
6.1.2.4.2.2 Date/Date$.. 201
6.1.2.4.2.3 Now .. 201
6.1.2.4.2.4 Time/Time$... 201
6.1.2.4.2.5 Timer .. 202

6.1.2.5 FileSystem .. 202
6.1.2.5.1 Public Functions ... 202

6.1.2.5.1.1 CurDir/CurDir$... 202
6.1.2.5.1.2 Dir .. 202
6.1.2.5.1.3 EOF ... 203
6.1.2.5.1.4 FileAttr .. 203
6.1.2.5.1.5 FileDateTime .. 204
6.1.2.5.1.6 FileLen .. 204
6.1.2.5.1.7 FreeFile ... 205
6.1.2.5.1.8 Loc.. 205
6.1.2.5.1.9 LOF ... 206
6.1.2.5.1.10 Seek ... 206

6.1.2.5.2 Public Subroutines .. 207
6.1.2.5.2.1 ChDir .. 207
6.1.2.5.2.2 ChDrive ... 207
6.1.2.5.2.3 FileCopy .. 207
6.1.2.5.2.4 Kill .. 208
6.1.2.5.2.5 MkDir .. 208
6.1.2.5.2.6 RmDir ... 209
6.1.2.5.2.7 SetAttr .. 209

6.1.2.6 Financial ... 210
6.1.2.6.1 Public Functions ... 210

6.1.2.6.1.1 DDB .. 210
6.1.2.6.1.2 FV ... 210
6.1.2.6.1.3 IPmt .. 211
6.1.2.6.1.4 IRR ... 212
6.1.2.6.1.5 MIRR ... 213
6.1.2.6.1.6 NPer .. 213
6.1.2.6.1.7 NPV... 214
6.1.2.6.1.8 Pmt ... 215
6.1.2.6.1.9 PPmt ... 215
6.1.2.6.1.10 PV ... 216
6.1.2.6.1.11 Rate .. 217
6.1.2.6.1.12 SLN ... 218
6.1.2.6.1.13 SYD .. 218

6.1.2.7 Information ... 219
6.1.2.7.1 Public Functions ... 219

6.1.2.7.1.1 IMEStatus .. 219
6.1.2.7.1.2 IsArray .. 219
6.1.2.7.1.3 IsDate ... 220
6.1.2.7.1.4 IsEmpty ... 220
6.1.2.7.1.5 IsError ... 220
6.1.2.7.1.6 IsMissing ... 220
6.1.2.7.1.7 IsNull .. 221
6.1.2.7.1.8 IsNumeric .. 221
6.1.2.7.1.9 IsObject .. 222
6.1.2.7.1.10 QBColor ... 222
6.1.2.7.1.11 RGB .. 223
6.1.2.7.1.12 TypeName ... 223
6.1.2.7.1.13 VarType ... 224

9 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

6.1.2.8 Interaction .. 226
6.1.2.8.1 Public Functions ... 226

6.1.2.8.1.1 CallByName ... 226
6.1.2.8.1.2 Choose .. 226
6.1.2.8.1.3 Command .. 227
6.1.2.8.1.4 CreateObject .. 227
6.1.2.8.1.5 DoEvents ... 228
6.1.2.8.1.6 Environ / Environ$.. 228
6.1.2.8.1.7 GetAllSettings .. 229
6.1.2.8.1.8 GetAttr .. 229
6.1.2.8.1.9 GetObject .. 230
6.1.2.8.1.10 GetSetting ... 231
6.1.2.8.1.11 IIf ... 231
6.1.2.8.1.12 InputBox ... 232
6.1.2.8.1.13 MsgBox ... 233
6.1.2.8.1.14 Partition .. 235
6.1.2.8.1.15 Shell ... 236
6.1.2.8.1.16 Switch ... 237

6.1.2.8.2 Public Subroutines .. 238
6.1.2.8.2.1 AppActivate .. 238
6.1.2.8.2.2 Beep ... 238
6.1.2.8.2.3 DeleteSetting ... 238
6.1.2.8.2.4 SaveSetting ... 239
6.1.2.8.2.5 SendKeys .. 239

6.1.2.9 KeyCodeConstants ... 242
6.1.2.10 Math .. 245

6.1.2.10.1 Public Functions ... 245
6.1.2.10.1.1 Abs ... 245
6.1.2.10.1.2 Atn ... 245
6.1.2.10.1.3 Cos ... 246
6.1.2.10.1.4 Exp ... 246
6.1.2.10.1.5 Log ... 246
6.1.2.10.1.6 Rnd ... 247
6.1.2.10.1.7 Round ... 248
6.1.2.10.1.8 Sgn ... 248
6.1.2.10.1.9 Sin .. 249
6.1.2.10.1.10 Sqr ... 249
6.1.2.10.1.11 Tan ... 249

6.1.2.10.2 Public Subroutines .. 250
6.1.2.10.2.1 Randomize ... 250

6.1.2.11 Strings ... 250
6.1.2.11.1 Public Functions ... 250

6.1.2.11.1.1 Asc / AscW ... 250
6.1.2.11.1.2 AscB ... 251
6.1.2.11.1.3 AscW ... 251
6.1.2.11.1.4 Chr / Chr$... 252
6.1.2.11.1.5 ChrB / ChrB$.. 252
6.1.2.11.1.6 ChrW/ ChrW$... 253
6.1.2.11.1.7 Filter ... 253
6.1.2.11.1.8 Format .. 254
6.1.2.11.1.9 Format$.. 256
6.1.2.11.1.10 FormatCurrency .. 256
6.1.2.11.1.11 FormatDateTime ... 257
6.1.2.11.1.12 FormatNumber ... 258
6.1.2.11.1.13 FormatPercent .. 259
6.1.2.11.1.14 InStr / InStrB ... 260
6.1.2.11.1.15 InStrRev .. 261
6.1.2.11.1.16 Join ... 262

10 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

6.1.2.11.1.17 LCase .. 263
6.1.2.11.1.18 LCase$.. 263
6.1.2.11.1.19 Left / LeftB... 263
6.1.2.11.1.20 Left$... 264
6.1.2.11.1.21 LeftB$... 264
6.1.2.11.1.22 Len / LenB ... 264
6.1.2.11.1.23 LTrim / RTrim / Trim ... 265
6.1.2.11.1.24 LTrim$ / RTrim$ / Trim$.. 265
6.1.2.11.1.25 Mid / MidB ... 265
6.1.2.11.1.26 Mid$.. 266
6.1.2.11.1.27 MidB$.. 266
6.1.2.11.1.28 MonthName ... 266
6.1.2.11.1.29 Replace ... 266
6.1.2.11.1.30 Right / RightB... 267
6.1.2.11.1.31 Right$... 268
6.1.2.11.1.32 RightB$... 268
6.1.2.11.1.33 Space .. 268
6.1.2.11.1.34 Space$.. 269
6.1.2.11.1.35 Split .. 269
6.1.2.11.1.36 StrComp .. 269
6.1.2.11.1.37 StrConv ... 270
6.1.2.11.1.38 String .. 271
6.1.2.11.1.39 String$.. 272
6.1.2.11.1.40 StrReverse ... 272
6.1.2.11.1.41 UCase ... 272
6.1.2.11.1.42 UCase$.. 273
6.1.2.11.1.43 WeekdayName ... 273

6.1.2.12 SystemColorConstants .. 274
6.1.3 Predefined Class Modules .. 275

6.1.3.1 Collection Object .. 275
6.1.3.1.1 Public Functions ... 275

6.1.3.1.1.1 Count .. 275
6.1.3.1.1.2 Item .. 275

6.1.3.1.2 Public Subroutines .. 276
6.1.3.1.2.1 Add ... 276
6.1.3.1.2.2 Remove ... 276

6.1.3.2 Err Class ... 277
6.1.3.2.1 Public Subroutines .. 277

6.1.3.2.1.1 Clear ... 277
6.1.3.2.1.2 Raise ... 277

6.1.3.2.2 Public Properties ... 278
6.1.3.2.2.1 Description... 278
6.1.3.2.2.2 HelpContext ... 278
6.1.3.2.2.3 HelpFile ... 279
6.1.3.2.2.4 LastDIIError ... 279
6.1.3.2.2.5 Number ... 279
6.1.3.2.2.6 Source ... 279

6.1.3.3 Global Class .. 280
6.1.3.3.1 Public Subroutines .. 280

6.1.3.3.1.1 Load .. 280
6.1.3.3.1.2 Unload ... 280

7 Change Tracking .. 282

8 Index ... 283

11 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

1 Introduction

This specification defines the Visual Basic for Applications (VBA) Language, an implementation-
independent and operating system-independent programming language that is intended to be
imbedded as a macro language within host applications. This specification includes all features and
behaviors of the language that exist and behave identically in all conforming implementations. Such
features include the intrinsic functions that exist in conforming implementations.

1.1 Glossary

This document uses the following terms:

code page: An ordered set of characters of a specific script in which a numerical index (code-point

value) is associated with each character. Code pages are a means of providing support for
character sets and keyboard layouts used in different countries. Devices such as the display and
keyboard can be configured to use a specific code page and to switch from one code page (such

as the United States) to another (such as Portugal) at the user's request.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16

BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[IEEE754] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", IEEE 754-1985, October 1985,
http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-OAUT] Microsoft Corporation, "OLE Automation Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, https://www.rfc-editor.org/info/rfc4234

1.2.2 Informative References

[CODEPG] Microsoft Corporation, "Code Pages", https://learn.microsoft.com/en-

us/globalization/encoding/code-pages

https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90462
https://go.microsoft.com/fwlink/?LinkId=89840
https://go.microsoft.com/fwlink/?LinkId=89840

12 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

[UNICODE-BESTFIT] The Unicode Consortium, "WindowsBestFit", 2006,
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/

[UNICODE-README] The Unicode Consortium, "Readme.txt", 2006,
http://unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/readme.txt

1.3 VBA Language Specification Overview

VBA is a computer programming language that is intended to be used in conjunction with a host
software application such as a word processor. In such a situation, the end-user of such a host
application uses the VBA language to write programs that can access and control the host application’s
data and functionality.

This document is an implementation-independent specification of the VBA language that enables the

creation of independent implementations. It enables the creation of source code compatible
implementations of the language by defining the required characteristics and behaviors of the source
language that is supported by all conforming implementations. It enables a programmer to write

portable VBA programs by defining the exact set of implementation independent characteristics and
behaviors of the language that a program can use if it is intended to run on multiple implementations.

The scope of the VBA Language Specification is the implementation independent, operating system
independent core programming language that is supported by all conforming VBA implementations. It
includes all features and behaviors of the language that exist and behave identically in all conforming
implementations. Such features include the intrinsic functions that exist in conforming
implementations.

This specification defines the syntax, static semantics, and runtime semantics of the VBA language.
Syntax defines the source code representation of VBA programs that is recognized by a VBA
implementation. Static semantics define non-syntactic program validity requirements that cannot be
expressed using the grammar. Runtime semantics define the computational behavior of VBA programs
that conform to the specified syntax and static semantics rules. The runtime semantics describes what
it means to execute a VBA program but not how a VBA implementation might accomplish this.

The VBA Language Specification does not define how a VBA implementation would actually achieve the
requirements of the specification nor does it describe the specific design of any VBA Language
Implementation.

The language defined by this specification is that language implemented by Microsoft Visual Basic for

Applications 7.0 (VBA 7.0), as shipped in Microsoft Office 2010 suites; and VBA version 7.1, as
shipped in Microsoft Office 2013. It includes features that provide source code backward-compatibility
for VBA programs written for prior Microsoft versions of VBA.

1.4 Specification Conventions

Lexical and syntactic constructs of the language are described by a grammar using ABNF as defined in
[RFC4234] with additional conventions as defined in the introductions to sections 3 and 5 of this

document. Within the prose text of this specification the names of ABNF rules are distinguished by
enclosing them angle brackets, for example <for-statement>.

Static semantics rules are expressed as prose descriptions, tables, and pseudo code algorithms that
reference grammar rules. Runtime semantics are expressed in prose using implementation
independent abstract computational concepts.

This specification defines a large number of terms that have specialized meaning within the context of
this specification. Such terms are generally italicized when used within this document. The first use of

https://go.microsoft.com/fwlink/?LinkId=95708
https://go.microsoft.com/fwlink/?LinkId=95709
https://go.microsoft.com/fwlink/?LinkId=90462

13 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

each such term within a section of this document references the document section that defines the
term.

Within this specification the phrase "implementation-defined" means that the contextually apparent
detail of the syntax or semantics of a feature of the language is intentionally left unspecified and can
vary among implementation of the language. However, the implementation of the unspecified details
SHOULD be repeatedly consistent and the implementation SHOULD document its specific behavior
order to preserve the utility of the language feature.

The phrase "implementation-specific" means that the contextually apparent detail of the syntax or
semantics of a feature of the language is intentionally left unspecified and can vary among
implementation of the language. However, the implementation of the unspecified details SHOULD be
repeatedly consistent.

The phrase "undefined" means that the contextually apparent detail of the syntax or semantics of a
feature of the language is intentionally left unspecified and can vary among implementation of the
language. There is no requirement or expectation of consistent or repeatable behavior.

14 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

2 VBA Computational Environment

 VBA is a programming language used to define computer programs that perform computations that
occur within a specific computational environment called a VBA Environment. A VBA Environment is
typically hosted and controlled by another computer application called the host application. The host
application controls and invokes computational processes within its hosted VBA Environment. The host
application can also make available within its hosted VBA Environment computational resource that
enable VBA program code to access host application data and host computational processes. The

remainder of this section defines the key computational concepts of the VBA Environment.

2.1 Data Values and Value Types

 Within a VBA Environment, information is represented as data values. A data value is a single

element from a specific finite domain of such elements. The VBA Environment defines a variety of
value types. These value types collectively define the domain of VBA data values. Each value type has
unique characteristics that are defined by this specification. Each data value within a VBA Environment

is a domain member of one of these value types. Individual data values are immutable. This means
that there are no defined mechanisms available within a VBA Environment that can cause a data value
to change into another data value. Because data values are immutable, multiple copies of a specific
data value can exist within a VBA Environment and all such copies are logically the same data value.

The value types of the VBA Environment are defined by the following table. The nominal
representation is the representation that was used as the original design basis for the VBA value
types.

Implementations can use these specific data type representations to meet the requirements of this
specification.

Value Type Name Domain Elements Nominal Representation

Boolean The distinguished values True and False 16-bit signed binary 2’s
complement integer whose

value is either 0 (False) or -1

(True)

Byte Mathematical integer in the range of 0 to 255 8-bit unsigned binary integer

Currency Numbers with 4 fractional decimal digits in the range

-922,337,203,685,477.5808 to

+922,337,203,685,477.5807

64-bit signed binary two’s
complement integer

implicitly scaled by 10-4

Date Ordinal fractional day between the first day of the year

100 and the last day of the year 9999.

8 byte IEEE 754-1985

[IEEE754] floating point value.

The floating point value 0.0

represents the epoch date/time

which is midnight of December

30, 1899. Other dates are

represented as a number of

days before (negative values)

or after (positive value) the

epoch. Fractional values

represent fractional days.

https://go.microsoft.com/fwlink/?LinkId=89903

15 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Value Type Name Domain Elements Nominal Representation

Decimal Scaled integer numbers whose maximum integer range
is

±79,228,162,514,264,337,593,543,950,335.

Number in this range MAY be scaled by powers of ten

in the range 100 to 10-28

A rational number represented
in a 14 byte data structure
including a sign bit and a 96-
bit unsigned integer
numerator. The denominator is
an integral power of ten with
an exponent in the range of 0
to 28 encoded in a single byte.

Double All valid IEEE 754-1985 double-precision binary

floating-point numbers including sized zeros, NaNs and

infinities

64-bit hardware

implementation of IEEE

7541985.

Integer Integer numbers in the range of -32,768 to 32,767 16-bit binary two’s

complement integers

Long Integer numbers in the range of -2,147,483,648 to

2,147,486,647

32-bit binary two’s

complement integers

LongLong Integer numbers in the range of

-9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

64-bit binary two’s

complement integers

Object reference Unique identifiers of host application or program

created objects and a distinguished value

corresponding to the reserved identifier Nothing

Machine memory addresses

with the 0 address reserved to

represent Nothing.

Single All valid IEEE 754-1985 single-precision binary

floating-point numbers including signed zeros, NaNs

and infinities

32-bit hardware

implementation of IEEE

7541985.

String (variable

length)

The zero length empty string and all possible character

sequences using characters from the implementation

dependent character set. There MAY be an

implementation defined limit to the length of such

sequences but the limit SHOULD be no more than (216

– 10) characters.

Sequences of 16-bit binary

encoded Unicode code

points.

String*n

(fixed-length)

The length of string is between 1 to 65,526. 1 to approximately 64K (216 –

10) characters.

Empty A single distinguished value corresponding to the

reserved identifier Empty

An implementation-specific bit

pattern

16 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Value Type Name Domain Elements Nominal Representation

Error Standard error codes from 0 to 65535, as well as other

implementation-defined error values. An

implementation-defined error value can resolve to a

standard error code from 0 to 65535 in a context

where its value is required, such as CInt.

32-bit integer (Windows

HRESULT)

Null A single distinguished value corresponding to the

reserved identifier Null

An implementation specific bit

pattern

Missing A single distinguished value corresponding that is used

to indicated that no value was passed corresponding to

an explicitly declared optional parameter.

An implementation specific bit

pattern

An Array type Multi-dimensional numerically indexed aggregations of

data values with up to 60 dimensions. Empty

aggregations with no dimensions are also included in

the domain. Such aggregations can be homogeneous

(all elements (section 2.1.1) of the aggregation have

the same value type) or heterogeneous (the value

types of elements are unrelated). Elements of each

dimension are identified (indexed) via a continuous

sequence of signed integers. The smallest index value

of a dimension is the dimension’s lower bound and the

largest index value of a dimension is the dimension’s

upper bound. A lower bound and an upper bound

might be equal.

A linear concatenation of the
aggregated data values
arranged in row major order

possibly with implementation

defined padding between

individual data values.

A User-Defined Type

(UDT)

Aggregations of named data values with possibly

heterogeneous value types. Each UDT data value is

associated with a specific named UDT declaration

which serves as its value type.

A linear concatenation of the

aggregated data values

possibly with implementation

defined padding between data

values.

The VBA language also provides syntax for defining what appears to be an additional kind of data type

known as an Enum. There is no Enum-specific value type. Instead, Enum members are represented

as Long data values.

An implementation of VBA MAY include for other implementation-defined value types which can be
retrieved as return values from procedures in referenced libraries. The semantics of such data values
when used in statements and expressions within the VBA Environment are implementation-defined.

2.1.1 Aggregate Data Values

Data values (section 2.1) with a value type (section 2.1) of either a specific Array or a specific UDT
name are aggregate data values. Note that object references are not aggregate data values. An

17 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

aggregate data value consists of zero or more elements each corresponding to an individual data
value within the aggregate data value. In some situations, an element is itself an aggregate data

value with its own elements.

Each element of an aggregate data value is itself a data value and has a corresponding value type.

The value type of an element is its element type. All elements of an Array data value have the same
element type, while elements of an UDT data value can have differing value types.

2.2 Entities and Declared Types

 An entity is a component of a VBA Environment that can be accessed by name or index, according to
the resolution rules for simple name expressions, index expressions and member access expressions.
Entities include projects, procedural modules, types (class modules, UDTs, Enums or built-in types),
properties, functions, subroutines, events, variables, literals, constants and conditional constants.

For many kinds of entities, it is only valid to reference an entity that is accessible from the current
context. Entities whose accessibility can vary have their accessibility levels defined in later sections

specific to these entities.

Most entities have an associated a declared type. A declared type is a restriction on the possible data
values (section 2.1) that a variable (section 2.3) can contain. Declared types are also used to restrict
the possible data values that can be associated with other language entities. Generally declared types
restricts the data value according to the data value’s value type (section 2.1).

The following table defines the VBA declared types. Every variable within a VBA Environment has one
of these declared types and is limited to only containing data values that conform to the declared
type’s data value restrictions.

Declared Type Data Value Restrictions

Boolean, Byte, Currency,

Date, Double, Integer, Long,

LongLong, Object, Single, or

String

Only data values whose value type has the same name as the declared
type.

Note the following:

 Decimal is not a valid declared type.

 LongLong is a valid declared type only on VBA implementations that

support 64-bit arithmetic.

Variant No restrictions, generally any data value with any value type. However, in

some contexts Variant declared types are explicitly limited to a subset of

possible data values and value types.

String*n, where n is an

integer between 1 and

65,526

Only data values whose value type is String and whose character length is

exactly n.

18 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Declared Type Data Value Restrictions

Fixed-size array whose
declared element type is one
of Boolean, Byte, Currency,
Date, Double, Integer, Long,

LongLong, Object, Single,

String, String*n, a specific

class name, or the name of a

UDT.

Only homogeneous array data values that conform to the following
restrictions:

 The value type of every element (section 2.1.1) data value is the

same as the variable’s declared element type. If the variable’s

element declared type is a specific class name then every element of

the data value MUST be either the object reference Nothing or a data

value whose value type is object reference and which identifies either

an object that is an instance (section 2.5) of the named element class

or an object that conforms (section 2.5) to the public interface

(section 2.5) of the named class.

 The number of dimensions of the data value is the same as the
variable’s number of dimensions.

 The upper and lower bounds (section 2.1) are the same for each

dimension of the data value and the variable.

Fixed-size array whose
declared element type is

Variant

Only data values whose value type is Array and that conform to the
following restrictions:

 The number of dimensions of the data value is the same as the

variable’s number of dimensions.

 The upper and lower bounds are the same for each dimension of the

data value and the variable.

Resizable array whose

declared element type is one
Boolean, Byte, Currency,

Date, Double, Integer, Long,

LongLong, Object, Single,

String, String*n, a specific

class name, or the name of a

UDT

Only homogeneous array data values where the value type of every

element data value is the same as the variable’s declared element type. If
the variable’s element declared type is a specific class name then every
element of the data value MUST be either the object reference Nothing or
a data value whose value type is object reference and which identifies
either an object that is an instance of the named element class or an
object that conforms to the public interface of the named class.

Resizable array whose

declared element type is

Variant

Only data values whose value type is Array.

Specific class name Only the object reference data value Nothing and those data values whose

value type is object reference and which identify either an object that is an

instance of the named class or an object that conforms to the public

interface of the named class.

Specific UDT name Only data values whose value type is the specific named UDT.

As with value types, there is no Enum-specific declared type. Instead, declarations using an Enum
type are considered to have a declared type of Long. Note that there are no extra data value
restrictions on such Enum declarations, which might contain any Long data value, not just those

present as Enum members within the specified Enum type.

19 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

An implementation-defined LongPtr type alias is also defined, mapping to the underlying declared
type the implementation will use to hold pointer or handle values. 32-bit implementations SHOULD

map LongPtr to Long, and 64-bit implementations SHOULD map LongPtr to LongLong, although
implementations MAY map LongPtr to an implementation-defined pointer type. The LongPtr type
alias is valid anywhere its underlying declared type is valid.

Every declared type except for array and UDT declared types are scalar declared types.

2.3 Variables

Within a VBA Environment, a variable is a mutable container of data values (section 2.1). While
individual data values are immutable and do not change while a program executes, the data value
contained by a particular variable can be replaced many times during the program’s execution.

Specific variables are defined either by the text of a VBA program, by the host application, or by this

specification. The definition of a variable includes the specification of the variable’s declared type
(section 2.2).

Variables have a well-defined lifecycle, they are created, become available for use by the program,
and are then subsequently destroyed. The span from the time a variable is created to the time it is
destroyed is called the extent of the variable. Variables that share a creation time and a destruction

time are can be said to share a common extent. The extent of a variable depends upon how it was
defined but the possible extents are defined by the following table.

Extent Name Variable Definition Form Variable Lifespan

Program Extent Defined by the VBA specification or by the

host application.

The entire existence of an active VBA

Environment.

Module Extent A Module Variable Declaration or a

static local variable declaration within a

procedure.

The span from the point that the

containing module is incorporated into an

active VBA project to the point when the

module or project is explicitly or implicitly

removed from its VBA Environment.

Procedure Extent A procedure local variable or formal

parameter declaration of a procedure.

The duration of a particular procedure

invocation.

Object Extent A variable declaration within a class module. The lifespan of the containing object.

Aggregate Extent A dependent variable (section 2.3.1) of an

array or UDT variable.

The lifespan of the variable holding the

containing aggregate data value (section

2.1.1).

When a variable is created, it is initialized to a default value. The default value of a variable is
determined by the declared type of the variable according to the following table.

Declared Type Initial Data Value

Boolean False

Byte, Currency, Double,

Integer, Long, LongLong

0 value of the corresponding value type (section 2.1)

20 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Declared Type Initial Data Value

Double or Single +0.0 value of the corresponding value type

Date 30 December 1899 00:00:00

String The empty string

Variant Empty

String*n, where n is an

integer between 1 and

65,526

A string of length n consisting entirely of the implementation dependent

representation of the null character corresponding to Unicode codepoint

U+0000.

Fixed size array whose

declared element type is one

of Boolean, Byte, Currency,

Data, Double, Object, Single,

String, or String*n

The array data value whose number of dimensions and bounds are

identical with the array’s declared dimensions and bounds and whose

every element is the default data value of the declared element type.

Fixed size array whose

declared element type is

Variant

The array value whose number of dimensions and bounds are identical

with the array’s declared dimensions and bounds and whose every

element is the value Empty.

Resizable array whose

declared element type is one

of Boolean, Byte, Currency,

Data, Double, Object, Single,

String, or String*n

An array value with no dimensions.

Resizable array whose

declared element type is

Variant

An array value with no dimensions.

Object or a Specific class

name

The value Nothing.

Specific UDT name The UDT data value for the named UDT type whose every named

element has the default data value from this table that is appropriate for

that element’s declared type.

Variables generally have a single variable name that is used to identify the variable within a VBA
program. However, variable names have no computational significance. Some situations such as the

use of a variable as a reference parameter to a procedure invocation can result in multiple names
being associated with a single variable. Access to variables from within a VBA program element is
determined by the visibility scopes of variable names. Typically, a variable name’s visibility is closely

associated with the variable’s extent but variable name scopes themselves have no computational
significances.

2.3.1 Aggregate Variables

 A variable (section 2.3) that contain an aggregate data value (section 2.1.1) is an aggregate variable.
An aggregate variable consists of dependent variables each one corresponding to an element (section
2.1.1) of its current aggregate data value. The data value contained by each dependent variable is the
corresponding element data value of its containing aggregate data value. In some situations, a

21 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

dependent variable itself holds an aggregate data value with its own dependent variables. Dependent
variables do not have names; instead they are accessed using index expressions for arrays or member

access expressions for UDTs.

When a new data value is assigned to a dependent variable, the aggregate variable holding this
dependent variable’s containing aggregate data value has its data value replaced with a new
aggregate data value that is identical to its previous data value except that the element data value
corresponding to the modified dependent variable is instead the data value being stored into the
dependent variable. If this containing aggregate data value is itself contained in a dependent variable
this process repeats until an aggregate variable that is not also a dependent variable is reached.

2.4 Procedures

A procedure is the unit of algorithmic functionality within a VBA Environment. Most procedures are
defined using the VBA language, but the VBA Environment also contains standard procedures defined

by this specification and can contain procedures provided in an implementation defined manner by the
host application or imported from externally defined libraries. A procedure is identified by a procedure

name that is part of its declaration.

VBA also includes the concept of a property, a set of identically named procedures defined in the same
module (section 4.2). Elements of such a set of procedures can then be accessed by referencing the
property name directly as if it was a variable name (section 2.3). The specific procedure from the set
that to be invoked is determined by the context in which the property name is referenced.

A VBA Environment is not restricted to executing a single program that starts with a call to a main
procedure and then continues uninterrupted to its completion. Instead, VBA provides a reactive

environment of variables, procedures, and objects. The host application initiates a computation by
calling procedures within its hosted VBA Environment. Such a procedure, after possibly calling other
procedures, eventually returns control to the host application. However, a VBA Environment retains its
state (including the content of most variables and objects) after such a VBA Environment initiated call
returns to the host application. The host application can subsequently call the same or other
procedures within that VBA Environment. In addition to explicit VBA Environment initiated calls, VBA

procedures can be called in response to events (section 2.5) associated with host application-provided

objects.

2.5 Objects

 Within the VBA Environment, an object is a set of related variables (section 2.3), procedures (section
2.4) and events. Collectively, the variables, procedures and events that make up an object are called

the object’s members. The term method can be used with the same meaning as procedure member.
Each object is identified by a unique identifier which is a data value (section 2.1) whose value type
(section 2.1) is object reference. An object’s members are accessed by invoking methods and
evaluating member variables and properties using this object reference. Because a specific data value
can simultaneously exist in many variables there can be many ways to access any particular object.

An object’s events are attachment points to which specially named procedures can be dynamically

associated. Such procedures are said to handle an object’s events. Using the RaiseEvent statement

of the VBA language, methods of an object can call the procedures handling a member event of the
object without knowing which specific procedures are attached.

All variables and events that make up an object have the same extent (section 2.3) which begins
when the containing object is explicitly or implicitly created and concludes when it is provably
inaccessible from all procedures.

A class is a declarative description of a set of objects that all share the same procedures and have a

similar set of variables and events. The members of such a set of objects are called instances of the

22 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

class. A typical class can have multiple instances but VBA also allows the definition of classes that are
restricted to having only one instance. All instances of a specific class share a common set of variable

and event declarations that are provided by the class but each instance has its own unique set of
variables and events corresponding to those declarations.

The access control options of VBA language declarations can limit which procedures within a VBA
Environment are permitted to access each object member defined by a class. A member that is
accessible to all procedures is called a public member and the set of all public procedure members and
variable members of a class is called the public interface of the class. In addition to its own public
interface the definition of a class can explicitly state that it implements the public interface of one or

more other classes. A class or object that is explicitly defined to implement a public interface is said to
conform to that interface. In this case the conforming class MUST include explicitly tagged definitions
for all of the public procedure and variable members of all of the public interfaces that it implements.

When a variable is defined with the name of a class as its declared type (section 2.2) then that
variable can only contain object references to instances of that specific named class or object
references to objects that conform to the public interface of the named class.

2.5.1 Automatic Object Instantiation

A variable (section 2.3) that is declared with the name of a class (section 2.5) as its declared type
(section 2.2) can be designated using the New keyword (section 3.3.5.1) to be an automatic
instantiation variable. Each time the content of an automatic instantiation variable is accessed and the

current data value of the variable is Nothing, a new instance (section 2.5) of the named class is
created and stored in the variable and used as the accessed value.

Each dependent variable (section 2.3.1) of an array variable whose element type (section 2.1.1) is a
named class and whose declaration includes the New keyword are automatic instantiation variables.

A class can also be defined such that the class name itself can be used as if it was an automatic
instantiation variable. This provides a mechanism for accessing default instances of a class.

2.6 Projects

All VBA program code is part of a project (section 4.1). A VBA Environment can contain one or more
named projects. Projects are created and loaded into a VBA Environment using implementation
defined mechanisms. In addition, a VBA Environment MAY include implementation mechanisms for
modifying and/or removing projects.

2.7 Extended Environment

 In addition to the entities (section 2.2) defined using VBA source code within VBA projects (section
4.1), a VBA Environment can include entities that are defined within other sources and using other
mechanisms. When accessed from VBA program code, such external environmental entities appear
and behave as if they were environmental entities implemented using the VBA language.

2.7.1 The VBA Standard Library

The VBA Standard Library (section 6) is the set of entities (section 2.2) that MUST exist in all VBA
Environments.

No explicit action is required to make these entities available for reference by VBA language code.

23 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

2.7.2 External Variables, Procedures, and Objects

In addition to entities (section 2.2) that are explicitly defined using VBA programming language, a
VBA Environment can contain entities that have been defined using other programming languages.

From the VBA language perspective such entities are consider to be defined by external libraries
whose characteristics and nature is implementation defined.

2.7.3 Host Environment

A host application, using implementation-dependent mechanisms, can define additional entities

(section 2.2) that are accessible within its hosted VBA Environment. Depending upon the VBA
implementation and host application, such entities can be directly accessible similar to the VBA
Standard Library (section 2.7.1) or can appear as external libraries or predefined VBA projects
(section 2.6).

The host application in conjunction with the VBA implementation is also responsible for providing the
mapping of the VBA file I/O model to an application specific or platform file storage mechanism.

24 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

3 Lexical Rules for VBA Programs

VBA programs are defined using text files (or other equivalent units of text) called modules (section
4.2). The role of modules in defining a VBA program is specified in section 4. This section describes
the lexical rules used to interpret the text of modules.

The structure of a well-formed VBA module is defined by a set of inter-related grammars. Each
grammar individually defines a distinct aspect of VBA modules. The grammars in the set are:

 The Physical Line Grammar

 The Logical Line Grammar

 The Lexical Token Grammar

 The Conditional Compilation Grammar

 The Syntactic Grammar

The first four of these grammars are defined in this section. The Syntactic Grammar is defined in

section 5.

The grammars are expressed using ABNF [RFC4234]. Within these grammars numeric characters
codes are to be interpreted as Unicode code points.

3.1 Character Encodings

The actual character set standard(s) used to externally encode the text of a VBA module (section 4.2)
is implementation defined. Within this specification, the lexical structure of VBA modules are described
as if VBA modules were encoded using Unicode. Specific characters are identified in this specification
in terms of Unicode code points and character classes. The equivalence mapping between Unicode and

an implementation’s specific character encoding is implementation defined. Implementations using
non-Unicode encoding MUST support at least equivalents to Unicode code points U+0009, U+000A,
U+000D and U+0020 through U+007E. In addition, an equivalent to U+0000 MUST be supported

within String data values as fixed-length strings are filled with this character when initialized.

3.2 Module Line Structure

The body of a VBA module (section 4.2) consists of a set of physical lines described by the Physical

Line Grammar. The terminal symbols of this grammar are Unicode character code points.

3.2.1 Physical Line Grammar

 module-body-physical-structure = *source-line [non-terminated-line]
 source-line = *non-line-termination-character line-terminator
 non-terminated-line = *non-line-termination-character
 line-terminator = (%x000D %x000A) / %x000D / %x000A / %x2028 / %x2029
 non-line-termination-character = <any character other than %x000D / %x000A / %x2028 / %x2029>

An implementation MAY limit the number of characters allowed in a physical line. The meaning of a
module that contains any physical lines that exceed such an implementation limit is undefined by this
specification. If a <module-body-physical-structure> concludes with a <non-terminated-line> then an
implementation MAY treat the module as if the <non-terminated-line> was immediately followed by a
<line-terminator>.

https://go.microsoft.com/fwlink/?LinkId=90462

25 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

For the purposes of interpretation as VBA program text, a module body (section 4.2) is viewed as a
set of logical lines each of which can correspond to multiple physical lines. This structure is described

by the Logical Line Grammar. The terminal symbols of this grammar are Unicode character
codepoints.

3.2.2 Logical Line Grammar

 module-body-logical-structure = *extended-line
 extended-line = *(line-continuation / non-line-termination-character) line-terminator
 line-continuation = 1*WSC underscore line-terminator
 WSC = (tab-character / eom-character /space-character / DBCS-whitespace / most-Unicode-class-
Zs)

 tab-character = %x0009
 eom-character = %x0019
 space-character = %x0020
 underscore = %x005F
 DBCS-whitespace = %x3000
 most-Unicode-class-Zs = <all members of Unicode class Zs which are not CP2-characters>

An implementation MAY limit the number of characters in an <extended-line>.

For ease of specification it is convenient to be able to explicitly refer to the point that immediately
precedes the beginning of a logical line and the point immediately preceding the final <line-
terminator> of a logical line. This is accomplished using <LINE-START> and <LINE-END> as terminal

symbols of the VBA grammars. A <LINE-START> is defined to immediately precede each logical line
and a <LINE-END> is defined as replacing the <line-terminator> at the end of each logical line:

 module-body-lines = *logical-line
 logical-line = LINE-START *extended-line LINE-END

When used in an ABNF rule definition <LINE-START> and <LINE-END> are used to indicated the
required start or end of a <logical-line>.

3.3 Lexical Tokens

The syntax of VBA programs is most easily described in terms of lexical tokens rather than individual
Unicode characters. In particular, the occurrence of whitespace or line-continuations between most
syntactic elements is usually irrelevant to the syntactic grammar. The syntactic grammar is
significantly simplified if it does not have to describe such possible whitespace occurrences. This is
accomplished by using lexical tokens (also referred to simply as tokens) that abstract away

whitespace as the terminal symbols of the syntactic grammar.

The lexical grammar defines the interpretation of a <module-body-lines> as a set of such lexical
tokens.

The terminal elements of the lexical grammar are Unicode characters and the <LINE-START> and
<LINE-END> elements. Generally any rule name of the lexical grammar that is written in all upper

case characters is also a lexical token and terminal element of the VBA syntactic grammar. ABNF
quoted literal text rules are also considered to be lexical tokens of the syntactic grammar. Lexical
tokens encompass any white space characters that immediate precede them. Note that when used
within the lexical grammar, quoted literal text rules are not treated as tokens and hence any
preceding whitespace characters are significant.

3.3.1 Separator and Special Tokens

 WS = 1*(WSC / line-continuation)

26 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 special-token = "," / "." / "!" / "#" / "&" / "(" / ")" / "*" / "+" / "-" / "/" / ":" / ";"
/ "<" / "=" / ">" / "?" / "\" / "^"

 NO-WS = <no whitespace characters allowed here>
 NO-LINE-CONTINUATION = <a line-continuation is not allowed here>
 EOL = [WS] LINE-END / single-quote comment-body
 EOS = *(EOL / ":") ;End Of Statement
 single-quote = %x0027 ; '
 comment-body = *(line-continuation / non-line-termination-character) LINE-END

<special-token> is used to identify single characters that have special meaning in the syntax of VBA
programs. Because they are lexical tokens (section 3.3), these characters can be preceded by white
space characters that are ignored. Any occurrence of one of the quoted <special-token> elements as

a grammar element within the syntactic grammar is a reference to the corresponding token (section
3.3).

<NO-WS> is used as terminal element of the syntactic grammar to indicate that the token that
immediately follows it MUST NOT be preceded by any white space characters. <NO-LINE-

CONTINUATION> is used as terminal element of the syntactic grammar to indicate that the token that
immediately follows it MUST NOT be preceded by white space that includes any <linecontinuation>

sequences.

<WS> is used as a terminal element of the syntactic grammar to indicate that the token that
immediately follows it MUST have been preceded by one or more white space characters.

<EOL> is used as element of the syntactic grammar to name the token that acts as an "end of
statement" marker for statements that MUST be the only or last statement on a logical line.

<EOS> is used as a terminal element of the syntactic grammar to name the token that acts as an
"end of statement" marker. In general, the end of statement is marked by either a <LINE-END> or a

colon character. Any characters between a <single-quote> and a <LINE-END> are comment text that
is ignored.

3.3.2 Number Tokens

 INTEGER = integer-literal ["%" / "&" / "^"]
 integer-literal = decimal-literal / octal-literal / hex-literal
 decimal-literal = 1*decimal-digit
 octal-literal = "&" [%x004F / %x006F] 1*octal-digit ; & or &o or &O
 hex-literal = "&" (%x0048 / %x0068) 1*hex-digit ; &h or &H
 octal-digit = "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7"
 decimal-digit = octal-digit / "8" / "9"
 hex-digit = decimal-digit / %x0041-0046 / %x0061-0066 ;A-F / a-f

Static Semantics

 The <decimal-digit>, <octal-digit>, and <hex-digit> sequences are interpreted as unsigned
integer values represented respectively in decimal, octal, and hexadecimal notation.

 Each <INTEGER> has an associated constant data value (section 2.1). The data value, value type

(section 2.1) and declared type (section 2.2) of the constant is defined by the following table (if
the Valid column shows No, this <INTEGER> is invalid):

Radix

Positive
<INTEGER> value
in the range

Type
Suffix

Valid
<INTEGER>?

Declared
Type Value Type

Signed
Data Value

Decimal 0 ≤ n ≤ 32767 None Yes Integer Integer n

27 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Radix

Positive
<INTEGER> value
in the range

Type
Suffix

Valid
<INTEGER>?

Declared
Type Value Type

Signed
Data Value

Decimal 0 ≤ n ≤ 32767 "%" Yes Integer Integer n

Decimal 0 ≤ n ≤ 32767 "&" Yes Long Integer n

Decimal 0 ≤ n ≤ 32767 "^" Yes LongLong Integer n

Octal 0 ≤ n ≤ &o77777 None Yes Integer Integer n

Octal 0 ≤ n ≤ &o77777 "%" Yes Integer Integer n

Octal 0 ≤ n ≤ &o77777 "&" Yes Long Integer n

Octal 0 ≤ n ≤ &o77777 "^" Yes LongLong Integer n

Octal &o100000 ≤ n ≤
&o177777

None Yes Integer Integer n – 65,536

Octal &o100000 ≤ n ≤
&o177777

"%" Yes Integer Integer n – 65,536

Octal &o100000 ≤ n ≤
&o177777

"&" Yes Long Integer n

Octal &o100000 ≤ n ≤
&o177777

"^" Yes LongLong Integer n

Hex 0 ≤ n ≤ &H7FFF None Yes Integer Integer n

Hex 0 ≤ n ≤ &H7FFF "%" Yes Integer Integer n

Hex 0 ≤ n ≤ &H7FFF "&" Yes Long Integer n

Hex 0 ≤ n ≤ &H7FFF "^" Yes LongLong Integer n

Hex &H8000 ≤ n ≤
&HFFFF

None Yes Integer Integer n – 65,536

Hex &H8000 ≤ n ≤
&HFFFF

"%" Yes Integer Integer n – 65,536

Hex &H8000 ≤ n ≤
&HFFFF

"&" Yes Long Integer n

Hex &H8000 ≤ n ≤
&HFFFF

"^" Yes LongLong Integer n

Decimal 32768 ≤ n ≤
2147483647

None Yes Long Long n

Decimal n ≥ 32768 "%" No

Decimal 32768 ≤ n ≤
2147483647

"&" Yes Long Long n

Decimal 32768 ≤ n ≤
2147483647

"^" Yes LongLong Long n

Decimal n ≥ 2147483647 None (see note 1) Double Double n# (see note
1)

Decimal n ≥ 2147483647 "&" No

28 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Radix

Positive
<INTEGER> value
in the range

Type
Suffix

Valid
<INTEGER>?

Declared
Type Value Type

Signed
Data Value

Octal &o200000 ≤ n ≤
&o17777777777

None Yes Long Long n

Octal &o200000 ≤ n ≤
&o17777777777

"%" No

Octal &o200000 ≤ n ≤
&o17777777777

"&" Yes Long Long n

Octal &o200000 ≤ n ≤
&o17777777777

"^" Yes LongLong Long n

Octal &o20000000000 ≤
n ≤
&o37777777777

None Yes Long Long n –
4,294,967,2
96

Octal &o20000000000 ≤
n ≤
&o37777777777

"%" No

Octal &o20000000000 ≤
n ≤
&o37777777777

"&" Yes Long Long n –
4,294,967,2
96

Octal &o20000000000 ≤
n ≤
&o37777777777

"^" Yes LongLong Long n

Octal n ≥
&o40000000000

None No

Octal n ≥
&o40000000000

"%" No

Octal n ≥
&o40000000000

"&" No

Hex &H8000 ≤ n ≤
&H7FFFFFFF

None Yes Long Long n

Hex &H8000 ≤ n ≤
&H7FFFFFFF

"%" No

Hex &H8000 ≤ n ≤
&H7FFFFFFF

"&" Yes Long Long n

Hex &H8000 ≤ n ≤
&H7FFFFFFF

"^" Yes LongLong Long n

Hex &H80000000 ≤ n ≤
&H7FFFFFFFF

None Yes Long Long n –
4,294,967,2
96

Hex &H80000000 ≤ n ≤
&H7FFFFFFFF

"%" No

Hex &H80000000 ≤ n ≤
&H7FFFFFFFF

"&" Yes Long Long n –
4,294,967,2
96

Hex &H80000000 ≤ n ≤ "^" Yes LongLong Long n

29 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Radix

Positive
<INTEGER> value
in the range

Type
Suffix

Valid
<INTEGER>?

Declared
Type Value Type

Signed
Data Value

&H7FFFFFFFF

Hex n ≥ &H100000000 None No

Hex n ≥ &H100000000 "%" No

Hex n ≥ &H100000000 "&" No

Decimal 2147483648 ≤ n ≤
9223372036854775
807

"^" Yes LongLong LongLong n

Decimal n ≥
9223372036854775

808

"^"

Octal &o40000000000 ≤
n ≤
&o17777777777777
77777777

"^" Yes LongLong LongLong n - 232

Octal n ≥
&o20000000000000
00000000

Any No

Hex &H100000000 ≤ n
≤
&HFFFFFFFFFFFFFFF
F

"^" Yes LongLong LongLong n - 232

Hex n ≥
&H10000000000000
000

Any No

 It is statically invalid for a literal to have the declared type LongLong in an implementation that
does not support 64-bit arithmetic.

FLOAT = (floating-point-literal [floating-point-type-suffix]) / (decimal-literal floating-

point-type-suffix)

 floating-point-literal = (integer-digits exponent) / (integer-digits "." [fractional-digits]
[exponent]) / ("." fractional-digits [exponent])

 integer-digits = decimal-literal
 fractional-digits = decimal-literal
 exponent = exponent-letter [sign] decimal-literal
 exponent-letter = %x0044 / %x0045 / %x0064 / %x0065 ; D / E / d / e
 sign = "+" / "-"
 floating-point-type-suffix = "!" / "#" / "@"

Static Semantics

 <FLOAT> tokens represent either binary floating point or currency data values. The
<floatingpoint-type-suffix> designates the declared type and value type of the data value
associated with the token according to the following table:

30 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

<floating-point-type-suffix> Declared Type and Value Type

Not present Double

! Single

Double

@ Currency

 Let i equal the integer value of <integer-digits>, f be the integer value of <fractional-

digits>, d be the number of digits in <fractional-digits>, and x be the signed integer value

of <exponent>. A <floating-point-literal> then represents a mathematical real number, r,

according to this formula:

 A <floating-point-literal> is invalid if its mathematical value is greater than the greatest

mathematical value that can be represented using its declared type.

 If the declared type of <floating-point-literal> is Currency, the fractional part of r is rounded
using Banker’s rounding (section 5.5.1.2.1.1) to 4 significant digits.

3.3.3 Date Tokens

 date-or-time = (date-value 1*WSC time-value) / date-value / time-value

 date-value = left-date-value date-separator middle-date-value [date-separator right-date-
value]

 left-date-value = decimal-literal / month-name
 middle-date-value = decimal-literal / month-name
 right-date-value = decimal-literal / month-name
 date-separator = 1*WSC / (*WSC ("/" / "-" / ",") *WSC)

 month-name = English-month-name / English-month-abbreviation
 English-month-name = "january" / "february" / "march" / "april" / "may" / "june" / "july" /
"august" / "september" / "october" / "november" / "december"

 English-month-abbreviation = "jan" / "feb" / "mar" / "apr" / "jun" / "jul" / "aug" / "sep" /
"oct" / "nov" / "dec"

 time-value = (hour-value ampm) / (hour-value time-separator minute-value [time-separator
second-value] [ampm])

 hour-value = decimal-literal
 minute-value = decimal-literal
 second-value = decimal-literal
 time-separator = *WSC (":" / ".") *WSC
 ampm = *WSC ("am" / "pm" / "a" / "p")

Static Semantics

 A <DATE> token (section 3.3) has an associated data value (section 2.1) of value type (section
2.1) and declared type (section 2.2) Date.

 The numeric data value of a <DATE> token is the sum of its specified date and its specified time.

 If a <date-or-time> does not include a <time-value> its specified time is determined as if a
<time-value> consisting of the characters "00:00:00" was present.

 If a <date-or-time> does not include a <date-value> its specified date is determined as if a
<date-value> consisting of the characters "1899/12/30" was present.

31 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 At most one of <left-date-value>, <middle-date-value>, and <right-date-value> can be
a <month-name>.

 Given that L is the data value of <left-date-value>, M is the data value of <middle-date-value>,
and R is the data value of <right-date-value> if it is present. L, M, and R are interpreted as a

calendar date as follows:

 Let

 Let

 Let CY be an implementation-defined default year.

 Let

 If L and M are numbers and R is not present:

 If LegalMonth(L) and LegalDay(L,M,CY) then L is the month, M is the day, and the year is
CY

 Else if LegalMonth(M) and LegalDay(M,L,CY) then M is the month, L is the day, and the
year is CY

 Else if LegalMonth(L) then L is the month, the day is 1, and the year is M

 Else if LegalMonth(M) then M is the month, the day is 1, and the year is L

 Otherwise, the <date-value> is not valid.

 If L, M, and R are numbers:

 If LegalMonth(L) and LegalDay(L,M,Year(R)) then L is the month, M is the day, and
Year(R) is the year

 Else if LegalMonth(M) and LegalDay(M,R,Year(L)) then M is the month, R is the day, and
Year(L) is the year

 Else if LegalMonth(M) and LegalDay(M,L,Year(R)) then M is the month, L is the day, and

Year(R) is the year

 Otherwise, the <date-value> is not valid.

 If either L or M is not a number and R is not present:

 Let N be the value of whichever of L or M is a number.

 Let M be the value in the range 1 to 12 corresponding to the month name or abbreviation
that is the value of whichever of L or M is not a number.

32 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If LegalDay(M,N,CY) then M is the month, N is the day, and the year is CY

 Otherwise, M is the month, 1 is the day, and the year is Year(N).

 Otherwise, R is present and one of L, M, and R is not a number:

 Let M be the value in the range 1 to 12 corresponding to the month name or abbreviation

that is the value of whichever of L, M, or R is not a number.

 Let N1 and N1 be the numeric values of which every of L, M, or R are numbers.

 If LegalDay(M,N1,Year(N2) then M is the month, N1 is the day, and Year(N2) is the year

 If LegalDay(M,N2,Year(N1) then M is the month, N2 is the day, and Year(N1) is the year

 Otherwise, the <date-value> is not valid.

 A <decimal-literal> that is an element of an <hour-value> MUST have an integer value in the

inclusive range of 0 to 23.

 A <decimal-literal> that is an element of an <minute-value> MUST have an integer value in the
inclusive range of 0 to 59.

 A <decimal-literal> that is an element of an <second-value> MUST have an integer value in the
inclusive range of 0 to 59

 If <time-value> includes an <ampm> element that consists of "pm" or "p" and the <hour-value>
has an integer value in the inclusive range of 0 to 11 then the <hour-value> is used as if its

integer value was 12 greater than its actual integer value.

 A <ampm> element has no significance if the <hour-value> is greater than 12.

 If <time-value> includes an <ampm> element that consists of "am" or "a" and the <hour-value>
is the integer value 12, then the <hour-value> is used as if its integer value was 0.

 If a <time-value> does not include a <minute-value> it is as if there was a <minute-value>
whose integer value was 0.

 If a <time-value> does not include a <second-value> it is as if there was a <second-value>

whose integer value was 0.

 Let h be the integer value of the <hour-value> element of a <time-value>, let m be the integer
value of the <minute-value> element of that <time-value>, and let s be the integer value of the
<second-value> of that <time-value>. The specified time of the <time-value> is defined by the
formula (3600h+60m+s)/86400.

3.3.4 String Tokens

 STRING = double-quote *string-character (double-quote / line-continuation / LINE-END)
 double-quote = %x0022 ; "
 string-character = NO-LINE-CONTINUATION ((double-quote double-quote) / non-line-
termination-character)

Static Semantics

 A <STRING> token (section 3.3) has an associated data value (section 2.1) of value type (section

2.1) and declared type (section 2.2) String.

33 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The length of the associated string data value is the number of <string-character> elements that
comprise the <STRING>

 The data value consists of the sequence of implementation-defined encoded characters
corresponding to the <string-character> elements in left to right order where the left-most

<string-character> element defines the first element of the sequence and the right-most <string-
character> element defines the last character of the sequence.

 A <STRING> token is invalid if any <string-character> element does not have an encoding in the
in the implementation-defined character set.

 A sequence of two <double-quote> characters represents a single occurrence of the character
U+0022 within the data value.

 If there are no <string-character> elements, the data value is the zero length empty string.

 If a <STRING> ends in a <line-continuation> element, the final character of the associated data
value is the right-most character preceding the <line-continuation> that is not a <WSC>.

 If a <STRING> ends in a <LINE-END> element, the final character of the associated data value is
the right-most character preceding the <LINE-END> that is not a <line-terminator>.

3.3.5 Identifier Tokens

 lex-identifier = Latin-identifier / codepage-identifier / Japanese-identifier / Korean-
identifier / simplified-Chinese-identifier / traditional-Chinese-identifier

 Latin-identifier = first-Latin-identifier-character *subsequent-Latin-identifier-character
 first-Latin-identifier-character = (%x0041-005A / %x0061-007A) ; A-Z / a-z
 subsequent-Latin-identifier-character = first-Latin-identifier-character / decimal-digit /
%x5F ; underscore

Static Semantics

 Upper and lowercase Latin characters are considered equivalent in VBA identifiers. Two identifiers
that differ only in the case of corresponding <first-Latin-identifier-character> characters are
considered to be the same identifier.

 Implementations MUST support <Latin-identifier>. Implementations MAY support one or more of
the other identifier forms and if so MAY restrict the combined use of such identifier forms.

3.3.5.1 Non-Latin Identifiers

 Japanese-identifier = first-Japanese-identifier-character *subsequent-Japanese-identifier-
character

 first-Japanese-identifier-character = (first-Latin-identifier-character / CP932-initial-
character)

 subsequent-Japanese-identifier-character = (subsequent-Latin-identifier-character / CP932-
subsequent-character)

 CP932-initial-character = < character ranges specified in section 3.3.5.1.1>
 CP932-subsequent-character = < character ranges specified in section 3.3.5.1.1>

 Korean-identifier = first-Korean-identifier-character *subsequent Korean-identifier-character
 first-Korean-identifier-character = (first-Latin-identifier-character / CP949-initial-
character)

 subsequent-Korean-identifier-character = (subsequent-Latin-identifier-character / CP949-
subsequent-character)

 CP949-initial-character = < character ranges specified in section 3.3.5.1.2>
 CP949-subsequent-character = < character ranges specified in section 3.3.5.1.2>

 simplified-Chinese-identifier = first-sChinese-identifier-character
 *subsequent-sChinese-identifier-character

34 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 first-sChinese-identifier-character = (first-Latin-identifier-character / CP936-initial-
character)

 subsequent-sChinese-identifier-character = (subsequent-Latin-identifier-character / CP936-
subsequent-character)

 CP936-initial-character = < character ranges specified in section 3.3.5.1.3>
 CP936-subsequent-character = < character ranges specified in section 3.3.5.1.3>

 traditional-Chinese-identifier = first-tChinese-identifier-character
 *subsequent-tChinese-identifier-character
 first-tChinese-identifier-character = (first-Latin-identifier-character / CP950-initial-
character)

 subsequent-tChinese-identifier-character = (subsequent-Latin-identifier-character / CP950-
subsequent-character)

 CP950-initial-character = < character ranges specified in section 3.3.5.1.4>
 CP950-subsequent-character = < character ranges specified in section 3.3.5.1.4>

 codepage-identifier = (first-Latin-identifier-character / CP2-character)
 *(subsequent-Latin-identifier-character / CP2-character)

 CP2-character = <any Unicode character that has a mapping to the character range %x80-FF in a
Microsoft Windows supported code page>

VBA support for identifiers containing non-Latin ideographic characters was designed based upon
characters code standards that predate the creation of Unicode. For this reason, non-Latin Identifiers
are specified in terms of the Unicode characters corresponding to code points in these legacy
standards rather than directly using similar Unicode characters classes.

Any Unicode character that corresponds to a character in a Microsoft Windows code page with a single
byte code point in the range %x80-FF is a valid <CP2-characters>. The code pages defining such
characters are Windows Codepages 874, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, and
1258. The definitions of these codepages and the mapping of individual codepage specific code points
to Unicode code points are specified by files hosted at [UNICODE-BESTFIT] and explained by
[UNICODE-README]. [CODEPG] provides an informative overview of the code pages code points and
their mappings to the corresponding Unicode characters.

3.3.5.1.1 Japanese Identifiers

VBA support for identifiers containing Japanese characters is based upon Windows Codepage 932
[UNICODE-BESTFIT]. Japanese characters are encoded as both 8 bit single byte and 16 bit double
byte characters with code points beginning at %x80. The Unicode equivalents of Windows Codepage
932 code points are specified by the file bestfit932.txt provided at [UNICODE-BESTFIT]. Many of the
characters in the range %x80-FF are lead bytes that serve as the first byte of a 16 bit encoding of a

code point. However, valid characters also occur within this range.

A <CP932-initial-character> can be any Unicode character that corresponds to a defined code page
932 character whose Windows Codepage 932 code point is greater than %x7F except for code points
in the range %x80-FF that are lead bytes and except for the following code points that are explicitly
excluded: %x8140, %x8143-8151,%x815E-8197,%x824f-8258.

A <CP932-subsequent-character> is defined identically to <CP932-initial-character> except that code

points in the range are %x824f-8258 are not excluded.

3.3.5.1.2 Korean Identifiers

VBA support for identifiers containing Korean characters is based upon Windows Codepage 949

[UNICODE-BESTFIT]. Korean characters are encoded as 16 bit double byte characters with code points
beginning at %x8141. The Unicode equivalents of Windows Codepage 949 code points are specified
by the file bestfit949.txt provided at [UNICODE-BESTFIT]. All of the code points in the range %x81-FE
are lead bytes that serve as the first byte of a 16 bit encoding of a code point.

https://go.microsoft.com/fwlink/?LinkId=95708
https://go.microsoft.com/fwlink/?LinkId=95709
https://go.microsoft.com/fwlink/?LinkId=89840
https://go.microsoft.com/fwlink/?LinkId=95708
https://go.microsoft.com/fwlink/?LinkId=95708

35 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

A <CP949-initial-character> MAY be any Unicode character that corresponds to the following Windows
Codepage 949 character code points: any defined 16-bit code point whose lead byte is less than %xA1

or greater than %xAF; any defined code point, regardless of its lead byte value, whose second bytes
is less than %xA1 or greater than %xFE; code points in the range %xA3C1-A3DA; code points in the
range %xA3E1-A3FA; code points in the range %xA4A1-A4FE.

A <CP949-subsequent-character> is defined identically to <CP949-initial-character> with the addition
of code point %xA3DF and code points in the range %xA3B0-A3B9.

3.3.5.1.3 Simplified Chinese Identifiers

VBA support for identifiers containing Simplified Chinese characters is based upon Windows Codepage
936 [UNICODE-BESTFIT]. Simplified Chinese characters are encoded as 16 bit double byte characters
with code points beginning at %x8140. The Unicode equivalents of Windows Codepage 936 code
points are specified by the file bestfit936.txt provided at [UNICODE-BESTFIT].

A <CP936-initial-character> MAY be any Unicode character that corresponds to defined code points in

the following ranges of Windows Codepage 936 code points: %xA3C1-A3DA; %xA3E1-A3FA;
%xA1A2A1AA; %xA1AC-A1AD; %xA1B2-A1E6; %xA1E8-A1EF; %xA2B1-A2FC; %xA4A1-FE4F.

A <CP936-subsequent-character> is defined identically to <CP949-initial-character> with the addition
of code point %xA3DF and code points in the range %xA3B0-A3B9.

3.3.5.1.4 Traditional Chinese Identifiers

VBA support for identifiers containing Traditional Chinese characters is based upon Windows Codepage
950 [UNICODE-BESTFIT]. Traditional Chinese characters are encoded as 16 bit double byte characters
with code points beginning at %xA140. The Unicode equivalents of Windows Codepage 950 code
points are specified by the file bestfit950.txt provided at [UNICODE-BESTFIT].

A <CP950-initial-character> MAY be any Unicode character that corresponds to defined code points in

the following ranges of Windows Codepage 950 code points: %xA2CF-A2FE; %xA340-F9DD.

A <CP950-subsequent-character> is defined identically to <CP950-initial-character> with the addition

of code point %xA1C5 and code points in the range %xA2AF-A2B8.

