[bookmark: _GoBack][MS-VBAL]:
VBA Language Specification

Intellectual Property Rights Notice for Open Specifications Documentation
· Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.
· Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.
· No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
· Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
· License Programs. To see all of the protocols in scope under a specific license program and the associated patents, visit the Patent Map.
· Trademarks. The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
· Fictitious Names. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.
Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.
Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.
Support. For questions and support, please contact dochelp@microsoft.com.
Revision Summary
	Date
	Revision History
	Revision Class
	Comments

	6/30/2008
	0.9
	Major
	First release. Additional indexing and cross referencing as well as minor editorial and technical edits anticipated prior to 1.0 release.

	6/30/2009
	0.95
	Major
	Updated to include preliminary information on the VBA language from the pre-release version of VBA 7.

	3/15/2010
	1.0
	Major
	Updated to include information on the VBA language as of VBA 7.

	3/15/2012
	1.01
	Major
	Updated to include information on the VBA language as of VBA 7.1, as shipped in the Office 15 Technical Preview.

	4/30/2014
	1.02
	Editorial
	Revised and edited technical content.

	12/15/2016
	1.02
	None
	No changes to the meaning, language, or formatting of the technical content.

	6/18/2019
	1.3
	Minor
	Clarified the meaning of the technical content.

	9/24/2019
	1.4
	Minor
	Clarified the meaning of the technical content.

	8/18/2020
	1.5
	Minor
	Clarified the meaning of the technical content.

	11/17/2020
	1.6
	Minor
	Clarified the meaning of the technical content.

	2/16/2021
	1.7
	Minor
	Clarified the meaning of the technical content.

	2/20/2024
	1.8
	Minor
	Clarified the meaning of the technical content.

	4/16/2024
	2.0
	Major
	Significantly changed the technical content.

	5/21/2024
	2.1
	Minor
	Clarified the meaning of the technical content.

	11/12/2024
	2.2
	Minor
	Clarified the meaning of the technical content.

Table of Contents
1	Introduction	11
1.1	Glossary	11
1.2	References	11
1.2.1	Normative References	11
1.2.2	Informative References	11
1.3	VBA Language Specification Overview	12
1.4	Specification Conventions	12
2	VBA Computational Environment	14
2.1	Data Values and Value Types	14
2.1.1	Aggregate Data Values	16
2.2	Entities and Declared Types	17
2.3	Variables	19
2.3.1	Aggregate Variables	20
2.4	Procedures	21
2.5	Objects	21
2.5.1	Automatic Object Instantiation	22
2.6	Projects	22
2.7	Extended Environment	22
2.7.1	The VBA Standard Library	22
2.7.2	External Variables, Procedures, and Objects	23
2.7.3	Host Environment	23
3	Lexical Rules for VBA Programs	24
3.1	Character Encodings	24
3.2	Module Line Structure	24
3.2.1	Physical Line Grammar	24
3.2.2	Logical Line Grammar	25
3.3	Lexical Tokens	25
3.3.1	Separator and Special Tokens	25
3.3.2	Number Tokens	26
3.3.3	Date Tokens	30
3.3.4	String Tokens	32
3.3.5	Identifier Tokens	33
3.3.5.1	Non-Latin Identifiers	33
3.3.5.1.1	Japanese Identifiers	34
3.3.5.1.2	Korean Identifiers	34
3.3.5.1.3	Simplified Chinese Identifiers	35
3.3.5.1.4	Traditional Chinese Identifiers	35
3.3.5.2	Reserved Identifiers and IDENTIFIER	35
3.3.5.3	Special Identifier Forms	37
3.4	Conditional Compilation	38
3.4.1	Conditional Compilation Const Directive	38
3.4.2	Conditional Compilation If Directives	39
4	VBA Program Organization	41
4.1	Projects	41
4.2	Modules	41
4.2.1	Module Extensibility	43
5	Module Bodies	44
5.1	Module Body Structure	44
5.2	Module Declaration Section Structure	44
5.2.1	Option Directives	45
5.2.1.1	Option Compare Directive	45
5.2.1.2	Option Base Directive	45
5.2.1.3	Option Explicit Directive	46
5.2.1.4	Option Private Directive	46
5.2.2	Implicit Definition Directives	47
5.2.3	Module Declarations	48
5.2.3.1	Module Variable Declaration Lists	49
5.2.3.1.1	Variable Declarations	50
5.2.3.1.2	WithEvents Variable Declarations	51
5.2.3.1.3	Array Dimensions and Bounds	51
5.2.3.1.4	Variable Type Declarations	52
5.2.3.1.5	Implicit Type Determination	53
5.2.3.2	Const Declarations	53
5.2.3.3	User Defined Type Declarations	54
5.2.3.4	Enum Declarations	56
5.2.3.5	External Procedure Declaration	57
5.2.3.6	Circular Module Dependencies	58
5.2.4	Class Module Declarations	58
5.2.4.1	Non-Syntactic Class Characteristics	58
5.2.4.1.1	Class Accessibility and Instancing	58
5.2.4.1.2	Default Instance Variables Static Semantics	59
5.2.4.2	Implements Directive	60
5.2.4.3	Event Declaration	60
5.3	Module Code Section Structure	61
5.3.1	Procedure Declarations	62
5.3.1.1	Procedure Scope	63
5.3.1.2	Static Procedures	64
5.3.1.3	Procedure Names	64
5.3.1.4	Function Type Declarations	65
5.3.1.5	Parameter Lists	65
5.3.1.6	Subroutine and Function Declarations	67
5.3.1.7	Property Declarations	67
5.3.1.8	Event Handler Declarations	68
5.3.1.9	Implemented Name Declarations	69
5.3.1.10	Lifecycle Handler Declarations	70
5.3.1.11	Procedure Invocation Argument Processing	71
5.4	Procedure Bodies and Statements	73
5.4.1	Statement Blocks	73
5.4.1.1	Statement Labels	74
5.4.1.2	Rem Statement	75
5.4.2	Control Statements	75
5.4.2.1	Call Statement	75
5.4.2.2	While Statement	76
5.4.2.3	For Statement	76
5.4.2.4	For Each Statement	78
5.4.2.4.1	Array Enumeration Order	79
5.4.2.5	Exit For Statement	79
5.4.2.6	Do Statement	79
5.4.2.7	Exit Do Statement	80
5.4.2.8	If Statement	81
5.4.2.9	Single-line If Statement	81
5.4.2.10	Select Case Statement	82
5.4.2.11	Stop Statement	83
5.4.2.12	GoTo Statement	83
5.4.2.13	On…GoTo Statement	84
5.4.2.14	GoSub Statement	84
5.4.2.15	Return Statement	85
5.4.2.16	On…GoSub Statement	85
5.4.2.17	Exit Sub Statement	85
5.4.2.18	Exit Function Statement	86
5.4.2.19	Exit Property Statement	86
5.4.2.20	RaiseEvent Statement	86
5.4.2.21	With Statement	87
5.4.2.22	End Statement	88
5.4.2.23	Assert Statement	88
5.4.3	Data Manipulation Statements	88
5.4.3.1	Local Variable Declarations	88
5.4.3.2	Local Constant Declarations	89
5.4.3.3	ReDim Statement	89
5.4.3.4	Erase Statement	90
5.4.3.5	Mid/MidB/Mid$/MidB$ Statement	91
5.4.3.6	LSet Statement	92
5.4.3.7	RSet Statement	92
5.4.3.8	Let Statement	93
5.4.3.9	Set Statement	95
5.4.4	Error Handling Statements	96
5.4.4.1	On Error Statement	97
5.4.4.2	Resume Statement	97
5.4.4.3	Error Statement	98
5.4.5	File Statements	98
5.4.5.1	Open Statement	99
5.4.5.1.1	File Numbers	102
5.4.5.2	Close and Reset Statements	102
5.4.5.3	Seek Statement	103
5.4.5.4	Lock Statement	103
5.4.5.5	Unlock Statement	104
5.4.5.6	Line Input Statement	105
5.4.5.7	Width Statement	106
5.4.5.8	Print Statement	107
5.4.5.8.1	Output Lists	108
5.4.5.9	Write Statement	109
5.4.5.10	Input Statement	111
5.4.5.11	Put Statement	113
5.4.5.12	Get Statement	115
5.5	Implicit coercion	116
5.5.1	Let-coercion	116
5.5.1.1	Static semantics	117
5.5.1.2	Runtime semantics	117
5.5.1.2.1	Let-coercion between numeric types	117
5.5.1.2.1.1	Banker’s rounding	118
5.5.1.2.2	Let-coercion to and from Boolean	119
5.5.1.2.3	Let-coercion to and from Date	119
5.5.1.2.4	Let-coercion to and from String	119
5.5.1.2.5	Let-coercion to String * length (fixed-length strings)	123
5.5.1.2.6	Let-coercion to and from resizable Byte()	123
5.5.1.2.7	Let-coercion to and from non-Byte arrays	124
5.5.1.2.8	Let-coercion to and from a UDT	124
5.5.1.2.9	Let-coercion to and from Error	125
5.5.1.2.10	Let-coercion from Null	125
5.5.1.2.11	Let-coercion from Empty	126
5.5.1.2.12	Let-coercion to Variant	126
5.5.1.2.13	Let-coercion to and from a class or Object or Nothing	126
5.5.2	Set-coercion	127
5.5.2.1	Static semantics	127
5.5.2.2	Runtime semantics	127
5.5.2.2.1	Set-coercion to and from a class or Object or Nothing	127
5.5.2.2.2	Set-coercion to and from non-object types	127
5.6	Expressions	128
5.6.1	Expression Classifications	128
5.6.2	Expression Evaluation	129
5.6.2.1	Evaluation to a data value	129
5.6.2.2	Evaluation to a simple data value	131
5.6.2.3	Default Member Recursion Limits	131
5.6.3	Member Resolution	132
5.6.4	Expression Binding Contexts	132
5.6.5	Literal Expressions	133
5.6.6	Parenthesized Expressions	133
5.6.7	TypeOf…Is Expressions	133
5.6.8	New Expressions	134
5.6.9	Operator Expressions	134
5.6.9.1	Operator Precedence and Associativity	134
5.6.9.2	Simple Data Operators	135
5.6.9.3	Arithmetic Operators	135
5.6.9.3.1	Unary - Operator	139
5.6.9.3.2	+ Operator	140
5.6.9.3.3	Binary - Operator	141
5.6.9.3.4	* Operator	142
5.6.9.3.5	/ Operator	143
5.6.9.3.6	\ Operator and Mod Operator	145
5.6.9.3.7	^ Operator	147
5.6.9.4	& Operator	148
5.6.9.5	Relational Operators	149
5.6.9.5.1	= Operator	152
5.6.9.5.2	<> Operator	152
5.6.9.5.3	< Operator	153
5.6.9.5.4	> Operator	153
5.6.9.5.5	<= Operator	153
5.6.9.5.6	>= Operator	153
5.6.9.6	Like Operator	154
5.6.9.7	Is Operator	156
5.6.9.8	Logical Operators	157
5.6.9.8.1	Not Operator	159
5.6.9.8.2	And Operator	160
5.6.9.8.3	Or Operator	161
5.6.9.8.4	Xor Operator	161
5.6.9.8.5	Eqv Operator	162
5.6.9.8.6	Imp Operator	163
5.6.10	Simple Name Expressions	163
5.6.11	Instance Expressions	166
5.6.12	Member Access Expressions	166
5.6.13	Index Expressions	168
5.6.13.1	Argument Lists	169
5.6.13.2	Argument List Queues	169
5.6.14	Dictionary Access Expressions	170
5.6.15	With Expressions	170
5.6.16	Constrained Expressions	170
5.6.16.1	Constant Expressions	170
5.6.16.2	Conditional Compilation Expressions	171
5.6.16.3	Boolean Expressions	172
5.6.16.4	Integer Expressions	172
5.6.16.5	Variable Expressions	172
5.6.16.6	Bound Variable Expressions	172
5.6.16.7	Type Expressions	172
5.6.16.8	AddressOf Expressions	173
6	VBA Standard Library	174
6.1	VBA Project	174
6.1.1	Predefined Enums	174
6.1.1.1	FormShowConstants	174
6.1.1.2	VbAppWinStyle	174
6.1.1.3	VbCalendar	174
6.1.1.4	VbCallType	174
6.1.1.5	VbCompareMethod	175
6.1.1.6	VbDateTimeFormat	175
6.1.1.7	VbDayOfWeek	175
6.1.1.8	VbFileAttribute	175
6.1.1.9	VbFirstWeekOfYear	176
6.1.1.10	VbIMEStatus	176
6.1.1.11	VbMsgBoxResult	177
6.1.1.12	VbMsgBoxStyle	177
6.1.1.13	VbQueryClose	178
6.1.1.14	VbStrConv	178
6.1.1.15	VbTriState	178
6.1.1.16	VbVarType	179
6.1.2	Predefined Procedural Modules	179
6.1.2.1	ColorConstants Module	180
6.1.2.2	Constants Module	180
6.1.2.3	Conversion Module	180
6.1.2.3.1	Public Functions	180
6.1.2.3.1.1	CBool	180
6.1.2.3.1.2	CByte	181
6.1.2.3.1.3	CCur	181
6.1.2.3.1.4	CDate / CVDate	182
6.1.2.3.1.5	CDbl	182
6.1.2.3.1.6	CDec	183
6.1.2.3.1.7	CInt	183
6.1.2.3.1.8	CLng	183
6.1.2.3.1.9	CLngLng	184
6.1.2.3.1.10	CLngPtr	184
6.1.2.3.1.11	CSng	185
6.1.2.3.1.12	CStr	185
6.1.2.3.1.13	CVar	185
6.1.2.3.1.14	CVErr	186
6.1.2.3.1.15	Error / Error$	186
6.1.2.3.1.16	Fix	187
6.1.2.3.1.17	Hex / Hex$	188
6.1.2.3.1.18	Int	188
6.1.2.3.1.19	Oct / Oct$	189
6.1.2.3.1.20	Str / Str$	190
6.1.2.3.1.21	Val	190
6.1.2.4	DateTime Module	191
6.1.2.4.1	Public Functions	191
6.1.2.4.1.1	DateAdd	191
6.1.2.4.1.2	DateDiff	192
6.1.2.4.1.3	DatePart	194
6.1.2.4.1.4	DateSerial	195
6.1.2.4.1.5	DateValue	196
6.1.2.4.1.6	Day	196
6.1.2.4.1.7	Hour	197
6.1.2.4.1.8	Minute	197
6.1.2.4.1.9	Month	197
6.1.2.4.1.10	Second	198
6.1.2.4.1.11	TimeSerial	198
6.1.2.4.1.12	TimeValue	199
6.1.2.4.1.13	Weekday	199
6.1.2.4.1.14	Year	200
6.1.2.4.2	Public Properties	200
6.1.2.4.2.1	Calendar	200
6.1.2.4.2.2	Date/Date$	201
6.1.2.4.2.3	Now	201
6.1.2.4.2.4	Time/Time$	201
6.1.2.4.2.5	Timer	202
6.1.2.5	FileSystem	202
6.1.2.5.1	Public Functions	202
6.1.2.5.1.1	CurDir/CurDir$	202
6.1.2.5.1.2	Dir	202
6.1.2.5.1.3	EOF	203
6.1.2.5.1.4	FileAttr	203
6.1.2.5.1.5	FileDateTime	204
6.1.2.5.1.6	FileLen	204
6.1.2.5.1.7	FreeFile	205
6.1.2.5.1.8	Loc	205
6.1.2.5.1.9	LOF	206
6.1.2.5.1.10	Seek	206
6.1.2.5.2	Public Subroutines	207
6.1.2.5.2.1	ChDir	207
6.1.2.5.2.2	ChDrive	207
6.1.2.5.2.3	FileCopy	207
6.1.2.5.2.4	Kill	208
6.1.2.5.2.5	MkDir	208
6.1.2.5.2.6	RmDir	209
6.1.2.5.2.7	SetAttr	209
6.1.2.6	Financial	210
6.1.2.6.1	Public Functions	210
6.1.2.6.1.1	DDB	210
6.1.2.6.1.2	FV	210
6.1.2.6.1.3	IPmt	211
6.1.2.6.1.4	IRR	212
6.1.2.6.1.5	MIRR	213
6.1.2.6.1.6	NPer	213
6.1.2.6.1.7	NPV	214
6.1.2.6.1.8	Pmt	215
6.1.2.6.1.9	PPmt	215
6.1.2.6.1.10	PV	216
6.1.2.6.1.11	Rate	217
6.1.2.6.1.12	SLN	218
6.1.2.6.1.13	SYD	218
6.1.2.7	Information	219
6.1.2.7.1	Public Functions	219
6.1.2.7.1.1	IMEStatus	219
6.1.2.7.1.2	IsArray	219
6.1.2.7.1.3	IsDate	220
6.1.2.7.1.4	IsEmpty	220
6.1.2.7.1.5	IsError	220
6.1.2.7.1.6	IsMissing	220
6.1.2.7.1.7	IsNull	221
6.1.2.7.1.8	IsNumeric	221
6.1.2.7.1.9	IsObject	222
6.1.2.7.1.10	QBColor	222
6.1.2.7.1.11	RGB	223
6.1.2.7.1.12	TypeName	223
6.1.2.7.1.13	VarType	224
6.1.2.8	Interaction	226
6.1.2.8.1	Public Functions	226
6.1.2.8.1.1	CallByName	226
6.1.2.8.1.2	Choose	226
6.1.2.8.1.3	Command	227
6.1.2.8.1.4	CreateObject	227
6.1.2.8.1.5	DoEvents	228
6.1.2.8.1.6	Environ / Environ$	228
6.1.2.8.1.7	GetAllSettings	229
6.1.2.8.1.8	GetAttr	229
6.1.2.8.1.9	GetObject	230
6.1.2.8.1.10	GetSetting	231
6.1.2.8.1.11	IIf	231
6.1.2.8.1.12	InputBox	232
6.1.2.8.1.13	MsgBox	233
6.1.2.8.1.14	Partition	235
6.1.2.8.1.15	Shell	236
6.1.2.8.1.16	Switch	237
6.1.2.8.2	Public Subroutines	238
6.1.2.8.2.1	AppActivate	238
6.1.2.8.2.2	Beep	238
6.1.2.8.2.3	DeleteSetting	238
6.1.2.8.2.4	SaveSetting	239
6.1.2.8.2.5	SendKeys	239
6.1.2.9	KeyCodeConstants	242
6.1.2.10	Math	245
6.1.2.10.1	Public Functions	245
6.1.2.10.1.1	Abs	245
6.1.2.10.1.2	Atn	245
6.1.2.10.1.3	Cos	246
6.1.2.10.1.4	Exp	246
6.1.2.10.1.5	Log	246
6.1.2.10.1.6	Rnd	247
6.1.2.10.1.7	Round	248
6.1.2.10.1.8	Sgn	248
6.1.2.10.1.9	Sin	249
6.1.2.10.1.10	Sqr	249
6.1.2.10.1.11	Tan	249
6.1.2.10.2	Public Subroutines	250
6.1.2.10.2.1	Randomize	250
6.1.2.11	Strings	250
6.1.2.11.1	Public Functions	250
6.1.2.11.1.1	Asc / AscW	250
6.1.2.11.1.2	AscB	251
6.1.2.11.1.3	AscW	251
6.1.2.11.1.4	Chr / Chr$	252
6.1.2.11.1.5	ChrB / ChrB$	252
6.1.2.11.1.6	ChrW/ ChrW$	253
6.1.2.11.1.7	Filter	253
6.1.2.11.1.8	Format	254
6.1.2.11.1.9	Format$	256
6.1.2.11.1.10	FormatCurrency	256
6.1.2.11.1.11	FormatDateTime	257
6.1.2.11.1.12	FormatNumber	258
6.1.2.11.1.13	FormatPercent	259
6.1.2.11.1.14	InStr / InStrB	260
6.1.2.11.1.15	InStrRev	261
6.1.2.11.1.16	Join	262
6.1.2.11.1.17	LCase	263
6.1.2.11.1.18	LCase$	263
6.1.2.11.1.19	Left / LeftB	263
6.1.2.11.1.20	Left$	264
6.1.2.11.1.21	LeftB$	264
6.1.2.11.1.22	Len / LenB	264
6.1.2.11.1.23	LTrim / RTrim / Trim	265
6.1.2.11.1.24	LTrim$ / RTrim$ / Trim$	265
6.1.2.11.1.25	Mid / MidB	265
6.1.2.11.1.26	Mid$	266
6.1.2.11.1.27	MidB$	266
6.1.2.11.1.28	MonthName	266
6.1.2.11.1.29	Replace	266
6.1.2.11.1.30	Right / RightB	267
6.1.2.11.1.31	Right$	268
6.1.2.11.1.32	RightB$	268
6.1.2.11.1.33	Space	268
6.1.2.11.1.34	Space$	269
6.1.2.11.1.35	Split	269
6.1.2.11.1.36	StrComp	269
6.1.2.11.1.37	StrConv	270
6.1.2.11.1.38	String	271
6.1.2.11.1.39	String$	272
6.1.2.11.1.40	StrReverse	272
6.1.2.11.1.41	UCase	272
6.1.2.11.1.42	UCase$	273
6.1.2.11.1.43	WeekdayName	273
6.1.2.12	SystemColorConstants	274
6.1.3	Predefined Class Modules	275
6.1.3.1	Collection Object	275
6.1.3.1.1	Public Functions	275
6.1.3.1.1.1	Count	275
6.1.3.1.1.2	Item	275
6.1.3.1.2	Public Subroutines	276
6.1.3.1.2.1	Add	276
6.1.3.1.2.2	Remove	276
6.1.3.2	Err Class	277
6.1.3.2.1	Public Subroutines	277
6.1.3.2.1.1	Clear	277
6.1.3.2.1.2	Raise	277
6.1.3.2.2	Public Properties	278
6.1.3.2.2.1	Description	278
6.1.3.2.2.2	HelpContext	278
6.1.3.2.2.3	HelpFile	279
6.1.3.2.2.4	LastDIIError	279
6.1.3.2.2.5	Number	279
6.1.3.2.2.6	Source	279
6.1.3.3	Global Class	280
6.1.3.3.1	Public Subroutines	280
6.1.3.3.1.1	Load	280
6.1.3.3.1.2	Unload	280
7	Change Tracking	282
8	Index	283

[bookmark: section_b6695292f8b64dd4919361da6ccdf816][bookmark: _Toc181683864]Introduction
This specification defines the Visual Basic for Applications (VBA) Language, an implementation-independent and operating system-independent programming language that is intended to be imbedded as a macro language within host applications. This specification includes all features and behaviors of the language that exist and behave identically in all conforming implementations. Such features include the intrinsic functions that exist in conforming implementations.
[bookmark: section_213ca0c86b82489980a33c76eb534829][bookmark: _Toc181683865]Glossary
This document uses the following terms:
[bookmark: gt_210637d9-9634-4652-a935-ded3cd434f38]code page: An ordered set of characters of a specific script in which a numerical index (code-point value) is associated with each character. Code pages are a means of providing support for character sets and keyboard layouts used in different countries. Devices such as the display and keyboard can be configured to use a specific code page and to switch from one code page (such as the United States) to another (such as Portugal) at the user's request.
[bookmark: gt_c305d0ab-8b94-461a-bd76-13b40cb8c4d8]Unicode: A character encoding standard developed by the Unicode Consortium that represents almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007] provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16 BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
[bookmark: section_a4810ec407974c04960575fec72ba4a6][bookmark: _Toc181683866]References
Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.
[bookmark: section_5c21099bd1164d78beb8cddf5b5ec2bf][bookmark: _Toc181683867]Normative References
We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.
[IEEE754] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", IEEE 754-1985, October 1985, http://ieeexplore.ieee.org/servlet/opac?punumber=2355
[MS-DTYP] Microsoft Corporation, "Windows Data Types".
[MS-OAUT] Microsoft Corporation, "OLE Automation Protocol".
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, https://www.rfc-editor.org/info/rfc2119
[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC 4234, October 2005, https://www.rfc-editor.org/info/rfc4234
[bookmark: section_1a4c84cadb674c59aa6280f1e61a2b23][bookmark: _Toc181683868]Informative References
[CODEPG] Microsoft Corporation, "Code Pages", https://learn.microsoft.com/en-us/globalization/encoding/code-pages
[UNICODE-BESTFIT] The Unicode Consortium, "WindowsBestFit", 2006, http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/
[UNICODE-README] The Unicode Consortium, "Readme.txt", 2006, http://unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WindowsBestFit/readme.txt
[bookmark: section_9d9f80f7bdf84d24b15d6bb9552d7c22][bookmark: _Toc181683869]VBA Language Specification Overview
VBA is a computer programming language that is intended to be used in conjunction with a host software application such as a word processor. In such a situation, the end-user of such a host application uses the VBA language to write programs that can access and control the host application’s data and functionality.
This document is an implementation-independent specification of the VBA language that enables the creation of independent implementations. It enables the creation of source code compatible implementations of the language by defining the required characteristics and behaviors of the source language that is supported by all conforming implementations. It enables a programmer to write portable VBA programs by defining the exact set of implementation independent characteristics and behaviors of the language that a program can use if it is intended to run on multiple implementations.
The scope of the VBA Language Specification is the implementation independent, operating system independent core programming language that is supported by all conforming VBA implementations. It includes all features and behaviors of the language that exist and behave identically in all conforming implementations. Such features include the intrinsic functions that exist in conforming implementations.
This specification defines the syntax, static semantics, and runtime semantics of the VBA language. Syntax defines the source code representation of VBA programs that is recognized by a VBA implementation. Static semantics define non-syntactic program validity requirements that cannot be expressed using the grammar. Runtime semantics define the computational behavior of VBA programs that conform to the specified syntax and static semantics rules. The runtime semantics describes what it means to execute a VBA program but not how a VBA implementation might accomplish this.
The VBA Language Specification does not define how a VBA implementation would actually achieve the requirements of the specification nor does it describe the specific design of any VBA Language Implementation.
The language defined by this specification is that language implemented by Microsoft Visual Basic for Applications 7.0 (VBA 7.0), as shipped in Microsoft Office 2010 suites; and VBA version 7.1, as shipped in Microsoft Office 2013. It includes features that provide source code backward-compatibility for VBA programs written for prior Microsoft versions of VBA.
[bookmark: section_a7b449968a024a36937a0fe58ad0d782][bookmark: _Toc181683870]Specification Conventions
Lexical and syntactic constructs of the language are described by a grammar using ABNF as defined in [RFC4234] with additional conventions as defined in the introductions to sections 3 and 5 of this document. Within the prose text of this specification the names of ABNF rules are distinguished by enclosing them angle brackets, for example <for-statement>.
Static semantics rules are expressed as prose descriptions, tables, and pseudo code algorithms that reference grammar rules. Runtime semantics are expressed in prose using implementation independent abstract computational concepts.
This specification defines a large number of terms that have specialized meaning within the context of this specification. Such terms are generally italicized when used within this document. The first use of each such term within a section of this document references the document section that defines the term.
Within this specification the phrase "implementation-defined" means that the contextually apparent detail of the syntax or semantics of a feature of the language is intentionally left unspecified and can vary among implementation of the language. However, the implementation of the unspecified details SHOULD be repeatedly consistent and the implementation SHOULD document its specific behavior order to preserve the utility of the language feature.
The phrase "implementation-specific" means that the contextually apparent detail of the syntax or semantics of a feature of the language is intentionally left unspecified and can vary among implementation of the language. However, the implementation of the unspecified details SHOULD be repeatedly consistent.
The phrase "undefined" means that the contextually apparent detail of the syntax or semantics of a feature of the language is intentionally left unspecified and can vary among implementation of the language. There is no requirement or expectation of consistent or repeatable behavior.
[bookmark: section_46dd2a34a53c4cc88a59fcbbb5fdae6d][bookmark: _Toc181683871]VBA Computational Environment
 VBA is a programming language used to define computer programs that perform computations that occur within a specific computational environment called a VBA Environment. A VBA Environment is typically hosted and controlled by another computer application called the host application. The host application controls and invokes computational processes within its hosted VBA Environment. The host application can also make available within its hosted VBA Environment computational resource that enable VBA program code to access host application data and host computational processes. The remainder of this section defines the key computational concepts of the VBA Environment.
[bookmark: section_c86480b2aef24488b177f55e13cc51f2][bookmark: _Toc181683872]Data Values and Value Types
 Within a VBA Environment, information is represented as data values. A data value is a single element from a specific finite domain of such elements. The VBA Environment defines a variety of value types. These value types collectively define the domain of VBA data values. Each value type has unique characteristics that are defined by this specification. Each data value within a VBA Environment is a domain member of one of these value types. Individual data values are immutable. This means that there are no defined mechanisms available within a VBA Environment that can cause a data value to change into another data value. Because data values are immutable, multiple copies of a specific data value can exist within a VBA Environment and all such copies are logically the same data value.
The value types of the VBA Environment are defined by the following table. The nominal representation is the representation that was used as the original design basis for the VBA value types.
Implementations can use these specific data type representations to meet the requirements of this specification.
	Value Type Name
	Domain Elements
	Nominal Representation

	Boolean
	The distinguished values True and False
	16-bit signed binary 2’s complement integer whose
value is either 0 (False) or -1 (True)

	Byte
	Mathematical integer in the range of 0 to 255
	8-bit unsigned binary integer

	Currency
	Numbers with 4 fractional decimal digits in the range
-922,337,203,685,477.5808 to
+922,337,203,685,477.5807
	64-bit signed binary two’s complement integer
implicitly scaled by 10-4

	Date
	Ordinal fractional day between the first day of the year 100 and the last day of the year 9999.
	8 byte IEEE 754-1985
[IEEE754] floating point value. The floating point value 0.0 represents the epoch date/time which is midnight of December 30, 1899. Other dates are represented as a number of days before (negative values) or after (positive value) the epoch. Fractional values represent fractional days.

	Decimal
	Scaled integer numbers whose maximum integer range is
±79,228,162,514,264,337,593,543,950,335.
Number in this range MAY be scaled by powers of ten in the range 100 to 10-28
	A rational number represented in a 14 byte data structure including a sign bit and a 96-bit unsigned integer numerator. The denominator is an integral power of ten with an exponent in the range of 0 to 28 encoded in a single byte.

	Double
	All valid IEEE 754-1985 double-precision binary floating-point numbers including sized zeros, NaNs and infinities
	64-bit hardware implementation of IEEE 7541985.

	Integer
	Integer numbers in the range of -32,768 to 32,767
	16-bit binary two’s complement integers

	Long
	Integer numbers in the range of -2,147,483,648 to 2,147,486,647
	32-bit binary two’s complement integers

	LongLong
	Integer numbers in the range of
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807
	64-bit binary two’s complement integers

	Object reference
	Unique identifiers of host application or program created objects and a distinguished value corresponding to the reserved identifier Nothing
	Machine memory addresses with the 0 address reserved to represent Nothing.

	Single
	All valid IEEE 754-1985 single-precision binary floating-point numbers including signed zeros, NaNs and infinities
	32-bit hardware implementation of IEEE 7541985.

	String (variable length)
	The zero length empty string and all possible character sequences using characters from the implementation dependent character set. There MAY be an implementation defined limit to the length of such sequences but the limit SHOULD be no more than (216 – 10) characters.
	Sequences of 16-bit binary encoded Unicode code points.