3.3.5.2 Reserved Identifiers and IDENTIFIER

 reserved-identifier = statement-keyword / marker-keyword / operator-identifier /
 special-form / reserved-type-identifier / reserved-name / literal-identifier /
 rem-keyword / reserved-for-implementation-use / future-reserved

 IDENTIFIER = <any lex-identifier that is not a reserved-identifier>

<reserved-identifier> designates all sequences of characters that conform to <Latin-identifier> but
are reserved for special uses within the VBA language. Keyword is an alternative term meaning

<reserved-identifier>. When a specific keyword needs to be named in prose sections of this
specification the keyword is written using bold emphasis. Like all VBA identifiers, a <reserved-
identifier> is case insensitive. A <reserved-identifier> is a token (section 3.3). Any quoted occurrence

of one of the <reserved-identifier> elements as a grammar element within the syntactic grammar is a
reference to the corresponding token. The token element <IDENTIFIER> is used within the syntactic
grammar to specify the occurrence of an identifier that is not a <reserved-identifier>

Static Semantics

 The name value of an <IDENTIFIER> is the text of its <lex-identifier>.

https://go.microsoft.com/fwlink/?LinkId=95708
https://go.microsoft.com/fwlink/?LinkId=95708

36 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The name value of a <reserved-identifier> token is the text of its <Latin-identifier>.

 Two name values are the same if they would compare equal using a case insensitive textual
comparison.

<reserved-identifier> are categorized according to their usage by the following rules. Some of them
have multiple uses and occur in multiple rules.

statement-keyword = "Call" / "Case" /"Close" / "Const"/ "Declare" / "DefBool" / "DefByte"

/ "DefCur" / "DefDate" / "DefDbl" / "DefInt" / "DefLng" / "DefLngLng" / "DefLngPtr" /

"DefObj" / "DefSng" / "DefStr" / "DefVar" / "Dim" / "Do" / "Else" / "ElseIf" / "End" /

"EndIf" / "Enum" / "Erase" / "Event" / "Exit" / "For" / "Friend" / "Function" / "Get" /

"Global" / "GoSub" / "GoTo" / "If" / "Implements"/ "Input" / "Let" / "Lock" / "Loop" /

"LSet" / "Next" / "On" / "Open" / "Option" / "Print" / "Private" / "Public" / "Put" /

"RaiseEvent" / "ReDim" / "Resume" / "Return" / "RSet" / "Seek" / "Select" / "Set" /

"Static" / "Stop" / "Sub" / "Type" / "Unlock" / "Wend" / "While" / "With" / "Write"

rem-keyword = "Rem"

marker-keyword = "Any" / "As"/ "ByRef" / "ByVal "/"Case" / "Each" / "Else" /"In"/ "New" /

"Shared" / "Until" / "WithEvents" / "Write" / "Optional" / "ParamArray" / "Preserve" /

"Spc" / "Tab" / "Then" / "To"

operator-identifier = "AddressOf" / "And" / "Eqv" / "Imp" / "Is" / "Like" / "New" / "Mod"

/ "Not" / "Or" / "TypeOf" / "Xor"

A <statement-keyword> is a <reserved-identifier> that is the first syntactic item of a statement or

declaration. A <marker-keyword> is a <reserved-identifier> that is used as part of the interior
syntactic structure of a statement. An <operator-identifier> is a <reserved-identifier> that is used as
an operator within expressions.

 reserved-name = "Abs" / "CBool" / "CByte" / "CCur" / "CDate" / "CDbl" / "CDec" / "CInt" /
"CLng" / "CLngLng" / "CLngPtr" / "CSng" / "CStr" / "CVar" / "CVErr" / "Date" / "Debug" /

"DoEvents" / "Fix" / "Int" / "Len" / "LenB" / "Me" / "PSet" / "Scale" / "Sgn" / "String"

 special-form = "Array" / "Circle" / "Input" / "InputB" / "LBound" / "Scale" / "UBound"

 reserved-type-identifier = "Boolean" / "Byte" / "Currency" / "Date" / "Double" /

"Integer" / "Long" / "LongLong" / "LongPtr" / "Single" / "String" / "Variant"

literal-identifier = boolean-literal-identifier / object-literal-identifier /

variant-literal-identifier

boolean-literal-identifier = "true" / "false"

object-literal-identifier = "nothing"

variant-literal-identifier = "empty" / "null"

A <reserved-name> is a <reserved-identifier> that is used within expressions as if it was a normal
program defined entity (section 2.2). A <special-form> is a <reserved-identifier> that is used in an

expression as if it was a program defined procedure name but which has special syntactic rules for its

argument. A <reserved-type-identifier> is a <reserved-identifier> that is used within a declaration to
identify the specific declared type (section 2.2) of an entity.

A <literal-identifier> is a <reserved-identifier> that represents a specific distinguished data value
(section 2.1). A <boolean-literal-identifier> specifying "true" or "false" has a declared type of
Boolean and a data value of True or False, respectively. An <object-literal-identifier> has a declared
type of Object and the data value Nothing. A <variant-literal-identifier> specifying "empty" or "null"
has a declared type of Variant and the data value Empty or Null, respectively.

37 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 reserved-for-implementation-use = "Attribute" / "LINEINPUT" / "VB_Base" / "VB_Control" /
"VB_Creatable" / "VB_Customizable" / "VB_Description" / "VB_Exposed" / "VB_Ext_KEY " /

"VB_GlobalNameSpace" / "VB_HelpID" / "VB_Invoke_Func" / "VB_Invoke_Property " /

"VB_Invoke_PropertyPut" / "VB_Invoke_PropertyPutRef" / "VB_MemberFlags" / "VB_Name" /

"VB_PredeclaredId" / "VB_ProcData" / "VB_TemplateDerived" / "VB_UserMemId" /

"VB_VarDescription" / "VB_VarHelpID" / "VB_VarMemberFlags" / "VB_VarProcData " /

"VB_VarUserMemId"

 future-reserved = "CDecl" / "Decimal" / "DefDec"

A <reserved-for-implementation-use> is a <reserved-identifier> that currently has no defined
meaning to the VBA language but is reserved for use by language implementers. A <future-reserved>
is a <reserved-identifier> that currently has no defined meaning to the VBA language but is reserved
for possible future extensions to the language.

3.3.5.3 Special Identifier Forms

 FOREIGN-NAME = "[" foreign-identifier "]"
 foreign-identifier = 1*non-line-termination-character

A <FOREIGN-NAME> is a token (section 3.3) that represents a text sequence that is used as if it was
an identifier but which does not conform to the VBA rules for forming an identifier. Typically, a
<FOREIGN-NAME> is used to refer to an entity (section 2.2) that is created using some programming
language other than VBA.

Static Semantics

 The name value (section 3.3.5.1) of a <FOREIGN-NAME> is the text of its <foreign-identifier>.

 BUILTIN-TYPE = reserved-type-identifier / ("[" reserved-type-identifier "]") /

"object" / "[object]"

In some VBA contexts, a <FOREIGN-NAME> whose name value is identical to a <reserved-type-
identifier> can be used equivalently to that <reserved-type-identifier>. The identifier whose name

value is "object" is not a <reserved-identifier> but is generally used as if it was a <reserved-type-
identifier>.

Static Semantics

 The name value of a <BUILTIN-TYPE> is the text of its <reserved-type-identifier> element if it
has one. Otherwise the name value is "object".

 The declared type (section 2.2) of a <BUILTIN-TYPE> element is the declared type whose name is
the same as the name value of the <BUILTIN-TYPE>.

TYPED-NAME = IDENTIFIER type-suffix

type-suffix = "%" / "&" / "^" / "!" / "#" / "@" / "$"

A <TYPED-NAME> is an <IDENTIFIER> that is immediately followed by a <type-suffix> with no
intervening whitespace.

Static Semantics

38 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The name value of a <TYPED-NAME> is the name value of its <IDENTIFIER> elements.

 The declared type of a <TYPED-NAME> is defined by the following table:

3.4 Conditional Compilation

A module body can contain logical lines (section 3.2) that can be conditionally excluded from
interpretation as part of the VBA program code defined by the module (section 4.2). The module body
(section 4.2) with such excluded lines logically removed is called the preprocessed module body. The
preprocessed module body is determined by interpreting conditional compilation directives within
tokenized <module-body-lines> conforming to the following grammar:

 conditional-module-body = cc-block
 cc-block = *(cc-const / cc-if-block / logical-line)

Static Semantics

 A <module-body-logical-structure> which does not conform to the rules of this grammar is not a
valid VBA module.

 The <cc-block> that directly makes up a <conditional-module-body> is an included block.

 All <logical-line> lines that are immediate elements of an included block are included in the
preprocessed module body.

 All <logical-line> lines that are immediate elements of an excluded block (section 3.4.2) are not

included in the preprocessed module body.

 The relative ordering of the <logical-line> lines within the preprocessed module body is the same
as the relative ordering of those lines within the original module body.

3.4.1 Conditional Compilation Const Directive

 cc-const = LINE-START "#" "const" cc-var-lhs "=" cc-expression cc-eol
 cc-var-lhs = name
 cc-eol = [single-quote *non-line-termination-character] LINE-END

Static Semantics

<type-suffix> Declared Type

% Integer

& Long

^ LongLong

! Single

Double

@ Currency

$ String

39 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 All <cc-const> lines are excluded from the preprocessed module body (section 3.4).

 All <cc-const> directives are processed including those contained in excluded blocks (section
3.4.2).

 If <cc-var-lhs> is a <TYPED-NAME> with a <type-suffix>, the <type-suffix> is ignored.

 The name value (section 3.3.5.1) of the <name> of a <cc-var-lhs> MUST be different for every
<cc-var-lhs> (including those whose containing <cc-block> is an excluded block) within a
<conditionalmodule-body>.

 The data value (section 2.1) of a <cc-expression> is the constant value (section 5.6.16.2) of the
<cc-expression>.

 If constant evaluation of the <cc-expression> results in an evaluation error the content of the
preprocessed module body is undefined.

 A <cc-const> defines a constant binding accessible to <cc-expression> elements of the containing

module. The bound name is the name value of the <name> of the <cc-var-lhs> , the declared
type of the constant binding is Variant, and the data value of the constant binding is the data
value of the <cc-expression>.

 The name value of the <name> of a <cc-var-lhs> can be the same as a bound name of a project
level conditional compilation constant. In that case, the constant binding defined by the <cc-

const> element shadows the project level binding.

3.4.2 Conditional Compilation If Directives

 cc-if-block = cc-if
 cc-block
 *cc-elseif-block
 [cc-else-block]
 cc-endif

 cc-if = LINE-START "#" "if" cc-expression "then" cc-eol

 cc-elseif-block = cc-elseif cc-block
 cc-elseif = LINE-START "#" "elseif" cc-expression "then" cc-eol

 cc-else-block = cc-else cc-block
 cc-else = LINE-START "#" "else" cc-eol

 cc-endif = LINE-START "#" ("endif" / ("end" "if")) cc-eol

Static Semantics

 All of the constituent <cc-expression> elements of a <cc-if-block> MUST conform to the following
rules, even if the <cc-if-block> is not contained within an included block (section 3.4):

 The <cc-expression> within the <cc-if> and those within each <cc-elseif> are each evaluated.

 The data values (section 2.1) of the constituent <cc-expression> elements MUST all be Let-
coercible to the Boolean value type (section 2.1).

 If evaluation of any of the constituent <cc-expression> elements results in an evaluation error the
content of the preprocessed module body (section 3.4) is undefined.

40 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If an <cc-if-block> is contained within an included block then at most one contained <cc-block> is
selected as an included block according to the sequential application of these rules:

1. If the evaluated value of the <cc-expression> within the <cc-if> is a true value, the <cc-block>
that immediate follows the <cc-if> is the included block.

2. If one or more of the <cc-expression> elements that are within a <cc-elseif> have an evaluated
value that is a true value then the <cc-block> that immediately follows the first such <cc-elseif>
is the included block.

3. If none of the evaluated <cc-expression> elements have a true value and a <cc-else-block> is
present, the <cc-block> that is an element of the <cc-else-block> is the included block.

4. If none of the evaluated <cc-expression> have a true value and a <cc-else-block> is not present
there is no included block.

 Any <cc-block> which is an immediate element of a <cc-if-block>, a <cc-elseif-block>, or a <cc-
else-block> and which is not an included block is an excluded block (section 3.4).

 All <cc-if>, <cc-elseif>, <cc-else>, and <cc-endif> lines are excluded from the preprocessed
module body.

41 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

4 VBA Program Organization

A VBA Environment can be organized into a number of user-defined and host application-defined
projects (section 4.1). Each project is composed of one or more modules (section 4.2).

4.1 Projects

A project is the unit in which VBA program code is defined and incorporated into a VBA Environment.
Logically a project consists of a project name, a set of named modules, and an ordered list of project
references. A project reference that occurs earlier in this list is said to have higher reference
precedence than references that occur later in the list. The physical representation of a project and
the mechanisms used for naming, storing, and accessing a project are implementation-defined.

A project reference specifies that a project accesses public entities (section 2.2) that are defined in
another project. The mechanism for identifying a project’s referenced projects is implementation
defined.

There are three types of VBA projects: source projects, host projects, and library projects. Source
projects are composed of VBA program code that exists in VBA Language source code form. A library

project is a project that is defined in an implementation-defined manner that and can define all the
same kinds of entities that a source project might define, except that it might not exist in VBA
language source code form and might not have been implemented using the VBA language.

A host project is a library project that is introduced into a VBA Environment by the host application.
The means of introduction is implementation dependent. The public variables (section 5.2.3.1),

constants, procedures, classes (section 2.5), and UDTs defined by a host project are accessible to VBA
source projects in the same VBA Environment as if the host project was a source project. An open
host project is one to which additional modules can be added to it by agents other than the host
application. The means of designating an open host project and of adding modules to one is
implementation defined.

Static Semantics.

 A project name MUST be valid as an <IDENTIFIER>.

 A project name SHOULD NOT be "VBA"; this name is reserved for accessing the VBA Standard

Library (section 2.7.1).

 A project name SHOULD NOT be a <reserved-identifier>.

 The project references of a specific project MUST identify projects with distinct project names.

 It is implementation dependent whether or not a source project references a different project that
has the same project name as the referencing project.

4.2 Modules

A module is the fundamental syntactic unit of VBA source code. The physical representation of a
module is implementation dependent but logically a VBA module is a sequence of Unicode characters
that conform to the VBA language grammars.

A module consists of two parts: a module header and a module body.

42 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

The module header is a set of attributes consisting of name/value pairs that specify the certain
linguistic characteristics of a module. While a module header could be directly written by a human

programmer, more typically a VBA implementation will mechanically generate module headers based
upon the programmer’s usage of implementation specific tools. These tools are not part of the scope

of this document, so their contents, including the version and all text between "BEGIN" and "END" at
the start of the file is not part of the module body and is not required to conform to the VBA grammar.

A module body consists of actual VBA Language source code and most typically is directly written by a
human programmer.

VBA supports two kinds of modules, procedural modules and class modules, whose contents MUST
conform to the grammar productions <procedural-module> and <class-module>, respectively:

 procedural-module = LINE-START procedural-module-header EOS
 LINE-START procedural-module-body
 class-module = LINE-START class-module-header
 LINE-START class-module-body

 procedural-module-header = attribute "VB_Name" attr-eq quoted-identifier attr-end

 class-module-header = 1*class-attr

 class-attr = attribute "VB_Name" attr-eq quoted-identifier attr-end
 / attribute "VB_GlobalNameSpace" attr-eq "False" attr-end
 / attribute "VB_Creatable" attr-eq "False" attr-end
 / attribute "VB_PredeclaredId" attr-eq boolean-literal-identifier attr-end
 / attribute "VB_Exposed" attr-eq boolean-literal-identifier attr-end
 / attribute "VB_Customizable" attr-eq boolean-literal-identifier attr-end
 attribute = LINE-START "Attribute"
 attr-eq = "="
 attr-end = LINE-END

 quoted-identifier = double-quote NO-WS IDENTIFIER NO-WS double-quote

Static Semantics.

 The name value (section 3.3.5.1) of an <IDENTIFIER> that follows an <attribute> element is an
attribute name.

 An element that follows an <attr-eq> element defines the attribute value for the attribute name
that precedes the same <attr-eq>.

 The attribute value defined by a <quoted-identifier> is the name value of the contained identifier.

 The last <class-attr> for a specific attribute name within a given <class-module-header> provides
the attribute value for its attribute name.

 If an <class-attr> for a specific attribute name does not exist in an <class-module-header> it is
assumed that a default attribute value is associated with the attribute name according to the

following table:

Attribute Name Default Value

VB_Creatable False

VB_Customizable False

VB_Exposed False

VB_GlobalNameSpace False

43 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Attribute Name Default Value

VB_PredeclaredId False

 The module name of a module is the attribute value of the module’s VB_NAME attribute.

 A maximum length of a module name is 31 characters.

 A module name SHOULD NOT be a <reserved-identifier>.

 A module’s module name might not be the same as the project name (section 4.1) of the project
that contains the module or that of any project (section 4.1) referenced by the containing project.

 Every module contained in a project MUST have a distinct module name.

 Both the VB_GlobalNamespace and VB_Creatable attributes MUST have the attribute value "False"

in a VBA module that is part of a VBA source project (section 4.1). However library projects
(section 4.1) can contain modules in which the attributes values of these attributes are "True".

 In addition to this section, the meaning of certain attributes and attribute combinations when used
in the definition of class modules is defined in section 5.2.4.1. All other usage and meanings of
attributes are implementation-dependent.

4.2.1 Module Extensibility

An open host project (section 4.1) can include extensible modules. Extensible modules are modules
(section 4.2) that can be extended by identically named externally provided extension modules that
are added to the host project. An extension module is a module that defines additional variables
(section 2.3), constants, procedures, and UDT entities (section 2.2). The additional extension module

entities behave as if they were directly defined within the corresponding extensible module. Note that
this means extensible modules can define WithEvents variables which can then be the target of

event handler procedures in an extension module.

The mechanisms by which extension modules can be added to a host project (section 4.1) are
implementation-defined.

Static Semantics.

 The module name (section 4.2) of an extension module MUST be identical to that of the extensible
module it is extending.

 An extension module can’t define or redefine any variables, constants, procedures, enums, or
UDTs that are already defined in its corresponding extensible module. The same name conflict
rules apply as if the extension module elements were physically part of the module body (section
4.2) of the corresponding extensible module.

 Option directives contained in an extension module only apply to the extension module and not to

the corresponding extensible module.

 It is implementation defined whether or not more than one extension module might exist within an
extensible project for a specific extensible module.

44 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5 Module Bodies

Module bodies (section 4.2) contain source code written using the syntax of the VBA programming
language, as defined in this specification. This chapter defines the valid syntax, static semantic rules,
and runtime semantics of module bodies.

Syntax is described using an ABNF [RFC4234] grammar incorporating terminal symbols defined in
section 3. Except for where it explicitly identifies <LINE-START> and <LINE-END> elements this
grammar ignores the physical line structure of files containing the source code of module bodies. The
grammar also ignores conditional compilation directives and conditionally excluded sources code as
described in section 3.4. This grammar applied to the preprocessed module body (section 3.4); the
source code is interpreted as if both lexical tokenization and conditional compilation preprocessing has
been applied to it. This preprocessing assumption is made solely to simplify and clarify this
specification. An implementation is not required to actually use such a processing model.

5.1 Module Body Structure

procedural-module-body = LINE-START procedural-module-declaration-section

 LINE-START procedural-module-code-section

 class-module-body = LINE-START class-module-declaration-section
 LINE-START class-module-code-section

Both procedural modules (section 4.2) and class modules (section 4.2) have module bodies (section
4.2) that consist of two parts, a declaration section (section 5.2) and a code section (section 5.3).
Each section MUST occur as the first syntactic element of a physical line of its containing source file.

Throughout this specification the following common grammar rules are used for expressing various
forms of entity (section 2.2) names:

 unrestricted-name = name / reserved-identifier
 name = untyped-name / TYPED-NAME / file-number
 untyped-name = IDENTIFIER / FOREIGN-NAME

5.2 Module Declaration Section Structure

A module’s (section 4.2) declaration sections consists of directive and declarations. Generally
directives control the application of static semantic rules within the module. Declarations define named

entities that exist within the runtime environment of a program.

 procedural-module-declaration-section = [*(procedural-module-directive-element EOS) def-
directive] *(procedural-module-declaration-element EOS)

 class-module-declaration-section = [*(class-module-directive-element EOS) def-directive]
*(class-module-declaration-element EOS)

 procedural-module-directive-element = common-option-directive / option-private-directive /
def-directive

 procedural-module-declaration-element = common-module-declaration-element / global-variable-
declaration / public-const-declaration / public-type-declaration / public-external-procedure-

declaration / global-enum-declaration / common-option-directive / option-private-directive

https://go.microsoft.com/fwlink/?LinkId=90462

45 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 class-module-directive-element = common-option-directive / def-directive / implements-
directive

 class-module-declaration-element = common-module-declaration-element / event-declaration /
commonoption-directive / implements-directive

Static Semantics.

There are various restrictions on the number of occurrences and the relative ordering of directives and
declarations within module declaration sections. These restrictions are specified as part of the
definition of the specific individual directives and declarations elements.

5.2.1 Option Directives

Option directives are used to select alternative semantics for various language features.

 common-option-directive = option-compare-directive / option-base-directive / option-
explicit-directive / rem-statement

Static Semantics.

 Each <common-option-directive> alternative can occur at most once in each <procedural-module-
declaration-section> or <class-module-declaration-section>.

 An <option-private-directive> can occur at most once in each <procedural-module-declaration-
section>.

5.2.1.1 Option Compare Directive

Option Compare directives determine the comparison rules used by relational operators (section

5.6.9.5) when applied to String data values (section 2.1) within a module (section 4.2). This is known

as the comparison mode of the module.

 option-compare-directive = "Option" "Compare" ("Binary" / "Text")

Static Semantics.

 If an <option-compare-directive> includes the Binary keyword (section 3.3.5.1) the comparison
mode of the module is binary-compare-mode.

 If an <option-compare-directive> includes the Text keyword the comparison mode of the module

is text-compare-mode.

 An <option-compare-directive> can occur at most once in a <procedural-module-declaration-
section> or <class-module-declaration-section>.

 If a <procedural-module-declaration-section> or <class-module-declaration-section> does not

contain a <option-compare-directive> the comparison mode for the module is binary-compare-

mode.

46 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.2.1.2 Option Base Directive

Option Base directives set the default value used within a module (section 4.2) for lower bound
(section 2.1) of all array dimensions that are not explicitly specified in a <lower-bound> of a <dim-

spec>.

 option-base-directive = "Option" "Base" INTEGER

Static Semantics.

 An <option-base-directive> can occur at most once in a <procedural-module-declaration-section>
or <class-module-declaration-section>.

 If present an < option-base-directive> MUST come before the first occurrence of a <dim-spec> in

the same <procedural-module-declaration-section> or <class-module-declaration-section>.

 The data value (section 2.1) of the <INTEGER> MUST be equal to either the integer data value 0

or the integer data value 1.

 The default lower bound for array dimensions in containing module is the data value of the
<INTEGER> element.

 If a <procedural-module-declaration-section> or <class-module-declaration-section> does not
contain an <option-base-directive> the default lower bound for array dimensions in the module is
0.

5.2.1.3 Option Explicit Directive

Option Explicit directives is used to set the variable declaration mode which controls whether or not
variables (section 2.3) can be implicitly declared (section 5.6.10) within the containing module
(section 4.2).

 option-explicit-directive = "Option" "Explicit"

Static Semantics:

 If an <option-explicit-directive> is present within a module, the variable declaration mode of the
module is explicit-mode.

 If an <option-explicit-directive> is not present within a module, the variable declaration mode of

the module is implicit-mode.

 An <option-explicit-directive> can occur at most once in a <procedural-module-declaration-
section> or <class-module-declaration-section>.

 If a <procedural-module-declaration-section> or <class-module-declaration-section> does not

contain a <option-explicit-directive> the variable declaration mode for the module is implicit-

mode.

5.2.1.4 Option Private Directive

Option Private directives control the accessibility of a module (section 4.2) to other projects (section
4.1), as well as the meaning of public accessibility of Public entities (section 2.2) declared within the
module.

47 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 option-private-directive = "Option" "Private" "Module"

Static Semantics:

 If a procedural module (section 4.2) contains an <option-private-directive>, the module itself is
considered a private module, and is accessible only within the enclosing project.

 If a procedural module does not contain an <option-private-directive>, the module itself is
considered a public module, and is accessible within the enclosing project and within any projects

that reference the enclosing project.

 The effect of module accessibility on the accessibility of declarations within the module is
described in the definitions of specific module declaration form within section 5.2.3.

5.2.2 Implicit Definition Directives

 def-directive = def-type letter-spec *("," letter-spec)
 letter-spec = single-letter / universal-letter-range / letter-range

 single-letter = IDENTIFIER ; %x0041-005A / %x0061-007A

 universal-letter-range = upper-case-A "-"upper-case-Z
 upper-case-A = IDENTIFIER
 upper-case-Z = IDENTIFIER

 letter-range = first-letter "-" last-letter
 first-letter = IDENTIFIER
 last-letter = IDENTIFIER

 def-type = "DefBool" / "DefByte" / "DefCur" / "DefDate" / "DefDbl" / "DefInt" / "DefLng" /
"DefLngLng" / "DefLngPtr" / "DefObj" / "DefSng" / "DefStr" / "DefVar"

Implicit Definition directives define the rules used within a module (section 4.2) for determining the
declared type (section 2.2) of implicitly typed entities (section 2.2). The declared type of such entities
can be determined based upon the first character of its name value (section 3.3.5.1). Implicit
Definition directives define the mapping from such characters to declared types.

Static Semantics.

 The name value of the <IDENTIFIER> element of a <single-letter> MUST consist of a single upper
or lower case alphabetic character (%x0041-005A or %x0061-007A).

 The name value of the <IDENTIFIER> element of a <upper-case-A> MUST consist of the single
character "A" (%x0041).

 The name value of the <IDENTIFIER> element of a <upper-case-Z> MUST consist of the single
character "Z" (%x005A).

 A <letter-spec> consisting of a <single-letter> defines the implicit declared type within the
containing module of all <IDENTIFIER> tokens whose name value begins with the character that
is the name value of the <IDENTIFIER> element of the <single-letter> .

 A <letter-spec> consisting of a <letter-range> defines the implicit declared type within the
containing module of all entities with <IDENTIFIER> tokens whose name values begins with any
of the characters in the contiguous span of characters whose first inclusive character is the name
value of the <first-letter> <IDENTIFIER> element and whose last inclusive character is the name

48 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

value of the <last-letter> <IDENTIFIER> element. The span can be an ascending or descending
span of characters and can consist of a single character.

 Within a <procedural-module-declaration-section> or <class-module-declaration-section>, no
overlap is allowed among <letter-spec> productions.

 A <universal-letter-range> defines a single implicit declared type for every <IDENTIFIER> within
a module, even those with a first character that would otherwise fall outside this range if it was
interpreted as a <letter-range> from A-Z.

 The declared type corresponding to each <def-type> is defined by the following table:

<def-type> Declared Type

"DefBool" Boolean

"DefByte" Byte

"DefInt" Integer

"DefLng" Long

"DefLngLng" LongLong

"DefLngPtr" LongPtr type alias

"DefCur" Currency

"DefSng" Single

"DefDbl" Double

"DefDate" Date

"DefStr" String

"DefObj" Object reference

"DefVar" Variant

If an entity is not explicitly typed and there is no applicable <def-type>, then the declared type of the
entity is Variant.

5.2.3 Module Declarations

 common-module-declaration-element = module-variable-declaration
 common-module-declaration-element =/ private-const-declaration
 common-module-declaration-element =/ private-type-declaration
 common-module-declaration-element =/ public-type-declaration
 common-module-declaration-element =/ public-enum-declaration
 common-module-declaration-element =/ private-enum-declaration
 common-module-declaration-element =/ private-external-procedure-declaration
 common-module-declaration-element =/ attribute-statement

Any kind of module (section 4.2) can contain a <common-module-declaration-element>. All other
declarations are specific to either <procedural-module> or <class-module>.

49 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Composition and compilation of Attribute statements is not permitted in the Microsoft Visual Basic for
Applications editor, however, they are consumed and produced by Microsoft Visual Basic for

Applications without error upon import and export and are therefore considered valid VBA language
constructs. For this reason, this specification describes the grammars needed to parse these

statements.

Compilation of public user defined types is not permitted in the Microsoft Visual Basic for Applications
editor, however, composition of them is allowed and they are consumed and produced by Microsoft
Visual Basic for Applications without error upon import and export and are therefore considered valid
VBA language constructs. For this reason, this specification describes the grammars needed to parse
these type constructs.

5.2.3.1 Module Variable Declaration Lists

module-variable-declaration = public-variable-declaration / private-variable-declaration

 global-variable-declaration = "Global" variable-declaration-list
 public-variable-declaration = "Public" ["Shared"] module-variable-declaration-list
 private-variable-declaration = ("Private" / "Dim") ["Shared"] module-variable-declaration-
list

 module-variable-declaration-list = (withevents-variable-dcl / variable-dcl)
 *("," (withevents-variable-dcl / variable-dcl))
 variable-declaration-list = variable-dcl *("," variable-dcl)

<global-variable-declaration> and the optional Shared keyword (section 3.3.5.1) provides syntactic
compatibility with other dialects of the Basic language and/or historic versions of VBA.

Static Semantics

 The occurrence of the keyword Shared has no meaning.

 Each variable (section 2.3) defined within a <module-variable-declaration> contained within the
same module (section 4.2) MUST have a different variable name (section 2.3).

 Each variable defined within a <module-variable-declaration> is a module variable and MUST have
a variable name that is different from the name of any other module variable, module constant,
enum member, or procedure (section 2.4) that is defined within the same module.

 A variable declaration that is part of a <global-variable-declaration> or <public-variable-

declaration> declares a public variable. The variable is accessible within the enclosing project
(section 4.1). If the enclosing module is a class module (section 4.2) or is a procedural module
(section 4.2) that is not a private module (section 5.2.1.4), then the variable is also accessible
within projects that reference the enclosing project.

 A variable declaration that is part of a <private-variable-declaration> declares a private variable.
The variable is only accessible within the enclosing module.

 If a variable defined by a <public-variable-declaration> has a variable name that is the same as a
project name (section 4.1) or a module name (section 4.2) then all references to the variable
name MUST be module qualified unless they occur within the module that contains the <public-
variable-declaration>

 A variable defined by a <module-variable-declaration> can have a variable name that is the same

as the enum name of a <enum-declaration> defined in the same module but such a variable
cannot be referenced using its variable name even if the variable name is module qualified.

50 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If a variable defined by a <public-variable-declaration> has a variable name that is the same as

the enum name of a public <enum-declaration> in a different module, all references to the

variable name MUST be module qualified unless they occur within the module that contains the

<public-variable-declaration>.

 The declared type (section 2.2) of a variable defined by a <public-variable-declaration> in a

<class-module-code-section> might not be a UDT (section 2.1) that is defined by a <private-type-
declaration> or a private enum name.

 A <module-variable-declaration-list> that occurs in a procedural module MUST NOT include any

<withevents-variable-dcl> elements.

Runtime Semantics.

 All variables defined by a <module-variable-declaration> that is an element of in a <procedural-

module-declaration-section> have module extent (section 2.3).

 All variables defined by a <module-variable-declaration> that is an element of in a <class-
module-declaration-section> are member (section 2.5) variables of the class (section 2.5) and
have object extent (section 2.3). Each instance (section 2.5) of the class will contain a distinct
corresponding variable.

5.2.3.1.1 Variable Declarations

 variable-dcl = typed-variable-dcl / untyped-variable-dcl
 typed-variable-dcl = TYPED-NAME [array-dim]
 untyped-variable-dcl = IDENTIFIER [array-clause / as-clause]
 array-clause = array-dim [as-clause]
 as-clause = as-auto-object / as-type

Static Semantics

 A <typed-variable-dcl> defines a variable (section 2.3) whose variable name (section 2.3) is the
name value (section 3.3.5.1) of the <TYPED-NAME>.

 If the optional <array-dim> is not present the declared type (section 2.2) of the defined variable

is the declared type of the <TYPED-NAME>.

 If the optional <array-dim> is present and does not include a <bounds-list> then the declared
type of the defined variable is resizable array (section 2.2) with an element type (section 2.1.1)
that is the declared type of the <TYPED-NAME>.

 If the optional <array-dim> is present and includes a <bounds-list> then the declared type of the
defined variable is fixed-size array (section 2.2) with an element type that is the declared type of

the <TYPED-NAME>. The number of dimensions and the upper bound (section 2.1) and lower
bound (section 2.1) for each dimension is as defined by the <bounds-list>.

 An <untyped-variable-dcl> that includes an <as-clause> containing an <as-auto-object> element
defines an automatic instantiation variable (section 2.5.1). If the <untyped-variable-dcl> also
includes an <array-dim> element then each dependent variable (section 2.3.1) of the defined
array variable is an automatic instantiation variable.

 If the <untyped-variable-dcl> does not include an <as-clause> (either directly or as part of an

<array-clause> this is an implicitly typed (section 5.2.2) declaration and its implicit declared type
(section 5.2.3.1.5). The following rules apply:

51 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The declared type of a variable defined by an implicitly typed declaration that does not include
an <array-clause> is the same as its implicit declared type.

 The declared type of a variable defined by an implicitly typed declaration that includes an
<array-clause> whose <array-dim> element does not contain a <bounds-list> is resizable

array whose declared element type is the same as the implicit declared type.

 The declared type of a variable defined by an implicitly typed declaration that includes an
<array-clause> whose <array-dim> element contains a <bounds-list> is fixed size array with
a declared element type is the same as the implicit declared type. The number of dimensions
and the upper bound and lower bound for each dimension is as defined by the <bounds-list>.

 If the <untyped-variable-dcl> includes an <array-clause> containing an <as-clause> the
following rules apply:

 If the <array-dim> of the <array-clause> does not contain a <bounds-list> the declared type
of the defined variable is resizable array with a declared element type as the specified type of
the <as-clause>.

 If the <array-dim> of the <array-clause> contains a <bounds-list> the declared type of the
defined variable is fixed size array with a declared element type as the specified type of the
<as-clause>. The number of dimensions and the upper and lower bound for each dimension is

as defined by the <bounds-list>.

 If the <as-clause> consists of an <as-auto-object> each dependent variable of the defined
variable is an automatic instantiations variable.

 If the <untyped-variable-dcl> includes an <as-clause> but does not include an <array-clause>
the following rules apply:

 The declared type of the defined variable is the specified type of the <as-clause>.

 If the <as-clause> consists of an <as-auto-object> the defined variable is an automatic

instantiations variable.

5.2.3.1.2 WithEvents Variable Declarations

withevents-variable-dcl = "withevents" IDENTIFIER "as" class-type-name

class-type-name = defined-type-expression

Static Semantics

 A <withevents-variable-dcl> defines a variable whose declared type is the specified type of its
<class-type-name element.

 The specified type of the <class-type-name> element MUST be a specific class that has at least

one event member.

 The specified type of <class-type-name> element MUST NOT be the class defined by the class
modules containing this declaration.

 The name value of the <IDENTIFIER with an appended underscore character (Unicode
u+005F) is an event handler name prefix for the class module containing this declaration.

 The specified type of a <class-type-name> is the declared type referenced by its <defined-type-
expression.

52 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.2.3.1.3 Array Dimensions and Bounds

array-dim = "(" [bounds-list] ")"

bounds-list = dim-spec *("," dim-spec)

dim-spec = [lower-bound] upper-bound

lower-bound = constant-expression "to"

upper-bound = constant-expression

Static Semantics

 An <array-dim> that does not have a <bounds-list> designates a resizable array.

 A <bounds-list> contains at most 60 <dim-spec> elements.

 An <array-dim> with a <bounds-list> designates a fixed-size array with a number of dimensions

equal to the number of <dim-spec> elements in the <bounds-list>.

 The <constant-expression> in an <upper-bound> or <lower-bound> MUST evaluate to a data
value that is Let-coercible to the declared type Long.

 The upper bound of a dimension is specified by the Long data value of the <upper-bound> of the

<dim-spec> that corresponds to the dimension.

 If the <lower-bound> is present, its <constant-expression> provides the lower bound Long data
value for the corresponding dimension.

 If the <lower- bound> is not present the lower bound for the corresponding dimension is the
default lower bound for the containing module as specified in section 5.2.1.2.

 For each dimension, the lower bound value MUST be less than or equal to the upper bound value.

5.2.3.1.4 Variable Type Declarations

A type specification determines the specified type of a declaration.

as-auto-object = "as" "new" class-type-name

as-type = "as" type-spec

type-spec = fixed-length-string-spec / type-expression

fixed-length-string-spec = "string" "*" string-length

string-length = constant-name / INTEGER

constant-name = simple-name-expression

Static Semantics

 The specified type of an <as-auto-object> element is the specified type of its <class-type-name>

element.

 The specified type of an <as-auto-object> element MUST be a named class.

 The instancing mode of the specified type of an <as-auto-object> MUST NOT be Public Not
Creatable unless that type is defined in the same project as that which contains the module
containing the <as-auto-object> element.

 The specified type of an <as-type> is the specified type of its <type-spec> element.

 The specified type of a <type-spec> is the specified type of its constituent element.

53 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The specified type of a <fixed-length-string-spec> is String*n where n is the data value of its
<string-length> element.

 The specified type of a <type-expression> is the declared type referenced by the < type-
expression>.

 A <constant-name> that is an element of a <string-length> MUST reference an explicitly-declared
constant data value that is Let-coercible to the declared type Long.

 The data value of a <string-length> element is the data value of its <INTEGER> element or the
data value referenced by its <constant-name> Let-coerced to declared type Long.

 The data value of a <string-length> element MUST be less than or equal to 65,526.

 The <simple-name-expression> element of <constant-name> MUST be classified as a value.

5.2.3.1.5 Implicit Type Determination

An <IDENTIFIER> that is not explicitly associated with a declared type via either a <type-spec> or a

<type-suffix> might be implicitly associated with a declared type. The implicit declared type of such a
name is defined as follows:

 If the first letter of the name value of the <IDENTIFIER> has is in the character span of a <letter-
spec> that is part of a <def-directive> within the module containing the <IDENTIFIER> then its
declared type is as specified in section 5.2.2.

 Otherwise its implicit declared type is Variant.

5.2.3.2 Const Declarations

 public-const-declaration = ("Global" / "Public") module-const-declaration
 private-const-declaration = ["Private"] module-const-declaration
 module-const-declaration = const-declaration

 const-declaration = "Const" const-item-list
 const-item-list = const-item *["," const-item]
 const-item = typed-name-const-item / untyped-name-const-item

 typed-name-const-item = TYPED-NAME "=" constant-expression
 untyped-name-const-item = IDENTIFIER [const-as-clause] "=" constant-expression

 const-as-clause = "as" BUILTIN-TYPE

Static Semantics

 The <BUILTIN-TYPE> element of an <const-as-clause> might not be "object" or "[object]".

 Each constant defined within a <module-const-declaration> contained within the same module

MUST have a different name.

 Each constant defined within a <module-const-declaration> MUST have a constant name that is
different from any other module variable name, module constant name, enum member name, or
procedure name that is defined within the same module.

 A constant declaration that is part of a <public-const-declaration> declares a public constant. The

constant is accessible within the enclosing project. If the enclosing module is a procedural module
that is not a private module, then the constant is also accessible within projects that reference the
enclosing project.

54 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 A constant declaration that is part of a <private-const-declaration> declares a private constant.
The constant is accessible within the enclosing module.

 If a constant defined by a <public-const-declaration> has a constant name that is the same as the
name of a project or name of a module then all references to the variable name MUST be module

qualified unless they occur within the module that contains the <public-const-declaration>

 A constant defined by a <module-const-declaration> can have a constant name that is the same

as the enum name of a <enum-declaration> defined in the same module but such a constant

cannot be referenced using its constant name even if the constant name is module qualified.

 If a constant defined by a <public-const-declaration> has a constant name that is the same as the

enum name of a public <enum-declaration> in a different module, all references to the constant
name MUST be module qualified unless they occur within the module that contains the <public-

const-declaration>.

 A <typed-name-const-item> defines a constant whose name is the name value of its <TYPED-
NAME> element and whose declared type is the declared type corresponding to the <type-suffix>
of the <TYPED-NAME> as specified in section 3.3.5.3.

 A <untyped-name-const-item> defines a constant whose name is the name value of its

<IDENTIFIER> element.

 If an <untyped-name-const-item> does not include a <const-as-clause>, the declared type of the
constant is the same as the declared type of its <constant-expression> element. Otherwise, the
constant’s declared type is the declared type of the <BUILTIN-TYPE> element of the <const-as-
clause>.

 Any <constant-expression> used within a <const-item> might not reference functions, even the

intrinsic functions normally permitted within a <constant-expression>.

 The data value of the <constant-expression> element in a <const-item> MUST be let-coercible to

the declared type of the constant defined by that <const-item>

 The constant binding of a constant defined by a <const-item> is the data value of the <constant-
expression> Let-coerced to the declared type of the constant.

5.2.3.3 User Defined Type Declarations

 public-type-declaration = ["global" / "public"] udt-declaration
 private-type-declaration = "private" udt-declaration
 udt-declaration = "type" untyped-name EOS udt-member-list EOS "end" "type"
 udt-member-list = udt-element *[EOS udt-element]
 udt-element = rem-statement / udt-member
 udt-member = reserved-name-member-dcl / untyped-name-member-dcl
 untyped-name-member-dcl = IDENTIFIER optional-array-clause
 reserved-name-member-dcl = reserved-member-name as-clause
 optional-array-clause = [array-dim] as-clause

 reserved-member-name = statement-keyword / marker-keyword / operator-identifier / special-
form / reserved-name / literal-identifier / reserved-for-implementation-use / future-reserved

Static Semantics

 The UDT name of the containing <udt-declaration> is the name value of the <untyped-name>
that follows the Type keyword (section 3.3.5.1).

55 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Each <udt-declaration>defines a unique declared type and unique UDT value type each of which is
identified by the UDT name.

 A UDT declaration that is part of a <public-const-declaration> declares a public UDT. The UDT is
accessible within the enclosing project. If the enclosing module is a procedural module that is not

a private module, then the UDT is also accessible within projects that reference the enclosing
project.

 A UDT declaration that is part of a <private-const-declaration> declares a private UDT. The UDT is
accessible within the enclosing module.

 If an <udt-declaration> is an element of a <private-type-declaration> its UDT name cannot be
the same as the enum name of any <enum-declaration> or the UDT name of any other <udt-
declaration> within the same module.

 If an <udt-declaration> is an element of a <public-type-declaration> its UDT name cannot be the
same as the enum name of a public <enum-declaration> or the UDT name of any <public-type-
declaration> within any module of the project that contains it.

 If an <udt-declaration> is an element of a <public-type-declaration> its UDT name cannot be the
same as the name of any project or library within the current VBA Environment or the same name
as any module within the project that contains the <udt-declaration>.

 The name value of a <reserved-member-name> is the text of its reserved identifier name.

 At least one <udt-element> in a <udt-member-list> MUST consist of a <udt-member>.

 If a <udt-member> is an <untyped-name-member-dcl> its udt member name is the name value
of the <IDENTIFIER> element of the <untyped-name-member-dcl>.

 If a <udt-member> is a <reserved-name-member-dcl> its udt member name is the name value
of the <reserved-member-name> element of the <reserved-name-member-dcl>.

 Each <udt-member> within a <udt-member-list> MUST have a different udt member name.

 Each <udt-member> defines a named element of the UDT value type identified by the UDT name
of the containing <udt-declaration>.

 Each <udt-member> defines a named element of the UDT value type and declared type identified
by the UDT name of the containing <udt-declaration>.

 The declared type of the UDT element defined by a <udt-member> is defined as follows:

 If the <udt-member> contains an <array-dim> that does not contain a <bounds-list>, then
the declared type of the UDT element is resizable array with a declared element type is the

specified type of the <as-clause> contained in the <udt-member>.

 If the <udt-member> contains an <array-dim> that contains a <bounds-list>, then the
declared type of the UDT element is fixed size array whose declared element type is the

specified type of the <as-clause> contained in the <udt-member>. The number of dimensions
and the upper and lower bound for each dimension is as defined by the <bounds-list>.

 Otherwise the declared type of the UDT element is the specified type of the <as-clause>.

 If a <udt-member> contains an <as-clause> that consists of an <as-auto-object> then the
corresponding dependent variable (or each dependent variable of an array variable) of any
variable whose declared type is the UDT name of the containing <udt-declaration> is an automatic
instantiations variable.

56 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.2.3.4 Enum Declarations

global-enum-declaration = "global" enum-declaration

public-enum-declaration = ["public"] enum-declaration

private-enum-declaration = "private" enum-declaration

enum-declaration = "enum" untyped-name EOS enum-member-list EOS "end" "enum"

enum-member-list = enum-element *[EOS enum-element]

enum-element = rem-statement / enum-member

enum-member = untyped-name ["=" constant-expression]

<global-enum-declaration> provides syntactic compatibility with other dialects of the Basic
language and historic versions of VBA.

Static Semantics.

 A <global-enum-declaration> is not allowed in class modules.

 The name value of the <untyped-name> that follows the Enum keyword (section 3.3.5.1) is the
enum name of the containing <enum-declaration>.

 An Enum declaration that is part of a <global-variable-declaration> or <public-enum-declaration>
declares a public Enum type. The Enum type and its Enum members are accessible within the

enclosing project. If the enclosing module is a class module or a procedural module that is not a
private module, then the Enum type and its Enum members are also accessible within projects
that reference the enclosing project.

 An Enum declaration that is part of a <private-enum-declaration> declares a private Enum type.
The Enum type and its enum members are accessible within the enclosing module.

 The enum name of a <private-enum-declaration> cannot be the same as the enum name of any
other <enum-declaration> or as the UDT name of a <udt-declaration> within the same module.

 The enum name of a <public-enum-declaration> cannot be the same as the enum name of any

other public <enum-declaration> or the UDT name of any public <udt-declaration> within any

module of the project that contains it.

 The enum name of a <public-enum-declaration> cannot be the same as the name of any project
or library within the current VBA Environment or the same name as any module within the project
that contains the <enum-declaration>.

 At least one <enum-element> in an <enum-member-list> MUST consist of a <enum-member>.

 The enum member name of an <enum-member> is the name value of its <untyped-name>.

 Each <enum-member> within a <enum-member-list> MUST have a different enum member
name.

 An enum member name might not be the same as any variable name, or constant name that is

defined within the same module.

 If an <enum-member> contains a <constant-expression>, the data value of the <constant-

expression> MUST be coercible to value type Long.

 The <constant-expression> of an <enum-member> might not contain a reference to the enum
member name of that <enum-member>.

 The <constant-expression> of an <enum-member> might not contain a reference to the enum
member name of any <enum-member> that it precedes in its containing <enum-member-list>

57 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The <constant-expression> of an <enum-member> might not contain a reference to the enum
member name of any <enum-member> of any <enum-declaration> that it precedes in the

containing module declaration section.

 If an <enum-member> contains a <constant-expression>, the data value of the <enum-

member> is the data value of its <constant-expression> coerced to value type Long. If an
<enum-member> does not contain a <constant-expression> and it is the first element of a
<enum-member-list> its data value is 0. If an <enum-member> does not contain a <constant-
expression> and is not the first element of a <enum-member-list> its data value is 1 greater than
the data value of the preceding element of its containing <enum-member-list>.

 The declared type of a <enum-member> is Long.

 When an enum name (possibly qualified by a project) appears in an <as-type> clause of any

declaration, the meaning is the same as if the enum name was replaced with the declared type

Long.

5.2.3.5 External Procedure Declaration

public-external-procedure-declaration = ["public"] external-proc-dcl

private-external-procedure-declaration = "private" external-proc-dcl

external-proc-dcl = "declare" ["ptrsafe"] (external-sub / external-function)

external-sub = "sub" subroutine-name lib-info [procedure-parameters]

external-function = "function" function-name lib-info [procedure-parameters] [function-

type]

lib-info = lib-clause [alias-clause]

lib-clause = "lib" STRING

alias-clause = "alias" STRING

Static Semantics.

 <public-external-procedure-declaration> elements and <private-external-procedure-declaration>
elements are external procedures.

 <public-external-procedure-declaration> elements and <private-external-procedure-declaration>
elements are procedure declarations and the static semantic rules for procedure declarations
define in section 5.3.1 apply to them.

 An <external-sub> element is a function declaration and an <external-function> is a subroutine
declaration.

 It is implementation-defined whether an external procedure name is interpreted in a case sensitive

or case-insensitive manner.

 If the first character of the <STRING> element of an <alias-clause> is the character %x0023
("#") the element is an ordinal alias and the remainder of the string MUST conform to the
definition of the <integer-literal> rule of the lexical token grammar. The data value of the
<integer-literal> MUST be in the range of 0 to 32,767.

 If the first character of the data value of the <STRING> element of an <alias-clause> is not the

character %x0023 ("#"), the data value of the <STRING> element MUST conform to an
implementation-defined syntax.

58 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 An implementation MAY define additional restrictions on the parameter types, function type,
parameter mechanisms, and the use of optional and ParamArray parameters in the declaration of

external procedures.

 An implementation MAY define additional restrictions on external procedure declarations that do

not specify the PtrSafe keyword.

Runtime Semantics

 When an external procedure is called, the data value of the <STRING> element of its <lib-clause>
is used in an implementation-defined manner to identify a set of available procedures that are
defined using implementation-defined means other than the VBA Language.

 When an external procedure is called, the data value of the <STRING> element of it optional
<alias-clause> is used in an implementation-defined manner to select a procedure from the set of
available procedure. If an <alias-clause> is not present the name value of the procedure name is
used in an implementation-defined manner to select a procedure from the set of available
procedure.

 An external procedure is invoked and arguments passed as if the external procedure was a

procedure defined in the VBA language by a <subroutine-declaration> or <function-declaration>
containing the <procedure-parameters> and <function-type> elements of the external
procedure’s <external-proc-dcl>.

5.2.3.6 Circular Module Dependencies

Static Semantics.

 Circular reference between modules that involving Const Declarations (section 5.2.3.2), Enum
Declarations (section 5.2.3.4), UDT Declarations (section 5.2.3.3), Implements Directive (section
5.2.4.2), or Event Declarations (section 5.2.4.3) are not allowed.

 Any circular dependency among modules that includes any of these declaration forms is an illegal

circularity, even if the dependency chain includes other forms of declaration.

 Circular dependency chains among modules that do not include any of these specific declaration
forms are allowed.

5.2.4 Class Module Declarations

Class modules define named classes that can be referenced as declared types by other modules within
a VBA Environment.

5.2.4.1 Non-Syntactic Class Characteristics

Some of the characteristic of classes are not defined within the <class-module-body> but are instead
defined using module attribute values and possibly implementation-defined mechanisms.

The name of the class defined by this class module is the name of the class module itself.

5.2.4.1.1 Class Accessibility and Instancing

The ability to reference a class by its name is determined by the accessibility of its class definition.
This accessibility is distinct from the ability to use the class name to create new instances of the class.

The accessibility and instancing characteristics of a class are determined by the module attributes on
its class module declaration, as defined by the following table:

59 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Instancing Mode Meaning Attribute Values

Private (default) The class is accessible only within the enclosing
project.

Instances of the class can only be created by

modules contained within the project that

defines the class.

VB_Exposed=False

VB_Creatable=False

Public Not Creatable The class is accessible within the enclosing

project and within projects that reference the

enclosing project.

Instances of the class can only be created by

modules within the enclosing project. Modules in

other projects can reference the class name as a

declared type but can’t instantiate the class

using new or the CreateObject function.

VB_Exposed=True

VB_Creatable=False

Public Creatable The class is accessible within the enclosing
project and within projects that reference the
enclosing project.

Any module that can access the class can create

instances of it.

VB_Exposed=True

VB_Creatable=True

An implementation MAY define additional instancing modes that apply to classes defined by library
projects.

5.2.4.1.2 Default Instance Variables Static Semantics

 A class module has a default instance variable if its VB_PredeclaredId attribute or

 VB_GlobalNamespace attribute has the value "True". This default instance variable is created with
module extent as if declared in a <module-variable-declaration> containing an <as-autoobject>

element whose <class-type-name> was the name of the class.

 If this class module’s VB_PredeclaredId attribute has the value "True", this default instance
variable is given the name of the class as its name. It is invalid for this named variable to be the
target of a Set assignment. Otherwise, if this class module’s VB_PredeclaredId attribute does not
have the value "True", this default instance variable has no publicly expressible name.

 If this class module’s VB_GlobalNamespace attribute has the value "True", the class module is
considered a global class module, allowing simple name access to its default instance’s members

as specified in section 5.6.10.

 Note that if the VB_PredeclaredId and VB_GlobalNamespace attributes both have the value "True",
the same default instance variable is shared by the semantics of both attributes.

60 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.2.4.2 Implements Directive

 implements-directive = "Implements" class-type-name

Static Semantics.

 An <implements-directive> cannot occur within an extension module.

 The specified class of the <class-type-name> is called the interface class.

 The interface class can’t be the class defined by the class module containing the <implements-
directive>

 A specific class can’t be identified as an interface class in more than one <implements-directive>
in the same class module.

 The unqualified class names of all the interface classes in the same class module MUST be distinct

from each other.

 The name value of the interface class’s class name with an appended underscore character

(Unicode u+005F) is an implemented interface name prefix within the class module containing
this directive.

 If a class module contains more than one <implements-directive> then none of its implemented
interface name prefixes can be occur as the initial text of any other of its implemented name
prefix.

 A class can’t be used as an interface class if the names of any of its public variable or method
methods contain an underscore character (Unicode u+005F).

 A class module containing an <implements-directive> MUST contain an implemented name
declaration corresponding to each public method declaration contained within the interface class’
class module.

 A class module containing an <implements-directive> MUST contain an implemented name
declaration corresponding to each public variable declaration contained within the interface class’
class module. The set of required implemented name declarations depends upon of the declared

type of the public variable as follows:

 If the declared type of the variable is Variant there MUST be three corresponding implemented
name declarations including a <property-get-declaration> and a <property-lhs-declaration>.

 If the declared type of the variable is Object or a named class there MUST be two
corresponding implemented name declarations including a <property-get-declaration> and a
<property-lhs-declaration>.

 If the declared type of the variable is anything else, there MUST be two corresponding

implemented name declarations including a <property-get-declaration> and a <property-lhs-
declaration>.

5.2.4.3 Event Declaration

 event-declaration = ["Public"]
 "Event" IDENTIFIER [event-parameter-list]
 event-parameter-list = "(" [positional-parameters] ")"

Static Semantics

61 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 An <event-declaration> defines an event member of the class defined by the enclosing class
module.

 An <event-declaration> that does not begin with the keyword (section 3.3.5.1) Public has the
same meaning as if the keyword Public was present.

 The event name of the event member is the name value of the <IDENTIFIER>.

 Each <event-declaration> within a class-module-declaration-section MUST specify a different
event name.

 An event name can have the same name value as a module variable name, module constant

name, enum member name, or procedure name that is defined within the same module.

 The name of an event MUST NOT contain any underscore characters (Unicode u+005F).

 Runtime Semantics

 Any <positional-param> elements contained in an <event-parameter-list> do not define any
variables or variable bindings. They simply describe the arguments that MUST be provided to a

<raiseevent-statement> that references the associated event name.

5.3 Module Code Section Structure

 procedural-module-code-section = *(LINE-START procedural-module-code-element LINE-END)
 class-module-code-section = *(LINE-START class-module-code-element LINE-END)

 procedural-module-code-element = common-module-code-element
 class-module-code-element = common-module-code-element / implements-directive

 common-module-code-element = rem-statement / procedure-declaration

 procedure-declaration = subroutine-declaration / function-declaration / property-get-
declaration / property-LHS-declaration

There are several syntactic forms used to define procedures within the VBA Language. In some
contexts of this specification it is necessary to refer to various kinds of declarations. The following
table defines the kinds of declarations used in this specification and which grammar productions. If a
checkmark appears in a cell, the kind of declaration defined in that column can refer to a declaration
defined by that row’s grammar production.

Grammar
Rule

Procedure
Declaration

Method

Declaration
Property
Declaration

Subroutine
Declaration

Function
Declaration

<subroutine-
declaration>

√ √ √

<function-
declaration>

√ √ √

<external-
sub>

√ √

<external- √ √

62 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Grammar
Rule

Procedure
Declaration

Method

Declaration
Property
Declaration

Subroutine
Declaration

Function
Declaration

function>

<property-
get-
declaration>

√ √ √ √

<property-lhs-
declaration>

√ √ √ √

5.3.1 Procedure Declarations

 subroutine-declaration = procedure-scope [initial-static]
 "sub" subroutine-name [procedure-parameters] [trailing-static] EOS
 [procedure-body EOS]
 [end-label] "end" "sub" procedure-tail

 function-declaration = procedure-scope [initial-static]
 "function" function-name [procedure-parameters] [function-type]
[trailing-static] EOS

 [procedure-body EOS]
 [end-label] "end" "function" procedure-tail

 property-get-declaration = procedure-scope [initial-static]
 "Property" "Get"
 function-name [procedure-parameters] [function-type] [trailing-static] EOS
 [procedure-body EOS]
 [end-label] "end" "property" procedure-tail

 property-lhs-declaration = procedure-scope [initial-static]
 "Property" ("Let" / "Set")
 subroutine-name property-parameters [trailing-static] EOS
 [procedure-body EOS]
 [end-label] "end" "property" procedure-tail

 end-label = statement-label-definition
 procedure-tail = [WS] LINE-END / single-quote comment-body / ":" rem-statement

Static Semantics

 A function declaration implicitly defines a local variable, known as the function result variable,
whose name and declared type are shared with the function and whose scope is the body of the
function.

 A function declaration defines a procedure whose name is the name value of its <function-name>
and a subroutine declaration defines a procedure whose name is the name value of its

<subroutine-name>

 If the <function-name> element of a function declaration is a <TYPED-NAME> then the function
declaration might not include a <function-type> element.

 The declared type of a function declaration is defined as follows:

 If the <function-name> element of a function declaration is a <TYPED-NAME> then the
declared type of the function declaration is the declared type corresponding to the <type-

suffix> of the <TYPED-NAME> as specified in section 3.3.5.3.

63 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If the <function-name> element of a function declaration is not a <TYPED-NAME> and the
function declaration does not include a <function-type> element its declared type is its implicit

type as specified in section 5.2.3.1.5.

 If a function declaration includes a <function-type> element then the declared type of the

function declaration is the specified type of the <function-type> element.

 The declared type of a function declaration that is part of a <class-module-code-section> might
not be an UDT that is defined by a <private-type-declaration>.

 The declared type of a function declaration might not be a private enum name.

 If the optional <end-label> is present, its <statement-label> MUST have a label value that is
different from the label value of any <statement-label> defined within the <procedure-body>.

Runtime Semantics

 The code contained by a procedure is executed during procedure invocation.

 Each invocation of a procedure has a distinct variable corresponding to each ByVal parameter or
procedure extent variable declaration within the procedure.

 Each invocation of a function declaration has a distinct function result variable.

 A function result variable has procedure extent.

 Within the <procedure-body> of a procedure declaration that is defined within a <class-module-
code-section> the declared type of the reserved name Me is the named class defined by the
enclosing class module and the data value of "me" is an object reference to the object that is the
target object of the currently active invocation of the function.

 Procedure invocation consists of the following steps:

1. Create procedure extent variables corresponding to ByVal parameters.

2. Process actual invocation augments as defined in section 5.3.1.11.

3. Set the procedure’s error handling policy (section 5.4.4) to the default policy.

4. Create the function result variable and any procedure extent local variables declared within
the procedure.

5. Execute the <procedure-body>.

6. If the procedure is a function, return the data value of the result variable to the invocation site

as the function result.

7. The invocation is complete and execution continues at the call site.

5.3.1.1 Procedure Scope

 procedure-scope = ["global" / "public" / "private" / "friend"]

Static Semantics

64 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 A <procedure-declaration> that does not contain a <procedure-scope> element has the same
meaning as if it included <procedure-scope> element consisting of the Public keyword (section

3.3.5.1).

 A <procedure-declaration> that includes a <procedure-scope> element consisting of the Public

keyword or Global keyword declares a public procedure. The procedure is accessible within the
enclosing project. If the enclosing module is a class module or is a procedural module that is not a
private module, then the procedure is also accessible within projects that reference the enclosing
project.

 A <procedure-declaration> that includes a <procedure-scope> element consisting of the Friend
keyword declares a friend procedure. The procedure is accessible within the enclosing project.

 A <procedure-declaration> that includes a <procedure-scope> element consisting of the Private

keyword declares a private procedure. The procedure is accessible within the enclosing module.

 A <procedure-scope> consisting of the keyword Global might not be an element of a <procedure-
declaration> contained in a <class-module-code-section>

 A <procedure-scope> consisting of the keyword Friend might not be an element of a <procedure-
declaration> contained in a <procedural-module-code-section>

5.3.1.2 Static Procedures

 initial-static = "static"
 trailing-static = "static"

Static Semantics

 A <procedure-declaration> containing either an <initial-static> element or a <trailing-static>
element declares a static procedure.

 No <procedure-declaration> contains both an <initial-static> element and a <trailing-static>
element.

Runtime Semantics

 All variables declared within the <procedure-body> of a static procedure have module extent.

 All variables declared within the <procedure-body> of a non-static procedure have procedure
extent.

5.3.1.3 Procedure Names

 subroutine-name = IDENTIFIER / prefixed-name
 function-name = TYPED-NAME / subroutine-name
 prefixed-name = event-handler-name / implemented-name / lifecycle-handler-name

Static Semantics

 The procedure name of a procedure declaration is the name value of its contained <subroutine-
name> or <function-name> element.

 If a procedure declaration whose visibility is public has a procedure name that is the same as the
name of a project or name of a module then all references to the procedure name MUST be

65 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

explicitly qualified with its project or module name unless the reference occurs within the module
that defines the procedure.

5.3.1.4 Function Type Declarations

 function-type = "as" type-expression [array-designator]
 array-designator = "(" ")"

Static Semantics

 The specified type of a <function-type> that does not include an <array-designator> element is

the declared type referenced by its <type-expression> element.

 The specified type of a <function-type> that includes an <array-designator> element is resizable

array with a declared element type that is the declared type referenced by its <type-expression>

element.

5.3.1.5 Parameter Lists

 procedure-parameters = "(" [parameter-list] ")"
 property-parameters = "(" [parameter-list ","] value-param ")"

 parameter-list = (positional-parameters "," optional-parameters) /
 (positional-parameters ["," param-array]) /
 optional-parameters /
 param-array

 positional-parameters = positional-param *("," positional-param)
 optional-parameters = optional-param *("," optional-param)
 value-param = positional-param
 positional-param = [parameter-mechanism] param-dcl
 optional-param = optional-prefix param-dcl [default-value]
 param-array = "paramarray" IDENTIFIER "(" ")" ["as" ("variant" / "[variant]")]

 param-dcl = untyped-name-param-dcl / typed-name-param-dcl
 untyped-name-param-dcl = IDENTIFIER [parameter-type]
 typed-name-param-dcl = TYPED-NAME [array-designator]
 optional-prefix = ("optional" [parameter-mechanism]) / ([parameter-mechanism] ("optional"))
 parameter-mechanism = "byval" / " byref"
 parameter-type = [array-designator] "as" (type-expression / "Any")
 default-value = "=" constant-expression

Static Semantics

 A <parameter-type> element only include the keyword Any if the <parameter-type> is part of a
<external-proc-dcl>.

 The name value of a <typed-name-param-dcl> is the name value of its <TYPED-NAME> element.

 The name value of an <untyped-name-param-dcl> is the name value of its <IDENTIFIER>
element.

 The name value of a <param-dcl> is the name value of its constituent <untyped-name-param-
dcl> or <typed-name-param-dcl> element.

 The name of a <positional-param> or a <optional-param> element is the name value of its
<param-dcl> element.

 The name of a <param-array> element is the name value of its <IDENTIFIER> element.

66 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Each <positional-param>, <optional-param>, and <param-array> that are elements of the same
<parameter-list>, <property-parameters>, or <event-parameter-list> MUST have a distinct

names.

 The name of each <positional-param>, <optional-param>, and <param-array> that are elements

of a function declaration MUST be different from the name of the function declaration.

 The name value of a <positional-param>, <optional-param>, or a <param-array> might not be
the same as the name of any variable defined by a <local-variable-declaration>, a <static-
variable-declaration>, a <redim-statement>, or a <local-const-declaration> within the
<procedure-body> of the containing procedure declaration.

 The declared type of a <positional-param>, <optional-param>, or <value-param> is the declared
type of its constituent <param-dcl>.

 The declared type of a <param-dcl>that consists of an <untyped-name-param-dcl>is defined as
follows:

 If the optional <parameter-type> element is not present, the declared type is the implicit type
of the <IDENTIFIER> as specified in section 5.2.3.1.5.

 If the specified optional <parameter-type> element is present but does not include an <array-
designator> element the declared type is the declared type referenced by its <type-

expression> element.

 If the specified optional <parameter-type> element is present and includes an <array-
designator> element the declared type is resizable array whose element type is the declared
type referenced by its <type-expression> element.

 The declared type of a <param-dcl> that consists of a <typed-name-param-dcl> is defined as
follows:

 If the optional <array-designator> element is not present the declared type is the declared

type corresponding to the <type-suffix> of the <TYPED-NAME> as specified in section 3.3.5.3.

 If the optional <array-designator> element is present then the declared type of the defined
variable is resizable array with a declared element type corresponding to the <type-suffix> of
the <TYPED-NAME> as specified in section 3.3.5.3.

 The declared type of a <param-dcl> that is contained in an event declaration or a public
procedure declaration in a <class-module-code-section> might not be a private UDT, a public UDT
defined in a procedural module, or a private enum name.

 The declared type of an <optional-param> might not be an UDT.

 If the declared type of an <optional-param> is not Variant and its type was implicitly specified by
an applicable <def-directive>, it MUST have a <default-value> clause specified.

 A <default-value> clause specifies the default value of a parameter. If a <default-value> clause is
not specified for a Variant parameter, the default value is an implementation-defined error value

that resolves to standard error code 448 (“Named argument not found”). If a <default-value>

clause is not specified for a non-Variant parameter, the default value is that of the parameter’s
declared type.

 A <positional-param> or <optional-param> element that does not include a <parameter-
mechanism> element has the same meaning as if it included a <parameter-mechanism> element
consisting of the keyword ByRef.

 A <param-dcl> that includes a <parameter-mechanism> element consisting of the keyword
ByVal might not also include an <array-designator> element.

67 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The declared type of the <IDENTIFIER> of a <param-array>is resizable array of Variant.

Runtime Semantics

 Each invocation of a function has a distinct function result variable.

 A function result variable has procedure extent.

 Each <positional-param> or <optional-param> that includes a <parameter-mechanism> element
consisting of the keyword ByVal defines a local variable with procedure extent and whose
declared type is the declared type of the constituent <param-dcl> element. The corresponding
parameter name is bound to the local variable.

 Each <positional-param> that includes a <parameter-mechanism> element consisting of the
keyword ByVal defines a local name binding to a pre-existing variable corresponding to the
corresponding positional argument.

 Each <optional-param> that includes a <parameter-mechanism> element consisting of the

keyword ByRef defines a local variable with procedure extent and whose declared type is the
declared type of the constituent <param-dcl> element.

 If an invocation of the containing procedure does not include an argument corresponding to

the <optional-param> the parameter name is bound to the local variable for that invocation.

 If an invocation of the containing procedure includes an argument corresponding to the
<optional-param> the parameter name is locally bound to the pre-existing variable
corresponding to the argument.

 Upon invocation of a procedure the data value of the constituent <default-value> element of each
<optional-param> that does not have a corresponding argument is assigned to the variable

binding of the parameter name of the <optional-param>.

 Each procedure that is a method has an implicit ByVal parameter called the current object that
corresponds to the target object of an invocation of the method. The current object acts as an

anonymous local variable with procedure extent and whose declared type is the class name of the
class module containing the method declaration. For the duration of an activation of the method
the data value of the current object variable is target object of the procedure invocation that
created that activation. The current object is accessed using the Me keyword within the

<procedure-body> of the method but cannot be assigned to or otherwise modified.

 If a <parameter-list> of a procedure contains a <param-array> element, then each invocation of
the procedure defines an entity called the param array that behaves as if it was an array whose
elements were “byref” <positional-param> elements whose declared types were Variant. An
access to an element of the param array behaves as if it were an access to a named positional
parameter. Arguments are bound to the elements of a param array as defined in section 5.3.1.11.

5.3.1.6 Subroutine and Function Declarations

Static Semantics

 Each <subroutine-declaration> and <function-declaration> MUST have a procedure name that is
different from any other module variable name, module constant name, enum member name, or
procedure name that is defined within the same module.

5.3.1.7 Property Declarations

Static Semantics

68 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 A <property-LHS-declaration> containing the keyword Let is a property let declaration.

 A <property-LHS-declaration> containing the keyword Set is a property set declaration.

 Each property declaration MUST have a procedure name that is different from the name of any
other module variable, module constant, enum member name, external procedure, <function-

declaration>, or <subroutine-declaration> that is defined within the same module.

 Each <property-get-declaration> in a module MUST have a different name.

 Each property let declaration in a module MUST have a different name.

 Each property set declaration in a module MUST have a different name.

 Within a module at a common procedure name can be shared by a <property-get-declaration>, a
property let declaration, and a property set declaration.

 Within a module all property declaration that share a common procedure name MUST have

equivalent <parameter-list> elements including the number of <positional-parameters>,
<optional-parameters> and <param-array> elements, the name value of each corresponding
parameter, the declared type of each corresponding parameter, and the actual <parameter-
mechanism> used for each corresponding parameter. However, corresponding <optional-param>
elements can differ in the presence and data value of their <default-value> elements and as can
whether or not the <parameter-mechanism> is implicitly specified or explicitly specified.

 The declared type of a <property-LHS-declaration> is the declared type of its <value-param>
element.

 The declared type of a property set declaration MUST be Object, Variant, or a named class.

 Within a module a property let declaration and a <property-get-declaration> that share a common
procedure name MUST have the same declared type.

 If the <value-param> of a <property-LHS-declaration> does not have a <parameter-mechanism>

element or has a <parameter-mechanism> consisting of the keyword ByRef, it has the same
meaning as if it instead had a <parameter-mechanism> element consisting of the keyword ByVal.

Runtime Semantics

 The <value-param> of a <property-LHS-declaration> always has the runtime semantics of a
ByVal parameter.

 If a <property-LHS-declaration> includes a <param-array> element the argument value
corresponding to the <value-param> in an invocation of the property is not included as an
element of its param array.

5.3.1.8 Event Handler Declarations

 event-handler-name = IDENTIFIER

Static Semantics

 A procedure declaration qualifies as an event handler if all of the following are true:

 It is contained within a class module.

69 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The name value of the subroutine name MUST begin with an event handler name prefix
corresponding to a WithEvents variable declaration within the same class module as the

procedure declaration. The variable defined by the corresponding variable declaring
declaration is called the associated variable of the event handler.

 The procedure name text that follows the event handler name prefix MUST be the same as an
event name defined by the class that is the declared type of the associated variable. The
corresponding <event-declaration> is the handled event.

 An event handler is invalid if any of the following are true:

 The procedure declaration is not a <subroutine-declaration>.

 Its <parameter-list> is not compatible with the <event-parameter-list> of the handled event.
A compatible <parameter-list> is one that meets all of the following criteria:

 The number of <positional-parameters> elements MUST be the same.

 Each corresponding parameter has the same type and parameter mechanism. However,
corresponding parameters can differ in name and in whether the <parameter-
mechanism> is specified implicitly or explicitly.

5.3.1.9 Implemented Name Declarations

 implemented-name = IDENTIFIER

Static Semantics

 A procedure declaration qualifies as an implemented name declaration if all of the following are
true:

 The name value of the procedure name MUST begin with an implemented interface name

prefix defined by an <implements-directive> within the same class module. The class
identified by <class-type-name> element of the corresponding <implements-directive> is

called the interface class.

 The procedure name text that follows the implemented interface name prefix MUST be the
same as the name of a corresponding public variable or method defined by the interface class.
The corresponding variable or method is called the interface member.

 If the interface member is a variable declaration then the candidate implemented method
declaration MUST be a property declaration.

 If the interface member is a method declaration then the candidate implemented method
MUST be the same kind (<function-declaration>, <subroutine-declaration>, <property-get-
declaration>, <property-lhs-declaration>) of method declaration.

 An implemented name declaration whose corresponding interface member is a method MUST have

an <procedure-parameters> or <property-parameters> element that is equivalent to the
<procedure-parameters> or <property-parameters> element of the interface member according
to the following rules:

 The <parameter-list> elements including the number of <positional-parameters>, <optional-
parameters> and <param-array> elements, the declared type of each corresponding
parameter, the constant values of the <default-value> of corresponding <optional-
parameters> elements, and the actual <parameter-mechanism> used for each corresponding
parameter. However, corresponding <parameter-list> elements can differ in their parameter

70 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

names and whether or not the <parameter-mechanism> is implicitly specified or explicitly
specified.

 If the corresponding members are property set declarations or property get declarations their
<value-param> elements MUST be equivalent according to the preceding rule.

 If the interface member is a function declaration then the declared type of the function defined by
the implemented name declaration and the declared type of the function defined by the interface
member but be the same.

 If the interface member is a variable and the implemented name declaration is a property
declaration the declared type of the implemented name property declaration MUST be the same as
the declared type of the interface member.

Runtime Semantics

 When the target object of an invocation has a declared type that is an interface class of the actual

target object’s class and the method name is the name of an interface member of that interface
class then the actual invoked method is the method defined by the corresponding implemented
method declaration of target’s object’s class.

5.3.1.10 Lifecycle Handler Declarations

 lifecycle-handler-name = “Class_Initialize” / “Class_Terminate”

Static Semantics

 A lifecycle handler declaration is a subroutine declaration that meets all of the following criteria:

 It is contained within a class module.

 It’s procedure name is a <lifecycle-handler-name>

 The <procedure-parameters> element of the <subroutine-declaration> is either not present
or does not contain a <parameter-list> element

Runtime Semantics

 If a class defines a Class_Initialize lifecycle handler, that subroutine will be invoked as an method
each time an instance of that class is created by the New operator, by referencing a variable that
was declared with an <as-auto-object> and whose current value is Nothing, or by call the
CreateObject function (section 6.1.2.8.1.4) of the VBA Standard Library. The target object of the
invocation is the newly created object. The invocation occurs before a reference to the newly
created object is returned from the operations that creates it.

 If a class defines a Class_Terminate lifecycle handler, that subroutine will be invoked as an

method each time an instance of that class is about to be destroyed. The target object of the
invocation is the object that is about to be destroyed. The invocation of a Class_Terminate
lifecycle handler for an object can occur at precisely at the point the object becomes provably
inaccessible to VBA program code but can occur at some latter point during execution of the
program

 In some circumstances, a Class_Terminate lifecycle handler can cause the object to cease to be

provably inaccessible. In such circumstances, the object is not destroyed and is no longer a
candidate for destruction. However, if such an object later again becomes provably inaccessible it
can be destroyed but the Class_Terminate lifecycle handler will not be invoked again for that

71 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

target object. In other words, a “Class_Terminate” lifecycle handler executes at most once during
the lifetime of an object.

 If the error-handling policy of a Class_Terminate lifecycle handler is to use the error-handling
policy of the procedure that invoked it, the effect is as if the Class_Terminate lifecycle handler was

using the default error-handling policy. This means that errors raised in a Class_Terminate
lifecycle handler can only be handled in the handler itself.

5.3.1.11 Procedure Invocation Argument Processing

A procedure invocation consists of a procedure expression, classified as a property, function or
subroutine, an argument list consisting of positional and/or named arguments, and, if the procedure is
defined in a class module, a target object.

Static semantics.

The argument expressions contained within the argument list at the site of invocation are considered
the arguments. When the procedure expression is classified as a property, function or subroutine, the
argument list is statically checked for compatibility with the parameters defined in the declaration of
the referenced procedure as follows:

 The arguments are first mapped to the parameters as follows:

 Each positional argument specified is mapped in order from left to right to its respective
positional parameter. If there are more positional arguments than there are parameters, the
argument list is incompatible, unless the last parameter is a param array. If a positional
argument is specified with its value omitted and its mapped parameter is not optional, the
argument list is incompatible, even if a named argument is later mapped to this parameter.

 Each named argument is mapped to the parameter with the same name value. If there is no

parameter with the same name value, or if two or more named or positional arguments are
mapped to the same parameter, the argument list is incompatible.

 If any non-optional parameter does not have an argument mapped to it, the argument list is
incompatible.

 For each mapped parameter:

 If the parameter is ByVal:

 If the parameter has a declared type other than a specific class or Object, and a Let-

coercion from the declared type of its mapped argument to the parameter’s declared type
is invalid, the argument list is incompatible.

 If the parameter has a declared type of a specific class or Object, and the declared type
of its mapped argument is a type other than a specific class, Object, or Variant, the
argument list is incompatible.

 Otherwise, if the parameter is ByRef:

 If the parameter has a declared type other than a specific class, Object or Variant, and

the declared type of the parameter does not exactly match that of its mapped argument,
the argument list is incompatible.

 If the parameter has a declared type of a specific class or Object, and the declared type
of its mapped argument is a type other than a specific class or Object, the argument list
is incompatible.

A procedure invocation is invalid if the argument list is statically incompatible with the parameter list.

72 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Runtime semantics.

The runtime semantics of procedure invocation for procedures are as follows:

 The arguments are first mapped to the parameters as follows:

 Each positional argument specified is mapped in order from left to right to its respective
positional parameter. If there are more positional arguments than there are parameters,
runtime error 450 (Wrong number of arguments or invalid property assignment) is raised,
unless the last parameter is a param array, in which case the param array is set to a new
array of element type Variant with a lower bound of 0 containing the extra arguments in
order from left to right. If a positional argument is specified with its value omitted and its
mapped parameter is not optional, runtime error 448 (Named argument not found) is raised,

even if a named argument is later mapped to this parameter.

 Each named argument is mapped to the parameter with the same name value. If there is no
parameter with the same name value, or if two or more named or positional arguments are

mapped to the same parameter, runtime error 448 (Named argument not found) is raised.

 If the last parameter is a param array and there are not more positional arguments than there
are parameters, the param array is set to a new array of element type Variant with a lower
bound of 0 and an upper bound of -1.

 If any non-optional parameters does not have an argument mapped to it, runtime error 449
(Argument not optional) is raised.

 For each parameter, in order from left to right:

 If the parameter has no argument mapped to it, the parameter is ByVal, or the parameter is
ByRef and the mapped argument’s expression is classified as a value, function, property or
unbound member, a local variable is defined with procedure extent within the procedure being

invoked with the same name value and declared type as the parameter, and has its value
assigned as follows:

 If this parameter is optional and has no argument mapped to it, the parameter’s default
value is assigned to the new local variable.

 If the value type of this parameter’s mapped argument is a type other than a specific class
or Nothing, the argument’s data value is Let-assigned to the new local variable.

 Otherwise, if the value type of this parameter’s mapped argument is a specific class or

Nothing, the argument’s data value is Set-assigned to the new local variable.

 Otherwise, if the parameter is ByRef and the mapped argument’s expression is classified as a
variable:

 If the declared type of the parameter is a type other than a specific class, Object or
Variant, a reference parameter binding is defined within the procedure being invoked,
with the same name and declared type as the parameter, referring to the variable
referenced by the argument’s expression.

 If the declared type of the parameter is a specific class or Object:

 If the declared type of the formal exactly matches the declared type of the argument’s
expression, a reference parameter binding is defined within the procedure being
invoked, with the same name and declared type as the parameter, referring to the
variable referenced by the argument’s expression.

 If the declared type of the formal does not exactly match the declared type of the

argument’s expression:

73 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 A local variable is defined with procedure extent within the procedure being
invoked with the same name value and declared type as the parameter, with the

argument’s value Set-assigned to the new local variable.

 When the procedure terminates, if it has terminated normally, the value within the

local variable is Set-assigned back to the argument’s referenced variable.

 If the declared type of the parameter is Variant, a reference parameter binding is defined
within the procedure being invoked, with the same name as the parameter, referring to
the variable referenced by the argument’s expression. This reference parameter binding is
treated as having a declared type of Variant, except when used as the <l-expression>
within Let-assignment or Set-assignment, in which case it is treated as having the
declared type of the argument’s referenced variable.

 For each unmapped optional parameter, a local variable is defined with procedure extent within
the procedure being invoked with the same name value and declared type as the parameter, and
has its value assigned as follows:

 If the parameter has a specified default value other than Nothing, this default value is Let-
assigned to the new local variable.

 If the parameter has a specified default value of Nothing, this default value is Set-assigned to

the new local variable.

 If the parameter has no specified default value, the new local variables is initialized to the
default value for its declared type.

There can be implementation-specific differences in the semantics of parameter passing during
invocation of procedures imported from a library project.

5.4 Procedure Bodies and Statements

Procedure bodies contain the imperative statements that describe the algorithmic actions of a VBA

procedure. A procedure body also includes definitions of statement labels and declarations for local
variables whose usage is private to the procedure.

 procedure-body = statement-block

Static Semantics

 The label values of all <statement-label-definition> elements within the <statement-block> and
any lexically contained <statement-block> elements MUST be unique.

 The label values of all <statement-label-definition> elements within the <statement-block> of a
<procedure-body> MUST be distinct from the label value of the <end-label> of the containing
procedure declaration.

5.4.1 Statement Blocks

A statement block is a sequence of 0 or more statements.

 statement-block = *(block-statement EOS)

 block-statement = statement-label-definition / rem-statement / statement / attribute-
statement

 attribute-statement = attribute [IDENTIFIER "."] reserved-for-implementation-use attr-eq
[quoted-identifier / boolean-literal-identifier]

74 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 statement = control-statement / data-manipulation-statement / error-handling-statement /
file-statement

Runtime Semantics

 Execution of a <statement-block> starts by executing the first <block-statement> contained in
the block and continues in sequential order until either the last contained <block-statement> is
executed or a <control-statement> explicitly transfers execution to a <statement-label-

definition> that is not contained in the <statement-block>.

 Execution of a <statement-block> can begin by a <control-statement> transferring execution to a
<statement-label-definition> contained within the <statement-block>. In that case, execution
sequential statement execution begins with the target <statement-label-definition> and any
<block-statement> elements preceding the target <statement-label-definition> are not executed.

 <control-statement> elements within a <statement-block> can modify sequential execution order
by transferring the current point of execution to a <statement-label-definition> contained within

the same <statement-block>.

 An identifier followed by “:” at the beginning of a line is always interpreted as a <statement-label-
definition> rather than a <statement>.

5.4.1.1 Statement Labels

 statement-label-definition = LINE-START ((identifier-statement-label “:”) / (line-number-
label [“:”]))

 statement-label = identifier-statement-label / line-number-label
 statement-label-list = statement-label [“,” statement-label]
 identifier-statement-label = IDENTIFIER
 line-number-label = INTEGER

Static Semantics.

 The name value of the <IDENTIFIER> in <identifier-statement-label> might not be "Randomize".

 If <statement-label> is an <INTEGER>, it data value MUST be in the inclusive range 0 to
2,147,483,647.

 The label value of a <statement-label-definition> is the label value of its constituent <identifier-
statement-label> or its constituent <line-number-label>.

 The label value of a <statement-label> is the label value of its constituent <identifier-statement-
label> or its constituent <line-number-label>.

 The label value of an <identifier-statement-label> is the name value of its constituent
<IDENTIFIER> element.

 The label value of a <line-number-label> is the data value of its constituent <INTEGER> element.

 It is an error for a procedure declaration to contain more than one <statement-label-definition>

with the same label value.

Runtime Semantics.

 Executing a <statement-label-definition> has no observable effect.

75 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.4.1.2 Rem Statement

A <rem-statement> contains program commentary text that is that has no effect upon the meaning of
the program.

 rem-statement = "Rem" comment-body

Runtime Semantics.

 Executing a <rem-statement> has no observable effect.

5.4.2 Control Statements

Control statements determine the flow of execution within a program.

 control-statement = if-statement / control-statement-except-multiline-if

 control-statement-except-multiline-if = call-statement / while-statement / for-statement /
exit-for-statement / do-statement / exit-do-statement / single-line-if-statement / select-

case-statement /stop-statement / goto-statement / on-goto-statement / gosub-statement /

return-statement / on-gosub-statement /for-each-statement / exit-sub-statement / exit-

function-statement / exit-property-statement / raiseevent-statement / with-statement / end-

statement / assert-statement

5.4.2.1 Call Statement

A <call-statement> invokes a subroutine or function, discarding any return value.

 call-statement = "Call" (simple-name-expression / member-access-expression / index-expression
/ with-expression)

 call-statement =/ (simple-name-expression / member-access-expression / with-expression)
argument-list

Static semantics.

 If the Call keyword is omitted, the first positional argument, if any, can only represent a <with-
expression> if it is directly preceded by whitespace.

 The specified argument list is determined as follows:

 If the Call keyword is specified:

 If a <call-statement> element’s referenced expression is an <index-expression>, the
specified argument list is this expression’s argument list.

 Otherwise, the specified argument list is an empty argument list.

 Otherwise, if the Call keyword is omitted, the specified argument list is <argument-list>.

 A <call-statement> is invalid if any of the following is true:

 The referenced expression is not classified as a variable, function, subroutine or unbound
member.

 The referenced expression is classified as a variable and one of the following is true:

76 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The declared type of the referenced expression is a type other than a specific class or
Object.

 The declared type of the referenced expression is a specific class without a default function
or subroutine.

 The declared type of the referenced expression is a specific class with a default function or
subroutine whose parameter list is incompatible with the specified argument list.

 The referenced expression is classified as a function or subroutine and its referenced procedure’s
parameter list is incompatible with the specified argument list.

Runtime semantics.

At runtime, the procedure referenced by the expression is invoked, as follows:

 If the expression is classified as an unbound member, the member is resolved as a variable,

property, function or subroutine, and evaluation continues as if the expression had statically been
resolved as a variable expression, property expression, function expression or subroutine
expression, respectively.

 If the expression is classified as a function or subroutine, the expression’s referenced procedure is
invoked with the specified argument list. Any return value resulting from the invocation is

discarded.

 If the expression is classified as a variable:

 If the expression’s data value is an object with a public default function or subroutine, this
default procedure is invoked with the specified argument list.

 If the expression’s data value is an object with a public default property, runtime error 450
(Wrong number of arguments or invalid property assignment) is raised.

 Otherwise, runtime error 438 (Object doesn’t support this property or method) is raised.

 If the expression is classified as a property, runtime error 450 (Wrong number of arguments or
invalid property assignment) is raised.

5.4.2.2 While Statement

A <while-statement> executes a sequence of statements as long as a specified pre-condition is True.

 while-statement = "While" boolean-expression EOS statement-block "Wend"

Runtime Semantics.

The <boolean-expression> is repeatedly evaluated until the value of an evaluation is the data value

False. Each time an evaluation of the <boolean-expression> has the data value True, the <statement-
block> is executed prior to the next evaluation of <boolean-expression>.

5.4.2.3 For Statement

A <for-statement> executes a sequence of statements a specified number of times.

 for-statement = simple-for-statement / explicit-for-statement

 simple-for-statement = for-clause EOS statement-block “Next”

77 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 explicit-for-statement = for-clause EOS statement-block
 (“Next” / (nested-for-statement “,”)) bound-variable-expression
 nested-for-statement = explicit-for-statement / explicit-for-each-statement
 for-clause = “For” bound-variable-expression “=” start-value “To” end-value [step-clause]
 start-value = expression
 end-value = expression
 step-clause = Step" step-increment
 step-increment = expression

Static Semantics.

 If no <step-clause> is present, the <step-increment> value is the integer data value 1.

 The <bound-variable-expression> within the <for-clause> of an <explicit-for-statement> MUST
resolve to the same variable as the <bound-variable-expression> following the <statement-

block>. The declared type of <bound-variable-expression> MUST be a numeric value type or

Variant.

 The declared type of <start-value>, <end-value>, and <step-increment> MUST be statically Let-
coercible to Double.

Runtime Semantics.

 The expressions <start-value>, <end-value>, and <step-increment> are evaluated once, in
order, and prior to any of the following computations. If the value of <start-value>, <end-value>,
and <step-increment> are not Let-coercible to Double, error 13 (Type mismatch) is raised
immediately. Otherwise, proceed with the following algorithm using the original, uncoerced values.

 Execution of the <for-statement> proceeds according to the following algorithm:

1. If the data value of <step-increment> is zero or a positive number, and the value of <bound-
variable-expression> is greater than the value of <end-value>, then execution of the <for-

statement> immediately completes; otherwise, advance to Step 2.

2. If the data value of <step-increment> is a negative number, and the value of <bound-
variable-expression> is less than the value of <end-value>, execution of the <for-statement>
immediately completes; otherwise, advance to Step 3.

3. The <statement-block> is executed. If a <nested-for-statement> is present, it is then
executed. Finally, the value of <bound-variable-expression> is added to the value of <step-

increment> and Let-assigned back to <bound-variable-expression>. Execution then repeats at
step 1.

 If a <goto-statement> defined outside the <for-statement> causes a <statement> within
<statement-block> to be executed, the expressions <start-value>, <end-value>, and <step-
increment> are not evaluated. If execution of the <statement-block> completes and reaches the
end of the <statement-block> without having evaluated <start-value>, <end-value> and <step-
increment> during this execution of the enclosing procedure, an error is generated (number 92,

“For loop not initialized”). This occurs even if <statement-block> contains an assignment
expression that initializes <bound-variable-expression> explicitly. Otherwise, if the expressions
<start-value>, <end-value>, and <step-increment> have already been evaluated, the algorithm
continues at Step 3 according to the rules defined for execution of a <for-statement>.

 When the <for-statement> has finished executing, the value of <bound-variable-expression>
remains at the value it held as of the loop completion.

78 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.4.2.4 For Each Statement

A <for-each-statement> executes a sequence of statements once for each element of a collection.

 for-each-statement = simple-for-each-statement / explicit-for-each-statement

 simple-for-each-statement = for-each-clause EOS statement-block “Next”

 explicit-for-each-statement = for-each-clause EOS statement-block
 (“Next” / (nested-for-statement “,”)) bound-variable-expression

 for-each-clause = “For” “Each” bound-variable-expression “In” collection
 collection = expression

Static Semantics.

 The <bound-variable-expression> within the <for-each-clause> of an <explicit-for-each-

statement> MUST resolve to the same variable as the <bound-variable-expression> following the

keyword Next.

 If the declared type of <collection> is array then the declared type of <bound-variable-

expression> MUST be Variant.

Runtime Semantics.

 The expression <collection> is evaluated once prior to any of the following computations.

 If the data value of <collection> is an array:

 If the array has no elements, then execution of the <for-each-statement> immediately
completes.

 If the declared type of the array is Object, then the <bound-variable-expression> is Set-
assigned to the first element in the array. Otherwise, the <bound-variable-expression> is Let-
assigned to the first element in the array.

 After <bound-variable-expression> has been set, the <statement-block> is executed. If a
<nested-for-statement> is present, it is then executed.

 Once the <statement-block> and, if present, the <nested-for-statement> have completed
execution, <bound-variable-expression> is Let-assigned to the next element in the array (or
Set-assigned if it is an array of Object). If and only if there are no more elements in the array,
then execution of the <for-each-statement> immediately completes. Otherwise, <statement-

block> is executed again, followed by <nested-for-statement> if present, and this step is
repeated.

 When the <for-each-statement> has finished executing, the value of <bound-variable-

expression> is the data value of the last element of the array.

 If the data value of <collection> is not an array:

 The data value of <collection> MUST be an object-reference to an external object that
supports an implementation-defined enumeration interface. The <bound-variable-expression>

is either Let-assigned or Set-assigned to the first element in <collection> in an
implementation-defined manner.

 After <bound-variable-expression> has been set, the <statement-block> is executed. If a
<nested-for-statement> is present, it is then executed.

79 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Once the <statement-block> and, if present, the <nested-for-statement> have completed
execution, <bound-variable-expression> is Set-assigned to the next element in <collection>

in an implementation-defined manner. If there are no more elements in <collection>, then
execution of the <for-each-statement> immediately completes. Otherwise, <statement-

block> is executed again, followed by <nested-for-statement> if present, and this step is
repeated.

 When the <for-each-statement> has finished executing, the value of <bound-variable-
expression> is the data value of the last element in <collection>.

 If a <goto-statement> defined outside the <for-each-statement> causes a <statement> within
<statement-block> to be executed, the expression <collection> is not evaluated. If execution of
the <statement-block> completes and reaches the end of the <statement-block> without having

evaluated <collection> during this execution of the enclosing procedure, an error is generated
(number 92, "For loop not initialized"). This occurs even if <statement-block> contains an
assignment expression that initializes <bound-variable-expression> explicitly. Otherwise, if the
expression <collection> has already been evaluated, the algorithm continues according to the

rules defined for execution of a <for-each-statement> over the <collection>.

5.4.2.4.1 Array Enumeration Order

 When enumerating the elements of an array, the first element is defined to be the element at
which all array indices are at the lower bound of their respective array dimensions.

 The next element is the obtained by incrementing the array index at the leftmost dimension. If
incrementing a dimension brings it above its upper bound, that dimension is set to its lower bound
and the next dimension to the right is incremented.

 The last element is defined to be the element at which all array indices are at the upper bound of
their respective array dimensions.

5.4.2.5 Exit For Statement

 exit-for-statement = "Exit" "For"

Static Semantics.

 An <exit-for-statement> MUST be lexically contained inside a <for-statement> or a <for-each-
statement>.

Runtime Semantics.

 Execution of the closest lexically-enclosing <for-statement> or <for-each-statement> enclosing
this statement immediately completes. No other statements following the <exit-for-statement> in
its containing <statement-block> are executed.

5.4.2.6 Do Statement

A <do-statement> executes a sequence of statements as long as a specified pre/post-condition is
True.

 do-statement = "Do" [condition-clause] EOS statement-block

 "Loop" [condition-clause]

80 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 condition-clause = while-clause / until-clause

 while-clause = "While" boolean-expression
 until-clause = "Until" boolean-expression

Static Semantics.

 Only one <condition-clause> can be specified after the keyword Do or the keyword Loop, not
both. If an <until-clause> is specified, the effect is as if it were a <while-clause> with the value of
the <boolean-expression> set to "Not (<boolean-expression>)".

 If no <condition-clause> is specified (either after Do or Loop), the effect is as if a <condition-
clause> containing a <while-clause> with the expression "True" were specified after Do.

Runtime Semantics.

 A <do-statement> repeatedly evaluates its <condition-clause> and executes the <statement-
block> if it evaluates to the data value True. The ordering of the of the evaluation of the
<condition-clause> and the execution of the <statement-block> is defined by the following table:

Location of <condition-clause> Result

None specified Execution of the loop continues until an <exit-do-statement> is

executed.

Immediately following "Do" <condition-clause> is evaluated prior to executing <statement-block>.
If it evaluates to the data value False then execution of the

<statement-block> and the current statement immediately completes.

Immediately following "Loop" The <statement-block> is executed before evaluation of the <condition-
clause>. If it evaluates to the data value True, then the <statement-
block> is again executed and the process is repeated.

If it evaluates to the data value False then execution of the

<statement-block> and the current statement immediately completes.

5.4.2.7 Exit Do Statement

exit-do-statement = "Exit" "Do"

Static Semantics.

 An <exit-do-statement> MUST be lexically contained inside a <do-statement>.

Runtime Semantics.

 If the <statement-block> causes execution of an <exit-do-statement> whose closest lexically
containing <do-statement> is this statement, execution of the <statement-block> and of this

81 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

statement immediately completes. No other statements following the <exit-do-statement> in the
<statement-block> are executed.

5.4.2.8 If Statement

An <if-statement> determines whether or not to execute a <statement-block>.

 if-statement = LINE-START "If" boolean-expression "Then" EOL statement-block
 *[else-if-block]
 [else-block]
 LINE-START (("End" "If") / "EndIf")
 else-if-block = LINE-START "ElseIf" boolean-expression "Then" EOL
 LINE-START statement-block
 else-if-block =/ "ElseIf" boolean-expression "Then" statement-block
 else-block = LINE-START "Else" statement-block

Runtime Semantics.

 An <if-statement> evaluates its <boolean-expression>, and if it equals the data value True, it
executes the <statement-block> after "Then". If it equals the data value False, execution
continues in the following order:

1. The <boolean-expression> in each <else-if-block> (in order) is evaluated, until a <boolean-
expression> whose data value is True is encountered. The <statement-block> of the
containing <else-if-block> is executed and completes execution of the <if-statement>

2. If none of the <boolean-expression> in the <else-if-block>s equal the data value True, and
an <else-block> is present, the <statement-block> of the <else-block> is executed.

 If a <goto-statement> defined outside the <if-statement> causes a <statement> within
<statement-block> to be executed, the <boolean-expression> is not evaluated. A <goto-
statement> can also cause execution to leave the <statement-block>. If a later <goto-
statement> causes execution to re-enter the <statement-block>, the behavior is as specified by

the rules defined for execution of an <if-statement>.

5.4.2.9 Single-line If Statement

A <single-line-if-statement> determines whether or not to execute a statement.

 single-line-if-statement = if-with-non-empty-then / if-with-empty-then

 if-with-non-empty-then = "If" boolean-expression "Then" list-or-label [single-line-else-
clause]

 if-with-empty-then = "If" boolean-expression "Then" single-line-else-clause
 single-line-else-clause = "Else" [list-or-label]
 list-or-label = (statement-label *[":" [same-line-statement]]) /
 ([":"] same-line-statement *[":" [same-line-statement]])
 same-line-statement = file-statement / error-handling-statement /
 data-manipulation-statement / control-statement-except-multiline-if

Static Semantics.

 A <single-line-if-statement> is distinguished from an <if-statement> by the presence of a <list-
or-label> or a <single-line-else-clause> immediately following the Then keyword.

 A <single-line-if-statement> MUST be defined on a single logical line, including the entirety of any
occurrence of a <same-line-statement>. This restriction precludes any embedded <EOS>

alternatives that require a <LINE-END> element.

82 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 When the <list-or-label> of a <single-line-if-statement> contains a <single-line-if-statement>,
the first <single-line-else-clause> is part of the immediately preceding <single-line-if-statement>.

Any subsequent <single-line-else-clause>is paired with the first <single-line-if-statement>
preceding the already paired if-then-else-statements.

 A <statement-label> that occurs as the first element of a <list-or-label> element has the effect as
if the <statement-label> was replaced with a <goto-statement> containing the same <statement-
label>. This <goto-statement> takes the place of <line-number-label> in <statement-label-list>.

Runtime Semantics.

 A <single-line-if-statement> evaluates its <boolean-expression> and if the expression’s data

value is the data value True, it executes the <list-or-label> element that follows the keyword
Then. If the expression’s data value is the data value False, it executes the <list-or-label>
following the keyword Else.

 A <list-or-label> is executed by executing each of its constituent <same-line-statement>
elements in sequential order until either the last contained <statement> has executed or an
executed statement explicitly transfers execution outside of the <list-or-label>.

5.4.2.10 Select Case Statement

A <select-case-statement> determines which <statement-block> to execute out of a candidate set.

 select-case-statement = "Select" "Case" WS select-expression EOS
 *[case-clause]
 [case-else-clause]
 "End" "Select"
 case-clause = "Case" range-clause *("," range-clause) EOS statement-block

 case-else-clause = "Case" "Else" EOS statement-block
 range-clause = expression
 range-clause =/ start-value "To" end-value
 range-clause =/ ["Is"] comparison-operator expression
 start-value = expression
 end-value = expression
 select-expression = expression

 comparison-operator = "=" / ("<" ">") / (">" "<") / "<" / ">" / (">" "=") / ("=" ">") /
("<" "=") / ("=" "<")

Runtime Semantics.

 In a <select-case-statement> the <select-expression> is immediately evaluated and then used in
the evaluation of each subsequent <case-clause> and <case-else-clause>

 For each <case-clause>, each contained <range-clause> is evaluated in the order defined. If a
<range-clause> matches a <select-expression>, then the <statement-block> in the <case-

clause> is executed. Upon execution of the <statement-block>, execution of the <select-case-
statement> immediately completes (and each subsequent <case-clause> is not evaluated).

 If the <range-clause> is an <expression>, then <expression> is evaluated and its result is
compared with the value of <select-expression>. If they are equal, the <range-clause> is
considered a match for <select-expression>. Any subsequent <range-clause> in the <case-
clause> is not evaluated.

 If the <range-clause> starts with the keyword Is or a <comparison-operator>, then the
expression "<select-expression> <comparison-operator> <expression>" is evaluated. If the
evaluation of this expression returns the data value True, the <range-clause> is considered a

83 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

match for <select-expression>. Any subsequent <range-clause> in the <case-clause> is not
evaluated.

 If the <range-clause> has a <start-value> and an <end-value>, then the expression
"((<select-expression>) >= (<start-value>)) And ((<select-expression>) <= (<end-

value>))" is evaluated. If the evaluation of this expression returns the data value True, the
<range-clause> is considered a match for <select-expression>. Any subsequent <range-
clause> in the <case-clause> is not evaluated.

 If evaluation of each <range-clause> in each <case-clause> results in no match, the <statement-
block> within <case-else-clause> is executed. If <select-expression> is the data value Null, only
the <statement-block> within <case-else-clause> is executed.

 If a <goto-statement> defined outside the <select-case-statement> causes a <statement> within

a <statement-block> to be executed, none of <select-expression>, <case-clause>, or <range-
clause are evaluated. A <goto-statement> can also cause execution to leave the <statement-
block>. If a later <goto-statement> causes execution to re-enter the <statement-block>, the
behavior is as specified by the rules defined for the execution of a <statement-block> within a

<select-case-statement>.

5.4.2.11 Stop Statement

 stop-statement = "Stop"

Runtime Semantics.

 A <stop-statement> suspends execution of the VBA program in an implementation-defined
manner. Whether or not execution can be resumed is implementation-dependent.

 Subject to possible implementation-defined external interventions, all variables maintain their
state if execution resumes.

5.4.2.12 GoTo Statement

 goto-statement = (("Go" "To") / "GoTo") statement-label

Static Semantics.

 A procedure containing a <goto-statement> MUST contain exactly one <statement-label-
definition> with the same <statement-label> as the <statement-label> defined in the <goto-

statement>.

Runtime Semantics.

 A <goto-statement> causes execution to branch to the <statement> immediately following the
<statement-label-definition> for <statement-label>.

 If the <statement-label> is the same as the <end-label> of lexically enclosing procedure
declaration execution of the current <procedure-body> immediately completes as if statement
execution had reached the end of the <procedure-body> element’s contained <statement-block>.

84 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.4.2.13 On…GoTo Statement

 on-goto-statement = "On" expression "GoTo" statement-label-list

Static Semantics.

 A procedure MUST contain exactly one <statement-label-definition> for each <statement-label>
in a <statement-label-list>.

Runtime Semantics.

 Let n be the value of the evaluation of <expression> after having been Let-coerced to declared
type Integer.

If n is zero, or greater than the number of <statement-label> defined in <statement-label-

list>, then execution of the <on-goto-statement> immediately completes.

 If n is negative or greater than 255, an error occurs (number 5, "Invalid procedure call or
argument").

 Execution branches to the <statement-label-definition> for the n’th <statement-label> defined in
<statement-label-list>.

 If the n’th <statement-label> defined in <statement-label-list> is the same as the <end-label> of
the lexically enclosing procedure declaration, execution of the current <procedure-body>

immediately completes as if statement execution had reached the end of the <procedure-body>
element’s contained <statement-block>.

5.4.2.14 GoSub Statement

 gosub-statement = (("Go" "Sub") / "GoSub") statement-label

Static Semantics.

 A procedure containing a <gosub-statement> MUST contain exactly one <statement-label-

definition> with the same <statement-label> as the <statement-label> defined in the <gosub-
statement>.

Runtime Semantics.

 A <gosub-statement> causes execution to branch to the <statement> immediately following the

<statement-label-definition> for <statement-label>. Execution continues until the procedure exits
or a <return-statement> is encountered.

 If the <statement-label> is the same as the <end-label> of lexically enclosing procedure
declaration execution of the current <procedure-body> immediately completes as if statement
execution had reached the end of the <procedure-body> element’s contained <statement-block>.

 Each invocation of a procedure creates its own GoSub Resumption List that tracks execution of

each <gosub-statement> and each <return-statement> within that procedure in a last-in-first-out
(LIFO) manner. Execution of a GoSub statement adds an entry for the current <gosub-statement>
to the current procedure’s GoSub Resumption List.

85 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.4.2.15 Return Statement

 return-statement = "Return"

Runtime Semantics.

 A <return-statement> causes execution to branch to the <statement> immediately following the
current procedure’s GoSub Resumption List’s most-recently-inserted <gosub-statement>.

If the current procedure’s GoSub Resumption List is empty, an error occurs (number 3,
"Return without GoSub").

5.4.2.16 On…GoSub Statement

 on-gosub-statement = "On" expression "GoSub" statement-label-list

Static Semantics.

 A procedure MUST contain exactly one <statement-label-definition> for each <statement-label>
in a <statement-label-list>.

Runtime Semantics.

 Let n be the value of the evaluation of <expression> after having been Let-coerced to the
declared type Integer.

 If n is zero, or greater than the number of <statement-label> defined in <statement-label-list>,
then execution of the <on-gosub-statement> immediately completes.

 If n is negative or greater than 255, an error occurs (number 5, "Invalid procedure call or

argument").

 Execution branches to the <statement-label-definition> for the n’th <statement-label> defined in
<statement-label-list>.

 If the n’th <statement-label> defined in <statement-label-list> is the same as the <end-label> of

lexically enclosing procedure declaration execution of the current <procedure-body> immediately
completes as if statement execution had reached the end of the <procedure-body> element’s
contained <statement-block>.

5.4.2.17 Exit Sub Statement

 exit-sub-statement = "Exit" "Sub"

Static Semantics.

 An <exit-sub-statement> MUST be lexically contained inside the <procedure-body> of a
<subroutine-declaration>.

Runtime Semantics.

86 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If the <statement-block> causes execution of an <exit-sub-statement>, execution of the
procedure and of this statement immediately completes. No other statements following the <exit-

sub-statement> in the procedure are executed.

5.4.2.18 Exit Function Statement

exit-function-statement = "Exit" "Function"

Static Semantics.

An <exit-function-statement> MUST be lexically contained inside the <procedure-body> of a
<function-declaration>.

Runtime Semantics.

 If the <statement-block> causes execution of an <exit-function-statement>, execution of the
procedure and of this statement immediately completes. No other statements following the <exit-
function-statement> in the procedure are executed.

5.4.2.19 Exit Property Statement

exit-property-statement = "Exit" "Property"

Static Semantics.

 An <exit-property-statement> MUST be lexically contained inside the <procedure-body> of a
property declaration.

Runtime Semantics.

 If the <statement-block> causes execution of an <exit-function-statement>, execution of the
procedure and of this statement immediately completes. No other statements following the <exit-
property-statement> in the procedure are executed.

5.4.2.20 RaiseEvent Statement

A <raiseevent-statement> invokes a set of procedures that have been declared as handlers for a
given event.

 raiseevent-statement = "RaiseEvent" IDENTIFIER ["(" event-argument-list ")"]
 event-argument-list = [event-argument *("," event-argument)]
 event-argument = expression

Static Semantics.

 A <raiseevent-statement> MUST be defined inside a procedure which is contained in a class

module.

 <IDENTIFIER> MUST be the name of an event defined in the enclosing class module.

 The referenced event’s parameter list MUST be compatible with the specified argument list
according to the rules of procedure invocation. For this purpose, all parameters and arguments are
treated as positional.

87 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Runtime Semantics.

 The procedures which have been declared as event handlers for the event are invoked in the

order in which their WithEvents variables were initialized, passing each <event-argument> as
a positional argument in the order they appeared from left to right. Assigning to a WithEvents
variable disconnects all event handlers that it previously pointed to, and causes the variable to
move to the end of the list. When an event is raised, the most-recently assigned WithEvents
variable’s event-handling procedures will be the last to be executed.

 If an <positional-param> for the event is declared as ByRef, then after each invocation of the
procedure, the next invocation’s corresponding <event-argument> is initialized to the value that

the parameter last contained inside its most recent procedure invocation.

 Any runtime errors which occur in these procedures are handled by that procedure’s error-
handling policy. If the invoked procedure’s error-handling policy is to use the error-handling policy
of the procedure that invoked it, the effect is as if the invoked procedure were using the default
error-handling policy. This effectively means that errors raised in the invoked procedure can only

be handled in the procedure itself.

 If an unhandled error occurs in an invoked procedure, no further event handlers are invoked.

5.4.2.21 With Statement

A <with-statement> assigns a given expression as the active With block variable within a statement
block.

 with-statement = "With" expression EOS statement-block "End" "With"

Static semantics.

 A <with-statement> is invalid if the declared type of <expression> is not a UDT, a named class,

Object or Variant.

 The With block variable is classified as a variable and has the same declared type as
<expression>.

 If <expression> is classified as a variable, that variable is the With block variable of the
<statement-block>.

Runtime semantics.

 If <expression> is classified as a value, property, function, or unbound member:

 <expression> is evaluated as a value expression.

 If the value type of the evaluated expression is a class, it is Set-assigned to an anonymous

With block variable. Then, <statement-block> is executed. After <statement-block> executes,

Nothing is assigned to the anonymous With block variable.

 If the value type of evaluated expression is a UDT, it is Let-assigned to an anonymous
temporary With block variable. Then, <statement-block> is executed.

 An anonymous with block variable has procedure extent.

88 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.4.2.22 End Statement

end-statement = "End"

Runtime Semantics.

 An <end-statement> terminates execution immediately.

 Never required by itself but may be placed anywhere in a procedure to end code execution, close
files opened with the Open statement, and to clear variables.

5.4.2.23 Assert Statement

An <assert-statement> suspends execution if <boolean-expression> is evaluated to False.

 assert-statement = "Debug" "." "Assert" boolean-expression

Runtime Semantics.

 All of <boolean-expression> is always evaluated. For example, even if the first part of an And

expression evaluates False, the entire expression is evaluated.

5.4.3 Data Manipulation Statements

Data manipulation statements declare and modify the contents of variables.

 Data-manipulation-statement = local-variable-declaration / static-variable-declaration /
local-const-declaration / redim-statement / erase-statement / mid-statement /rset-statement /

lset-statement / let-statement / set-statement

5.4.3.1 Local Variable Declarations

 local-variable-declaration = ("Dim" ["Shared"] variable-declaration-list)
 static-variable-declaration = "Static" variable-declaration-list

The optional Shared keyword provides syntactic compatibility with other dialects of the Basic
language and/or historic versions of VBA.

Static Semantics.

 The occurrence of the keyword Shared has no meaning.

 Each variable defined within a <local-variable-declaration> or <static-variable-declaration> MUST
have a variable name that is different from any other variable name, constant name, or parameter

name defined in the containing procedure.

 A variable defined within a <local-variable-declaration> or <static-variable-declaration> contained
in a <function-declaration> or a <property-get-declaration> MUST NOT have the same name as

the containing procedure name.

 A variable defined within a <local-variable-declaration> or <static-variable-declaration> MUST
NOT have the same name as an implicitly declared (Simple Name Expressions) variable within the
containing procedure

89 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Runtime Semantics.

 All variables defined by a <static-variable-declaration> have module extent.

 All variables defined by a <local-variable-declaration> have procedure extent, unless the <local-
variable-declaration> is contained within a static procedure (section 5.3.1.2), in which case all the
variables have module extent.

5.4.3.2 Local Constant Declarations

 local-const-declaration = const-declaration

Static Semantics.

 Each constant defined within a <local-const-declaration> MUST have a constant name that is
different from any other constant name, variable name, or parameter name defined in the
containing procedure.

 A constant defined within a <local-const-declaration> in a <function-declaration> or a

<property-get-declaration> MUST NOT have the same name as the containing procedure
name.

 A constant defined within a <local-const-declaration> MUST NOT have the same name as an
implicitly declared variable within the containing procedure.

 All other static semantic rules defined for <const-declaration> apply to <local-const-declaration>.

5.4.3.3 ReDim Statement

 redim-statement = "Redim" ["Preserve"] redim-declaration-list

 redim-declaration-list = redim-variable-dcl *("," redim-variable-dcl)
 redim-variable-dcl = redim-typed-variable-dcl / redim-untyped-dcl / with-expression-dcl /
member-access-expression-dcl

 redim-typed-variable-dcl = TYPED-NAME dynamic-array-dim
 redim-untyped-dcl = untyped-name dynamic-array-clause
 with-expression-dcl = with-expression dynamic-array-clause
 member-access-expression-dcl = member-access-expression dynamic-array-clause

 dynamic-array-dim = "(" dynamic-bounds-list ")"
 dynamic-bounds-list = dynamic-dim-spec *["," dynamic-dim-spec]
 dynamic-dim-spec = [dynamic-lower-bound] dynamic-upper-bound
 dynamic-lower-bound = integer-expression "to"
 dynamic-upper-bound = integer-expression

 dynamic-array-clause = dynamic-array-dim [as-clause]

Static Semantics.

 Each <TYPED-NAME> or <untyped-name> is first matched as a simple name expression in this
context.

 If the name has no matches, then the <redim-statement> is instead interpreted as a <local-
variable-declaration> with a <variable-declaration-list> declaring a resizable array with the
specified name and the following rules do not apply.

90 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Otherwise, if the name has a match, this match is the redimensioned variable.

 A <redim-typed-variable-dcl> has the same static semantics as if the text of its elements were
parsed as a <typed-variable-dcl>.

 A <redim-untyped-dcl> has the same static semantics as if the text of its elements were parsed

as an <untyped-variable-dcl>.

 The declared type of the redimensioned variable MUST be Variant or a resizable array.

 Any <as-clause> contained within a <redim-declaration-list> MUST NOT be an <as-auto-object>;
it MUST be an <as-type>.

 The redimensioned variable might not be a param array.

 A redimensioned variable might not be a with block variable (section 5.4.2.21).

Runtime Semantics.

 Runtime Error 13 is raised if the declared type of a redimensioned variable is Variant and its
value type is not an array.

 Each array in a <redim-statement> is resized according to the dimensions specified in its
<bounds-list>. Each element in the array is reset to the default value for its data type, unless the
word "preserve" is specified.

 If the Preserve keyword is present, a <redim-statement> can only change the upper bound of
the last dimension of an array and the number of dimensions might not be changed. Attempting to
change the lower bound of any dimension, the upper bound of any dimension other than the last

dimension or the number of dimensions will result in Error 9 (“Subscript out of range”).

 If a <redim-statement> containing the keyword Preserve results in more elements in a

dimension, each of the extra elements is set to its default data value.

 If a <redim-statement> containing the keyword Preserve results in fewer elements in a
dimension, the data value of the elements at the indices which are now outside the array’s bounds
are discarded. Each of these discarded elements is set to its default data value before resizing the
array.

 If the redimensioned variable was originally declared as an automatic instantiation variable
(section 2.5.1), each dependent variable of the redimensioned variable remains an automatic
instantiation variable after execution of the <redim-statement>.

 If the redimensioned variable is currently locked by a ByRef formal parameter runtime Error 10 is
raised.

5.4.3.4 Erase Statement

An erase-statement reinitializes the elements of a fixed-size array to their default values, and removes
the dimensions and data of a resizable array (setting it back to its initial state).

 erase-statement = “Erase” erase-list
 erase-list = erase-element *[“,” erase-element]
 erase-element = l-expression

Static Semantics.

91 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 An <l-expression> that is an <erase-element> MUST be classified as a variable, property,
function or unbound member.

 If the <l-expression> is classified as a variable it might not be a With block variable (section
5.4.2.21) or param array.

 The declared type of each <l-expression> MUST be either an array or Variant.

Runtime Semantics.

 Runtime error 13 (Type mismatch) is raised if the declared type of an <erase-element> is Variant
and its value type is not an array.

 For each <erase-element> whose <l-expression> is classified as a variable:

 If the declared type of an <erase-element> is resizable array or the declared type is Variant

and the data value of the associated variable is an array, this data value is set to be an empty
array with the same element type.

 If the declared type of an <erase-element> is fixed size array every dependent variable of the
associated array value variable is reset to standard initial value of the declared array element
type.

5.4.3.5 Mid/MidB/Mid$/MidB$ Statement

 mid-statement = mode-specifier "(" string-argument "," start ["," length] ")" "=" expression

 mode-specifier = ("Mid" / "MidB" / "Mid$" / "MidB$")
 string-argument = bound-variable-expression
 start = integer-expression
 length = integer-expression

Static Semantics.

 The declared type of <string-argument> MUST be String or Variant.

Runtime Semantics.

 If the value of <start> is less than or equal to 0 or greater than the length of <string-argument>,

or if <length> is less than 0, runtime error 5 (Invalid procedure call or argument) is raised.

 The data value of <string-argument> MUST be Let-coercible to String.

 Let v be the data value that results from Let-coercing the data value of the evaluation of
<expression> to the declared type String.

 The new data value of the variable is identical to v except that a span of characters is replaced as
follows:

 If <mode-specifier> is "Mid" or "Mid$":

 The first character to replace is the character at the 1-based position n within <string-
argument>, where n = <start>. Starting at the first character to replace, the next x
characters within <string-argument> are replaced by the first x characters of v, where x =
the least of the following: <length>, the number of characters in <string-argument> after
and including the first character to replace, or the number of characters in v.

92 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If <mode-specifier> is "MidB" or "MidB$":

 The first character to replace is the character at the 1-based position n within <string-
argument>, where n = <start>. Starting at the first byte to replace, the next x bytes
within <string-argument> are replaced by the first x bytes of v, where x = the least of the

following: <length>, the number of bytes in <string-argument> after and including the
first byte to replace, or the number of bytes in v.

5.4.3.6 LSet Statement

lset-statement = "LSet" bound-variable-expression "=" expression

Static Semantics.

 The declared type of <bound-variable-expression> MUST be String, Variant, or a UDT.

Runtime Semantics.

 The value type of <bound-variable-expression> MUST be String or a UDT.

 If the value type of <bound-variable-expression> is String:

 Let qLength be the number of characters in the data value of <bound-variable-expression>.

 Let e be the data value of <expression> Let-coerced to declared type String. o Let eLength
be the number of characters in e.

 If eLength is less than qLength:

 The String data value that is the concatenation of e followed by (qLength – eLength)
space characters (U+0020) is Let-assigned into <bound-variable-expression>.

 Otherwise:

 The String data value this is the initial qLength characters of e are Let-assigned into
<bound-variable-expression>.

 If the value type of <bound-variable-expression> is a UDT:

 The data in <expression> (as stored in memory in an implementation-defined manner) is
copied into <bound-variable-expression> variable in an implementation-defined manner.

5.4.3.7 RSet Statement

 rset-statement = "RSet" bound-variable-expression "=" expression

Static Semantics.

 The declared type of <bound-variable-expression> MUST be String or Variant.

Runtime Semantics.

 The value type of <bound-variable-expression> MUST be String.

 Let qLength be the number of characters in the data value of <bound-variable-expression>.

93 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Let eLength be the number of characters in the data value of <expression>

 If the number of characters in <expression> is less than the number of characters in the data
value of <bound-variable-expression>:

 The data value of (qLength – eLength) spaces followed by the data value of <expression> is

Let-coerced into <bound-variable-expression>.

 Otherwise:

 The data value of the first qLength characters in <expression> are Let-coerced into <bound-
variable-expression>.

5.4.3.8 Let Statement

A let statement performs Let-assignment of a non-object value. The Let keyword itself is optional and
can be omitted.

 let-statement = ["Let"] l-expression "=" expression

Static Semantics.

This statement is invalid if any of the following is true:

 <expression> cannot be evaluated to a simple data value (section 5.6.2.2).

 <l-expression> is classified as something other than a value, variable, property, function or
unbound member.

 <l-expression> is classified as a value and the declared type of <l-expression> is any type except
a class or Object.

 <l-expression> is classified as a variable, the declared type of <l-expression> is any type except
a class or Object, and a Let coercion from the declared type of <expression> to the declared type
of <l-expression> is invalid.

 <l-expression> is classified as a property, does not refer to the enclosing procedure, and any of
the following is true:

 <l-expression> has no accessible Property Let or Property Get.

 <l-expression> has an inaccessible Property Let.

 <l-expression> has an accessible Property Let and a Let coercion from the declared type of
<expression> to the declared type of <l-expression> is invalid.

 <l-expression> has no Property Let at all and does have an accessible Property Get and the
declared type of <l-expression> is any type except a class or Object or Variant.

 <l-expression> is classified as a function, does not refer to the enclosing procedure, and the

declared type of <l-expression> is any type except a class or Object or Variant.

 <l-expression> is classified as a property or function, refers to the enclosing procedure, and any
of the following is true:

 The declared type of <l-expression> is any type except a class or Object.

 A Let-coercion from the declared type of <expression> to the declared type of <l-expression>
is invalid.

94 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Runtime Semantics.

The runtime semantics of Let-assignment are as follows:

 If <l-expression> is classified as an unbound member, resolve it first as a variable, property,

function or subroutine.

 If the declared type of <l-expression> is any type except a class or Object:

 Evaluate <expression> as a simple data value to get an expression value.

 Let-coerce the expression value from its value type to the declared type of <l-expression>. o
If <l-expression> is classified as a variable, assign the coerced expression value to <l-
expression>.