	String*n
(fixed-length)
	The length of string is between 1 to 65,526.
	1 to approximately 64K (216 – 10) characters.

	Empty
	A single distinguished value corresponding to the reserved identifier Empty
	An implementation-specific bit pattern

	Error
	Standard error codes from 0 to 65535, as well as other implementation-defined error values. An implementation-defined error value can resolve to a standard error code from 0 to 65535 in a context where its value is required, such as CInt.
	32-bit integer (Windows
HRESULT)

	Null
	A single distinguished value corresponding to the reserved identifier Null
	An implementation specific bit pattern

	Missing
	A single distinguished value corresponding that is used to indicated that no value was passed corresponding to an explicitly declared optional parameter.
	An implementation specific bit pattern

	An Array type
	Multi-dimensional numerically indexed aggregations of data values with up to 60 dimensions. Empty aggregations with no dimensions are also included in the domain. Such aggregations can be homogeneous (all elements (section 2.1.1) of the aggregation have the same value type) or heterogeneous (the value types of elements are unrelated). Elements of each dimension are identified (indexed) via a continuous sequence of signed integers. The smallest index value of a dimension is the dimension’s lower bound and the largest index value of a dimension is the dimension’s upper bound. A lower bound and an upper bound might be equal.
	A linear concatenation of the aggregated data values arranged in row major order
possibly with implementation defined padding between individual data values.

	A User-Defined Type (UDT)
	Aggregations of named data values with possibly heterogeneous value types. Each UDT data value is associated with a specific named UDT declaration which serves as its value type.
	A linear concatenation of the aggregated data values possibly with implementation defined padding between data values.

The VBA language also provides syntax for defining what appears to be an additional kind of data type known as an Enum. There is no Enum-specific value type. Instead, Enum members are represented as Long data values.
An implementation of VBA MAY include for other implementation-defined value types which can be retrieved as return values from procedures in referenced libraries. The semantics of such data values when used in statements and expressions within the VBA Environment are implementation-defined.
[bookmark: section_454f218f69d24e61a2062d9ce0ab90f9][bookmark: _Toc181683873]Aggregate Data Values
Data values (section 2.1) with a value type (section 2.1) of either a specific Array or a specific UDT name are aggregate data values. Note that object references are not aggregate data values. An aggregate data value consists of zero or more elements each corresponding to an individual data value within the aggregate data value. In some situations, an element is itself an aggregate data value with its own elements.
Each element of an aggregate data value is itself a data value and has a corresponding value type. The value type of an element is its element type. All elements of an Array data value have the same element type, while elements of an UDT data value can have differing value types.
[bookmark: section_aaee9b48168f4cfe95d114c5cc427b69][bookmark: _Toc181683874]Entities and Declared Types
 An entity is a component of a VBA Environment that can be accessed by name or index, according to the resolution rules for simple name expressions, index expressions and member access expressions. Entities include projects, procedural modules, types (class modules, UDTs, Enums or built-in types), properties, functions, subroutines, events, variables, literals, constants and conditional constants.
For many kinds of entities, it is only valid to reference an entity that is accessible from the current context. Entities whose accessibility can vary have their accessibility levels defined in later sections specific to these entities.
Most entities have an associated a declared type. A declared type is a restriction on the possible data values (section 2.1) that a variable (section 2.3) can contain. Declared types are also used to restrict the possible data values that can be associated with other language entities. Generally declared types restricts the data value according to the data value’s value type (section 2.1).
The following table defines the VBA declared types. Every variable within a VBA Environment has one of these declared types and is limited to only containing data values that conform to the declared type’s data value restrictions.
	Declared Type
	Data Value Restrictions

	Boolean, Byte, Currency,
Date, Double, Integer, Long,
LongLong, Object, Single, or
String
	Only data values whose value type has the same name as the declared type.
Note the following:
· Decimal is not a valid declared type.
· LongLong is a valid declared type only on VBA implementations that support 64-bit arithmetic.

	Variant
	No restrictions, generally any data value with any value type. However, in some contexts Variant declared types are explicitly limited to a subset of possible data values and value types.

	String*n, where n is an integer between 1 and 65,526
	Only data values whose value type is String and whose character length is exactly n.

	Fixed-size array whose declared element type is one of Boolean, Byte, Currency, Date, Double, Integer, Long,
LongLong, Object, Single, String, String*n, a specific class name, or the name of a UDT.
	Only homogeneous array data values that conform to the following restrictions:
· The value type of every element (section 2.1.1) data value is the same as the variable’s declared element type. If the variable’s element declared type is a specific class name then every element of the data value MUST be either the object reference Nothing or a data value whose value type is object reference and which identifies either an object that is an instance (section 2.5) of the named element class or an object that conforms (section 2.5) to the public interface (section 2.5) of the named class.
· The number of dimensions of the data value is the same as the variable’s number of dimensions.
· The upper and lower bounds (section 2.1) are the same for each dimension of the data value and the variable.

	Fixed-size array whose declared element type is
Variant
	Only data values whose value type is Array and that conform to the following restrictions:
· The number of dimensions of the data value is the same as the variable’s number of dimensions.
· The upper and lower bounds are the same for each dimension of the data value and the variable.

	Resizable array whose declared element type is one Boolean, Byte, Currency,
Date, Double, Integer, Long,
LongLong, Object, Single, String, String*n, a specific
class name, or the name of a
UDT
	Only homogeneous array data values where the value type of every element data value is the same as the variable’s declared element type. If the variable’s element declared type is a specific class name then every element of the data value MUST be either the object reference Nothing or a data value whose value type is object reference and which identifies either an object that is an instance of the named element class or an object that conforms to the public interface of the named class.

	Resizable array whose declared element type is Variant
	Only data values whose value type is Array.

	Specific class name
	Only the object reference data value Nothing and those data values whose value type is object reference and which identify either an object that is an instance of the named class or an object that conforms to the public interface of the named class.

	Specific UDT name
	Only data values whose value type is the specific named UDT.

As with value types, there is no Enum-specific declared type. Instead, declarations using an Enum type are considered to have a declared type of Long. Note that there are no extra data value restrictions on such Enum declarations, which might contain any Long data value, not just those present as Enum members within the specified Enum type.
An implementation-defined LongPtr type alias is also defined, mapping to the underlying declared type the implementation will use to hold pointer or handle values. 32-bit implementations SHOULD map LongPtr to Long, and 64-bit implementations SHOULD map LongPtr to LongLong, although implementations MAY map LongPtr to an implementation-defined pointer type. The LongPtr type alias is valid anywhere its underlying declared type is valid.
Every declared type except for array and UDT declared types are scalar declared types.
[bookmark: section_6fd5c5967ce44b61a8ce42534465428f][bookmark: _Toc181683875]Variables
Within a VBA Environment, a variable is a mutable container of data values (section 2.1). While individual data values are immutable and do not change while a program executes, the data value contained by a particular variable can be replaced many times during the program’s execution.
Specific variables are defined either by the text of a VBA program, by the host application, or by this specification. The definition of a variable includes the specification of the variable’s declared type (section 2.2).
Variables have a well-defined lifecycle, they are created, become available for use by the program, and are then subsequently destroyed. The span from the time a variable is created to the time it is destroyed is called the extent of the variable. Variables that share a creation time and a destruction time are can be said to share a common extent. The extent of a variable depends upon how it was defined but the possible extents are defined by the following table.
	Extent Name
	Variable Definition Form
	Variable Lifespan

	Program Extent
	Defined by the VBA specification or by the host application.
	The entire existence of an active VBA Environment.

	Module Extent
	A Module Variable Declaration or a
static local variable declaration within a procedure.
	The span from the point that the containing module is incorporated into an active VBA project to the point when the module or project is explicitly or implicitly removed from its VBA Environment.

	Procedure Extent
	A procedure local variable or formal parameter declaration of a procedure.
	The duration of a particular procedure invocation.

	Object Extent
	A variable declaration within a class module.
	The lifespan of the containing object.

	Aggregate Extent
	A dependent variable (section 2.3.1) of an array or UDT variable.
	The lifespan of the variable holding the containing aggregate data value (section 2.1.1).

When a variable is created, it is initialized to a default value. The default value of a variable is determined by the declared type of the variable according to the following table.
	Declared Type
	Initial Data Value

	Boolean
	False

	Byte, Currency, Double, Integer, Long, LongLong
	0 value of the corresponding value type (section 2.1)

	Double or Single
	+0.0 value of the corresponding value type

	Date
	30 December 1899 00:00:00

	String
	The empty string

	Variant
	Empty

	String*n, where n is an integer between 1 and 65,526
	A string of length n consisting entirely of the implementation dependent representation of the null character corresponding to Unicode codepoint U+0000.

	Fixed size array whose declared element type is one of Boolean, Byte, Currency, Data, Double, Object, Single,
String, or String*n
	The array data value whose number of dimensions and bounds are identical with the array’s declared dimensions and bounds and whose every element is the default data value of the declared element type.

	Fixed size array whose declared element type is Variant
	The array value whose number of dimensions and bounds are identical with the array’s declared dimensions and bounds and whose every element is the value Empty.

	Resizable array whose declared element type is one of Boolean, Byte, Currency, Data, Double, Object, Single,
String, or String*n
	An array value with no dimensions.

	Resizable array whose declared element type is Variant
	An array value with no dimensions.

	Object or a Specific class name
	The value Nothing.

	Specific UDT name
	The UDT data value for the named UDT type whose every named
element has the default data value from this table that is appropriate for that element’s declared type.

Variables generally have a single variable name that is used to identify the variable within a VBA program. However, variable names have no computational significance. Some situations such as the use of a variable as a reference parameter to a procedure invocation can result in multiple names being associated with a single variable. Access to variables from within a VBA program element is determined by the visibility scopes of variable names. Typically, a variable name’s visibility is closely associated with the variable’s extent but variable name scopes themselves have no computational significances.
[bookmark: section_7abb397a28684382bb891dba7a33cd36][bookmark: _Toc181683876]Aggregate Variables
 A variable (section 2.3) that contain an aggregate data value (section 2.1.1) is an aggregate variable. An aggregate variable consists of dependent variables each one corresponding to an element (section 2.1.1) of its current aggregate data value. The data value contained by each dependent variable is the corresponding element data value of its containing aggregate data value. In some situations, a dependent variable itself holds an aggregate data value with its own dependent variables. Dependent variables do not have names; instead they are accessed using index expressions for arrays or member access expressions for UDTs.
When a new data value is assigned to a dependent variable, the aggregate variable holding this dependent variable’s containing aggregate data value has its data value replaced with a new aggregate data value that is identical to its previous data value except that the element data value corresponding to the modified dependent variable is instead the data value being stored into the dependent variable. If this containing aggregate data value is itself contained in a dependent variable this process repeats until an aggregate variable that is not also a dependent variable is reached.
[bookmark: section_a40a90faa61a48c59599650513d7375f][bookmark: _Toc181683877]Procedures
A procedure is the unit of algorithmic functionality within a VBA Environment. Most procedures are defined using the VBA language, but the VBA Environment also contains standard procedures defined by this specification and can contain procedures provided in an implementation defined manner by the host application or imported from externally defined libraries. A procedure is identified by a procedure name that is part of its declaration.
VBA also includes the concept of a property, a set of identically named procedures defined in the same module (section 4.2). Elements of such a set of procedures can then be accessed by referencing the property name directly as if it was a variable name (section 2.3). The specific procedure from the set that to be invoked is determined by the context in which the property name is referenced.
A VBA Environment is not restricted to executing a single program that starts with a call to a main procedure and then continues uninterrupted to its completion. Instead, VBA provides a reactive environment of variables, procedures, and objects. The host application initiates a computation by calling procedures within its hosted VBA Environment. Such a procedure, after possibly calling other procedures, eventually returns control to the host application. However, a VBA Environment retains its state (including the content of most variables and objects) after such a VBA Environment initiated call returns to the host application. The host application can subsequently call the same or other procedures within that VBA Environment. In addition to explicit VBA Environment initiated calls, VBA procedures can be called in response to events (section 2.5) associated with host application-provided objects.
[bookmark: section_bc89d98629774b729598fb90a4e052cd][bookmark: _Toc181683878]Objects
 Within the VBA Environment, an object is a set of related variables (section 2.3), procedures (section 2.4) and events. Collectively, the variables, procedures and events that make up an object are called the object’s members. The term method can be used with the same meaning as procedure member. Each object is identified by a unique identifier which is a data value (section 2.1) whose value type (section 2.1) is object reference. An object’s members are accessed by invoking methods and evaluating member variables and properties using this object reference. Because a specific data value can simultaneously exist in many variables there can be many ways to access any particular object.
An object’s events are attachment points to which specially named procedures can be dynamically associated. Such procedures are said to handle an object’s events. Using the RaiseEvent statement of the VBA language, methods of an object can call the procedures handling a member event of the object without knowing which specific procedures are attached.
All variables and events that make up an object have the same extent (section 2.3) which begins when the containing object is explicitly or implicitly created and concludes when it is provably inaccessible from all procedures.
A class is a declarative description of a set of objects that all share the same procedures and have a similar set of variables and events. The members of such a set of objects are called instances of the class. A typical class can have multiple instances but VBA also allows the definition of classes that are restricted to having only one instance. All instances of a specific class share a common set of variable and event declarations that are provided by the class but each instance has its own unique set of variables and events corresponding to those declarations.
The access control options of VBA language declarations can limit which procedures within a VBA Environment are permitted to access each object member defined by a class. A member that is accessible to all procedures is called a public member and the set of all public procedure members and variable members of a class is called the public interface of the class. In addition to its own public interface the definition of a class can explicitly state that it implements the public interface of one or more other classes. A class or object that is explicitly defined to implement a public interface is said to conform to that interface. In this case the conforming class MUST include explicitly tagged definitions for all of the public procedure and variable members of all of the public interfaces that it implements.
When a variable is defined with the name of a class as its declared type (section 2.2) then that variable can only contain object references to instances of that specific named class or object references to objects that conform to the public interface of the named class.
[bookmark: section_fef0676145b948c2825cb75c28aee9b5][bookmark: _Toc181683879]Automatic Object Instantiation
A variable (section 2.3) that is declared with the name of a class (section 2.5) as its declared type (section 2.2) can be designated using the New keyword (section 3.3.5.1) to be an automatic instantiation variable. Each time the content of an automatic instantiation variable is accessed and the current data value of the variable is Nothing, a new instance (section 2.5) of the named class is created and stored in the variable and used as the accessed value.
Each dependent variable (section 2.3.1) of an array variable whose element type (section 2.1.1) is a named class and whose declaration includes the New keyword are automatic instantiation variables.
A class can also be defined such that the class name itself can be used as if it was an automatic instantiation variable. This provides a mechanism for accessing default instances of a class.
[bookmark: section_89affe5c79e94d05a7c37328538ef658][bookmark: _Toc181683880]Projects
All VBA program code is part of a project (section 4.1). A VBA Environment can contain one or more named projects. Projects are created and loaded into a VBA Environment using implementation defined mechanisms. In addition, a VBA Environment MAY include implementation mechanisms for modifying and/or removing projects.
[bookmark: section_85b8a786120144079a8995f21ade6ab4][bookmark: _Toc181683881]Extended Environment
 In addition to the entities (section 2.2) defined using VBA source code within VBA projects (section 4.1), a VBA Environment can include entities that are defined within other sources and using other mechanisms. When accessed from VBA program code, such external environmental entities appear and behave as if they were environmental entities implemented using the VBA language.
[bookmark: section_4cd3da989d7c465fb412fef052aff35f][bookmark: _Toc181683882]The VBA Standard Library
The VBA Standard Library (section 6) is the set of entities (section 2.2) that MUST exist in all VBA Environments.
No explicit action is required to make these entities available for reference by VBA language code.
[bookmark: section_8317bd66b44745c0b16af5d3d0416d99][bookmark: _Toc181683883]External Variables, Procedures, and Objects
In addition to entities (section 2.2) that are explicitly defined using VBA programming language, a VBA Environment can contain entities that have been defined using other programming languages. From the VBA language perspective such entities are consider to be defined by external libraries whose characteristics and nature is implementation defined.
[bookmark: section_a8700b6e505b4c7dbd6a1decbdf0ccfe][bookmark: _Toc181683884]Host Environment
A host application, using implementation-dependent mechanisms, can define additional entities (section 2.2) that are accessible within its hosted VBA Environment. Depending upon the VBA implementation and host application, such entities can be directly accessible similar to the VBA Standard Library (section 2.7.1) or can appear as external libraries or predefined VBA projects (section 2.6).
The host application in conjunction with the VBA implementation is also responsible for providing the mapping of the VBA file I/O model to an application specific or platform file storage mechanism.
[bookmark: section_71e79228eb454f818c0da224b72a0e47][bookmark: _Toc181683885]Lexical Rules for VBA Programs
VBA programs are defined using text files (or other equivalent units of text) called modules (section 4.2). The role of modules in defining a VBA program is specified in section 4. This section describes the lexical rules used to interpret the text of modules.
The structure of a well-formed VBA module is defined by a set of inter-related grammars. Each grammar individually defines a distinct aspect of VBA modules. The grammars in the set are:
· The Physical Line Grammar
· The Logical Line Grammar
· The Lexical Token Grammar
· The Conditional Compilation Grammar
· The Syntactic Grammar
The first four of these grammars are defined in this section. The Syntactic Grammar is defined in section 5.
The grammars are expressed using ABNF [RFC4234]. Within these grammars numeric characters codes are to be interpreted as Unicode code points.
[bookmark: section_6fb0e92471894ce6a0ea49bac1c25832][bookmark: _Toc181683886]Character Encodings
The actual character set standard(s) used to externally encode the text of a VBA module (section 4.2) is implementation defined. Within this specification, the lexical structure of VBA modules are described as if VBA modules were encoded using Unicode. Specific characters are identified in this specification in terms of Unicode code points and character classes. The equivalence mapping between Unicode and an implementation’s specific character encoding is implementation defined. Implementations using non-Unicode encoding MUST support at least equivalents to Unicode code points U+0009, U+000A, U+000D and U+0020 through U+007E. In addition, an equivalent to U+0000 MUST be supported within String data values as fixed-length strings are filled with this character when initialized.
[bookmark: section_c457d1a3f80449ac8bf627e07d4d6e99][bookmark: _Toc181683887]Module Line Structure
The body of a VBA module (section 4.2) consists of a set of physical lines described by the Physical Line Grammar. The terminal symbols of this grammar are Unicode character code points.
[bookmark: section_b12da653aeaf4dd196f83f79bec67e07][bookmark: _Toc181683888]Physical Line Grammar
module-body-physical-structure = *source-line [non-terminated-line]
source-line = *non-line-termination-character line-terminator
non-terminated-line = *non-line-termination-character
line-terminator = (%x000D %x000A) / %x000D / %x000A / %x2028 / %x2029
non-line-termination-character = <any character other than %x000D / %x000A / %x2028 / %x2029>
An implementation MAY limit the number of characters allowed in a physical line. The meaning of a module that contains any physical lines that exceed such an implementation limit is undefined by this specification. If a <module-body-physical-structure> concludes with a <non-terminated-line> then an implementation MAY treat the module as if the <non-terminated-line> was immediately followed by a <line-terminator>.
For the purposes of interpretation as VBA program text, a module body (section 4.2) is viewed as a set of logical lines each of which can correspond to multiple physical lines. This structure is described by the Logical Line Grammar. The terminal symbols of this grammar are Unicode character codepoints.
[bookmark: section_20c84adaf8d14899b5e4db09b94cf1a3][bookmark: _Toc181683889]Logical Line Grammar
module-body-logical-structure = *extended-line
extended-line = *(line-continuation / non-line-termination-character) line-terminator
line-continuation = 1*WSC underscore line-terminator
WSC = (tab-character / eom-character /space-character / DBCS-whitespace / most-Unicode-class-Zs)
tab-character = %x0009
eom-character = %x0019
space-character = %x0020
underscore = %x005F
DBCS-whitespace = %x3000
most-Unicode-class-Zs = <all members of Unicode class Zs which are not CP2-characters>
An implementation MAY limit the number of characters in an <extended-line>.
For ease of specification it is convenient to be able to explicitly refer to the point that immediately precedes the beginning of a logical line and the point immediately preceding the final <line-terminator> of a logical line. This is accomplished using <LINE-START> and <LINE-END> as terminal symbols of the VBA grammars. A <LINE-START> is defined to immediately precede each logical line and a <LINE-END> is defined as replacing the <line-terminator> at the end of each logical line:
module-body-lines = *logical-line
logical-line = LINE-START *extended-line LINE-END
When used in an ABNF rule definition <LINE-START> and <LINE-END> are used to indicated the required start or end of a <logical-line>.
[bookmark: section_848bd0b2e4534f50a42a452eb0923c6d][bookmark: _Toc181683890]Lexical Tokens
The syntax of VBA programs is most easily described in terms of lexical tokens rather than individual Unicode characters. In particular, the occurrence of whitespace or line-continuations between most syntactic elements is usually irrelevant to the syntactic grammar. The syntactic grammar is significantly simplified if it does not have to describe such possible whitespace occurrences. This is accomplished by using lexical tokens (also referred to simply as tokens) that abstract away whitespace as the terminal symbols of the syntactic grammar.
The lexical grammar defines the interpretation of a <module-body-lines> as a set of such lexical tokens.
The terminal elements of the lexical grammar are Unicode characters and the <LINE-START> and <LINE-END> elements. Generally any rule name of the lexical grammar that is written in all upper case characters is also a lexical token and terminal element of the VBA syntactic grammar. ABNF quoted literal text rules are also considered to be lexical tokens of the syntactic grammar. Lexical tokens encompass any white space characters that immediate precede them. Note that when used within the lexical grammar, quoted literal text rules are not treated as tokens and hence any preceding whitespace characters are significant.
[bookmark: section_7ef9ae86dfdb47f1b53bef0c2ea9f8ed][bookmark: _Toc181683891]Separator and Special Tokens
WS = 1*(WSC / line-continuation)
special-token = "," / "." / "!" / "#" / "&" / "(" / ")" / "*" / "+" / "-" / "/" / ":" / ";" / "<" / "=" / ">" / "?" / "\" / "^"
NO-WS = <no whitespace characters allowed here>
NO-LINE-CONTINUATION = <a line-continuation is not allowed here>
EOL = [WS] LINE-END / single-quote comment-body
EOS = *(EOL / ":") ;End Of Statement
single-quote = %x0027 ; '
comment-body = *(line-continuation / non-line-termination-character) LINE-END
<special-token> is used to identify single characters that have special meaning in the syntax of VBA programs. Because they are lexical tokens (section 3.3), these characters can be preceded by white space characters that are ignored. Any occurrence of one of the quoted <special-token> elements as a grammar element within the syntactic grammar is a reference to the corresponding token (section 3.3).
<NO-WS> is used as terminal element of the syntactic grammar to indicate that the token that immediately follows it MUST NOT be preceded by any white space characters. <NO-LINE-CONTINUATION> is used as terminal element of the syntactic grammar to indicate that the token that immediately follows it MUST NOT be preceded by white space that includes any <linecontinuation> sequences.
<WS> is used as a terminal element of the syntactic grammar to indicate that the token that immediately follows it MUST have been preceded by one or more white space characters.
<EOL> is used as element of the syntactic grammar to name the token that acts as an "end of statement" marker for statements that MUST be the only or last statement on a logical line.
<EOS> is used as a terminal element of the syntactic grammar to name the token that acts as an "end of statement" marker. In general, the end of statement is marked by either a <LINE-END> or a colon character. Any characters between a <single-quote> and a <LINE-END> are comment text that is ignored.
[bookmark: section_685ad840accb4bdb8bfdf3d88498547a][bookmark: _Toc181683892]Number Tokens
INTEGER = integer-literal ["%" / "&" / "^"]
integer-literal = decimal-literal / octal-literal / hex-literal
decimal-literal = 1*decimal-digit
octal-literal = "&" [%x004F / %x006F] 1*octal-digit ; & or &o or &O
hex-literal = "&" (%x0048 / %x0068) 1*hex-digit ; &h or &H
octal-digit = "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7"
decimal-digit = octal-digit / "8" / "9"
hex-digit = decimal-digit / %x0041-0046 / %x0061-0066 ;A-F / a-f
Static Semantics
· The <decimal-digit>, <octal-digit>, and <hex-digit> sequences are interpreted as unsigned integer values represented respectively in decimal, octal, and hexadecimal notation.
· Each <INTEGER> has an associated constant data value (section 2.1). The data value, value type (section 2.1) and declared type (section 2.2) of the constant is defined by the following table (if the Valid column shows No, this <INTEGER> is invalid):
	Radix
	Positive <INTEGER> value in the range
	Type Suffix
	Valid <INTEGER>?
	Declared Type
	Value Type
	Signed Data Value

	Decimal
	0 ≤ n ≤ 32767
	None
	Yes
	Integer
	Integer
	n

	Decimal
	0 ≤ n ≤ 32767
	"%"
	Yes
	Integer
	Integer
	n

	Decimal
	0 ≤ n ≤ 32767
	"&"
	Yes
	Long
	Integer
	n

	Decimal
	0 ≤ n ≤ 32767
	"^"
	Yes
	LongLong
	Integer
	n

	Octal
	0 ≤ n ≤ &o77777
	None
	Yes
	Integer
	Integer
	n

	Octal
	0 ≤ n ≤ &o77777
	"%"
	Yes
	Integer
	Integer
	n

	Octal
	0 ≤ n ≤ &o77777
	"&"
	Yes
	Long
	Integer
	n

	Octal
	0 ≤ n ≤ &o77777
	"^"
	Yes
	LongLong
	Integer
	n

	Octal
	&o100000 ≤ n ≤ &o177777
	None
	Yes
	Integer
	Integer
	n – 65,536

	Octal
	&o100000 ≤ n ≤ &o177777
	"%"
	Yes
	Integer
	Integer
	n – 65,536

	Octal
	&o100000 ≤ n ≤ &o177777
	"&"
	Yes
	Long
	Integer
	n

	Octal
	&o100000 ≤ n ≤ &o177777
	"^"
	Yes
	LongLong
	Integer
	n

	Hex
	0 ≤ n ≤ &H7FFF
	None
	Yes
	Integer
	Integer
	n

	Hex
	0 ≤ n ≤ &H7FFF
	"%"
	Yes
	Integer
	Integer
	n

	Hex
	0 ≤ n ≤ &H7FFF
	"&"
	Yes
	Long
	Integer
	n

	Hex
	0 ≤ n ≤ &H7FFF
	"^"
	Yes
	LongLong
	Integer
	n

	Hex
	&H8000 ≤ n ≤ &HFFFF
	None
	Yes
	Integer
	Integer
	n – 65,536

	Hex
	&H8000 ≤ n ≤ &HFFFF
	"%"
	Yes
	Integer
	Integer
	n – 65,536

	Hex
	&H8000 ≤ n ≤ &HFFFF
	"&"
	Yes
	Long
	Integer
	n

	Hex
	&H8000 ≤ n ≤ &HFFFF
	"^"
	Yes
	LongLong
	Integer
	n

	Decimal
	32768 ≤ n ≤ 2147483647
	None
	Yes
	Long
	Long
	n

	Decimal
	n ≥ 32768
	"%"
	No
	
	
	

	Decimal
	32768 ≤ n ≤ 2147483647
	"&"
	Yes
	Long
	Long
	n

	Decimal
	32768 ≤ n ≤ 2147483647
	"^"
	Yes
	LongLong
	Long
	n

	Decimal
	n ≥ 2147483647
	None
	(see note 1)
	Double
	Double
	n# (see note 1)

	Decimal
	n ≥ 2147483647
	"&"
	No
	
	
	

	Octal
	&o200000 ≤ n ≤ &o17777777777
	None
	Yes
	Long
	Long
	n

	Octal
	&o200000 ≤ n ≤ &o17777777777
	"%"
	No
	
	
	

	Octal
	&o200000 ≤ n ≤ &o17777777777
	"&"
	Yes
	Long
	Long
	n

	Octal
	&o200000 ≤ n ≤ &o17777777777
	"^"
	Yes
	LongLong
	Long
	n

	Octal
	&o20000000000 ≤ n ≤ &o37777777777
	None
	Yes
	Long
	Long
	n – 4,294,967,296

	Octal
	&o20000000000 ≤ n ≤ &o37777777777
	"%"
	No
	
	
	

	Octal
	&o20000000000 ≤ n ≤ &o37777777777
	"&"
	Yes
	Long
	Long
	n – 4,294,967,296

	Octal
	&o20000000000 ≤ n ≤ &o37777777777
	"^"
	Yes
	LongLong
	Long
	n

	Octal
	n ≥ &o40000000000
	None
	No
	
	
	

	Octal
	n ≥ &o40000000000
	"%"
	No
	
	
	

	Octal
	n ≥ &o40000000000
	"&"
	No
	
	
	

	Hex
	&H8000 ≤ n ≤ &H7FFFFFFF
	None
	Yes
	Long
	Long
	n

	Hex
	&H8000 ≤ n ≤ &H7FFFFFFF
	"%"
	No
	
	
	

	Hex
	&H8000 ≤ n ≤ &H7FFFFFFF
	"&"
	Yes
	Long
	Long
	n

	Hex
	&H8000 ≤ n ≤ &H7FFFFFFF
	"^"
	Yes
	LongLong
	Long
	n

	Hex
	&H80000000 ≤ n ≤ &H7FFFFFFFF
	None
	Yes
	Long
	Long
	n – 4,294,967,296

	Hex
	&H80000000 ≤ n ≤ &H7FFFFFFFF
	"%"
	No
	
	
	

	Hex
	&H80000000 ≤ n ≤ &H7FFFFFFFF
	"&"
	Yes
	Long
	Long
	n – 4,294,967,296

	Hex
	&H80000000 ≤ n ≤ &H7FFFFFFFF
	"^"
	Yes
	LongLong
	Long
	n

	Hex
	n ≥ &H100000000
	None
	No
	
	
	

	Hex
	n ≥ &H100000000
	"%"
	No
	
	
	

	Hex
	n ≥ &H100000000
	"&"
	No
	
	
	

	Decimal
	2147483648 ≤ n ≤ 9223372036854775807
	"^"
	Yes
	LongLong
	LongLong
	n

	Decimal
	n ≥ 9223372036854775808
	"^"
	
	
	
	

	Octal
	&o40000000000 ≤ n ≤ &o1777777777777777777777
	"^"
	Yes
	LongLong
	LongLong
	n - 232

	Octal
	n ≥ &o2000000000000000000000
	Any
	No
	
	
	

	Hex
	&H100000000 ≤ n ≤ &HFFFFFFFFFFFFFFFF
	"^"
	Yes
	LongLong
	LongLong
	n - 232

	Hex
	n ≥ &H10000000000000000
	Any
	No
	
	
	