 If <l-expression> is classified as a property, and does not refer to an enclosing Property Get:

 If <l-expression> has an accessible Property Let, invoke the Property Let, passing it

any specified argument list, along with the coerced expression value as an extra final
parameter.

 If <l-expression> does not have a Property Let and does have an accessible Property
Get, runtime error 451 (Property let procedure not defined and property get procedure did
not return an object) is raised.

 If <l-expression> does not have an accessible Property Let or accessible Property Get,
runtime error 450 (Wrong number of arguments or invalid property assignment) is raised.

 If <l-expression> is classified as a property or function and refers to an enclosing Property
Get or function, assign the coerced expression value to the enclosing procedure’s return
value.

 If <l-expression> is not classified as a variable or property, runtime error 450 (Wrong number
of arguments or invalid property assignment) is raised.

 Otherwise, if the declared type of <l-expression> is a class or Object:

 Evaluate <expression> to get an expression value.

 If <l-expression> is classified as a value or a variable:

 If the declared type of <l-expression> is a class with a default property, a Let-assignment
is performed with <l-expression> being a property access to the object’s default property
and <expression> being the coerced expression value.

 Otherwise, runtime error 438 (Object doesn’t support this property or method) is raised.

 If <l-expression> is classified as a property:

 If <l-expression> has an accessible Property Let:

 Let-coerce the expression value from its value type to the declared type of the
property.

 Invoke the Property Let, passing it any specified argument list, along with the
coerced expression value as the final value parameter.

 If <l-expression> does not have a Property Let and does have an accessible Property
Get:

95 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Invoke the Property Get, passing it any specified argument list, getting back an LHS
value with the same declared type as the property.

 Perform a Let-assignment with <l-expression> being the LHS value and <expression>
being the coerced expression value.

 Otherwise, if <l-expression> does not have an accessible Property Let or accessible
Property Get, runtime error 438 (Object doesn’t support this property or method) is
raised.

 If <l-expression> is classified as a function:

 Invoke the function, passing it any specified argument list, getting back an LHS value with
the same declared type as the property.

 Perform a Let-assignment with <l-expression> being the LHS value and <expression>

being the coerced expression value.

 Otherwise, if <l-expression> is not a variable, property or function, runtime error 450 (Wrong
number of arguments or invalid property assignment) is raised.

5.4.3.9 Set Statement

A Set statement performs Set-assignment of an object reference. The Set keyword is not optional
and MUST be specified to avoid ambiguity with Let statements.

 set-statement = "Set" l-expression "=" expression

Static Semantics.

This statement is invalid if any of the following is true:

 <expression> cannot be evaluated to a data value (section 5.6.2.1).

 <l-expression> is classified as something other than a variable, property or unbound member.

 Set-coercion from the declared type of <expression> to the declared type of <l-expression> is
invalid.

 <l-expression> is classified as a property, does not refer to the enclosing procedure, and <l-
expression> has no accessible Property Set.

Runtime Semantics. The runtime semantics of Set-assignment are as follows:

 Evaluate <expression> as a data value to get a value.

 Set-coerce this value from its value type to an object reference with the declared type of <l-

expression>.

 If <l-expression> is classified as an unbound member, resolve it first as a variable, property,

function or subroutine.

 If <l-expression> is classified as a variable:

 If the variable is declared with the WithEvents modifier and currently holds an object
reference other than Nothing, the variable’s event handlers are detached from the current
object reference and no longer handle this object’s events.

96 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Assign the coerced object reference to the variable.

 If the variable is declared with the WithEvents modifier and the coerced object reference is
not Nothing, the variable’s event handling procedures are attached to the coerced object
reference and now handle this object’s events.

 If <l-expression> is classified as a property with an accessible Property Let, and does not refer
to an enclosing Property Get, invoke the Property Let, passing it the coerced object reference
as the value parameter.

 If <l-expression> is classified as a property or function and refers to an enclosing Property Get
or function, assign the coerced expression value to the enclosing procedure’s return value.

 If <l-expression> is not classified as a variable or property, runtime error 450 (Wrong number of
arguments or invalid property assignment) is raised.

5.4.4 Error Handling Statements

Error handling statements control the flow of execution when exception conditions occur.

 error-handling-statement = on-error-statement / resume-statement / error-statement

Runtime Semantics.

 Each invocation of a VBA procedure has an error-handling policy which specifies how runtime

errors SHOULD be handled.

 When a procedure invocation is created, its error-handling policy is initially set to the Default
policy, unless the procedure was directly invoked from the host application, in which case its
error-handling policy is initially set to Terminate.

 The possible values of a procedure’s error handling policy and the semantics of each policy are

defined by the following table:

Policy Name Runtime Semantics

Default Discard the current procedure activation returning the error object and

control to the procedure activation that called the current procedure

activation. Apply the calling procedures activations error handling policy.

Resume Next Continue execution within the same procedure activation with the

<statement> that in normal execution order would be executed

immediately after the <statement> whose execution caused the error to be

raised.

Goto Set the current procedure activation’s error handling policy to Default.

Record as part of the procedure activation the identity of the <statement>

whose execution caused the error to be raised. This is called the fault

statement, and the error which caused the fault is called the active error.

The execution continues in the current procedure starting at the current

procedure activation’s handler label.

97 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Policy Name Runtime Semantics

Retry Continue execution within the same procedure activation starting with the

<statement> whose execution caused the error to be raised and clear the

active error.

Ignore Use the Error data value of the current error object as the value of the

expression in the current procedure activation whose execution caused the

error to be raised. Continue execution as if no error had been raised and

clear the active error.

Terminate Perform implementation defined error reporting actions terminate execution

of the VBA statements. Whether or not and how execution control is

returned to the host application is implementation specific.

5.4.4.1 On Error Statement

An <on-error-statement> specifies a new error-handling policy for a VBA procedure.

 on-error-statement = "On" "Error" error-behavior

 error-behavior = ("Resume" "Next") / ("GoTo" (statement-label / -1))

Static Semantics

 The containing procedure MUST contain exactly one <statement-label-definition> with the same
<statement-label> as the <statement-label> contained in the <error-behavior> element, unless

the <statement-label> is a <line-number-label> whose data value is the Integer 0.

Runtime Semantics.

 An <on-error-statement> specifies a new error-handling policy for the current activation of the
containing procedure.

 The Err object (section 6.1.3.2) is reset.

 If the <error-behavior> is "Resume Next", the error-handling policy is set to "Resume Next".

 If the <error-behavior> has a <statement-label> that is a <line-number-label> whose data value
is the Integer data value 0 then the error-handling policy disabled. If the <error-behavior> is any
other <statement-label>, then the error-handling policy set to goto the <statement-label>.

5.4.4.2 Resume Statement

resume-statement = "Resume" [("Next" / statement-label)]

Static Semantics.

98 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If a <statement-label> is specified, the containing procedure MUST contain a <statement-label-
definition> with the same <statement-label>, unless <statement-label> is a <line-number-label>

whose data value is the Integer 0.

Runtime Semantics.

 If there is no active error, runtime error 20 (Resume without error) is raised.

 The Err object is reset.

 If the <resume-statement> does not contain the keyword Next and either no <statement-label>
is specified or the <statement-label> is a <line-number-label> whose data value is the Integer
0, then execution continues by re-executing the <statement> in the current procedure that

caused the error.

 If the <resume-statement> contains the keyword Next or a <statement-label> which is a <line-
number-label> whose data value is the Integer 0, then execution continues at the <statement>
in the current procedure immediately following the <statement> which caused the error.

 If the <resume-statement> contains a <statement-label> which is not a <line-number-label>
whose data value is the Integer 0, then execution continues at the first <statement> after the

<statement-label-definition> for <statement-label>.

5.4.4.3 Error Statement

Error-statement = "Error" error-number

 error-number = integer-expression

Runtime Semantics.

 The data value of <error-number> MUST be a valid error number between 0 and 65535, inclusive.

 The effect is as if the Err.Raise method (section 6.1.3.2.1.2) were invoked with the data value of
<error-number> pass as the argument to its number parameter.

5.4.5 File Statements

VBA file statements support the transfer of data between VBA programs and external data files.

 file-statement = open-statement / close-statement / seek-statement / lock-statement / unlock-
statement / line-input-statement / width-statement / print-statement / write-statement /

input-statement / put-statement / get-statement

The exact natures of external data files and the manner in which they are identified is host defined.
Within a VBA program, external data files are identified using file numbers. A file number is an integer
in the inclusive range of 1 to 511. The association between external data files and VBA file numbers is
made using the VBA Open statement.

VBA file statements support external files using various alternative modes of data representations and

structures. Data can be represented using either a textual or binary representation. External file data
can be structured as fixed length records, variable length text lines, or as unstructured sequences of
characters or bytes. The external encoding of character data is host-defined.

99 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

VBA defines three modes of interacting with files: character mode, binary mode and random mode. In
character mode, external files are treated as sequences of characters, and data values are stored and

accessed using textual representations of the values. For example, the integer value 123 would be
literally represented in a file as the character 1, followed by the character 2, followed by the character
3.

Character mode files are divided into lines each of which is terminated by an implementation

dependent line termination sequence consisting of one or more characters that marks the end of a
line. For output purposes a character mode file can have a maximum line width which is the maximum
number of characters that can be output to a single line of the file. Within a line, characters positions
are identified as numbered columns. The left-most column of a line is column 1. A line is also logically
divided into a sequence of fourteen-character wide print zones.

In binary mode, data values are stored and accessed using an implementation-defined binary
encoding. For example, the integer value 123 would be represented using its implementation-defined
binary representation. An example of this would be as a four byte binary twos-complement integer in
little endian order.

In random mode, values are represented in a file the same way as character mode, but instead of

being accessed as a sequential data stream, files opened in random mode are dealt with one record at
a time. A record is a fixed size structure of binary-encoded data values. Files in random mode contain
a series of records, numbered 1 through n.

A file-pointer-position is defined as the location of the next record or byte to be used in a read or write
operation on a file number. The file-pointer-position of the beginning of a fine is 1. For a character
mode file, the current line is the line of the file that contains the current file-pointer-position. The
current line position is 1 plus the current file-pointer-position minus the file-pointer position of the first
character of the current line.

5.4.5.1 Open Statement

An <open-statement> associates a file number with an external data file and establishes the
processing modes used to access the data file.

 open-statement = "Open" path-name [mode-clause] [access-clause] [lock] "As" file-number [len-
clause]

 path-name = expression
 mode-clause = "For" mode

 mode = "Append" / "Binary" / "Input" / "Output" / "Random"
 access-clause = "Access" access

 access = "Read" / "Write" / ("Read" "Write")
 lock = "Shared" / ("Lock" "Read") / ("Lock" "Write") / ("Lock" "Read" "Write")

 len-clause = "Len" "=" rec-length

 rec-length = expression

Static Semantics.

 If there is no <mode-clause> the effect is as if there were a <mode-clause> where <mode> is

keyword Random. If there is no <access-clause> the effect is as if there were an <access-
clause> where <access> is determined by the value of <mode>, according to the following table:

100 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Value of <mode> File Access Type Implied value of <access>

Append Character Read Write

Binary Binary Read Write

Input Character Read

Output Character Write

Random Random Read Write

 If <mode> is the keyword Output then <access> MUST consist of the keyword Write. If

<mode> is the keyword Input then <access> MUST be the keyword Read. If <mode> is the
keyword Append then <access> MUST be either the keyword sequence Read Write or the
keyword Write.

 If there is no <lock> element, the effect is as if <lock> is the keyword Shared.

 If no <len-clause> is present, the effect is as if there were a <len-clause> with <rec-length>
equal to the Integer data value 0.

Runtime Semantics.

 The <open-statement> creates an association between a file number (section 5.4.5) specified via
<file-number> and an external data file identified by the <path-name>, such that occurrences of
that same file number as the <file number> in subsequently executed file statements are
interpreted as references to the associated external data file. Such a file number for which an
external association has been successfully established by an <open-statement> is said to be
currently open.

 An <open-statement> cannot remap or change the <mode>, <access>, or <lock> of an already

in-use <file-number>; the association between integer file number and an external data file
remains in effect until they are explicitly disassociated using a <close-statement>.

 If an <open-statement> fails to access the underlying file for any reason, an error is generated.

 The value of <path-name> MUST have a data value that is Let-coercible to the declared type
String. The coerced String data value MUST conform to the implementation-defined syntax for
external file identifiers.

 The Let-coerced String data value of <path-name> is combined with the current drive value (see
the ChDrive function in section 6.1.2.5.2.2) and current directory value in an implementation
defined manner to obtain a complete path specification.

 If the external file specified by the complete path specification <path-name> does not exist, an
attempt is made to create the external file unless <mode> is the keyword Input, in which case an
error is generated.

 If the file is already opened by another process or the system cannot provide the locks requested

by <lock>, then the operation fails and an error (number 70, "Permission denied") is generated. If
the file cannot be created, for any reason, an error (number 75, "Path/File access error" is
generated.

 An error (number 55, "File already open") is generated if the <file-number> integer value already
has an external file association that was established by a previously executed <open-statement>.

101 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The expression in a <len-clause> production MUST evaluate to a data value that is Let-coercible
to declared type Integer in the inclusive range 1 to 32,767. The <len-clause> is ignored if

<mode> is Binary.

 If <mode> is Append or Output, the path specification MUST NOT identify an external file that

currently has a file number association that was established by a previously executed <open-
statement>. If an external file has associations with multiple file number associations then the
interaction of file statements using the different file numbers is implementation defined. The value
of <mode> controls how data is read from, and written to, the file. When <mode> is Random,
the file is divided into multiple records of a fixed size, numbered 1 through n.

Value of <mode> Description

Append Data can be read from the file, and any data written to the file is added at the end

Binary Data can be read from the file, and any data written to the file replaces old data

Input Data can only be sequentially read from the file

Output Data can only be sequentially written to the file

Random Data can be read from or written to the file in chunks (records) of a certain size

 The <access> element defines what operations can be performed on an open file number by

subsequently executed file statements. The list of which operations are valid in each combination
of <mode> and <access> is outlined by the following table:

Statement/Mode Append Binary Input Output Random

Get # - R, RW - - R, RW

Put # - RW, W - - RW, W

Input # - R, RW R - -

Line Input # - R, RW R - -

Print # RW, W - - W -

Write # RW, W - - W -

Seek RW, W R, RW, W R W R, RW, W

Width # RW, W R, RW, W R W R, RW, W

Lock RW, W R, RW, W R W R, RW, W

Unlock RW, W R, RW, W R W R, RW, W

Key:

R The statement can be used on a <file-number> where <access> is Read

W The statement can be used on a <file-number> where <access> is Write

RW The statement can be used on a <file-number> where <access> is

Read/Write - The statement can never be used in the current mode

102 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The <lock> element defines whether or not agents external to this VBA Environment can access
the external data file identified by the complete path specification while the file number

association established by this <open-statement> is in effect. The nature of such external agents
and mechanisms they might use to access an external data file are implementation defined. The

exact interpretation of the <lock> specification is implementation defined but the general intent of
the possible lock modes are defined by the following table:

Lock Type Description

Shared External agents can access the file for read and write operations

Lock Read External agents cannot read from the file

Lock Write External agents cannot write to the file

Lock Read Write External agents cannot open the file

 The value of <rec-length> is ignored when <mode> is Binary. If <mode> is Random, the value

of <rec-length> specifies the sum of the individual sizes of the data types that will be read from
the file (in bytes). If <rec-length> is unspecified when <mode> is Random, the effect is as if
<rec-length> is 128. For all other values of <mode>, <rec-length> specifies the number of
characters to read in each individual read operation.

 If <mode> is Random, when a file is opened the file-pointer-position points at the first record.
Otherwise, the file-pointer-position points at the first byte in the file.

5.4.5.1.1 File Numbers

 file-number = marked-file-number / unmarked-file-number

 marked-file-number = "#" expression
 unmarked-file-number = expression

Static Semantics.

 The declared type (section 2.2) of the <expression> element of a <marked-file-number> or
<unmarked-file-number> MUST be a scalar declared type (section 2.2).

Runtime Semantics.

 The file number value is the file number (section 5.4.5) that is the result of Let-coercing the result
of evaluating the <expression> element of a <file-number> to declared type Integer.

 If the <file-number> <expression> element does not evaluate to a value that is Let-coercible to
declared type Integer, error number 52 ("Bad file name or number") is raised.

If the file number value is not in the inclusive range 1 to 511 error number 52 ("Bad file name
or number") is raised.

5.4.5.2 Close and Reset Statements

A <close-statement> concludes input/output to a file on the system, and removes the association
between a <file-number> and its external data file.

 close-statement = "Reset" / ("Close" [file-number-list])

103 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 file-number-list = file-number *["," file-number]

Static Semantics.

 If <file-number-list> is absent the effect is as if there was a <file-number-list> consisting of all
the integers in the inclusive range of 1 to 511.

Runtime Semantics.

 If any file number value (section 5.4.5.1.1) in the <file-number-list> is not a currently-open

(section 5.4.5.1) file number (section 5.4.5) then no action is taken for that file number. For
each file number value from <file-number-list> that is currently-open, any necessary
implementation-specific processing that can be required to complete previously executed file
statements using that file number is performed to completion and all implementation-specific
locking mechanisms associated with that file number are released. Finally, the association
between the file number and the external file number is discarded. The file number is no longer

currently-open and can be reused in a subsequently executed <open-statement>.

5.4.5.3 Seek Statement

A <seek-statement> repositions where the next operation on a <file-number> will occur within that
file.

 seek-statement = "Seek" file-number "," position
 position = expression

Static Semantics:

 The declared type (section 2.2) of <position> MUST be a scalar declared type (section 2.2).

Runtime Semantics:

 An error (number 52, "Bad file name or number") is raised if the file number value (section
5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).

 The new file position is the evaluated value of <position> Let-coerced to declared type Long.

 An error is raised if the new file position is 0 or negative.

 If the <open-statement> for the file number value of <file-number> had <mode> Random, then

the file-pointer-position’s location refers to a record; otherwise, it refers to a byte.

If new file position is greater than the current size of the file (measured in bytes or records
depending the <mode> of the <Open-statement> for the file number value), the size of the
file is extended such that its size is the value new file position. This does not occur for files
whose currently-open <access> is Read. The extended content of the file is implementation

defined any can be undefined.

 The file-pointer-position of the file is set to new file position.

5.4.5.4 Lock Statement

A <lock-statement> restricts which parts of a file can be accessed by external agents. When used
without a <record-range>, it prevents external agents from accessing any part of the file.

104 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 lock-statement = "Lock" file-number ["," record-range]

 record-range = start-record-number / ([start-record-number] "To" end-record-number)
 start-record-number = expression
 end-record-number = expression

Static Semantics:

 The declared type (section 2.2) of <start-record-number> and of <end-record-number> MUST be
a scalar declared type (section 2.2).

 If there is no <start-record-number> the effect is as if <start-record-number> consisted of the
integer number token 1.

Runtime Semantics.

 An error (number 52, "Bad file name or number") is raised if the file number value (section

5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).

 If no <record-range> is present the entire file is locked.

 If the file number value was opened with <mode> Input, Output, or Append, the effect is as if
no <record-range> was present and the entire file is locked.

 The start record is the evaluated value of <start-record-number> Let-coerced to declared type
Long.

 The end record is the evaluated value of <end-record-number> Let-coerced to declared type

Long.

 Start record MUST be greater than or equal to 1, and less than or equal to end record. If not, an
error is raised.

 If the file number value was opened with <mode> Random, start record and end record define a
inclusive span of records within the external data file associated with that file number value. In
this case, each record in the span is designated as locked.

 If the file number value was opened with <mode> Binary, both <start-record-number> and

<end-record-number> define a byte-position within the external data file associated with that file
number. In this case, all external file bytes in the range start record to end record (inclusive), are
designated as locked.

Locked files or locked records or bytes within a file might not be accessed by other external
agents. The mechanism for actually implementing such locks and whether or not a lock can be
applied to any specific external file is implementation defined.

 Multiple lock ranges established by multiple lock statements can be simultaneously active for an

external data file. A lock remains in effect until it is removed by an <unlock-statement> that

specifies the same file number as the <lock-statement> that established the lock and which either
unlocks the entire file or specifies an <record-range> evaluates to the same start record and end
record. A <close-statement> remove all locks currently established for its file number value.

5.4.5.5 Unlock Statement

An <unlock-statement> removes a restriction which has been placed on part of a currently-open file
number. When used without a <record-range>, it removes all restrictions on any part of the file.

105 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 unlock-statement = "Unlock" file-number ["," record-range]

Static Semantics.

 The static semantics for <lock-statement> also apply to <unlock-statement> Runtime Semantics.

 An error (number 52, "Bad file name or number") is raised if the file number value (section
5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).

 If no <record-range> is present the entire file is no longer locked (section 5.4.5.4).

 If the file number value was opened with <mode> Input, Output, or Append, the effect is as if
no <record-range> was present and the entire file is no longer locked.

 The start record is the evaluated value of <start-record-number> of <record-range> Let-coerced
to declared type Long.

 The end record is the evaluated value of <end-record-number> of <record-range> Let-coerced to
declared type Long.

 Start record MUST be greater than or equal to 1, and less than or equal to end record. If not, an

error is raised.

 If <record-range> is present, its start record and end record MUST designate a range that is
identical to a start record to end record range of a previously executed <lock-statement> for the
same currently-open file number. If is not the case, an error is raised.

 If the file number value was opened with <mode> Random, start record and end record define a
inclusive span of records within the external data file associated with that file number value. In
this case, each record in the span is designated as no longer locked.

 If the file number value was opened with <mode> Binary, both <start-record-number> and

<end-record-number> define a byte-position within the external data file associated with that file
number. In this case, all external file bytes in the range start record to end record (inclusive), are
designated as no longer locked.

 If a <record-range> is provided for only the <lock-statement> or the <unlock-statement>
designating the same currently open file number an error is generated.

5.4.5.6 Line Input Statement

A <line-input-statement> reads in one line of data from the file underlying <marked-file-number>.

 line-input-statement = "Line" "Input" marked-file-number "," variable-name

 variable-name = variable-expression

Static Semantics.

 The <variable-expression> of a <variable-name> MUST be classified as a variable.

 The semantics of <marked-file-number> in this context are those of a <file-number> element

that consisted of that same <marked-file-number> element.

 The declared type of a <variable-name> MUST be String or Variant.

106 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Runtime Semantics.

 An error (number 52, "Bad file name or number") is raised if the file number value (section

5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).

 The sequence of bytes starting at the current file-pointer-position in the file identified by the file
number value and continuing through the last byte of the current line (section 5.4.5) (but not
including the line termination sequence (section 5.4.5)) is converted in an implementation
dependent manner to a String data value.

 If the end of file is reach before finding a line termination sequence, the data value is the String
data value converted from the byte sequence up to the end of the file.

 If the file is empty or there are no characters after file-pointer-position, then runtime error 62
("Input past end of file") is raised.

 The new file-pointer-position is equal to the position of the first character after the end of the line
termination sequence. If the end-of-file was reached the file-pointer-position is set to the position

immediately following the last character in the file.

 The String data value is Let-assigned into <variable-name>.

5.4.5.7 Width Statement

A <width-statement> defines the maximum number of characters that can be written to a single line
in an output file.

 width-statement = "Width" marked-file-number "," line-width
 line-width = expression

Static Semantics.

 The semantics of <marked-file-number> in this context are those of a <file-number> element
that consisted of that same <marked-file-number> element.

 The declared type (section 2.2) of <line-width> MUST be a scalar declared type (section 2.2).

Runtime Semantics.

 An error (number 52, "Bad file name or number") is raised if the file number value (section
5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).

 The line width is the evaluated value of <line-width> Let-coerced to declared type Integer.

 If Line width is less than 0 or greater than 255 an error (number 5, "Invalid procedure call or
argument") is raised.

 If the file number value was opened with <mode> Binary or Random this statement has no

effect upon the file. Otherwise:

 Each currently open file number has an associated maximum line length (section 5.4.5) that
controls how many characters can be output to a line when using that file number. This
statement sets the maximum line length of file number value to line width.

 If line width is 0 then file number value is set to have no maximum line length.

107 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.4.5.8 Print Statement

A <print-statement> writes data to the file underlying <marked-file-number>.

 print-statement = [("Debug" / "Me") "."] "Print" marked-file-number "," [output-list]

Static Semantics.

 The semantics of <marked-file-number> in this context are those of a <file-number> element

that consisted of that same <marked-file-number> element.

Runtime Semantics.

 An error (number 52, "Bad file name or number") is raised if the file number value (section
5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).

 If <output-list> is not present, the line termination sequence (section 5.4.5) is written to the file

associated with file number value starting at its current file-pointer-position. The current file-
pointer-position is set immediately after the line termination sequence.

 Otherwise, for each <output-item> in <output-list> proceeding in left to right order:

 If <output-clause> consists of an <output-expression>

1. The <output-expression> is evaluated to produce an output string value and characters of the
string are written to the file associated with file number value starting at its current file-
pointer-position.

2. The current file-pointer-position now points to the location after the output characters of the
string.

3. If while performing any of these steps the number of characters in the current line (section
5.4.5) reaches the maximum line length (section 5.4.5) the line termination sequence is

immediately written and output continues on the next line.

 If <output-clause> consists of a <spc-clause>

1. If space count (section 5.4.5.8.1) is less than or equal to maximum line length of the file

number value or if the file number value does not have a maximum line length, let s be the
value of space count.

2. Otherwise, space count is greater than the maximum line length. Let s be the value (space
count modulo maximum line length).

3. If the is a maximum line width and s is greater than maximum line width minus current line
position let s equal s minus (maximum line width minus current line position). The line

termination sequence is immediately written and current file-pointer-position is set to
beginning of the new line.

4. Write s space characters to the file associated with file number value starting at its current
file-pointer-position and set the current file-pointer-position to the position following that last
such space character.

 If <output-clause> consists of a <tab-clause> that includes a <tab-number-clause> then do the
following steps:

1. If tab number (section 5.4.5.8.1) is less than or equal to maximum line length of the file
number value or if the file number value does not have a maximum line length, let t be the
value of tab number.

108 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

2. Otherwise, tab number is greater than the maximum line length. Let t be the value (tab
number modulo maximum line length).

3. If t less than or equal to the current line position, output the line termination sequence. Set
the current file-pointer-position is set to beginning of the new line.

4. Write t minus current line position space characters to the file associated with file number
value starting at its current file-pointer-position and set the current file-pointer-position to the
position following that last such space character.

 If <output-clause> consists of a <tab-clause> that does not includes a <tab-number-clause>
then the current file-pointer-position is advanced to the next print zone (section 5.4.5) by
outputting space characters until (current line position modulo 14) equals 1. o If the <char-
position> of the <output-item> is ",", the current file-pointer-position is further advanced to the

next print zone by outputting space characters until (modulo 14) equals 1. Note that the print
zone is advance even if the current file-pointer-position is already at the beginning of a print zone.

 If the <char-position> of the last <output-item> is neither a "," or an explicitly occurring ";" the

implementation-defined line termination sequence is output and the current file-position-pointer is
set to the beginning of the new line.

 The output string value of an <output-expression> is determined as follows:

 If the evaluated data value of the <output-expression> is the Boolean data value True, the
output string is "True".

 If the evaluated data value of the <output-expression> is the Boolean data value False, the
output string is "False".

 If the evaluated data value of the <output-expression> is the data value Null, the output
string is "Null".

 If the evaluated data value of the <output-expression> is an Error data value the output

string is "Error " followed by the error code Let-coerced to String.

 If the evaluated data value of the <output-expression> is any numeric data value other than a
Date the output string is the evaluated data value of the <output-expression> Let-coerced to
String with a space character inserted as the first and the last character of the String data
value.

 If the evaluated data value of the <output-expression> is a Date data value the output string
is the data value Let-coerced to String.

 Otherwise, the output string is the evaluated data value of the <output-expression> Let-
coerced to String.

5.4.5.8.1 Output Lists

 output-list = *output-item

 output-item = [output-clause] [char-position]

 output-clause = (spc-clause / tab-clause / output-expression)
 char-position = (";" / ",")

 output-expression = expression

 spc-clause = "Spc" "(" spc-number ")"
 spc-number = expression
 tab-clause = "Tab" [tab-number-clause]
 tab-number-clause = "(" tab-number ")"

109 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 tab-number = expression

Static Semantics.

 If an <output-item> contains no <output-clause>, the effect is as if the <output-item> contains
an <output-clause> consisting of the zero-length string "".

 If <char-position> is not present, then the effect is as if <char-position> were ";".

 The declared type (section 2.2) of <spc-number> and of <tab-number> MUST be a scalar

declared type (section 2.2).

Runtime Semantics.

 The space count of a <spc-clause> is the larger of 0 and the evaluated value of its <spc-number>

Let-coerced to declared type Integer.

 The tab number of a <tab-clause> that includes a <tab-number-clause> is the larger of 1 and the
evaluated value of its <tab-number> Let-coerced to declared type Integer.

5.4.5.9 Write Statement

A <write-statement> writes data to the file underlying <marked-file-number>.

 write-statement = "Write" marked-file-number "," [output-list]

Static Semantics.

 The semantics of <marked-file-number> in this context are those of a <file-number> element
that consisted of that same <marked-file-number> element.

 If a <write-statement> contains no <output-list>, the effect is as if <write-statement> contains
an <output-list> with an <output-clause> of "" (a zero-length string), followed by a <char-
position> of ",".

Runtime Semantics.

 An error (number 52, "Bad file name or number") is raised if the file number value (section
5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).

 If <output-list> is not present, the implementation-defined line termination sequence is written to
the file associated with file number value starting at its current file-pointer-position. The current
file-pointer-position is set immediately after the line termination sequence.

 Otherwise, for each <output-item> in <output-list> proceeding in left to right order:

 If <output-clause> consists of an <output-expression>:

1. The <output-expression> is evaluated to produce an output string value and characters of
the string are written to the file associated with file number value starting at its current
file-pointer-position.

2. Write a comma character to the file unless this is the final <output-clause> and its <char-

position> is neither a "," or an explicitly occurring ";".

3. Advance the current file-pointer-position to immediately follow the last output character.

110 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

4. If while performing any of these steps the number of characters in the current line (section
5.4.5) reaches the maximum line length (section 5.4.5) the line termination sequence is

immediately written and output continues on the next line.

 If <output-clause> consists of a <spc-clause>:

1. If space count (section 5.4.5.8.1) is less than or equal to maximum line length of the file
number value or if the file number value does not have a maximum line length, let s be
the value of space count.

2. Otherwise, space count is greater than the maximum line length. Let s be the value (space
count modulo maximum line length).

3. If the is a maximum line width and s is greater than maximum line width minus current
line position let s equal s minus (maximum line width minus current line position). The line

termination sequence is immediately written and current file-pointer-position is set to
beginning of the new line.

4. Write s space characters to the file associated with file number value starting at its current
file-pointer-position and set the current file-pointer-position to the position following that
last such space character.

5. If the <char-position> element is a "," write a comma character to the file and advance

the current file-pointer-position.

6. If while performing any of these steps the number of characters in the current line (section
5.4.5) reaches the maximum line length (section 5.4.5) the line termination sequence is
immediately written and output continues on the next line.

 If <output-clause> consists of a <tab-clause> that includes a <tab-number-clause> then do
the following steps:

1. If tab number (section 5.4.5.8.1) is less than or equal to maximum line length of the file

number value or if the file number value does not have a maximum line length, let t be

the value of tab number.

2. Otherwise, tab number is greater than the maximum line length. Let t be the value (tab
number modulo maximum line length).

3. If t less than or equal to the current line position, output the line termination sequence.
Set the current file-pointer-position is set to beginning of the new line.

4. Write t minus current line position space characters to the file associated with file number

value starting at its current file-pointer-position and set the current file-pointer-position to
the position following that last such space character.

5. If the <char-position> element is a "," write a comma character to the file and advance
the current file-pointer-position.

6. If while performing any of these steps the number of characters in the current line (section

5.4.5) reaches the maximum line length (section 5.4.5) the line termination sequence is

immediately written and output continues on the next line.

 Otherwise, <output-clause> consists of a <tab-clause> that does not includes a <tab-
number-clause> so do the following steps:

1. Write a comma character and advance the current file-pointer-position.

2. If the <char-position> element is a "," write a comma character to the file and advance
the current file-pointer-position.

111 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

3. If while performing any of these steps the number of characters in the current line (section
5.4.5) reaches the maximum line length (section 5.4.5) the line termination sequence is

immediately written and output continues on the next line.

 If the <char-position> of the last <output-item> is neither a "," nor an explicitly occurring ";" the

implementation-defined line termination sequence is output and the current file-position-pointer is
set to the beginning of the new line.

 The output string value of an <output-expression> is determined as follows:

 If the evaluated data value of the <output-expression> is the Boolean data value True, the
output string is ""#TRUE#".

 If the evaluated data value of the <output-expression> is the Boolean data value False, the
output string is "#FALSE#".

 If the evaluated data value of the <output-expression> is the data value Null, the output
string is "#NULL#".

 If the evaluated data value of the <output-expression> is an Error data value the output
string is "#ERROR " followed by the error code Let-coerced to String followed by the single
character "#".

 If the evaluated data value of the <output-expression> is a String data value the output

string is the data value of the String data element with surrounding double quote (U+0022)
characters.

 If the evaluated data value of the <output-expression> is any numeric data value other than a
Date the output string is the evaluated data value of the <output-expression> Let-coerced to
String ignoring any implementation dependent locale setting and using "." as the decimal
separator.

 If the evaluated data value of the <output-expression> is a Date data value the output string

is a String data value of the form #yyyy-mm-dd hh:mm:ss#. Hours are specified in 24-hour

form. If both the date is 1899-12-30 and the time is 00:00:00 only the date portion is output.
Otherwise if the date is 1899-12-30 only the time portion is output and if the time is 00:00:00
only the date portion is output.

 Otherwise, the output string is the evaluated data value of the <output-expression> Let-
coerced to String with the data value of the string surrounded with double quote (U+0022)
characters.

5.4.5.10 Input Statement

An <input-statement> reads data from the file underlying <marked-file-number>.

 input-statement = "Input" marked-file-number "," input-list

 input-list = input-variable *["," input-variable]
 input-variable = bound-variable-expression

Static Semantics.

 The semantics of <marked-file-number> in this context are those of a <file-number> element
that consisted of that same <marked-file-number> element.

 The <bound-variable-expression> of an <input-variable> MUST be classified as a variable.

112 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The declared type of an <input-variable> MUST NOT be Object or a specific name class.

Runtime Semantics.

 An error (number 52, "Bad file name or number") is raised if the file number value (section
5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).

 An <input-statement> reads data (starting from the current file-pointer-position) into one or more
variables. Characters are read using the file number value until a non-whitespace character is
encountered. These whitespace characters are discarded, and the file-pointer-position now points
at the first non-whitespace character.

 The following process occurs for each <input-variable> in <input-list>:

 If the declared type of <input-variable> is String then it is assigned a sequence of characters

which are read from the file, defined as:

1. If the first character read is a DQUOTE then the sequence of characters is a concatenation

of all characters read from the file until a DQUOTE is encountered; neither DQUOTE is
included in the sequence of characters. The file-pointer-position now points at the
character after the second DQUOTE. The beginning and ending DQUOTEs are not included
in the String assigned to <input-variable>.

2. If the first character read is not a DQUOTE then the sequence of characters is a

concatenation of all characters read from the file until a "," is encountered. The "," is not
included in the sequence of characters. The file-pointer-position now points at the
character after the ",".

 If the declared type of <input-variable> is Boolean then it is assigned the value false, unless
the sequence of characters read are "#TRUE#". If the sequence of characters is numeric an
"Overflow" error is generated (error number 6). The file-pointer-position now points at the
character after the second "#". o If the declared type of <input-variable> is Date then a

sequence of characters is read from the file, according to the following rules:

1. If the first character at file-pointer-position is "#", then characters are read until a second
"#" is encountered. At this point the concatenated String of characters is Let-coerced into
<input-variable>.

2. If the first character at file-pointer-position is not "#", then error 6 ("Overflow") is
generated.

 If the sequence of characters are all numbers or characters which are valid in a VBA number
(in other words, ".", "e", "E", "+", "-") then the characters are concatenated together into a
string and Let-coerced into the declared type of <input-variable>. The file-pointer-position
now points at the first non-numeric character it encountered.

 If the sequence of characters is surrounded by DQUOTEs and the declared type of <input-
variable> is not String or Variant, then <input-variable> is set to its default value.

 In this case the file-pointer-position now points at the first character after the second

DQUOTE. If this character is a "," then the file-pointer-position advances one more position.

 If the sequence of characters read from the file are "#NULL#" then the Null value is Let-
coerced into <input-variable>. If the sequence of characters read from the file are "#ERROR "
followed by a number followed by a "#" then the error number value is Let-coerced into
<input-variable>.

 If one of the operations described in this section causes more characters to be read from the
file but file-pointer-position is already pointing at the last character in the file, then an "Input

past end of file" error is raised (error number 62).

113 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Each <input-variable> defined in <input-list> is processed in the order specified; if the same
underlying variable is specified multiple times in <input-list>, its value will be the one assigned to

the last <input-variable> in <input-list> that represents the same underlying variable.

5.4.5.11 Put Statement

 put-statement = "Put" file-number ","[record-number] "," data

 record-number = expression
 data = expression

Static Semantics.

 The declared type of a <data> expression MUST NOT be Object, a named class, or a UDT whose
definition recursively includes such a type.

 If no <record-number> is specified, the effect is as if <record-number> is the current file-pointer-
position.

Runtime Semantics.

 An error (number 52, "Bad file name or number") is raised if the file number value (section
5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).

 The value of <record-number> is defined to be the value of <record-number> after it has been
Let-coerced to a Long.

 If the <mode> for <file-number> is Binary:

 The file-pointer-position is updated to be exactly <record-number> number of bytes from the
start of the file underlying <marked-file-number>.

 The value of <data> is written to the file at the current file-pointer-position (according to the
rules defined in the Variant Data File Type Descriptors and Binary File Data Formats tables).

 If <data> is a UDT, then the value of each member of the UDT is written to the file at the
current file-pointer-position (according to the rules defined in the Variant Data File Type
Descriptors and Binary File Data Formats tables), in the order in which the members are

declared in the UDT.

 If the <mode> for <file-number> is Random:

 The file-pointer-position is updated to be exactly (<record-number> * <rec-length>) number
of bytes from the start of the file underlying <marked-file-number>. o The value of <data> is
written to the file at the current file-pointer-position (according to the rules defined in the
Variant Data File Type Descriptors and Binary File Data Formats tables).

 If <data> is a UDT, then the value of each member of the UDT is written to the file at the

current file-pointer-position (according to the rules defined in the Variant Data File Type
Descriptors and Binary File Data Formats tables), in the order in which the members are
declared in the UDT.

 If the number of bytes written is less than the specified <rec-length> (see section 5.4.5.1)
then the remaining bytes are written to the file are undefined. If the number of bytes written
is more than the specified <rec-length>, an error is generated (#59, "Bad record length").

When outputting a variable whose declared type is Variant, a two byte type descriptor is output before
the actual value of the variable.

114 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Variant Kind
Type Descriptor
Byte 1

Type Descriptor
Byte 2

Unknown ERROR -

User Defined Type ERROR -

Object ERROR -

Data value Empty 00 00

Data value Null 01 00

Integer 02 00

Long 03 00

Single 04 00

Double 05 00

Currency 06 00

Date 07 00

String 08 00

Error 10 00

Boolean 11 00

Decimal 14 00

LongLong 20 00

Once the type descriptor has been written to the file (if necessary), the literal value of the variable is
output according to the rules described in the following table:

Data Type Bytes to write to file

Integer A two byte signed integer output in little-endian form. See _int16 in [MS-DTYP].

Long A four byte signed integer. See _int32 in [MS-DTYP].

Single A four byte IEEE floating point value. See float in [MS-DTYP].

Double An eight byte IEEE double value. See double in [MS-DTYP].

Currency An eight byte Currency value. See [MS-OAUT] section 2.2.24.

Date An eight byte Date value. See [MS-OAUT] section 2.2.25.

String In random mode, the first two bytes are the length of the String. If the value is

more than 64 kilobytes, then the value of the first two bytes is FF FF. In binary

mode there is no two-byte prefix, and the String is stored in ANSI form, without

NULL termination

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
http://msdn.microsoft.com/en-us/library/5a2b34c4-d109-438e-9ec8-84816d8de40d/
http://msdn.microsoft.com/en-us/library/35c9bf2d-b8e8-4d7d-a50f-367da0d99fce/

115 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Data Type Bytes to write to file

Fixed-length String There is no two-byte prefix, and the String is stored in ANSI form, without NULL

termination

Error The value of the error code. See HRESULT in [MS-DTYP].

Boolean If the data value of the Boolean is True, then the two bytes are FF FF. Otherwise,

the two bytes are 00 00.

Decimal A 16 bytes Decimal value. See [MS-OAUT] section 2.2.26.

5.4.5.12 Get Statement

 get-statement = "Get" file-number "," [record-number] "," variable

 variable = variable-expression

Static Semantics.

 The <variable-expression> of a <variable> MUST be classified as a variable.

 The declared type of a <variable> expression MUST NOT be Object, a named class, or a UDT

whose definition recursively includes such a type.

 If no <record-number> is specified, the effect is as if <record-number> is the current file-pointer-
position.

Runtime Semantics:

 An error (number 52, "Bad file name or number") is raised if the file number value (section
5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).

 A <get-statement> reads data from an external file and stores it in a variable.

 If the <mode> for <file-number> is Binary:

 The file-pointer-position is updated to be exactly <record-number> number of bytes from the
start of the file underlying <marked-file-number>.

 If the declared type of <variable> is Variant:

 Two bytes are read from the file. These two bytes are the type descriptor for the data
value that follows. The number of bytes to read next are determined based on the type

that the type descriptor represents , as shown in the Binary File Data Formats table in
section 5.4.5.11. If the value type of <variable> is String, then the number of bytes to
read is the number of characters in <variable>.

 Once these bytes have been read from the file, the data value they form is Let-coerced
into <variable>.

 If the declared type of <variable> is not Variant:

http://msdn.microsoft.com/en-us/library/b5493025-e447-4109-93a8-ac29c48d018d/

116 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Based on the declared type of <variable>, the appropriate number of bytes are read from
the file, as shown in the Variant Data File Type Descriptors table in section 5.4.5.11. Once

these bytes have been read from the file, the data value they form is Let-coerced into
<variable>.

 If the <mode> for <file-number> is Random:

 The file-pointer-position is updated to be exactly <record-number> * <rec-length> number of
bytes from the start of the file underlying <marked-file-number>.

 If the declared type of <variable> is Variant:

 Two bytes are read from the file. These two bytes are the type descriptor for the data
value that follows. The number of bytes to read next are determined based on the type
that the type descriptor represents, as shown in the Binary File Data Formats table in

section 5.4.5.11. Once these bytes have been read from the file, the data value they form
is Let-coerced into <variable>.

 If the declared type of <variable> is String:

 Two bytes are read from the file. The data value of these two bytes is the number of bytes
to read from the file. Once these bytes have been read form the file, the data value they
form is Let-coerced into <variable>.

 If the declared type of <variable> is neither Variant not String:

 The number of bytes to read from the file is determined by the declared type of
<variable>, as shown in the Variant Data File Type Descriptors table in section 5.4.5.11.
Once these bytes have been read from the file, the data value they form is Let-coerced
into <variable>.

5.5 Implicit coercion

In many cases, values with a given declared type can be used in a context expecting a different

declared type. The implicit coercion rules defined in this section decide the semantics of such implicit
coercions based primarily on the value type of the source value and the declared type of the
destination context.

There are two types of implicit coercion, Let-coercion (section 5.5.1) and Set-coercion (section
5.5.2), based on the context in which the coercion occurs. Operations that can result in implicit
coercion will be defined to use either Let-coercion or Set-coercion.

Note that only implicit coercion is covered here. Explicit coercion functions, such as CInt, are covered
in the VBA Standard Library section 6.1.2.3.

The exact semantics of implicit Let and Set coercion are described in the following sections.

5.5.1 Let-coercion

Let-coercion occurs in contexts where non-object values are expected, typically where the declared
type of the destination is not a class or Object.

Within the following sections, Decimal and Error are treated as though they are declared types, even
though VBA does not define a Decimal or Error declared type (data values of these value types can
be represented only within a declared type of Variant). The semantics defined in this section for

conversions to Decimal and Error are used by the definition of CDec (section 6.1.2.3.1.6) and CvErr
(section 6.1.2.3.1.14), respectively.

117 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.5.1.1 Static semantics

Let-coercion between the following pairs of source declared types or literals and destination declared
types is invalid:

Source Declared Type or Literal Destination Declared Type

Any type Any fixed-size array

Any numeric type or Boolean or Date Resizable Byte()

Any type except a non-Byte resizable or fixed-size

array or Variant

Any non-Byte resizable array

Any type except a UDT or Variant Any UDT

Any type except Variant Any class or Object

Any class which has no accessible default Property

Get or function, or which has an accessible default

Property Get or function for which it is statically

invalid to Let-coerce its declared type to the destination

declared type

Any type

Any non-Byte resizable or fixed-size array Resizable array of different element type than source

type or any non-array type except Variant

Any UDT Different UDT than source type or any non-UDT type

except Variant

UDT not imported from external reference or array of

UDTs not imported from external reference or array of

fixed-length strings

Variant

Nothing Any type except a class or Object or Variant

It is also invalid to implicitly Let-coerce from the LongLong declared type to any declared type other

than LongLong or Variant. Such coercions are only valid when done explicitly by use of a CType
explicit coercion function.

5.5.1.2 Runtime semantics

5.5.1.2.1 Let-coercion between numeric types

The most fundamental coercions are conversions from a numeric value type (Integer, Long,
LongLong, Byte, Single, Double, Currency, Decimal) to a numeric declared type (Integer, Long,
LongLong, Byte, Single, Double, Currency).

Numeric value types can be broken down into 3 categories:

 Integral: Integer, Long, LongLong and Byte

 Floating-point: Single and Double

 Fixed-point: Currency and Decimal

118 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Similarly, numeric declared types can be broken down into 3 categories:

 Integral: Integer, Long (including any Enum), LongLong and Byte

 Floating-point: Single and Double

 Fixed-point: Currency and Decimal

The semantics of numeric Let-coercion depend on the source’s value type and the destination’s
declared type:

Source Value

Type

Destination

Declared Type Semantics

Any integral type Any numeric type If the source value is within the range of the destination type, the
result is a copy of the value.

Otherwise, runtime error 6 (Overflow) is raised.

Any floating point

or fixed point type

Any integral type If the source value is finite (not positive infinity, negative infinity or

NaN) and is within the range of the destination type, the result is the

value converted to an integer using Banker’s rounding (section

5.5.1.2.1.1).

Otherwise, runtime error 6 (Overflow) is raised.

Any integral type Any numeric type If the source value is within the range of the destination type, the
result is a copy of the value.

Otherwise, runtime error 6 (Overflow) is raised.

Any integral type Any floating point

or fixed point type

If the source value is finite (not positive infinity, negative infinity or
NaN) and is within the magnitude range of the destination type, the
result is the value rounded to the nearest value representable in the
destination type using Banker’s rounding.

Otherwise, runtime error 6 (Overflow) is raised.

Note that the conversion can result in a loss of precision, and if the

value is too small it can become 0.

5.5.1.2.1.1 Banker’s rounding

Banker’s rounding is a midpoint rounding scheme, also known as round-to-even.

During rounding, ambiguity can arise when the original value is at the midpoint between two potential
rounded values. Under Banker’s rounding, such ambiguity is resolved by rounding to the nearest
rounded value such that the least-significant digit is even.

For example, when using Banker’s rounding to round to the nearest 1, both 73.5 and 74.5 round to
74, while 75.5 and 76.5 round to 76.

119 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.5.1.2.2 Let-coercion to and from Boolean

When not stored as a Boolean value, False is represented by 0, and True is represented by nonzero
values, usually -1.

The semantics of Boolean Let-coercion depend on the source’s value type and the destination’s
declared type:

Source Value

Type

Destination

Declared Type Semantics

Boolean Boolean The result is a copy of the source value.

Boolean Any numeric type

except Byte

If the source value is False, the result is 0. Otherwise, the result is -1.

Boolean Byte If the source value is False, the result is 0. Otherwise, the result is

255.

Any numeric type Boolean If the source value is 0, the result is False. Otherwise, the result is

True.

5.5.1.2.3 Let-coercion to and from Date

A Date value can be converted to or from a standard Double representation of a date/time, defined
as the fractional number of days after 12/30/1899 00:00:00. As Date values representing times with
no date are represented as times within the date 12/30/1899, their standard Double representation
becomes a Double value greater than or equal to 0 and less than 1.

The semantics of Date Let-coercion depend on the source’s value type and the destination’s declared
type:

Source Value

Type

Destination

Declared Type Semantics

Date Date The result is a copy of the source date.

Date Any numeric type

or Boolean

The result is the standard Double representation of the source date

Let-coerced to the destination type.

Any numeric type

or Boolean

Date The source value is converted to a Double using the Let-coercion

rules for Double. This Double representation is then interpreted as a

standard Double representation of a date/time and converted to a

Date value. If this date value is within the range of valid Date values,

the result is the converted date.

Otherwise, runtime error 6 (Overflow) is raised.

5.5.1.2.4 Let-coercion to and from String

The formats accepted or produced when coercing number, currency and date values to or from String
respects host-defined regional settings. Excess whitespace is ignored at the beginning or end of the
value or when inserted before or after date/time separator characters such as "/" and ":", sign

characters such as "+", "-" and the scientific notation character "E".

120 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

The semantics of String Let-coercion depend on the source’s value type and the destination’s
declared type:

Source Value

Type

Destination

Declared Type Semantics

String String The result is a copy of the source string.

String Any numeric type The source string is parsed as a numeric-coercion-string using the
following case-insensitive, whitespace-sensitive grammar:

 numeric-coercion-string = [WS] [sign [WS]]
regionalnumber-string [exponentclause] [WS]

 exponent-clause = ["e" / "d"] [sign] integer-literal

 sign = "+" / "-"

 regional-number-string = <unsigned number or currency
value interpreted according to the active host-defined

regional settings>

If the <regional-number-string> can be interpreted as an unsigned
number or unsigned currency value according to the active host-
defined regional settings, an interpreted value is determined as
follows:

 If the destination type is an integral or fixed-point numeric type,
<regional-number-string> is interpreted as an infinite-precision
fixed-point numeric value.

 Otherwise, if the destination type is a floating-point numeric type,
<regional-number-string> is interpreted as an infinite-precision
floating-point numeric value.

A scaled value is then determined as follows:

 If <exponent-clause> is not specified, the scaled value is the
interpreted value.

 Otherwise, if <exponent-clause> is specified, an exponent is

determined. The magnitude of the exponent is the value of the
<integer-literal> within exponent. If a <sign> is specified, the
exponent is given that sign, otherwise the sign of the exponent is
positive. The scaled value is the interpreted value multiplied by
10exponent.

A signed value is then determined as follows:

 If a <sign> is specified, the scaled value is given the specified

sign.

 Otherwise, the sign of the scaled value is positive.

The result is then determined from the signed value as follows:

 If the destination type is an integral numeric type, and the signed

value is within the range of the destination type, the result is the
signed value converted to an integer using Banker’s rounding

121 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Source Value

Type

Destination

Declared Type Semantics

(section 5.5.1.2.1.1).

 Otherwise, if the destination type is a fixed-point or floating-point
numeric type, and the signed value is within the magnitude range
of the destination type, the result is the signed value converted to
the nearest value that has a representation in the destination
type.

If the <regional-number-string> could not be interpreted as a number

or currency value, runtime error 13 (Type mismatch) is raised. If the
value could be interpreted as a number, but was out of the range of
the destination type, runtime error 6 (Overflow) is raised.

Note that the conversion can result in a loss of precision, and if the

value is too small the result can be 0.

String Boolean If the source string is equal to "True" or "False", case-insensitive, the
result is True or False, respectively. If the source string is equal to
"#TRUE#" or "#FALSE#", case-sensitive, the result is True or False,
respectively. The case sensitivity of these string comparisons is not
affected by Option Compare.

Otherwise, the result is the source string Let-coerced to a

Double value, which is then Let-coerced to a Boolean value.

String Date If the source string can be interpreted as either a date/time, time, or
date value (in that precedence order) according to the host-defined
regional settings, the value is converted to a Date.

Otherwise, if the source string can be interpreted as a number or
currency value according to the host-defined regional settings, and the
resulting value is within the magnitude range of Double, the value is
converted to the nearest representable Double value, and then this
value is Let-coerced to Date. If this coerced value is within the range
of Date, the result is the date value.

If the source string could not be interpreted as a date/time, time,

date, number or currency value, runtime error 13 (Type mismatch) is

raised. If the conversion to Double resulted in an overflow, runtime

error 13 (Type mismatch) is raised instead of the runtime error 6

(Overflow) that would otherwise be raised.

Any numeric type String The maximum number of integral significant figures that can be
output is based on the value type of the source as follows:

 Single: 7

 Double: 15

 Any integral or fixed-point type: Infinite

The number is converted to a string using the following format (note

that some host-defined regional number formatting settings, such as
custom negative sign symbols and digit grouping, can be ignored):

122 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Source Value

Type

Destination

Declared Type Semantics

 If the number is 0, the result is the string "0".

 If the number is positive infinity, the result is the string "1.#INF".

 If the number is negative infinity, the result is the string

"1.#INF".

 If the number is NaN (not a number), the result is the string "-
1.#IND".

 If the number is not 0 and there are less than or equal to the
maximum number of integral significant figures in the integer part
of the number, normal notation is used; for example, -123.45.
The resulting string is in the following format:

 - if the number is negative

 The digits of the integer part of the number with no digit
grouping (thousands separators) applied

 The host-defined regional decimal symbol (such as . or ,) if
any fractional digits will be printed next

 As many digits as possible of the fractional part of the
number such that a maximum of 15 integer and fractional
digits are printed total with trailing zeros removed

 If the number is not 0 and there are more than the maximum
number of integral significant figures in the integer part of the
number, scientific notation is used; for example, -1.2345E+2.
The number is converted to its equivalent form s × 10e, where s
is the significand (the number scaled such that there is exactly
one nonzero digit before the decimal point), and e is the exponent
(equal to the number of places the decimal point was moved to
form the significand). The resulting string is in the following
format:

 - if the number is negative

 The single digit of the integer part of the significand

 The host-defined regional decimal symbol (such as . or ,) if
any fractional digits of the significand will be printed next

 As many digits as possible of the significand such that a
maximum of 15 integer and significand digits are printed
total with trailing zeros removed

 E

 + or - depending on the sign of the exponent

 The digits of the exponent

Note that the string conversion always interprets the source value as a
number, not a currency value, even for fixed-point numeric types such
as Currency or Decimal.

Boolean String If the source value is False, the result is "False". Otherwise, the result

is "True".

123 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Source Value

Type

Destination

Declared Type Semantics

Date String If the day value of the source date is 12/30/1899, only the date’s time
is converted to a string according to the host-defined regional Long
Time format, and the result is this time string.

Otherwise, the source date’s full date and time value is converted to a

string according to the platform’s host-defined regional Short Date
format, and the result is this date/time string.

The Long Time format represents the platform’s standard time

format that includes hours, minutes and seconds. The Short Date

format represents the platform’s standard date format where the

month, day and year are all expressed in their shortest form (that is,

as numbers).

5.5.1.2.5 Let-coercion to String * length (fixed-length strings)

The semantics of String * length Let-coercion depend on the source’s value type:

Source Value

Type

Destination

Declared Type Semantics

String String * length If the source string has more than length characters, the result is a
copy of the source string truncated to the first length characters.

Otherwise, the result is a copy of the source string padded on the

right with space characters to reach a total of length characters.

Any numeric type,

Boolean or Date

String * length The result is the source value Let-coerced to a String value and then

Let-coerced to a String * length value.

5.5.1.2.6 Let-coercion to and from resizable Byte()

The semantics of Byte() Let-coercion depend on the source’s value type and the destination’s
declared type:

Source Value

Type

Destination

Declared Type Semantics

Byte() Resizable Byte() The result is a copy of the source Byte array.

124 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Source Value

Type

Destination

Declared Type Semantics

Byte() String or String *

length

The binary data within the source Byte array is interpreted as if it
represents the implementation-defined binary format used to store
String data. Even if this implementation-defined format includes a
prefixed length and/or end marker, these elements are not read from
the Byte array and MUST instead be inferred from the String data.
The result is the string produced.

This coercion never raises a runtime error. If the byte array is

uninitialized, the result is a 0-length string. If binary data in the array

cannot be interpreted as a character, or if the character specified is

cannot be represented on the current platform, that character is

output in the String as a ? character. Any trailing bytes leftover at

the end of the byte array that could not be interpreted are discarded.

Byte() Any numeric type,

Boolean or Date

The result is undefined.

String Resizable Byte() The result is a copy of the implementation-defined binary data used to

store the String value, excluding any prefixed length and/or end

marker.

Any numeric type,

Boolean or Date

Resizable Byte() Runtime error 13 (Type mismatch) is raised.

5.5.1.2.7 Let-coercion to and from non-Byte arrays

The semantics of non-Byte array Let-coercion depend on the source’s value type and the
destination’s declared type:

Source Value

Type

Destination

Declared Type Semantics

Any non-Byte

array

Array with same

element type as

source type

The result is a shallow copy of the array. Elements with a value type

of a class or Nothing are Set-assigned to the destination array

element and all other elements are Let-assigned.

Any non-Byte

array

Any other type

except Variant

Runtime error 13 (Type mismatch) is raised.

Any numeric type,

Boolean, Date, or

String

Any fixed-size

array or non-Byte

resizable array

Runtime error 13 (Type mismatch) is raised.

5.5.1.2.8 Let-coercion to and from a UDT

The semantics of UDT Let-coercion depend on the source’s value type and the destination’s declared
type:

125 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Source Value

Type

Destination

Declared Type Semantics

Any UDT Same UDT as

source type

The result is a shallow copy of the UDT. Elements with a value type of

a class or Nothing are Set-assigned to the destination UDT field and

all other elements are Let-assigned.

Any UDT Any other type

except Variant

Runtime error 13 (Type mismatch) is raised.

Any numeric type,

Boolean, Date,

String or array

Any UDT Runtime error 13 (Type mismatch) is raised.

5.5.1.2.9 Let-coercion to and from Error

The semantics of Error Let-coercion depend on the source’s value type and the destination’s declared
type:

Source Value

Type

Destination

Declared Type Semantics

Error Any type except a

fixed-size array or

Variant

Runtime error 13 (Type mismatch) is raised.

Any numeric type,

Boolean, Date,

String, array or

UDT

Error The source value is converted to a Long using the Let-coercion rules
for Long. If this Long representation is between 0 and 65535,
inclusive, the result is an Error data value representing the standard
error code specified by the Long value.

Otherwise, runtime error 5 (Invalid procedure call or argument) is

raised.

5.5.1.2.10 Let-coercion from Null

The semantics of Null Let-coercion depend on the destination’s declared type:

Source Value

Type

Destination

Declared Type Semantics

Null Any resizable array

or UDT

Runtime error 13 (Type mismatch) is raised.

Null Any other type

except a fixed-size

array or Variant

Runtime error 94 (Invalid use of Null) is raised.

126 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.5.1.2.11 Let-coercion from Empty

The semantics of Empty Let-coercion depend on the destination’s declared type:

Source Value

Type

Destination

Declared Type Semantics

Empty

Any numeric type The result is 0.

Empty

Boolean The result is False.

Empty

Date The result is 12/30/1899 00:00:00.

Empty

String The result is a 0-length string.

Empty

String * length The result is a string containing length spaces.

Empty

Any class or

Object

Runtime error 424 (Object required) is raised.

Empty

Any other type

except Variant

Runtime error 13 (Type mismatch) is raised.

5.5.1.2.12 Let-coercion to Variant

The semantics of Variant Let-coercion depend on the source’s value type:

Source Value

Type

Destination

Declared Type Semantics

Any type except a

class or Nothing

Variant The result is a copy of the source value, Let-coerced to the

destination declared type.

5.5.1.2.13 Let-coercion to and from a class or Object or Nothing

The semantics of object Let-coercion depend on the source’s value type and the destination’s declared
type:

Source Value

Type

Destination

Declared Type Semantics

Any class Any type The result is the simple data value of the object, Let-coerced to the

destination declared type.

Nothing Any type Runtime error 91 (Object variable or With block variable not set) is

raised.

127 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Source Value

Type

Destination

Declared Type Semantics

Any type except a

class or Nothing

Any class or

Object

Runtime error 424 (Object required) is raised.

5.5.2 Set-coercion

Set-coercion occurs in contexts where object values are expected, typically where the declared type
of the destination is a class or where the Set keyword has been used explicitly.

5.5.2.1 Static semantics

Set-coercion between the following pairs of source declared types and destination declared types is
invalid:

Source Declared Type Destination Declared Type

Any type Any type except a class or Object or Variant

Any type except a class or Object or Variant Any class or Object or Variant

5.5.2.2 Runtime semantics

5.5.2.2.1 Set-coercion to and from a class or Object or Nothing

The semantics of object Set-coercion depend on the source’s value type and the destination’s declared
type:

Source Value

Type

Destination

Declared Type Semantics

Any class Same class as

source type or

class implemented

by source type or

Object or Variant

The result is a copy of the source object reference. The source and

destination now refer to the same object.

Any class Different class not

implemented by

source type

Runtime error 13 (Type mismatch) is raised.

Nothing Any class or

Object or Variant

The result is the Nothing reference.

5.5.2.2.2 Set-coercion to and from non-object types

128 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

The semantics of non-object Set-coercion with the Set keyword depend on the source’s value type
and the destination’s declared type:

Source Value

Type

Destination

Declared Type Semantics

Any type except a

class or Nothing

Any class or

Object

Runtime error 424 (Object required) is raised.

Any type except a

class or Nothing

Variant Runtime error 13 (Type mismatch) is raised.

5.6 Expressions

An expression is a hierarchy of values, identifiers and subexpressions that evaluates to a value, or
references an entity such as a variable, constant, procedure or type. Besides its tree of
subexpressions, an expression also has a declared type which can be determined statically, and a
value type which can vary depending on the runtime value of its values and subexpressions. This

section defines the syntax of expressions, their static resolution rules and their runtime evaluation
rules.

 expression = value-expression / l-expression
 value-expression = literal-expression / parenthesized-expression / typeof-is-expression /
new-expression / operator-expression

 l-expression = simple-name-expression / instance-expression / member-access-expression /
index-expression / dictionary-access-expression / with-expression

5.6.1 Expression Classifications

Every expression has one of the following classifications:

 A value expression. A value expression represents an immutable data value, and also has a
declared type.

 A variable expression. A variable expression references a variable declaration, and also has an
argument list queue and a declared type.

 A property expression. A property expression references a property, and also has an argument list
queue and a declared type.

 A function expression. A function expression references a function, and also has an argument list
queue and a declared type.

 A subroutine expression. A subroutine expression references a subroutine, and also has an
argument list queue.

 An unbound member expression. An unbound member expression references a variable, property,
subroutine or function, whose classification or target reference cannot be statically determined,
and also has an optional member name and an argument list queue.

 A project expression. A project expression references a project.

 A procedural module expression. A procedural module expression references a procedural module.

129 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 A type expression. A type expression references a declared type.

5.6.2 Expression Evaluation

The data value or simple data value of an expression can be obtained through the process of
expression evaluation. Both data values and simple data values represent an immutable value and
have a declared type, but simple data values can not represent objects or the value Nothing.

5.6.2.1 Evaluation to a data value

Static semantics. The following types of expressions can be evaluated to produce a data value:

 An expression classified as a value expression or variable expression can be evaluated as a data
value with the same declared type as the expression, based on the following rules:

 If this expression’s argument list queue is empty, the declared type of the data value is that of

the value.

 Otherwise, if this expression’s argument list queue has a first unconsumed argument list
(perhaps with 0 arguments):

 If the declared type of the expression is Object or Variant, the declared type of the data
value is Variant.

 If the declared type of the expression is a specific class:

 If the declared type of the variable has a public default Property Get or function and

this default member’s parameter list is compatible with this argument list, the
declared type of the data value is the declared type of this default member.

 Otherwise, the evaluation is invalid.

 If the declared type of the expression is an array type:

 If the number of arguments specified is equal to the rank of the array, the declared
type of the data value is the array’s element type.

 Otherwise, if one or more arguments have been specified and the number of

arguments specified is different than the rank of the array, the evaluation is invalid.

 Otherwise, if the declared type is a type other than Object, Variant, a specific class or an
array type, the evaluation is invalid.

 An expression classified as a property with an accessible Property Get or a function can be
evaluated as a data value with the same declared type as the property or function.

 An expression classified as an unbound member can be evaluated as a data value with a declared

type of Variant.

Runtime semantics.

At runtime, the data value’s value is determined based on the classification of the expression, as
follows:

 If the expression is classified as a value, the data value’s value is that of the expression.

 If the expression is classified as an unbound member, the member is resolved as a variable,
property, function or subroutine:

130 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If the member was resolved as a variable, property or function, evaluation continues as if the
expression had statically been resolved as a variable expression, property expression or

function expression, respectively.

 If the member was resolved as a subroutine, the subroutine is invoked with the same target

and argument list as the unbound member expression. The data value’s value is the value
Empty.

 If the expression is classified as a variable:

 If the argument list queue is empty, the data value’s value is a copy of the variable’s data
value.

 Otherwise, if the argument list queue has a first unconsumed argument list (perhaps empty):

 If the value type of the expression’s target variable is a class:

 If the declared type of the target is Variant, runtime error 9 (Subscript out of range)

is raised.

 If the declared type of the target is not Variant, and the target has a public default
Property Get or function, the data value’s value is the result of invoking this default
member for that target with this argument list. This consumes the argument list.

 Otherwise, runtime error 438 (Object doesn’t support this property or method) is

raised.

 If the value type of the expression’s target is an array type:

 If the number of arguments specified is equal to the rank of the array, and each
argument is within its respective array dimension, the data value’s value is a copy of
the value stored in the element of the array indexed by the argument list specified.
This consumes the argument list.

 Otherwise, runtime error 9 (Subscript out of range) is raised.

 Otherwise, if the value type of the expression’s target variable is a type other than a class
or array type, runtime error 9 (Subscript out of range) is raised.

 If the expression is classified as a property or a function:

 If the enclosing procedure is either a Property Get or a function, and this procedure matches
the procedure referenced by the expression, evaluation restarts as if the expression was a
variable expression referencing the current procedure’s return value.

 Otherwise, the data value’s value is the result of invoking this referenced property’s named

Property Get procedure or function for that target. The argument list for this invocation is
determined as follows:

 If the procedure being invoked has a parameter list that cannot accept any parameters or
the argument queue is empty, the procedure is invoked with an empty argument list. In

this case, if the argument queue has a first unconsumed argument list and this list is
empty, this argument list is consumed.

 Otherwise, if the procedure being invoked has a parameter list with at least one named or
optional parameter, and the argument list queue has a first unconsumed argument list
(perhaps empty), the procedure is invoked with this argument list. This consumes the
argument list.

131 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.6.2.2 Evaluation to a simple data value

Static semantics. The following types of expressions can be evaluated to produce a simple data value:

 An expression classified as a value expression can be evaluated as a simple data value based on
the following rules:

 If the declared type of the expression is a type other than a specific class, Variant or Object,
the declared type of the simple data value is that of the expression.

 If the declared type of the expression is Variant or Object, the declared type of the simple
data value is Variant.

 If the declared type of the expression is a specific class:

 If this class has a public default Property Get or function and this default member’s
parameter list is compatible with an argument list containing 0 parameters, simple data
value evaluation restarts as if this default member was the expression.

 An expression classified as an unbound member, variable, property or function can be evaluated
as a simple data value if it is both valid to evaluate the expression as a data value, and valid to
evaluate an expression with the resulting classification and declared type as a simple data value.

Runtime semantics. At runtime, the simple data value’s value and value type are determined based on

the classification of the expression, as follows:

 If the expression is a value expression:

 If the expression’s value type is a type other than a specific class or Nothing, the simple data
value’s value is that of the expression.

 If the expression’s value type is a specific class:

 If the source object has a public default Property Get or a public default function, and
this default member’s parameter list is compatible with an argument list containing 0
parameters, the simple data value’s value is the result of evaluating this default member
as a simple data value.

 Otherwise, if the source object does not have a public default Property Get or a public
default function, runtime error 438 (Object doesn’t support this property or method) is

raised.

 If the expression’s value type is Nothing, runtime error 91 (Object variable or With block
variable not set) is raised.

 If the expression is classified as an unbound member, variable, property or function, the
expression is first evaluated as a data value and then the resulting expression is reevaluated as a
simple data value.

5.6.2.3 Default Member Recursion Limits

Evaluation of an object whose default Property Get or default function returns another object can
lead to a recursive evaluation process if the returned object has a further default member. Recursion
through this chain of default members can be implicit if evaluating to a simple data value and each
default member has an empty parameter list, or explicit if index expressions are specified that

specifically parameterize each default member.

132 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

An implementation can define limits on when such a recursive default member evaluation is valid. The
limits can depend on factors such as the depth of the recursion, implicit vs. explicit specification of

empty argument lists, whether members return specific classes vs. returning Object or Variant,
whether the default members are functions vs. Property Gets, and whether the expression occurs on

the left side of an assignment. The implementation can determine such an evaluation to be invalid
statically or can raise error 9 (Subscript out of range) or 13 (Type mismatch) during evaluation at
runtime.

5.6.3 Member Resolution

An expression statically classified as a member can be resolved at runtime to produce a variable,
property, function or subroutine reference through the process of member resolution.

Runtime semantics.

At runtime, an unbound member expression can be resolved as a variable, property, function or

subroutine as follows:

 First, the target entity is evaluated to a target data value. Member resolution continues if the
value type of the data value is a class or a UDT.

 If the value type of the target data value is Nothing, runtime error 91 (Object variable or
With block variable not set) is raised.

 If the value type of the target data value is a type other than a class, a UDT or Nothing,
runtime error 424 (Object required) is raised.

 If a member name has been specified and an accessible variable, property, function or subroutine
with the given member name exists on the target data value, the member resolves as a variable
expression, property expression, function expression or subroutine expression, respectively,
referencing the named member with the target data value as the target entity and with the same
argument list queue.

 If no member name has been specified, and the target data value has a public default Property
Get or a public default function, the member resolves as a property expression or function
expression respectively, referencing this default member with the target data value as the target
entity and with the same argument list queue.

 Otherwise, if no resolution was possible:

 If the value type of the target entity is a class, runtime error 438 (Object doesn’t support this
property or method) is raised. o If the value type of the target entity is a UDT, runtime error

461 (Method or data member not found) is raised.

5.6.4 Expression Binding Contexts

An expression can perform name lookup using one of the following binding contexts:

 The default binding context. This is the binding context used by most expressions.

 The type binding context. This is the binding context used by expressions that expect to reference
a type or class name.

 The procedure pointer binding context. This is the binding context used by expressions that expect
to return a pointer to a procedure.

 The conditional compilation binding context. This is the binding context used by expressions within
conditional compilation statements.

133 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Unless otherwise specified, expressions use the default binding context to perform name lookup.

5.6.5 Literal Expressions

A literal expression consists of a literal.

Static semantics. A literal expression is classified as a value. The declared type of a literal expression
is that of the specified token.

 literal-expression = INTEGER / FLOAT / DATE / STRING / (literal-identifier [type-suffix])

Runtime semantics. A literal expression evaluates to the data value represented by the specified
token. The value type of a literal expression is that of the specified token.

Any <type-suffix> following a <literal-identifier> has no effect.

5.6.6 Parenthesized Expressions

A parenthesized expression consists of an expression enclosed in parentheses.

Static semantics. A parenthesized expression is classified as a value expression, and the enclosed

expression MUST able to be evaluated to a simple data value. The declared type of a parenthesized
expression is that of the enclosed expression.

 parenthesized-expression = "(" expression ")"

Runtime semantics. A parenthesized expression evaluates to the simple data value of its enclosed
expression. The value type of a parenthesized expression is that of the enclosed expression.

5.6.7 TypeOf…Is Expressions

A TypeOf...Is expression is used to check whether the value type of a value is compatible with a
given type.

 typeof-is-expression = "typeof" expression "is" type-expression

Static semantics. A TypeOf...Is expression is classified as a value and has a declared type of
Boolean. <expression> MUST be classified as a variable, function, property with a visible Property
Get, or unbound member and MUST have a declared type of a specific UDT, a specific class, Object
or Variant.

Runtime semantics. The expression evaluates to True if any of the following are true:

 The value type of <expression> is the exact type specified by <type-expression>.

 The value type of <expression> is a specific class that implements the interface type specified by
<type-expression>.

 The value type of <expression> is any class and <type-expression> specifies the type Object.

 Otherwise the expression evaluates to False.

134 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

If the value type of <expression> is Nothing, runtime error 91 (Object variable or With block
variable not set) is raised.

5.6.8 New Expressions

A New expression is used to instantiate an object of a specific class.

 new-expression = "New" type-expression

Static semantics. A New expression is invalid if the type referenced by <type-expression> is not
instantiable.

A New expression is classified as a value and its declared type is the type referenced by <type-
expression>.

Runtime semantics. Evaluation of a New expression instantiates a new object of the type referenced
by <type-expression> and returns that object.

5.6.9 Operator Expressions

There are two kinds of operators. Unary operators take one operand and use prefix notation (for
example, –x). Binary operators take two operands and use infix notation (for example, x + y). With

the exception of the relational operators, which result in Boolean, an operator defined for a particular
type results in that type. The operands to an operator MUST be classified as a value; the result of an
operator expression is classified as a value.

 operator-expression = arithmetic-operator-expression / concatenation-operator-expression /
relational-operator-expression / like-operator-expression / is-operator-expression / logical-

operator-expression

Static semantics. An operator expression is classified as a value.

5.6.9.1 Operator Precedence and Associativity

When an expression contains multiple binary operators, the precedence of the operators controls the
order in which the individual binary operators are evaluated. For example, in the expression x + y * z

is evaluated as x + (y * z) because the * operator has higher precedence than the + operator. The
following table lists the binary operators in descending order of precedence:

Category Operators

Primary All expressions not explicitly listed in this table

Exponentiation ^

Unary negation -

Multiplicative *, /

Integer division \

Modulus Mod

Additive +, -

135 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Category Operators

Concatenation &

Relational =, <>, <, >, <=, >=, Like, Is

Logical NOT Not

Logical AND And

Logical OR Or

Logical XOR Xor

Logical EQV Eqv

Logical IMP Imp

When an expression contains two operators with the same precedence, the associativity of the

operators controls the order in which the operations are performed. All binary operators are left-
associative, meaning that operations are performed from left to right. Precedence and associativity
can be controlled using parenthetical expressions.

5.6.9.2 Simple Data Operators

Simple data operators are operators that first evaluate their operands as simple data values. Specific
operators defined in later sections can be designated as simple data operators.

Static semantics. A simple data operator is valid only if it is statically valid to evaluate each of its
operands as a simple data value. The declared types of the operands after this static validation are
used when determining the declared type of the operator, as defined in each operator’s specific
section.

Runtime semantics. A simple data operator’s operands are first evaluated as simple data values before
proceeding with the runtime semantics of operator evaluation.

5.6.9.3 Arithmetic Operators

Arithmetic operators are simple data operators that perform numerical computations on their
operands.

 arithmetic-operator-expression = unary-minus-operator-expression / addition-operator-
expression / subtraction-operator-expression / multiplication-operator-expression / division-

operator-expression / integer-division-operator-expression / modulo-operator-expression /

exponentiation-operator-expression

Static semantics. Arithmetic operators are statically resolved as simple data operators.

An arithmetic operator is invalid if the declared type of any operand is an array or a UDT.

For unary arithmetic operators, unless otherwise specified in the specific operator’s section, the
operator has the following declared type, based on the declared type of its operand:

Operand Declared Type Operator Declared Type

Byte Byte

136 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Operand Declared Type Operator Declared Type

Boolean or Integer Integer

Long Long

LongLong LongLong

Single Single

Double, String or String * length Double

Currency Currency

Date Date

Variant Variant

For binary arithmetic operators, unless otherwise specified in the specific operator’s section, the
operator has the following declared type, based on the declared type of its operands:

Left Operand Declared Type Right Operand Declared Type Operator Declared Type

Byte Byte Byte

Boolean or Integer Byte, Boolean or Integer Integer

Byte, Boolean or Integer Boolean or Integer Integer

Long Byte, Boolean, Integer or Long Long

Byte, Boolean, Integer or Long Long Long

LongLong Any integral numeric type LongLong

Any integral numeric type LongLong LongLong

Single Byte, Boolean, Integer or Single Single

Byte, Boolean, Integer or Single Single Single

Single Long or LongLong Double

Long or LongLong Single Double

Double, String or String * length Any integral or floating-point

numeric type, String or String *

length

Double

Any integral or floating-point

numeric type, String or String *

length

Double, String or String * length Double

Currency Any numeric type, String or String

* length

Currency

Any numeric type, String or String

* length

Currency Currency

Date Any numeric type, String, String *

length or Date

Date

137 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Left Operand Declared Type Right Operand Declared Type Operator Declared Type

Any numeric type, String, String *

length or Date

Date Date

Any type except an array or UDT Variant Variant

Variant Any type except an array or UDT Variant

Runtime semantics:

 Arithmetic operators are first evaluated as simple data operators.

 If the value type of any operand is an array, UDT or Error, runtime error 13 (Type mismatch) is
raised.

 Before evaluating the arithmetic operator, its non-Null operands undergo Let-coercion to the
operator’s effective value type.

 For unary arithmetic operators, unless otherwise specified, the effective value type is determined
as follows, based on the value type of the operand:

Operand Value Type Effective Value Type

Byte Byte

Boolean or Integer or Empty Integer

Long Long

LongLong LongLong

Single Single

Double or String Double

Currency Currency

Date Date (however, the operand is Let-

coerced to Double instead)

Decimal Decimal

Null Null

 For binary arithmetic operators, unless otherwise specified, the effective value type is determined
as follows, based on the value types of the operands:

Left Operand Value Type Right Operand Value Type Effective Value Type

Byte Byte or Empty Byte

Byte or Empty Byte Byte

Boolean or Integer Byte, Boolean, Integer or Empty Integer

Byte, Boolean, Integer or Empty Boolean or Integer Integer

138 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Left Operand Value Type Right Operand Value Type Effective Value Type

Empty Empty Integer

Long Byte, Boolean, Integer, Long or

Empty

Long

Byte, Boolean, Integer, Long or

Empty

Long Long

LongLong Any integral numeric type or

Empty

LongLong

Any integral numeric type or

Empty

LongLong LongLong

Single Byte, Boolean, Integer, Single or

Empty

Single

Byte, Boolean, Integer, Single or

Empty

Single Single

Single Long or LongLong Double

Long or LongLong Single Double

Double or String Any integral or floating-point

numeric type, String or Empty

Any integral or floating-point

numeric type, String or Empty

Double or String

Currency Any integral or floating-point

numeric type, Currency, String or

Empty

Currency

Any integral or floating-point

numeric type, Currency, String or

Empty

Currency Currency

Date Any integral or floating-point

numeric type, Currency, String,

Date or Empty

Date (however, the operands are

Let-coerced to Double instead)

Any integral or floating-point

numeric type, Currency, String,

Date or Empty

Date Date (however, the operands are

Let-coerced to Double instead)

Decimal Any numeric type, String, Date or

Empty

Decimal

Any numeric type, String, Date or

Empty

Decimal Decimal

Null Any numeric type, String, Date,

Empty, or Null

Null

Any numeric type, String, Date,

Empty, or Null

Null Null

139 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Left Operand Value Type Right Operand Value Type Effective Value Type

Error Error Error

Error Any type except Error Runtime error 13 (Type mismatch)

is raised.

Any type except Error Error Runtime error 13 (Type mismatch)

is raised.

The value type of an arithmetic operator is determined from the value the operator produces, the
effective value type and the declared type of its operands as follows:

 If the arithmetic operator produces a value within the valid range of its effective value type, the
operator’s value type is its effective value type.

 Otherwise, if the arithmetic operator produces a value outside the valid range of its effective value
type, arithmetic overflow occurs. The behavior of arithmetic overflow depends on the declared
types of the operands:

 If neither operand has a declared type of Variant, runtime error 6 (Overflow) is raised.

 If one or both operands have a declared type of Variant:

 If the operator’s effective value type is Integer, Long, Single or Double, the operator’s
value type is the narrowest type of either Integer, Long or Double such that the
operator value is within the valid range of the type. If the result does not fit within
Double, runtime error 6 (Overflow) is raised.

 If the operator’s effective value type is LongLong, runtime error 6 (Overflow) is raised.

 If the operator’s effective value type is Date, the operator’s value type is Double. If the

result does not fit within Double, runtime error 6 (Overflow) is raised.

 If the operator’s effective value type is Currency or Decimal, runtime error 6 (Overflow)
is raised.

The operator’s result value is Let-coerced to this value type.

Arithmetic operators with an effective value type of Single or Double perform multiplication,
floatingpoint division and exponentiation according to the rules of IEEE 754 arithmetic, which can
operate on or result in special values such as positive infinity, negative infinity, positive zero, negative
zero or NaN (not a number).

An implementation can choose to perform floating point operations with a higher-precision than the
effective value type (such as an "extended" or "long double" type) and coerce the resulting value to
the destination declared type. This can be done for performance reasons as some processors are only
able to reduce the precision of their floating-point calculations at a severe performance cost.

5.6.9.3.1 Unary - Operator

The unary - operator returns the value of subtracting its operand from 0.

 unary-minus-operator-expression = "-" expression

Static semantics:

140 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 A unary - operator expression has the standard static semantics for unary arithmetic operators.

 A unary - operator expression has the standard static semantics for unary arithmetic operators

(section 5.6.9.3) with the following exceptions when determining the operator’s declared type:

Operand Declared Type Operator Declared Type

Byte Integer

Runtime semantics:

 A unary - operator expression has the standard runtime semantics for unary arithmetic operators
(section 5.6.9.3) with the following exceptions when determining the operator’s effective value
type:

Operand Value Type Effective Value Type

Byte Integer

 The semantics of the unary - operator depend on the operator’s effective value type:

Effective Value Type Runtime Semantics

Byte, Integer, Long, LongLong,

Single, Double, Currency or

Decimal

The result is the operand subtracted from 0.

Date

The Double value is the operand subtracted from 0. The result is the
Double value Let-coerced to Date.

If overflow occurs during the coercion to Date, and the operand has a

declared type of Variant, the result is the Double value.

Null The result is the value Null.

5.6.9.3.2 + Operator

The + operator returns the sum or concatenation of its two operands, depending on their value types.

 addition-operator-expression = expression "+" expression

Static semantics:

 A + operator expression has the standard static semantics for binary arithmetic operators with the
following exceptions when determining the operator’s declared type:

Left Operand Declared Type Right Operand Declared Type Operator Declared Type

String or String * length String or String * length String

141 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Runtime semantics:

 A + operator expression has the standard runtime semantics for binary arithmetic operators with
the following exceptions when determining the operator’s effective value type:

Left Operand Value Type Right Operand Value Type Effective Value Type

String String String

 The semantics of the + operator depend on the operator’s effective value type:

Effective Value Type Runtime Semantics

Byte, Integer, Long, LongLong,

Single, Double, Currency or

Decimal

The result is the right operand added to the left operand.

Date The Double sum is the right operand added to the left operand. The result
is the Double sum Let-coerced to Date.

If overflow occurs during the coercion to Date, and one or both operands

have a declared type of Variant, the result is the Double sum.

String The result is the right operand string concatenated to the left operand

string.

Null The result is the value Null.

5.6.9.3.3 Binary - Operator

The binary - operator (Unicode U+2212) returns the difference between its two operands.

 subtraction-operator-expression = expression "-" expression

Static semantics:

 A binary - operator expression has the standard static semantics for binary arithmetic operators
(section 5.6.9.3) with the following exceptions when determining the operator’s declared type:

Left Operand Declared Type Right Operand Declared Type Operator Declared Type

Date Date Double

Runtime semantics:

142 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 A - operator expression has the standard runtime semantics for binary arithmetic operators
(section 5.6.9.3) with the following exceptions when determining the operator’s effective value
type:

Left Operand Value Type Right Operand Value Type Effective Value Type

Date Date Double

 The semantics of the - operator depend on the operator’s effective value type:

Effective Value Type Runtime Semantics

Byte, Integer, Long, LongLong,

Single, Double, Currency or

Decimal

The result is the right operand subtracted from the left operand.

Date The Double difference is the right operand subtracted from the left
operand. The result is the Double difference Let-coerced to Date.

If overflow occurs during the coercion to Date, and one or both operands

have a declared type of Variant, the result is the Double difference.

Null The result is the value Null.

5.6.9.3.4 * Operator

The * operator returns the product of its two operands.

 multiplication-operator-expression = expression "*" expression

Static semantics:

 A * operator expression has the standard static semantics for binary arithmetic operators (section
5.6.9.3) with the following exceptions when determining the operator’s declared type:

Left Operand Declared Type Right Operand Declared Type Operator Declared Type

Currency Single, Double, String or String *

length

Double

Single, Double, String or String *

length

Currency Double

Date Any numeric type, String, String *

length or Date

Double

Any numeric type, String, String *

length or Date

Date Double

143 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Runtime semantics:

 A * operator expression has the standard runtime semantics for binary arithmetic operators

(section 5.6.9.3) with the following exceptions when determining the operator’s effective value
type:

Left Operand Value Type Right Operand Value Type Effective Value Type

Currency Single, Double or String Double

Single, Double or String Currency Double

Date Any integral or floating-point

numeric type, Currency, String,

Date or Empty

Any integral or floating-point

numeric type, Currency, String,

Date or Empty

Date

 The semantics of the * operator depend on the operator’s effective value type:

Effective Value Type Runtime Semantics

Byte, Integer, Long, LongLong,

Currency or Decimal

The result is the left operand multiplied with the right operand.

Single or Double The result is the left operand multiplied with the right operand.

If this results in multiplying positive or negative infinity by 0, runtime error

6 (Overflow) is raised. In this case, if this expression was within the right-

hand side of a Let assignment and both operands have a declared type of

Double, the resulting IEEE 754 Double special value (such as

positive/negative infinity or NaN) is assigned before raising the runtime

error.

Null The result is the value Null.

5.6.9.3.5 / Operator

The / operator returns the quotient of its two operands.

 division-operator-expression = expression "/" expression

Static semantics:

 A / operator expression has the standard static semantics for binary arithmetic operators (section
5.6.9.3) with the following exceptions when determining the operator’s declared type:

144 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Left Operand Declared Type Right Operand Declared Type Operator Declared Type

Byte, Boolean, Integer, Long or

LongLong

Byte, Boolean, Integer, Long or

LongLong

Double

Double, String, String * length,

Currency or Date

Any numeric type, String, String *

length or Date

Double

Any numeric type, String, String *

length or Date

Double, String, String * length,

Currency or Date

Double

Runtime semantics:

 A / operator expression has the standard runtime semantics for binary arithmetic operators
(section 5.6.9.3) with the following exceptions when determining the operator’s effective value
type:

Left Operand Value Type Right Operand Value Type Effective Value Type

Byte, Boolean, Integer, Long,

LongLong or Empty

Byte, Boolean, Integer, Long,

LongLong or Empty

Double

Double, String, Currency or Date Any numeric type, String, Date or

Empty

Double

Any numeric type, String, Date or

Empty

Double, String, Currency or Date Double

 The semantics of the / operator depend on the operator’s effective value type:

Effective Value Type Runtime Semantics

Decimal The result is the left operand divided by the right operand.

If this results in dividing by 0, runtime error 11 (Division by zero) is raised.

145 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Effective Value Type Runtime Semantics

Single or Double The result is the left operand divided by the right operand.

If this results in dividing a nonzero value by 0, runtime error 11 (Division

by zero) is raised.

If this results in dividing 0 by 0, runtime error 6 (Overflow) is raised, unless

the original value type of the left operand is Single, Double, String, or

Date, and the right operand is Empty, in which case runtime error 11

(Division by zero) is raised.

In either of these cases, if this expression was within the right-hand side of

a Let assignment and both operands have a declared type of Double, the

resulting IEEE 754 Double special value (such as positive/negative infinity

or NaN) is assigned before raising the runtime error.

Null The result is the value Null.

5.6.9.3.6 \ Operator and Mod Operator

The \ operator calculates an integral quotient of its two operands, rounding the quotient towards zero.

The Mod operator calculates the remainder formed when dividing its two operands.

 integer-division-operator-expression = expression "\" expression
 modulo-operator-expression = expression "mod" expression

Static semantics:

 A \ operator expression or Mod operator expression has the standard static semantics for binary
arithmetic operators (section 5.6.9.3) with the following exceptions when determining the
operator’s declared type:

Left Operand Declared Type Right Operand Declared Type Operator Declared Type

Any floating-point or fixed-point

numeric type, String, String *

length or Date

Any numeric type, String, String *

length or Date

Long

Any numeric type, String, String *

length or Date

Any floating-point or fixed-point

numeric type, String, String *

length or Date

Long

Runtime semantics:

146 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 A \ operator expression or Mod operator expression has the standard runtime semantics for
binary arithmetic operators (section 5.6.9.3) with the following exceptions when determining the
operator’s effective value type:

Left Operand Value Type Right Operand Value Type Effective Value Type

Byte Empty Integer

Empty Byte Integer

Boolean or Integer Single, Double, String, Currency,

Date or Decimal

Integer

Any floating-point or fixed-point

numeric type, String, or Date

Any numeric type except

LongLong, String, Date or Empty

Long

Any numeric type except

LongLong, String, Date or Empty

Any floating-point or fixed-point

numeric type, String, or Date

Long

LongLong Any numeric type, String, Date or

Empty

LongLong

Any numeric type, String, Date or

Empty

LongLong LongLong

 The semantics of the \ operator depend on the operator’s effective value type:

Effective Value Type Runtime Semantics

Byte, Integer, Long or LongLong The quotient is the left operand divided by the right operand.

If the quotient is an integer, the result is the quotient.

Otherwise, if the quotient is not an integer, the result is the integer nearest

to the quotient that is closer to zero than the quotient.

If this results in dividing by 0, runtime error 11 (Division by zero) is raised.

Null The result is the value Null.

 The semantics of the Mod operator depend on the operator’s effective value type:

147 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Effective Value Type Runtime Semantics

Byte, Integer, Long or LongLong The quotient is the left operand divided by the right operand.

If the quotient is an integer, the result is 0.

Otherwise, if the quotient is not an integer, the truncated quotient is the

integer nearest to the quotient that is closer to zero than the quotient. The

result is the absolute value of the difference between the left operand and

the product of the truncated quotient and the right operand.

If this results in dividing by 0, runtime error 11 (Division by zero) is raised.

Null The result is the value Null.

5.6.9.3.7 ^ Operator

The ^ operator calculates the value of its left operand raised to the power of its right operand.

 exponentiation-operator-expression = expression "^" expression

Static semantics:

 A ^ operator expression has the standard static semantics for binary arithmetic operators (section
5.6.9.3) with the following exceptions when determining the operator’s declared type:

Left Operand Declared Type Right Operand Declared Type Operator Declared Type

Any numeric type, String, String *

length or Date

Any numeric type, String, String *

length or Date

Double

Runtime semantics:

 A ^ operator expression has the standard runtime semantics for binary arithmetic operators

(section 5.6.9.3) with the following exceptions when determining the operator’s effective value
type:

Left Operand Value Type Right Operand Value Type Effective Value Type

Any numeric type, String, Date or

Empty

Any numeric type, String, Date or

Empty

Double

 The semantics of the ^ operator depend on the operator’s effective value type:

148 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Effective Value Type Runtime Semantics

Double The result is the left operand raised to the power of the right operand.

If the left operand is 0 and the right operand is 0, the result is 1.

If the left operand is 0 and the right operand is negative, runtime error 5

(Invalid procedure call or argument) is raised.

Null The result is the value Null.

5.6.9.4 & Operator

The & operator is a simple data operator that performs concatenation on its operands. This operator
can be used to force concatenation when + would otherwise perform addition.

 concatenation-operator-expression = expression "&" expression

Static semantics:

 The & operator is statically resolved as a simple data operator.

 The & operator is invalid if the declared type of either operand is an array or UDT.

 The & operator has the following declared type, based on the declared types of its operands:

Left Operand Declared Type Right Operand Declared Type Operator Declared Type

Any numeric type, String, String *

length, Date or Null

Any numeric type, String, String *

length or Date

String

Any numeric type, String, String Any numeric type, String, String String

* length or Date * length, Date or Null

Any type except an array or UDT Variant Variant

Variant Any type except an array or UDT Variant

Runtime semantics:

 The & operator is first evaluated as a simple data operator.

 If the value type of any operand is a non-Byte array, UDT or Error, runtime error 13 (Type
mismatch) is raised.

 Before evaluating the & operator, its non-Null operands undergo Let-coercion to the operator’s

value type.

 The operator’s value type is determined as follows, based on the value types of the operands:

149 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Left Operand Value Type Right Operand Value Type Value Type

Any numeric type, String, Byte(),

Date, Null or Empty

Any numeric type, String, Byte(),

Date or Empty

String

Any numeric type, String, Byte(),

Date or Empty

Any numeric type, String, Byte(),

Date, Null or Empty

String

Null Null Null

 The semantics of the & operator depend on the operator’s value type:

Value Type Runtime Semantics

String The result is the right operand string concatenated to the left operand

string.

Null The result is the value Null.

5.6.9.5 Relational Operators

Relational operators are simple data operators that perform comparisons between their operands.

 relational-operator-expression = equality-operator-expression / inequality-operator-
expression / less-than-operator-expression / greater-than-operator-expression / less-than-

equal-operator-expression / greater-than-equal-operator-expression

Static semantics:

 Relational operators are statically resolved as simple data operators.

 A relational operator is invalid if the declared type of any operand is an array or UDT.

 A relational operator has the following declared type, based on the declared type of its operands:

Left Operand Declared Type Right Operand Declared Type Operator Declared Type

Any type except an array, UDT or

Variant

Any type except an array, UDT or

Variant

Boolean

Any type except an array or UDT Variant Variant

Variant Any type except an array or UDT Variant

Runtime semantics:

 Relational operators are first evaluated as simple data operators.

 If the value type of any operand is an array or UDT, runtime error 13 (Type mismatch) is raised.

 Before evaluating the relational operator, its non-Null operands undergo Let-coercion to the
operator’s effective value type.

150 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The effective value type is determined as follows, based on the value types of the operands:

Left Operand Value Type Right Operand Value Type Effective Value Type

Byte Byte, String or Empty Byte

Byte, String or Empty Byte Byte

Boolean Boolean or String Boolean

Boolean or String Boolean Boolean

Integer Byte, Boolean, Integer, String or

Empty

Integer

Byte, Boolean, Integer, String or

Empty

Integer Integer

Boolean Byte or Empty Integer

Byte or Empty Boolean Integer

Empty Empty Integer

Long Byte, Boolean, Integer, Long,

String or Empty

Long

Byte, Boolean, Integer, Long,

String or Empty

Long Long

LongLong Any integral numeric type, String

or Empty

LongLong

Any integral numeric type, String

or Empty

LongLong LongLong

Single Byte, Boolean, Integer, Single,

Double, String or Empty

Single

Byte, Boolean, Integer, Single,

Double, String or Empty

Single Single

Single Long Double

Long Single Double

Double Any integral numeric type, Double,

String or Empty

Any integral numeric type, Double,

String or Empty

Double

String String or Empty String

String or Empty String String

151 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Left Operand Value Type Right Operand Value Type Effective Value Type

Currency Any integral or floating-point

numeric type, Currency, String or

Empty

Currency

Any integral or floating-point

numeric type, Currency, String or

Empty

Currency Currency

Date Any integral or floating-point

numeric type, Currency, String,

Date or Empty

Date

Any integral or floating-point

numeric type, Currency, String,

Date or Empty

Date Date

Decimal Any numeric type, String, Date or

Empty

Decimal

Any numeric type, String, Date or

Empty

Decimal Decimal

Null Any numeric type, String, Date,

Empty, or Null

Null

Any numeric type, String, Date,

Empty, or Null

Null Null

Error Error Error

Error Any type except Error Runtime error 13 (Type mismatch)

is raised.

Any type except Error Error Runtime error 13 (Type mismatch)

is raised.

 Relational comparisons can test whether operands are considered equal or if one operand is

considered less than or greater than the other operand. Such comparisons are governed by the
following rules, based on the effective value type:

Effective Value Type Runtime Semantics

Byte, Integer, Long, LongLong,

Currency, Decimal

The numeric values of the operands are compared. Operands MUST match

exactly to be considered equal.

Single or Double The floating-point values of the operands are compared according to the

rules of IEEE 754 arithmetic. If either operand is the special value NaN,

runtime error 6 (Overflow) is raised.

Boolean The Boolean values are compared. True is considered less than False.

152 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Effective Value Type Runtime Semantics

String The String values are compared according to the Option Compare

comparison mode (section 5.2.1.1) setting of the enclosing module as

follows:

 If the active Option Compare comparison mode is binary-compare-

mode (section 5.2.1.1), each byte of the implementation-specific

representation of the string data is compared, starting from the byte

representing the first character of each string. At any point, if one point

is not equal to the other byte, the result of comparing those bytes is

the overall result of the comparison. If all bytes in one string are equal

to their respective bytes in the other string, but the other string is

longer, the longer string is considered greater. Otherwise, if the strings

are identical, they are considered equal.

 If the active Option Compare comparison mode is text-compare-

mode (section 5.2.1.1), the text of the strings is compared in a case-

insensitive manner according to the platform’s host-defined regional

settings for text collation.

Null The result is the value Null.

Error If both Error values are standard error codes, their numeric values

(between 0 are 65535) are compared. If either value is an implementation-

defined error value, the result of the comparison is undefined.

 There is an exception to the rules in the preceding table when both operands have a declared type

of Variant, with one operand originally having a value type of String, and the other operand
originally having a numeric value type. In this case, the numeric operand is considered to be less
than (and not equal to) the String operand, regardless of their values.

5.6.9.5.1 = Operator

The = operator performs a value equality comparison on its operands.

 equality-operator-expression = expression "=" expression

Runtime semantics:

 If the operands are considered equal, True is returned. Otherwise, False is returned.

5.6.9.5.2 <> Operator

The <> operator performs a value inequality comparison on its operands. An equivalent alternate

operator >< is also accepted.

153 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 inequality-operator-expression = expression ("<"">" / ">""<") expression

Runtime semantics:

 If the operands are considered not equal, True is returned. Otherwise, False is returned.

5.6.9.5.3 < Operator

The < operator performs a less-than comparison on its operands.

 less-than-operator-expression = expression "<" expression

Runtime semantics:

 If the left operand is considered less than the right operand, True is returned. Otherwise, False is
returned.

5.6.9.5.4 > Operator

The > operator performs a greater-than comparison on its operands.

 greater-than-operator-expression = expression ">" expression

Runtime semantics:

 If the left operand is considered greater than the right operand, True is returned. Otherwise,
False is returned.

5.6.9.5.5 <= Operator

The <= operator performs a less-than-or-equal comparison on its operands.

 less-than-equal-operator-expression = expression ("<""=" / "=""<") expression

Runtime semantics:

 If the left operand is considered less than or equal to the right operand, True is returned.
Otherwise, False is returned.

5.6.9.5.6 >= Operator

The >= operator performs a greater-than-or-equal comparison on its operands.

 greater-than-equal-operator-expression = expression (">""=" / "="">") expression

Runtime semantics:

 If the left operand is considered greater than or equal to the right operand, True is returned.
Otherwise, False is returned.

154 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.6.9.6 Like Operator

The Like operator is a simple data operator that performs a string matching test of the source string
in the left operand against the pattern string in the right operand.

 like-operator-expression = expression "like" like-pattern-expression
 like-pattern-expression = expression

Static semantics:

 The Like operator is statically resolved as a simple data operator.

 A Like operator expression is invalid if the declared type of any operand is an array or a UDT.

 A Like operator has the following declared type, based on the declared type of its operands:

Left Operand Declared Type Right Operand Declared Type Operator Declared Type

Any type except an array, UDT or

Variant

Any type except an array, UDT or

Variant

Boolean

Any type except an array or UDT Variant Variant

Variant Any type except an array or UDT Variant

Runtime semantics:

 The Like operator is first evaluated as a simple data operator.

 If either <expression> or <like-pattern-expression> is Null, the result is Null.

 Otherwise, <expression> and <like-pattern-expression> are both Let-coerced to String. The
grammar for the String value of <like-pattern-expression> is interpreted as <like-pattern-string>,
according to the following grammar:

 like-pattern-string = *like-pattern-element
 like-pattern-element = like-pattern-char / "?" / "#" / "*" / like-pattern-charlist
 like-pattern-char = <Any character except "?", "#", "*" and "[" >
 like-pattern-charlist = "[" ["!"] ["-"] *like-pattern-charlist-element ["-"] "]"
 like-pattern-charlist-element = like-pattern-charlist-char / like-pattern-charlist-range
 like-pattern-charlist-range = like-pattern-charlist-char "-" like-pattern-charlist-char
 like-pattern-charlist-char = <Any character except "-" and "]">

 The pattern in <like-pattern-expression> is matched one <like-pattern-element> at a time to the
characters in <expression> until either:

 All characters of <expression> and <like-pattern-expression> have been matched. In this
case, the result is True.

 Either <expression> or <like-pattern-expression> is fully matched, while the other string still
has unmatched characters. In this case, the result is False.

 A <like-pattern-element> does not match the next characters in <expression>. In this case,
the result is False.

 The next characters in <like-pattern-expression> do not form a valid, complete <like-pattern-
element> according to the grammar. In this case, runtime error 93 (Invalid pattern string) is

155 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

raised. Note that this runtime error is only raised if no other result has been produced before
pattern matching proceeds far enough to encounter this error in the pattern.

 String matching uses the Option Compare comparison mode (section 5.2.1.1) setting of the
enclosing module, as well as any implementation-defined regional settings related to text

collation. When the comparison mode is text-compare-mode (section 5.2.1.1), some number of
actual characters in <expression> can match a different number of characters in the pattern,
according to the host-defined regional text collation settings. This means that the single pattern
character "æ" can match the expression characters "ae". A pattern character can also match just
part of an expression character, such as the two pattern characters "ae" each matching part of the
single expression character "æ".

 Each <like-pattern-element> in the pattern has the following meaning:

Pattern element Meaning

<like-pattern-char> Matches the specified character.

? Matches any single actual character in the expression, or the rest of a
partially matched actual character.

When the comparison mode is text-compare-mode, the ? pattern element

matches all the way to the end of one actual character in <expression>,

which can be just the last part of a partially matched expression character.

This means that the expression "æ" can be matched by the pattern "a?",

but might not be matched by the pattern "?e".

Matches a single character representing a digit.

* Matches zero or more characters.

When a * pattern element is encountered, the rest of the pattern is

immediately checked to ensure it can form a sequence of valid, complete
<like-pattern-element> instances according to the grammar. If this is not
possible, runtime error 93 (Invalid pattern string) is raised.

When the comparison mode is text-compare-mode, the * pattern element

can match part of a character. This means that the expression "æ" can be

matched by the pattern "a*" or the pattern "*e".

156 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Pattern element Meaning

<like-pattern-charlist> Matches one of the characters in the specified character list.

A <like-pattern-charlist> contains a sequence of <like-pattern-charlist-

element> instances, representing the set of possible characters that can be

matched. Each <like-pattern-charlist-element> can be one of the following:

 <like-pattern-charlist-char>: This adds the specified character to the
character list.

 <like-pattern-charlist-range>: This adds a range of characters to the

character list, including all characters considered greater than or equal
to the first <like-pattern-charlist-char> and considered less than or
equal to the second <like-pattern-charlist-char>. If the end character
of this range is considered less than the start character, runtime error
93 (Invalid pattern string) is raised. Semantics are undefined if a
compound character such as "æ" that can match multiple expression
characters is used within a <like-pattern-charlist-range> when the
comparison mode is text-compare-mode.

If the optional "-" is specified at the beginning or end of <like-pattern-

charlist>, the character "-" is included in the character list.

If the optional "!" is specified at the beginning of <like-pattern-charlist>,
this pattern element will instead match characters not in the specified
character list.

When the comparison mode is text-compare-mode, the first specified

element of the character list that can match part of the actual expression

character is chosen as the match. This means that the expression "æ" can

be matched by the pattern "a[ef]" or "[æa]", but might not be matched by

the pattern "[aæ]".

5.6.9.7 Is Operator

The Is operator performs reference equality comparison.

 is-operator-expression = expression "is" expression

Static semantics:

 Each expression MUST be classified as a value and the declared type of each expression MUST be
a specific class, Object or Variant.

 An Is operator has a declared type of Boolean.

Runtime semantics:

157 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The expression evaluates to True if both values refer to the same instance or False otherwise.

 If either expression has a value type other than a specific class or Nothing, runtime error 424
(Object required) is raised.

5.6.9.8 Logical Operators

Logical operators are simple data operators that perform bitwise computations on their operands.

 logical-operator-expression = not-operator-expression / and-operator-expression / or-
operator-expression / xor-operator-expression / imp-operator-expression / eqv-operator-

expression

Static semantics:

 Logical operators are statically resolved as simple data operators.

 A logical operator is invalid if the declared type of any operand is an array or a UDT.

 For unary logical operators, the operator has the following declared type, based on the declared
type of its operand:

Operand Declared Type Operator Declared Type

Byte Byte

Boolean Boolean

Integer Integer

Any floating-point or fixed-point

numeric type, Long, String, String

* length or Date

Long

LongLong LongLong

Variant Variant

 For binary logical operators, the operator has the following declared type, based on the declared
type of its operands:

Left Operand Declared Type Right Operand Declared Type Operator Declared Type

Byte Byte Byte

Boolean Boolean Boolean

Byte or Integer Boolean or Integer Integer

Boolean or Integer Byte or Integer Integer

Any floating-point or fixed-point

numeric type, Long, String, String

* length or Date

Any numeric type except

LongLong, String, String * length

or Date

Long

158 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Left Operand Declared Type Right Operand Declared Type Operator Declared Type

Any numeric type except

LongLong, String, String * length

or Date

Any floating-point or fixed-point

numeric type, Long, String, String

* length or Date

Long

LongLong Any numeric type, String, String *

length or Date

LongLong

Any numeric type, String, String *

length or Date

LongLong LongLong

Any type except an array or UDT Variant Variant

Runtime semantics:

 Logical operators are first evaluated as simple data operators.

 If the value type of any operand is an array, UDT or Error, runtime error 13 (Type mismatch) is
raised.

 Before evaluating the logical operator, its non-Null operands undergo Let-coercion to the
operator’s effective value type.

 For unary logical operators, the effective value type is determined as follows, based on the value
type of the operand:

Operand Value Type Effective Value Type

Byte Byte

Boolean or Integer or Empty Integer

Long Long

LongLong LongLong

Single Single

Double or String Double

Currency Currency

Date Date (however, the operand is Let-

coerced to Double instead)

Decimal Decimal

Null Null

 For binary logical operators, if either operator is null, the effective value type is determined as

follows, based on the value types of the operands:

Left Operand Value Type Right Operand Value Type Effective Value Type

Byte or Null Byte Byte

159 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Left Operand Value Type Right Operand Value Type Effective Value Type

Byte Byte or Null Byte

Boolean or Null Boolean Boolean (however, the operands

are Let-coerced to Integer instead)

Boolean Boolean or Null Boolean (however, the operands

are Let-coerced to Integer instead)

Byte, Boolean, Integer, Null or

Empty

Integer or Empty Integer

Integer or Empty Byte, Boolean, Integer, Null or

Empty

Integer

Byte Boolean Integer

Boolean Byte Integer

Any floating-point or fixed-point

numeric type, Long, String, Date

or Empty

Any numeric type except

LongLong, String, Date, Null or

Empty

Long

Any numeric type except

LongLong, String, Date, Null or

Empty

Any floating-point or fixed-point

numeric type, Long, String, Date

or Empty

Long

LongLong Any numeric type, String, Date or

Empty

LongLong

Any numeric type, String, Date or

Empty

LongLong LongLong

Null Null Null

 The value type of a logical operator is determined from the value the operator produces:

 If the logical operator produces a value other than Null, the operator’s value type is its
effective value type. The operator’s result value is Let-coerced to this value type.

 Otherwise, if the logical operator produces Null, the operator’s value is Null.

5.6.9.8.1 Not Operator

The Not operator performs a bitwise negation on its operand.

 not-operator-expression = "not" expression

Runtime semantics:

 The operation to produce the result is determined based on the values of the operand, as follows:

160 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Operand Value Result

Integral value Bitwise Not of operand

Null Null

 If a bitwise Not of the operand is indicated, the result is produced by generating a corresponding

result bit for each identically positioned bit in the implementation format of the operand according
to the following table:

Operand Bit Result Bit

0 1

1 0

5.6.9.8.2 And Operator

The And operator performs a bitwise conjunction on its operands.

 and-operator-expression = expression "and" expression

Runtime semantics:

 The operation to produce the result is determined based on the values of the operands, as follows:

Left Operand Value Right Operand Value Result

Integral value Integral value Bitwise And of operands

Integral value other than 0 Null Null

0 Null 0

Null Integral value other than 0 Null

Null 0 0

Null Null Null

 If a bitwise And of the operands is indicated, the result is produced by generating a corresponding

result bit for each pair of identically positioned bits in the implementation format of the operands
according to the following table:

Left Operand Bit Right Operand Bit Result Bit

0 0 0

0 1 0

1 0 0

1 1 1

161 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.6.9.8.3 Or Operator

The Or operator performs a bitwise disjunction on its operands.

 or-operator-expression = expression "or" expression

Runtime semantics:

 The operation to produce the result is determined based on the values of the operands, as follows:

Left Operand Value Right Operand Value Result

Integral value Integral value Bitwise Or of operands

Integral value Null Left operand

Null Integral value Right operand

Null Null Null

 If a bitwise Or of the operands is indicated, the result is produced by generating a corresponding

result bit for each pair of identically positioned bits in the implementation format of the operands
according to the following table:

Left Operand Bit Right Operand Bit Result Bit

0 0 0

0 1 1

1 0 1

1 1 1

5.6.9.8.4 Xor Operator

The Xor operator performs a bitwise exclusive disjunction on its operands.

 xor-operator-expression = expression "xor" expression

Runtime semantics:

 The operation to produce the result is determined based on the values of the operands, as follows:

Left Operand Value Right Operand Value Result

Integral value Integral value Bitwise Xor of operands

Integral value Null Null

Null Integral value Null

162 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Left Operand Value Right Operand Value Result

Null Null Null

 If a bitwise Xor of the operands is indicated, the result is produced by generating a corresponding

result bit for each pair of identically positioned bits in the implementation format of the operands
according to the following table:

Left Operand Bit Right Operand Bit Result Bit

0 0 0

0 1 1

1 0 1

1 1 0

5.6.9.8.5 Eqv Operator

The Eqv operator performs a bitwise material equivalence on its operands.

 eqv-operator-expression = expression "eqv" expression

Runtime semantics:

 The operation to produce the result is determined based on the values of the operands, as follows:

Left Operand Value Right Operand Value Result

Integral value Integral value Bitwise Eqv of operands

Integral value Null Null

Null Integral value Null

Null Null Null

 If a bitwise Eqv of the operands is indicated, the result is produced by generating a corresponding

result bit for each pair of identically positioned bits in the implementation format of the operands
according to the following table:

Left Operand Bit Right Operand Bit Result Bit

0 0 1

0 1 0

1 0 0

1 1 1

163 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

5.6.9.8.6 Imp Operator

The Imp operator performs a bitwise material implication on its operands.

 imp-operator-expression = expression "imp" expression

Runtime semantics:

 The operation to produce the result is determined based on the values of the operands, as follows:

Left Operand Value Right Operand Value Result

Integral value Integral value Bitwise Imp of operands

-1 Null Null

Integral value other than -1 Null Bitwise Imp of left operand and 0

Null Integral value other than 0 Right operand

Null 0 Null

Null Null Null

 If a bitwise Imp of the operands is indicated, the result is produced by generating a corresponding

result bit for each pair of identically positioned bits in the implementation format of the operands
according to the following table:

Left Operand Bit Right Operand Bit Result Bit

0 0 1

0 1 1

1 0 0

1 1 1

5.6.10 Simple Name Expressions

A simple name expression consists of a single identifier with no qualification or argument list.

 simple-name-expression = name / special-form / reserved-name

Static semantics. Simple name expressions are resolved and classified by matching <name> against a

set of namespace tiers in order.

The first tier where the name value of <name> matches the name value of at least one element of the
tier is the selected tier. The match that the simple name expression references is chosen as follows:

 If the selected tier contains matches from multiple referenced projects, the matches from the
project that has the highest reference precedence are retained and all others are discarded.

164 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If both an Enum type match and an Enum member match are found within the selected tier, the
match that is defined later in the module is discarded. In the case where an Enum member match

is defined within the body of an Enum type match, the Enum member match is considered to be
defined later in the module.

 If there is a single match remaining in the selected tier, that match is chosen.

 If there are 2 or more matches remaining in the selected tier, the simple name expression is
invalid.

If all tiers have no matches, unless otherwise specified, the simple name expression is invalid.

If <name> specifies a type character, and this type character’s associated type does not match the
declared type of the match, the simple name expression is invalid.

The simple name expression refers to the chosen match, inheriting the declared type, if any, from the
match.

Simple name expressions are classified based on the entity they match:

Match Simple Name Expression Classification

Constant or Enum member Value expression

Variable, including implicitly-defined variables Variable expression

Property Property expression

Function Function expression

Subroutine Subroutine expression

Project Project expression

Procedural module Procedural module expression

Class module, UDT or Enum type Type expression

The namespace tiers under the default binding context are as follows, in order of precedence:

 Procedure namespace: A local variable, reference parameter binding or constant whose implicit
or explicit definition precedes this expression in an enclosing procedure.

 Enclosing Module namespace: A variable, constant, Enum type, Enum member, property,

function or subroutine defined at the module-level in the enclosing module.

 Enclosing Project namespace: The enclosing project itself, a referenced project, or a procedural

module contained in the enclosing project.

 Other Procedural Module in Enclosing Project namespace: An accessible variable, constant,
Enum type, Enum member, property, function or subroutine defined in a procedural module
within the enclosing project other than the enclosing module.

 Referenced Project namespace: An accessible procedural module contained in a referenced
project.

165 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Module in Referenced Project namespace: An accessible variable, constant, Enum type,
Enum member, property, function or subroutine defined in a procedural module or as a member
of the default instance of a global class module within a referenced project.

There is a special exception to these namespace tiers when the match has the name value "Left":

 If the match has the name value "Left", references a function or subroutine that has no
parameters, or a property with a Property Get that has no parameters, the declared type of the
match is any type except a specific class, Object or Variant, and this simple name expression is

the <l-expression> within an index expression with an argument list containing 2 arguments,
discard the match and continue searching for a match on lower tiers.

Under the default binding context, if all tiers have no matches:

 If the variable declaration mode for the enclosing module is explicit-mode, the simple name
expression is invalid.

 Otherwise, if the variable declaration mode for the enclosing module is implicit-mode, a new local
variable is implicitly declared in the current procedure as if by a local variable declaration
statement immediately preceding this statement with a <variable-declaration-list> containing a
single <variable-dcl> element consisting of the text of <name>. This newly created variable is the
match.

The namespace tiers under the type binding context are as follows, in order of precedence:

 Enclosing Module namespace: A UDT or Enum type defined at the module-level in the

enclosing module.

 Enclosing Project namespace: The enclosing project itself, a referenced project, or a procedural
module or class module contained in the enclosing project.

 Other Module in Enclosing Project namespace: An accessible UDT or Enum type defined in a
procedural module or class module within the enclosing project other than the enclosing module.

 Referenced Project namespace: An accessible procedural module or class module contained in
a referenced project.

 Module in Referenced Project namespace: An accessible UDT or Enum type defined in a
procedural module or class module within a referenced project.

The namespace tiers under the procedure pointer binding context are as follows, in order of
precedence:

 Enclosing Module namespace: A function, subroutine or property with a Property Get defined

at the module-level in the enclosing module.

 Enclosing Project namespace: The enclosing project itself or a procedural module contained in
the enclosing project.

 Other Procedural Module in Enclosing Project namespace: An accessible function,
subroutine or property with a Property Get defined in a procedural module within the enclosing
project other than the enclosing module.

The namespace tiers under the conditional compilation binding context are as follows, in order of
precedence:

166 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Enclosing Module namespace: A conditional compilation constant defined at the module-level in
the enclosing module.

 Enclosing Project namespace: A conditional compilation constant defined in an implementation-
defined way by the enclosing project itself.

5.6.11 Instance Expressions

An instance expression consists of the keyword Me.

 instance-expression = "me"

Static semantics. An instance expression is classified as a value. The declared type of an instance

expression is the type defined by the class module containing the enclosing procedure. It is invalid for
an instance expression to occur within a procedural module.

Runtime semantics. The keyword Me represents the current instance of the type defined by the
enclosing class module and has this type as its value type.

5.6.12 Member Access Expressions

A member access expression is used to reference a member of an entity.

 member-access-expression = l-expression NO-WS "." unrestricted-name
 member-access-expression =/ l-expression line-continuation "." unrestricted-name

Static semantics. The semantics of a member access expression depend on the binding context.

A member access expression under the default binding context is valid only if one of the following is

true:

 <l-expression> is classified as a variable, a property or a function and one of the following is true:

 The declared type of <l-expression> is a UDT type or specific class, this type has an accessible
member named <unrestricted-name>, <unrestricted-name> either does not specify a type

character or specifies a type character whose associated type matches the declared type of
the member, and one of the following is true:

 The member is a variable, property or function. In this case, the member access
expression is classified as a variable, property or function, respectively, refers to the
member, and has the same declared type as the member.

 The member is a subroutine. In this case, the member access expression is classified as a
subroutine and refers to the member.

 The declared type of <l-expression> is Object or Variant. In this case, the member access
expression is classified as an unbound member and has a declared type of Variant.

 <l-expression> is classified as an unbound member. In this case, the member access expression
is classified as an unbound member and has a declared type of Variant.

 <l-expression> is classified as a project, this project is either the enclosing project or a referenced
project, and one of the following is true:

167 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 <l-expression> refers to the enclosing project and <unrestricted-name> is either the name of
the enclosing project or a referenced project. In this case, the member access expression is

classified as a project and refers to the specified project.

 The project has an accessible procedural module named <unrestricted-name>. In this case,

the member access expression is classified as a procedural module and refers to the specified
procedural module.

 The project does not have an accessible procedural module named <unrestricted-name> and
exactly one of the procedural modules within the project has an accessible member named
<unrestricted-name>, <unrestricted-name> either does not specify a type character or
specifies a type character whose associated type matches the declared type of the member,
and one of the following is true:

 The member is a variable, property or function. In this case, the member access
expression is classified as a variable, property or function, respectively, refers to the
member, and has the same declared type as the member.

 The member is a subroutine. In this case, the member access expression is classified as a
subroutine and refers to the member.

 The member is a value. In this case, the member access expression is classified as a value

with the same declared type as the member.

 <l-expression> is classified as a procedural module, this procedural module has an accessible
member named <unrestricted-name>, <unrestricted-name> either does not specify a type
character or specifies a type character whose associated type matches the declared type of the
member, and one of the following is true:

 The member is a variable, property or function. In this case, the member access expression is
classified as a variable, property or function, respectively, and has the same declared type as

the member.

 The member is a subroutine. In this case, the member access expression is classified as a

subroutine.

 The member is a value. In this case, the member access expression is classified as a value
with the same declared type as the member.

 <l-expression> is classified as a type, this type is an Enum type, and this type has an enum
member named <unrestricted-name>. In this case, the member access expression is classified as

a value with the same declared type as the enum member.

A member access expression under the type binding context is valid only if one of the following is
true:

 <l-expression> is classified as a project, this project is either the enclosing project or a referenced
project, and one of the following is true:

 <l-expression> refers to the enclosing project and <unrestricted-name> is either the name of

the enclosing project or a referenced project. In this case, the member access expression is
classified as a project and refers to the specified project.

 The project has an accessible procedural module named <unrestricted-name>. In this case,
the member access expression is classified as a procedural module and refers to the specified
procedural module.

 The project has an accessible class module named <unrestricted-name>. In this case, the

member access expression is classified as a type and refers to the specified class.

168 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The project does not have an accessible module named <unrestricted-name> and exactly one
of the procedural modules within the project contains a UDT or Enum definition named

<unrestricted-name>. In this case, the member access expression is classified as a type and
refers to the specified UDT or enum.

 <l-expression> is classified as a procedural module or a type referencing a class defined in a class
module, and one of the following is true:

 This module has an accessible UDT or Enum definition named <unrestricted-name>. In this
case, the member access expression is classified as a type and refers to the specified UDT or
Enum type.