· It is statically invalid for a literal to have the declared type LongLong in an implementation that does not support 64-bit arithmetic.
FLOAT = (floating-point-literal [floating-point-type-suffix]) / (decimal-literal floating-point-type-suffix)
floating-point-literal = (integer-digits exponent) / (integer-digits "." [fractional-digits] [exponent]) / ("." fractional-digits [exponent])

integer-digits = decimal-literal
fractional-digits = decimal-literal
exponent = exponent-letter [sign] decimal-literal
exponent-letter = %x0044 / %x0045 / %x0064 / %x0065 ; D / E / d / e
sign = "+" / "-"
floating-point-type-suffix = "!" / "#" / "@"
Static Semantics
· <FLOAT> tokens represent either binary floating point or currency data values. The <floatingpoint-type-suffix> designates the declared type and value type of the data value associated with the token according to the following table:
	<floating-point-type-suffix>
	Declared Type and Value Type

	Not present
	Double

	!
	Single

	#
	Double

	@
	Currency

· Let i equal the integer value of <integer-digits>, f be the integer value of <fractional-digits>, d be the number of digits in <fractional-digits>, and x be the signed integer value of <exponent>. A <floating-point-literal> then represents a mathematical real number, r, according to this formula:
[image: Formula for the mathematical real number, r. R = open parentheses i + f times 10 to the minus d power closed parentheses 10 to the X power]
· A <floating-point-literal> is invalid if its mathematical value is greater than the greatest mathematical value that can be represented using its declared type.
· If the declared type of <floating-point-literal> is Currency, the fractional part of r is rounded using Banker’s rounding (section 5.5.1.2.1.1) to 4 significant digits.
[bookmark: section_650974956498414f8af88e6f481f831f][bookmark: _Toc181683893]Date Tokens
date-or-time = (date-value 1*WSC time-value) / date-value / time-value

date-value = left-date-value date-separator middle-date-value [date-separator right-date-value]
left-date-value = decimal-literal / month-name
middle-date-value = decimal-literal / month-name
right-date-value = decimal-literal / month-name
date-separator = 1*WSC / (*WSC ("/" / "-" / ",") *WSC)

month-name = English-month-name / English-month-abbreviation
English-month-name = "january" / "february" / "march" / "april" / "may" / "june" / "july" / "august" / "september" / "october" / "november" / "december"
English-month-abbreviation = "jan" / "feb" / "mar" / "apr" / "jun" / "jul" / "aug" / "sep" / "oct" / "nov" / "dec"

time-value = (hour-value ampm) / (hour-value time-separator minute-value [time-separator second-value] [ampm])
hour-value = decimal-literal
minute-value = decimal-literal
second-value = decimal-literal
time-separator = *WSC (":" / ".") *WSC
ampm = *WSC ("am" / "pm" / "a" / "p")
Static Semantics
· A <DATE> token (section 3.3) has an associated data value (section 2.1) of value type (section 2.1) and declared type (section 2.2) Date.
· The numeric data value of a <DATE> token is the sum of its specified date and its specified time.
· If a <date-or-time> does not include a <time-value> its specified time is determined as if a <time-value> consisting of the characters "00:00:00" was present.
· If a <date-or-time> does not include a <date-value> its specified date is determined as if a <date-value> consisting of the characters "1899/12/30" was present.
· At most one of <left-date-value>, <middle-date-value>, and <right-date-value> can be a <month-name>.
· Given that L is the data value of <left-date-value>, M is the data value of <middle-date-value>, and R is the data value of <right-date-value> if it is present. L, M, and R are interpreted as a calendar date as follows:
· Let
 [image: Formula for legal month X. Legal Month X = true if X is greater than or = to 0 and x is less than or equal to 12. Otherwise LegalMonth X is false]
· Let [image: Formula for LegalDay Month Day Year. Legal Day Month, Day, Year = false if open parentheses year is less than 0 or year is less than 32767 closed parentheses or LegalMonth Month is false or day is not a valid day for the specified month and year. Otherwise LegalDay Month Day Year = True]
· Let CY be an implementation-defined default year.
· Let
[image: Formula for Year X. Year X = X + 2000 if X is greater or equal to 0 and X is less than or equal to 29. Otherwise Year X = X + 1900.]
· If L and M are numbers and R is not present:
· If LegalMonth(L) and LegalDay(L,M,CY) then L is the month, M is the day, and the year is CY
· Else if LegalMonth(M) and LegalDay(M,L,CY) then M is the month, L is the day, and the year is CY
· Else if LegalMonth(L) then L is the month, the day is 1, and the year is M
· Else if LegalMonth(M) then M is the month, the day is 1, and the year is L
· Otherwise, the <date-value> is not valid.
· If L, M, and R are numbers:
· If LegalMonth(L) and LegalDay(L,M,Year(R)) then L is the month, M is the day, and Year(R) is the year
· Else if LegalMonth(M) and LegalDay(M,R,Year(L)) then M is the month, R is the day, and Year(L) is the year
· Else if LegalMonth(M) and LegalDay(M,L,Year(R)) then M is the month, L is the day, and Year(R) is the year
· Otherwise, the <date-value> is not valid.
· If either L or M is not a number and R is not present:
· Let N be the value of whichever of L or M is a number.
· Let M be the value in the range 1 to 12 corresponding to the month name or abbreviation that is the value of whichever of L or M is not a number.
· If LegalDay(M,N,CY) then M is the month, N is the day, and the year is CY
· Otherwise, M is the month, 1 is the day, and the year is Year(N).
· Otherwise, R is present and one of L, M, and R is not a number:
· Let M be the value in the range 1 to 12 corresponding to the month name or abbreviation that is the value of whichever of L, M, or R is not a number.
· Let N1 and N1 be the numeric values of which every of L, M, or R are numbers.
· If LegalDay(M,N1,Year(N2) then M is the month, N1 is the day, and Year(N2) is the year
· If LegalDay(M,N2,Year(N1) then M is the month, N2 is the day, and Year(N1) is the year
· Otherwise, the <date-value> is not valid.
· A <decimal-literal> that is an element of an <hour-value> MUST have an integer value in the inclusive range of 0 to 23.
· A <decimal-literal> that is an element of an <minute-value> MUST have an integer value in the inclusive range of 0 to 59.
· A <decimal-literal> that is an element of an <second-value> MUST have an integer value in the inclusive range of 0 to 59
· If <time-value> includes an <ampm> element that consists of "pm" or "p" and the <hour-value> has an integer value in the inclusive range of 0 to 11 then the <hour-value> is used as if its integer value was 12 greater than its actual integer value.
· A <ampm> element has no significance if the <hour-value> is greater than 12.
· If <time-value> includes an <ampm> element that consists of "am" or "a" and the <hour-value> is the integer value 12, then the <hour-value> is used as if its integer value was 0.
· If a <time-value> does not include a <minute-value> it is as if there was a <minute-value> whose integer value was 0.
· If a <time-value> does not include a <second-value> it is as if there was a <second-value> whose integer value was 0.
· Let h be the integer value of the <hour-value> element of a <time-value>, let m be the integer value of the <minute-value> element of that <time-value>, and let s be the integer value of the <second-value> of that <time-value>. The specified time of the <time-value> is defined by the formula (3600h+60m+s)/86400.
[bookmark: section_5754c46fc10541cba378295a1f74c472][bookmark: _Toc181683894]String Tokens
STRING = double-quote *string-character (double-quote / line-continuation / LINE-END)
double-quote = %x0022 ; "
string-character = NO-LINE-CONTINUATION ((double-quote double-quote) / non-line-termination-character)
Static Semantics
· A <STRING> token (section 3.3) has an associated data value (section 2.1) of value type (section 2.1) and declared type (section 2.2) String.
· The length of the associated string data value is the number of <string-character> elements that comprise the <STRING>
· The data value consists of the sequence of implementation-defined encoded characters corresponding to the <string-character> elements in left to right order where the left-most <string-character> element defines the first element of the sequence and the right-most <string-character> element defines the last character of the sequence.
· A <STRING> token is invalid if any <string-character> element does not have an encoding in the in the implementation-defined character set.
· A sequence of two <double-quote> characters represents a single occurrence of the character U+0022 within the data value.
· If there are no <string-character> elements, the data value is the zero length empty string.
· If a <STRING> ends in a <line-continuation> element, the final character of the associated data value is the right-most character preceding the <line-continuation> that is not a <WSC>.
· If a <STRING> ends in a <LINE-END> element, the final character of the associated data value is the right-most character preceding the <LINE-END> that is not a <line-terminator>.
[bookmark: section_f8baa2da2b5c4470ae456b66b95665eb][bookmark: _Toc181683895]Identifier Tokens
lex-identifier = Latin-identifier / codepage-identifier / Japanese-identifier / Korean-identifier / simplified-Chinese-identifier / traditional-Chinese-identifier

Latin-identifier = first-Latin-identifier-character *subsequent-Latin-identifier-character
first-Latin-identifier-character = (%x0041-005A / %x0061-007A) ; A-Z / a-z
subsequent-Latin-identifier-character = first-Latin-identifier-character / decimal-digit / %x5F ; underscore
Static Semantics
· Upper and lowercase Latin characters are considered equivalent in VBA identifiers. Two identifiers that differ only in the case of corresponding <first-Latin-identifier-character> characters are considered to be the same identifier.
· Implementations MUST support <Latin-identifier>. Implementations MAY support one or more of the other identifier forms and if so MAY restrict the combined use of such identifier forms.
[bookmark: section_b1cbd42c6caa45108f28b0eebabf1956][bookmark: _Toc181683896]Non-Latin Identifiers
Japanese-identifier = first-Japanese-identifier-character *subsequent-Japanese-identifier-character
first-Japanese-identifier-character = (first-Latin-identifier-character / CP932-initial-character)
subsequent-Japanese-identifier-character = (subsequent-Latin-identifier-character / CP932-subsequent-character)
CP932-initial-character = < character ranges specified in section 3.3.5.1.1>
CP932-subsequent-character = < character ranges specified in section 3.3.5.1.1>

Korean-identifier = first-Korean-identifier-character *subsequent Korean-identifier-character
first-Korean-identifier-character = (first-Latin-identifier-character / CP949-initial-character)
subsequent-Korean-identifier-character = (subsequent-Latin-identifier-character / CP949-subsequent-character)
CP949-initial-character = < character ranges specified in section 3.3.5.1.2>
CP949-subsequent-character = < character ranges specified in section 3.3.5.1.2>

simplified-Chinese-identifier = first-sChinese-identifier-character
 *subsequent-sChinese-identifier-character
first-sChinese-identifier-character = (first-Latin-identifier-character / CP936-initial-character)
subsequent-sChinese-identifier-character = (subsequent-Latin-identifier-character / CP936-subsequent-character)
CP936-initial-character = < character ranges specified in section 3.3.5.1.3>
CP936-subsequent-character = < character ranges specified in section 3.3.5.1.3>

traditional-Chinese-identifier = first-tChinese-identifier-character
 *subsequent-tChinese-identifier-character
first-tChinese-identifier-character = (first-Latin-identifier-character / CP950-initial-character)
subsequent-tChinese-identifier-character = (subsequent-Latin-identifier-character / CP950-subsequent-character)
CP950-initial-character = < character ranges specified in section 3.3.5.1.4>
CP950-subsequent-character = < character ranges specified in section 3.3.5.1.4>

codepage-identifier = (first-Latin-identifier-character / CP2-character)
 *(subsequent-Latin-identifier-character / CP2-character)

CP2-character = <any Unicode character that has a mapping to the character range %x80-FF in a Microsoft Windows supported code page>
VBA support for identifiers containing non-Latin ideographic characters was designed based upon characters code standards that predate the creation of Unicode. For this reason, non-Latin Identifiers are specified in terms of the Unicode characters corresponding to code points in these legacy standards rather than directly using similar Unicode characters classes.
Any Unicode character that corresponds to a character in a Microsoft Windows code page with a single byte code point in the range %x80-FF is a valid <CP2-characters>. The code pages defining such characters are Windows Codepages 874, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, and 1258. The definitions of these codepages and the mapping of individual codepage specific code points to Unicode code points are specified by files hosted at [UNICODE-BESTFIT] and explained by [UNICODE-README]. [CODEPG] provides an informative overview of the code pages code points and their mappings to the corresponding Unicode characters.
[bookmark: section_ab3ad95fac1c4a11ace53cb6e3cde36e][bookmark: _Toc181683897]Japanese Identifiers
VBA support for identifiers containing Japanese characters is based upon Windows Codepage 932 [UNICODE-BESTFIT]. Japanese characters are encoded as both 8 bit single byte and 16 bit double byte characters with code points beginning at %x80. The Unicode equivalents of Windows Codepage 932 code points are specified by the file bestfit932.txt provided at [UNICODE-BESTFIT]. Many of the characters in the range %x80-FF are lead bytes that serve as the first byte of a 16 bit encoding of a code point. However, valid characters also occur within this range.
A <CP932-initial-character> can be any Unicode character that corresponds to a defined code page 932 character whose Windows Codepage 932 code point is greater than %x7F except for code points in the range %x80-FF that are lead bytes and except for the following code points that are explicitly excluded: %x8140, %x8143-8151,%x815E-8197,%x824f-8258.
A <CP932-subsequent-character> is defined identically to <CP932-initial-character> except that code points in the range are %x824f-8258 are not excluded.
[bookmark: section_9341100f2b164476a1d4420e21b123b3][bookmark: _Toc181683898]Korean Identifiers
VBA support for identifiers containing Korean characters is based upon Windows Codepage 949 [UNICODE-BESTFIT]. Korean characters are encoded as 16 bit double byte characters with code points beginning at %x8141. The Unicode equivalents of Windows Codepage 949 code points are specified by the file bestfit949.txt provided at [UNICODE-BESTFIT]. All of the code points in the range %x81-FE are lead bytes that serve as the first byte of a 16 bit encoding of a code point.
A <CP949-initial-character> MAY be any Unicode character that corresponds to the following Windows Codepage 949 character code points: any defined 16-bit code point whose lead byte is less than %xA1 or greater than %xAF; any defined code point, regardless of its lead byte value, whose second bytes is less than %xA1 or greater than %xFE; code points in the range %xA3C1-A3DA; code points in the range %xA3E1-A3FA; code points in the range %xA4A1-A4FE.
A <CP949-subsequent-character> is defined identically to <CP949-initial-character> with the addition of code point %xA3DF and code points in the range %xA3B0-A3B9.
[bookmark: section_ab0dc44742df439084ef92147726768c][bookmark: _Toc181683899]Simplified Chinese Identifiers
VBA support for identifiers containing Simplified Chinese characters is based upon Windows Codepage 936 [UNICODE-BESTFIT]. Simplified Chinese characters are encoded as 16 bit double byte characters with code points beginning at %x8140. The Unicode equivalents of Windows Codepage 936 code points are specified by the file bestfit936.txt provided at [UNICODE-BESTFIT].
A <CP936-initial-character> MAY be any Unicode character that corresponds to defined code points in the following ranges of Windows Codepage 936 code points: %xA3C1-A3DA; %xA3E1-A3FA; %xA1A2A1AA; %xA1AC-A1AD; %xA1B2-A1E6; %xA1E8-A1EF; %xA2B1-A2FC; %xA4A1-FE4F.
A <CP936-subsequent-character> is defined identically to <CP949-initial-character> with the addition of code point %xA3DF and code points in the range %xA3B0-A3B9.
[bookmark: section_a4ecdbdf49dd47d39f1b3c199e65035f][bookmark: _Toc181683900]Traditional Chinese Identifiers
VBA support for identifiers containing Traditional Chinese characters is based upon Windows Codepage 950 [UNICODE-BESTFIT]. Traditional Chinese characters are encoded as 16 bit double byte characters with code points beginning at %xA140. The Unicode equivalents of Windows Codepage 950 code points are specified by the file bestfit950.txt provided at [UNICODE-BESTFIT].
A <CP950-initial-character> MAY be any Unicode character that corresponds to defined code points in the following ranges of Windows Codepage 950 code points: %xA2CF-A2FE; %xA340-F9DD.
A <CP950-subsequent-character> is defined identically to <CP950-initial-character> with the addition of code point %xA1C5 and code points in the range %xA2AF-A2B8.
[bookmark: section_7df907cbab6c40d3aa81272742ce00c3][bookmark: _Toc181683901]Reserved Identifiers and IDENTIFIER
reserved-identifier = statement-keyword / marker-keyword / operator-identifier /
 special-form / reserved-type-identifier / reserved-name / literal-identifier /
 rem-keyword / reserved-for-implementation-use / future-reserved

IDENTIFIER = <any lex-identifier that is not a reserved-identifier>
<reserved-identifier> designates all sequences of characters that conform to <Latin-identifier> but are reserved for special uses within the VBA language. Keyword is an alternative term meaning <reserved-identifier>. When a specific keyword needs to be named in prose sections of this specification the keyword is written using bold emphasis. Like all VBA identifiers, a <reserved-identifier> is case insensitive. A <reserved-identifier> is a token (section 3.3). Any quoted occurrence of one of the <reserved-identifier> elements as a grammar element within the syntactic grammar is a reference to the corresponding token. The token element <IDENTIFIER> is used within the syntactic grammar to specify the occurrence of an identifier that is not a <reserved-identifier>
Static Semantics
· The name value of an <IDENTIFIER> is the text of its <lex-identifier>.
· The name value of a <reserved-identifier> token is the text of its <Latin-identifier>.
· Two name values are the same if they would compare equal using a case insensitive textual comparison.
<reserved-identifier> are categorized according to their usage by the following rules. Some of them have multiple uses and occur in multiple rules.
statement-keyword = "Call" / "Case" /"Close" / "Const"/ "Declare" / "DefBool" / "DefByte" / "DefCur" / "DefDate" / "DefDbl" / "DefInt" / "DefLng" / "DefLngLng" / "DefLngPtr" / "DefObj" / "DefSng" / "DefStr" / "DefVar" / "Dim" / "Do" / "Else" / "ElseIf" / "End" / "EndIf" / "Enum" / "Erase" / "Event" / "Exit" / "For" / "Friend" / "Function" / "Get" / "Global" / "GoSub" / "GoTo" / "If" / "Implements"/ "Input" / "Let" / "Lock" / "Loop" / "LSet" / "Next" / "On" / "Open" / "Option" / "Print" / "Private" / "Public" / "Put" / "RaiseEvent" / "ReDim" / "Resume" / "Return" / "RSet" / "Seek" / "Select" / "Set" / "Static" / "Stop" / "Sub" / "Type" / "Unlock" / "Wend" / "While" / "With" / "Write"

rem-keyword = "Rem"
marker-keyword = "Any" / "As"/ "ByRef" / "ByVal "/"Case" / "Each" / "Else" /"In"/ "New" / "Shared" / "Until" / "WithEvents" / "Write" / "Optional" / "ParamArray" / "Preserve" / "Spc" / "Tab" / "Then" / "To"

operator-identifier = "AddressOf" / "And" / "Eqv" / "Imp" / "Is" / "Like" / "New" / "Mod" / "Not" / "Or" / "TypeOf" / "Xor"
A <statement-keyword> is a <reserved-identifier> that is the first syntactic item of a statement or declaration. A <marker-keyword> is a <reserved-identifier> that is used as part of the interior syntactic structure of a statement. An <operator-identifier> is a <reserved-identifier> that is used as an operator within expressions.

reserved-name = "Abs" / "CBool" / "CByte" / "CCur" / "CDate" / "CDbl" / "CDec" / "CInt" / "CLng" / "CLngLng" / "CLngPtr" / "CSng" / "CStr" / "CVar" / "CVErr" / "Date" / "Debug" / "DoEvents" / "Fix" / "Int" / "Len" / "LenB" / "Me" / "PSet" / "Scale" / "Sgn" / "String"

special-form = "Array" / "Circle" / "Input" / "InputB" / "LBound" / "Scale" / "UBound"
reserved-type-identifier = "Boolean" / "Byte" / "Currency" / "Date" / "Double" / "Integer" / "Long" / "LongLong" / "LongPtr" / "Single" / "String" / "Variant"
literal-identifier = boolean-literal-identifier / object-literal-identifier / variant-literal-identifier
boolean-literal-identifier = "true" / "false"
object-literal-identifier = "nothing"
variant-literal-identifier = "empty" / "null"
A <reserved-name> is a <reserved-identifier> that is used within expressions as if it was a normal program defined entity (section 2.2). A <special-form> is a <reserved-identifier> that is used in an expression as if it was a program defined procedure name but which has special syntactic rules for its argument. A <reserved-type-identifier> is a <reserved-identifier> that is used within a declaration to identify the specific declared type (section 2.2) of an entity.
A <literal-identifier> is a <reserved-identifier> that represents a specific distinguished data value (section 2.1). A <boolean-literal-identifier> specifying "true" or "false" has a declared type of Boolean and a data value of True or False, respectively. An <object-literal-identifier> has a declared type of Object and the data value Nothing. A <variant-literal-identifier> specifying "empty" or "null" has a declared type of Variant and the data value Empty or Null, respectively.
reserved-for-implementation-use = "Attribute" / "LINEINPUT" / "VB_Base" / "VB_Control" / "VB_Creatable" / "VB_Customizable" / "VB_Description" / "VB_Exposed" / "VB_Ext_KEY " / "VB_GlobalNameSpace" / "VB_HelpID" / "VB_Invoke_Func" / "VB_Invoke_Property " / "VB_Invoke_PropertyPut" / "VB_Invoke_PropertyPutRef" / "VB_MemberFlags" / "VB_Name" / "VB_PredeclaredId" / "VB_ProcData" / "VB_TemplateDerived" / "VB_UserMemId" / "VB_VarDescription" / "VB_VarHelpID" / "VB_VarMemberFlags" / "VB_VarProcData " / "VB_VarUserMemId"

future-reserved = "CDecl" / "Decimal" / "DefDec"
A <reserved-for-implementation-use> is a <reserved-identifier> that currently has no defined meaning to the VBA language but is reserved for use by language implementers. A <future-reserved> is a <reserved-identifier> that currently has no defined meaning to the VBA language but is reserved for possible future extensions to the language.
[bookmark: section_74e5bf342a30420c9d3b9341fa4c4c09][bookmark: _Toc181683902]Special Identifier Forms
FOREIGN-NAME = "[" foreign-identifier "]"
foreign-identifier = 1*non-line-termination-character
A <FOREIGN-NAME> is a token (section 3.3) that represents a text sequence that is used as if it was an identifier but which does not conform to the VBA rules for forming an identifier. Typically, a <FOREIGN-NAME> is used to refer to an entity (section 2.2) that is created using some programming language other than VBA.
Static Semantics
· The name value (section 3.3.5.1) of a <FOREIGN-NAME> is the text of its <foreign-identifier>.
BUILTIN-TYPE = reserved-type-identifier / ("[" reserved-type-identifier "]") / "object" / "[object]"
In some VBA contexts, a <FOREIGN-NAME> whose name value is identical to a <reserved-type-identifier> can be used equivalently to that <reserved-type-identifier>. The identifier whose name value is "object" is not a <reserved-identifier> but is generally used as if it was a <reserved-type-identifier>.
Static Semantics
· The name value of a <BUILTIN-TYPE> is the text of its <reserved-type-identifier> element if it has one. Otherwise the name value is "object".
· The declared type (section 2.2) of a <BUILTIN-TYPE> element is the declared type whose name is the same as the name value of the <BUILTIN-TYPE>.
TYPED-NAME = IDENTIFIER type-suffix

type-suffix = "%" / "&" / "^" / "!" / "#" / "@" / "$"
A <TYPED-NAME> is an <IDENTIFIER> that is immediately followed by a <type-suffix> with no intervening whitespace.
Static Semantics
· The name value of a <TYPED-NAME> is the name value of its <IDENTIFIER> elements.
· The declared type of a <TYPED-NAME> is defined by the following table:
	<type-suffix>
	Declared Type

	%
	Integer

	&
	Long

	^
	LongLong

	!
	Single

	#
	Double

	@
	Currency

	$
	String

[bookmark: section_a95f1a5668ba4a7a8269a5e9d96a7cbc][bookmark: _Toc181683903]Conditional Compilation
A module body can contain logical lines (section 3.2) that can be conditionally excluded from interpretation as part of the VBA program code defined by the module (section 4.2). The module body (section 4.2) with such excluded lines logically removed is called the preprocessed module body. The preprocessed module body is determined by interpreting conditional compilation directives within tokenized <module-body-lines> conforming to the following grammar:
conditional-module-body = cc-block
cc-block = *(cc-const / cc-if-block / logical-line)
Static Semantics
· A <module-body-logical-structure> which does not conform to the rules of this grammar is not a valid VBA module.
· The <cc-block> that directly makes up a <conditional-module-body> is an included block.
· All <logical-line> lines that are immediate elements of an included block are included in the preprocessed module body.
· All <logical-line> lines that are immediate elements of an excluded block (section 3.4.2) are not included in the preprocessed module body.
· The relative ordering of the <logical-line> lines within the preprocessed module body is the same as the relative ordering of those lines within the original module body.
[bookmark: section_53bd8798d11d46bea21576a89b33bc20][bookmark: _Toc181683904]Conditional Compilation Const Directive

cc-const = LINE-START "#" "const" cc-var-lhs "=" cc-expression cc-eol
cc-var-lhs = name
cc-eol = [single-quote *non-line-termination-character] LINE-END
Static Semantics
· All <cc-const> lines are excluded from the preprocessed module body (section 3.4).
· All <cc-const> directives are processed including those contained in excluded blocks (section 3.4.2).
· If <cc-var-lhs> is a <TYPED-NAME> with a <type-suffix>, the <type-suffix> is ignored.
· The name value (section 3.3.5.1) of the <name> of a <cc-var-lhs> MUST be different for every <cc-var-lhs> (including those whose containing <cc-block> is an excluded block) within a <conditionalmodule-body>.
· The data value (section 2.1) of a <cc-expression> is the constant value (section 5.6.16.2) of the <cc-expression>.
· If constant evaluation of the <cc-expression> results in an evaluation error the content of the preprocessed module body is undefined.
· A <cc-const> defines a constant binding accessible to <cc-expression> elements of the containing module. The bound name is the name value of the <name> of the <cc-var-lhs> , the declared type of the constant binding is Variant, and the data value of the constant binding is the data value of the <cc-expression>.
· The name value of the <name> of a <cc-var-lhs> can be the same as a bound name of a project level conditional compilation constant. In that case, the constant binding defined by the <cc-const> element shadows the project level binding.
[bookmark: section_7fca648124cc47369757f4af90863e26][bookmark: _Toc181683905]Conditional Compilation If Directives

cc-if-block = cc-if
 cc-block
 *cc-elseif-block
 [cc-else-block]
 cc-endif

cc-if = LINE-START "#" "if" cc-expression "then" cc-eol

cc-elseif-block = cc-elseif cc-block
cc-elseif = LINE-START "#" "elseif" cc-expression "then" cc-eol

cc-else-block = cc-else cc-block
cc-else = LINE-START "#" "else" cc-eol

cc-endif = LINE-START "#" ("endif" / ("end" "if")) cc-eol
Static Semantics
· All of the constituent <cc-expression> elements of a <cc-if-block> MUST conform to the following rules, even if the <cc-if-block> is not contained within an included block (section 3.4):
· The <cc-expression> within the <cc-if> and those within each <cc-elseif> are each evaluated.
· The data values (section 2.1) of the constituent <cc-expression> elements MUST all be Let-coercible to the Boolean value type (section 2.1).
· If evaluation of any of the constituent <cc-expression> elements results in an evaluation error the content of the preprocessed module body (section 3.4) is undefined.
· If an <cc-if-block> is contained within an included block then at most one contained <cc-block> is selected as an included block according to the sequential application of these rules:
1. If the evaluated value of the <cc-expression> within the <cc-if> is a true value, the <cc-block> that immediate follows the <cc-if> is the included block.
2. If one or more of the <cc-expression> elements that are within a <cc-elseif> have an evaluated value that is a true value then the <cc-block> that immediately follows the first such <cc-elseif> is the included block.
3. If none of the evaluated <cc-expression> elements have a true value and a <cc-else-block> is present, the <cc-block> that is an element of the <cc-else-block> is the included block.
4. If none of the evaluated <cc-expression> have a true value and a <cc-else-block> is not present there is no included block.
· Any <cc-block> which is an immediate element of a <cc-if-block>, a <cc-elseif-block>, or a <cc-else-block> and which is not an included block is an excluded block (section 3.4).
· All <cc-if>, <cc-elseif>, <cc-else>, and <cc-endif> lines are excluded from the preprocessed module body.
[bookmark: section_1a2244330b534ebda4221232a25ed701][bookmark: _Toc181683906]VBA Program Organization
A VBA Environment can be organized into a number of user-defined and host application-defined projects (section 4.1). Each project is composed of one or more modules (section 4.2).
[bookmark: section_4cd406c71ade45228d7b933183059ac7][bookmark: _Toc181683907]Projects
A project is the unit in which VBA program code is defined and incorporated into a VBA Environment. Logically a project consists of a project name, a set of named modules, and an ordered list of project references. A project reference that occurs earlier in this list is said to have higher reference precedence than references that occur later in the list. The physical representation of a project and the mechanisms used for naming, storing, and accessing a project are implementation-defined.
A project reference specifies that a project accesses public entities (section 2.2) that are defined in another project. The mechanism for identifying a project’s referenced projects is implementation defined.
There are three types of VBA projects: source projects, host projects, and library projects. Source projects are composed of VBA program code that exists in VBA Language source code form. A library project is a project that is defined in an implementation-defined manner that and can define all the same kinds of entities that a source project might define, except that it might not exist in VBA language source code form and might not have been implemented using the VBA language.
A host project is a library project that is introduced into a VBA Environment by the host application. The means of introduction is implementation dependent. The public variables (section 5.2.3.1), constants, procedures, classes (section 2.5), and UDTs defined by a host project are accessible to VBA source projects in the same VBA Environment as if the host project was a source project. An open host project is one to which additional modules can be added to it by agents other than the host application. The means of designating an open host project and of adding modules to one is implementation defined.
Static Semantics.
· A project name MUST be valid as an <IDENTIFIER>.
· A project name SHOULD NOT be "VBA"; this name is reserved for accessing the VBA Standard Library (section 2.7.1).
· A project name SHOULD NOT be a <reserved-identifier>.
· The project references of a specific project MUST identify projects with distinct project names.
· It is implementation dependent whether or not a source project references a different project that has the same project name as the referencing project.