A member access expression under the procedure pointer binding context is valid only if <l-
expression> is classified as a procedural module, this procedural module has an accessible function or

subroutine with the same name value as <unrestricted-name>, and <unrestricted-name> either does
not specify a type character or specifies a type character whose associated type matches the declared
type of the function or subroutine. In this case, the member access expression is classified as a
function or subroutine, respectively.

5.6.13 Index Expressions

An index expression is used to parameterize an expression by adding an argument list to its argument
list queue.

 index-expression = l-expression "(" argument-list ")"

Static semantics. An index expression is valid only if under the default binding context and one of the
following is true:

 <l-expression> is classified as a variable, or <l-expression> is classified as a property or function
with a parameter list that cannot accept any parameters and an <argument-list> that is not

empty, and one of the following is true:

 The declared type of <l-expression> is Object or Variant, and <argument-list> contains no
named arguments. In this case, the index expression is classified as an unbound member with
a declared type of Variant, referencing <l-expression> with no member name.

 The declared type of <l-expression> is a specific class, which has a public default Property
Get, Property Let, function or subroutine, and one of the following is true:

 This default member’s parameter list is compatible with <argument-list>. In this case, the
index expression references this default member and takes on its classification and
declared type.

 This default member cannot accept any parameters. In this case, the static analysis

restarts recursively, as if this default member was specified instead for <l-expression>
with the same <argument-list>.

 The declared type of <l-expression> is an array type, an empty argument list has not already
been specified for it, and one of the following is true:

 <argument-list> represents an empty argument list. In this case, the index expression
takes on the classification and declared type of <l-expression> and references the same
array.

 <argument-list> represents an argument list with a number of positional arguments equal
to the rank of the array, and with no named arguments. In this case, the index expression

169 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

references an individual element of the array, is classified as a variable and has the
declared type of the array’s element type.

 <l-expression> is classified as a property or function and its parameter list is compatible with
<argument-list>. In this case, the index expression references <l-expression> and takes on its

classification and declared type.

 <l-expression> is classified as a subroutine and its parameter list is compatible with <argument-
list>. In this case, the index expression references <l-expression> and takes on its classification
and declared type.

 <l-expression> is classified as an unbound member. In this case, the index expression references
<l-expression>, is classified as an unbound member and its declared type is Variant.

In any of these cases where the index expression is valid, the resulting expression adopts the

argument list queue of <l-expression> as its own, adding <argument-list> to the end of the queue.
The argument list queue of <l-expression> is cleared.

5.6.13.1 Argument Lists

An argument list represents an ordered list of positional arguments and a set of named arguments
that are used to parameterize an expression.

 argument-list = [positional-or-named-argument-list]
 positional-or-named-argument-list = *(positional-argument ",") required-positional-argument
 positional-or-named-argument-list =/ *(positional-argument ",") named-argument-list
 positional-argument = [argument-expression]
 required-positional-argument = argument-expression
 named-argument-list = named-argument *("," named-argument)
 named-argument = unrestricted-name ":""=" argument-expression
 argument-expression = ["byval"] expression
 argument-expression =/ addressof-expression

Static semantics. An argument list is composed of positional arguments and named arguments.

If <positional-or-named-argument-list> is omitted, the argument list is said to represent an empty
argument list and has no positional arguments and no named arguments.

Each <positional-argument> or <required-positional-argument> represents a specified positional
argument. If a specified positional argument omits its <argument-expression>, the specified

positional argument is said to be omitted. Each specified positional argument consists of a position
based on its order in the argument list from left to right, as well as an expression from its <argument-
expression>, if not omitted.

Each <named-argument > represents a named argument. Each named argument consists of a name
value from its <unrestricted-name>, as well as an expression from its <argument-expression>.

The "byval" keyword flags a specific argument as being a ByVal argument. It is invalid for an
argument list to contain a ByVal argument unless it is the argument list for an invocation of an
external procedure.

5.6.13.2 Argument List Queues

An argument list queue is a FIFO (first-in-first-out) sequence of argument lists belonging to a
particular expression.

170 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

During evaluation and member resolution, argument lists within a queue are statically consumed to
determine that an expression is valid. At runtime, these argument lists start out unconsumed and are

consumed again as they are applied to specific array or procedure references. An argument list is
considered empty, either statically or at runtime, if the queue has no argument lists or if all of its

argument lists are currently consumed.

5.6.14 Dictionary Access Expressions

A dictionary access expression is an alternate way to invoke an object’s default member with a String

parameter.

 dictionary-access-expression = l-expression NO-WS "!" NO-WS unrestricted-name
 dictionary-access-expression =/ l-expression line-continuation "!" NO-WS unrestricted-name
 dictionary-access-expression =/ l-expression line-continuation "!" line-continuation
unrestricted-name

Static semantics. A dictionary access expression is invalid if the declared type of <l-expression> is a
type other than a specific class, Object or Variant.

A dictionary access expression is syntactically translated into an index expression with the same
expression for <l-expression> and an argument list with a single positional argument with a declared
type of String and a value equal to the name value of <unrestricted-name>.

5.6.15 With Expressions

A With expression is a member access or dictionary access expression with its <l-expression>
implicitly supplied by the innermost enclosing With block.

 with-expression = with-member-access-expression / with-dictionary-access-expression

 with-member-access-expression = "." unrestricted-name
 with-dictionary-access-expression = "!" unrestricted-name

Static semantics. A <with-member-access-expression> or <with-dictionary-access-expression> is
statically resolved as a normal member access or dictionary access expression, respectively, as if the

innermost enclosing With block variable was specified for <l-expression>. If there is no enclosing
With block, the <with-expression> is invalid.

5.6.16 Constrained Expressions

Constrained expressions are special-purpose expressions that statically permit only a subset of the full
expression grammar.

5.6.16.1 Constant Expressions

A constant expression is an expression usable in contexts which require a value that can be fully

evaluated statically.

 constant-expression = expression

Static semantics. A constant expression is valid only when <expression> is composed solely of the
following constructs:

171 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Numeric, String, Date, Empty, Null, or Nothing literal.

 Reference to a module-level constant.

 Reference to a procedure-level constant explicitly declared in the enclosing procedure, if any.

 Reference to a member of an enumeration type.

 Parenthesized subexpression, provided the subexpression is itself valid as a constant expression.

 - or Not unary operator, provided the operand is itself valid as a constant expression.

 +, -, *, ^, Mod, /, \, &, And, Or, Xor, Eqv, Imp, =, <, >, <>, <=, => or Like binary

operator, provided each operand is itself valid as a constant expression.

 The Is binary operator, provided each operand is itself valid as a constant expression.

 Simple name expression invoking the VBA intrinsic function Int, Fix, Abs, Sgn, Len, LenB,
CBool, CByte, CCur, CDate, CDbl, CInt, CLng, CLngLng, CLngPtr, CSng, CStr or CVar.

References within constant expressions might not refer to the implicit With block variable.

The constant value of a constant expression is determined statically by evaluating <expression> as if
it was being evaluated at runtime.

5.6.16.2 Conditional Compilation Expressions

A conditional compilation expression is an expression usable within conditional compilation
statements.

 cc-expression = expression

Static semantics. The semantics of conditional compilation expressions are only defined when
<expression> is composed solely of the following constructs:

 Numeric, String, Date, Empty, Null, or Nothing literal.

 Reference to a conditional compilation constant.

 Parenthesized subexpression, provided the subexpression is itself valid as a conditional
compilation expression.

 The - and Not unary operators, provided the operand is itself valid as a conditional compilation
expression.

 The +, -, *, ^, Mod, /, \, &, And, Or, Xor, Eqv, Imp, =, <, >, <>, <=, => or Like, provided
each operand is itself valid as a conditional compilation expression.

 The Is binary operator, provided each operand is itself valid as a conditional compilation
expression.

 Simple name expression invoking the VBA intrinsic function Int, Fix, Abs, Sgn, Len, LenB,
CBool, CByte, CCur, CDate, CDbl, CInt, CLng, CLngLng, CLngPtr, CSng, CStr or CVar.

References within conditional compilation expressions might not refer to the implicit With block

variable.

172 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

The constant value of a conditional compilation expression is determined statically by evaluating

<expression> as if it was being evaluated at runtime with conditional compilation constants being
replaced by their defined values.

5.6.16.3 Boolean Expressions

 boolean-expression = expression

Static Semantics. A <boolean-expression> is invalid if a Let coercion from the declared type of
<expression> to Boolean is invalid. The declared type of a <boolean-expression> is Boolean.

Runtime Semantics.

 If <expression> does not have the data value Null, <expression> is Let-coerced to Boolean, and
the value of <expression> is this coerced value.

 Otherwise, if <expression> has the data value Null, the value of <expression> is False.

5.6.16.4 Integer Expressions

 integer-expression = expression

Static Semantics.

An <integer-expression> is invalid if a Let coercion from the declared type of <expression> to Long
is invalid. The declared type of an <integer-expression> is Long.

Runtime Semantics. The value of an <integer-expression> is the value of its <expression> Let-
coerced to Long.

5.6.16.5 Variable Expressions

 variable-expression = l-expression

Static Semantics.

A <variable-expression> is invalid if it is classified as something other than a variable or unbound
member.

5.6.16.6 Bound Variable Expressions

 bound-variable-expression = l-expression

Static Semantics.

A <bound-variable-expression> is invalid if it is classified as something other than a variable
expression. The expression is invalid even if it is classified as an unbound member expression that
could be resolved to a variable expression.

5.6.16.7 Type Expressions

 type-expression = BUILTIN-TYPE / defined-type-expression

173 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 defined-type-expression = simple-name-expression / member-access-expression

Static Semantics. A <defined-type-expression> performs name binding under the type binding
context. A <defined-type-expression> is invalid if it is not classified as a type. A <type-expression> is
classified as a type.

5.6.16.8 AddressOf Expressions

addressof-expression = "addressof" procedure-pointer-expression

 procedure-pointer-expression = simple-name-expression / member-access-expression

Static semantics.

<procedure-pointer-expression> performs name binding under the procedure pointer binding context,
and MUST be classified as a subroutine, function or a property with a Property Get. The procedure
referenced by this expression is the referenced procedure.

An AddressOf expression is invalid if <procedure-pointer-expression> refers to a subroutine, function

or property defined in a class module and the expression is qualified with the name of the class
module.

The AddressOf expression is classified as a value expression. The declared type and value type of an

AddressOf expression is implementation-defined, and can be Long, LongLong or other
implementation-defined types.

Runtime semantics. The result is an implementation-defined value capable of serving as an invocable
reference to the referenced procedure when passed directly as a parameter to an external procedure
call. An implementation where such a value would exceed the range of the integral value types

supported by VBA can choose to truncate these values when not passed directly to such an external
procedure.

If the referenced procedure was in a class module, the runtime semantics of expressions within that
procedure that depend on the current instance, such as instance expressions, are implementation-
defined.

174 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

6 VBA Standard Library

6.1 VBA Project

"VBA" is the project name (section 4.1) of a host project (section 4.1) that is present in every VBA

Environment. The VBA project consists of a set of classes, functions, Enums and constants that form
VBA’s standard library.

6.1.1 Predefined Enums

6.1.1.1 FormShowConstants

Constant Value

vbModal 1

vbModeless 0

6.1.1.2 VbAppWinStyle

Constant Value

vbHide 0

vbMaximizedFocus 3

vbMinimizedFocus 2

vbMinimizedNoFocus 6

vbNormalFocus 1

vbNormalNoFocus 4

6.1.1.3 VbCalendar

Constant Value

vbCalGreg 0

vbCalHijri 1

6.1.1.4 VbCallType

Constant Value

vbGet 2

vbLet 4

vbMethod 1

175 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Constant Value

vbSet 8

6.1.1.5 VbCompareMethod

Constant Value

vbBinaryCompare 0

vbTextCompare 1

6.1.1.6 VbDateTimeFormat

Constant Value

vbGeneralDate 0

vbLongDate 1

vbLongTime 3

vbShortDate 2

vbShortTime 4

6.1.1.7 VbDayOfWeek

Constant Value

vbFriday 6

vbMonday 2

vbSaturday 7

vbSunday 1

vbThursday 5

vbTuesday 3

vbUseSystemDayOfWeek 0

vbWednesday 4

6.1.1.8 VbFileAttribute

This Enum is used to encode the return value of the function VBA.Interaction.GetAttr.

Constant Value Description

vbNormal 0 Specifies files with no attributes.

176 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Constant Value Description

vbReadOnly 1 Specifies read-only files.

vbHidden 2 Specifies hidden files.

VbSystem 4 Specifies system files.

vbVolume 8 Specifies volume label; if any other attributed is specified,
vbVolume is ignored

vbDirectory 16 Specifies directories or folders.

vbArchive 32 Specifies files that have changed since the last backup.

vbAlias 64 Specifies file aliases on platforms that support them.

6.1.1.9 VbFirstWeekOfYear

Constant Value

vbFirstFourDays 2

vbFirstFullWeek 3

vbFirstJan1 1

vbUseSystem 0

6.1.1.10 VbIMEStatus

Constant Value

vbIMEAlphaDbl 7

vbIMEAlphaSng 8

vbIMEDisable 3

vbIMEHiragana 4

vbIMEKatakanaDbl 5

vbIMEKatakanaSng 6

vbIMEModeAlpha 8

vbIMEModeAlphaFull 7

vbIMEModeDisable 3

vbIMEModeHangul 10

vbIMEModeHangulFull 9

vbIMEModeHiragana 4

vbIMEModeKatakana 5

vbIMEModeKatakanaHalf 6

177 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Constant Value

vbIMEModeNoControl 0

vbIMEModeOff 2

vbIMEModeOn 1

vbIMENoOp 0

vbIMEOff 2

vbIMEOn 1

6.1.1.11 VbMsgBoxResult

Constant Value

vbAbort 3

vbCancel 2

vbIgnore 5

vbNo 7

vbOK 1

vbRetry 4

vbYes 6

6.1.1.12 VbMsgBoxStyle

Constant Value

vbAbortRetryIgnore 2

vbApplicationModal 0

vbCritical 16

vbDefaultButton1 0

vbDefaultButton2 256

vbDefaultButton3 512

vbDefaultButton4 768

vbExclamation 48

vbInformation 64

vbMsgBoxHelpButton 16384

vbMsgBoxRight 524288

vbMsgBoxRtlReading 1048576

178 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Constant Value

vbMsgBoxSetForeground 65536

vbOKCancel 1

vbOKOnly 0

vbQuestion 32

vbRetryCancel 5

vbSystemModal 4096

vbYesNo 4

vbYesNoCancel 3

6.1.1.13 VbQueryClose

Constant Value

vbAppTaskManager 3

vbAppWindows 2

vbFormCode 1

vbFormControlMenu 0

vbFormMDIForm 4

6.1.1.14 VbStrConv

Constant Value

vbFromUnicode 128

vbHiragana 32

vbKatakana 16

vbLowerCase 2

vbNarrow 8

vbProperCase 3

vbUnicode 64

vbUpperCase 1

vbWide 4

6.1.1.15 VbTriState

Constant Value

vbFalse 0

179 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Constant Value

vbTrue -1

vbUseDefault -2

6.1.1.16 VbVarType

Constant Value

vbArray 8192

vbBoolean 11

vbByte 17

vbCurrency 6

vbDataObject 13

vbDate 7

vbDecimal 14

vbDouble 5

vbEmpty 0

vbError 10

vbInteger 2

vbLong 3

vbLongLong 20 (defined only on implementations
that support a LongLong value type)

vbNull 1

vbObject 9

vbSingle 4

vbString 8

vbUserDefinedType 36

vbVariant 12

6.1.2 Predefined Procedural Modules

Unless otherwise specified, all Predefined Procedural Modules in the VBA Standard Library defined with
the attribute VB_GlobalNamespace set to "True" are global modules, allowing simple name access to

their public constants, variables, and procedures as specified in section 5.6.10.

The following modules define their public constants as if they were defined using a <public-const-
declaration>.

180 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

6.1.2.1 ColorConstants Module

Constant Value

vbBlack 0

vbBlue 16711680

vbCyan 16776960

vbGreen 65280

vbMagenta 16711935

vbRed 255

vbWhite 16777215

vbYellow 65535

6.1.2.2 Constants Module

Constant Value

vbBack VBA.Strings.Chr$(8)

vbCr VBA.Strings.Chr$(13)

vbCrLf VBA.Strings.Chr$(13) + VBA.Strings.Chr$(10)

vbFormFeed VBA.Strings.Chr$(12)

vbLf VBA.Strings.Chr$(10)

vbNewLine An implementation-defined String value representing a new line

vbNullChar VBA.Strings.Chr$(0)

vbTab VBA.Strings.Chr$(9)

vbVerticalTab VBA.Strings.Chr$(11)

vbNullString An implementation-defined String value representing a null string

pointer

vbObjectError -2147221504

6.1.2.3 Conversion Module

6.1.2.3.1 Public Functions

Note that these explicit-coercion functions are the only way to convert values from the LongLong
type to any other type, as implicit conversions from LongLong to a declared type other than

LongLong or Variant are not allowed.

6.1.2.3.1.1 CBool

Function Declaration

181 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Function CBool(Expression As Variant) As Boolean

Parameter Description

Expression Any data value (section 2.1).

Runtime Semantics.

 If the value of Expression is an Error (section 2.1) data value then return the Integer data value
that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced
to Boolean (section 5.5.1.2.2).

 If the value of Expression is not an Error data value return the Boolean data value that is the
result of Expression being Let-coerced to Boolean.

6.1.2.3.1.2 CByte

Function Declaration

 Function CByte(Expression As Variant) As Byte

Parameter Description

Expression Any data value (section 2.1).

Runtime Semantics.

 If the value of Expression is an Error (section 2.1) data value then return the Byte data value
that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced
to Byte (section 5.5.1.2.1).

 If the value of Expression is not an Error data value return the Byte data value that is the result
of Expression being Let-coerced to Byte.

6.1.2.3.1.3 CCur

Function Declaration

 Function CCur(Expression As Variant) As Currency

Parameter Description

Expression Any data value (section 2.1).

182 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Runtime Semantics.

 If the value of Expression is an Error (section 2.1) data value then return the Currency data
value that is the result of the Long error code (section 2.1) of the Error data value being Let-
coerced to Currency (section 5.5.1.2.1).

 If the value of Expression is not an Error data value return the Currency data value that is the
result of Expression being Let-coerced to Currency.

6.1.2.3.1.4 CDate / CVDate

Function Declaration

 Function CDate(Expression As Variant) As Date
 Function CVDate(Expression As Variant)As Variant

Parameter Description

Expression Any data value (section 2.1).

Runtime Semantics.

 If the value of Expression is an Error (section 2.1) data value then raise error 13, "Type
mismatch".

 If the value of Expression is not an Error data value return the Date data value that is the result

of Expression being Let-coerced to Date (section 5.5.1.2.3).

 CDate MAY recognizes string date formats according to implementation defined locale settings.

 CVDate is identical to CDate except for the declared type of its return value.

6.1.2.3.1.5 CDbl

Function Declaration

 Function CDbl(Expression As Variant) As Double

Parameter Description

Expression Any data value (section 2.1).

Runtime Semantics.

183 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If the value of Expression is an Error (section 2.1) data value then return the Double data value
that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced

to Double (section 5.5.1.2.1).

 If the value of Expression is not an Error data value return the Double data value that is the
result of Expression being Let-coerced to Double.

6.1.2.3.1.6 CDec

Function Declaration

 Function CDec(Expression As Variant)As Variant

Parameter Description

Expression Any data value (section 2.1).

Runtime Semantics.

 Return the Decimal data value that is the result of Expression being Let-coerced to Decimal
(section 5.5.1.2.1).

6.1.2.3.1.7 CInt

Function Declaration

 Function CInt(Expression As Variant) As Integer

Parameter Description

Expression Any data value (section 2.1).

Runtime Semantics.

 If the value of Expression is an Error (section 2.1) data value then return the Integer data value
that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced
to Integer (section 5.5.1.2.1).

 If the value of Expression is not an Error data value return the Integer data value that is the

result of Expression being Let-coerced to Integer.

6.1.2.3.1.8 CLng

Function Declaration

 Function CLng(Expression As Variant) As Long

184 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Expression Any data value (section 2.1).

Runtime Semantics.

 If the value of Expression is an Error (section 2.1) data value then return the data value of the
Long error code (section 2.1) of the Error data value.

 If the value of Expression is not an Error data value return the Long data value that is the result
of Expression being Let-coerced to Long (section 5.5.1.2.1).

6.1.2.3.1.9 CLngLng

Function Declaration

 Function CLngLng(Expression As Variant) As LongLong

Parameter Description

Expression Any data value (section 2.1).

Runtime Semantics.

 If the value of Expression is an Error (section 2.1) data value then return the LongLong data
value that is the result of the Long error code (section 2.1) of the Error data value being Let-

coerced to LongLong.

 If the value of Expression is not an Error data value, then return the LongLong data value that is
the result of Expression being Let-coerced to LongLong.

6.1.2.3.1.10 CLngPtr

Function Declaration

 Function CLngPtr(Expression As Variant) As LongPtr

Parameter Description

Expression Any data value (section 2.1).

Runtime Semantics.

 If the value of Expression is an Error (section 2.1) data value then return the LongPtr data value
that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced
to LongPtr.

185 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If the value of Expression is not an Error data value, then return the LongPtr data value that is
the result of Expression being Let-coerced to LongPtr.

6.1.2.3.1.11 CSng

Function Declaration

 Function CSng(Expression As Variant) As Single

Parameter Description

Expression Any data value (section 2.1).

Runtime Semantics.

 If the value of Expression is an Error (section 2.1) data value then return the Single data value

that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced
to Single (section 5.5.1.2.1).

 If the value of Expression is not an Error data value return the Single data value that is the
result of Expression being Let-coerced to Single.

6.1.2.3.1.12 CStr

Function Declaration

 Function CStr(Expression As Variant) As String

Parameter Description

Expression Any data value (section 2.1).

Runtime Semantics.

 If the value of Expression is an Error (section 2.1) data value then the returned value is the

String data value consisting of "Error" followed by a single space character followed by the String
that is the result of the Long error code (section 2.1) of the Error data value Let-coerced to
String (section 5.5.1.2.4).

 If the value of Expression is not an Error data value return the String data value that is the result
of Expression being Let-coerced to String (section 5.5.1.2.4).

6.1.2.3.1.13 CVar

Function Declaration

 Function CVar(Expression As Variant) As Variant

186 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Expression Any data value (section 2.1).

Runtime Semantics.

 The argument data value is returned.

6.1.2.3.1.14 CVErr

Function Declaration

 Function CVErr(Expression As Variant) As Variant

Parameter Description

Expression Any data value (section 2.1).

Runtime Semantics.

 If the value of Expression is an Error (section 2.1) data value then the value of Expression is
returned without raising an error.

 The data value of Expression is Let-coerced to Long (section 5.5.1.2.1) for use as an error code

(section 2.1). If the resulting data value is not in the inclusive range 0 to 65535, Error 5 is raised.

 Return an Error (section 2.1) data value whose error code is the result of Expression being Let-
coerced to Long (section 5.5.1.2.1).

6.1.2.3.1.15 Error / Error$

Function Declaration

 Function Error(Optional ErrorNumber)
 Function Error$(Optional ErrorNumber) As String

Parameter Description

ErrorNumber Any data value (section 2.1).

Runtime Semantics.

187 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If the parameter ErrorNumber is present its data value is Let-coerced to Long (section 5.5.1.2.1)
for use as an error code (section 2.1). If the resulting data value is greater than 65,535 then Error

6 is raised. Negative values for ErrorNumber are acceptable.

 If the parameter ErrorNumber is not present, the most recently raised error number (or 0 if no

error has been raised) is used as the error code. Note that the most recently raised error number
might not necessarily be the same as the current value of Err.Number (section 6.1.3.2.2.5)

 The string data value returned by the function is determined based upon the error code as follows:

 If the error code is 0 the data value is the zero length String.

 If a descriptive text is specified for the error code, the data value is a String containing that
descriptive text.

 If the error code has an implementation specific meaning the descriptive text is also

implementation specific.

 Otherwise, the data value is "Application-defined or object-defined error."

 Error$ is identical to Error except for the declared type of its return value.

6.1.2.3.1.16 Fix

Returns the integer portion of a number.

Function Declaration

 Function Fix(Number As Variant)

Parameter Description

Number Any data value (section 2.1).

Runtime Semantics.

 If the data value of Number is Null, Null is returned.

 If the value type (section 2.1) of Number is Integer, Long or LongLong, the data value of
Number is returned.

 If the value type of Number is any numeric value type (section 5.5.1.2.1) other than Integer or
Long, the returned value is a data value whose value type is the same as the value type of

Number and whose value that is the smallest integer greater than or equal to the data value of

Number. If the value to be returned is not in the range of the value type of Number, raise error 6,
"Overflow".

 If the value type of Number is String, the returned value is the result of the Fix function applied
to the result of Let-coercing Number to Double.

 If the value type (section 2.1) of Number is Date, the returned value is the same as result of

evaluating the expression: CDate(Fix(CDbl(Number)))

 Otherwise, the returned value is the result of Number being Let-coerced to Integer.

188 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

6.1.2.3.1.17 Hex / Hex$

Function Declaration

 Function Hex(Number As Variant)
 Function Hex$(Number As Variant) As String

Parameter Description

Number Any data value (section 2.1).

Runtime Semantics.

 If the data value of the parameter Number is the data value Null the function Hex$ raises error
94, "Invalid use of Null" and the function Hex returns the data value Null.

 If the data value of the parameter Number is the data value Empty the function returns the

String data value "0"

 If the data value of the parameter Number has the value type LongLong, it is not coerced.

 If the data value of the parameter Number is any other value, it is Let-coerced to Long (section
5.5.1.2.1).

 If the Let-coerced value of Number is positive, the function result is a String data value
consisting of the characters of the hexadecimal encoding with no leading zeros of the value.

 If the Let-coerced value of Number is in the range -32,767 to -1, the function result is a four

character String data value consisting of the characters of the 16-bit 2’s complement hexadecimal
encoding of the value.

 If the Let-coerced value of Number is in the range -2,147,483,648 to -32,768, the function result
is an eight character String data value consisting of the characters of the 32-bit 2’s complement
hexadecimal encoding of the value.

 If the Let-coerced value of Number is in the range -9,223,372,036,854,775,808 to
2,147,483,649, the function result is a sixteen character String data value consisting of the

characters of the 64-bit 2’s complement hexadecimal encoding of the value.

 Except for the case where the parameter Number is Null, the semantics of Hex$ is identical to
Hex except for the declared type of its returned value.

6.1.2.3.1.18 Int

Returns the integer portion of a number.

Function Declaration

 Function Int(Number As Variant)

189 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Number Any data value (section 2.1).

Runtime Semantics.

 If the data value of Number is Null, Null is returned.

 If the value type (section 2.1) of Number is Integer, Long or LongLong, the data value of
Number is returned.

 If the value type of Number is any numeric value type (section 5.5.1.2.1) other than Integer or
Long, the returned value is a data value whose value type is the same as the value type of

Number and whose value that is the greatest integer that is less than or equal to the data value of
Number. If the value to be returned is not in the range of the value type of Number, raise error 6,
"Overflow".

 If the value type of Number is String, the returned value is the result of the Int function applied
to the result of Let-coercing Number to Double.

 If the value type (section 2.1) of Number is Date, the returned value is the same as result of
evaluating the expression: CDate(Int(CDbl(Number)))

 Otherwise, the returned value is the result of Number being Let-coerced to Integer.

6.1.2.3.1.19 Oct / Oct$

Function Declaration

 Function Oct(Number As Variant)
 Function Oct$(Number As Variant) As String

Parameter Description

Number Any data value (section 2.1).

Runtime Semantics.

 If the data value of the parameter Number is the data value Null the function Oct$ raises error
94, "Invalid use of Null" and the function Oct returns the data value Null.

 If the data value of the parameter Number is the data value Empty the function returns the

String data value "0".

 If the data value of the parameter Number has the value type LongLong, it is not coerced.

 If the data value of the parameter Number is any other value, it is Let-coerced to Long (section
5.5.1.2.1).

 If the Let-coerced value of Number is positive, the function result is a String data value
consisting of the characters of the hexadecimal encoding of the value with no leading zeros.

190 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If the Let-coerced value of Number is in the range -32,767 to -1, the function result is a six
character String data value consisting of the characters of the 16-bit 2’s complement octal

encoding of the value.

 If the Let-coerced value of Number is in the range -2,147,483,648 to -32,768, the function result

is an eleven character String data value consisting of the characters of the 32-bit 2’s complement
octal encoding of the value.

 If the Let-coerced value of Number is in the range -9,223,372,036,854,775,808 to
2,147,483,649, the function result is a twenty-two character String data value consisting of the
characters of the 64-bit 2’s complement hexadecimal encoding of the value.

 Except for the case where the parameter Number is Null, the semantics of Oct$ is identical to Oct
except for the declared type of its returned value.

6.1.2.3.1.20 Str / Str$

Function Declaration

 Function Str(Number As Variant)
 Function Str$(Number As Variant) As String

Parameter Description

Number Any data value (section 2.1).

Runtime Semantics.

 If the data value of Number is Null, Null is returned.

 If the value of Number is an Error (section 2.1) data value then the returned value is the String
data value consisting of "Error" followed by a single space character followed by the String that is
the result of the Long error code (section 2.1) of the Error data value Let-coerced to String
(section 5.5.1.2.4).

 If the value type of Number is Date, the returned value is the result of Let-coercing Number to

String.

 If the data value of Number is any numeric value type, let S be the result of Let-coercing Number
to String using "." as the decimal separator. If the data value of Number is positive (or zero) the
result is S with a single space character appended as its first character, otherwise the result is S.

 Otherwise, the returned value is the result of the Str function applied to the result of Let-coercing

Number to Double.

 Str$ is identical to Str except for the declared type of its return value.

6.1.2.3.1.21 Val

Function Declaration

 Function Val(Value As String) As Double

191 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Value Any String data value (section 2.1).

Runtime Semantics.

 If Value is the 0 length String data value return the Double data value 0.

 Returns the numbers contained in a string as a Double.

 The Val function stops reading the string at the first character it can't recognize as part of a
number. Symbols and characters that are often considered parts of numeric values, such as dollar
signs and commas, are not recognized. However, the function recognizes the radix prefixes &O
(for octal) and &H (for hexadecimal).

 Blanks, tabs, and linefeed characters are stripped from the argument.

6.1.2.4 DateTime Module

6.1.2.4.1 Public Functions

6.1.2.4.1.1 DateAdd

Function Declaration

 Function DateAdd(Interval As String,
 Number As Double,
 Date As Variant)

Parameter Description

Interval String data value (section 2.1) that specifies the interval of time to add.

Number The number of intervals to add. It can be positive (to get dates in the future) or

negative (to get dates in the past). If it is not a integer value, it is rounded to the

nearest whole number.

Date Date, data value to which the interval is added.

Runtime Semantics.

 The DateAdd function returns the result of adding or subtracting a specified time interval from a
base date. For example, it can be used to calculate a date 30 days from today or a time 45
minutes from now.

 The interval argument is interpreted according to this table:

Interval Data Value Meaning

"yyyy" Year

192 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Interval Data Value Meaning

"q" Quarter

"m" Month

"y" Day of year

"d" Day

"w" Weekday

"ww" Week

"h" Hour

"n" Minute

"s" Second

Any other data value Raise Error 5, "Invalid procedure call or

argument"

 The interpretation of the Interval data value is not case sensitive.

 The DateAdd function won't return an invalid date. The following example adds one month to
January 31:

DateAdd("m", 1, "31-Jan-95")

In this case, DateAdd returns 28-Feb-95, not 31-Feb-95. If date is 31-Jan-96, it returns

29-Feb96 because 1996 is a leap year.

 If the calculated date would precede the year 100 (that is, you subtract more years than are in

date), an error 5 is raised.

 For date, if the Calendar property setting is Gregorian, the supplied date MUST be Gregorian. If
the calendar is Hijri, the supplied date MUST be Hijri. If month values are names, the name MUST
be consistent with the current Calendar property setting. To minimize the possibility of month
names conflicting with the current Calendar property setting, enter numeric month values (Short

Date format).

6.1.2.4.1.2 DateDiff

Function Declaration

 Function DateDiff(Interval As String,
 Date1 As Variant,
 Date2 As Variant,
 Optional FirstDayOfWeek
 As VbDayOfWeek = vbSunday,
 Optional FirstWeekOfYear
 As VbFirstWeekOfYear = vbFirstJan1
)

193 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Interval String data value (section 2.1) that specifies the interval of time to use to calculate

the difference between Date1 and Date2.

Date1, Date2 The two dates to use in the calculation.

FirstDayOfWeek A constant that specifies the first day of the week. If not specified, Sunday is

assumed. See section 6.1.1.7.

FirstWeekOfYear A constant that specifies the first week of the year. If not specified, the first week is

assumed to be the week in which January 1 occurs.

Runtime Semantics.

 Returns a Long data value specifying the number of time intervals between two specified dates.

 The Interval argument is interpreted according to this table:

Interval Data Value Meaning

"yyyy" Year

"q" Quarter

"m" Month

"y" Day of year

"d" Day

"w" Weekday

"ww" Week

"h" Hour

"n" Minute

"s" Second

Any other data value Raise Error 5, "Invalid procedure call or

argument"

 The interpretation of the Interval data value is not case sensitive.

 If Date1 falls on a Monday, DateDiff counts the number of Mondays until Date2. It counts Date2
but not Date1. If interval is Week ("ww"), however, the DateDiff function returns the number of
calendar weeks between the two dates. It counts the number of Sundays between Date1 and

Date2. DateDiff counts Date2 if it falls on a Sunday; but it doesn't count Date1, even if it does fall
on a Sunday.

 If Date1 refers to a later point in time than Date2, the DateDiff function returns a negative
number.

 The FirstDayOfWeek argument affects calculations that use the "w" and "ww" interval symbols.

 When comparing December 31 to January 1 of the immediately succeeding year, DateDiff for Year

("yyyy") returns 1 even though only a day has elapsed.

194 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 For Date1 and Date2, if the Calendar property setting is Gregorian, the supplied date MUST be
Gregorian. If the calendar is Hijri, the supplied date MUST be Hijri.

6.1.2.4.1.3 DatePart

Function Declaration

 Function DatePart(Interval As String,
 BaseDate As Variant,
 Optional FirstDayOfWeek
 As VbDayOfWeek = vbSunday,
 Optional FirstWeekOfYear
 As VbFirstWeekOfYear = vbFirstJan1
)

Parameter Description

Interval String data value (section 2.1) that specifies the interval of time to extract from

BaseDate.

BaseDate Date data value from which the interval is extracted.

FirstDayOfWeek A constant that specifies the first day of the week. If not specified, Sunday is

assumed. See section 6.1.1.7.

FirstWeekOfYear A constant that specifies the first week of the year. If not specified, the first week is

assumed to be the week in which January 1 occurs.

Runtime Semantics.

 Returns a Integer data value containing the specified part of a given date

 The Interval argument is interpreted according to this table:

Interval Data Value Meaning

"yyyy" Year

"q" Quarter

"m" Month

"y" Day of year

"d" Day

"w" Weekday

"ww" Week

"h" Hour

"n" Minute

"s" Second

Any other data value Raise Error 5, "Invalid procedure call or

argument"

195 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The interpretation of the Interval data value is not case sensitive.

 The FirstDayOfWeek argument affects calculations that use the "w" and "ww" interval symbols.

 For BaseDate, if the Calendar property setting is Gregorian, the supplied date MUST be Gregorian.

If the calendar is Hijri, the supplied date MUST be Hijri.

 The returned date part is in the time period units of the current Arabic calendar. For example, if
the current calendar is Hijri and the date part to be returned is the year, the year value is a Hijri
year.

6.1.2.4.1.4 DateSerial

Function Declaration

 Function DateSerial(Year As Integer, Month As Integer,
 Day As Integer)

Parameter Description

Year An Integer data value (section 2.1) in the range 100 and 9999, inclusive.

Month An Integer data value (section 2.1).

Day An Integer data value (section 2.1).

Runtime Semantics.

 The DateSerial function returns a Date for a specified year, month, and day.

 To specify a date, such as December 31, 1991, the range of numbers for each DateSerial
argument SHOULD be in the accepted range for the unit; that is, 1-31 for days and 1-12 for
months. However, you can also specify relative dates for each argument using any numeric

expression that represents some number of days, months, or years before or after a certain date.

 Two digit years for the year argument are interpreted based on implementation defined settings.
The default settings are that values between 0 and 29, inclusive, are interpreted as the years
2000-2029. The default values between 30 and 99 are interpreted as the years 19301999. For all
other year arguments, use a four-digit year (for example, 1800).

 When any argument exceeds the accepted range for that argument, it increments to the next
larger unit as appropriate. For example, if you specify 35 days, it is evaluated as one month and

some number of days, depending on where in the year it is applied. If any single argument is
outside the range -32,768 to 32,767, an error occurs. If the date specified by the three arguments
falls outside the acceptable range of dates, an error occurs.

 For Year, Month, and Day, if the Calendar property setting is Gregorian, the supplied value is
assumed to be Gregorian. If the Calendar property setting is Hijri, the supplied value is assumed
to be Hijri.

 The returned date part is in the time period units of the current Visual Basic calendar. For

example, if the current calendar is Hijri and the date part to be returned is the year, the year

196 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

value is a Hijri year. For the argument year, values between 0 and 99, inclusive, are interpreted
as the years 1400-1499. For all other year values, use the complete four-digit year (for example,

1520).

6.1.2.4.1.5 DateValue

Function Declaration

 Function DateValue(Date As String) As Variant

Parameter Description

Date String data value (section 2.1) representing a date from January 1, 100 through

December 31, 9999. The value can also be a date, a time, or both a date and time.

Runtime Semantics.

 Returns a Date data value.

 If Date is a string that includes only numbers separated by valid date separators, DateValue

recognizes the order for month, day, and year according to the implementation-defined Short Date
format. DateValue also recognizes unambiguous dates that contain month names, either in long or
abbreviated form. For example, in addition to recognizing 12/30/1991 and 12/30/91, DateValue
also recognizes December 30, 1991 and Dec 30, 1991.

 If the year part of Date is omitted, DateValue uses the current year from the system’s date.

 If the Date argument includes time information, DateValue doesn't return it. However, if Date
includes invalid time information (such as "89:98"), an error occurs.

 For Date, if the Calendar property setting is Gregorian, the supplied date MUST be Gregorian. If
the calendar is Hijri, the supplied date MUST be Hijri. If the supplied date is Hijri, the argument
date is a String representing a date from 1/1/100 (Gregorian Aug 2, 718) through 4/3/9666
(Gregorian Dec 31, 9999).

6.1.2.4.1.6 Day

Function Declaration

 Function Day(Date As Variant) As Variant

Parameter Description

Date Any data value (section 2.1). The data value SHOULD be Let-coercible to Date.

Runtime Semantics.

 Date is Let-coerced to Date and an Integer data value specifying a whole number between 1 and
31, inclusive, representing the day of the month is returned.

197 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If Date is Null, Null is returned.

 If the Calendar property setting is Gregorian, the returned Integer represents the Gregorian day
of the month for the Date argument. If the calendar is Hijri, the returned Integer represents the
Hijri day of the month for the Date argument.

6.1.2.4.1.7 Hour

Function Declaration

 Function Hour(Time As Variant) As Variant

Parameter Description

Time Any data value (section 2.1). The data value SHOULD be Let-coercible to Date.

Runtime Semantics.

 Time is Let-coerced to Date and an Integer specifying a whole number between 0 and 23,

inclusive representing the hour of the day specified by the date is returned.

 If Time is Null, Null is returned.

6.1.2.4.1.8 Minute

Function Declaration

 Function Hour(Time As Variant) As Variant

Parameter Description

Time Any data value (section 2.1). The data value SHOULD be Let-coercible to Date.

Runtime Semantics.

 Time is Let-coerced to Date and an Integer specifying a whole number between 0 and 59,
inclusive representing the minute of the hour specified by the date is returned.

 If Time is Null, Null is returned.

6.1.2.4.1.9 Month

Function Declaration

 Function Month(Date As Variant) As Variant

198 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Date Any data value (section 2.1). The data value SHOULD be Let-coercible to Date.

Runtime Semantics.

 Date is Let-coerced to Date and an Integer data value specifying a whole number between 1 and
12, inclusive, representing the month of the year is returned.

 If Date is Null, Null is returned.

6.1.2.4.1.10 Second

Function Declaration

 Function Second(Time As Variant) As Variant

Parameter Description

Time Any data value (section 2.1). The data value SHOULD be Let-coercible to Date.

Runtime Semantics.

 Time is Let-coerced to Date and an Integer specifying a whole number between 0 and 59,
inclusive representing the second of the minute specified by the date is returned.

 If Time is Null, Null is returned.

6.1.2.4.1.11 TimeSerial

Function Declaration

 Function TimeSerial(Hour As Integer,
 Minute As Integer,
 Second As Integer) As Variant

Parameter Description

Hour An Integer data value (section 2.1) in the range 0 and 23, inclusive.

Minute An Integer data value (section 2.1).

Second An Integer data value (section 2.1).

Runtime Semantics.

 Returns a Date containing the time for a specific hour, minute, and second.

 To specify a time, such as 11:59:59, the range of numbers for each TimeSerial argument SHOULD
be in the normal range for the unit; that is, 023 for hours and 059 for minutes and seconds.

199 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

However, one can also specify relative times for each argument using any Integer data value that
represents some number of hours, minutes, or seconds before or after a certain time.

 When any argument exceeds the normal range for that argument, it increments to the next larger
unit as appropriate. For example, if Minute specifies 75 minutes, it is evaluated as one hour and

15 minutes. If the time specified by the three arguments causes the date to fall outside the
acceptable range of dates, an error is raised.

6.1.2.4.1.12 TimeValue

Function Declaration

 Function TimeValue(Time As String) As Variant

Parameter Description

Time String data value (section 2.1) representing a time from 0:00:00 (12:00:00 A.M.)

to 23:59:59 (11:59:59 P.M.), inclusive. The value can also be a date, a time, or

both a date and time.

Runtime Semantics.

 Returns a Date containing the time. The argument string is Let-coerced to value type Date and
the date portions of the data value are set to zero.

 If Time is Null, Null is returned.

 If the Time argument contains date information, TimeValue doesn't return it. However, if Time

includes invalid date information, an error occurs.

6.1.2.4.1.13 Weekday

Function Declaration

 Function Weekday(Date,
 Optional FirstDayOfWeek
 As VbDayOfWeek = vbSunday) As Variant

Parameter Description

Date Any data value (section 2.1). The data value SHOULD be Let-coercible to Date. If

Date contains Null, Null is returned.

FirstDayOfWeek A constant that specifies the first day of the week. If not specified, Sunday is

assumed. See section 6.1.1.7.

Runtime Semantics.

200 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Returns an Integer containing a whole number representing the day of the week.

 The Weekday function can return any of these values (see section 6.1.1.7):

Constant Value Description

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

 If the Calendar property setting is Gregorian, the returned Integer represents the Gregorian day
of the week for the Date argument. If the calendar is Hijri, the returned Integer represents the
Hijri day of the week for the Date argument. For Hijri dates, the argument number is any numeric
expression that can represent a date and/or time from 1/1/100 (Gregorian Aug 2, 718) through
4/3/9666 (Gregorian Dec 31, 9999).

6.1.2.4.1.14 Year

Function Declaration

 Function Year(Date As Variant) As Variant

Parameter Description

Date Any data value (section 2.1). The data value SHOULD be Let-coercible to Date.

Runtime Semantics.

 Date is Let-coerced to Date and an Integer data value specifying a whole number between 100
and 9999, inclusive, representing the year is returned.

 If Date is Null, Null is returned.

6.1.2.4.2 Public Properties

6.1.2.4.2.1 Calendar

Property Declaration

 Property Calendar As VbCalendar

Runtime Semantics.

201 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Returns or sets a value specifying the type of calendar to use by subsequent calls to the functions
defined in section 6.1.2.4.

6.1.2.4.2.2 Date/Date$

Property Declaration

 Property Date As Variant
 Property Date$ As String

Runtime Semantics.

 Returns a String or a Date containing the current system date.

 Date, and if the calendar is Gregorian, Date$ behavior is unchanged by the Calendar property
setting. If the calendar is Hijri, Date$ returns a 10-character string of the form mm-dd-yyyy,

where mm (01-12), dd (01-30) and yyyy (1400-1523) are the Hijri month, day and year. The
equivalent Gregorian range is Jan 1, 1980 through Dec 31, 2099.

6.1.2.4.2.3 Now

Property Declaration

 Property Now As Variant

Runtime Semantics.

 Returns a Date data value specifying the current date and time.

6.1.2.4.2.4 Time/Time$

Property Declaration [Get Property]

 Property Time As Variant
 Property Time$ As String

Runtime Semantics.

 Returns a String or Date containing the current system time.

Property Declaration [Set Property]

 Property Time As Variant

Runtime Semantics.

 Sets the system time.

 The value assigned to the Time property MUST be Let-coercible to a Date data value. The time
portion of the Date data value is used to set the system time.

202 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If Time is a string, Time attempts to convert it to a time using the time separators specified for
the system. If it can't be converted to a valid time, an error occurs.

6.1.2.4.2.5 Timer

Function Declaration

 Property Timer As Single

Runtime Semantics.

 Returns a Single data value representing the number of seconds elapsed since midnight.

 The sub-second resolution is implementation dependent.

6.1.2.5 FileSystem

6.1.2.5.1 Public Functions

6.1.2.5.1.1 CurDir/CurDir$

 Function CurDir(Optional Drive As Variant) As Variant
 Function CurDir$(Optional Drive As Variant) As String

Parameter Description

Drive Optional String data value that identifiers an storage drive in an implementation

defined manner.

Runtime Semantics.

 The valid format of a Drive String is implementation defined.

 If Drive is unspecified, or if Drive is a zero-length string, CurDir returns the current file path for

the implementation-defined current drive as a String data value. If Drive validly identifies a
storage drive, the current file path for that drive is returned a String data value.

 If the value of Drive is not a valid drive identifier, Error 68 ("Device Unavailable") is raised.

6.1.2.5.1.2 Dir

Function Declaration

 Function Dir(Optional PathName As Variant,
 Optional Attributes
 As VbFileAttribute = vbNormal)As String

203 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

PathName Any data value (section 2.1) that specifies a file name. It can include directory or

folder, and drive. The data value SHOULD be Let-coercible to String. A zero-

length string ("") is returned if PathName is not found.

Attributes Constant or numeric expression, whose sum specifies file attributes. If omitted,

returns files that match PathName but have no attributes.

Runtime Semantics.

 Returns a String data value representing the name of a file, directory, or folder that matches a
specified pattern or file attribute, or the volume label of a drive.

 The attributes argument can be the logical or any combination of the values of the vbFileAttribute

enumeration.

 Dir supports the use of multiple character (*) and single character (?) wildcards to specify multiple
files.

6.1.2.5.1.3 EOF

Function Declaration

 Function EOF(FileNumber As Integer) As Boolean

Parameter Description

FileNumber Any data value that is Let-coercible to declared type Integer and that is a valid file

number (section 5.4.5).

Runtime Semantics.

 Returns a Boolean data value indicating whether or not the current file-pointer-position (section
5.4.5) is at the end of a file that has been opened for Random or sequential Input.

 The EOF function returns False until the file-pointer-position is at the end of the file. With files
opened for Random or Binary access, EOF returns False until the last executed Get statement is
unable to read an entire record.

 Files opened for Output, EOF returns True.

6.1.2.5.1.4 FileAttr

Function Declaration

 Function FileAttr(FileNumber As Integer,
 Optional ReturnType As Integer = 1) As Long

204 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

FileNumber An Integer data value that is a valid file number (section 5.4.5).

ReturnType An Integer data value that indicating the type of information to return. Specify the

data value 1 to return a value indicating the file mode. The meaning of other data

values is implementation defined.

Runtime Semantics.

 Returns a Long representing the file mode (section 5.4.5) for files opened using the Open
statement.

 When the ReturnType argument is 1, the following return values indicate the file access mode:

Mode Value

Input 1

Output 2

Random 4

Append 8

Binary 32

6.1.2.5.1.5 FileDateTime

Function Declaration

 Function FileDateTime(PathName As String) As Variant

Parameter Description

PathName String expression that specifies a file name; can include directory or folder, and drive. An

error is raised if PathName is not found.

Runtime Semantics.

 Returns a Date data value that indicates the date and time when a file was created or last

modified.

6.1.2.5.1.6 FileLen

Function Declaration

 Function FileLen(PathName As String) As Long

205 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

PathName String expression that specifies a file name; can include directory or folder, and

drive. An error is raised if PathName is not found.

Runtime Semantics.

 Returns a Long specifying the length of a file in bytes.

 If the specified file is open when the FileLen function is called, the value returned represents the
size of the file immediately before it was opened.

6.1.2.5.1.7 FreeFile

Function Declaration

 Function FreeFile(Optional RangeNumber As Variant) As Integer

Parameter Description

RangeNumber Integer data value that specifies the range from which the next free file number

(section 5.4.5) is to be returned. Specify the data value 0 (default) to return a file

number in the range 1-255, inclusive. Specify the data value 1 to return a file

number in the range 256-511, inclusive.

Runtime Semantics.

 Returns an Integer representing the next file number available for use by the Open statement.

6.1.2.5.1.8 Loc

Function Declaration

 Function Loc(FileNumber As Integer) As Long

Parameter Description

FileNumber An Integer data value that is a valid file number (section 5.4.5).

Runtime Semantics.

 Returns a Long specifying the current read/write position (in other words, the current file-pointer-
position (section 5.4.5)) within an open file. The interpretation of the returned value depends
upon the file access mode of the open file.

206 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The following describes the return value for each file access mode:

Mode Return Value

Random Number of the last record read from or written to the file.

Sequential Current byte position in the file divided by 128. However, information returned by

Loc for sequential files is neither used nor required.

Binary Position of the last byte read or written.

6.1.2.5.1.9 LOF

Function Declaration

 Function LOF(FileNumber As Integer) As Long

Parameter Description

FileNumber An Integer data value that is a valid file number (section 5.4.5).

Runtime Semantics.

 Returns a Long representing the size, in bytes, of a file opened using the Open statement.

6.1.2.5.1.10 Seek

Function Declaration

 Function Seek(FileNumber As Integer) As Long

Parameter Description

FileNumber An Integer data value that is a valid file number (section 5.4.5).

Runtime Semantics.

 Returns a Long specifying the current read/write position (in other words, the file-current file-
pointer-position (section 5.4.5)) within a file opened using the Open statement. This value will be
between 1 and 2,147,483,647 (equivalent to 2^31 - 1), inclusive.

 The following describes the return values for each file access mode:

Mode Return Value

Random Number of the next record read or written.

207 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Mode Return Value

Binary, Output, Append, Input Byte position at which the next operation takes place.

The first byte in a file is at position 1, the second byte is

at position 2, and so on.

6.1.2.5.2 Public Subroutines

6.1.2.5.2.1 ChDir

Subroutine Declaration

 Sub ChDir(Path As String)

Parameter Description

Path String data value that identifies which directory or folder becomes the new default

directory or folder. The path can include the drive. If no drive is specified, ChDir changes

the default directory or folder on the current drive.

Runtime Semantics.

 ChDir changes the system’s current directory or folder, but not the default drive.

6.1.2.5.2.2 ChDrive

Subroutine Declaration

 Sub ChDrive(Drive As String)

Parameter Description

Drive String data value that specifies an existing drive. If Drive is a zero-length string (""), the

current drive doesn't change. If the drive argument is a multiple-character string, ChDrive

uses only the first letter.

Runtime Semantics.

 ChDrive changes the current default drive.

6.1.2.5.2.3 FileCopy

Subroutine Declaration

208 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Sub FileCopy(Source As String, Destination As String)

Parameter Description

Source String data value that specifies the name of the file to be copied. The string can

include directory or folder, and drive.

Destination String data value that specifies the target file name. The string can include directory

or folder, and drive.

Runtime Semantics.

 Copies a file in an implementation-defined manner.

 If the Source file is currently open, an error occurs.

6.1.2.5.2.4 Kill

Subroutine Declaration

 Sub Kill(PathName)

Parameter Description

PathName String data value that specifies one or more file names to be deleted; can include

directory or folder, and drive.

Runtime Semantics.

 Kill deletes files from a disk.

 Kill supports the use of multiple-character (*) and single-character (?) wildcards to specify
multiple files.

6.1.2.5.2.5 MkDir

Subroutine Declaration

 Sub MkDir(Path As String)

209 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Path String data value that identifies the directory or folder to be created. The path can

include the drive. If no drive is specified, MkDir creates the new directory or folder

on the current drive.

Runtime Semantics.

 MkDir creates a new directory or folder.

6.1.2.5.2.6 RmDir

Subroutine Declaration

 Sub RmDir(Path As String)

Parameter Description

Path String data value that identifies the directory or folder to be removed. The path can

include the drive. If no drive is specified, RmDir removes the directory or folder on

the current drive.

Runtime Semantics.

 RmDir removes an existing directory or folder.

 An error occurs when using RmDir on a directory or folder containing files.

6.1.2.5.2.7 SetAttr

Subroutine Declaration

 Sub SetAttr(PathName As String,
 Attributes As VbFileAttribute)

Parameter Description

PathName String data value that specifies a file name can include directory or folder, and drive.

Attributes Constant or numeric expression, whose sum specifies file attributes.

Runtime Semantics.

210 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Sets attribute information for a file.

 A run-time error occurs when trying to set the attributes of an open file.

6.1.2.6 Financial

6.1.2.6.1 Public Functions

6.1.2.6.1.1 DDB

Function Declaration

 Function DDB(Cost As Double, Salvage As Double,
 Life As Double, Period As Double,
 Optional Factor As Variant) As Double

Parameter Description

Cost Double specifying initial cost of the asset.

Salvage Double specifying value of the asset at the end of its useful life.

Life Double specifying length of useful life of the asset.

Period Double specifying period for which asset depreciation is calculated.

Factor Double data value specifying rate at which the balance declines. If omitted, the

data value 2 (double-declining method) is assumed.

Runtime Semantics.

 Returns a Double data value specifying the depreciation of an asset for a specific time period
using the double-declining balance method (or some other specified method).

 The Life and Period arguments MUST be expressed in the same units. For example, if Life is given
in months, Period MUST also be given in months. All arguments MUST be positive numbers.

 The DDB function uses the following formula to calculate depreciation for a given period:

Depreciation / Period = ((Cost - Salvage) * Factor) / Life

6.1.2.6.1.2 FV

Function Declaration

 Function FV(Rate As Double, NPer As Double, Pmt As Double, PV As Variant, Due As
Variant) As Double

211 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Rate Double specifying interest rate per period. For example, if you get a car loan at an

annual percentage rate (APR) of 10 percent and make monthly payments, the rate per

period is 0.1/12, or 0.0083.

NPer Integer specifying total number of payment periods in the annuity. For example, if you

make monthly payments on a four-year car loan, your loan has a total of 4 * 12 (or 48)

payment periods.

Pmt Double specifying payment to be made each period. Payments usually contain principal

and interest that doesn't change over the life of the annuity.

Pv Double data value specifying present value (or lump sum) of a series of future

payments. For example, when borrowing money to buy a car, the loan amount is the

present value to the lender of the monthly car payments that will be made. If omitted,

the data value 0 is assumed.

Due Integer data value specifying when payments are due. Use the data value 0 if payments

are due at the end of the payment period, or use the data value 1 if payments are due at

the beginning of the period. If omitted, the data value 0 is assumed.

Runtime Semantics.

 Returns a Double specifying the future value of an annuity based on periodic, fixed payments and
a fixed interest rate.

 The Rate and NPer arguments MUST be calculated using payment periods expressed in the same

units. For example, if Rate is calculated using months, NPer MUST also be calculated using
months.

 For all arguments, cash paid out (such as deposits to savings) is represented by negative
numbers; cash received (such as dividend checks) is represented by positive numbers.

6.1.2.6.1.3 IPmt

Function Declaration

 Function IPmt(Rate As Double, Per As Double,
 NPer As Double, PV As Double,
 Optional FV As Variant,
 Optional Due As Variant) As Double

Parameter Description

Rate Double data value specifying interest rate per period. For example, given a car loan at

an annual percentage rate (APR) of 10 percent and making monthly payments, the rate

per period is 0.1/12, or 0.0083.

Per Double data value specifying payment period in the range 1 through NPer.

NPer Double specifying total number of payment periods in the annuity. For example, if you

make monthly payments on a four-year car loan, your loan has a total of 4 * 12 (or 48)

payment periods.

Pv Double data value specifying present value, or value today, of a series of future

212 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

payments or receipts.

Fv Double data value specifying future value or cash balance desired after final payment

has been made. For example, the future value of a loan is $0 because that's its value

after the final payment. However, if someone wants to save $50,000 over 18 years for

their child's education, then $50,000 is the future value. If omitted, the data value 0.0 is

assumed.

Due Integer data value specifying when payments are due. Use the data value 0 if payments

are due at the end of the payment period, or use the data value 1 if payments are due at

the beginning of the period. If omitted, the data value 0 is assumed.

Runtime Semantics.

 Returns a Double specifying the interest payment for a given period of an annuity based on
periodic, fixed payments and a fixed interest rate.

 The Rate and NPer arguments MUST be calculated using payment periods expressed in the same
units. For example, if Rate is calculated using months, NPer MUST also be calculated using
months.

 For all arguments, cash paid out (such as deposits to savings) is represented by negative

numbers; cash received (such as dividend checks) is represented by positive numbers.

6.1.2.6.1.4 IRR

Function Declaration

 Function IRR(ValueArray() As Double,
 Optional Guess As Variant) As Double

Parameter Description

Values Array of Double data values specifying cash flow values. The array MUST contain at

least one negative value (a payment) and one positive value (a receipt).

Guess Double data value specifying estimated value that will be returned by IRR. If omitted,

Guess is the data value 0.1 (10 percent).

Runtime Semantics.

 Returns a Double data value specifying the internal rate of return for a series of periodic cash
flows (payments and receipts).

 The internal rate of return is the interest rate received for an investment consisting of payments

and receipts that occur at regular intervals.

213 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The IRR function uses the order of values within the array to interpret the order of payments and
receipts. The cash flow for each period doesn't have to be fixed, as it is for an annuity.

 IRR is calculated by iteration. Starting with the value of guess, IRR cycles through the calculation
until the result is accurate to within 0.00001 percent. If IRR can't find a result after 20 tries, it

fails.

6.1.2.6.1.5 MIRR

Function Declaration

 Function MIRR(ValueArray() As Double,
 Finance_Rate As Double,
 Reinvest_Rate As Double) As Double

Parameter Description

Values Array of Double data values specifying cash flow values. The array MUST

contain at least one negative value (a payment) and one positive value (a

receipt).

Finance_Rate Double data value specifying interest rate paid as the cost of financing.

Reinvest_Rate Double data value specifying interest rate received on gains from cash

reinvestment.

Runtime Semantics.

 Returns a Double data value specifying the modified internal rate of return for a series of periodic
cash flows (payments and receipts).

 The modified internal rate of return is the internal rate of return when payments and receipts are
financed at different rates. The MIRR function takes into account both the cost of the investment
(Finance_Rate) and the interest rate received on reinvestment of cash (Reinvest_Rate).

 The Finance_Rate and Reinvest_Rate arguments are percentages expressed as decimal values. For
example, 12 percent is expressed as 0.12.

 The MIRR function uses the order of values within the array to interpret the order of payments and
receipts.

6.1.2.6.1.6 NPer

Function Declaration

 Function NPer(Rate As Double, Pmt As Double, PV As Double,
 Optional FV As Variant,
 Optional Due As Variant) As Double

214 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Rate Double data value specifying interest rate per period. For example, given a

loan at an annual percentage rate (APR) of 10 percent and making monthly

payments, the rate per period is 0.1/12, or 0.0083.

Pmt Double data value specifying payment to be made each period.

Pv Double specifying present value, or value today, of a series of future

payments or receipts.

Fv Double data value specifying future value or cash balance desired after

final payment has been made. If omitted, the Double data value 0.0 is

assumed.

Due Integer data value specifying when payments are due. Use the data value

0 if payments are due at the end of the payment period, or use the data

value 1 if payments are due at the beginning of the period.

If omitted, the data value 0 is assumed.

Runtime Semantics.

 Returns a Double data value specifying the number of periods for an annuity based on periodic,
fixed payments and a fixed interest rate.

 For all arguments, cash paid out (such as deposits to savings) is represented by negative

numbers; cash received (such as dividend checks) is represented by positive numbers.

6.1.2.6.1.7 NPV

Function Declaration

 Function NPV(Rate As Double, ValueArray() As Double) As Double

Parameter Description

Rate Double data value specifying discount rate over the length of the

period, expressed as a decimal fraction.

Values Array of Double data values specifying cash flow values. The array

MUST contain at least one negative value (a payment) and one

positive value (a receipt).

Runtime Semantics.

 Returns a Double data value specifying the net present value of an investment based on a series
of periodic cash flows (payments and receipts) and a discount rate.

 The NPV function uses the order of values within the array to interpret the order of payments and
receipts.

 The NPV investment begins one period before the date of the first cash flow value and ends with

the last cash flow value in the array.

215 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The net present value calculation is based on future cash flows. If the first cash flow occurs at the
beginning of the first period, the first value MUST be added to the value returned by NPV and

MUST NOT be included in the cash flow values of Values().

 The NPV function is similar to the PV function (present value) except that the PV function allows

cash flows to begin either at the end or the beginning of a period. Unlike the variable NPV cash
flow values, PV cash flows MUST be fixed throughout the investment.

6.1.2.6.1.8 Pmt

Function Declaration

 Function Pmt(Rate As Double, NPer As Double, PV As Double,
 Optional FV As Variant,
 Optional Due As Variant) As Double

Parameter Description

Rate Double data value specifying interest rate per period as a decimal fraction.

NPer Integer data value specifying total number of payment periods in the

annuity.

Pv Double data value specifying present value (or lump sum) that a series of

payments to be paid in the future is worth now.

Fv Double data value specifying future value or cash balance desired after the

final payment has been made. If omitted, the data value 0.0 is assumed.

Due Integer data value specifying when payments are due. Use the data value 0

if payments are due at the end of the payment period, or use the data value1

if payments are due at the beginning of the period.

If omitted, the data value 0 is assumed.

Runtime Semantics.

 Returns a Double data value specifying the payment for an annuity based on periodic, fixed

payments and a fixed interest rate.

 The Rate and NPer arguments MUST be calculated using payment periods expressed in the same
units. For example, if Rate is calculated using months, NPer MUST also be calculated using
months.

 For all arguments, cash paid out (such as deposits to savings) is represented by negative
numbers; cash received (such as dividend checks) is represented by positive numbers.

6.1.2.6.1.9 PPmt

Function Declaration

 Function PPmt(Rate As Double, Per As Double,
 NPer As Double, PV As Double,
 Optional FV As Variant,

216 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Optional Due As Variant) As Double

Parameter Description

Rate Double data value specifying interest rate per period. For example, given a

loan at an annual percentage rate (APR) of 10 percent and making monthly

payments, the rate per period is 0.1/12, or 0.0083.

Per Integer data value specifying payment period in the range 1 through NPer.

NPer Integer data value specifying total number of payment periods in the

annuity. For example, if making monthly payments on a four-year loan, the

loan has a total of 4 * 12 (or 48) payment periods.

Pv Double data value specifying present value, or value today, of a series of

future payments or receipts.

Fv Double data value specifying future value or cash balance desired after the

final payment has been made. If omitted, the data value 0.0 is assumed.

Due Integer data value specifying when payments are due. Use the data value 0
if payments are due at the end of the payment period, or use the data value1
if payments are due at the beginning of the period.

If omitted, the data value 0 is assumed.

Runtime Semantics.

 Returns a Double data value specifying the principal payment for a given period of an annuity

based on periodic, fixed payments and a fixed interest rate. The Rate and NPer arguments MUST
be calculated using payment periods expressed in the same units. For example, if Rate is
calculated using months, NPer MUST also be calculated using months.

 For all arguments, cash paid out (such as deposits to savings) is represented by negative

numbers; cash received (such as dividend checks) is represented by positive numbers.

6.1.2.6.1.10 PV

Function Declaration

 Function PV(Rate As Double, NPer As Double, Pmt As Double,
 Optional FV As Variant,
 Optional Due As Variant) As Double

Parameter Description

Rate Double data value specifying interest rate per period. For example, given a

loan at an annual percentage rate (APR) of 10 percent and making monthly

payments, the rate per period is 0.1/12, or 0.0083.

217 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

NPer Integer data value specifying total number of payment periods in the

annuity.

Pmt Double data value specifying present value (or lump sum) that a series of

payments to be paid in the future is worth now.

Fv Double data value specifying future value or cash balance desired after the

final payment has been made.

Due Integer data value specifying when payments are due. Use the data value
0 if payments are due at the end of the payment period, or use the data
value 1 if payments are due at the beginning of the period.

If omitted, the data value 0 is assumed.

Runtime Semantics.

 Returns a Double data value specifying the present value of an annuity based on periodic, fixed
payments to be paid in the future and a fixed interest rate.

 The Rate and NPer arguments MUST be calculated using payment periods expressed in the same
units. For example, if Rate is calculated using months, NPer MUST also be calculated using
months.

 For all arguments, cash paid out (such as deposits to savings) is represented by negative
numbers; cash received (such as dividend checks) is represented by positive numbers.

6.1.2.6.1.11 Rate

Function Declaration

 Function Rate(NPer As Double, Pmt As Double, PV As Double,
 Optional FV As Variant,
 Optional Due As Variant,
 Optional Guess As Variant) As Double

Parameter Description

NPer Double data value specifying total number of payment periods in the annuity.

Pmt Double data value specifying payment to be made each period.

Pv Double data value specifying present value, or value today, of a series of future

payments or receipts.

Fv Double data value specifying future value or cash balance desired after the final

payment has been made. If omitted, the data value 0.0 is assumed.

Due Integer data value specifying when payments are due. Use the data value 0 if

payments are due at the end of the payment period, or use the data value1 if

payments are due at the beginning of the period. If omitted, the data value 0 is

assumed.

218 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Guess Double data value specifying the estimated value that will be returned by Rate. If

omitted, guess is the data value 0.1 (10 percent).

Runtime Semantics.

 Returns a Double data value specifying the interest rate per period for an annuity.

 For all arguments, cash paid out (such as deposits to savings) is represented by negative
numbers; cash received (such as dividend checks) is represented by positive numbers.

 Rate is calculated by iteration. Starting with the value of Guess, Rate cycles through the
calculation until the result is accurate to within 0.00001 percent. If Rate can't find a result after 20
tries, it fails.

6.1.2.6.1.12 SLN

Function Declaration

 Function SLN(Cost As Double, Salvage As Double,
 Life As Double) As Double

Parameter Description

Cost Double data value specifying initial cost of the asset.

Salvage Double data value specifying value of the asset at the end of its useful life.

Life Double data value specifying length of useful life of the asset.

Runtime Semantics.

 Returns a Double data value specifying the straight-line depreciation of an asset for a single
period.

 The depreciation period MUST be expressed in the same unit as the life argument. All arguments
MUST be positive numbers.

6.1.2.6.1.13 SYD

Function Declaration

 Function SYD(Cost As Double, Salvage As Double,
 Life As Double, Period As Double) As Double

219 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Cost Double data value specifying initial cost of the asset.

Salvage Double data value specifying value of the asset at the end of its useful life.

Life Double data value specifying length of useful life of the asset.

Period Double data value specifying period for which asset depreciation is calculated.

Runtime Semantics.

 Returns a Double data value specifying the sum-of-years' digits depreciation of an asset for a
specified period.

 The Life and Period arguments MUST be expressed in the same units. For example, if Life is given
in months, period MUST also be given in months. All arguments MUST be positive numbers.

6.1.2.7 Information

6.1.2.7.1 Public Functions

6.1.2.7.1.1 IMEStatus

Function Declaration

 Function IMEStatus() As VbIMEStatus

Runtime Semantics.

 Returns an Integer data value specifying the current implementation dependent Input Method
Editor (IME) mode.

6.1.2.7.1.2 IsArray

Function Declaration

 Function IsArray(Arg As Variant) As Boolean

Parameter Description

Arg Data value to test to see if it is an array.

Runtime Semantics.

 IsArray returns True if the data value of Arg is an array data value; otherwise, it returns False

220 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

6.1.2.7.1.3 IsDate

Function Declaration

 Function IsDate(Arg As Variant) As Boolean

Parameter Description

Arg Data value to test to see if it is a Date.

Runtime Semantics.

 Returns a Boolean value indicating whether Arg is a Date data value or a String data value that
can be Let-coerced to a Date data value.

6.1.2.7.1.4 IsEmpty

Function Declaration

 Function IsEmpty(Arg As Variant) As Boolean

Parameter Description

Arg Any data value.

Runtime Semantics.

 IsEmpty returns True if the data value of Arg is the data value Empty. Otherwise, it returns
False.

6.1.2.7.1.5 IsError

Function Declaration

 Function IsError(Arg As Variant) As Boolean

Parameter Description

Arg Any data value.

Runtime Semantics.

 IsError returns True if the data value of Arg is an Error data value. Otherwise, it returns False.

6.1.2.7.1.6 IsMissing

221 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Function Declaration

 Function IsMissing(Arg As Variant) As Boolean

Parameter Description

Arg Any data value.

Runtime Semantics.

 IsMissing returns True if the data value of Arg is the Missing data value. Otherwise, it returns
False.

 If IsMissing is used on a ParamArray argument, it returns False.

6.1.2.7.1.7 IsNull

Function Declaration

 Function IsNull(Arg As Variant) As Boolean

Parameter Description

Arg Any data value.

Runtime Semantics.

 IsNull returns True if the data value of Arg is the Null data value. Otherwise, it returns False.

6.1.2.7.1.8 IsNumeric

Function Declaration

 Function IsNumeric(Arg As Variant) As Boolean

Parameter Description

Arg Any data value.

Runtime Semantics.

222 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 IsNumeric returns True if the value type of the data value of Arg is any of Byte, Currency,
Decimal, Double, Integer, Long, LongLong, Single, or Boolean. Otherwise, it returns False.

6.1.2.7.1.9 IsObject

Function Declaration

 Function IsObject(Arg As Variant) As Boolean

Parameter Description

Arg Any data value.

Runtime Semantics.

 Returns True if the value type of the data value of Arg is Object Reference. Otherwise, it returns
False.

6.1.2.7.1.10 QBColor

Function Declaration

 Function QBColor(Color As Integer) As Long

Parameter Description

Color Integer data value in the range 0-15.

Runtime Semantics.

 If the data value of Color is outside of the range 0-15 then Error 5 ("Invalid procedure call or
argument") is raised.

 The color argument represents color values used by earlier versions of Visual Basic. Starting with
the least-significant byte, the returned value specifies the red, green, and blue values used to set
the appropriate color in the RGB system used by Visual Basic for Applications.

 If the return value is specified by the following table:

Color data value Returned data value Common name of color

0 0 Black

1 &H800000 Blue

2 &H8000 Green

3 &H808000 Cyan

223 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Color data value Returned data value Common name of color

4 &H80 Red

5 &H800080 Magenta

6 &H8080 Yellow

7 &HC0C0C0 White

8 &H808080 Gray

9 &HFF0000 Light Blue

10 &HFF00 Light Green

11 &HFFFF00 Light Cyan

12 &HFF Light Red

13 &HFF00FF Light Magenta

14 &HFFFF Light Yellow

15 &HFFFFFF Bright White

6.1.2.7.1.11 RGB

Function Declaration

 Function RGB(Red As Integer, Green As Integer,
 Blue As Integer) As Long

Parameter Description

Red Integer data value in the range 0-255, inclusive, that represents the red component of the

color.

Green Integer data value in the range 0-255, inclusive, that represents the green component of

the color.

Blue Integer data value in the range 0-255, inclusive, that represents the blue component of

the color.

Runtime Semantics.

 Returns the Long data value:

 (max(Blue,255)*65536)+(max(Green,255)*256)+max(Red,255).

6.1.2.7.1.12 TypeName

Function Declaration

224 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Function TypeName(Arg As Variant) As String

Parameter Description

Arg Any data value.

Runtime Semantics.

 Returns a String that provides information about a variable.

 The string returned by TypeName can be any one of the following:

Value type of data value of Arg String data value returned

An object whose type is Object The name of the object type

Byte "Byte"

Integer "Integer"

Long "Long"

LongLong "LongLong"

Single "Single"

Double "Double"

Currency "Currency"

Decimal "Decimal"

Date "Date"

String "String"

Boolean "Boolean"

An error value or Missing "Error"

Empty "Empty"

Null "Null"

Any Object Reference except Nothing "Object"

An object whose type is unknown "Unknown"

Nothing "Nothing"

 If Arg is an array, the returned string can be any one of the possible returned strings (or Variant)
with empty parentheses appended. For example, if Arg is an array of Integer, TypeName returns

"Integer()". If Arg is an array of Variant values, TypeName returns "Variant()".

6.1.2.7.1.13 VarType

Function Declaration

225 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Function VarType(VarName As Variant) As VbVarType

Parameter Description

VarName Any data value.

Runtime Semantics.

 Returns an Integer indicating the subtype of a variable.

 The required VarName argument is a Variant containing any variable except a variable of a user-
defined type.

 Returns a value from the following table based on VarName’s value type:

VarName’s value type Value

Any Array type 8192 + VarType of element’s type

Boolean 11

Byte 17

Currency 6

Date 7

Decimal 14

Double 5

Empty 0

Error or Missing 10

Integer 2

Long 3

LongLong (defined only on implementations that support a

LongLong value type)

20

Null 1

Object reference 9

Single 4

String 8

Any UDT 36 when the declared type is Variant.

0 when the declared type is a UDT.

Variant (as an element type of an array) 12

An implementation-defined value that can be stored in a Variant

but that has no value in VBA

13

226 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

6.1.2.8 Interaction

6.1.2.8.1 Public Functions

6.1.2.8.1.1 CallByName

Function Declaration

 Function CallByName(Object As Object, ProcName As String, CallType As VbCallType, Args() As
Variant)

Parameter Description

Object Object containing the object on which the function will be executed.

ProcName String containing the name of a property or method of the object.

CallType A constant of type vbCallType representing the type of procedure being called.

Args() Variant array containing arguments to be passed to the method.

Runtime Semantics.

 The CallByName function is used to get or set a property, or invoke a method at run time using a
string name, based on the value of the CallType argument:

Constant Value Action

vbGet 2 Property Get

vbLet 4 Property Let

vbMethod 1 Method invocation

vbSet 8 Property Set

 If CallType has the value vbSet, the last argument in the Args array represents the value to set.

6.1.2.8.1.2 Choose

Function Declaration

 Function Choose(Index As Single, ParamArray Choice() As Variant)

Parameter Description

Index Numeric expression that results in a value between the data

value 1 and the number of available choices.

Choice A ParamArray argument containing all the functions

arguments starting with the second argument.

227 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Runtime Semantics.

 Returns a value from its list of arguments.

 Choose returns a value from the list of choices based on the value of index. If Index is n, Choose
returns the n-th element of the Choice ParamArray.

 The Choose function returns the data value Null if Index is less than 1 or greater than the number
of choices listed.

 If Index argument is Let-coerced to declared type Integer before being used to select

6.1.2.8.1.3 Command

Function Declaration

 Function Command() As Variant
 Function Command$() As String

Runtime Semantics.

 Returns the argument portion of the implementation dependent command used to initiate
execution of the currently executing VBA program.

 The runtime semantics of Command$ are identical to those of Command with the exception that
the declared type of the return value is String rather than Variant.

6.1.2.8.1.4 CreateObject

Function Declaration

 Function CreateObject(Class As String, Optional ServerName
 As String)

Parameter Description

Class A String data value, containing the application name and class of the object to

create.

ServerName A String data value, containing the name of the network server where the object

will be created. If ServerName is an empty string (""), the local machine is used.

Runtime Semantics.

 Creates and returns an object reference to an externally provided and possibly remote object.

 The class argument uses the Function Declaration AppName.ObjectType and has these parts:

228 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

AppName The name of the application providing the object. The form and interpretation of an

AppName is implementation defined.

ObjectType The name of the type or class of object to create. The form and interpretation of an

ObjectType name is implementation defined.

 The data value returned by CreateObject is an object reference and can be used in any context
where an object reference is expected.

 If remote objects are supported it is via an implementation defined mechanism.

 The format and interpretation of the ServerName argument is implementation defined but the
intent is to identify a specific remote computer that that is responsible for providing a reference to
a remote object.

 An implementation can provide implementation defined mechanisms for designating single

instance classes in which case only one instance of such a class is created, no matter how many
times CreateObject is call requesting an instance of such a class.

6.1.2.8.1.5 DoEvents

Function Declaration

 Function DoEvents() As Integer

Runtime Semantics.

 Yields execution so that the operating system can process externally generated events.

 The DoEvents function returns an Integer with an implementation defined meaning.

 DoEvents passes control to the operating system. Control is returned after the operating system

has finished processing any events in its queue and all keys in the SendKeys queue have been
sent.

6.1.2.8.1.6 Environ / Environ$

Function Declaration

 Function Environ(Key As Variant) As Variant
 Function Environ$(Key As Variant) As Variant

Parameter Description

Key Either a String or a data value that is Let-coercible to Long

Runtime Semantics.

 Returns the String associated with an implementation-defined environment variable.

229 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If Key is a String and is not the name of a defined environment variable, a zero-length string ("")
is returned. Otherwise, Environ returns the string value of the environment variable whose name

is the value of Key.

 If Key is numeric the string occupying that numeric position in the environment-string table is

returned. The first value in the table starts at position 1. In this case, Environ returns a string of
the form "name=value" where name is the name of the environment variable and value is its
value. If there is no environment string in the specified position, Environ returns a zero-length
string.

 The runtime semantics of Environ$ are identical to those of Environ with the exception that the
declared type of the return value is String rather than Variant.

6.1.2.8.1.7 GetAllSettings

Function Declaration

 Function GetAllSettings(AppName As String, Section As String)

Parameter Description

AppName String expression containing the name of the application or project whose key settings

are requested.

Section String expression containing the name of the section whose key settings are requested.

Runtime Semantics.

 If either AppName or Section does not exist in the settings store, return the data value Empty.

 Returns a two-dimensional array of strings containing all the key settings in the specified section

and their corresponding values. The lower bound of each dimension is 1. The upper bound of the
first dimension is the number of key/value pair. The upper bound of the second dimension is 2.

6.1.2.8.1.8 GetAttr

Function Declaration

 Function GetAttr(PathName As String) As VbFileAttribute

Parameter Description

PathName Expression that specifies a file name; can include

directory or folder, and drive.

Runtime Semantics.

 The argument MUST be a valid implementation defined external file identifier.

 Returns an Integer representing attributes of the file, directory, or folder identified by PathName.

230 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The value returned by GetAttr is composed of the sum of the following of the Enum elements of
the Enum VBA.VbFileAttribute and have the following meanings:

Constant Value Description

vbNormal 0 Normal.

vbReadOnly 1 Read-only.

vbHidden 2 Hidden.

vbSystem 4 System file.

vbDirectory 16 Directory or folder.

vbArchive 32 File has changed since last backup.

6.1.2.8.1.9 GetObject

Function Declaration

 Function GetObject(Optional PathName As Variant, Optional Class As Variant)

Parameter Description

Class String, containing the application name and class of the object to create.

PathName String, containing the name of the network server where the object will be

created. If PathName is an empty string (""), the local machine is used.

Runtime Semantics.

 Returns an object reference to an externally provided and possibly remote object.

 The Class argument uses the syntax AppName.ObjectType and has these parts:

Parameter Description

AppName The name of the application providing the object. The form and interpretation

of an AppName is implementation defined.

ObjectType The name of the type or class of object to create. The form and interpretation

of an ObjectType name is implementation defined.

 Returns an object reference to an externally provided and possibly remote object.

 If an object has registered itself as a single-instance object, only one instance of the object is
created, no matter how many times CreateObject is executed. With a single-instance object,
GetObject always returns the same instance when called with the zero-length string ("") syntax,

231 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

and it causes an error if the pathname argument is omitted. You can't use GetObject to obtain a
reference to a class created with Visual Basic.

6.1.2.8.1.10 GetSetting

Function Declaration

 Function GetSetting(AppName As String, Section As String, Key As String, Optional Default As
Variant) As String

Parameter Description

AppName String expression containing the name of the application or project whose key setting is

requested.

Section String expression containing the name of the section where the key setting is found.

Key String expression containing the name of the key setting to return.

Default Variant expression containing the value to return if no value is set in the key setting. If

omitted, default is assumed to be a zero-length string ("").

Runtime Semantics.

 Returns a key setting value from an application's entry in an implementation dependent

application registry.

 If any of the items named in the GetSetting arguments do not exist, GetSetting returns the value
of Default.

6.1.2.8.1.11 IIf

Function Declaration

 Function IIf(Expression As Variant, TruePart As Variant, FalsePart As Variant) As Variant

Parameter Description

Expression Variant containing the expression to be evaluated.

TruePart Variant, containing the value to be returned if Expression evaluates to the data value

True.

FalsePart Variant, containing the value to be returned if Expression evaluates to the data value

False.

Runtime Semantics.

 Returns one of two parts, depending on the evaluation of an expression.

232 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 IIf always evaluates both TruePart (first) and FalsePart, even though it returns only one of them.
For example, if evaluating FalsePart results in a division by zero error, an error occurs even if

Expression is True.

6.1.2.8.1.12 InputBox

Function Declaration

 Function InputBox(Prompt As Variant, Optional Title As
 Variant, Optional Default As Variant, Optional XPos As
 Variant, Optional YPos As Variant, Optional HelpFile As
 Variant, Optional Context As Variant) As String

Parameter Description

Prompt String data value to be displayed as the message in the dialog box. The maximum

length of prompt is approximately 1024 characters, depending on the width of the

characters used. If prompt consists of more than one line, the lines can be separated

using a carriage return character (Chr(13)), a linefeed character (Chr(10)), or

carriage return + linefeed character combination (Chr(13) & Chr(10)) between each

line.

Title String to be displayed in the title bar of the dialog box. If Title is omitted, the project

name(4.1) is placed in the title bar.

Default String to be displayed in the text box as the default response if no other input is

provided. If Default is omitted, the text box is displayed empty.

XPos Long that specifies, in twips, the horizontal distance of the left edge of the dialog box

from the left edge of the screen. If XPos is omitted, the dialog box is horizontally

centered.

YPos Long that specifies, in twips, the vertical distance of the upper edge of the dialog box

from the top of the screen. If YPos is omitted, the dialog box is vertically positioned

approximately one-third of the way down the screen.

HelpFile String that identifies the Help file to use to provide context-sensitive Help for the

dialog box. If HelpFile is provided, Context MUST also be provided.

Context Long that is the Help context number assigned to the appropriate Help topic by the

Help author. If Context is provided, HelpFile MUST also be provided.

Runtime Semantics.

 Displays a prompt in a dialog box, waits for the user to input text or click a button, and returns a

String containing the contents of the text box.

 When both HelpFile and Context are provided, the user can press F1 to view the Help topic
corresponding to the context. Some host applications can also automatically add a Help button to
the dialog box. If the user clicks OK or presses ENTER , the InputBox function returns whatever is
in the text box. If the user clicks Cancel, the function returns a zero-length string ("").

233 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Note: to specify more than the first named argument, you MUST use InputBox in an expression.

To omit some positional arguments, you MUST include the corresponding comma delimiter.

6.1.2.8.1.13 MsgBox

Function Declaration

 Function MsgBox(Prompt As Variant, Optional Buttons As
 VbMsgBoxStyle = vbOKOnly, Optional Title As Variant,
 Optional HelpFile As Variant, Optional Context As Variant) As VbMsgBoxResult

Parameter Description

Prompt String to be displayed as the message in the dialog box. The maximum length of

prompt is approximately 1024 characters, depending on the width of the characters

used. If prompt consists of more than one line, the lines can be separated using a

carriage return character (Chr(13)), a linefeed character (Chr(10)), or carriage return

+ linefeed character combination (Chr(13) & Chr(10)) between each line.

Buttons Numeric expression that is the sum of values specifying the number and type of

buttons to display, the icon style to use, the identity of the default button, and the

modality of the message box. If omitted, the default value for Buttons is 0.

Title String to be displayed in the title bar of the dialog box. If Title is omitted, the project

name (section 4.1) is placed in the title bar.

HelpFile String that identifies the Help file to use to provide context-sensitive Help for the

dialog box. If HelpFile is provided, Context MUST also be provided.

Context Long that is the Help context number assigned to the appropriate Help topic by the

Help author. If Context is provided, HelpFile MUST also be provided.

Runtime Semantics.

 Displays a message in a dialog box, waits for the user to click a button, and returns an Integer
indicating which button the user clicked.

 The Buttons argument settings are:

Constant Value Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

234 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Constant Value Description

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

vbDefaultButton4 768 Fourth button is default.

vbApplicationModal 0 Application modal; the user MUST respond to the

message box before continuing work in the current

application.

vbSystemModal 4096 System modal; all applications are suspended until

the user responds to the message box.

vbMsgBoxHelpButton 16384 Adds Help button to the message box

VbMsgBoxSetForeground 65536 Specifies the message box window as the

foreground window

vbMsgBoxRight 524288 Text is right aligned

vbMsgBoxRtlReading 1048576 Specifies text SHOULD appear as right-to-left

reading on Hebrew and Arabic systems

 The first group of values (05) describes the number and type of buttons displayed in the dialog
box; the second group (16, 32, 48, 64) describes the icon style; the third group (0, 256, 512)
determines which button is the default; and the fourth group (0, 4096) determines the modality of
the message box. When adding numbers to create a final value for the buttons argument, use only
one number from each group.

 The MsgBox function can return one of the following values:

Constant Value Description

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

235 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Constant Value Description

vbYes 6 Yes

vbNo 7 No

 When both HelpFile and Context are provided, the user can press F1 to view the Help topic
corresponding to the context. Some host applications, for example, Microsoft Excel 2010, also
automatically add a Help button to the dialog box.

 If the dialog box displays a Cancel button, pressing the ESC key has the same effect as clicking
Cancel. If the dialog box contains a Help button, context-sensitive Help is provided for the dialog
box. However, no value is returned until one of the other buttons is clicked.

 Note: to specify more than the first named argument, you MUST use MsgBox in an expression.

To omit some positional arguments, you MUST include the corresponding comma delimiter.

6.1.2.8.1.14 Partition

Function Declaration

 Function Partition(Number As Variant, Start As Variant, Stop As Variant, Interval As Variant)
As Variant

Parameter Description

Number Long to be evaluated against the ranges.

Start Long that is the start of the overall range of numbers. The number can't be

less than 0.

Stop Long that is the end of the overall range of numbers. The number can't be

equal to or less than Start.

Interval Long that is the interval of each range. The number can’t be less than 1.

Runtime Semantics.

 Returns a String indicating where a number occurs within a calculated series of ranges.

 The Partition function identifies the particular range in which Number falls and returns a String
describing that range. The Partition function is most useful in queries. You can create a select

query that shows how many orders fall within various ranges, for example, order values from 1 to

1000, 1001 to 2000, and so on.

 The following table shows how the ranges are determined using three sets of Start, Stop, and
Interval parts. The First Range and Last Range columns show what Partition returns. The ranges
are represented by lowervalue:uppervalue, where the low end (lowervalue) of the range is
separated from the high end (uppervalue) of the range with a colon (:).

236 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Start Stop Interval Before First First Range Last Range After Last

0 99 5 " :-1" " 0: 4" " 95: 99" " 100: "

20 199 10 " : 19" " 20: 29" " 190: 199" " 200: "

100 1010 20 " : 99" " 100: 119" " 1000: 1010" " 1011: "

 In the preceding table, the third line shows the result when Start and Stop define a set of numbers
that can't be evenly divided by Interval. The last range extends to Stop (11 numbers) even though
Interval is 20.

 If necessary, Partition returns a range with enough leading spaces so that there are the same
number of characters to the left and right of the colon as there are characters in Stop, plus one.
This ensures that if you use Partition with other numbers, the resulting text will be handled
properly during any subsequent sort operation.

 If Interval is 1, the range is number:number, regardless of the Start and Stop arguments. For

example, if Interval is 1, Number is 100 and Stop is 1000, Partition returns " 100: 100".

 If any of the parts is Null, Partition returns the data value Null.

6.1.2.8.1.15 Shell

Function Declaration

 Function Shell(PathName As Variant, Optional WindowStyle As VbAppWinStyle = vbMinimizedFocus)
As Double

Parameter Description

PathName String, containing the name of the program to

execute and any required arguments or command-

line switches; can include directory or folder and

drive.

WindowStyle Integer corresponding to the style of the window in

which the program is to be run. If WindowStyle is

omitted, the program is started minimized, with

focus.

Runtime Semantics.

 Runs an executable program and returns a Double representing the implementation-defined
program's task ID if successful, otherwise it returns the data value 0.

 The WindowStyle parameter accepts these values:

Constant Value Description

vbHide 0 Window is hidden and focus is passed to the hidden

window.

237 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Constant Value Description

vbNormalFocus 1 Window has focus and is restored to its original size

and position.

vbMinimizedFocus 2 Window is displayed as an icon with focus.

vbMaximizedFocus 3 Window is maximized with focus.

vbNormalNoFocus 4 Window is restored to its most recent size and

position. The currently active window remains

active.

vbMinimizedNoFocus 6 Window is displayed as an icon. The currently active

window remains active.

 If the Shell function successfully executes the named file, it returns the task ID of the started
program. The task ID is an implementation-defined unique number that identifies the running
program. If the Shell function can't start the named program, an error occurs.

 Note: by default, the Shell function runs other programs asynchronously. This means that a
program started with Shell might not finish executing before the statements following the Shell

function are executed.

6.1.2.8.1.16 Switch

Function Declaration

 Function Switch(ParamArray VarExpr() As Variant) As Variant

Parameter Description

VarExpr Array of type Variant containing expressions to be evaluated.

Runtime Semantics.

 Evaluates a list of expressions and returns a Variant value or an expression associated with the
first expression in the list that evaluates to the data value True.

 The Switch function argument list consists of pairs of expressions and values. The expressions are
evaluated from left to right, and the value associated with the first expression to evaluate to True

is returned. If the parts aren't properly paired, a run-time error occurs. For example, if VarExpr(0)

evaluates to the data value True, Switch returns VarExpr(1). If VarExpr(0) evaluates to the data
value False, but VarExpr(2) evaluates to the data value True, Switch returns VarExpr(3), and so
on.

 Switch returns a Null value if:

 None of the expressions evaluates to the data value True.

 The first True expression has a corresponding value that is the data value Null.

238 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Switch evaluates all of the expressions, even though it returns only one of them. For example, if
the evaluation of any expression results in a division by zero error, an error occurs.

6.1.2.8.2 Public Subroutines

6.1.2.8.2.1 AppActivate

Function Declaration

 Sub AppActivate(Title As Variant, Optional Wait As Variant)

Parameter Description

Title String specifying the title in the title bar of the application window to activate. The task

ID returned by the Shell function can be used in place of title to activate an application.

Wait Boolean value specifying whether the calling application has the focus before activating

another. If False (default), the specified application is immediately activated, even if the

calling application does not have the focus. If True, the calling application waits until it

has the focus, then activates the specified application.

Runtime Semantics.

 Activates an application window.

 The AppActivate statement changes the focus to the named application or window but does not

affect whether it is maximized or minimized. Focus moves from the activated application window
when the user takes some action to change the focus or close the window. Use the Shell function
to start an application and set the window style.

 In determining which application to activate, Title is compared to the title string of each running
application. If there is no exact match, any application whose title string begins with Title is
activated. If there is more than one instance of the application named by Title, the window that is
activated is implementation-defined.

6.1.2.8.2.2 Beep

Function Declaration

 Sub Beep()

Runtime Semantics.

 Sounds a tone through the computer's speaker.

 The frequency and duration of the beep depend on hardware and system software, and vary
among computers.

6.1.2.8.2.3 DeleteSetting

239 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Function Declaration

 Sub DeleteSetting(AppName As String, Optional Section As String, Optional Key As String)

Parameter Description

AppName String expression containing the name of the application or project to which the section

or key setting applies.

Section String expression containing the name of the section where the key setting is being

deleted. If only AppName and Section are provided, the specified section is deleted

along with all related key settings.

Key String expression containing the name of the key setting being deleted.

Runtime Semantics.

 Deletes a section or key setting from an application's entry in an implementation dependent
application registry.

 If all arguments are provided, the specified setting is deleted. A run-time error occurs if you
attempt to use the DeleteSetting statement on a non-existent Section or Key setting.

6.1.2.8.2.4 SaveSetting

Function Declaration

 Sub SaveSetting(AppName As String, Section As String, Key
 As String, Setting As String)

Parameter Description

AppName String expression containing the name of the application or project to which the setting

applies.

Section String expression containing the name of the section where the key setting is being

saved.

Key String expression containing the name of the key setting being saved.

Setting String expression containing the value that key is being set to.

Runtime Semantics.

 Saves or creates an application entry in the application's entry in the implementation dependent
application registry.

 An error occurs if the key setting can’t be saved for any reason.

6.1.2.8.2.5 SendKeys

Function Declaration

240 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Sub SendKeys(String As String, Optional Wait As Variant)

Parameter Description

String String expression specifying the keystrokes to send.

Wait Boolean containing a value specifying the wait mode. If it evaluates to the data value

False (default), control is returned to the procedure immediately after the keys are

sent. If it evaluates to the data value True, keystrokes MUST be processed before

control is returned to the procedure.

Runtime Semantics.

 Sends one or more keystrokes to the active window as if typed at the keyboard.

 Each key is represented by one or more characters. To specify a single keyboard character, use
the character itself. For example, to represent the letter A, use

"A"

for String. To represent more than one character, append each additional character to the

one preceding it. To represent the letters A, B, and C, use

"ABC"

 for String.

The plus sign (+), caret (^), percent sign (%), tilde (~), and parentheses () have special

meanings to SendKeys. To specify one of these characters, enclose it within braces (

{}

). For example, to specify the plus sign, use

{+}

Brackets ([]) have no special meaning to SendKeys, but you MUST enclose them in braces.

In other applications, brackets do have a special meaning that can be significant when

dynamic data exchange (DDE) occurs. To specify brace characters, use

{{}

 and

{}}

To specify characters that aren't displayed when you press a key, such as ENTER or TAB,

and keys that represent actions rather than characters, use the codes shown in the

following table:

Key Code

BACKSPACE {BACKSPACE}, {BS}, or {BKSP}

BREAK {BREAK}

CAPS LOCK {CAPSLOCK}

241 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Key Code

DEL or DELETE {DELETE} or {DEL}

DOWN ARROW {DOWN}

END {END}

ENTER {ENTER}or ~

ESC {ESC}

HELP {HELP}

HOME {HOME}

INS or INSERT {INSERT} or {INS}

LEFT ARROW {LEFT}

NUM LOCK {NUMLOCK}

PAGE DOWN {PGDN}

PAGE UP {PGUP}

PRINT SCREEN {PRTSC}

RIGHT ARROW {RIGHT}

SCROLL LOCK {SCROLLLOCK}

TAB {TAB}

UP ARROW {UP}

F1 {F1}

F2 {F2}

F3 {F3}

F4 {F4}

F5 {F5}

F6 {F6}

F7 {F7}

F8 {F8}

F9 {F9}

F10 {F10}

F11 {F11}

F12 {F12}

F13 {F13}

 To specify keys combined with any combination of the SHIFT, CTRL, and ALT keys, precede the
key code with one or more of the following codes:

Key Code

SHIFT +

242 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Key Code

CTRL ^

ALT %

 To specify that any combination of SHIFT, CTRL, and ALT SHOULD be held down while several
other keys are pressed, enclose the code for those keys in parentheses. For example, to specify to
hold down SHIFT while E and C are pressed, use "+(EC)". To specify to hold down SHIFT while E is
pressed, followed by C without SHIFT, use "+EC".

 To specify repeating keys, use the form {key number}. You MUST put a space between key and
number. For example, {LEFT 42} means press the LEFT ARROW key 42 times; {h 10} means
press H 10 times.

6.1.2.9 KeyCodeConstants

Constant Value Description

vbKeyLButton 1 Left mouse button

vbKeyRButton 2 Right mouse button

vbKeyCancel 3 CANCEL key

vbKeyMButton 4 Middle mouse button

vbKeyBack 8 BACKSPACE key

vbKeyTab 9 TAB key

vbKeyClear 12 CLEAR key

vbKeyReturn 13 ENTER key

vbKeyShift 16 SHIFT key

vbKeyControl 17 CTRL key

vbKeyMenu 18 MENU key

vbKeyPause 19 PAUSE key

vbKeyCapital 20 CAPS LOCK key

vbKeyEscape 27 ESC key

vbKeySpace 32 SPACEBAR key

vbKeyPageUp 33 PAGE UP key

vbKeyPageDown 34 PAGE DOWN key

vbKeyEnd 35 END key

vbKeyHome 36 HOME key

vbKeyLeft 37 LEFT ARROW key

vbKeyUp 38 UP ARROW key

vbKeyRight 39 RIGHT ARROW key

vbKeyDown 40 DOWN ARROW key

243 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Constant Value Description

vbKeySelect 41 SELECT key

vbKeyPrint 42 PRINT SCREEN key

vbKeyExecute 43 EXECUTE key

vbKeySnapshot 44 SNAPSHOT key

vbKeyInsert 45 INS key

vbKeyDelete 46 DEL key

vbKeyHelp 47 HELP key

vbKeyNumlock 144 NUM LOCK key

vbKeyA 65 A key

vbKeyB 66 B key

vbKeyC 67 C key

vbKeyD 68 D key

vbKeyE 69 E key

vbKeyF 70 F key

vbKeyG 71 G key

vbKeyH 72 H key

vbKeyI 73 I key

vbKeyJ 74 J key

vbKeyK 75 K key

vbKeyL 76 L key

vbKeyM 77 M key

vbKeyN 78 N key

vbKeyO 79 O key

vbKeyP 80 P key

vbKeyQ 81 Q key

vbKeyR 82 R key

vbKeyS 83 S key

vbKeyT 84 T key

vbKeyU 85 U key

vbKeyV 86 V key

vbKeyW 87 W key

vbKeyX 88 X key

vbKeyY 89 Y key

vbKeyZ 90 Z key

vbKey0 48 0 key

244 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Constant Value Description

vbKey1 49 1 key

vbKey2 50 2 key

vbKey3 51 3 key

vbKey4 52 4 key

vbKey5 53 5 key

vbKey6 54 6 key

vbKey7 55 7 key

vbKey8 56 8 key

vbKey9 57 9 key

vbKeyNumpad0 96 Numpad 0 key

vbKeyNumpad1 97 Numpad 1 key

vbKeyNumpad2 98 Numpad 2 key

vbKeyNumpad3 99 Numpad 3 key

vbKeyNumpad4 100 Numpad 4 key

vbKeyNumpad5 101 Numpad 5 key

vbKeyNumpad6 102 Numpad 6 key

vbKeyNumpad7 103 Numpad 7 key

vbKeyNumpad8 104 Numpad 8 key

vbKeyNumpad9 105 Numpad 9 key

vbKeyMultiply 106 Numpad MULTIPLICATION SIGN (*) key

vbKeyAdd 107 Numpad PLUS SIGN (+) key

vbKeySeparator 108 Numpad ENTER (keypad) key

vbKeySubtract 109 Numpad MINUS SIGN (-) key

vbKeyDecimal 110 Numpad DECIMAL POINT(.) key

vbKeyDivide 111 Numpad DIVISION SIGN (/) key

vbKeyF1 112 F1 key

vbKeyF2 113 F2 key

vbKeyF3 114 F3 key

vbKeyF4 115 F4 key

vbKeyF5 116 F5 key

vbKeyF6 117 F6 key

vbKeyF7 118 F7 key

vbKeyF8 119 F8 key

vbKeyF9 120 F9 key

vbKeyF10 121 F10 key

245 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Constant Value Description

vbKeyF11 122 F11 key

vbKeyF12 123 F12 key

vbKeyF13 124 F13 key

vbKeyF14 125 F14 key

vbKeyF15 126 F15 key

vbKeyF16 127 F16 key

6.1.2.10 Math

6.1.2.10.1 Public Functions

6.1.2.10.1.1 Abs

Function Declaration

 Function Abs(Number As Variant) As Variant

Parameter Description

Number Any data value.

Runtime Semantics.

 If Number is the data value Null, returns Null.

 If Number is the data value Empty, returns the Integer data value 0.

 If Number is of a numeric value type, returns a value of the same value type specifying the
absolute value of a number.

 Otherwise, the data value of Number is Let-coerced to Double and the absolute value of that data
value is returned.

6.1.2.10.1.2 Atn

Function Declaration

 Function Atn(Number As Double) As Double

Parameter Description

Number Double containing any valid numeric expression.

246 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Runtime Semantics.

 Returns a Double specifying the arctangent of a number.

 The Atn function takes the ratio of two sides of a right triangle (Number) and returns the
corresponding angle in radians. The ratio is the length of the side opposite the angle divided by

the length of the side adjacent to the angle.

 The range of the result is -pi/2 to pi/2 radians.

6.1.2.10.1.3 Cos

Function Declaration

 Function Cos(Number As Double) As Double

Parameter Description

Number Double containing any valid numeric expression that

expresses an angle in radians.

Runtime Semantics.

 Returns a Double specifying the cosine of an angle.

 The Cos function takes an angle and returns the ratio of two sides of a right triangle. The ratio is
the length of the side adjacent to the angle divided by the length of the hypotenuse. The result
lies in the range -1 to 1.

6.1.2.10.1.4 Exp

Function Declaration

 Function Exp(Number As Double) As Double

Parameter Description

Number Double containing any valid numeric expression.

Runtime Semantics.

 Returns a Double specifying e (the base of natural logarithms) raised to a power.

 If the value of Number exceeds 709.782712893, an error occurs. The constant e is approximately
2.718282.

6.1.2.10.1.5 Log

Function Declaration

247 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Function Log(Number As Double) As Double

Parameter Description

Number Double containing any valid numeric expression

greater than zero.

Runtime Semantics.

 Returns a Double specifying the natural logarithm of a number.

 The natural logarithm is the logarithm to the base e. The constant e is approximately 2.718282.

6.1.2.10.1.6 Rnd

Function Declaration

 Function Rnd(Optional Number As Variant) As Single

Parameter Description

Number Single containing any valid numeric expression.

Runtime Semantics.

 Returns a Single containing a random number, according to the following table:

If number is Rnd generates

Less than zero The same number every time, using Number as the

seed.

Greater than zero The next random number in the sequence.

Equal to zero The most recently generated number.

Not supplied The next random number in the sequence.

 The Rnd function returns a value less than 1 but greater than or equal to zero.

 The value of Number determines how Rnd generates a random number:

o For any given initial seed, the same number sequence is generated because each
successive call to the Rnd function uses the previous number as a seed for the next
number in the sequence.

 Before calling Rnd, use the Randomize statement without an argument to initialize the random-
number generator with a seed based on the system timer.

 To produce random integers in a given range, use this formula:

Int((upperbound - lowerbound + 1) * Rnd + lowerbound)

248 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Here, upperbound is the highest number in the range, and lowerbound is the lowest number in
the range.

 An implementation is only required to repeat sequences of random numbers when Rnd is called
with a negative argument before calling Randomize with a numeric argument. Using Randomize

without calling Rnd in such a way yields implementation-defined results.

 The Rnd function necessarily generates numbers in a predictable sequence, and therefore is not
required to use cryptographically-random number generators.

6.1.2.10.1.7 Round

Function Declaration

 Function Round(Number As Variant, Optional
 NumDigitsAfterDecimal As Long) As Variant

Parameter Description

Number Variant containing the numeric expression being

rounded.

NumDigitsAfterDecimal Long indicating how many places to the right of the

decimal are included in the rounding. If omitted,

integers are returned by the Round function.

Runtime Semantics.

 Returns a number rounded to a specified number of decimal places.

6.1.2.10.1.8 Sgn

Function Declaration

 Function Sgn(Number As Variant) As Variant

Parameter Description

Number Double containing any valid numeric expression.

Runtime Semantics.

 Returns an Integer indicating the sign of a number, according to the following table:

If number is Sgn returns

Greater than zero 1

Equal to zero 0

249 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

If number is Sgn returns

Less than zero -1

 The sign of the number argument determines the return value of the Sgn function.

6.1.2.10.1.9 Sin

Function Declaration

 Function Sin(Number As Double) As Double

Parameter Description

Number Double containing any valid numeric expression that

expresses an angle in radians.

Runtime Semantics.

 Returns a Double specifying the sine of an angle.

 The Sin function takes an angle and returns the ratio of two sides of a right triangle. The ratio is
the length of the side opposite the angle divided by the length of the hypotenuse.

 The result lies in the range -1 to 1.

6.1.2.10.1.10 Sqr

Function Declaration

 Function Sqr(Number As Double) As Double

Parameter Description

Number Double containing any valid numeric expression

greater than zero.

Runtime Semantics.

 Returns a Double specifying the square root of a number.

6.1.2.10.1.11 Tan

Function Declaration

 Function Tan(Number As Double) As Double

250 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Number Double containing any valid numeric expression that

expresses an angle in radians.

Runtime Semantics.

 Returns a Double specifying the tangent of an angle.

 Tan takes an angle and returns the ratio of two sides of a right triangle. The ratio is the length of

the side opposite the angle divided by the length of the side adjacent to the angle.

6.1.2.10.2 Public Subroutines

6.1.2.10.2.1 Randomize

Function Declaration

 Sub Randomize(Optional Number As Variant)

Parameter Description

Number Empty or numeric seed value. If the argument is not

Empty it MUST be Let-coercible to Double.

Read Only

 Runtime Semantics.

 Initializes the random-number generator.

 Randomize uses Number to initialize the Rnd function's random-number generator, giving it a new
seed value. If the argument is missing or Empty, the value returned by the system timer is used
as the new seed value.

 If Randomize is not used, the Rnd function (with no arguments) uses the same number as a seed
the first time it is called, and thereafter uses the last generated number as a seed value.

 An implementation is only required to repeat sequences of random numbers when Rnd is called

with a negative argument before calling Randomize with a numeric argument. Using Randomize
without calling Rnd in such a way yields implementation-defined results.

6.1.2.11 Strings

6.1.2.11.1 Public Functions

6.1.2.11.1.1 Asc / AscW

Function Declaration

 Function Asc(StringValue As String) As Integer

251 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

StringValue String expression that SHOULD contain at least one

character.

Runtime Semantics.

 Returns an Integer data value representing the 7-bit ASCII code point of the first character of
StringValue. If the character does not correspond to an ASCII character the result is
implementation defined.

 Code point value greater than 32,767 are returned as negative Integer data values.

 If the argument is the null string ("") Error Number 5 ("Invalid procedure call or argument") is
raised.

6.1.2.11.1.2 AscB

Function Declaration

 Function AscB(StringValue As String) As Integer

Parameter Description

StringValue String expression that SHOULD contain at least one

character.

Runtime Semantics.

 Returns an Integer data value that is the first eight bits (the first byte) of the implementation

dependent character encoding of the string. If individual character code points more than 8 bits it
is implementation dependent as to whether the bits returned are the high order or low order bits
of the code point.

 If the argument is the null string ("") Error Number 5 ("Invalid procedure call or argument") is
raised.

6.1.2.11.1.3 AscW

Function Declaration

 Function AscW(StringValue As String) As Integer

Parameter Description

StringValue String expression that SHOULD contain at least one

character.

Runtime Semantics.

252 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 If the implemented uses 16-bit Unicode code points returns an Integer data value that is the 16-
bit Unicode code point of the first character of StringValue.

 If the implementation does not support Unicode, return the result of Asc(StringValue).

 Code point values greater than 32,767 are returned as negative Integer data values.

 If the argument is the null string ("") Error Number 5 ("Invalid procedure call or argument") is
raised.

6.1.2.11.1.4 Chr / Chr$

Function Declaration

 Function Chr(CharCode As Long) As Variant
 Function Chr$(CharCode As Long) As String

Parameter Description

CharCode Long whose value is a code point.

Runtime Semantics.

 Returns a String data value consisting of a single character containing the character whose code

point is the data value of the argument.

 If the argument is not in the range 0 to 255, Error Number 5 ("Invalid procedure call or
argument") is raised unless the implementation supports a character set with a larger code point
range.

 If the argument value is in the range of 0 to 127, it is interpreted as a 7-bit ASCII code point.

 If the argument value is in the range of 128 to 255, the code point interpretation of the value is

implementation defined.

 Chr$ has the same runtime semantics as Chr, however the declared type of its function result is
String rather than Variant.

6.1.2.11.1.5 ChrB / ChrB$

Function Declaration

 Function ChrB(CharCode As Long) As Variant
 Function ChrB$(CharCode As Long) As String

Parameter Description

CharCode Long whose value is a code point.

Runtime Semantics.

253 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 Returns a String data value consisting of a single byte character whose code point value is the
data value of the argument.

 If the argument is not in the range 0 to 255, Error Number 6 ("Overflow") is raised.

 ChrB$ has the same runtime semantics as ChrB however the declared type of its function result is

String rather than Variant.

 Note: the ChrB function is used with byte data contained in a String. Instead of returning a
character, which can be one or two bytes, ChrB returns a single byte. The ChrW function returns a
String containing the Unicode character except on platforms where Unicode is not supported, in
which case, the behavior is identical to the Chr function.

6.1.2.11.1.6 ChrW/ ChrW$

Function Declaration

 Function ChrW(CharCode As Long) As Variant
 Function ChrW$(CharCode As Long) As String

Parameter Description

CharCode Long whose value is a code point.

Runtime Semantics.

 Returns a String data value consisting of a single character containing the character whose code
point is the data value of the argument.

 If the argument is not in the range -32,767 to 65,535 then Error Number 5 ("Invalid procedure

call or argument") is raised.

 If the argument is a negative value it is treated as if it was the value: CharCode + 65,536.

 If the implemented uses 16-bit Unicode code points argument, data value is interpreted as a 16-
bit Unicode code point.

 If the implementation does not support Unicode, ChrW has the same semantics as Chr.

 ChrW$ has the same runtime semantics as ChrW, however the declared type of its function result
is String rather than Variant.

6.1.2.11.1.7 Filter

Function Declaration

 Function Filter(SourceArray() As Variant, Match As String,
 Optional Include As Boolean = True, Optional Compare As
 VbCompareMethod = vbBinaryCompare)

254 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

SourceArray Variant containing one-dimensional array of strings to be searched.

Match String to search for.

Include Boolean value indicating whether to return substrings that include or

exclude match. If include is True, Filter returns the subset of the array

that contains match as a substring. If include is False, Filter returns

the subset of the array that does not contain match as a substring.

Compare Numeric value indicating the kind of string comparison to use. See the

next table in this section for values.

Runtime Semantics.

 Returns a zero-based array containing subset of a string array based on a specified filter criteria.

 The Compare argument can have the following values (if omitted, it uses the <option-compare-
directive> of the calling module):

Constant Value Description

vbBinaryCompare 0 Performs a binary comparison.

vbTextCompare 1 Performs a textual comparison.

 If no matches of Match are found within SourceArray, Filter returns an empty array. An error

occurs if SourceArray is the data value Null or is not a one-dimensional array.

 The array returned by the Filter function contains only enough elements to contain the number of

matched items.

6.1.2.11.1.8 Format

Function Declaration

 Function Format(Expression As Variant, Optional Format As
 Variant, Optional FirstDayOfWeek As VbDayOfWeek = vbSunday,
 Optional FirstWeekOfYear As VbFirstWeekOfYear = vbFirstJan1)

Parameter Description

Expression Any valid expression.

Format A valid named or user-defined format expression.

FirstDayOfWeek A constant that specifies the first day of the week.

FirstWeekOfYear A constant that specifies the first week of the year.

255 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Runtime Semantics.

 Returns a String containing an expression formatted according to instructions contained in a

format expression.

 The FirstDayOfWeek argument has these settings:

Constant Value Description

vbUseSystem 0 Use NLS API setting.

VbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

 The FirstWeekOfYear argument has these settings:

Constant Value Description

vbUseSystem 0 Use NLS API setting.

vbFirstJan1 1 Start with week in which January

1 occurs (default).

vbFirstFourDays 2 Start with the first week that has

at least four days in the year.

vbFirstFullWeek 3 Start with the first full week of the

year.

 To determine how to format a certain type of data, see the following table:

To Format Do This

Numbers Use predefined named numeric formats or create

user-defined numeric formats.

Dates and times Use predefined named date/time formats or create

user-defined date/time formats.

Date and time serial numbers Use date and time formats or numeric formats.

Strings Create a user-defined string format.

 If you try to format a number without specifying Format, Format provides functionality similar to

the Str function, although it is internationally aware. However, positive numbers formatted as
strings using Format do not include a leading space reserved for the sign of the value; those
converted using Str retain the leading space.

256 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 When formatting a non-localized numeric string, use a user-defined numeric format to ensure that
it gets formatted correctly.

 Note: if the Calendar property setting is Gregorian and format specifies date formatting, the
supplied expression MUST be Gregorian. If the Visual Basic Calendar property setting is Hijri, the

supplied expression MUST be Hijri.

 If the calendar is Gregorian, the meaning of format expression symbols is unchanged. If the
calendar is Hijri, all date format symbols (for example, dddd, mmmm, yyyy) have the same
meaning but apply to the Hijri calendar. Format symbols remain in English; symbols that result in
text display (for example, AM and PM) display the string (English or Arabic) associated with that
symbol. The range of certain symbols changes when the calendar is Hijri.

Symbol Range

d 1-30

dd 1-30

ww 1-51

mmm Displays full month names (Hijri month names have

no abbreviations).

y 1-355

yyyy 100-9666

6.1.2.11.1.9 Format$

This function is functionally identical to the Format function, with the exception that the return type of

the function is String rather than Variant.

6.1.2.11.1.10 FormatCurrency

Function Declaration

 Function FormatCurrency(Expression As Variant, Optional
 NumDigitsAfterDecimal As Long = -1, Optional
 IncludeLeadingDigit As VbTriState = vbUseDefault, Optional
 UseParensForNegativeNumbers As VbTriState = vbUseDefault,
 Optional GroupDigits As VbTriState = vbUseDefault) As
 String

Parameter Description

Expression Variant containing the expression to be formatted.

NumDigitsAfterDecimal Numeric value indicating how many places to the

right of the decimal are displayed. Default value is 1,

which indicates that the computer's regional settings

are used.

257 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

IncludeLeadingDigit Tristate constant that indicates whether or not a

leading zero is displayed for fractional values. See

the next table in this section for values.

UseParensForNegativeNumbers Tristate constant that indicates whether or not to

place negative values within parentheses. See the

next table in this section for values.

GroupDigits Tristate constant that indicates whether or not

numbers are grouped using the group delimiter

specified in the computer's regional settings. See the

next table in this section for values.

Runtime Semantics.

 Returns an expression formatted as a currency value using the implementation-defined currency
symbol.

 The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the
following settings:

Constant Value Description

vbTrue 1 True

vbFalse 0 False

vbUseDefault 2 Implementation-defined

value.

 Returns an expression formatted as a currency value using the implementation-defined currency
symbol.

 When one or more optional arguments are omitted, the values for omitted arguments are

implementation-defined.

 The position of the currency symbol relative to the currency value is implementation-defined.

6.1.2.11.1.11 FormatDateTime

Function Declaration

 Function FormatDateTime(Expression As Variant, NamedFormat As VbDateTimeFormat =
vbGeneralDate) As String

Parameter Description

Expression Variant containing a Date expression to be

formatted.

258 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

NamedFormat Numeric value that indicates the date/time format

used. If omitted, vbGeneralDate is used.

Runtime Semantics.

 Returns an expression formatted as a date or time.

 The NamedFormat argument has the following settings:

Constant Value Description

vbGeneralDate 0 Display a date and/or time. If there is a date part, display it as a short date. If

there is a time part, display it as a long time. If present, both parts are

displayed.

vbLongDate 1 Display a date using the implementation-defined long date format.

vbShortDate 2 Display a date using the implementation-defined short date format.

vbLongTime 3 Display a time using the implementation-defined time format.

vbShortTime 4 Display a time using the 24-hour format (hh:mm).

6.1.2.11.1.12 FormatNumber

Function Declaration

 Function FormatNumber(Expression, Optional
 NumDigitsAfterDecimal As Long = -1, Optional
 IncludeLeadingDigit As VbTriState = vbUseDefault, Optional
 UseParensForNegativeNumbers As VbTriState = vbUseDefault,
 Optional GroupDigits As VbTriState = vbUseDefault) As String

Parameter Description

Expression Variant containing the expression to be formatted.

NumDigitsAfterDecimal Numeric value indicating how many places to the

right of the decimal are displayed. Default value is 1,

which indicates that implementation-defined settings

are used.

IncludeLeadingDigit Tristate constant that indicates whether or not a

leading zero is displayed for fractional values. See

the next table in this section for values.

UseParensForNegativeNumbers Tristate constant that indicates whether or not to

place negative values within parentheses. See the

next table in this section for values.

259 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

GroupDigits Tristate constant that indicates whether or not

numbers are grouped using the implementation-

defined group delimiter. See the next table in this

section for values.

Runtime Semantics.

 Returns an expression formatted as a number.

 The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the
following settings:

Constant Value Description

vbTrue 1 True

vbFalse 0 False

vbUseDefault 2 Implementation-defined value.

 Returns an expression formatted as a number.

 When one or more optional arguments are omitted, the values for omitted arguments are provided

by the computer's regional settings.

6.1.2.11.1.13 FormatPercent

Function Declaration

 Function FormatPercent(Expression, Optional
 NumDigitsAfterDecimal As Long = -1, Optional
 IncludeLeadingDigit As VbTriState = vbUseDefault, Optional
 UseParensForNegativeNumbers As VbTriState = vbUseDefault,
 Optional GroupDigits As VbTriState = vbUseDefault) As String

Parameter Description

Expression Variant containing the expression to be formatted.

NumDigitsAfterDecimal Numeric value indicating how many places to the

right of the decimal are displayed. Default value is 1,

which indicates that implementation-defined settings

are used.

IncludeLeadingDigit Tristate constant that indicates whether or not a

leading zero is displayed for fractional values. See

the next table in this section for values.

UseParensForNegativeNumbers Tristate constant that indicates whether or not to

place negative values within parentheses. See the

next table in this section for values.

260 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

GroupDigits Tristate constant that indicates whether or not

numbers are grouped using the implementation-

defined group delimiter. See the next table in this

section for values.

Runtime Semantics.

 Returns an expression formatted as a percentage (multiplied by 100) with a trailing % character.

 The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the
following settings:

Constant Value Description

vbTrue 1 True

vbFalse 0 False

vbUseDefault 2 Use the setting from the computer's

regional settings.

 When one or more optional arguments are omitted, the values for omitted arguments are
implementation-defined.

6.1.2.11.1.14 InStr / InStrB

Function Declaration

 Function InStr(Optional Arg1 As Variant, Optional Arg2 As
 Variant, Optional Arg3 As Variant, Optional Compare As
 VbCompareMethod = vbBinaryCompare)

If Arg3 is not present then Arg1 is used as the string to be searched, and Arg2 is used as the pattern
(and the start position is 1). If Arg3 IS present then Arg1 is used as a string and Arg2 is used as the
pattern.

Parameter Description

Arg1 Numeric expression that sets the starting position for

each search. If omitted, search begins at the first

character position. If start contains the data value

Null, an error occurs. This argument is required if

Compare is specified.

Arg2 String expression to search.

Arg3 String expression sought.

261 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Compare Specifies the type of string comparison. If compare is

the data value Null, an error occurs. If Compare is

omitted, the Option Compare setting determines the

type of comparison. Specify a valid LCID (LocaleID)

to use locale-specific rules in the comparison.

Runtime Semantics.

 Returns a Long specifying the position of the first occurrence of one string within another.

 The Compare argument can have the following values (if omitted, it uses the <option-compare-

directive> of the calling module):

Constant Value Description

vbBinaryCompare 0 Performs a binary comparison.

vbTextCompare 1 Performs a textual comparison.

 InStr returns the following values:

If InStr returns

Arg2 is zero-length 0

Arg2 is Null Null

Arg3 is zero-length Arg1

Arg3 is Null Null

Arg3 is not found 0

Arg3 is found within Arg2 Position at which match is found

Arg1 > Arg3 0

 The InStrB function is used with byte data contained in a string. Instead of returning the character
position of the first occurrence of one string within another, InStrB returns the byte position.

6.1.2.11.1.15 InStrRev

Function Declaration

 Function InStrRev(StringCheck As String, StringMatch As
 String, Optional Start As Long = -1, Optional Compare As VbCompareMethod = vbBinaryCompare)
As Long

262 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

StringCheck String expression to search.

StringMatch String expression being searched for.

Start Long containing a numeric expression that sets the starting position for each

search. If omitted, the data value 1 is used, which means that the search begins

at the last character position. If Start contains the data value Null, an error

occurs.

Compare Numeric value indicating the kind of comparison to use when evaluating

substrings. If omitted, a binary comparison is performed. See the next table in

this section for values.