[bookmark: section_4599fae23f414e70968e2398741f446b][bookmark: _Toc181683908]Modules
A module is the fundamental syntactic unit of VBA source code. The physical representation of a module is implementation dependent but logically a VBA module is a sequence of Unicode characters that conform to the VBA language grammars.
A module consists of two parts: a module header and a module body.
The module header is a set of attributes consisting of name/value pairs that specify the certain linguistic characteristics of a module. While a module header could be directly written by a human programmer, more typically a VBA implementation will mechanically generate module headers based upon the programmer’s usage of implementation specific tools. These tools are not part of the scope of this document, so their contents, including the version and all text between "BEGIN" and "END" at the start of the file is not part of the module body and is not required to conform to the VBA grammar.
A module body consists of actual VBA Language source code and most typically is directly written by a human programmer.
VBA supports two kinds of modules, procedural modules and class modules, whose contents MUST conform to the grammar productions <procedural-module> and <class-module>, respectively:
procedural-module = LINE-START procedural-module-header EOS
 LINE-START procedural-module-body
 class-module = LINE-START class-module-header
 LINE-START class-module-body

 procedural-module-header = attribute "VB_Name" attr-eq quoted-identifier attr-end

 class-module-header = 1*class-attr

 class-attr = attribute "VB_Name" attr-eq quoted-identifier attr-end
 / attribute "VB_GlobalNameSpace" attr-eq "False" attr-end
 / attribute "VB_Creatable" attr-eq "False" attr-end
 / attribute "VB_PredeclaredId" attr-eq boolean-literal-identifier attr-end
 / attribute "VB_Exposed" attr-eq boolean-literal-identifier attr-end
 / attribute "VB_Customizable" attr-eq boolean-literal-identifier attr-end
 attribute = LINE-START "Attribute"
 attr-eq = "="
 attr-end = LINE-END

 quoted-identifier = double-quote NO-WS IDENTIFIER NO-WS double-quote
Static Semantics.
· The name value (section 3.3.5.1) of an <IDENTIFIER> that follows an <attribute> element is an attribute name.
· An element that follows an <attr-eq> element defines the attribute value for the attribute name that precedes the same <attr-eq>.
· The attribute value defined by a <quoted-identifier> is the name value of the contained identifier.
· The last <class-attr> for a specific attribute name within a given <class-module-header> provides the attribute value for its attribute name.
· If an <class-attr> for a specific attribute name does not exist in an <class-module-header> it is assumed that a default attribute value is associated with the attribute name according to the following table:

	Attribute Name
	Default Value

	VB_Creatable
	False

	VB_Customizable
	False

	VB_Exposed
	False

	VB_GlobalNameSpace
	False

	VB_PredeclaredId
	False

· The module name of a module is the attribute value of the module’s VB_NAME attribute.
· A maximum length of a module name is 31 characters.
· A module name SHOULD NOT be a <reserved-identifier>.
· A module’s module name might not be the same as the project name (section 4.1) of the project that contains the module or that of any project (section 4.1) referenced by the containing project.
· Every module contained in a project MUST have a distinct module name.
· Both the VB_GlobalNamespace and VB_Creatable attributes MUST have the attribute value "False" in a VBA module that is part of a VBA source project (section 4.1). However library projects (section 4.1) can contain modules in which the attributes values of these attributes are "True".
· In addition to this section, the meaning of certain attributes and attribute combinations when used in the definition of class modules is defined in section 5.2.4.1. All other usage and meanings of attributes are implementation-dependent.
[bookmark: section_a3b4a066986d453d8aadc4d8f30de24e][bookmark: _Toc181683909]Module Extensibility
An open host project (section 4.1) can include extensible modules. Extensible modules are modules (section 4.2) that can be extended by identically named externally provided extension modules that are added to the host project. An extension module is a module that defines additional variables (section 2.3), constants, procedures, and UDT entities (section 2.2). The additional extension module entities behave as if they were directly defined within the corresponding extensible module. Note that this means extensible modules can define WithEvents variables which can then be the target of event handler procedures in an extension module.
The mechanisms by which extension modules can be added to a host project (section 4.1) are implementation-defined.
Static Semantics.
· The module name (section 4.2) of an extension module MUST be identical to that of the extensible module it is extending.
· An extension module can’t define or redefine any variables, constants, procedures, enums, or UDTs that are already defined in its corresponding extensible module. The same name conflict rules apply as if the extension module elements were physically part of the module body (section 4.2) of the corresponding extensible module.
· Option directives contained in an extension module only apply to the extension module and not to the corresponding extensible module.
· It is implementation defined whether or not more than one extension module might exist within an extensible project for a specific extensible module.
[bookmark: section_818a904e90a64f7880ba224e46d61de2][bookmark: _Toc181683910]Module Bodies
Module bodies (section 4.2) contain source code written using the syntax of the VBA programming language, as defined in this specification. This chapter defines the valid syntax, static semantic rules, and runtime semantics of module bodies.
Syntax is described using an ABNF [RFC4234] grammar incorporating terminal symbols defined in section 3. Except for where it explicitly identifies <LINE-START> and <LINE-END> elements this grammar ignores the physical line structure of files containing the source code of module bodies. The grammar also ignores conditional compilation directives and conditionally excluded sources code as described in section 3.4. This grammar applied to the preprocessed module body (section 3.4); the source code is interpreted as if both lexical tokenization and conditional compilation preprocessing has been applied to it. This preprocessing assumption is made solely to simplify and clarify this specification. An implementation is not required to actually use such a processing model.

[bookmark: section_700b654033f44c9ba151cf1ee646e5ee][bookmark: _Toc181683911]Module Body Structure
procedural-module-body = LINE-START procedural-module-declaration-section
 LINE-START procedural-module-code-section
class-module-body = LINE-START class-module-declaration-section
 LINE-START class-module-code-section
Both procedural modules (section 4.2) and class modules (section 4.2) have module bodies (section 4.2) that consist of two parts, a declaration section (section 5.2) and a code section (section 5.3). Each section MUST occur as the first syntactic element of a physical line of its containing source file.
Throughout this specification the following common grammar rules are used for expressing various forms of entity (section 2.2) names:
unrestricted-name = name / reserved-identifier
name = untyped-name / TYPED-NAME / file-number
untyped-name = IDENTIFIER / FOREIGN-NAME

[bookmark: section_501a2cb421a049829e5d29fbb1c624f5][bookmark: _Toc181683912]Module Declaration Section Structure
A module’s (section 4.2) declaration sections consists of directive and declarations. Generally directives control the application of static semantic rules within the module. Declarations define named entities that exist within the runtime environment of a program.
procedural-module-declaration-section = [*(procedural-module-directive-element EOS) def-directive] *(procedural-module-declaration-element EOS)
class-module-declaration-section = [*(class-module-directive-element EOS) def-directive] *(class-module-declaration-element EOS)
procedural-module-directive-element = common-option-directive / option-private-directive / def-directive
procedural-module-declaration-element = common-module-declaration-element / global-variable-declaration / public-const-declaration / public-type-declaration / public-external-procedure-declaration / global-enum-declaration / common-option-directive / option-private-directive

class-module-directive-element = common-option-directive / def-directive / implements-directive
class-module-declaration-element = common-module-declaration-element / event-declaration / commonoption-directive / implements-directive
Static Semantics.
There are various restrictions on the number of occurrences and the relative ordering of directives and declarations within module declaration sections. These restrictions are specified as part of the definition of the specific individual directives and declarations elements.
[bookmark: section_049088bdacb74e33a875ab17a891ccda][bookmark: _Toc181683913]Option Directives
Option directives are used to select alternative semantics for various language features.
common-option-directive = option-compare-directive / option-base-directive / option-explicit-directive / rem-statement
Static Semantics.
· Each <common-option-directive> alternative can occur at most once in each <procedural-module-declaration-section> or <class-module-declaration-section>.
· An <option-private-directive> can occur at most once in each <procedural-module-declaration-section>.
[bookmark: section_801de7da232b46dd969521167620e078][bookmark: _Toc181683914]Option Compare Directive
Option Compare directives determine the comparison rules used by relational operators (section 5.6.9.5) when applied to String data values (section 2.1) within a module (section 4.2). This is known as the comparison mode of the module.
option-compare-directive = "Option" "Compare" ("Binary" / "Text")
Static Semantics.
· If an <option-compare-directive> includes the Binary keyword (section 3.3.5.1) the comparison mode of the module is binary-compare-mode.
· If an <option-compare-directive> includes the Text keyword the comparison mode of the module is text-compare-mode.
· An <option-compare-directive> can occur at most once in a <procedural-module-declaration-section> or <class-module-declaration-section>.
· If a <procedural-module-declaration-section> or <class-module-declaration-section> does not contain a <option-compare-directive> the comparison mode for the module is binary-compare-mode.
[bookmark: section_a4d229eae66e4e3dbd177d7cf2ac9290][bookmark: _Toc181683915]Option Base Directive
Option Base directives set the default value used within a module (section 4.2) for lower bound (section 2.1) of all array dimensions that are not explicitly specified in a <lower-bound> of a <dim-spec>.
option-base-directive = "Option" "Base" INTEGER
Static Semantics.
· An <option-base-directive> can occur at most once in a <procedural-module-declaration-section> or <class-module-declaration-section>.
· If present an < option-base-directive> MUST come before the first occurrence of a <dim-spec> in the same <procedural-module-declaration-section> or <class-module-declaration-section>.
· The data value (section 2.1) of the <INTEGER> MUST be equal to either the integer data value 0 or the integer data value 1.
· The default lower bound for array dimensions in containing module is the data value of the <INTEGER> element.
· If a <procedural-module-declaration-section> or <class-module-declaration-section> does not contain an <option-base-directive> the default lower bound for array dimensions in the module is 0.
[bookmark: section_e9253cf251394abd8c1deaf390805cb8][bookmark: _Toc181683916]Option Explicit Directive
Option Explicit directives is used to set the variable declaration mode which controls whether or not variables (section 2.3) can be implicitly declared (section 5.6.10) within the containing module (section 4.2).
option-explicit-directive = "Option" "Explicit"
Static Semantics:
· If an <option-explicit-directive> is present within a module, the variable declaration mode of the module is explicit-mode.
· If an <option-explicit-directive> is not present within a module, the variable declaration mode of the module is implicit-mode.
· An <option-explicit-directive> can occur at most once in a <procedural-module-declaration-section> or <class-module-declaration-section>.
· If a <procedural-module-declaration-section> or <class-module-declaration-section> does not contain a <option-explicit-directive> the variable declaration mode for the module is implicit-mode.
[bookmark: section_41e5d99761bf4b9bb62d661a33578927][bookmark: _Toc181683917]Option Private Directive
Option Private directives control the accessibility of a module (section 4.2) to other projects (section 4.1), as well as the meaning of public accessibility of Public entities (section 2.2) declared within the module.
option-private-directive = "Option" "Private" "Module"
Static Semantics:
· If a procedural module (section 4.2) contains an <option-private-directive>, the module itself is considered a private module, and is accessible only within the enclosing project.
· If a procedural module does not contain an <option-private-directive>, the module itself is considered a public module, and is accessible within the enclosing project and within any projects that reference the enclosing project.
· The effect of module accessibility on the accessibility of declarations within the module is described in the definitions of specific module declaration form within section 5.2.3.
[bookmark: section_8865edf362ab4eb7aa13c628aef9ccc2][bookmark: _Toc181683918]Implicit Definition Directives

def-directive = def-type letter-spec *("," letter-spec)
letter-spec = single-letter / universal-letter-range / letter-range

single-letter = IDENTIFIER ; %x0041-005A / %x0061-007A

universal-letter-range = upper-case-A "-"upper-case-Z
upper-case-A = IDENTIFIER
upper-case-Z = IDENTIFIER

letter-range = first-letter "-" last-letter
first-letter = IDENTIFIER
last-letter = IDENTIFIER

def-type = "DefBool" / "DefByte" / "DefCur" / "DefDate" / "DefDbl" / "DefInt" / "DefLng" / "DefLngLng" / "DefLngPtr" / "DefObj" / "DefSng" / "DefStr" / "DefVar"
Implicit Definition directives define the rules used within a module (section 4.2) for determining the declared type (section 2.2) of implicitly typed entities (section 2.2). The declared type of such entities can be determined based upon the first character of its name value (section 3.3.5.1). Implicit Definition directives define the mapping from such characters to declared types.
Static Semantics.
· The name value of the <IDENTIFIER> element of a <single-letter> MUST consist of a single upper or lower case alphabetic character (%x0041-005A or %x0061-007A).
· The name value of the <IDENTIFIER> element of a <upper-case-A> MUST consist of the single character "A" (%x0041).
· The name value of the <IDENTIFIER> element of a <upper-case-Z> MUST consist of the single character "Z" (%x005A).
· A <letter-spec> consisting of a <single-letter> defines the implicit declared type within the containing module of all <IDENTIFIER> tokens whose name value begins with the character that is the name value of the <IDENTIFIER> element of the <single-letter> .
· A <letter-spec> consisting of a <letter-range> defines the implicit declared type within the containing module of all entities with <IDENTIFIER> tokens whose name values begins with any of the characters in the contiguous span of characters whose first inclusive character is the name value of the <first-letter> <IDENTIFIER> element and whose last inclusive character is the name value of the <last-letter> <IDENTIFIER> element. The span can be an ascending or descending span of characters and can consist of a single character.
· Within a <procedural-module-declaration-section> or <class-module-declaration-section>, no overlap is allowed among <letter-spec> productions.
· A <universal-letter-range> defines a single implicit declared type for every <IDENTIFIER> within a module, even those with a first character that would otherwise fall outside this range if it was interpreted as a <letter-range> from A-Z.
 The declared type corresponding to each <def-type> is defined by the following table:
	<def-type>
	Declared Type

	"DefBool"
	Boolean

	"DefByte"
	Byte

	"DefInt"
	Integer

	"DefLng"
	Long

	"DefLngLng"
	LongLong

	"DefLngPtr"
	LongPtr type alias

	"DefCur"
	Currency

	"DefSng"
	Single

	"DefDbl"
	Double

	"DefDate"
	Date

	"DefStr"
	String

	"DefObj"
	Object reference

	"DefVar"
	Variant

If an entity is not explicitly typed and there is no applicable <def-type>, then the declared type of the entity is Variant.
[bookmark: section_b40b8d00334843c19cfbc0eadef565ee][bookmark: _Toc181683919]Module Declarations

common-module-declaration-element = module-variable-declaration
common-module-declaration-element =/ private-const-declaration
common-module-declaration-element =/ private-type-declaration
common-module-declaration-element =/ public-type-declaration
common-module-declaration-element =/ public-enum-declaration
common-module-declaration-element =/ private-enum-declaration
common-module-declaration-element =/ private-external-procedure-declaration
common-module-declaration-element =/ attribute-statement
Any kind of module (section 4.2) can contain a <common-module-declaration-element>. All other declarations are specific to either <procedural-module> or <class-module>.
Composition and compilation of Attribute statements is not permitted in the Microsoft Visual Basic for Applications editor, however, they are consumed and produced by Microsoft Visual Basic for Applications without error upon import and export and are therefore considered valid VBA language constructs. For this reason, this specification describes the grammars needed to parse these statements.
Compilation of public user defined types is not permitted in the Microsoft Visual Basic for Applications editor, however, composition of them is allowed and they are consumed and produced by Microsoft Visual Basic for Applications without error upon import and export and are therefore considered valid VBA language constructs. For this reason, this specification describes the grammars needed to parse these type constructs.
[bookmark: section_0f9113dffd9c485a9583fdb0e9d68e1b][bookmark: _Toc181683920]Module Variable Declaration Lists
module-variable-declaration = public-variable-declaration / private-variable-declaration

global-variable-declaration = "Global" variable-declaration-list
public-variable-declaration = "Public" ["Shared"] module-variable-declaration-list
private-variable-declaration = ("Private" / "Dim") ["Shared"] module-variable-declaration-list

module-variable-declaration-list = (withevents-variable-dcl / variable-dcl)
 *("," (withevents-variable-dcl / variable-dcl))
variable-declaration-list = variable-dcl *("," variable-dcl)
<global-variable-declaration> and the optional Shared keyword (section 3.3.5.1) provides syntactic compatibility with other dialects of the Basic language and/or historic versions of VBA.
Static Semantics
· The occurrence of the keyword Shared has no meaning.
· Each variable (section 2.3) defined within a <module-variable-declaration> contained within the same module (section 4.2) MUST have a different variable name (section 2.3).
· Each variable defined within a <module-variable-declaration> is a module variable and MUST have a variable name that is different from the name of any other module variable, module constant, enum member, or procedure (section 2.4) that is defined within the same module.
· A variable declaration that is part of a <global-variable-declaration> or <public-variable-declaration> declares a public variable. The variable is accessible within the enclosing project (section 4.1). If the enclosing module is a class module (section 4.2) or is a procedural module (section 4.2) that is not a private module (section 5.2.1.4), then the variable is also accessible within projects that reference the enclosing project.
· A variable declaration that is part of a <private-variable-declaration> declares a private variable. The variable is only accessible within the enclosing module.
· If a variable defined by a <public-variable-declaration> has a variable name that is the same as a project name (section 4.1) or a module name (section 4.2) then all references to the variable name MUST be module qualified unless they occur within the module that contains the <public-variable-declaration>
· A variable defined by a <module-variable-declaration> can have a variable name that is the same as the enum name of a <enum-declaration> defined in the same module but such a variable cannot be referenced using its variable name even if the variable name is module qualified.
· If a variable defined by a <public-variable-declaration> has a variable name that is the same as the enum name of a public <enum-declaration> in a different module, all references to the variable name MUST be module qualified unless they occur within the module that contains the <public-variable-declaration>.
· The declared type (section 2.2) of a variable defined by a <public-variable-declaration> in a <class-module-code-section> might not be a UDT (section 2.1) that is defined by a <private-type-declaration> or a private enum name.
· A <module-variable-declaration-list> that occurs in a procedural module MUST NOT include any <withevents-variable-dcl> elements.

Runtime Semantics.
· All variables defined by a <module-variable-declaration> that is an element of in a <procedural-module-declaration-section> have module extent (section 2.3).
· All variables defined by a <module-variable-declaration> that is an element of in a <class-module-declaration-section> are member (section 2.5) variables of the class (section 2.5) and have object extent (section 2.3). Each instance (section 2.5) of the class will contain a distinct corresponding variable.
[bookmark: section_cf31e1526b154ddda4153257a30b1ac8][bookmark: _Toc181683921]Variable Declarations
variable-dcl = typed-variable-dcl / untyped-variable-dcl
typed-variable-dcl = TYPED-NAME [array-dim]
untyped-variable-dcl = IDENTIFIER [array-clause / as-clause]
array-clause = array-dim [as-clause]
as-clause = as-auto-object / as-type
Static Semantics
· A <typed-variable-dcl> defines a variable (section 2.3) whose variable name (section 2.3) is the name value (section 3.3.5.1) of the <TYPED-NAME>.
· If the optional <array-dim> is not present the declared type (section 2.2) of the defined variable is the declared type of the <TYPED-NAME>.
· If the optional <array-dim> is present and does not include a <bounds-list> then the declared type of the defined variable is resizable array (section 2.2) with an element type (section 2.1.1) that is the declared type of the <TYPED-NAME>.
· If the optional <array-dim> is present and includes a <bounds-list> then the declared type of the defined variable is fixed-size array (section 2.2) with an element type that is the declared type of the <TYPED-NAME>. The number of dimensions and the upper bound (section 2.1) and lower bound (section 2.1) for each dimension is as defined by the <bounds-list>.
· An <untyped-variable-dcl> that includes an <as-clause> containing an <as-auto-object> element defines an automatic instantiation variable (section 2.5.1). If the <untyped-variable-dcl> also includes an <array-dim> element then each dependent variable (section 2.3.1) of the defined array variable is an automatic instantiation variable.
· If the <untyped-variable-dcl> does not include an <as-clause> (either directly or as part of an <array-clause> this is an implicitly typed (section 5.2.2) declaration and its implicit declared type (section 5.2.3.1.5). The following rules apply:
· The declared type of a variable defined by an implicitly typed declaration that does not include an <array-clause> is the same as its implicit declared type.
· The declared type of a variable defined by an implicitly typed declaration that includes an <array-clause> whose <array-dim> element does not contain a <bounds-list> is resizable array whose declared element type is the same as the implicit declared type.
· The declared type of a variable defined by an implicitly typed declaration that includes an <array-clause> whose <array-dim> element contains a <bounds-list> is fixed size array with a declared element type is the same as the implicit declared type. The number of dimensions and the upper bound and lower bound for each dimension is as defined by the <bounds-list>.
· If the <untyped-variable-dcl> includes an <array-clause> containing an <as-clause> the following rules apply:
· If the <array-dim> of the <array-clause> does not contain a <bounds-list> the declared type of the defined variable is resizable array with a declared element type as the specified type of the <as-clause>.
· If the <array-dim> of the <array-clause> contains a <bounds-list> the declared type of the defined variable is fixed size array with a declared element type as the specified type of the <as-clause>. The number of dimensions and the upper and lower bound for each dimension is as defined by the <bounds-list>.
· If the <as-clause> consists of an <as-auto-object> each dependent variable of the defined variable is an automatic instantiations variable.
· If the <untyped-variable-dcl> includes an <as-clause> but does not include an <array-clause> the following rules apply:
· The declared type of the defined variable is the specified type of the <as-clause>.
· If the <as-clause> consists of an <as-auto-object> the defined variable is an automatic instantiations variable.
[bookmark: section_f41f8ec57a2d47978ba90e3b52113b9e][bookmark: _Toc181683922]WithEvents Variable Declarations

withevents-variable-dcl = "withevents" IDENTIFIER "as" class-type-name

class-type-name = defined-type-expression
Static Semantics
· A <withevents-variable-dcl> defines a variable whose declared type is the specified type of its <class-type-name element.
· The specified type of the <class-type-name> element MUST be a specific class that has at least one event member.
· The specified type of <class-type-name> element MUST NOT be the class defined by the class modules containing this declaration.
· The name value of the <IDENTIFIER with an appended underscore character (Unicode u+005F) is an event handler name prefix for the class module containing this declaration.
· The specified type of a <class-type-name> is the declared type referenced by its <defined-type-expression.
[bookmark: section_7c97ad304b7645d998277455f98a5503][bookmark: _Toc181683923]Array Dimensions and Bounds

array-dim = "(" [bounds-list] ")"
bounds-list = dim-spec *("," dim-spec)
dim-spec = [lower-bound] upper-bound
lower-bound = constant-expression "to"
upper-bound = constant-expression
Static Semantics
· An <array-dim> that does not have a <bounds-list> designates a resizable array.
· A <bounds-list> contains at most 60 <dim-spec> elements.
· An <array-dim> with a <bounds-list> designates a fixed-size array with a number of dimensions equal to the number of <dim-spec> elements in the <bounds-list>.
· The <constant-expression> in an <upper-bound> or <lower-bound> MUST evaluate to a data value that is Let-coercible to the declared type Long.
· The upper bound of a dimension is specified by the Long data value of the <upper-bound> of the <dim-spec> that corresponds to the dimension.
· If the <lower-bound> is present, its <constant-expression> provides the lower bound Long data value for the corresponding dimension.
· If the <lower- bound> is not present the lower bound for the corresponding dimension is the default lower bound for the containing module as specified in section 5.2.1.2.
· For each dimension, the lower bound value MUST be less than or equal to the upper bound value.
[bookmark: section_d27d3daeac4641138927c7f60d844dbf][bookmark: _Toc181683924]Variable Type Declarations
A type specification determines the specified type of a declaration.
as-auto-object = "as" "new" class-type-name
as-type = "as" type-spec
type-spec = fixed-length-string-spec / type-expression
fixed-length-string-spec = "string" "*" string-length
string-length = constant-name / INTEGER
constant-name = simple-name-expression
Static Semantics
· The specified type of an <as-auto-object> element is the specified type of its <class-type-name> element.
· The specified type of an <as-auto-object> element MUST be a named class.
· The instancing mode of the specified type of an <as-auto-object> MUST NOT be Public Not Creatable unless that type is defined in the same project as that which contains the module containing the <as-auto-object> element.
· The specified type of an <as-type> is the specified type of its <type-spec> element.
· The specified type of a <type-spec> is the specified type of its constituent element.
· The specified type of a <fixed-length-string-spec> is String*n where n is the data value of its <string-length> element.
· The specified type of a <type-expression> is the declared type referenced by the < type-expression>.
· A <constant-name> that is an element of a <string-length> MUST reference an explicitly-declared constant data value that is Let-coercible to the declared type Long.
· The data value of a <string-length> element is the data value of its <INTEGER> element or the data value referenced by its <constant-name> Let-coerced to declared type Long.
· The data value of a <string-length> element MUST be less than or equal to 65,526.
· The <simple-name-expression> element of <constant-name> MUST be classified as a value.
[bookmark: section_6df70c22dc3045d0b8a79a0fb4f068b3][bookmark: _Toc181683925]Implicit Type Determination
An <IDENTIFIER> that is not explicitly associated with a declared type via either a <type-spec> or a <type-suffix> might be implicitly associated with a declared type. The implicit declared type of such a name is defined as follows:
· If the first letter of the name value of the <IDENTIFIER> has is in the character span of a <letter-spec> that is part of a <def-directive> within the module containing the <IDENTIFIER> then its declared type is as specified in section 5.2.2.
· Otherwise its implicit declared type is Variant.
[bookmark: section_ffa99fa928da451285ebdb376cab0711][bookmark: _Toc181683926]Const Declarations
public-const-declaration = ("Global" / "Public") module-const-declaration
private-const-declaration = ["Private"] module-const-declaration
module-const-declaration = const-declaration

const-declaration = "Const" const-item-list
const-item-list = const-item *["," const-item]
const-item = typed-name-const-item / untyped-name-const-item

typed-name-const-item = TYPED-NAME "=" constant-expression
untyped-name-const-item = IDENTIFIER [const-as-clause] "=" constant-expression

const-as-clause = "as" BUILTIN-TYPE
Static Semantics
· The <BUILTIN-TYPE> element of an <const-as-clause> might not be "object" or "[object]".
· Each constant defined within a <module-const-declaration> contained within the same module MUST have a different name.
· Each constant defined within a <module-const-declaration> MUST have a constant name that is different from any other module variable name, module constant name, enum member name, or procedure name that is defined within the same module.
· A constant declaration that is part of a <public-const-declaration> declares a public constant. The constant is accessible within the enclosing project. If the enclosing module is a procedural module that is not a private module, then the constant is also accessible within projects that reference the enclosing project.
· A constant declaration that is part of a <private-const-declaration> declares a private constant. The constant is accessible within the enclosing module.
· If a constant defined by a <public-const-declaration> has a constant name that is the same as the name of a project or name of a module then all references to the variable name MUST be module qualified unless they occur within the module that contains the <public-const-declaration>
· A constant defined by a <module-const-declaration> can have a constant name that is the same as the enum name of a <enum-declaration> defined in the same module but such a constant cannot be referenced using its constant name even if the constant name is module qualified.
· If a constant defined by a <public-const-declaration> has a constant name that is the same as the enum name of a public <enum-declaration> in a different module, all references to the constant name MUST be module qualified unless they occur within the module that contains the <public-const-declaration>.
· A <typed-name-const-item> defines a constant whose name is the name value of its <TYPED-NAME> element and whose declared type is the declared type corresponding to the <type-suffix> of the <TYPED-NAME> as specified in section 3.3.5.3.
· A <untyped-name-const-item> defines a constant whose name is the name value of its <IDENTIFIER> element.
· If an <untyped-name-const-item> does not include a <const-as-clause>, the declared type of the constant is the same as the declared type of its <constant-expression> element. Otherwise, the constant’s declared type is the declared type of the <BUILTIN-TYPE> element of the <const-as-clause>.
· Any <constant-expression> used within a <const-item> might not reference functions, even the intrinsic functions normally permitted within a <constant-expression>.
· The data value of the <constant-expression> element in a <const-item> MUST be let-coercible to the declared type of the constant defined by that <const-item>
· The constant binding of a constant defined by a <const-item> is the data value of the <constant-expression> Let-coerced to the declared type of the constant.
[bookmark: section_a5fe374beddf48089e73477914940dba][bookmark: _Toc181683927]User Defined Type Declarations
public-type-declaration = ["global" / "public"] udt-declaration
private-type-declaration = "private" udt-declaration
udt-declaration = "type" untyped-name EOS udt-member-list EOS "end" "type"
udt-member-list = udt-element *[EOS udt-element]
udt-element = rem-statement / udt-member
udt-member = reserved-name-member-dcl / untyped-name-member-dcl
untyped-name-member-dcl = IDENTIFIER optional-array-clause
reserved-name-member-dcl = reserved-member-name as-clause
optional-array-clause = [array-dim] as-clause

reserved-member-name = statement-keyword / marker-keyword / operator-identifier / special-form / reserved-name / literal-identifier / reserved-for-implementation-use / future-reserved
Static Semantics
· The UDT name of the containing <udt-declaration> is the name value of the <untyped-name> that follows the Type keyword (section 3.3.5.1).
· Each <udt-declaration>defines a unique declared type and unique UDT value type each of which is identified by the UDT name.
· A UDT declaration that is part of a <public-const-declaration> declares a public UDT. The UDT is accessible within the enclosing project. If the enclosing module is a procedural module that is not a private module, then the UDT is also accessible within projects that reference the enclosing project.
· A UDT declaration that is part of a <private-const-declaration> declares a private UDT. The UDT is accessible within the enclosing module.
· If an <udt-declaration> is an element of a <private-type-declaration> its UDT name cannot be the same as the enum name of any <enum-declaration> or the UDT name of any other <udt-declaration> within the same module.
· If an <udt-declaration> is an element of a <public-type-declaration> its UDT name cannot be the same as the enum name of a public <enum-declaration> or the UDT name of any <public-type-declaration> within any module of the project that contains it.
· If an <udt-declaration> is an element of a <public-type-declaration> its UDT name cannot be the same as the name of any project or library within the current VBA Environment or the same name as any module within the project that contains the <udt-declaration>.
· The name value of a <reserved-member-name> is the text of its reserved identifier name.
· At least one <udt-element> in a <udt-member-list> MUST consist of a <udt-member>.
· If a <udt-member> is an <untyped-name-member-dcl> its udt member name is the name value of the <IDENTIFIER> element of the <untyped-name-member-dcl>.
· If a <udt-member> is a <reserved-name-member-dcl> its udt member name is the name value of the <reserved-member-name> element of the <reserved-name-member-dcl>.
· Each <udt-member> within a <udt-member-list> MUST have a different udt member name.
· Each <udt-member> defines a named element of the UDT value type identified by the UDT name of the containing <udt-declaration>.
· Each <udt-member> defines a named element of the UDT value type and declared type identified by the UDT name of the containing <udt-declaration>.
· The declared type of the UDT element defined by a <udt-member> is defined as follows:
· If the <udt-member> contains an <array-dim> that does not contain a <bounds-list>, then the declared type of the UDT element is resizable array with a declared element type is the specified type of the <as-clause> contained in the <udt-member>.
· If the <udt-member> contains an <array-dim> that contains a <bounds-list>, then the declared type of the UDT element is fixed size array whose declared element type is the specified type of the <as-clause> contained in the <udt-member>. The number of dimensions and the upper and lower bound for each dimension is as defined by the <bounds-list>.
· Otherwise the declared type of the UDT element is the specified type of the <as-clause>.
· If a <udt-member> contains an <as-clause> that consists of an <as-auto-object> then the corresponding dependent variable (or each dependent variable of an array variable) of any variable whose declared type is the UDT name of the containing <udt-declaration> is an automatic instantiations variable.
[bookmark: section_da1d4885946f49379487488143b97f08][bookmark: _Toc181683928]Enum Declarations
global-enum-declaration = "global" enum-declaration
public-enum-declaration = ["public"] enum-declaration
private-enum-declaration = "private" enum-declaration
enum-declaration = "enum" untyped-name EOS enum-member-list EOS "end" "enum"
enum-member-list = enum-element *[EOS enum-element]
enum-element = rem-statement / enum-member
enum-member = untyped-name ["=" constant-expression]
<global-enum-declaration> provides syntactic compatibility with other dialects of the Basic language and historic versions of VBA.
Static Semantics.
· A <global-enum-declaration> is not allowed in class modules.
· The name value of the <untyped-name> that follows the Enum keyword (section 3.3.5.1) is the enum name of the containing <enum-declaration>.
· An Enum declaration that is part of a <global-variable-declaration> or <public-enum-declaration> declares a public Enum type. The Enum type and its Enum members are accessible within the enclosing project. If the enclosing module is a class module or a procedural module that is not a private module, then the Enum type and its Enum members are also accessible within projects that reference the enclosing project.
· An Enum declaration that is part of a <private-enum-declaration> declares a private Enum type. The Enum type and its enum members are accessible within the enclosing module.
· The enum name of a <private-enum-declaration> cannot be the same as the enum name of any other <enum-declaration> or as the UDT name of a <udt-declaration> within the same module.
· The enum name of a <public-enum-declaration> cannot be the same as the enum name of any other public <enum-declaration> or the UDT name of any public <udt-declaration> within any module of the project that contains it.
· The enum name of a <public-enum-declaration> cannot be the same as the name of any project or library within the current VBA Environment or the same name as any module within the project that contains the <enum-declaration>.
· At least one <enum-element> in an <enum-member-list> MUST consist of a <enum-member>.
· The enum member name of an <enum-member> is the name value of its <untyped-name>.
· Each <enum-member> within a <enum-member-list> MUST have a different enum member name.
· An enum member name might not be the same as any variable name, or constant name that is defined within the same module.
· If an <enum-member> contains a <constant-expression>, the data value of the <constant-expression> MUST be coercible to value type Long.
· The <constant-expression> of an <enum-member> might not contain a reference to the enum member name of that <enum-member>.
· The <constant-expression> of an <enum-member> might not contain a reference to the enum member name of any <enum-member> that it precedes in its containing <enum-member-list>
· The <constant-expression> of an <enum-member> might not contain a reference to the enum member name of any <enum-member> of any <enum-declaration> that it precedes in the containing module declaration section.
· If an <enum-member> contains a <constant-expression>, the data value of the <enum-member> is the data value of its <constant-expression> coerced to value type Long. If an <enum-member> does not contain a <constant-expression> and it is the first element of a <enum-member-list> its data value is 0. If an <enum-member> does not contain a <constant-expression> and is not the first element of a <enum-member-list> its data value is 1 greater than the data value of the preceding element of its containing <enum-member-list>.
· The declared type of a <enum-member> is Long.
· When an enum name (possibly qualified by a project) appears in an <as-type> clause of any declaration, the meaning is the same as if the enum name was replaced with the declared type Long.

[bookmark: section_75679e907e14420daf11f83ffaf60418][bookmark: _Toc181683929]External Procedure Declaration
public-external-procedure-declaration = ["public"] external-proc-dcl
private-external-procedure-declaration = "private" external-proc-dcl

external-proc-dcl = "declare" ["ptrsafe"] (external-sub / external-function)

external-sub = "sub" subroutine-name lib-info [procedure-parameters]
external-function = "function" function-name lib-info [procedure-parameters] [function-type]

lib-info = lib-clause [alias-clause]
lib-clause = "lib" STRING
alias-clause = "alias" STRING
Static Semantics.
· <public-external-procedure-declaration> elements and <private-external-procedure-declaration> elements are external procedures.
· <public-external-procedure-declaration> elements and <private-external-procedure-declaration> elements are procedure declarations and the static semantic rules for procedure declarations define in section 5.3.1 apply to them.
· An <external-sub> element is a function declaration and an <external-function> is a subroutine declaration.
· It is implementation-defined whether an external procedure name is interpreted in a case sensitive or case-insensitive manner.
· If the first character of the <STRING> element of an <alias-clause> is the character %x0023 ("#") the element is an ordinal alias and the remainder of the string MUST conform to the definition of the <integer-literal> rule of the lexical token grammar. The data value of the <integer-literal> MUST be in the range of 0 to 32,767.
· If the first character of the data value of the <STRING> element of an <alias-clause> is not the character %x0023 ("#"), the data value of the <STRING> element MUST conform to an implementation-defined syntax.
· An implementation MAY define additional restrictions on the parameter types, function type, parameter mechanisms, and the use of optional and ParamArray parameters in the declaration of external procedures.
· An implementation MAY define additional restrictions on external procedure declarations that do not specify the PtrSafe keyword.
Runtime Semantics
· When an external procedure is called, the data value of the <STRING> element of its <lib-clause> is used in an implementation-defined manner to identify a set of available procedures that are defined using implementation-defined means other than the VBA Language.
· When an external procedure is called, the data value of the <STRING> element of it optional <alias-clause> is used in an implementation-defined manner to select a procedure from the set of available procedure. If an <alias-clause> is not present the name value of the procedure name is used in an implementation-defined manner to select a procedure from the set of available procedure.
· An external procedure is invoked and arguments passed as if the external procedure was a procedure defined in the VBA language by a <subroutine-declaration> or <function-declaration> containing the <procedure-parameters> and <function-type> elements of the external procedure’s <external-proc-dcl>.
[bookmark: section_4e4256bb0f8c4a7e8355a0c8e25e37bd][bookmark: _Toc181683930]Circular Module Dependencies
Static Semantics.
· Circular reference between modules that involving Const Declarations (section 5.2.3.2), Enum Declarations (section 5.2.3.4), UDT Declarations (section 5.2.3.3), Implements Directive (section 5.2.4.2), or Event Declarations (section 5.2.4.3) are not allowed.
· Any circular dependency among modules that includes any of these declaration forms is an illegal circularity, even if the dependency chain includes other forms of declaration.
· Circular dependency chains among modules that do not include any of these specific declaration forms are allowed.
[bookmark: section_6b025f78471c43bc9d7779dac281a6f3][bookmark: _Toc181683931]Class Module Declarations
Class modules define named classes that can be referenced as declared types by other modules within a VBA Environment.
[bookmark: section_73a89f411c32460ea2b573a0c1971636][bookmark: _Toc181683932]Non-Syntactic Class Characteristics
Some of the characteristic of classes are not defined within the <class-module-body> but are instead defined using module attribute values and possibly implementation-defined mechanisms.
The name of the class defined by this class module is the name of the class module itself.
[bookmark: section_a09fd48eabed4da88c4ca110bf4ef6b6][bookmark: _Toc181683933]Class Accessibility and Instancing
The ability to reference a class by its name is determined by the accessibility of its class definition. This accessibility is distinct from the ability to use the class name to create new instances of the class.
The accessibility and instancing characteristics of a class are determined by the module attributes on its class module declaration, as defined by the following table:
	Instancing Mode
	Meaning
	Attribute Values

	Private (default)
	The class is accessible only within the enclosing project.

Instances of the class can only be created by modules contained within the project that defines the class.
	VB_Exposed=False VB_Creatable=False

	Public Not Creatable
	The class is accessible within the enclosing project and within projects that reference the enclosing project.

Instances of the class can only be created by modules within the enclosing project. Modules in other projects can reference the class name as a declared type but can’t instantiate the class using new or the CreateObject function.
	VB_Exposed=True VB_Creatable=False

	Public Creatable
	The class is accessible within the enclosing project and within projects that reference the enclosing project.

Any module that can access the class can create instances of it.
	VB_Exposed=True VB_Creatable=True

An implementation MAY define additional instancing modes that apply to classes defined by library projects.
[bookmark: section_189fb41bcc3a4999a6d2ba89f72d2870][bookmark: _Toc181683934]Default Instance Variables Static Semantics
· A class module has a default instance variable if its VB_PredeclaredId attribute or
· VB_GlobalNamespace attribute has the value "True". This default instance variable is created with module extent as if declared in a <module-variable-declaration> containing an <as-autoobject> element whose <class-type-name> was the name of the class.
· If this class module’s VB_PredeclaredId attribute has the value "True", this default instance variable is given the name of the class as its name. It is invalid for this named variable to be the target of a Set assignment. Otherwise, if this class module’s VB_PredeclaredId attribute does not have the value "True", this default instance variable has no publicly expressible name.
· If this class module’s VB_GlobalNamespace attribute has the value "True", the class module is considered a global class module, allowing simple name access to its default instance’s members as specified in section 5.6.10.
· Note that if the VB_PredeclaredId and VB_GlobalNamespace attributes both have the value "True", the same default instance variable is shared by the semantics of both attributes.
[bookmark: section_da5260209b4144a6a5f347a7ac255a9e][bookmark: _Toc181683935]Implements Directive
implements-directive = "Implements" class-type-name
Static Semantics.
· An <implements-directive> cannot occur within an extension module.
· The specified class of the <class-type-name> is called the interface class.
· The interface class can’t be the class defined by the class module containing the <implements-directive>
· A specific class can’t be identified as an interface class in more than one <implements-directive> in the same class module.
· The unqualified class names of all the interface classes in the same class module MUST be distinct from each other.
· The name value of the interface class’s class name with an appended underscore character (Unicode u+005F) is an implemented interface name prefix within the class module containing this directive.
· If a class module contains more than one <implements-directive> then none of its implemented interface name prefixes can be occur as the initial text of any other of its implemented name prefix.
· A class can’t be used as an interface class if the names of any of its public variable or method methods contain an underscore character (Unicode u+005F).
· A class module containing an <implements-directive> MUST contain an implemented name declaration corresponding to each public method declaration contained within the interface class’ class module.
· A class module containing an <implements-directive> MUST contain an implemented name declaration corresponding to each public variable declaration contained within the interface class’ class module. The set of required implemented name declarations depends upon of the declared type of the public variable as follows:
· If the declared type of the variable is Variant there MUST be three corresponding implemented name declarations including a <property-get-declaration> and a <property-lhs-declaration>.
· If the declared type of the variable is Object or a named class there MUST be two corresponding implemented name declarations including a <property-get-declaration> and a <property-lhs-declaration>.
· If the declared type of the variable is anything else, there MUST be two corresponding implemented name declarations including a <property-get-declaration> and a <property-lhs-declaration>.
[bookmark: section_ff9d44a97a89474e9546a1b169d38a26][bookmark: _Toc181683936]Event Declaration
event-declaration = ["Public"]
"Event" IDENTIFIER [event-parameter-list]
event-parameter-list = "(" [positional-parameters] ")"
Static Semantics
· An <event-declaration> defines an event member of the class defined by the enclosing class module.
· An <event-declaration> that does not begin with the keyword (section 3.3.5.1) Public has the same meaning as if the keyword Public was present.
· The event name of the event member is the name value of the <IDENTIFIER>.
· Each <event-declaration> within a class-module-declaration-section MUST specify a different event name.
· An event name can have the same name value as a module variable name, module constant name, enum member name, or procedure name that is defined within the same module.
· The name of an event MUST NOT contain any underscore characters (Unicode u+005F).
· Runtime Semantics
· Any <positional-param> elements contained in an <event-parameter-list> do not define any variables or variable bindings. They simply describe the arguments that MUST be provided to a <raiseevent-statement> that references the associated event name.
[bookmark: section_10d7f639e0e04d05be3acff2e542cd35][bookmark: _Toc181683937]Module Code Section Structure

procedural-module-code-section = *(LINE-START procedural-module-code-element LINE-END)
class-module-code-section = *(LINE-START class-module-code-element LINE-END)

procedural-module-code-element = common-module-code-element
class-module-code-element = common-module-code-element / implements-directive

common-module-code-element = rem-statement / procedure-declaration

procedure-declaration = subroutine-declaration / function-declaration / property-get-declaration / property-LHS-declaration
There are several syntactic forms used to define procedures within the VBA Language. In some contexts of this specification it is necessary to refer to various kinds of declarations. The following table defines the kinds of declarations used in this specification and which grammar productions. If a checkmark appears in a cell, the kind of declaration defined in that column can refer to a declaration defined by that row’s grammar production.

	Grammar Rule
	Procedure Declaration
	Method
Declaration
	Property Declaration
	Subroutine Declaration
	Function Declaration

	<subroutine-declaration>
	√
	√
	
	√
	

	<function-declaration>
	√
	√
	
	
	√

	<external-sub>
	√
	
	
	√
	

	<external-function>
	√
	
	
	
	√

	<property-get-declaration>
	√
	√
	√
	
	√

	<property-lhs-declaration>
	√
	√
	√
	√
	

[bookmark: section_227005ad78fb479f8145fa3b8b610386][bookmark: _Toc181683938]Procedure Declarations
subroutine-declaration = procedure-scope [initial-static]
 "sub" subroutine-name [procedure-parameters] [trailing-static] EOS
 [procedure-body EOS]
 [end-label] "end" "sub" procedure-tail

function-declaration = procedure-scope [initial-static]
 "function" function-name [procedure-parameters] [function-type] [trailing-static] EOS
 [procedure-body EOS]
 [end-label] "end" "function" procedure-tail

property-get-declaration = procedure-scope [initial-static]
 "Property" "Get"
 function-name [procedure-parameters] [function-type] [trailing-static] EOS
 [procedure-body EOS]
 [end-label] "end" "property" procedure-tail

property-lhs-declaration = procedure-scope [initial-static]
 "Property" ("Let" / "Set")
 subroutine-name property-parameters [trailing-static] EOS
 [procedure-body EOS]
 [end-label] "end" "property" procedure-tail

end-label = statement-label-definition
procedure-tail = [WS] LINE-END / single-quote comment-body / ":" rem-statement
Static Semantics
· A function declaration implicitly defines a local variable, known as the function result variable, whose name and declared type are shared with the function and whose scope is the body of the function.
· A function declaration defines a procedure whose name is the name value of its <function-name> and a subroutine declaration defines a procedure whose name is the name value of its <subroutine-name>
· If the <function-name> element of a function declaration is a <TYPED-NAME> then the function declaration might not include a <function-type> element.
· The declared type of a function declaration is defined as follows:
· If the <function-name> element of a function declaration is a <TYPED-NAME> then the declared type of the function declaration is the declared type corresponding to the <type-suffix> of the <TYPED-NAME> as specified in section 3.3.5.3.
· If the <function-name> element of a function declaration is not a <TYPED-NAME> and the function declaration does not include a <function-type> element its declared type is its implicit type as specified in section 5.2.3.1.5.
· If a function declaration includes a <function-type> element then the declared type of the function declaration is the specified type of the <function-type> element.
· The declared type of a function declaration that is part of a <class-module-code-section> might not be an UDT that is defined by a <private-type-declaration>.
· The declared type of a function declaration might not be a private enum name.
· If the optional <end-label> is present, its <statement-label> MUST have a label value that is different from the label value of any <statement-label> defined within the <procedure-body>.

Runtime Semantics
· The code contained by a procedure is executed during procedure invocation.
· Each invocation of a procedure has a distinct variable corresponding to each ByVal parameter or procedure extent variable declaration within the procedure.
· Each invocation of a function declaration has a distinct function result variable.
· A function result variable has procedure extent.
· Within the <procedure-body> of a procedure declaration that is defined within a <class-module-code-section> the declared type of the reserved name Me is the named class defined by the enclosing class module and the data value of "me" is an object reference to the object that is the target object of the currently active invocation of the function.
· Procedure invocation consists of the following steps:
1. Create procedure extent variables corresponding to ByVal parameters.
2. Process actual invocation augments as defined in section 5.3.1.11.
3. Set the procedure’s error handling policy (section 5.4.4) to the default policy.
4. Create the function result variable and any procedure extent local variables declared within the procedure.
5. Execute the <procedure-body>.
6. If the procedure is a function, return the data value of the result variable to the invocation site as the function result.
7. The invocation is complete and execution continues at the call site.
[bookmark: section_d1bd9698ff9d49459518ad6009e5544d][bookmark: _Toc181683939]Procedure Scope
procedure-scope = ["global" / "public" / "private" / "friend"]
Static Semantics
· A <procedure-declaration> that does not contain a <procedure-scope> element has the same meaning as if it included <procedure-scope> element consisting of the Public keyword (section 3.3.5.1).
· A <procedure-declaration> that includes a <procedure-scope> element consisting of the Public keyword or Global keyword declares a public procedure. The procedure is accessible within the enclosing project. If the enclosing module is a class module or is a procedural module that is not a private module, then the procedure is also accessible within projects that reference the enclosing project.
· A <procedure-declaration> that includes a <procedure-scope> element consisting of the Friend keyword declares a friend procedure. The procedure is accessible within the enclosing project.
· A <procedure-declaration> that includes a <procedure-scope> element consisting of the Private keyword declares a private procedure. The procedure is accessible within the enclosing module.
· A <procedure-scope> consisting of the keyword Global might not be an element of a <procedure-declaration> contained in a <class-module-code-section>
· A <procedure-scope> consisting of the keyword Friend might not be an element of a <procedure-declaration> contained in a <procedural-module-code-section>
[bookmark: section_125068eca57e4296843b5d009169de2f][bookmark: _Toc181683940]Static Procedures
initial-static = "static"
trailing-static = "static"
Static Semantics
· A <procedure-declaration> containing either an <initial-static> element or a <trailing-static> element declares a static procedure.
· No <procedure-declaration> contains both an <initial-static> element and a <trailing-static> element.
Runtime Semantics
· All variables declared within the <procedure-body> of a static procedure have module extent.
· All variables declared within the <procedure-body> of a non-static procedure have procedure extent.
[bookmark: section_209b3216d3e1414690a90ecf58becdcd][bookmark: _Toc181683941]Procedure Names
subroutine-name = IDENTIFIER / prefixed-name
function-name = TYPED-NAME / subroutine-name
prefixed-name = event-handler-name / implemented-name / lifecycle-handler-name
Static Semantics
· The procedure name of a procedure declaration is the name value of its contained <subroutine-name> or <function-name> element.
· If a procedure declaration whose visibility is public has a procedure name that is the same as the name of a project or name of a module then all references to the procedure name MUST be explicitly qualified with its project or module name unless the reference occurs within the module that defines the procedure.
[bookmark: section_486ff99d57a74def998ebe8edcbf7f2c][bookmark: _Toc181683942]Function Type Declarations
function-type = "as" type-expression [array-designator]
array-designator = "(" ")"
Static Semantics
· The specified type of a <function-type> that does not include an <array-designator> element is the declared type referenced by its <type-expression> element.
· The specified type of a <function-type> that includes an <array-designator> element is resizable array with a declared element type that is the declared type referenced by its <type-expression> element.
[bookmark: section_78bcb34449664401bb5572729790ebee][bookmark: _Toc181683943]Parameter Lists
procedure-parameters = "(" [parameter-list] ")"
property-parameters = "(" [parameter-list ","] value-param ")"

parameter-list = (positional-parameters "," optional-parameters) /
 (positional-parameters ["," param-array]) /
 optional-parameters /
 param-array

positional-parameters = positional-param *("," positional-param)
optional-parameters = optional-param *("," optional-param)
value-param = positional-param
positional-param = [parameter-mechanism] param-dcl
optional-param = optional-prefix param-dcl [default-value]
param-array = "paramarray" IDENTIFIER "(" ")" ["as" ("variant" / "[variant]")]

param-dcl = untyped-name-param-dcl / typed-name-param-dcl
untyped-name-param-dcl = IDENTIFIER [parameter-type]
typed-name-param-dcl = TYPED-NAME [array-designator]
optional-prefix = ("optional" [parameter-mechanism]) / ([parameter-mechanism] ("optional"))
parameter-mechanism = "byval" / " byref"
parameter-type = [array-designator] "as" (type-expression / "Any")
default-value = "=" constant-expression
Static Semantics
· A <parameter-type> element only include the keyword Any if the <parameter-type> is part of a <external-proc-dcl>.
· The name value of a <typed-name-param-dcl> is the name value of its <TYPED-NAME> element.
· The name value of an <untyped-name-param-dcl> is the name value of its <IDENTIFIER> element.
· The name value of a <param-dcl> is the name value of its constituent <untyped-name-param-dcl> or <typed-name-param-dcl> element.
· The name of a <positional-param> or a <optional-param> element is the name value of its <param-dcl> element.
· The name of a <param-array> element is the name value of its <IDENTIFIER> element.
· Each <positional-param>, <optional-param>, and <param-array> that are elements of the same <parameter-list>, <property-parameters>, or <event-parameter-list> MUST have a distinct names.
· The name of each <positional-param>, <optional-param>, and <param-array> that are elements of a function declaration MUST be different from the name of the function declaration.
· The name value of a <positional-param>, <optional-param>, or a <param-array> might not be the same as the name of any variable defined by a <local-variable-declaration>, a <static-variable-declaration>, a <redim-statement>, or a <local-const-declaration> within the <procedure-body> of the containing procedure declaration.
· The declared type of a <positional-param>, <optional-param>, or <value-param> is the declared type of its constituent <param-dcl>.
· The declared type of a <param-dcl>that consists of an <untyped-name-param-dcl>is defined as follows:
· If the optional <parameter-type> element is not present, the declared type is the implicit type of the <IDENTIFIER> as specified in section 5.2.3.1.5.
· If the specified optional <parameter-type> element is present but does not include an <array-designator> element the declared type is the declared type referenced by its <type-expression> element.
· If the specified optional <parameter-type> element is present and includes an <array-designator> element the declared type is resizable array whose element type is the declared type referenced by its <type-expression> element.
· The declared type of a <param-dcl> that consists of a <typed-name-param-dcl> is defined as follows:
· If the optional <array-designator> element is not present the declared type is the declared type corresponding to the <type-suffix> of the <TYPED-NAME> as specified in section 3.3.5.3.
· If the optional <array-designator> element is present then the declared type of the defined variable is resizable array with a declared element type corresponding to the <type-suffix> of the <TYPED-NAME> as specified in section 3.3.5.3.
· The declared type of a <param-dcl> that is contained in an event declaration or a public procedure declaration in a <class-module-code-section> might not be a private UDT, a public UDT defined in a procedural module, or a private enum name.
· The declared type of an <optional-param> might not be an UDT.
· If the declared type of an <optional-param> is not Variant and its type was implicitly specified by an applicable <def-directive>, it MUST have a <default-value> clause specified.
· A <default-value> clause specifies the default value of a parameter. If a <default-value> clause is not specified for a Variant parameter, the default value is an implementation-defined error value that resolves to standard error code 448 (“Named argument not found”). If a <default-value> clause is not specified for a non-Variant parameter, the default value is that of the parameter’s declared type.
· A <positional-param> or <optional-param> element that does not include a <parameter-mechanism> element has the same meaning as if it included a <parameter-mechanism> element consisting of the keyword ByRef.
· A <param-dcl> that includes a <parameter-mechanism> element consisting of the keyword ByVal might not also include an <array-designator> element.
· The declared type of the <IDENTIFIER> of a <param-array>is resizable array of Variant.
Runtime Semantics
· Each invocation of a function has a distinct function result variable.
· A function result variable has procedure extent.
· Each <positional-param> or <optional-param> that includes a <parameter-mechanism> element consisting of the keyword ByVal defines a local variable with procedure extent and whose declared type is the declared type of the constituent <param-dcl> element. The corresponding parameter name is bound to the local variable.
· Each <positional-param> that includes a <parameter-mechanism> element consisting of the keyword ByVal defines a local name binding to a pre-existing variable corresponding to the corresponding positional argument.
· Each <optional-param> that includes a <parameter-mechanism> element consisting of the keyword ByRef defines a local variable with procedure extent and whose declared type is the declared type of the constituent <param-dcl> element.
· If an invocation of the containing procedure does not include an argument corresponding to the <optional-param> the parameter name is bound to the local variable for that invocation.
· If an invocation of the containing procedure includes an argument corresponding to the <optional-param> the parameter name is locally bound to the pre-existing variable corresponding to the argument.
· Upon invocation of a procedure the data value of the constituent <default-value> element of each <optional-param> that does not have a corresponding argument is assigned to the variable binding of the parameter name of the <optional-param>.
· Each procedure that is a method has an implicit ByVal parameter called the current object that corresponds to the target object of an invocation of the method. The current object acts as an anonymous local variable with procedure extent and whose declared type is the class name of the class module containing the method declaration. For the duration of an activation of the method the data value of the current object variable is target object of the procedure invocation that created that activation. The current object is accessed using the Me keyword within the <procedure-body> of the method but cannot be assigned to or otherwise modified.
· If a <parameter-list> of a procedure contains a <param-array> element, then each invocation of the procedure defines an entity called the param array that behaves as if it was an array whose elements were “byref” <positional-param> elements whose declared types were Variant. An access to an element of the param array behaves as if it were an access to a named positional parameter. Arguments are bound to the elements of a param array as defined in section 5.3.1.11.
[bookmark: section_b9466587f1b447f5b34e3af3398063f4][bookmark: _Toc181683944]Subroutine and Function Declarations
Static Semantics
· Each <subroutine-declaration> and <function-declaration> MUST have a procedure name that is different from any other module variable name, module constant name, enum member name, or procedure name that is defined within the same module.
[bookmark: section_d19bfeaacca643d8918827355b8ee025][bookmark: _Toc181683945]Property Declarations
Static Semantics
· A <property-LHS-declaration> containing the keyword Let is a property let declaration.
· A <property-LHS-declaration> containing the keyword Set is a property set declaration.
· Each property declaration MUST have a procedure name that is different from the name of any other module variable, module constant, enum member name, external procedure, <function-declaration>, or <subroutine-declaration> that is defined within the same module.
· Each <property-get-declaration> in a module MUST have a different name.
· Each property let declaration in a module MUST have a different name.
· Each property set declaration in a module MUST have a different name.
· Within a module at a common procedure name can be shared by a <property-get-declaration>, a property let declaration, and a property set declaration.
· Within a module all property declaration that share a common procedure name MUST have equivalent <parameter-list> elements including the number of <positional-parameters>, <optional-parameters> and <param-array> elements, the name value of each corresponding parameter, the declared type of each corresponding parameter, and the actual <parameter-mechanism> used for each corresponding parameter. However, corresponding <optional-param> elements can differ in the presence and data value of their <default-value> elements and as can whether or not the <parameter-mechanism> is implicitly specified or explicitly specified.
· The declared type of a <property-LHS-declaration> is the declared type of its <value-param> element.
· The declared type of a property set declaration MUST be Object, Variant, or a named class.
· Within a module a property let declaration and a <property-get-declaration> that share a common procedure name MUST have the same declared type.
· If the <value-param> of a <property-LHS-declaration> does not have a <parameter-mechanism> element or has a <parameter-mechanism> consisting of the keyword ByRef, it has the same meaning as if it instead had a <parameter-mechanism> element consisting of the keyword ByVal.
Runtime Semantics
· The <value-param> of a <property-LHS-declaration> always has the runtime semantics of a ByVal parameter.
· If a <property-LHS-declaration> includes a <param-array> element the argument value corresponding to the <value-param> in an invocation of the property is not included as an element of its param array.
[bookmark: section_ddbb1c98db2b4d3285f3362c66fc04e0][bookmark: _Toc181683946]Event Handler Declarations
event-handler-name = IDENTIFIER
Static Semantics
· A procedure declaration qualifies as an event handler if all of the following are true:
· It is contained within a class module.
· The name value of the subroutine name MUST begin with an event handler name prefix corresponding to a WithEvents variable declaration within the same class module as the procedure declaration. The variable defined by the corresponding variable declaring declaration is called the associated variable of the event handler.
· The procedure name text that follows the event handler name prefix MUST be the same as an event name defined by the class that is the declared type of the associated variable. The corresponding <event-declaration> is the handled event.
· An event handler is invalid if any of the following are true:
· The procedure declaration is not a <subroutine-declaration>.
· Its <parameter-list> is not compatible with the <event-parameter-list> of the handled event. A compatible <parameter-list> is one that meets all of the following criteria:
· The number of <positional-parameters> elements MUST be the same.
· Each corresponding parameter has the same type and parameter mechanism. However, corresponding parameters can differ in name and in whether the <parameter-mechanism> is specified implicitly or explicitly.
[bookmark: section_9e68b3a37c2147ba86212d03aebd83cf][bookmark: _Toc181683947]Implemented Name Declarations
implemented-name = IDENTIFIER
Static Semantics
· A procedure declaration qualifies as an implemented name declaration if all of the following are true:
· The name value of the procedure name MUST begin with an implemented interface name prefix defined by an <implements-directive> within the same class module. The class identified by <class-type-name> element of the corresponding <implements-directive> is called the interface class.
· The procedure name text that follows the implemented interface name prefix MUST be the same as the name of a corresponding public variable or method defined by the interface class. The corresponding variable or method is called the interface member.
· If the interface member is a variable declaration then the candidate implemented method declaration MUST be a property declaration.
· If the interface member is a method declaration then the candidate implemented method MUST be the same kind (<function-declaration>, <subroutine-declaration>, <property-get-declaration>, <property-lhs-declaration>) of method declaration.
· An implemented name declaration whose corresponding interface member is a method MUST have an <procedure-parameters> or <property-parameters> element that is equivalent to the <procedure-parameters> or <property-parameters> element of the interface member according to the following rules:
· The <parameter-list> elements including the number of <positional-parameters>, <optional-parameters> and <param-array> elements, the declared type of each corresponding parameter, the constant values of the <default-value> of corresponding <optional-parameters> elements, and the actual <parameter-mechanism> used for each corresponding parameter. However, corresponding <parameter-list> elements can differ in their parameter names and whether or not the <parameter-mechanism> is implicitly specified or explicitly specified.
· If the corresponding members are property set declarations or property get declarations their <value-param> elements MUST be equivalent according to the preceding rule.
· If the interface member is a function declaration then the declared type of the function defined by the implemented name declaration and the declared type of the function defined by the interface member but be the same.
· If the interface member is a variable and the implemented name declaration is a property declaration the declared type of the implemented name property declaration MUST be the same as the declared type of the interface member.
Runtime Semantics
· When the target object of an invocation has a declared type that is an interface class of the actual target object’s class and the method name is the name of an interface member of that interface class then the actual invoked method is the method defined by the corresponding implemented method declaration of target’s object’s class.
[bookmark: section_62bbe63e379c4dc086487d9050a2f396][bookmark: _Toc181683948]Lifecycle Handler Declarations
lifecycle-handler-name = “Class_Initialize” / “Class_Terminate”
Static Semantics
· A lifecycle handler declaration is a subroutine declaration that meets all of the following criteria:
· It is contained within a class module.
· It’s procedure name is a <lifecycle-handler-name>
· The <procedure-parameters> element of the <subroutine-declaration> is either not present or does not contain a <parameter-list> element