Runtime Semantics.

 Returns the position of an occurrence of one string within another, from the end of string.

 The Compare argument can have the following values (if omitted, it uses the <option-compare-

directive> of the calling module):

Constant Value Description

vbBinaryCompare 0 Performs a binary comparison.

vbTextCompare 1 Performs a textual comparison.

 InStrRev returns the following values:

If InStrRev returns

StringCheck is zero-length 0

StringCheck is Null Null

StringMatch is zero-length Start

StringMatch is Null Null

StringMatch is not found 0

StringMatch is found within StringCheck Position at which match is found

Start > Len(StringMatch) 0

6.1.2.11.1.16 Join

Function Declaration

 Function Join(SourceArray() As Variant, Optional Delimiter As Variant) As String

263 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

SourceArray Variant containing one-dimensional array containing

substrings to be joined.

Delimiter String character used to separate the substrings in

the returned string. If omitted, the space character ("

") is used. If Delimiter is a zero-length string (""), all

items in the list are concatenated with no delimiters.

Runtime Semantics.

 Returns a string created by joining a number of substrings contained in an array.

6.1.2.11.1.17 LCase

Function Declaration

 Function LCase(String As Variant)

Parameter Description

String Variant containing any valid String expression. If

String contains the data value Null, Null is returned.

Runtime Semantics.

 Returns a String that has been converted to lowercase.

 Only uppercase letters are converted to lowercase; all lowercase letters and non-letter characters

remain unchanged.

6.1.2.11.1.18 LCase$

This function is functionally identical to the LCase function, with the exception that the return type of
the function is String rather than Variant.

6.1.2.11.1.19 Left / LeftB

Function Declaration

 Function Left(String, Length As Long)

264 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

String String expression from which the leftmost characters

are returned. If string contains Null, Null is returned.

Length Long containing a Numeric expression indicating how

many characters to return. If it equals the data value

0, a zero-length string ("") is returned. If it’s greater

than or equal to the number of characters in String,

the entire string is returned.

Runtime Semantics.

 Returns a String containing a specified number of characters from the left side of a string.

 Note: use the LeftB function with byte data contained in a string. Instead of specifying the number
of characters to return, length specifies the number of bytes.

6.1.2.11.1.20 Left$

This function is functionally identical to the Left function, with the exception that the return type of the
function is String rather than Variant.

6.1.2.11.1.21 LeftB$

This function is functionally identical to the LeftB function, with the exception that the return type of
the function is String rather than Variant.

6.1.2.11.1.22 Len / LenB

Function Declaration

 Function Len(Expression As Variant) As Variant
 Function LenB(Expression As Variant) As Variant

Parameter Description

Expression Any valid string expression, or any valid variable name. If the variable name is a

Variant, Len/LenB treats it the same as a String and always returns the number of

characters it contains.

Runtime Semantics.

 Returns a Long containing the number of characters in a string or the number of bytes required to

store a variable on the current platform.

 If Expression contains the data value Null, Null is returned.

 With user-defined types, Len returns the size as it will be written to the file.

 LenB will return the same value as Len, except for strings or UDTs:

265 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 LenB can return different values than Len for Unicode strings or double-byte character set
(DBCS) representations. Instead of returning the number of characters in a string, LenB

returns the number of bytes used to represent that string.

 With user-defined types, LenB returns the in-memory size, including any implementation-

specific padding between elements.

 Note: Len might not be able to determine the actual number of storage bytes required when used
with variable-length strings in user-defined data types.

6.1.2.11.1.23 LTrim / RTrim / Trim

Function Declaration

 Function LTrim(String As Variant) As Variant
 Function RTrim(String As Variant) As Variant
 Function Trim(String As Variant) As Variant

Parameter Description

String Variant, containing any valid String expression.

Runtime Semantics.

 Returns a String containing a copy of a specified string without leading spaces (LTrim), trailing
spaces (RTrim), or both leading and trailing spaces (Trim).

 If String contains the data value Null, Null is returned.

6.1.2.11.1.24 LTrim$ / RTrim$ / Trim$

These functions are functionally identical to the LTrim, RTrim, and Trim functions respectively, with
the exception that the return type of these functions is String rather than Variant.

6.1.2.11.1.25 Mid / MidB

Function Declaration

 Function Mid(String As Variant, Start As Long, Optional
 Length As Variant) As Variant

Parameter Description

String String expression from which characters are returned. If String contains the

data value Null, Null is returned.

Start Long containing the character position in String at which the part to be

taken begins. If Start is greater than the number of characters in String, Mid

returns a zero-length string ("").

266 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Length Long containing the number of characters to return. If omitted or if there

are fewer than Length characters in the text (including the character at

start), all characters from the start position to the end of the string are

returned.

Runtime Semantics.

 Returns a String containing a specified number of characters from a string.

 To determine the number of characters in String, use the Len function.

 Note: use the MidB function with byte data contained in a string, as in double-byte character set
languages. Instead of specifying the number of characters, the arguments specify numbers of
bytes.

6.1.2.11.1.26 Mid$

This function is functionally identical to the Mid function, with the exception that the return type of the
function is String rather than Variant.

6.1.2.11.1.27 MidB$

This function is functionally identical to the MidB function, with the exception that the return type of
the function is String rather than Variant.

6.1.2.11.1.28 MonthName

Function Declaration

 Function MonthName(Month As Long, Optional Abbreviate As Boolean = False) As String

Parameter Description

Month Long containing the numeric designation of the month. For example,

January is 1, February is 2, and so on.

Abbreviate Boolean value that indicates if the month name is to be abbreviated. If

omitted, the default is False, which means that the month name is not

abbreviated.

Runtime Semantics.

 Returns a String indicating the specified month.

6.1.2.11.1.29 Replace

Function Declaration

 Function Replace(Expression As String, Find As String,
 Replace As String, Optional Start As Long = 1, Optional Count As Long = -1, Optional Compare
As VbCompareMethod = vbBinaryCompare) As String

267 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Expression String expression containing substring to replace.

Find Substring being searched for.

Replace Replacement substring.

Start Position within expression where substring search is to begin. If omitted, the data value 1 is

assumed.

Count Number of substring substitutions to perform. If omitted, the default value is the data value 1,

which means make all possible substitutions.

Compare Numeric value indicating the kind of comparison to use when evaluating substrings. See the

next table in this section for values.

Runtime Semantics.

 Returns a String in which a specified substring has been replaced with another substring a
specified number of times.

 The Compare argument can have the following values (if omitted, it uses the <option-compare-
directive> of the calling module):

Constant Value Description

vbBinaryCompare 0 Performs a binary comparison.

vbTextCompare 1 Performs a textual comparison.

 Replace returns the following values:

If Replace returns

Expression is zero-length Zero-length string ("")

Expression is Null An error.

Find is zero-length Copy of Expression.

Replace is zero-length Copy of Expression with all occurrences of Find

removed.

Start > Len(Expression) Zero-length string.

Count is 0 Copy of Expression.

 The return value of the Replace function is a String, with substitutions made, that begins at the
position specified by Start and concludes at the end of the Expression string. It is not a copy of the
original string from start to finish.

6.1.2.11.1.30 Right / RightB

268 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Function Declaration

 Function Right(String, Length As Long)

Parameter Description

String String expression from which the rightmost characters are returned. If string

contains the data value Null, Null is returned.

Length Long containing the numeric expression indicating how many characters to return.

If it equals the data value 0, a zero-length string ("") is returned. If it is greater

than or equal to the number of characters in String, the entire string is returned.

Runtime Semantics.

 Returns a String containing a specified number of characters from the right side of a string.

 To determine the number of characters in string, use the Len function.

 Note: use the RightB function with byte data contained in a String. Instead of specifying the

number of characters to return, length specifies the number of bytes.

6.1.2.11.1.31 Right$

This function is functionally identical to the Right function, with the exception that the return type of
the function is String rather than Variant.

6.1.2.11.1.32 RightB$

This function is functionally identical to the RightB function, with the exception that the return type of
the function is String rather than Variant.

6.1.2.11.1.33 Space

Function Declaration

 Function Space(Number As Long) As Variant

Parameter Description

Number Long containing the number of spaces in the String.

Runtime Semantics.

 Returns a String consisting of the specified number of spaces.

 The Space function is useful for formatting output and clearing data in fixed-length strings.

269 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

6.1.2.11.1.34 Space$

This function is functionally identical to the Space function, with the exception that the return type of
the function is String rather than Variant.

6.1.2.11.1.35 Split

Function Declaration

 Function Split(Expression As String, Optional Delimiter As
 Variant, Optional Limit As Long = -1, Optional Compare As VbCompareMethod = vbBinaryCompare)

Parameter Description

Expression String expression containing substrings and delimiters. If expression is a zero-length

string(""), Split returns an empty array, that is, an array with no elements and no data.

Delimiter String containing the character used to identify substring limits. If omitted, the space character

(" ") is assumed to be the delimiter. If delimiter is a zero-length string, a single-element array

containing the entire expression string is returned.

Limit Number of substrings to be returned; the data value 1 indicates that all substrings are

returned.

Compare Numeric value indicating the kind of comparison to use when evaluating substrings. See the

next table in this section for values.

Runtime Semantics.

 Returns a zero-based, one-dimensional array containing a specified number of substrings.

 The Compare argument can have the following values (if omitted, it uses the <option-compare-

directive> of the calling module):

Constant Value Description

vbBinaryCompare 0 Performs a binary comparison.

vbTextCompare 1 Performs a textual comparison.

6.1.2.11.1.36 StrComp

Function Declaration

 Function StrComp(String1 As Variant, String2 As Variant,
 Optional Compare As VbCompareMethod = vbBinaryCompare)

270 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

String1 Any valid String expression.

String2 Any valid String expression.

Compare Specifies the type of string comparison. If the Compare argument is the data value Null, an

error occurs.

Runtime Semantics.

 Returns an Integer indicating the result of a string comparison.

 The Compare argument can have the following values (if omitted, it uses the <option-compare-
directive> of the calling module):

Constant Value Description

vbBinaryCompare 0 Performs a binary comparison.

vbTextCompare 1 Performs a textual comparison.

 The StrComp function has the following return values:

If StrComp returns

String1 is less than String2 -1

String1 is equal to String2 0

String1 is greater than String2 1

String1 or String2 is Null Null

6.1.2.11.1.37 StrConv

Function Declaration

 Function StrConv(String As Variant, Conversion As VbStrConv, LocaleID As Long) As Variant

Parameter Description

String String containing the expression to be converted.

Conversion Integer containing the sum of values specifying the type of conversion to

perform.

LCID The LocaleID, if different than the default implementation-defined LocaleID.

Runtime Semantics.

 Returns a String converted as specified.

271 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 The Conversion argument settings are:

Constant Value Description

vbUpperCase 1 Converts the string to uppercase characters.

vbLowerCase 2 Converts the string to lowercase characters.

vbProperCase 3 Converts the first letter of every word in string to

uppercase.

vbWide* 4* Converts narrow (single-byte) characters in string to

wide (double-byte) characters.

vbNarrow* 8* Converts wide (double-byte) characters in string to

narrow (single-byte) characters.

vbKatakana** 16** Converts Hiragana characters in string to Katakana

characters.

vbHiragana** 32** Converts Katakana characters in string to Hiragana

characters.

vbUnicode 64 Converts the string to Unicode using the default

code page of the system.

vbFromUnicode 128 Converts the string from Unicode to the default code

page of the system.

*Applies to East Asia locales.

**Applies to Japan only.

 Note: these constants are specified by VBA, and as a result, they can be used anywhere in code in
place of the actual values. Most can be combined, for example, vbUpperCase + vbWide, except
when they are mutually exclusive, for example, vbUnicode + vbFromUnicode. The constants
vbWide, vbNarrow, vbKatakana, and vbHiragana cause run-time errors when used in locales
where they do not apply.

 The following are valid word separators for proper casing: Null (Chr$(0)), horizontal tab

(Chr$(9)), linefeed (Chr$(10)), vertical tab (Chr$(11)), form feed (Chr$(12)), carriage return

(Chr$(13)), space (SBCS) (Chr$(32)). The actual value for a space varies by country/region
for DBCS.

 When converting from a Byte array in ANSI format to a String, use the StrConv function. When
converting from such an array in Unicode format, use an assignment statement.

6.1.2.11.1.38 String

Function Declaration

 Function String(Number As Long, Character As Variant) As
 Variant

272 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Number Long specifying the length of the returned string. If number contains

the data value Null, Null is returned.

Character Variant containing the character code specifying the character or

string expression whose first character is used to build the return

string. If character contains Null, Null is returned.

Runtime Semantics.

 Returns a String containing a repeating character string of the length specified.

 If Character is a number greater than 255, String converts the number to a valid character code
using the formula: character Mod 256

6.1.2.11.1.39 String$

This function is functionally identical to the String function, with the exception that the return type of

the function is String rather than Variant.

6.1.2.11.1.40 StrReverse

Function Declaration

 Function StrReverse(Expression As String) As String

Parameter Description

Expression String whose characters are to be reversed.

Runtime Semantics.

 Returns a String in which the character order of a specified String is reversed.

 If Expression is a zero-length string (""), a zero-length string is returned. If Expression is Null, an
error occurs.

6.1.2.11.1.41 UCase

Function Declaration

 Function UCase(String As Variant)

Parameter Description

String Variant containing any valid String expression. If String contains the data value Null,

Null is returned.

273 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Runtime Semantics.

 Returns a String that has been converted to uppercase.

 Only lowercase letters are converted to uppercase; all uppercase letters and non-letter characters
remain unchanged.

6.1.2.11.1.42 UCase$

This function is functionally identical to the UCase function, with the exception that the return type of
the function is String rather than Variant.

6.1.2.11.1.43 WeekdayName

Function Declaration

 Function WeekdayName(Weekday As Long, Optional Abbreviate
 As Boolean = False, Optional FirstDayOfWeek As VbDayOfWeek
 = vbUseSystemDayOfWeek) As String

Parameter Description

Weekday Long containing the numeric designation for the day of the

week. Numeric value of each day depends on setting of the

FirstDayOfWeek setting.

Abbreviate Boolean value that indicates if the weekday name is to be

abbreviated. If omitted, the default is False, which means

that the weekday name is not abbreviated.

FirstDayOfWeek Numeric value indicating the first day of the week. See the

next table in this section for values.

Runtime Semantics.

 Returns a String indicating the specified day of the week.

 The FirstDayOfWeek argument can have the following values:

Constant Value Description

vbUseSystem 0 Use National Language Support

(NLS) API setting.

vbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

274 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Constant Value Description

vbSaturday 7 Saturday

6.1.2.12 SystemColorConstants

Whenever their values are used in contexts expecting a color value, these system color constants
SHOULD be interpreted as their specified implementation-dependent colors.

Constant Value Description

vbScrollBars &H80000000 Scroll bar color

vbDesktop &H80000001 Desktop color

vbActiveTitleBar &H80000002 Color of the title bar for the active window

vbInactiveTitleBar &H80000003 Color of the title bar for the inactive window

vbMenuBar &H80000004 Menu background color

vbWindowBackground &H80000005 Window background color

vbWindowFrame &H80000006 Window frame color

vbMenuText &H80000007 Color of text on menus

vbWindowText &H80000008 Color of text in windows

vbTitleBarText &H80000009 Color of text in caption, size box, and scroll arrow

vbActiveBorder &H8000000A Border color of active window

vbInactiveBorder &H8000000B Border color of inactive window

vbApplicationWorkspace &H8000000C Background color of multiple-document interface (MDI)

applications

vbHighlight &H8000000D Background color of items selected in a control

vbHighlightText &H8000000E Text color of items selected in a control

vbButtonFace &H8000000F Color of shading on the face of command buttons

vbButtonShadow &H80000010 Color of shading on the edge of command buttons

vbGrayText &H80000011 Grayed (disabled) text

vbButtonText &H80000012 Text color on push buttons

vbInactiveCaptionText &H80000013 Color of text in an inactive caption

vb3DHighlight &H80000014 Highlight color for 3D display elements

vb3DDKShadow &H80000015 Darkest shadow color for 3D display elements

vb3DLight &H80000016 Second lightest of the 3D colors after vb3Dhighlight

vb3DFace &H8000000F Color of text face

vb3Dshadow &H80000010 Color of text shadow

vbInfoText &H80000017 Color of text in ToolTips

275 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Constant Value Description

vbInfoBackground &H80000018 Background color of ToolTips

6.1.3 Predefined Class Modules

6.1.3.1 Collection Object

The Collection class defines the behavior of a collection, which represents a sequence of values.

6.1.3.1.1 Public Functions

6.1.3.1.1.1 Count

Function Declaration

 Function Count() As Long

Runtime Semantics.

 Returns the number of objects in a collection.

6.1.3.1.1.2 Item

Function Declaration

 Function Item(Index As Variant) As Variant

Parameter Description

Index An expression that specifies the position of a member

of the collection. If a numeric expression, Index

MUST be a number from 1 to the value of the

collection's Count property. If a string expression,

Index MUST correspond to the Key argument

specified when the member referred to was added to

the collection.

Runtime Semantics.

 Returns a specific member of a Collection object either by position or by key.

 If the value provided as Index does not match any existing member of the collection, an error
occurs.

 The Item method is the default method for a collection. Therefore, the following lines of code are
equivalent:

276 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Print MyCollection(1)

Print MyCollection.Item(1)

6.1.3.1.2 Public Subroutines

6.1.3.1.2.1 Add

Function Declaration

 Sub Add(Item As Variant, Optional Key As Variant, Optional Before As Variant, Optional After
As Variant)

Parameter Description

Item An expression of any type that specifies the member to add to the collection.

Key A unique String expression that specifies a key string that can be used,

instead of a positional index, to access a member of the collection.

Before An expression that specifies a relative position in the collection. The member to

be added is placed in the collection before the member identified by the before

argument. If a numeric expression, before MUST be a number from 1 to the

value of the collection's Count property. If a String expression, before MUST

correspond to the key specified when the member being referred to was added

to the collection. Either a Before position or an After position can be specified,

but not both.

After An expression that specifies a relative position in the collection. The member to

be added is placed in the collection after the member identified by the After

argument. If numeric, After MUST be a number from 1 to the value of the

collection's Count property. If a String, After MUST correspond to the Key

specified when the member referred to was added to the collection. Either a

Before position or an After position can be specified, but not both.

Runtime Semantics.

 Adds a member to a Collection object.

 Whether the before or after argument is a string expression or numeric expression, it MUST refer
to an existing member of the collection, or an error occurs.

 An error also occurs if a specified Key duplicates the key for an existing member of the collection.

 An implementation can define a maximum number of elements that a Collection object can
contain.

6.1.3.1.2.2 Remove

Function Declaration

 Sub Remove(Index As Variant)

277 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Index An expression that specifies the position of a member of the collection. If a numeric

expression, Index MUST be a number from 1 to the value of the collection's Count

property. If a String expression, Index MUST correspond to the Key argument

specified when the member referred to was added to the collection.

Runtime Semantics.

 Removes a member from a Collection object.

 If the value provided as Index doesn’t match an existing member of the collection, an error
occurs.

6.1.3.2 Err Class

The Err Class defines the behavior of its sole instance, known as the Err object. The Err object’s
properties and methods reflect and control the error state of the active VBA Environment and can be
accessed inside any procedure. The Err Class is a global class module (section 5.2.4.1.2) with a

default instance variable (section 5.2.4.1.2) so its sole instance can be directly referenced using the
name Err.

6.1.3.2.1 Public Subroutines

6.1.3.2.1.1 Clear

Function Declaration

 Sub Clear()

Runtime Semantics.

 Clears all property settings of the Err object.

 The Clear method is called automatically whenever any of the following statements is executed:

 Resume statement (section 5.4.4.2)

 Exit Sub (section 5.4.2.17)

 Exit Function (section 5.4.2.18)

 Exit Property (section 5.4.2.19)

 On Error statement (section 5.4.4.1)

6.1.3.2.1.2 Raise

Function Declaration

 Sub Raise(Number As Long, Optional Source As Variant,
 Optional Description As Variant, Optional HelpFile As Variant, Optional HelpContext As
Variant)

278 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Parameter Description

Number Long that identifies the nature of the error. VBA errors (both VBA-defined and

user-defined errors) are in the range 0-65535. The range 0-512 is reserved for

system errors; the range 513-65535 is available for user-defined errors. When

setting the Number property to a custom error code in a class module, add the

error code number to the vbObjectError constant. For example, to generate the

error number 513, assign vbObjectError + 513 to the Number property.

Source String expression naming the object or application that generated the error. When

setting this property for an object, use the form project.class. If Source is not

specified, current project name (section 4.1) is used.

Description String expression describing the error. If unspecified, the value in Number is

examined. If it can be mapped to a VBA run-time error code, the String that would

be returned by the Error function is used as Description. If there is no VBA error

corresponding to Number, the "Application-defined or object-defined error"

message is used.

HelpFile The fully qualified path to the Help file in which help on this error can be found. If

unspecified, this value is implementation-defined.

HelpContext The context ID identifying a topic within HelpFile that provides help for the error. If

omitted, this value is implementation-defined.

Runtime Semantics.

 Generates a run-time error.

 If Raise is invoked without specifying some arguments, and the property settings of the Err object

contain values that have not been cleared, those values serve as the values for the new error.

 Raise is used for generating run-time errors and can be used instead of the Error statement

(section 5.4.4.3). Raise is useful for generating errors when writing class modules, because the
Err object gives richer information than possible when generating errors with the Error statement.
For example, with the Raise method, the source that generated the error can be specified in the

Source property, online Help for the error can be referenced, and so on.

6.1.3.2.2 Public Properties

6.1.3.2.2.1 Description

6.1.3.2.2.2 HelpContext

 Property HelpContext As Long

Runtime Semantics.

 Returns or sets a String expression containing the context ID for a topic in a Help file.

 The HelpContext property is used to automatically display the Help topic specified in the HelpFile

property. If both HelpFile and HelpContext are empty, the value of Number is checked. If Number
corresponds to a VBA run-time error value, then the implementation-defined VBA Help context ID

279 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

for the error is used. If the Number value doesn’t correspond to a VBA error, an implementation-
defined Help screen is displayed.

6.1.3.2.2.3 HelpFile

 Property HelpFile As String

Runtime Semantics.

 Returns or sets a String expression containing the fully qualified path to a Help file.

 If a Help file is specified in HelpFile, it is automatically called when the user presses the Help
button (or the F1 KEY) in the error message dialog box. If the HelpContext property contains a

valid context ID for the specified file, that topic is automatically displayed. If no HelpFile is
specified, an implementation-defined Help file is displayed.

6.1.3.2.2.4 LastDIIError

 Property LastDllError As Long

Runtime Semantics.

 Returns a system error code produced by a call to a dynamic-link library (DLL). This value is read-
only.

 The LastDLLError property applies only to DLL calls made from VBA code. When such a call is
made, the called function usually returns a code indicating success or failure, and the LastDLLError
property is filled. Check the documentation for the DLL's functions to determine the return values

that indicate success or failure. Whenever the failure code is returned, the VBA application
SHOULD immediately check the LastDLLError property. No error is raised when the LastDLLError
property is set.

6.1.3.2.2.5 Number

 Property Number As Long

Runtime Semantics.

 Returns or sets a numeric value specifying an error. Number is the Err object's default property.

 When returning a user-defined error from an object, set Err.Number by adding the number
selected as an error code to the vbObjectError constant. For example, use the following code to
return the number 1051 as an error code:

Err.Raise Number := vbObjectError + 1051, Source:= "SomeClass"

6.1.3.2.2.6 Source

 Property Source As String

Runtime Semantics.

 Returns or sets a String expression specifying the name of the object or application that originally
generated the error.

280 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 This property has an implementation-defined default value for errors raised within VBA code.

6.1.3.3 Global Class

6.1.3.3.1 Public Subroutines

6.1.3.3.1.1 Load

Subroutine Declaration

 Sub Load(Object As Object)

Runtime Semantics.

 Loads a form or control into memory.

 Using the Load statement with forms is unnecessary unless you want to load a form without
displaying it. Any reference to a form (except in a Set or If...TypeOf statement) automatically

loads it if it's not already loaded. For example, the Show method loads a form before displaying it.
Once the form is loaded, its properties and controls can be altered by the application, whether or
not the form is actually visible.

 When VBA loads a Form object, it sets form properties to their initial values and then performs the
Load event procedure. When an application starts, VBA automatically loads and displays the
application's startup form.

 When loading a Form whose MDIChild property is set to True (in other words, the child form)

before loading an MDIForm, the MDIForm is automatically loaded before the child form. MDI child

forms cannot be hidden, and thus are immediately visible after the Form_Load event procedure

ends.

6.1.3.3.1.2 Unload

Unloads a form or control from memory.

Subroutine Declaration

 Sub Unload(Object As Object)

Runtime Semantics.

 Unloads a form or control into memory.

 Unloading a form or control can be necessary or expedient in some cases where the memory used

is needed for something else, or when there is a need to reset properties to their original values.

 Before a form is unloaded, the Query_Unload event procedure occurs, followed by the

Form_Unload event procedure. Setting the cancel argument to True in either of these events
prevents the form from being unloaded. For MDIForm objects, the MDIForm object's
Query_Unload event procedure occurs, followed by the Query_Unload event procedure and

Form_Unload event procedure for each MDI child form, and finally the MDIForm object's
Form_Unload event procedure.

281 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

 When a form is unloaded, all controls placed on the form at run time are no longer accessible.
Controls placed on the form at design time remain intact; however, any run-time changes to those

controls and their properties are lost when the form is reloaded. All changes to form properties are
also lost. Accessing any controls on the form causes it to be reloaded.

 Note: when a form is unloaded, only the displayed component is unloaded. The code associated
with the form module remains in memory.

 Only control array elements added to a form at run time can be unloaded with the Unload
statement. The properties of unloaded controls are reinitialized when the controls are reloaded.

282 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

5.2.3.3 User Defined Type
Declarations

Removed the extra blocks and changed them to
bullets.

Minor

5.4.1.1 Statement Labels
Removed the extra blocks and changed them to
bullets.

Minor

5.4.4.1 On Error Statement Updated the ABNF grammar. Minor

5.6.16.1 Constant Expressions
Removed the extra blocks and changed them to
bullets.

Minor

6.1.2.6.1 Public Functions Updated "Type" in tables to "Due". Minor

6.1.2.10.1.6 Rnd
Removed the extra blocks and changed them to
bullets.

Minor

mailto:dochelp@microsoft.com

283 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

8 Index

&

& operator 148

*

* operator 142

/

/ operator 143

\

\ operator 145

^

^ operator 147

+

+ operator 140

<

< operator 153
<= operator 153
<> operator 152
<access> 99
<access-clause> 99
<addition-operator> 140
<addressof-expression> 173
<alias-clause> 57

<ampm> 30
<and-operator> 160
<argument-expression> 169
<argument-list> 169
<arithmetic-operator> 135
<array-clause> 50
<array-designator> 65
<array-dim> 51
<as-auto-object> 52
<as-clause> 50
<as-type> 52
<attr-end> 41
<attr-eq> 41
<attribute> 41
<block-statement> 73
<boolean-expression> 172
<boolean-literal-identifier> 35
<bounds-list> 51
<bound-variable-expression> 172
<BUILTIN-TYPE> 37
<call-statement> 75
<case-clause> 82
<case-else-clause> 82
<cc-const> 38
<cc-else> 39
<cc-else-block> 39
<cc-elseif> 39

<cc-elseif-block> 39
<cc-endif> 39
<cc-expression> 171
<cc-if> 39
<cc-if-block> 39
<cc-var-lhs> 38
<class-attr> 41
<class-module> 41
<class-module-body> 44
<class-module-code-element> 61
<class-module-code-section> 61
<class-module-declaration-element> 44
<class-module-declaration-section> 44
<class-module-directive-element> 44
<class-module-header> 41
<class-type-name> 51
<close-statement> 102
<codepage-identifier> 33
<collection> 78
<comment-body> 25
<common-module-code-element> 61
<common-module-declaration-element> 48
<common-option-directive> 45
<comparison-operator> 82
<concatenation-operator> 148
<conditional-module-body> 38
<condition-clause> 79
<constant-expression> 170
<constant-name> 52

<const-as-clause> 53
<const-declaration> 53
<const-item> 53
<const-item-list> 53
<control-statement> 75
<control-statement-except-multiline-if> 75
<CP2-character> 33
<CP932-initial-character> 33
<CP932-subsequent-character> 33
<CP936-initial-character> 33
<CP936-subsequent-character> 33
<CP949-initial-character> 33
<CP949-subsequent-character> 33
<CP950-initial-character> 33
<CP950-subsequent-character> 33
<data> 113
<Data-manipulation-statement> 88
<DATE> 30
<date-or-time> 30
<date-separator> 30
<date-value> 30
<DBCS-whitespace> 25
<decimal-digit> 26
<decimal-literal> 26
<default-value> 65
<def-directive> 47
<defined-type-expression> 172
<def-type> 47
<dictionary-access-expression> 170
<dim-spec> 51
<division-operator> 143
<do-statement> 79
<double-quote> 32

284 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

<dynamic-array-clause> 89
<dynamic-array-dim> 89
<dynamic-bounds-list> 89
<dynamic-dim-spec> 89
<dynamic-lower-bound> 89
<dynamic-upper-bound> 89
<else-block> 81
<else-if-block> 81
<end-label> 62
<end-record-number> 103
<end-value> (section 5.4.2.3 76, section 5.4.2.10

82)
<English-month-name> 30
<enum-declaration> 56
<enum-element> 56
<EOL> 25
<eom-character> 25
<EOS> 25
<equality-operator> 152
<eqv-operator> 162
<erase-element> 90
<erase-list> 90
<erase-statement> 90

<error-behavior> 97
<error-handling-statement> 96
<error-number> 98
<Error-statement> 98
<event-argument> 86
<event-argument-list> 86
<event-declaration> 60
<event-handler-name> 68
<event-parameter-list> 60
<exit-do-statement> 80
<exit-for-statement> 79
<exit-function-statement> 86
<exit-property-statement> 86
<exit-sub-statement> 85
<explicit-for-each-statement> 78
<explicit-for-statement> 76
<exponent> 26
<exponent-clause> 119
<exponentiation-operator> 147
<exponent-letter> 26
<expression> 128
<extended-line> 25
<external-function> 57
<external-proc-dcl> 57
<external-sub> 57
<file-number> 102
<file-number-list> 102
<file-statement> 98
<first-Japanese-identifier-character> 33
<first-Korean-identifier-character> 33
<first-Latin-identifier-character> 33
<first-sChinese-identifier-character> 33
<first-tChinese-identifier-character> 33
<fixed-length-string-spec> 52
<FLOAT> 26
<floating-point-literal> 26
<floating-point-type-suffix> 26
<for-clause> 76
<for-each-clause> 78
<for-each-statement> 78
<FOREIGN-NAME> 37
<for-statement> 76

<fractional-digits> 26
<function-declaration> 62
<function-name> 64
<function-type> 65
<future-reserved> 35
<get-statement> 115
<global-enum-declaration> 56
<global-variable-declaration> 49
<gosub-statement> 84
<goto-statement> 83
<greater-than-equal-operator> 153
<greater-than-operator> 153
<hex-digit> 26
<hex-literal> 26
<hour-value> 30
<IDENTIFIER> 35
<identifier-statement-label> 74
<if-statement> 81
<if-with-empty-then> 81
<if-with-non-empty-then> 81
<implemented-name> 69
<implements-directive> 60
<imp-operator> 163

<index-expression> 168
<inequality-operator> 152
<initial-static> 64
<input-list> 111
<input-statement> 111
<input-variable> 111
<instance-expression> 166
<INTEGER> 26
<integer-digits> 26
<integer-division-operator> 145
<integer-expression> 172
<integer-literal> 26
<is-operator> 156
<Japanese-identifier> 33
<Korean-identifier> 33
<Latin-identifier> 33
<left-date-value> 30
<len-clause> 99
<length> 91
<less-than-equal-operator> 153
<less-than-operator> 153
<let-statement> 93
<letter-range> 47
<lex-identifier> 33
<l-expression> 128
<lib-clause> 57
<lib-info> 57
<lifecycle-handler-name> 70
<like-operator> 154
<like-pattern-char> 154
<like-pattern-charlist> 154
<like-pattern-charlist-char> 154
<like-pattern-charlist-element> 154
<like-pattern-charlist-range> 154
<like-pattern-element> 154
<like-pattern-expression> 154
<like-pattern-string> 154
<line-continuation> 25
<line-input-statement> 105
<line-number-label> 74
<line-terminator> 24
<line-width> 106

285 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

<list-or-label> 81
<literal-expression> 133
<literal-identifier> 35
<local-const-declaration> 89
<local-variable-declaration> 88
<lock> 99
<lock-statement> 103
<logical-line> 25
<logical-operator> 157
<lower-bound> 51
<lset-statement> 92
<marked-file-number> 102
<marker-keyword> 35
<member> 56
<member-access-expression> 166
<member-list> 56
<middle-date-value> 30
<mid-statement> 91
<minute-value> 30
<mode> 99
<mode-clause> 99
<mode-specifier> 91
<module-body-lines> 25

<module-body-logical-structure> 25
<module-body-physical-structure> 24
<module-const-declaration> 53
<module-variable-declaration> 49
<module-variable-declaration-list> 49
<modulo-operator> 145
<month-name> 30
<most-Unicode-class-Zs> 25
<multiplication-operator> 142
<name> 44
<named-argument> 169
<named-argument-list> 169
<nested-for-statement> 76
<new-expression> 134
<NO-LINE-CONTINUATION> 25
<non-line-termination-character> 24
<non-terminated-line> 24
<not-operator> 159
<NO-WS> 25
<numeric-coercion-string> 119
<object-literal-identifier> 35
<octal-digit> 26
<octal-literal> 26
<on-error-statement> 97
<on-gosub-statement> 85
<on-goto-statement> 84
<open-statement> 99
<operator-expression> 134
<operator-identifier> 35
<optional-array-clause> 54
<optional-param> 65
<optional-parameters> 65
<optional-prefix> 65
<option-base-directive> 45
<option-compare-directive> 45
<option-explicit-directive> 46
<option-private-directive> 46
<or-operator> 161
<output-clause> 108
<output-expression> 108
<output-item> 108
<output-list> 108

<param-array> 65
<param-dcl> 65
<parameter-list> 65
<parameter-mechanism> 65
<parameter-type> 65
<parenthesized-expression> 133
<path-name> 99
<position> 103
<positional-argument> 169
<positional-or-named-argument-list> 169
<positional-param> 65
<positional-parameters> 65
<prefixed-name> 64
<print-statement> 107
<private-external-procedure-declaration> 57
<private-variable-declaration> 49
<procedural-module> 41
<procedural-module-body> 44
<procedural-module-code-element> 61
<procedural-module-code-section> 61
<procedural-module-declaration-element> 44
<procedural-module-declaration-section> 44
<procedural-module-directive-element> 44

<procedural-module-header> 41
<procedure-body> 73
<procedure-declaration> 61
<procedure-parameters> 65
<procedure-pointer-expression> 173
<procedure-scope> 63
<property-get-declaration> 62
<property-lhs-declaration> 62
<property-parameters> 65
<public-const-declaration> 53
<public-enum-declaration> 56
<public-external-procedure-declaration> 57
<public-type-declaration> 54
<public-variable-declaration> 49
<put-statement> 113
<quoted-identifier> 41
<raiseevent-statement> 86
<range-clause> 82
<rec-length> 99
<record-number> 113
<record-range> 103
<redim-declaration-list> 89
<redim-statement> 89
<redim-typed-variable-dcl> 89
<redim-untyped-dcl> 89
<redim-variable-dcl> 89
<regional-number-string> 119
<relational-operator> 149
<rem-keyword> 35
<rem-statement> 75
<required-positional-argument> 169
<reserved-for-implementation-use> 35
<reserved-identifier> 35
<reserved-member-name> 54
<reserved-name> 35
<reserved-type-identifier> 35
<resume-statement> 97
<return-statement> 85
<right-date-value> 30
<rset-statement> 92
<same-line-statement> 81
<second-value> 30

286 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

<seek-statement> 103
<select-case-statement> 82
<select-expression> 82
<set-statement> 95
<sign> 119
<simple-for-each-statement> 78
<simple-for-statement> 76
<simple-name-expression> 163
<simplified-Chinese-identifier> 33
<single-letter> 47
<single-line-else-clause> 81
<single-line-if-statement> 81
<single-quote> 25
<source-line> 24
<space-character> 25
<spc-clause> 108
<spc-number> 108
<special-form> 35
<special-token> 25
<start -record-number> 103
<start> 91
<start-value> (section 5.4.2.3 76, section 5.4.2.10

82)

<statement> 73
<statement-block> 73
<Statement-keyword> 35
<statement-label> 74
<statement-label-definition> 74
<statement-label-list> 74
<static-variable-declaration> 88
<step-clause> 76
<step-increment> 76
<stop-statement> 83
<STRING> 32
<string-argument> 91
<string-character> 32
<string-length> 52
<subroutine-declaration> 62
<subroutine-name> 64
<subsequent-Japanese-identifier-character> 33
<subsequent-Korean-identifier-character> 33
<subsequent-sChinese-identifier-character> 33
<subsequent-tChinese-identifier-character> 33
<subtraction-operator> 141
<tab-character> 25
<tab-clause> 108
<tab-number> 108
<tab-number-clause> 108
<time-separator> 30
<time-value> 30
<traditional-Chinese-identifier> 33
<trailing-static> 64
<TYPED-NAME> 37
<typed-name-const-item> 53
<typed-name-param-dcl> 65
<typed-variable-dcl> 50
<type-expression> 172
<typeof-is-expression> 133
<type-spec> 52
<type-suffix> 37
<udt-declaration> 54
<udt-member> 54
<udt-member-list> 54
<unary-minus-operator> 139
<underscore> 25

<universal-letter-range> 47
<unlock-statement> 104
<unmarked-file-number> 102
<unrestricted-name> 44
<until-clause> 79
<untyped-name> 44
<untyped-name-const-item> 53
<untyped-name-member-dcl> 54
<untyped-name-param-dcl> 65
<untyped-variable-dcl> 50
<upper-bound> 51
<value-expression> 128
<value-param> 65
<variable> 115
<variable-dcl> 50
<variable-declaration-list> 49
<variable-expression> 172
<variable-name> 105
<variant-literal-identifier> 35
<while-clause> 79
<while-statement> 76
<width-statement> 106
<with-dictionary-access-expression> 170

<withevents-variable-dcl> 51
<with-expression> 170
<with-member-access-expression> 170
<with-statement> 87
<write-statement> 109
<WS> 25
<WSC> 25
<xor-operator> 161

=

= operator 152

>

> operator 153
>= operator 153

A

AddressOf expression 173
Aggregate data values 16
Aggregate Extent 19
Aggregate variables 20
And operator 160
Array type 14
Automatic object instantiation 22

B

binary - operator 141
Boolean 14
boolean expression 172
bound variable expression 172
Byte 14

C

Change tracking 282
Character encodings 24
Class 21

287 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

class module 58
Conditional compilation 38
 Const directive 38
 If directives 39
conditional compilation expression 171
Const directive 38
constant expression 170
constrained expression 170
Currency 14

D

Data values 14
Date 14
Date tokens 30
Decimal 14
Declared type (section 2.2 17, section 2.3 19)

Dependent variables 20
dictionary access expression 170
Double 14

E

Empty 14
Entity 17
Enum 14
Eqv operator 162
Error 14
Events 21
expression 128
 AddressOf 173
 binding context 132
 boolean 172
 bound variable 172
 classifications 128
 conditional compilation 171
 constant 170
 constrained 170
 dictionary access 170
 evaluation 129
 index 168
 instance 166
 integer 172
 literal 133
 member access 166
 New 134
 operator 134
 parenthesized 133
 simple name 163
 type 172
 TypeOf ... Is 133
 variable 172
 With 170
Extended environment 22
extensible module 43
External entities 23

F

file statement 98

G

Glossary 11

H

Host application 14
Host environment 23
host project 41

I

Identifier tokens 33
If directives 39
Imp operator 163
implicit coercion 116

index expression 168
Informative references 11
instance expression 166
Integer 14
integer expression 172
Introduction 11
Is operator 156

L

Let-coercion 116
Lexical rules 24
Lexical tokens 25
library project 41
Like operator 154
literal expression 133
Logical line grammar 25
logical operators 157
Long 14
LongLong 14
LongPtr 17

M

member access expression 166
Member resolution 132
Missing 14
Mod operator 145
module
 bodies 44
 body 41
 class 58
 declaration section 44

 declarations 48
 extensibility 43
 header 41
 predefined procedural 179
Module Extent 19
Module line structure 24

N

New expression 134
Normative references 11
Not operator 159
Null 14
Number tokens 26

O

Object Extent 19
Object reference 14

288 / 288

[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024

Objects 21
 events 21
operator expression 134
option directives 45
Or operator 161
Overview (synopsis) 12

P

parenthesized expression 133
Physical line grammar 24
predefined procedural modules 179
procedure body 73
Procedure Extent 19
Procedures 21
Program Extent 19
project 41

 VBA 174
project name 41
project reference 41
Projects 22
Property 21

R

References
 informative 11
 normative 11
relational operator 149

S

Separator and special tokens 25
Set-coercion 127
simple name expression 163
Single 14
source project 41
Specification conventions 12
String 14
String tokens 32

T

Tracking changes 282
type expression 172

TypeOf ... Is expression 133

U

UDT (user-defined type) 14
unary - operator 139
User-defined type (UDT) 14

V

Value types 14
variable expression 172
Variables 19
 aggregate 20
 dependent 20
Variant 17
VBA environment 14
 extended 22
 program organization 41

VBA project 174
VBA standard library 22

W

With expression 170

X

Xor operator 161

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 VBA Language Specification Overview
	1.4 Specification Conventions

	2 VBA Computational Environment
	2.1 Data Values and Value Types
	2.1.1 Aggregate Data Values

	2.2 Entities and Declared Types
	2.3 Variables
	2.3.1 Aggregate Variables

	2.4 Procedures
	2.5 Objects
	2.5.1 Automatic Object Instantiation

	2.6 Projects
	2.7 Extended Environment
	2.7.1 The VBA Standard Library
	2.7.2 External Variables, Procedures, and Objects
	2.7.3 Host Environment

	3 Lexical Rules for VBA Programs
	3.1 Character Encodings
	3.2 Module Line Structure
	3.2.1 Physical Line Grammar
	3.2.2 Logical Line Grammar

	3.3 Lexical Tokens
	3.3.1 Separator and Special Tokens
	3.3.2 Number Tokens
	3.3.3 Date Tokens
	3.3.4 String Tokens
	3.3.5 Identifier Tokens
	3.3.5.1 Non-Latin Identifiers
	3.3.5.1.1 Japanese Identifiers
	3.3.5.1.2 Korean Identifiers
	3.3.5.1.3 Simplified Chinese Identifiers
	3.3.5.1.4 Traditional Chinese Identifiers

	3.3.5.2 Reserved Identifiers and IDENTIFIER
	3.3.5.3 Special Identifier Forms

	3.4 Conditional Compilation
	3.4.1 Conditional Compilation Const Directive
	3.4.2 Conditional Compilation If Directives

	4 VBA Program Organization
	4.1 Projects
	4.2 Modules
	4.2.1 Module Extensibility

	5 Module Bodies
	5.1 Module Body Structure
	5.2 Module Declaration Section Structure
	5.2.1 Option Directives
	5.2.1.1 Option Compare Directive
	5.2.1.2 Option Base Directive
	5.2.1.3 Option Explicit Directive
	5.2.1.4 Option Private Directive

	5.2.2 Implicit Definition Directives
	5.2.3 Module Declarations
	5.2.3.1 Module Variable Declaration Lists
	5.2.3.1.1 Variable Declarations
	5.2.3.1.2 WithEvents Variable Declarations
	5.2.3.1.3 Array Dimensions and Bounds
	5.2.3.1.4 Variable Type Declarations
	5.2.3.1.5 Implicit Type Determination

	5.2.3.2 Const Declarations
	5.2.3.3 User Defined Type Declarations
	5.2.3.4 Enum Declarations
	5.2.3.5 External Procedure Declaration
	5.2.3.6 Circular Module Dependencies

	5.2.4 Class Module Declarations
	5.2.4.1 Non-Syntactic Class Characteristics
	5.2.4.1.1 Class Accessibility and Instancing
	5.2.4.1.2 Default Instance Variables Static Semantics

	5.2.4.2 Implements Directive
	5.2.4.3 Event Declaration

	5.3 Module Code Section Structure
	5.3.1 Procedure Declarations
	5.3.1.1 Procedure Scope
	5.3.1.2 Static Procedures
	5.3.1.3 Procedure Names
	5.3.1.4 Function Type Declarations
	5.3.1.5 Parameter Lists
	5.3.1.6 Subroutine and Function Declarations
	5.3.1.7 Property Declarations
	5.3.1.8 Event Handler Declarations
	5.3.1.9 Implemented Name Declarations
	5.3.1.10 Lifecycle Handler Declarations
	5.3.1.11 Procedure Invocation Argument Processing

	5.4 Procedure Bodies and Statements
	5.4.1 Statement Blocks
	5.4.1.1 Statement Labels
	5.4.1.2 Rem Statement

	5.4.2 Control Statements
	5.4.2.1 Call Statement
	5.4.2.2 While Statement
	5.4.2.3 For Statement
	5.4.2.4 For Each Statement
	5.4.2.4.1 Array Enumeration Order

	5.4.2.5 Exit For Statement
	5.4.2.6 Do Statement
	5.4.2.7 Exit Do Statement
	5.4.2.8 If Statement
	5.4.2.9 Single-line If Statement
	5.4.2.10 Select Case Statement
	5.4.2.11 Stop Statement
	5.4.2.12 GoTo Statement
	5.4.2.13 On…GoTo Statement
	5.4.2.14 GoSub Statement
	5.4.2.15 Return Statement
	5.4.2.16 On…GoSub Statement
	5.4.2.17 Exit Sub Statement
	5.4.2.18 Exit Function Statement
	5.4.2.19 Exit Property Statement
	5.4.2.20 RaiseEvent Statement
	5.4.2.21 With Statement
	5.4.2.22 End Statement
	5.4.2.23 Assert Statement

	5.4.3 Data Manipulation Statements
	5.4.3.1 Local Variable Declarations
	5.4.3.2 Local Constant Declarations
	5.4.3.3 ReDim Statement
	5.4.3.4 Erase Statement
	5.4.3.5 Mid/MidB/Mid$/MidB$ Statement
	5.4.3.6 LSet Statement
	5.4.3.7 RSet Statement
	5.4.3.8 Let Statement
	5.4.3.9 Set Statement

	5.4.4 Error Handling Statements
	5.4.4.1 On Error Statement
	5.4.4.2 Resume Statement
	5.4.4.3 Error Statement

	5.4.5 File Statements
	5.4.5.1 Open Statement
	5.4.5.1.1 File Numbers

	5.4.5.2 Close and Reset Statements
	5.4.5.3 Seek Statement
	5.4.5.4 Lock Statement
	5.4.5.5 Unlock Statement
	5.4.5.6 Line Input Statement
	5.4.5.7 Width Statement
	5.4.5.8 Print Statement
	5.4.5.8.1 Output Lists

	5.4.5.9 Write Statement
	5.4.5.10 Input Statement
	5.4.5.11 Put Statement
	5.4.5.12 Get Statement

	5.5 Implicit coercion
	5.5.1 Let-coercion
	5.5.1.1 Static semantics
	5.5.1.2 Runtime semantics
	5.5.1.2.1 Let-coercion between numeric types
	5.5.1.2.1.1 Banker’s rounding

	5.5.1.2.2 Let-coercion to and from Boolean
	5.5.1.2.3 Let-coercion to and from Date
	5.5.1.2.4 Let-coercion to and from String
	5.5.1.2.5 Let-coercion to String * length (fixed-length strings)
	5.5.1.2.6 Let-coercion to and from resizable Byte()
	5.5.1.2.7 Let-coercion to and from non-Byte arrays
	5.5.1.2.8 Let-coercion to and from a UDT
	5.5.1.2.9 Let-coercion to and from Error
	5.5.1.2.10 Let-coercion from Null
	5.5.1.2.11 Let-coercion from Empty
	5.5.1.2.12 Let-coercion to Variant
	5.5.1.2.13 Let-coercion to and from a class or Object or Nothing

	5.5.2 Set-coercion
	5.5.2.1 Static semantics
	5.5.2.2 Runtime semantics
	5.5.2.2.1 Set-coercion to and from a class or Object or Nothing
	5.5.2.2.2 Set-coercion to and from non-object types

	5.6 Expressions
	5.6.1 Expression Classifications
	5.6.2 Expression Evaluation
	5.6.2.1 Evaluation to a data value
	5.6.2.2 Evaluation to a simple data value
	5.6.2.3 Default Member Recursion Limits

	5.6.3 Member Resolution
	5.6.4 Expression Binding Contexts
	5.6.5 Literal Expressions
	5.6.6 Parenthesized Expressions
	5.6.7 TypeOf…Is Expressions
	5.6.8 New Expressions
	5.6.9 Operator Expressions
	5.6.9.1 Operator Precedence and Associativity
	5.6.9.2 Simple Data Operators
	5.6.9.3 Arithmetic Operators
	5.6.9.3.1 Unary - Operator
	5.6.9.3.2 + Operator
	5.6.9.3.3 Binary - Operator
	5.6.9.3.4 * Operator
	5.6.9.3.5 / Operator
	5.6.9.3.6 \ Operator and Mod Operator
	5.6.9.3.7 ^ Operator

	5.6.9.4 & Operator
	5.6.9.5 Relational Operators
	5.6.9.5.1 = Operator
	5.6.9.5.2 <> Operator
	5.6.9.5.3 < Operator
	5.6.9.5.4 > Operator
	5.6.9.5.5 <= Operator
	5.6.9.5.6 >= Operator

	5.6.9.6 Like Operator
	5.6.9.7 Is Operator
	5.6.9.8 Logical Operators
	5.6.9.8.1 Not Operator
	5.6.9.8.2 And Operator
	5.6.9.8.3 Or Operator
	5.6.9.8.4 Xor Operator
	5.6.9.8.5 Eqv Operator
	5.6.9.8.6 Imp Operator

	5.6.10 Simple Name Expressions
	5.6.11 Instance Expressions
	5.6.12 Member Access Expressions
	5.6.13 Index Expressions
	5.6.13.1 Argument Lists
	5.6.13.2 Argument List Queues

	5.6.14 Dictionary Access Expressions
	5.6.15 With Expressions
	5.6.16 Constrained Expressions
	5.6.16.1 Constant Expressions
	5.6.16.2 Conditional Compilation Expressions
	5.6.16.3 Boolean Expressions
	5.6.16.4 Integer Expressions
	5.6.16.5 Variable Expressions
	5.6.16.6 Bound Variable Expressions
	5.6.16.7 Type Expressions
	5.6.16.8 AddressOf Expressions

	6 VBA Standard Library
	6.1 VBA Project
	6.1.1 Predefined Enums
	6.1.1.1 FormShowConstants
	6.1.1.2 VbAppWinStyle
	6.1.1.3 VbCalendar
	6.1.1.4 VbCallType
	6.1.1.5 VbCompareMethod
	6.1.1.6 VbDateTimeFormat
	6.1.1.7 VbDayOfWeek
	6.1.1.8 VbFileAttribute
	6.1.1.9 VbFirstWeekOfYear
	6.1.1.10 VbIMEStatus
	6.1.1.11 VbMsgBoxResult
	6.1.1.12 VbMsgBoxStyle
	6.1.1.13 VbQueryClose
	6.1.1.14 VbStrConv
	6.1.1.15 VbTriState
	6.1.1.16 VbVarType

	6.1.2 Predefined Procedural Modules
	6.1.2.1 ColorConstants Module
	6.1.2.2 Constants Module
	6.1.2.3 Conversion Module
	6.1.2.3.1 Public Functions
	6.1.2.3.1.1 CBool
	6.1.2.3.1.2 CByte
	6.1.2.3.1.3 CCur
	6.1.2.3.1.4 CDate / CVDate
	6.1.2.3.1.5 CDbl
	6.1.2.3.1.6 CDec
	6.1.2.3.1.7 CInt
	6.1.2.3.1.8 CLng
	6.1.2.3.1.9 CLngLng
	6.1.2.3.1.10 CLngPtr
	6.1.2.3.1.11 CSng
	6.1.2.3.1.12 CStr
	6.1.2.3.1.13 CVar
	6.1.2.3.1.14 CVErr
	6.1.2.3.1.15 Error / Error$
	6.1.2.3.1.16 Fix
	6.1.2.3.1.17 Hex / Hex$
	6.1.2.3.1.18 Int
	6.1.2.3.1.19 Oct / Oct$
	6.1.2.3.1.20 Str / Str$
	6.1.2.3.1.21 Val

	6.1.2.4 DateTime Module
	6.1.2.4.1 Public Functions
	6.1.2.4.1.1 DateAdd
	6.1.2.4.1.2 DateDiff
	6.1.2.4.1.3 DatePart
	6.1.2.4.1.4 DateSerial
	6.1.2.4.1.5 DateValue
	6.1.2.4.1.6 Day
	6.1.2.4.1.7 Hour
	6.1.2.4.1.8 Minute
	6.1.2.4.1.9 Month
	6.1.2.4.1.10 Second
	6.1.2.4.1.11 TimeSerial
	6.1.2.4.1.12 TimeValue
	6.1.2.4.1.13 Weekday
	6.1.2.4.1.14 Year

	6.1.2.4.2 Public Properties
	6.1.2.4.2.1 Calendar
	6.1.2.4.2.2 Date/Date$
	6.1.2.4.2.3 Now
	6.1.2.4.2.4 Time/Time$
	6.1.2.4.2.5 Timer

	6.1.2.5 FileSystem
	6.1.2.5.1 Public Functions
	6.1.2.5.1.1 CurDir/CurDir$
	6.1.2.5.1.2 Dir
	6.1.2.5.1.3 EOF
	6.1.2.5.1.4 FileAttr
	6.1.2.5.1.5 FileDateTime
	6.1.2.5.1.6 FileLen
	6.1.2.5.1.7 FreeFile
	6.1.2.5.1.8 Loc
	6.1.2.5.1.9 LOF
	6.1.2.5.1.10 Seek

	6.1.2.5.2 Public Subroutines
	6.1.2.5.2.1 ChDir
	6.1.2.5.2.2 ChDrive
	6.1.2.5.2.3 FileCopy
	6.1.2.5.2.4 Kill
	6.1.2.5.2.5 MkDir
	6.1.2.5.2.6 RmDir
	6.1.2.5.2.7 SetAttr

	6.1.2.6 Financial
	6.1.2.6.1 Public Functions
	6.1.2.6.1.1 DDB
	6.1.2.6.1.2 FV
	6.1.2.6.1.3 IPmt
	6.1.2.6.1.4 IRR
	6.1.2.6.1.5 MIRR
	6.1.2.6.1.6 NPer
	6.1.2.6.1.7 NPV
	6.1.2.6.1.8 Pmt
	6.1.2.6.1.9 PPmt
	6.1.2.6.1.10 PV
	6.1.2.6.1.11 Rate
	6.1.2.6.1.12 SLN
	6.1.2.6.1.13 SYD

	6.1.2.7 Information
	6.1.2.7.1 Public Functions
	6.1.2.7.1.1 IMEStatus
	6.1.2.7.1.2 IsArray
	6.1.2.7.1.3 IsDate
	6.1.2.7.1.4 IsEmpty
	6.1.2.7.1.5 IsError
	6.1.2.7.1.6 IsMissing
	6.1.2.7.1.7 IsNull
	6.1.2.7.1.8 IsNumeric
	6.1.2.7.1.9 IsObject
	6.1.2.7.1.10 QBColor
	6.1.2.7.1.11 RGB
	6.1.2.7.1.12 TypeName
	6.1.2.7.1.13 VarType

	6.1.2.8 Interaction
	6.1.2.8.1 Public Functions
	6.1.2.8.1.1 CallByName
	6.1.2.8.1.2 Choose
	6.1.2.8.1.3 Command
	6.1.2.8.1.4 CreateObject
	6.1.2.8.1.5 DoEvents
	6.1.2.8.1.6 Environ / Environ$
	6.1.2.8.1.7 GetAllSettings
	6.1.2.8.1.8 GetAttr
	6.1.2.8.1.9 GetObject
	6.1.2.8.1.10 GetSetting
	6.1.2.8.1.11 IIf
	6.1.2.8.1.12 InputBox
	6.1.2.8.1.13 MsgBox
	6.1.2.8.1.14 Partition
	6.1.2.8.1.15 Shell
	6.1.2.8.1.16 Switch

	6.1.2.8.2 Public Subroutines
	6.1.2.8.2.1 AppActivate
	6.1.2.8.2.2 Beep
	6.1.2.8.2.3 DeleteSetting
	6.1.2.8.2.4 SaveSetting
	6.1.2.8.2.5 SendKeys

	6.1.2.9 KeyCodeConstants
	6.1.2.10 Math
	6.1.2.10.1 Public Functions
	6.1.2.10.1.1 Abs
	6.1.2.10.1.2 Atn
	6.1.2.10.1.3 Cos
	6.1.2.10.1.4 Exp
	6.1.2.10.1.5 Log
	6.1.2.10.1.6 Rnd
	6.1.2.10.1.7 Round
	6.1.2.10.1.8 Sgn
	6.1.2.10.1.9 Sin
	6.1.2.10.1.10 Sqr
	6.1.2.10.1.11 Tan

	6.1.2.10.2 Public Subroutines
	6.1.2.10.2.1 Randomize

	6.1.2.11 Strings
	6.1.2.11.1 Public Functions
	6.1.2.11.1.1 Asc / AscW
	6.1.2.11.1.2 AscB
	6.1.2.11.1.3 AscW
	6.1.2.11.1.4 Chr / Chr$
	6.1.2.11.1.5 ChrB / ChrB$
	6.1.2.11.1.6 ChrW/ ChrW$
	6.1.2.11.1.7 Filter
	6.1.2.11.1.8 Format
	6.1.2.11.1.9 Format$
	6.1.2.11.1.10 FormatCurrency
	6.1.2.11.1.11 FormatDateTime
	6.1.2.11.1.12 FormatNumber
	6.1.2.11.1.13 FormatPercent
	6.1.2.11.1.14 InStr / InStrB
	6.1.2.11.1.15 InStrRev
	6.1.2.11.1.16 Join
	6.1.2.11.1.17 LCase
	6.1.2.11.1.18 LCase$
	6.1.2.11.1.19 Left / LeftB
	6.1.2.11.1.20 Left$
	6.1.2.11.1.21 LeftB$
	6.1.2.11.1.22 Len / LenB
	6.1.2.11.1.23 LTrim / RTrim / Trim
	6.1.2.11.1.24 LTrim$ / RTrim$ / Trim$
	6.1.2.11.1.25 Mid / MidB
	6.1.2.11.1.26 Mid$
	6.1.2.11.1.27 MidB$
	6.1.2.11.1.28 MonthName
	6.1.2.11.1.29 Replace
	6.1.2.11.1.30 Right / RightB
	6.1.2.11.1.31 Right$
	6.1.2.11.1.32 RightB$
	6.1.2.11.1.33 Space
	6.1.2.11.1.34 Space$
	6.1.2.11.1.35 Split
	6.1.2.11.1.36 StrComp
	6.1.2.11.1.37 StrConv
	6.1.2.11.1.38 String
	6.1.2.11.1.39 String$
	6.1.2.11.1.40 StrReverse
	6.1.2.11.1.41 UCase
	6.1.2.11.1.42 UCase$
	6.1.2.11.1.43 WeekdayName

	6.1.2.12 SystemColorConstants

	6.1.3 Predefined Class Modules
	6.1.3.1 Collection Object
	6.1.3.1.1 Public Functions
	6.1.3.1.1.1 Count
	6.1.3.1.1.2 Item

	6.1.3.1.2 Public Subroutines
	6.1.3.1.2.1 Add
	6.1.3.1.2.2 Remove

	6.1.3.2 Err Class
	6.1.3.2.1 Public Subroutines
	6.1.3.2.1.1 Clear
	6.1.3.2.1.2 Raise

	6.1.3.2.2 Public Properties
	6.1.3.2.2.1 Description
	6.1.3.2.2.2 HelpContext
	6.1.3.2.2.3 HelpFile
	6.1.3.2.2.4 LastDIIError
	6.1.3.2.2.5 Number
	6.1.3.2.2.6 Source

	6.1.3.3 Global Class
	6.1.3.3.1 Public Subroutines
	6.1.3.3.1.1 Load
	6.1.3.3.1.2 Unload

	7 Change Tracking
	8 Index