Runtime Semantics
· If a class defines a Class_Initialize lifecycle handler, that subroutine will be invoked as an method each time an instance of that class is created by the New operator, by referencing a variable that was declared with an <as-auto-object> and whose current value is Nothing, or by call the CreateObject function (section 6.1.2.8.1.4) of the VBA Standard Library. The target object of the invocation is the newly created object. The invocation occurs before a reference to the newly created object is returned from the operations that creates it.
· If a class defines a Class_Terminate lifecycle handler, that subroutine will be invoked as an method each time an instance of that class is about to be destroyed. The target object of the invocation is the object that is about to be destroyed. The invocation of a Class_Terminate lifecycle handler for an object can occur at precisely at the point the object becomes provably inaccessible to VBA program code but can occur at some latter point during execution of the program
· In some circumstances, a Class_Terminate lifecycle handler can cause the object to cease to be provably inaccessible. In such circumstances, the object is not destroyed and is no longer a candidate for destruction. However, if such an object later again becomes provably inaccessible it can be destroyed but the Class_Terminate lifecycle handler will not be invoked again for that target object. In other words, a “Class_Terminate” lifecycle handler executes at most once during the lifetime of an object.
· If the error-handling policy of a Class_Terminate lifecycle handler is to use the error-handling policy of the procedure that invoked it, the effect is as if the Class_Terminate lifecycle handler was using the default error-handling policy. This means that errors raised in a Class_Terminate lifecycle handler can only be handled in the handler itself.
[bookmark: section_1fb9af32fc484c4f998aed8047048ca5][bookmark: _Toc181683949]Procedure Invocation Argument Processing
A procedure invocation consists of a procedure expression, classified as a property, function or subroutine, an argument list consisting of positional and/or named arguments, and, if the procedure is defined in a class module, a target object.
Static semantics.
The argument expressions contained within the argument list at the site of invocation are considered the arguments. When the procedure expression is classified as a property, function or subroutine, the argument list is statically checked for compatibility with the parameters defined in the declaration of the referenced procedure as follows:
· The arguments are first mapped to the parameters as follows:
· Each positional argument specified is mapped in order from left to right to its respective positional parameter. If there are more positional arguments than there are parameters, the argument list is incompatible, unless the last parameter is a param array. If a positional argument is specified with its value omitted and its mapped parameter is not optional, the argument list is incompatible, even if a named argument is later mapped to this parameter.
· Each named argument is mapped to the parameter with the same name value. If there is no parameter with the same name value, or if two or more named or positional arguments are mapped to the same parameter, the argument list is incompatible.
· If any non-optional parameter does not have an argument mapped to it, the argument list is incompatible.
· For each mapped parameter:
· If the parameter is ByVal:
· If the parameter has a declared type other than a specific class or Object, and a Let-coercion from the declared type of its mapped argument to the parameter’s declared type is invalid, the argument list is incompatible.
· If the parameter has a declared type of a specific class or Object, and the declared type of its mapped argument is a type other than a specific class, Object, or Variant, the argument list is incompatible.
· Otherwise, if the parameter is ByRef:
· If the parameter has a declared type other than a specific class, Object or Variant, and the declared type of the parameter does not exactly match that of its mapped argument, the argument list is incompatible.
· If the parameter has a declared type of a specific class or Object, and the declared type of its mapped argument is a type other than a specific class or Object, the argument list is incompatible.
A procedure invocation is invalid if the argument list is statically incompatible with the parameter list.
Runtime semantics.
The runtime semantics of procedure invocation for procedures are as follows:
· The arguments are first mapped to the parameters as follows:
· Each positional argument specified is mapped in order from left to right to its respective positional parameter. If there are more positional arguments than there are parameters, runtime error 450 (Wrong number of arguments or invalid property assignment) is raised, unless the last parameter is a param array, in which case the param array is set to a new array of element type Variant with a lower bound of 0 containing the extra arguments in order from left to right. If a positional argument is specified with its value omitted and its mapped parameter is not optional, runtime error 448 (Named argument not found) is raised, even if a named argument is later mapped to this parameter.
· Each named argument is mapped to the parameter with the same name value. If there is no parameter with the same name value, or if two or more named or positional arguments are mapped to the same parameter, runtime error 448 (Named argument not found) is raised.
· If the last parameter is a param array and there are not more positional arguments than there are parameters, the param array is set to a new array of element type Variant with a lower bound of 0 and an upper bound of -1.
· If any non-optional parameters does not have an argument mapped to it, runtime error 449 (Argument not optional) is raised.
· For each parameter, in order from left to right:
· If the parameter has no argument mapped to it, the parameter is ByVal, or the parameter is ByRef and the mapped argument’s expression is classified as a value, function, property or unbound member, a local variable is defined with procedure extent within the procedure being invoked with the same name value and declared type as the parameter, and has its value assigned as follows:
· If this parameter is optional and has no argument mapped to it, the parameter’s default value is assigned to the new local variable.
· If the value type of this parameter’s mapped argument is a type other than a specific class or Nothing, the argument’s data value is Let-assigned to the new local variable.
· Otherwise, if the value type of this parameter’s mapped argument is a specific class or Nothing, the argument’s data value is Set-assigned to the new local variable.
· Otherwise, if the parameter is ByRef and the mapped argument’s expression is classified as a variable:
· If the declared type of the parameter is a type other than a specific class, Object or Variant, a reference parameter binding is defined within the procedure being invoked, with the same name and declared type as the parameter, referring to the variable referenced by the argument’s expression.
· If the declared type of the parameter is a specific class or Object:
· If the declared type of the formal exactly matches the declared type of the argument’s expression, a reference parameter binding is defined within the procedure being invoked, with the same name and declared type as the parameter, referring to the variable referenced by the argument’s expression.
· If the declared type of the formal does not exactly match the declared type of the argument’s expression:
· A local variable is defined with procedure extent within the procedure being invoked with the same name value and declared type as the parameter, with the argument’s value Set-assigned to the new local variable.
· When the procedure terminates, if it has terminated normally, the value within the local variable is Set-assigned back to the argument’s referenced variable.
· If the declared type of the parameter is Variant, a reference parameter binding is defined within the procedure being invoked, with the same name as the parameter, referring to the variable referenced by the argument’s expression. This reference parameter binding is treated as having a declared type of Variant, except when used as the <l-expression> within Let-assignment or Set-assignment, in which case it is treated as having the declared type of the argument’s referenced variable.
· For each unmapped optional parameter, a local variable is defined with procedure extent within the procedure being invoked with the same name value and declared type as the parameter, and has its value assigned as follows:
· If the parameter has a specified default value other than Nothing, this default value is Let-assigned to the new local variable.
· If the parameter has a specified default value of Nothing, this default value is Set-assigned to the new local variable.
· If the parameter has no specified default value, the new local variables is initialized to the default value for its declared type.
There can be implementation-specific differences in the semantics of parameter passing during invocation of procedures imported from a library project.
[bookmark: section_618815bcc68b44888082ed1b36fac6d4][bookmark: _Toc181683950]Procedure Bodies and Statements
Procedure bodies contain the imperative statements that describe the algorithmic actions of a VBA procedure. A procedure body also includes definitions of statement labels and declarations for local variables whose usage is private to the procedure.
procedure-body = statement-block
Static Semantics
· The label values of all <statement-label-definition> elements within the <statement-block> and any lexically contained <statement-block> elements MUST be unique.
· The label values of all <statement-label-definition> elements within the <statement-block> of a <procedure-body> MUST be distinct from the label value of the <end-label> of the containing procedure declaration.
[bookmark: section_d3220925f9584ae4a9cce529072e156f][bookmark: _Toc181683951]Statement Blocks
A statement block is a sequence of 0 or more statements.
statement-block = *(block-statement EOS)

block-statement = statement-label-definition / rem-statement / statement / attribute-statement

attribute-statement = attribute [IDENTIFIER "."] reserved-for-implementation-use attr-eq [quoted-identifier / boolean-literal-identifier]

statement = control-statement / data-manipulation-statement / error-handling-statement / file-statement
Runtime Semantics
· Execution of a <statement-block> starts by executing the first <block-statement> contained in the block and continues in sequential order until either the last contained <block-statement> is executed or a <control-statement> explicitly transfers execution to a <statement-label-definition> that is not contained in the <statement-block>.
· Execution of a <statement-block> can begin by a <control-statement> transferring execution to a <statement-label-definition> contained within the <statement-block>. In that case, execution sequential statement execution begins with the target <statement-label-definition> and any <block-statement> elements preceding the target <statement-label-definition> are not executed.
· <control-statement> elements within a <statement-block> can modify sequential execution order by transferring the current point of execution to a <statement-label-definition> contained within the same <statement-block>.
· An identifier followed by “:” at the beginning of a line is always interpreted as a <statement-label-definition> rather than a <statement>.
[bookmark: section_825de02b0e1347838527de14fbb7104f][bookmark: _Toc181683952]Statement Labels
statement-label-definition = LINE-START ((identifier-statement-label “:”) / (line-number-label [“:”]))
statement-label = identifier-statement-label / line-number-label
statement-label-list = statement-label [“,” statement-label]
identifier-statement-label = IDENTIFIER
line-number-label = INTEGER
Static Semantics.
· The name value of the <IDENTIFIER> in <identifier-statement-label> might not be "Randomize".
· If <statement-label> is an <INTEGER>, it data value MUST be in the inclusive range 0 to 2,147,483,647.
· The label value of a <statement-label-definition> is the label value of its constituent <identifier-statement-label> or its constituent <line-number-label>.
· The label value of a <statement-label> is the label value of its constituent <identifier-statement-label> or its constituent <line-number-label>.
· The label value of an <identifier-statement-label> is the name value of its constituent <IDENTIFIER> element.
· The label value of a <line-number-label> is the data value of its constituent <INTEGER> element.
· It is an error for a procedure declaration to contain more than one <statement-label-definition> with the same label value.

Runtime Semantics.
· Executing a <statement-label-definition> has no observable effect.
[bookmark: section_91937632ab864e69a916f81a5ce151aa][bookmark: _Toc181683953]Rem Statement
A <rem-statement> contains program commentary text that is that has no effect upon the meaning of the program.
rem-statement = "Rem" comment-body
Runtime Semantics.
· Executing a <rem-statement> has no observable effect.
[bookmark: section_70d423da18b442d298979f0b8100786b][bookmark: _Toc181683954]Control Statements
Control statements determine the flow of execution within a program.
control-statement = if-statement / control-statement-except-multiline-if

control-statement-except-multiline-if = call-statement / while-statement / for-statement / exit-for-statement / do-statement / exit-do-statement / single-line-if-statement / select-case-statement /stop-statement / goto-statement / on-goto-statement / gosub-statement / return-statement / on-gosub-statement /for-each-statement / exit-sub-statement / exit-function-statement / exit-property-statement / raiseevent-statement / with-statement / end-statement / assert-statement
[bookmark: section_f7c864a88fce49dc834730dc749d6576][bookmark: _Toc181683955]Call Statement
A <call-statement> invokes a subroutine or function, discarding any return value.
call-statement = "Call" (simple-name-expression / member-access-expression / index-expression / with-expression)
call-statement =/ (simple-name-expression / member-access-expression / with-expression) argument-list
Static semantics.
· If the Call keyword is omitted, the first positional argument, if any, can only represent a <with-expression> if it is directly preceded by whitespace.
· The specified argument list is determined as follows:
· If the Call keyword is specified:
· If a <call-statement> element’s referenced expression is an <index-expression>, the specified argument list is this expression’s argument list.
· Otherwise, the specified argument list is an empty argument list.
· Otherwise, if the Call keyword is omitted, the specified argument list is <argument-list>.
· A <call-statement> is invalid if any of the following is true:
· The referenced expression is not classified as a variable, function, subroutine or unbound member.
· The referenced expression is classified as a variable and one of the following is true:
· The declared type of the referenced expression is a type other than a specific class or Object.
· The declared type of the referenced expression is a specific class without a default function or subroutine.
· The declared type of the referenced expression is a specific class with a default function or subroutine whose parameter list is incompatible with the specified argument list.
· The referenced expression is classified as a function or subroutine and its referenced procedure’s parameter list is incompatible with the specified argument list.
Runtime semantics.
At runtime, the procedure referenced by the expression is invoked, as follows:
· If the expression is classified as an unbound member, the member is resolved as a variable, property, function or subroutine, and evaluation continues as if the expression had statically been resolved as a variable expression, property expression, function expression or subroutine expression, respectively.
· If the expression is classified as a function or subroutine, the expression’s referenced procedure is invoked with the specified argument list. Any return value resulting from the invocation is discarded.
· If the expression is classified as a variable:
· If the expression’s data value is an object with a public default function or subroutine, this default procedure is invoked with the specified argument list.
· If the expression’s data value is an object with a public default property, runtime error 450 (Wrong number of arguments or invalid property assignment) is raised.
· Otherwise, runtime error 438 (Object doesn’t support this property or method) is raised.
· If the expression is classified as a property, runtime error 450 (Wrong number of arguments or invalid property assignment) is raised.
[bookmark: section_4f2f6c463c094a6d905bfe6658405b6f][bookmark: _Toc181683956]While Statement
A <while-statement> executes a sequence of statements as long as a specified pre-condition is True.
while-statement = "While" boolean-expression EOS statement-block "Wend"
Runtime Semantics.
The <boolean-expression> is repeatedly evaluated until the value of an evaluation is the data value False. Each time an evaluation of the <boolean-expression> has the data value True, the <statement-block> is executed prior to the next evaluation of <boolean-expression>.
[bookmark: section_389b1dc4e6084ed0ae64d88f62f12ea3][bookmark: _Toc181683957]For Statement
A <for-statement> executes a sequence of statements a specified number of times.
for-statement = simple-for-statement / explicit-for-statement

simple-for-statement = for-clause EOS statement-block “Next”

explicit-for-statement = for-clause EOS statement-block
(“Next” / (nested-for-statement “,”)) bound-variable-expression
nested-for-statement = explicit-for-statement / explicit-for-each-statement
for-clause = “For” bound-variable-expression “=” start-value “To” end-value [step-clause]
start-value = expression
end-value = expression
step-clause = Step" step-increment
step-increment = expression
Static Semantics.
· If no <step-clause> is present, the <step-increment> value is the integer data value 1.
· The <bound-variable-expression> within the <for-clause> of an <explicit-for-statement> MUST resolve to the same variable as the <bound-variable-expression> following the <statement-block>. The declared type of <bound-variable-expression> MUST be a numeric value type or Variant.
· The declared type of <start-value>, <end-value>, and <step-increment> MUST be statically Let-coercible to Double.
Runtime Semantics.
· The expressions <start-value>, <end-value>, and <step-increment> are evaluated once, in order, and prior to any of the following computations. If the value of <start-value>, <end-value>, and <step-increment> are not Let-coercible to Double, error 13 (Type mismatch) is raised immediately. Otherwise, proceed with the following algorithm using the original, uncoerced values.
· Execution of the <for-statement> proceeds according to the following algorithm:
1. If the data value of <step-increment> is zero or a positive number, and the value of <bound-variable-expression> is greater than the value of <end-value>, then execution of the <for-statement> immediately completes; otherwise, advance to Step 2.
2. If the data value of <step-increment> is a negative number, and the value of <bound-variable-expression> is less than the value of <end-value>, execution of the <for-statement> immediately completes; otherwise, advance to Step 3.
3. The <statement-block> is executed. If a <nested-for-statement> is present, it is then executed. Finally, the value of <bound-variable-expression> is added to the value of <step-increment> and Let-assigned back to <bound-variable-expression>. Execution then repeats at step 1.
· If a <goto-statement> defined outside the <for-statement> causes a <statement> within <statement-block> to be executed, the expressions <start-value>, <end-value>, and <step-increment> are not evaluated. If execution of the <statement-block> completes and reaches the end of the <statement-block> without having evaluated <start-value>, <end-value> and <step-increment> during this execution of the enclosing procedure, an error is generated (number 92, “For loop not initialized”). This occurs even if <statement-block> contains an assignment expression that initializes <bound-variable-expression> explicitly. Otherwise, if the expressions <start-value>, <end-value>, and <step-increment> have already been evaluated, the algorithm continues at Step 3 according to the rules defined for execution of a <for-statement>.
· When the <for-statement> has finished executing, the value of <bound-variable-expression> remains at the value it held as of the loop completion.
[bookmark: section_b132463afd2541438fc7a443930e0651][bookmark: _Toc181683958]For Each Statement
A <for-each-statement> executes a sequence of statements once for each element of a collection.
for-each-statement = simple-for-each-statement / explicit-for-each-statement

simple-for-each-statement = for-each-clause EOS statement-block “Next”

explicit-for-each-statement = for-each-clause EOS statement-block
 (“Next” / (nested-for-statement “,”)) bound-variable-expression

for-each-clause = “For” “Each” bound-variable-expression “In” collection
collection = expression
Static Semantics.
· The <bound-variable-expression> within the <for-each-clause> of an <explicit-for-each-statement> MUST resolve to the same variable as the <bound-variable-expression> following the keyword Next.
· If the declared type of <collection> is array then the declared type of <bound-variable-expression> MUST be Variant.

Runtime Semantics.
· The expression <collection> is evaluated once prior to any of the following computations.
· If the data value of <collection> is an array:
· If the array has no elements, then execution of the <for-each-statement> immediately completes.
· If the declared type of the array is Object, then the <bound-variable-expression> is Set-assigned to the first element in the array. Otherwise, the <bound-variable-expression> is Let-assigned to the first element in the array.
· After <bound-variable-expression> has been set, the <statement-block> is executed. If a <nested-for-statement> is present, it is then executed.
· Once the <statement-block> and, if present, the <nested-for-statement> have completed execution, <bound-variable-expression> is Let-assigned to the next element in the array (or Set-assigned if it is an array of Object). If and only if there are no more elements in the array, then execution of the <for-each-statement> immediately completes. Otherwise, <statement-block> is executed again, followed by <nested-for-statement> if present, and this step is repeated.
· When the <for-each-statement> has finished executing, the value of <bound-variable-expression> is the data value of the last element of the array.
· If the data value of <collection> is not an array:
· The data value of <collection> MUST be an object-reference to an external object that supports an implementation-defined enumeration interface. The <bound-variable-expression> is either Let-assigned or Set-assigned to the first element in <collection> in an implementation-defined manner.
· After <bound-variable-expression> has been set, the <statement-block> is executed. If a <nested-for-statement> is present, it is then executed.
· Once the <statement-block> and, if present, the <nested-for-statement> have completed execution, <bound-variable-expression> is Set-assigned to the next element in <collection> in an implementation-defined manner. If there are no more elements in <collection>, then execution of the <for-each-statement> immediately completes. Otherwise, <statement-block> is executed again, followed by <nested-for-statement> if present, and this step is repeated.
· When the <for-each-statement> has finished executing, the value of <bound-variable-expression> is the data value of the last element in <collection>.
· If a <goto-statement> defined outside the <for-each-statement> causes a <statement> within <statement-block> to be executed, the expression <collection> is not evaluated. If execution of the <statement-block> completes and reaches the end of the <statement-block> without having evaluated <collection> during this execution of the enclosing procedure, an error is generated (number 92, "For loop not initialized"). This occurs even if <statement-block> contains an assignment expression that initializes <bound-variable-expression> explicitly. Otherwise, if the expression <collection> has already been evaluated, the algorithm continues according to the rules defined for execution of a <for-each-statement> over the <collection>.
[bookmark: section_ce63be3aaa7a4f5fbcf8a2d266bf7cfc][bookmark: _Toc181683959]Array Enumeration Order
· When enumerating the elements of an array, the first element is defined to be the element at which all array indices are at the lower bound of their respective array dimensions.
· The next element is the obtained by incrementing the array index at the leftmost dimension. If incrementing a dimension brings it above its upper bound, that dimension is set to its lower bound and the next dimension to the right is incremented.
· The last element is defined to be the element at which all array indices are at the upper bound of their respective array dimensions.
[bookmark: section_aa978e906240454ca7af0a3e80779dc7][bookmark: _Toc181683960]Exit For Statement
exit-for-statement = "Exit" "For"
Static Semantics.
· An <exit-for-statement> MUST be lexically contained inside a <for-statement> or a <for-each-statement>.

Runtime Semantics.
· Execution of the closest lexically-enclosing <for-statement> or <for-each-statement> enclosing this statement immediately completes. No other statements following the <exit-for-statement> in its containing <statement-block> are executed.
[bookmark: section_61d886e0176840328bbbdd3eca7977df][bookmark: _Toc181683961]Do Statement
A <do-statement> executes a sequence of statements as long as a specified pre/post-condition is True.
do-statement = "Do" [condition-clause] EOS statement-block
 "Loop" [condition-clause]
condition-clause = while-clause / until-clause

while-clause = "While" boolean-expression
until-clause = "Until" boolean-expression
Static Semantics.
· Only one <condition-clause> can be specified after the keyword Do or the keyword Loop, not both. If an <until-clause> is specified, the effect is as if it were a <while-clause> with the value of the <boolean-expression> set to "Not (<boolean-expression>)".
· If no <condition-clause> is specified (either after Do or Loop), the effect is as if a <condition-clause> containing a <while-clause> with the expression "True" were specified after Do.

Runtime Semantics.
· A <do-statement> repeatedly evaluates its <condition-clause> and executes the <statement-block> if it evaluates to the data value True. The ordering of the of the evaluation of the <condition-clause> and the execution of the <statement-block> is defined by the following table:

	Location of <condition-clause>
	Result

	None specified
	Execution of the loop continues until an <exit-do-statement> is executed.

	Immediately following "Do"
	<condition-clause> is evaluated prior to executing <statement-block>. If it evaluates to the data value False then execution of the
<statement-block> and the current statement immediately completes.

	Immediately following "Loop"
	The <statement-block> is executed before evaluation of the <condition-clause>. If it evaluates to the data value True, then the <statement-block> is again executed and the process is repeated.
If it evaluates to the data value False then execution of the <statement-block> and the current statement immediately completes.

[bookmark: section_f672b312fe2a4f4d9ad442729b110fe7][bookmark: _Toc181683962]Exit Do Statement
exit-do-statement = "Exit" "Do"
Static Semantics.
· An <exit-do-statement> MUST be lexically contained inside a <do-statement>.

Runtime Semantics.
· If the <statement-block> causes execution of an <exit-do-statement> whose closest lexically containing <do-statement> is this statement, execution of the <statement-block> and of this statement immediately completes. No other statements following the <exit-do-statement> in the <statement-block> are executed.
[bookmark: section_17ff9b37fbc8491f85b213c3a379acac][bookmark: _Toc181683963]If Statement
An <if-statement> determines whether or not to execute a <statement-block>.
if-statement = LINE-START "If" boolean-expression "Then" EOL statement-block
 *[else-if-block]
 [else-block]
 LINE-START (("End" "If") / "EndIf")
else-if-block = LINE-START "ElseIf" boolean-expression "Then" EOL
 LINE-START statement-block
else-if-block =/ "ElseIf" boolean-expression "Then" statement-block
else-block = LINE-START "Else" statement-block
Runtime Semantics.
· An <if-statement> evaluates its <boolean-expression>, and if it equals the data value True, it executes the <statement-block> after "Then". If it equals the data value False, execution continues in the following order:
1. The <boolean-expression> in each <else-if-block> (in order) is evaluated, until a <boolean-expression> whose data value is True is encountered. The <statement-block> of the containing <else-if-block> is executed and completes execution of the <if-statement>
2. If none of the <boolean-expression> in the <else-if-block>s equal the data value True, and an <else-block> is present, the <statement-block> of the <else-block> is executed.
· If a <goto-statement> defined outside the <if-statement> causes a <statement> within <statement-block> to be executed, the <boolean-expression> is not evaluated. A <goto-statement> can also cause execution to leave the <statement-block>. If a later <goto-statement> causes execution to re-enter the <statement-block>, the behavior is as specified by the rules defined for execution of an <if-statement>.
[bookmark: section_6b4fae505e474469970ba2b5a2b62e7a][bookmark: _Toc181683964]Single-line If Statement
A <single-line-if-statement> determines whether or not to execute a statement.
single-line-if-statement = if-with-non-empty-then / if-with-empty-then

if-with-non-empty-then = "If" boolean-expression "Then" list-or-label [single-line-else-clause]
if-with-empty-then = "If" boolean-expression "Then" single-line-else-clause
single-line-else-clause = "Else" [list-or-label]
list-or-label = (statement-label *[":" [same-line-statement]]) /
([":"] same-line-statement *[":" [same-line-statement]])
same-line-statement = file-statement / error-handling-statement /
data-manipulation-statement / control-statement-except-multiline-if
Static Semantics.
· A <single-line-if-statement> is distinguished from an <if-statement> by the presence of a <list-or-label> or a <single-line-else-clause> immediately following the Then keyword.
· A <single-line-if-statement> MUST be defined on a single logical line, including the entirety of any occurrence of a <same-line-statement>. This restriction precludes any embedded <EOS> alternatives that require a <LINE-END> element.
· When the <list-or-label> of a <single-line-if-statement> contains a <single-line-if-statement>, the first <single-line-else-clause> is part of the immediately preceding <single-line-if-statement>. Any subsequent <single-line-else-clause>is paired with the first <single-line-if-statement> preceding the already paired if-then-else-statements.
· A <statement-label> that occurs as the first element of a <list-or-label> element has the effect as if the <statement-label> was replaced with a <goto-statement> containing the same <statement-label>. This <goto-statement> takes the place of <line-number-label> in <statement-label-list>.
Runtime Semantics.
· A <single-line-if-statement> evaluates its <boolean-expression> and if the expression’s data value is the data value True, it executes the <list-or-label> element that follows the keyword Then. If the expression’s data value is the data value False, it executes the <list-or-label> following the keyword Else.
· A <list-or-label> is executed by executing each of its constituent <same-line-statement> elements in sequential order until either the last contained <statement> has executed or an executed statement explicitly transfers execution outside of the <list-or-label>.
[bookmark: section_94a2f0febdbe4f5db3f4bbf339b0ac65][bookmark: _Toc181683965]Select Case Statement
A <select-case-statement> determines which <statement-block> to execute out of a candidate set.
select-case-statement = "Select" "Case" WS select-expression EOS
*[case-clause]
[case-else-clause]
"End" "Select"
case-clause = "Case" range-clause *("," range-clause) EOS statement-block

case-else-clause = "Case" "Else" EOS statement-block
range-clause = expression
range-clause =/ start-value "To" end-value
range-clause =/ ["Is"] comparison-operator expression
start-value = expression
end-value = expression
select-expression = expression

comparison-operator = "=" / ("<" ">") / (">" "<") / "<" / ">" / (">" "=") / ("=" ">") / ("<" "=") / ("=" "<")
Runtime Semantics.
· In a <select-case-statement> the <select-expression> is immediately evaluated and then used in the evaluation of each subsequent <case-clause> and <case-else-clause>
· For each <case-clause>, each contained <range-clause> is evaluated in the order defined. If a <range-clause> matches a <select-expression>, then the <statement-block> in the <case-clause> is executed. Upon execution of the <statement-block>, execution of the <select-case-statement> immediately completes (and each subsequent <case-clause> is not evaluated).
· If the <range-clause> is an <expression>, then <expression> is evaluated and its result is compared with the value of <select-expression>. If they are equal, the <range-clause> is considered a match for <select-expression>. Any subsequent <range-clause> in the <case-clause> is not evaluated.
· If the <range-clause> starts with the keyword Is or a <comparison-operator>, then the expression "<select-expression> <comparison-operator> <expression>" is evaluated. If the evaluation of this expression returns the data value True, the <range-clause> is considered a match for <select-expression>. Any subsequent <range-clause> in the <case-clause> is not evaluated.
· If the <range-clause> has a <start-value> and an <end-value>, then the expression "((<select-expression>) >= (<start-value>)) And ((<select-expression>) <= (<end-value>))" is evaluated. If the evaluation of this expression returns the data value True, the <range-clause> is considered a match for <select-expression>. Any subsequent <range-clause> in the <case-clause> is not evaluated.
· If evaluation of each <range-clause> in each <case-clause> results in no match, the <statement-block> within <case-else-clause> is executed. If <select-expression> is the data value Null, only the <statement-block> within <case-else-clause> is executed.
· If a <goto-statement> defined outside the <select-case-statement> causes a <statement> within a <statement-block> to be executed, none of <select-expression>, <case-clause>, or <range-clause are evaluated. A <goto-statement> can also cause execution to leave the <statement-block>. If a later <goto-statement> causes execution to re-enter the <statement-block>, the behavior is as specified by the rules defined for the execution of a <statement-block> within a <select-case-statement>.
[bookmark: section_3e8463a8ee714e3380080bd4910e68ea][bookmark: _Toc181683966]Stop Statement
stop-statement = "Stop"
Runtime Semantics.
· A <stop-statement> suspends execution of the VBA program in an implementation-defined manner. Whether or not execution can be resumed is implementation-dependent.
· Subject to possible implementation-defined external interventions, all variables maintain their state if execution resumes.

[bookmark: section_9ce18dd26864426eaec3fd30518024a8][bookmark: _Toc181683967]GoTo Statement
goto-statement = (("Go" "To") / "GoTo") statement-label
Static Semantics.
· A procedure containing a <goto-statement> MUST contain exactly one <statement-label-definition> with the same <statement-label> as the <statement-label> defined in the <goto-statement>.

Runtime Semantics.
· A <goto-statement> causes execution to branch to the <statement> immediately following the <statement-label-definition> for <statement-label>.
· If the <statement-label> is the same as the <end-label> of lexically enclosing procedure declaration execution of the current <procedure-body> immediately completes as if statement execution had reached the end of the <procedure-body> element’s contained <statement-block>.
[bookmark: section_371fa3beb10543348794a7488107a6f8][bookmark: _Toc181683968]On…GoTo Statement
on-goto-statement = "On" expression "GoTo" statement-label-list
Static Semantics.
· A procedure MUST contain exactly one <statement-label-definition> for each <statement-label> in a <statement-label-list>.

Runtime Semantics.
· Let n be the value of the evaluation of <expression> after having been Let-coerced to declared type Integer.
If n is zero, or greater than the number of <statement-label> defined in <statement-label-list>, then execution of the <on-goto-statement> immediately completes.
· If n is negative or greater than 255, an error occurs (number 5, "Invalid procedure call or argument").
· Execution branches to the <statement-label-definition> for the n’th <statement-label> defined in <statement-label-list>.
· If the n’th <statement-label> defined in <statement-label-list> is the same as the <end-label> of the lexically enclosing procedure declaration, execution of the current <procedure-body> immediately completes as if statement execution had reached the end of the <procedure-body> element’s contained <statement-block>.
[bookmark: section_492e1f84c47f40ef819ff1d23e475c91][bookmark: _Toc181683969]GoSub Statement
gosub-statement = (("Go" "Sub") / "GoSub") statement-label
Static Semantics.
· A procedure containing a <gosub-statement> MUST contain exactly one <statement-label-definition> with the same <statement-label> as the <statement-label> defined in the <gosub-statement>.

Runtime Semantics.
· A <gosub-statement> causes execution to branch to the <statement> immediately following the <statement-label-definition> for <statement-label>. Execution continues until the procedure exits or a <return-statement> is encountered.
· If the <statement-label> is the same as the <end-label> of lexically enclosing procedure declaration execution of the current <procedure-body> immediately completes as if statement execution had reached the end of the <procedure-body> element’s contained <statement-block>.
· Each invocation of a procedure creates its own GoSub Resumption List that tracks execution of each <gosub-statement> and each <return-statement> within that procedure in a last-in-first-out (LIFO) manner. Execution of a GoSub statement adds an entry for the current <gosub-statement> to the current procedure’s GoSub Resumption List.
[bookmark: section_4cc2aabb59404abbad6b953bd5631073][bookmark: _Toc181683970]Return Statement
return-statement = "Return"
Runtime Semantics.
· A <return-statement> causes execution to branch to the <statement> immediately following the current procedure’s GoSub Resumption List’s most-recently-inserted <gosub-statement>.
If the current procedure’s GoSub Resumption List is empty, an error occurs (number 3, "Return without GoSub").

[bookmark: section_6f44253fd6ae4de5af010b1d9a67d24d][bookmark: _Toc181683971]On…GoSub Statement
on-gosub-statement = "On" expression "GoSub" statement-label-list
Static Semantics.
· A procedure MUST contain exactly one <statement-label-definition> for each <statement-label> in a <statement-label-list>.
Runtime Semantics.
· Let n be the value of the evaluation of <expression> after having been Let-coerced to the declared type Integer.
· If n is zero, or greater than the number of <statement-label> defined in <statement-label-list>, then execution of the <on-gosub-statement> immediately completes.
· If n is negative or greater than 255, an error occurs (number 5, "Invalid procedure call or argument").
· Execution branches to the <statement-label-definition> for the n’th <statement-label> defined in <statement-label-list>.
· If the n’th <statement-label> defined in <statement-label-list> is the same as the <end-label> of lexically enclosing procedure declaration execution of the current <procedure-body> immediately completes as if statement execution had reached the end of the <procedure-body> element’s contained <statement-block>.
[bookmark: section_fe55464da2c44ca6ace1e757dbe95e73][bookmark: _Toc181683972]Exit Sub Statement
exit-sub-statement = "Exit" "Sub"
Static Semantics.
· An <exit-sub-statement> MUST be lexically contained inside the <procedure-body> of a <subroutine-declaration>.

Runtime Semantics.
· If the <statement-block> causes execution of an <exit-sub-statement>, execution of the procedure and of this statement immediately completes. No other statements following the <exit-sub-statement> in the procedure are executed.
[bookmark: section_d70e6f6fb8304be2acceaa491c8acb5a][bookmark: _Toc181683973]Exit Function Statement
exit-function-statement = "Exit" "Function"
Static Semantics.
An <exit-function-statement> MUST be lexically contained inside the <procedure-body> of a <function-declaration>.

Runtime Semantics.
· If the <statement-block> causes execution of an <exit-function-statement>, execution of the procedure and of this statement immediately completes. No other statements following the <exit-function-statement> in the procedure are executed.
[bookmark: section_2c254f3348b540b79dc74943313a1742][bookmark: _Toc181683974]Exit Property Statement
exit-property-statement = "Exit" "Property"
Static Semantics.
· An <exit-property-statement> MUST be lexically contained inside the <procedure-body> of a property declaration.

Runtime Semantics.
· If the <statement-block> causes execution of an <exit-function-statement>, execution of the procedure and of this statement immediately completes. No other statements following the <exit-property-statement> in the procedure are executed.
[bookmark: section_3795fff1ce8a40f78d2cb1e2c1a251c4][bookmark: _Toc181683975]RaiseEvent Statement
A <raiseevent-statement> invokes a set of procedures that have been declared as handlers for a given event.
raiseevent-statement = "RaiseEvent" IDENTIFIER ["(" event-argument-list ")"]
event-argument-list = [event-argument *("," event-argument)]
event-argument = expression
Static Semantics.
· A <raiseevent-statement> MUST be defined inside a procedure which is contained in a class module.
· <IDENTIFIER> MUST be the name of an event defined in the enclosing class module.
· The referenced event’s parameter list MUST be compatible with the specified argument list according to the rules of procedure invocation. For this purpose, all parameters and arguments are treated as positional.
Runtime Semantics.
· The procedures which have been declared as event handlers for the event are invoked in the order in which their WithEvents variables were initialized, passing each <event-argument> as a positional argument in the order they appeared from left to right. Assigning to a WithEvents variable disconnects all event handlers that it previously pointed to, and causes the variable to move to the end of the list. When an event is raised, the most-recently assigned WithEvents variable’s event-handling procedures will be the last to be executed.
· If an <positional-param> for the event is declared as ByRef, then after each invocation of the procedure, the next invocation’s corresponding <event-argument> is initialized to the value that the parameter last contained inside its most recent procedure invocation.
· Any runtime errors which occur in these procedures are handled by that procedure’s error-handling policy. If the invoked procedure’s error-handling policy is to use the error-handling policy of the procedure that invoked it, the effect is as if the invoked procedure were using the default error-handling policy. This effectively means that errors raised in the invoked procedure can only be handled in the procedure itself.
· If an unhandled error occurs in an invoked procedure, no further event handlers are invoked.
[bookmark: section_52caae3d3ded436fa36a8d5a30c21600][bookmark: _Toc181683976]With Statement
A <with-statement> assigns a given expression as the active With block variable within a statement block.
with-statement = "With" expression EOS statement-block "End" "With"
Static semantics.
· A <with-statement> is invalid if the declared type of <expression> is not a UDT, a named class, Object or Variant.
· The With block variable is classified as a variable and has the same declared type as <expression>.
· If <expression> is classified as a variable, that variable is the With block variable of the <statement-block>.

Runtime semantics.
· If <expression> is classified as a value, property, function, or unbound member:
· <expression> is evaluated as a value expression.
· If the value type of the evaluated expression is a class, it is Set-assigned to an anonymous With block variable. Then, <statement-block> is executed. After <statement-block> executes, Nothing is assigned to the anonymous With block variable.
· If the value type of evaluated expression is a UDT, it is Let-assigned to an anonymous temporary With block variable. Then, <statement-block> is executed.
· An anonymous with block variable has procedure extent.
[bookmark: section_765704660d4d41599e841baf9d6e6d2f][bookmark: _Toc181683977]End Statement
end-statement = "End"
Runtime Semantics.
· An <end-statement> terminates execution immediately.
· Never required by itself but may be placed anywhere in a procedure to end code execution, close files opened with the Open statement, and to clear variables.
[bookmark: section_4deae9851f0b4a959b697c69a91ea7a1][bookmark: _Toc181683978]Assert Statement
An <assert-statement> suspends execution if <boolean-expression> is evaluated to False.
assert-statement = "Debug" "." "Assert" boolean-expression
Runtime Semantics.
· All of <boolean-expression> is always evaluated. For example, even if the first part of an And expression evaluates False, the entire expression is evaluated.
[bookmark: section_ee62ca0dbf1546798d116e411b37901b][bookmark: _Toc181683979]Data Manipulation Statements
Data manipulation statements declare and modify the contents of variables.
Data-manipulation-statement = local-variable-declaration / static-variable-declaration / local-const-declaration / redim-statement / erase-statement / mid-statement /rset-statement / lset-statement / let-statement / set-statement
[bookmark: section_7e93afc7de6f4c25a139164e92271d00][bookmark: _Toc181683980]Local Variable Declarations
local-variable-declaration = ("Dim" ["Shared"] variable-declaration-list)
static-variable-declaration = "Static" variable-declaration-list
The optional Shared keyword provides syntactic compatibility with other dialects of the Basic language and/or historic versions of VBA.
Static Semantics.
· The occurrence of the keyword Shared has no meaning.
· Each variable defined within a <local-variable-declaration> or <static-variable-declaration> MUST have a variable name that is different from any other variable name, constant name, or parameter name defined in the containing procedure.
· A variable defined within a <local-variable-declaration> or <static-variable-declaration> contained in a <function-declaration> or a <property-get-declaration> MUST NOT have the same name as the containing procedure name.
· A variable defined within a <local-variable-declaration> or <static-variable-declaration> MUST NOT have the same name as an implicitly declared (Simple Name Expressions) variable within the containing procedure

Runtime Semantics.
· All variables defined by a <static-variable-declaration> have module extent.
· All variables defined by a <local-variable-declaration> have procedure extent, unless the <local-variable-declaration> is contained within a static procedure (section 5.3.1.2), in which case all the variables have module extent.

[bookmark: section_90382d70261f468f92de0068235c012b][bookmark: _Toc181683981]Local Constant Declarations
local-const-declaration = const-declaration
Static Semantics.
· Each constant defined within a <local-const-declaration> MUST have a constant name that is different from any other constant name, variable name, or parameter name defined in the containing procedure.
· A constant defined within a <local-const-declaration> in a <function-declaration> or a
<property-get-declaration> MUST NOT have the same name as the containing procedure name.
· A constant defined within a <local-const-declaration> MUST NOT have the same name as an implicitly declared variable within the containing procedure.
· All other static semantic rules defined for <const-declaration> apply to <local-const-declaration>.
[bookmark: section_22b5d3720a54461794624934b5edc88c][bookmark: _Toc181683982]ReDim Statement
redim-statement = "Redim" ["Preserve"] redim-declaration-list

redim-declaration-list = redim-variable-dcl *("," redim-variable-dcl)
redim-variable-dcl = redim-typed-variable-dcl / redim-untyped-dcl / with-expression-dcl / member-access-expression-dcl
redim-typed-variable-dcl = TYPED-NAME dynamic-array-dim
redim-untyped-dcl = untyped-name dynamic-array-clause
with-expression-dcl = with-expression dynamic-array-clause
member-access-expression-dcl = member-access-expression dynamic-array-clause

dynamic-array-dim = "(" dynamic-bounds-list ")"
dynamic-bounds-list = dynamic-dim-spec *["," dynamic-dim-spec]
dynamic-dim-spec = [dynamic-lower-bound] dynamic-upper-bound
dynamic-lower-bound = integer-expression "to"
dynamic-upper-bound = integer-expression

dynamic-array-clause = dynamic-array-dim [as-clause]
Static Semantics.
· Each <TYPED-NAME> or <untyped-name> is first matched as a simple name expression in this context.
· If the name has no matches, then the <redim-statement> is instead interpreted as a <local-variable-declaration> with a <variable-declaration-list> declaring a resizable array with the specified name and the following rules do not apply.
· Otherwise, if the name has a match, this match is the redimensioned variable.
· A <redim-typed-variable-dcl> has the same static semantics as if the text of its elements were parsed as a <typed-variable-dcl>.
· A <redim-untyped-dcl> has the same static semantics as if the text of its elements were parsed as an <untyped-variable-dcl>.
· The declared type of the redimensioned variable MUST be Variant or a resizable array.
· Any <as-clause> contained within a <redim-declaration-list> MUST NOT be an <as-auto-object>; it MUST be an <as-type>.
· The redimensioned variable might not be a param array.
· A redimensioned variable might not be a with block variable (section 5.4.2.21).

Runtime Semantics.
· Runtime Error 13 is raised if the declared type of a redimensioned variable is Variant and its value type is not an array.
· Each array in a <redim-statement> is resized according to the dimensions specified in its <bounds-list>. Each element in the array is reset to the default value for its data type, unless the word "preserve" is specified.
· If the Preserve keyword is present, a <redim-statement> can only change the upper bound of the last dimension of an array and the number of dimensions might not be changed. Attempting to change the lower bound of any dimension, the upper bound of any dimension other than the last dimension or the number of dimensions will result in Error 9 (“Subscript out of range”).
· If a <redim-statement> containing the keyword Preserve results in more elements in a dimension, each of the extra elements is set to its default data value.
· If a <redim-statement> containing the keyword Preserve results in fewer elements in a dimension, the data value of the elements at the indices which are now outside the array’s bounds are discarded. Each of these discarded elements is set to its default data value before resizing the array.
· If the redimensioned variable was originally declared as an automatic instantiation variable (section 2.5.1), each dependent variable of the redimensioned variable remains an automatic instantiation variable after execution of the <redim-statement>.
· If the redimensioned variable is currently locked by a ByRef formal parameter runtime Error 10 is raised.
[bookmark: section_f795838295a747fa91bd42262ab9ad32][bookmark: _Toc181683983]Erase Statement
An erase-statement reinitializes the elements of a fixed-size array to their default values, and removes the dimensions and data of a resizable array (setting it back to its initial state).
erase-statement = “Erase” erase-list
erase-list = erase-element *[“,” erase-element]
erase-element = l-expression
Static Semantics.
· An <l-expression> that is an <erase-element> MUST be classified as a variable, property, function or unbound member.
· If the <l-expression> is classified as a variable it might not be a With block variable (section 5.4.2.21) or param array.
· The declared type of each <l-expression> MUST be either an array or Variant.

Runtime Semantics.
· Runtime error 13 (Type mismatch) is raised if the declared type of an <erase-element> is Variant and its value type is not an array.
· For each <erase-element> whose <l-expression> is classified as a variable:
· If the declared type of an <erase-element> is resizable array or the declared type is Variant and the data value of the associated variable is an array, this data value is set to be an empty array with the same element type.
· If the declared type of an <erase-element> is fixed size array every dependent variable of the associated array value variable is reset to standard initial value of the declared array element type.
[bookmark: section_2a8f3567c8e04176a802cf2edeba425f][bookmark: _Toc181683984]Mid/MidB/Mid$/MidB$ Statement
mid-statement = mode-specifier "(" string-argument "," start ["," length] ")" "=" expression

mode-specifier = ("Mid" / "MidB" / "Mid$" / "MidB$")
string-argument = bound-variable-expression
start = integer-expression
length = integer-expression
Static Semantics.
· The declared type of <string-argument> MUST be String or Variant.

Runtime Semantics.
· If the value of <start> is less than or equal to 0 or greater than the length of <string-argument>, or if <length> is less than 0, runtime error 5 (Invalid procedure call or argument) is raised.
· The data value of <string-argument> MUST be Let-coercible to String.
· Let v be the data value that results from Let-coercing the data value of the evaluation of <expression> to the declared type String.
· The new data value of the variable is identical to v except that a span of characters is replaced as follows:
· If <mode-specifier> is "Mid" or "Mid$":
· The first character to replace is the character at the 1-based position n within <string-argument>, where n = <start>. Starting at the first character to replace, the next x characters within <string-argument> are replaced by the first x characters of v, where x = the least of the following: <length>, the number of characters in <string-argument> after and including the first character to replace, or the number of characters in v.
· If <mode-specifier> is "MidB" or "MidB$":
· The first character to replace is the character at the 1-based position n within <string-argument>, where n = <start>. Starting at the first byte to replace, the next x bytes within <string-argument> are replaced by the first x bytes of v, where x = the least of the following: <length>, the number of bytes in <string-argument> after and including the first byte to replace, or the number of bytes in v.
[bookmark: section_6964d2a4b3e3497bbb808bc98f0edab9][bookmark: _Toc181683985]LSet Statement
lset-statement = "LSet" bound-variable-expression "=" expression
Static Semantics.
· The declared type of <bound-variable-expression> MUST be String, Variant, or a UDT.

Runtime Semantics.
· The value type of <bound-variable-expression> MUST be String or a UDT.
· If the value type of <bound-variable-expression> is String:
· Let qLength be the number of characters in the data value of <bound-variable-expression>.
· Let e be the data value of <expression> Let-coerced to declared type String. o Let eLength be the number of characters in e.
· If eLength is less than qLength:
· The String data value that is the concatenation of e followed by (qLength – eLength) space characters (U+0020) is Let-assigned into <bound-variable-expression>.
· Otherwise:
· The String data value this is the initial qLength characters of e are Let-assigned into <bound-variable-expression>.
· If the value type of <bound-variable-expression> is a UDT:
· The data in <expression> (as stored in memory in an implementation-defined manner) is copied into <bound-variable-expression> variable in an implementation-defined manner.
[bookmark: section_beccdd439dad4bcfb063e542869917a1][bookmark: _Toc181683986]RSet Statement
rset-statement = "RSet" bound-variable-expression "=" expression
Static Semantics.
· The declared type of <bound-variable-expression> MUST be String or Variant.

Runtime Semantics.
· The value type of <bound-variable-expression> MUST be String.
· Let qLength be the number of characters in the data value of <bound-variable-expression>.
· Let eLength be the number of characters in the data value of <expression>
· If the number of characters in <expression> is less than the number of characters in the data value of <bound-variable-expression>:
· The data value of (qLength – eLength) spaces followed by the data value of <expression> is Let-coerced into <bound-variable-expression>.
· Otherwise:
· The data value of the first qLength characters in <expression> are Let-coerced into <bound-variable-expression>.
[bookmark: section_ce2a98d426254cb7982c5c58e568cd18][bookmark: _Toc181683987]Let Statement
A let statement performs Let-assignment of a non-object value. The Let keyword itself is optional and can be omitted.
let-statement = ["Let"] l-expression "=" expression
Static Semantics.
This statement is invalid if any of the following is true:
· <expression> cannot be evaluated to a simple data value (section 5.6.2.2).
· <l-expression> is classified as something other than a value, variable, property, function or unbound member.
· <l-expression> is classified as a value and the declared type of <l-expression> is any type except a class or Object.
· <l-expression> is classified as a variable, the declared type of <l-expression> is any type except a class or Object, and a Let coercion from the declared type of <expression> to the declared type of <l-expression> is invalid.
· <l-expression> is classified as a property, does not refer to the enclosing procedure, and any of the following is true:
· <l-expression> has no accessible Property Let or Property Get.
· <l-expression> has an inaccessible Property Let.
· <l-expression> has an accessible Property Let and a Let coercion from the declared type of <expression> to the declared type of <l-expression> is invalid.
· <l-expression> has no Property Let at all and does have an accessible Property Get and the declared type of <l-expression> is any type except a class or Object or Variant.
· <l-expression> is classified as a function, does not refer to the enclosing procedure, and the declared type of <l-expression> is any type except a class or Object or Variant.
· <l-expression> is classified as a property or function, refers to the enclosing procedure, and any of the following is true:
· The declared type of <l-expression> is any type except a class or Object.
· A Let-coercion from the declared type of <expression> to the declared type of <l-expression> is invalid.
Runtime Semantics.
The runtime semantics of Let-assignment are as follows:
· If <l-expression> is classified as an unbound member, resolve it first as a variable, property, function or subroutine.
· If the declared type of <l-expression> is any type except a class or Object:
· Evaluate <expression> as a simple data value to get an expression value.
· Let-coerce the expression value from its value type to the declared type of <l-expression>. o If <l-expression> is classified as a variable, assign the coerced expression value to <l-expression>.
· If <l-expression> is classified as a property, and does not refer to an enclosing Property Get:
· If <l-expression> has an accessible Property Let, invoke the Property Let, passing it any specified argument list, along with the coerced expression value as an extra final parameter.
· If <l-expression> does not have a Property Let and does have an accessible Property Get, runtime error 451 (Property let procedure not defined and property get procedure did not return an object) is raised.
· If <l-expression> does not have an accessible Property Let or accessible Property Get, runtime error 450 (Wrong number of arguments or invalid property assignment) is raised.
· If <l-expression> is classified as a property or function and refers to an enclosing Property Get or function, assign the coerced expression value to the enclosing procedure’s return value.
· If <l-expression> is not classified as a variable or property, runtime error 450 (Wrong number of arguments or invalid property assignment) is raised.
· Otherwise, if the declared type of <l-expression> is a class or Object:
· Evaluate <expression> to get an expression value.
· If <l-expression> is classified as a value or a variable:
· If the declared type of <l-expression> is a class with a default property, a Let-assignment is performed with <l-expression> being a property access to the object’s default property and <expression> being the coerced expression value.
· Otherwise, runtime error 438 (Object doesn’t support this property or method) is raised.
· If <l-expression> is classified as a property:
· If <l-expression> has an accessible Property Let:
· Let-coerce the expression value from its value type to the declared type of the property.
· Invoke the Property Let, passing it any specified argument list, along with the coerced expression value as the final value parameter.
· If <l-expression> does not have a Property Let and does have an accessible Property Get:
· Invoke the Property Get, passing it any specified argument list, getting back an LHS value with the same declared type as the property.
· Perform a Let-assignment with <l-expression> being the LHS value and <expression> being the coerced expression value.
· Otherwise, if <l-expression> does not have an accessible Property Let or accessible Property Get, runtime error 438 (Object doesn’t support this property or method) is raised.
· If <l-expression> is classified as a function:
· Invoke the function, passing it any specified argument list, getting back an LHS value with the same declared type as the property.
· Perform a Let-assignment with <l-expression> being the LHS value and <expression> being the coerced expression value.
· Otherwise, if <l-expression> is not a variable, property or function, runtime error 450 (Wrong number of arguments or invalid property assignment) is raised.
[bookmark: section_f343de03510041f0819793546c4fc21f][bookmark: _Toc181683988]Set Statement
A Set statement performs Set-assignment of an object reference. The Set keyword is not optional and MUST be specified to avoid ambiguity with Let statements.
set-statement = "Set" l-expression "=" expression
Static Semantics.
This statement is invalid if any of the following is true:
· <expression> cannot be evaluated to a data value (section 5.6.2.1).
· <l-expression> is classified as something other than a variable, property or unbound member.
· Set-coercion from the declared type of <expression> to the declared type of <l-expression> is invalid.
· <l-expression> is classified as a property, does not refer to the enclosing procedure, and <l-expression> has no accessible Property Set.
Runtime Semantics. The runtime semantics of Set-assignment are as follows:
· Evaluate <expression> as a data value to get a value.
· Set-coerce this value from its value type to an object reference with the declared type of <l-expression>.
· If <l-expression> is classified as an unbound member, resolve it first as a variable, property, function or subroutine.
· If <l-expression> is classified as a variable:
· If the variable is declared with the WithEvents modifier and currently holds an object reference other than Nothing, the variable’s event handlers are detached from the current object reference and no longer handle this object’s events.
· Assign the coerced object reference to the variable.
· If the variable is declared with the WithEvents modifier and the coerced object reference is not Nothing, the variable’s event handling procedures are attached to the coerced object reference and now handle this object’s events.
· If <l-expression> is classified as a property with an accessible Property Let, and does not refer to an enclosing Property Get, invoke the Property Let, passing it the coerced object reference as the value parameter.
· If <l-expression> is classified as a property or function and refers to an enclosing Property Get or function, assign the coerced expression value to the enclosing procedure’s return value.
· If <l-expression> is not classified as a variable or property, runtime error 450 (Wrong number of arguments or invalid property assignment) is raised.
[bookmark: section_47b18690317544d99de131629f0aacc7][bookmark: _Toc181683989]Error Handling Statements
Error handling statements control the flow of execution when exception conditions occur.
error-handling-statement = on-error-statement / resume-statement / error-statement
Runtime Semantics.
· Each invocation of a VBA procedure has an error-handling policy which specifies how runtime errors SHOULD be handled.
· When a procedure invocation is created, its error-handling policy is initially set to the Default policy, unless the procedure was directly invoked from the host application, in which case its error-handling policy is initially set to Terminate.
· The possible values of a procedure’s error handling policy and the semantics of each policy are defined by the following table:
	Policy Name
	Runtime Semantics

	Default
	Discard the current procedure activation returning the error object and control to the procedure activation that called the current procedure activation. Apply the calling procedures activations error handling policy.

	Resume Next
	Continue execution within the same procedure activation with the <statement> that in normal execution order would be executed immediately after the <statement> whose execution caused the error to be raised.

	Goto
	Set the current procedure activation’s error handling policy to Default. Record as part of the procedure activation the identity of the <statement> whose execution caused the error to be raised. This is called the fault statement, and the error which caused the fault is called the active error. The execution continues in the current procedure starting at the current procedure activation’s handler label.

	Retry
	Continue execution within the same procedure activation starting with the <statement> whose execution caused the error to be raised and clear the active error.

	Ignore
	Use the Error data value of the current error object as the value of the expression in the current procedure activation whose execution caused the error to be raised. Continue execution as if no error had been raised and clear the active error.

	Terminate
	Perform implementation defined error reporting actions terminate execution of the VBA statements. Whether or not and how execution control is returned to the host application is implementation specific.

[bookmark: section_e2561165c99a444b8bc0be60a196867a][bookmark: _Toc181683990]On Error Statement
An <on-error-statement> specifies a new error-handling policy for a VBA procedure.
on-error-statement = "On" "Error" error-behavior

error-behavior = ("Resume" "Next") / ("GoTo" (statement-label / -1))
Static Semantics
· The containing procedure MUST contain exactly one <statement-label-definition> with the same <statement-label> as the <statement-label> contained in the <error-behavior> element, unless the <statement-label> is a <line-number-label> whose data value is the Integer 0.

Runtime Semantics.
· An <on-error-statement> specifies a new error-handling policy for the current activation of the containing procedure.
· The Err object (section 6.1.3.2) is reset.
· If the <error-behavior> is "Resume Next", the error-handling policy is set to "Resume Next".
· If the <error-behavior> has a <statement-label> that is a <line-number-label> whose data value is the Integer data value 0 then the error-handling policy disabled. If the <error-behavior> is any other <statement-label>, then the error-handling policy set to goto the <statement-label>.

[bookmark: section_00439540cf97451d9f207856d4d98c9b][bookmark: _Toc181683991]Resume Statement
resume-statement = "Resume" [("Next" / statement-label)]
Static Semantics.
· If a <statement-label> is specified, the containing procedure MUST contain a <statement-label-definition> with the same <statement-label>, unless <statement-label> is a <line-number-label> whose data value is the Integer 0.
Runtime Semantics.
· If there is no active error, runtime error 20 (Resume without error) is raised.
· The Err object is reset.
· If the <resume-statement> does not contain the keyword Next and either no <statement-label> is specified or the <statement-label> is a <line-number-label> whose data value is the Integer 0, then execution continues by re-executing the <statement> in the current procedure that caused the error.
· If the <resume-statement> contains the keyword Next or a <statement-label> which is a <line-number-label> whose data value is the Integer 0, then execution continues at the <statement> in the current procedure immediately following the <statement> which caused the error.
· If the <resume-statement> contains a <statement-label> which is not a <line-number-label> whose data value is the Integer 0, then execution continues at the first <statement> after the <statement-label-definition> for <statement-label>.

[bookmark: section_70ca285b7f184f0ab0b97edcddf30ec4][bookmark: _Toc181683992]Error Statement
Error-statement = "Error" error-number
error-number = integer-expression
Runtime Semantics.
· The data value of <error-number> MUST be a valid error number between 0 and 65535, inclusive.
· The effect is as if the Err.Raise method (section 6.1.3.2.1.2) were invoked with the data value of <error-number> pass as the argument to its number parameter.
[bookmark: section_2fd9c1be0d9a4b29b5acc9d51ce483cf][bookmark: _Toc181683993]File Statements
VBA file statements support the transfer of data between VBA programs and external data files.
file-statement = open-statement / close-statement / seek-statement / lock-statement / unlock-statement / line-input-statement / width-statement / print-statement / write-statement / input-statement / put-statement / get-statement
The exact natures of external data files and the manner in which they are identified is host defined. Within a VBA program, external data files are identified using file numbers. A file number is an integer in the inclusive range of 1 to 511. The association between external data files and VBA file numbers is made using the VBA Open statement.
VBA file statements support external files using various alternative modes of data representations and structures. Data can be represented using either a textual or binary representation. External file data can be structured as fixed length records, variable length text lines, or as unstructured sequences of characters or bytes. The external encoding of character data is host-defined.
VBA defines three modes of interacting with files: character mode, binary mode and random mode. In character mode, external files are treated as sequences of characters, and data values are stored and accessed using textual representations of the values. For example, the integer value 123 would be literally represented in a file as the character 1, followed by the character 2, followed by the character 3.
Character mode files are divided into lines each of which is terminated by an implementation dependent line termination sequence consisting of one or more characters that marks the end of a line. For output purposes a character mode file can have a maximum line width which is the maximum number of characters that can be output to a single line of the file. Within a line, characters positions are identified as numbered columns. The left-most column of a line is column 1. A line is also logically divided into a sequence of fourteen-character wide print zones.
In binary mode, data values are stored and accessed using an implementation-defined binary encoding. For example, the integer value 123 would be represented using its implementation-defined binary representation. An example of this would be as a four byte binary twos-complement integer in little endian order.
In random mode, values are represented in a file the same way as character mode, but instead of being accessed as a sequential data stream, files opened in random mode are dealt with one record at a time. A record is a fixed size structure of binary-encoded data values. Files in random mode contain a series of records, numbered 1 through n.
A file-pointer-position is defined as the location of the next record or byte to be used in a read or write operation on a file number. The file-pointer-position of the beginning of a fine is 1. For a character mode file, the current line is the line of the file that contains the current file-pointer-position. The current line position is 1 plus the current file-pointer-position minus the file-pointer position of the first character of the current line.
[bookmark: section_29a62f385bf64e089dae0094e377058b][bookmark: _Toc181683994]Open Statement
An <open-statement> associates a file number with an external data file and establishes the processing modes used to access the data file.
open-statement = "Open" path-name [mode-clause] [access-clause] [lock] "As" file-number [len-clause]

path-name = expression
mode-clause = "For" mode
mode = "Append" / "Binary" / "Input" / "Output" / "Random"
access-clause = "Access" access
access = "Read" / "Write" / ("Read" "Write")
lock = "Shared" / ("Lock" "Read") / ("Lock" "Write") / ("Lock" "Read" "Write")

len-clause = "Len" "=" rec-length
rec-length = expression
Static Semantics.
· If there is no <mode-clause> the effect is as if there were a <mode-clause> where <mode> is keyword Random. If there is no <access-clause> the effect is as if there were an <access-clause> where <access> is determined by the value of <mode>, according to the following table:

	Value of <mode>
	File Access Type
	Implied value of <access>

	Append
	Character
	Read Write

	Binary
	Binary
	Read Write

	Input
	Character
	Read

	Output
	Character
	Write

	Random
	Random
	Read Write

· If <mode> is the keyword Output then <access> MUST consist of the keyword Write. If <mode> is the keyword Input then <access> MUST be the keyword Read. If <mode> is the keyword Append then <access> MUST be either the keyword sequence Read Write or the keyword Write.
· If there is no <lock> element, the effect is as if <lock> is the keyword Shared.
· If no <len-clause> is present, the effect is as if there were a <len-clause> with <rec-length> equal to the Integer data value 0.

Runtime Semantics.
· The <open-statement> creates an association between a file number (section 5.4.5) specified via <file-number> and an external data file identified by the <path-name>, such that occurrences of that same file number as the <file number> in subsequently executed file statements are interpreted as references to the associated external data file. Such a file number for which an external association has been successfully established by an <open-statement> is said to be currently open.
· An <open-statement> cannot remap or change the <mode>, <access>, or <lock> of an already in-use <file-number>; the association between integer file number and an external data file remains in effect until they are explicitly disassociated using a <close-statement>.
· If an <open-statement> fails to access the underlying file for any reason, an error is generated.
· The value of <path-name> MUST have a data value that is Let-coercible to the declared type String. The coerced String data value MUST conform to the implementation-defined syntax for external file identifiers.
· The Let-coerced String data value of <path-name> is combined with the current drive value (see the ChDrive function in section 6.1.2.5.2.2) and current directory value in an implementation defined manner to obtain a complete path specification.
· If the external file specified by the complete path specification <path-name> does not exist, an attempt is made to create the external file unless <mode> is the keyword Input, in which case an error is generated.
· If the file is already opened by another process or the system cannot provide the locks requested by <lock>, then the operation fails and an error (number 70, "Permission denied") is generated. If the file cannot be created, for any reason, an error (number 75, "Path/File access error" is generated.
· An error (number 55, "File already open") is generated if the <file-number> integer value already has an external file association that was established by a previously executed <open-statement>.
· The expression in a <len-clause> production MUST evaluate to a data value that is Let-coercible to declared type Integer in the inclusive range 1 to 32,767. The <len-clause> is ignored if <mode> is Binary.
· If <mode> is Append or Output, the path specification MUST NOT identify an external file that currently has a file number association that was established by a previously executed <open-statement>. If an external file has associations with multiple file number associations then the interaction of file statements using the different file numbers is implementation defined. The value of <mode> controls how data is read from, and written to, the file. When <mode> is Random, the file is divided into multiple records of a fixed size, numbered 1 through n.

	Value of <mode>
	Description

	Append
	Data can be read from the file, and any data written to the file is added at the end

	Binary
	Data can be read from the file, and any data written to the file replaces old data

	Input
	Data can only be sequentially read from the file

	Output
	Data can only be sequentially written to the file

	Random
	Data can be read from or written to the file in chunks (records) of a certain size

· The <access> element defines what operations can be performed on an open file number by subsequently executed file statements. The list of which operations are valid in each combination of <mode> and <access> is outlined by the following table:
	Statement/Mode
	Append
	Binary
	Input
	Output
	Random

	Get #
	-
	R, RW
	-
	-
	R, RW

	Put #
	-
	RW, W
	-
	-
	RW, W

	Input #
	-
	R, RW
	R
	-
	-

	Line Input #
	-
	R, RW
	R
	-
	-

	Print #
	RW, W
	-
	-
	W
	-

	Write #
	RW, W
	-
	-
	W
	-

	Seek
	RW, W
	R, RW, W
	R
	W
	R, RW, W

	Width #
	RW, W
	R, RW, W
	R
	W
	R, RW, W

	Lock
	RW, W
	R, RW, W
	R
	W
	R, RW, W

	Unlock
	RW, W
	R, RW, W
	R
	W
	R, RW, W

Key:
R The statement can be used on a <file-number> where <access> is Read
W The statement can be used on a <file-number> where <access> is Write
RW The statement can be used on a <file-number> where <access> is Read/Write - The statement can never be used in the current mode

· The <lock> element defines whether or not agents external to this VBA Environment can access the external data file identified by the complete path specification while the file number association established by this <open-statement> is in effect. The nature of such external agents and mechanisms they might use to access an external data file are implementation defined. The exact interpretation of the <lock> specification is implementation defined but the general intent of the possible lock modes are defined by the following table:

	Lock Type
	Description

	Shared
	External agents can access the file for read and write operations

	Lock Read
	External agents cannot read from the file

	Lock Write
	External agents cannot write to the file

	Lock Read Write
	External agents cannot open the file

· The value of <rec-length> is ignored when <mode> is Binary. If <mode> is Random, the value of <rec-length> specifies the sum of the individual sizes of the data types that will be read from the file (in bytes). If <rec-length> is unspecified when <mode> is Random, the effect is as if <rec-length> is 128. For all other values of <mode>, <rec-length> specifies the number of characters to read in each individual read operation.
· If <mode> is Random, when a file is opened the file-pointer-position points at the first record. Otherwise, the file-pointer-position points at the first byte in the file.
[bookmark: section_38cf0628c62b4cb5be3e865600a9bc59][bookmark: _Toc181683995]File Numbers
file-number = marked-file-number / unmarked-file-number

marked-file-number = "#" expression
unmarked-file-number = expression
Static Semantics.
· The declared type (section 2.2) of the <expression> element of a <marked-file-number> or <unmarked-file-number> MUST be a scalar declared type (section 2.2).
Runtime Semantics.
· The file number value is the file number (section 5.4.5) that is the result of Let-coercing the result of evaluating the <expression> element of a <file-number> to declared type Integer.
· If the <file-number> <expression> element does not evaluate to a value that is Let-coercible to declared type Integer, error number 52 ("Bad file name or number") is raised.
If the file number value is not in the inclusive range 1 to 511 error number 52 ("Bad file name or number") is raised.
[bookmark: section_73ef1ac24da74cdab2a35984a8649ded][bookmark: _Toc181683996]Close and Reset Statements
A <close-statement> concludes input/output to a file on the system, and removes the association between a <file-number> and its external data file.
close-statement = "Reset" / ("Close" [file-number-list])
file-number-list = file-number *["," file-number]
Static Semantics.
· If <file-number-list> is absent the effect is as if there was a <file-number-list> consisting of all the integers in the inclusive range of 1 to 511.
Runtime Semantics.
· If any file number value (section 5.4.5.1.1) in the <file-number-list> is not a currently-open (section 5.4.5.1) file number (section 5.4.5) then no action is taken for that file number. For each file number value from <file-number-list> that is currently-open, any necessary implementation-specific processing that can be required to complete previously executed file statements using that file number is performed to completion and all implementation-specific locking mechanisms associated with that file number are released. Finally, the association between the file number and the external file number is discarded. The file number is no longer currently-open and can be reused in a subsequently executed <open-statement>.
[bookmark: section_fec0271d31ed4e3dbff413f3b7f09f3b][bookmark: _Toc181683997]Seek Statement
A <seek-statement> repositions where the next operation on a <file-number> will occur within that file.
seek-statement = "Seek" file-number "," position
position = expression
Static Semantics:
· The declared type (section 2.2) of <position> MUST be a scalar declared type (section 2.2).
Runtime Semantics:
· An error (number 52, "Bad file name or number") is raised if the file number value (section 5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).
· The new file position is the evaluated value of <position> Let-coerced to declared type Long.
· An error is raised if the new file position is 0 or negative.
· If the <open-statement> for the file number value of <file-number> had <mode> Random, then the file-pointer-position’s location refers to a record; otherwise, it refers to a byte.
If new file position is greater than the current size of the file (measured in bytes or records depending the <mode> of the <Open-statement> for the file number value), the size of the file is extended such that its size is the value new file position. This does not occur for files whose currently-open <access> is Read. The extended content of the file is implementation defined any can be undefined.
· The file-pointer-position of the file is set to new file position.
[bookmark: section_5ff8a0e54e4445a392a63c77cea3e3c5][bookmark: _Toc181683998]Lock Statement
A <lock-statement> restricts which parts of a file can be accessed by external agents. When used without a <record-range>, it prevents external agents from accessing any part of the file.
lock-statement = "Lock" file-number ["," record-range]

record-range = start-record-number / ([start-record-number] "To" end-record-number)
start-record-number = expression
end-record-number = expression
Static Semantics:
· The declared type (section 2.2) of <start-record-number> and of <end-record-number> MUST be a scalar declared type (section 2.2).
· If there is no <start-record-number> the effect is as if <start-record-number> consisted of the integer number token 1.
Runtime Semantics.
· An error (number 52, "Bad file name or number") is raised if the file number value (section 5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).
· If no <record-range> is present the entire file is locked.
· If the file number value was opened with <mode> Input, Output, or Append, the effect is as if no <record-range> was present and the entire file is locked.
· The start record is the evaluated value of <start-record-number> Let-coerced to declared type Long.
· The end record is the evaluated value of <end-record-number> Let-coerced to declared type Long.
· Start record MUST be greater than or equal to 1, and less than or equal to end record. If not, an error is raised.
· If the file number value was opened with <mode> Random, start record and end record define a inclusive span of records within the external data file associated with that file number value. In this case, each record in the span is designated as locked.
· If the file number value was opened with <mode> Binary, both <start-record-number> and <end-record-number> define a byte-position within the external data file associated with that file number. In this case, all external file bytes in the range start record to end record (inclusive), are designated as locked.
Locked files or locked records or bytes within a file might not be accessed by other external agents. The mechanism for actually implementing such locks and whether or not a lock can be applied to any specific external file is implementation defined.
· Multiple lock ranges established by multiple lock statements can be simultaneously active for an external data file. A lock remains in effect until it is removed by an <unlock-statement> that specifies the same file number as the <lock-statement> that established the lock and which either unlocks the entire file or specifies an <record-range> evaluates to the same start record and end record. A <close-statement> remove all locks currently established for its file number value.
[bookmark: section_102f53f203934df18fe86f23f2d58d14][bookmark: _Toc181683999]Unlock Statement
An <unlock-statement> removes a restriction which has been placed on part of a currently-open file number. When used without a <record-range>, it removes all restrictions on any part of the file.
unlock-statement = "Unlock" file-number ["," record-range]
Static Semantics.
· The static semantics for <lock-statement> also apply to <unlock-statement> Runtime Semantics.
· An error (number 52, "Bad file name or number") is raised if the file number value (section 5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).
· If no <record-range> is present the entire file is no longer locked (section 5.4.5.4).
· If the file number value was opened with <mode> Input, Output, or Append, the effect is as if no <record-range> was present and the entire file is no longer locked.
· The start record is the evaluated value of <start-record-number> of <record-range> Let-coerced to declared type Long.
· The end record is the evaluated value of <end-record-number> of <record-range> Let-coerced to declared type Long.
· Start record MUST be greater than or equal to 1, and less than or equal to end record. If not, an error is raised.
· If <record-range> is present, its start record and end record MUST designate a range that is identical to a start record to end record range of a previously executed <lock-statement> for the same currently-open file number. If is not the case, an error is raised.
· If the file number value was opened with <mode> Random, start record and end record define a inclusive span of records within the external data file associated with that file number value. In this case, each record in the span is designated as no longer locked.
· If the file number value was opened with <mode> Binary, both <start-record-number> and <end-record-number> define a byte-position within the external data file associated with that file number. In this case, all external file bytes in the range start record to end record (inclusive), are designated as no longer locked.
· If a <record-range> is provided for only the <lock-statement> or the <unlock-statement> designating the same currently open file number an error is generated.
[bookmark: section_dab5496ca1514d69adc4bb5effc066e9][bookmark: _Toc181684000]Line Input Statement
A <line-input-statement> reads in one line of data from the file underlying <marked-file-number>.
line-input-statement = "Line" "Input" marked-file-number "," variable-name

variable-name = variable-expression
Static Semantics.
· The <variable-expression> of a <variable-name> MUST be classified as a variable.
· The semantics of <marked-file-number> in this context are those of a <file-number> element that consisted of that same <marked-file-number> element.
· The declared type of a <variable-name> MUST be String or Variant.
Runtime Semantics.
· An error (number 52, "Bad file name or number") is raised if the file number value (section 5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).
· The sequence of bytes starting at the current file-pointer-position in the file identified by the file number value and continuing through the last byte of the current line (section 5.4.5) (but not including the line termination sequence (section 5.4.5)) is converted in an implementation dependent manner to a String data value.
· If the end of file is reach before finding a line termination sequence, the data value is the String data value converted from the byte sequence up to the end of the file.
· If the file is empty or there are no characters after file-pointer-position, then runtime error 62 ("Input past end of file") is raised.
· The new file-pointer-position is equal to the position of the first character after the end of the line termination sequence. If the end-of-file was reached the file-pointer-position is set to the position immediately following the last character in the file.
· The String data value is Let-assigned into <variable-name>.
[bookmark: section_e427933bd398424b9dbc8cb91dece4cc][bookmark: _Toc181684001]Width Statement
A <width-statement> defines the maximum number of characters that can be written to a single line in an output file.
width-statement = "Width" marked-file-number "," line-width
line-width = expression
Static Semantics.
· The semantics of <marked-file-number> in this context are those of a <file-number> element that consisted of that same <marked-file-number> element.
· The declared type (section 2.2) of <line-width> MUST be a scalar declared type (section 2.2).
Runtime Semantics.
· An error (number 52, "Bad file name or number") is raised if the file number value (section 5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).
· The line width is the evaluated value of <line-width> Let-coerced to declared type Integer.
· If Line width is less than 0 or greater than 255 an error (number 5, "Invalid procedure call or argument") is raised.
· If the file number value was opened with <mode> Binary or Random this statement has no effect upon the file. Otherwise:
· Each currently open file number has an associated maximum line length (section 5.4.5) that controls how many characters can be output to a line when using that file number. This statement sets the maximum line length of file number value to line width.
· If line width is 0 then file number value is set to have no maximum line length.
[bookmark: section_6f427c3d24714cd88cae2e2951918b51][bookmark: _Toc181684002]Print Statement
A <print-statement> writes data to the file underlying <marked-file-number>.
print-statement = [("Debug" / "Me") "."] "Print" marked-file-number "," [output-list]
Static Semantics.
· The semantics of <marked-file-number> in this context are those of a <file-number> element that consisted of that same <marked-file-number> element.
Runtime Semantics.
· An error (number 52, "Bad file name or number") is raised if the file number value (section 5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).
· If <output-list> is not present, the line termination sequence (section 5.4.5) is written to the file associated with file number value starting at its current file-pointer-position. The current file-pointer-position is set immediately after the line termination sequence.
· Otherwise, for each <output-item> in <output-list> proceeding in left to right order:
· If <output-clause> consists of an <output-expression>
1. The <output-expression> is evaluated to produce an output string value and characters of the string are written to the file associated with file number value starting at its current file-pointer-position.
2. The current file-pointer-position now points to the location after the output characters of the string.
3. If while performing any of these steps the number of characters in the current line (section 5.4.5) reaches the maximum line length (section 5.4.5) the line termination sequence is immediately written and output continues on the next line.
· If <output-clause> consists of a <spc-clause>
1. If space count (section 5.4.5.8.1) is less than or equal to maximum line length of the file number value or if the file number value does not have a maximum line length, let s be the value of space count.
2. Otherwise, space count is greater than the maximum line length. Let s be the value (space count modulo maximum line length).
3. If the is a maximum line width and s is greater than maximum line width minus current line position let s equal s minus (maximum line width minus current line position). The line termination sequence is immediately written and current file-pointer-position is set to beginning of the new line.
4. Write s space characters to the file associated with file number value starting at its current file-pointer-position and set the current file-pointer-position to the position following that last such space character.
· If <output-clause> consists of a <tab-clause> that includes a <tab-number-clause> then do the following steps:
1. If tab number (section 5.4.5.8.1) is less than or equal to maximum line length of the file number value or if the file number value does not have a maximum line length, let t be the value of tab number.
2. Otherwise, tab number is greater than the maximum line length. Let t be the value (tab number modulo maximum line length).
3. If t less than or equal to the current line position, output the line termination sequence. Set the current file-pointer-position is set to beginning of the new line.
4. Write t minus current line position space characters to the file associated with file number value starting at its current file-pointer-position and set the current file-pointer-position to the position following that last such space character.
· If <output-clause> consists of a <tab-clause> that does not includes a <tab-number-clause> then the current file-pointer-position is advanced to the next print zone (section 5.4.5) by outputting space characters until (current line position modulo 14) equals 1. o If the <char-position> of the <output-item> is ",", the current file-pointer-position is further advanced to the next print zone by outputting space characters until (modulo 14) equals 1. Note that the print zone is advance even if the current file-pointer-position is already at the beginning of a print zone.
· If the <char-position> of the last <output-item> is neither a "," or an explicitly occurring ";" the implementation-defined line termination sequence is output and the current file-position-pointer is set to the beginning of the new line.
· The output string value of an <output-expression> is determined as follows:
· If the evaluated data value of the <output-expression> is the Boolean data value True, the output string is "True".
· If the evaluated data value of the <output-expression> is the Boolean data value False, the output string is "False".
· If the evaluated data value of the <output-expression> is the data value Null, the output string is "Null".
· If the evaluated data value of the <output-expression> is an Error data value the output string is "Error " followed by the error code Let-coerced to String.
· If the evaluated data value of the <output-expression> is any numeric data value other than a Date the output string is the evaluated data value of the <output-expression> Let-coerced to String with a space character inserted as the first and the last character of the String data value.
· If the evaluated data value of the <output-expression> is a Date data value the output string is the data value Let-coerced to String.
· Otherwise, the output string is the evaluated data value of the <output-expression> Let-coerced to String.
[bookmark: section_630ce2feabf14aaea1261c6567ac2a41][bookmark: _Toc181684003]Output Lists
output-list = *output-item

output-item = [output-clause] [char-position]

output-clause = (spc-clause / tab-clause / output-expression)
char-position = (";" / ",")

output-expression = expression

spc-clause = "Spc" "(" spc-number ")"
spc-number = expression
tab-clause = "Tab" [tab-number-clause]
tab-number-clause = "(" tab-number ")"
tab-number = expression
Static Semantics.
· If an <output-item> contains no <output-clause>, the effect is as if the <output-item> contains an <output-clause> consisting of the zero-length string "".
· If <char-position> is not present, then the effect is as if <char-position> were ";".
· The declared type (section 2.2) of <spc-number> and of <tab-number> MUST be a scalar declared type (section 2.2).
Runtime Semantics.
· The space count of a <spc-clause> is the larger of 0 and the evaluated value of its <spc-number> Let-coerced to declared type Integer.
· The tab number of a <tab-clause> that includes a <tab-number-clause> is the larger of 1 and the evaluated value of its <tab-number> Let-coerced to declared type Integer.
[bookmark: section_7d5166173cbc4cb188f7d64e8e640a07][bookmark: _Toc181684004]Write Statement
A <write-statement> writes data to the file underlying <marked-file-number>.
write-statement = "Write" marked-file-number "," [output-list]
Static Semantics.
· The semantics of <marked-file-number> in this context are those of a <file-number> element that consisted of that same <marked-file-number> element.
· If a <write-statement> contains no <output-list>, the effect is as if <write-statement> contains an <output-list> with an <output-clause> of "" (a zero-length string), followed by a <char-position> of ",".
Runtime Semantics.
· An error (number 52, "Bad file name or number") is raised if the file number value (section 5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).
· If <output-list> is not present, the implementation-defined line termination sequence is written to the file associated with file number value starting at its current file-pointer-position. The current file-pointer-position is set immediately after the line termination sequence.
· Otherwise, for each <output-item> in <output-list> proceeding in left to right order:
· If <output-clause> consists of an <output-expression>:
1. The <output-expression> is evaluated to produce an output string value and characters of the string are written to the file associated with file number value starting at its current file-pointer-position.
2. Write a comma character to the file unless this is the final <output-clause> and its <char-position> is neither a "," or an explicitly occurring ";".
3. Advance the current file-pointer-position to immediately follow the last output character.
4. If while performing any of these steps the number of characters in the current line (section 5.4.5) reaches the maximum line length (section 5.4.5) the line termination sequence is immediately written and output continues on the next line.
· If <output-clause> consists of a <spc-clause>:
1. If space count (section 5.4.5.8.1) is less than or equal to maximum line length of the file number value or if the file number value does not have a maximum line length, let s be the value of space count.
2. Otherwise, space count is greater than the maximum line length. Let s be the value (space count modulo maximum line length).
3. If the is a maximum line width and s is greater than maximum line width minus current line position let s equal s minus (maximum line width minus current line position). The line termination sequence is immediately written and current file-pointer-position is set to beginning of the new line.
4. Write s space characters to the file associated with file number value starting at its current file-pointer-position and set the current file-pointer-position to the position following that last such space character.
5. If the <char-position> element is a "," write a comma character to the file and advance the current file-pointer-position.
6. If while performing any of these steps the number of characters in the current line (section 5.4.5) reaches the maximum line length (section 5.4.5) the line termination sequence is immediately written and output continues on the next line.
· If <output-clause> consists of a <tab-clause> that includes a <tab-number-clause> then do the following steps:
1. If tab number (section 5.4.5.8.1) is less than or equal to maximum line length of the file number value or if the file number value does not have a maximum line length, let t be the value of tab number.
2. Otherwise, tab number is greater than the maximum line length. Let t be the value (tab number modulo maximum line length).
3. If t less than or equal to the current line position, output the line termination sequence. Set the current file-pointer-position is set to beginning of the new line.
4. Write t minus current line position space characters to the file associated with file number value starting at its current file-pointer-position and set the current file-pointer-position to the position following that last such space character.
5. If the <char-position> element is a "," write a comma character to the file and advance the current file-pointer-position.
6. If while performing any of these steps the number of characters in the current line (section 5.4.5) reaches the maximum line length (section 5.4.5) the line termination sequence is immediately written and output continues on the next line.
· Otherwise, <output-clause> consists of a <tab-clause> that does not includes a <tab-number-clause> so do the following steps:
1. Write a comma character and advance the current file-pointer-position.
2. If the <char-position> element is a "," write a comma character to the file and advance the current file-pointer-position.
3. If while performing any of these steps the number of characters in the current line (section 5.4.5) reaches the maximum line length (section 5.4.5) the line termination sequence is immediately written and output continues on the next line.
· If the <char-position> of the last <output-item> is neither a "," nor an explicitly occurring ";" the implementation-defined line termination sequence is output and the current file-position-pointer is set to the beginning of the new line.
· The output string value of an <output-expression> is determined as follows:
· If the evaluated data value of the <output-expression> is the Boolean data value True, the output string is ""#TRUE#".
· If the evaluated data value of the <output-expression> is the Boolean data value False, the output string is "#FALSE#".
· If the evaluated data value of the <output-expression> is the data value Null, the output string is "#NULL#".
· If the evaluated data value of the <output-expression> is an Error data value the output string is "#ERROR " followed by the error code Let-coerced to String followed by the single character "#".
· If the evaluated data value of the <output-expression> is a String data value the output string is the data value of the String data element with surrounding double quote (U+0022) characters.
· If the evaluated data value of the <output-expression> is any numeric data value other than a Date the output string is the evaluated data value of the <output-expression> Let-coerced to String ignoring any implementation dependent locale setting and using "." as the decimal separator.
· If the evaluated data value of the <output-expression> is a Date data value the output string is a String data value of the form #yyyy-mm-dd hh:mm:ss#. Hours are specified in 24-hour form. If both the date is 1899-12-30 and the time is 00:00:00 only the date portion is output. Otherwise if the date is 1899-12-30 only the time portion is output and if the time is 00:00:00 only the date portion is output.
· Otherwise, the output string is the evaluated data value of the <output-expression> Let-coerced to String with the data value of the string surrounded with double quote (U+0022) characters.
[bookmark: section_f41b8636a3f54501b1a978058017c232][bookmark: _Toc181684005]Input Statement
An <input-statement> reads data from the file underlying <marked-file-number>.
input-statement = "Input" marked-file-number "," input-list

input-list = input-variable *["," input-variable]
input-variable = bound-variable-expression

Static Semantics.
· The semantics of <marked-file-number> in this context are those of a <file-number> element that consisted of that same <marked-file-number> element.
· The <bound-variable-expression> of an <input-variable> MUST be classified as a variable.
· The declared type of an <input-variable> MUST NOT be Object or a specific name class.
Runtime Semantics.
· An error (number 52, "Bad file name or number") is raised if the file number value (section 5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).
· An <input-statement> reads data (starting from the current file-pointer-position) into one or more variables. Characters are read using the file number value until a non-whitespace character is encountered. These whitespace characters are discarded, and the file-pointer-position now points at the first non-whitespace character.
· The following process occurs for each <input-variable> in <input-list>:
· If the declared type of <input-variable> is String then it is assigned a sequence of characters which are read from the file, defined as:
1. If the first character read is a DQUOTE then the sequence of characters is a concatenation of all characters read from the file until a DQUOTE is encountered; neither DQUOTE is included in the sequence of characters. The file-pointer-position now points at the character after the second DQUOTE. The beginning and ending DQUOTEs are not included in the String assigned to <input-variable>.
2. If the first character read is not a DQUOTE then the sequence of characters is a concatenation of all characters read from the file until a "," is encountered. The "," is not included in the sequence of characters. The file-pointer-position now points at the character after the ",".
· If the declared type of <input-variable> is Boolean then it is assigned the value false, unless the sequence of characters read are "#TRUE#". If the sequence of characters is numeric an "Overflow" error is generated (error number 6). The file-pointer-position now points at the character after the second "#". o If the declared type of <input-variable> is Date then a sequence of characters is read from the file, according to the following rules:
1. If the first character at file-pointer-position is "#", then characters are read until a second "#" is encountered. At this point the concatenated String of characters is Let-coerced into <input-variable>.
2. If the first character at file-pointer-position is not "#", then error 6 ("Overflow") is generated.
· If the sequence of characters are all numbers or characters which are valid in a VBA number (in other words, ".", "e", "E", "+", "-") then the characters are concatenated together into a string and Let-coerced into the declared type of <input-variable>. The file-pointer-position now points at the first non-numeric character it encountered.
· If the sequence of characters is surrounded by DQUOTEs and the declared type of <input-variable> is not String or Variant, then <input-variable> is set to its default value.
· In this case the file-pointer-position now points at the first character after the second DQUOTE. If this character is a "," then the file-pointer-position advances one more position.
· If the sequence of characters read from the file are "#NULL#" then the Null value is Let-coerced into <input-variable>. If the sequence of characters read from the file are "#ERROR " followed by a number followed by a "#" then the error number value is Let-coerced into <input-variable>.
· If one of the operations described in this section causes more characters to be read from the file but file-pointer-position is already pointing at the last character in the file, then an "Input past end of file" error is raised (error number 62).
· Each <input-variable> defined in <input-list> is processed in the order specified; if the same underlying variable is specified multiple times in <input-list>, its value will be the one assigned to the last <input-variable> in <input-list> that represents the same underlying variable.
[bookmark: section_46eeacb87a064ec89736eea42de4eeca][bookmark: _Toc181684006]Put Statement
put-statement = "Put" file-number ","[record-number] "," data

record-number = expression
data = expression
Static Semantics.
· The declared type of a <data> expression MUST NOT be Object, a named class, or a UDT whose definition recursively includes such a type.
· If no <record-number> is specified, the effect is as if <record-number> is the current file-pointer-position.
Runtime Semantics.
· An error (number 52, "Bad file name or number") is raised if the file number value (section 5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).
· The value of <record-number> is defined to be the value of <record-number> after it has been Let-coerced to a Long.
· If the <mode> for <file-number> is Binary:
· The file-pointer-position is updated to be exactly <record-number> number of bytes from the start of the file underlying <marked-file-number>.
· The value of <data> is written to the file at the current file-pointer-position (according to the rules defined in the Variant Data File Type Descriptors and Binary File Data Formats tables).
· If <data> is a UDT, then the value of each member of the UDT is written to the file at the current file-pointer-position (according to the rules defined in the Variant Data File Type Descriptors and Binary File Data Formats tables), in the order in which the members are declared in the UDT.
· If the <mode> for <file-number> is Random:
· The file-pointer-position is updated to be exactly (<record-number> * <rec-length>) number of bytes from the start of the file underlying <marked-file-number>. o The value of <data> is written to the file at the current file-pointer-position (according to the rules defined in the Variant Data File Type Descriptors and Binary File Data Formats tables).
· If <data> is a UDT, then the value of each member of the UDT is written to the file at the current file-pointer-position (according to the rules defined in the Variant Data File Type Descriptors and Binary File Data Formats tables), in the order in which the members are declared in the UDT.
· If the number of bytes written is less than the specified <rec-length> (see section 5.4.5.1) then the remaining bytes are written to the file are undefined. If the number of bytes written is more than the specified <rec-length>, an error is generated (#59, "Bad record length").
When outputting a variable whose declared type is Variant, a two byte type descriptor is output before the actual value of the variable.
	Variant Kind
	Type Descriptor Byte 1
	Type Descriptor Byte 2

	Unknown
	ERROR
	-

	User Defined Type
	ERROR
	-

	Object
	ERROR
	-

	Data value Empty
	00
	00

	Data value Null
	01
	00

	Integer
	02
	00

	Long
	03
	00

	Single
	04
	00

	Double
	05
	00

	Currency
	06
	00

	Date
	07
	00

	String
	08
	00

	Error
	10
	00

	Boolean
	11
	00

	Decimal
	14
	00

	LongLong
	20
	00

Once the type descriptor has been written to the file (if necessary), the literal value of the variable is output according to the rules described in the following table:
	Data Type
	Bytes to write to file

	Integer
	A two byte signed integer output in little-endian form. See _int16 in [MS-DTYP].

	Long
	A four byte signed integer. See _int32 in [MS-DTYP].

	Single
	A four byte IEEE floating point value. See float in [MS-DTYP].

	Double
	An eight byte IEEE double value. See double in [MS-DTYP].

	Currency
	An eight byte Currency value. See [MS-OAUT] section 2.2.24.

	Date
	An eight byte Date value. See [MS-OAUT] section 2.2.25.

	String
	In random mode, the first two bytes are the length of the String. If the value is more than 64 kilobytes, then the value of the first two bytes is FF FF. In binary mode there is no two-byte prefix, and the String is stored in ANSI form, without NULL termination

	Fixed-length String
	There is no two-byte prefix, and the String is stored in ANSI form, without NULL termination

	Error
	The value of the error code. See HRESULT in [MS-DTYP].

	Boolean
	If the data value of the Boolean is True, then the two bytes are FF FF. Otherwise, the two bytes are 00 00.

	Decimal
	A 16 bytes Decimal value. See [MS-OAUT] section 2.2.26.

[bookmark: section_60c6f92bd1fc484b91d16ba5246334b4][bookmark: _Toc181684007]Get Statement
get-statement = "Get" file-number "," [record-number] "," variable

variable = variable-expression
Static Semantics.
· The <variable-expression> of a <variable> MUST be classified as a variable.
· The declared type of a <variable> expression MUST NOT be Object, a named class, or a UDT whose definition recursively includes such a type.
· If no <record-number> is specified, the effect is as if <record-number> is the current file-pointer-position.

Runtime Semantics:
· An error (number 52, "Bad file name or number") is raised if the file number value (section 5.4.5.1.1) of <file-number> is not a currently-open (section 5.4.5.1) file number (section 5.4.5).
· A <get-statement> reads data from an external file and stores it in a variable.
· If the <mode> for <file-number> is Binary:
· The file-pointer-position is updated to be exactly <record-number> number of bytes from the start of the file underlying <marked-file-number>.
· If the declared type of <variable> is Variant:
· Two bytes are read from the file. These two bytes are the type descriptor for the data value that follows. The number of bytes to read next are determined based on the type that the type descriptor represents , as shown in the Binary File Data Formats table in section 5.4.5.11. If the value type of <variable> is String, then the number of bytes to read is the number of characters in <variable>.
· Once these bytes have been read from the file, the data value they form is Let-coerced into <variable>.
· If the declared type of <variable> is not Variant:
· Based on the declared type of <variable>, the appropriate number of bytes are read from the file, as shown in the Variant Data File Type Descriptors table in section 5.4.5.11. Once these bytes have been read from the file, the data value they form is Let-coerced into <variable>.
· If the <mode> for <file-number> is Random:
· The file-pointer-position is updated to be exactly <record-number> * <rec-length> number of bytes from the start of the file underlying <marked-file-number>.
· If the declared type of <variable> is Variant:
· Two bytes are read from the file. These two bytes are the type descriptor for the data value that follows. The number of bytes to read next are determined based on the type that the type descriptor represents, as shown in the Binary File Data Formats table in section 5.4.5.11. Once these bytes have been read from the file, the data value they form is Let-coerced into <variable>.
· If the declared type of <variable> is String:
· Two bytes are read from the file. The data value of these two bytes is the number of bytes to read from the file. Once these bytes have been read form the file, the data value they form is Let-coerced into <variable>.
· If the declared type of <variable> is neither Variant not String:
· The number of bytes to read from the file is determined by the declared type of <variable>, as shown in the Variant Data File Type Descriptors table in section 5.4.5.11. Once these bytes have been read from the file, the data value they form is Let-coerced into <variable>.
[bookmark: section_728011396d534492ad304d4363d6c6f9][bookmark: _Toc181684008]Implicit coercion
In many cases, values with a given declared type can be used in a context expecting a different declared type. The implicit coercion rules defined in this section decide the semantics of such implicit coercions based primarily on the value type of the source value and the declared type of the destination context.
There are two types of implicit coercion, Let-coercion (section 5.5.1) and Set-coercion (section 5.5.2), based on the context in which the coercion occurs. Operations that can result in implicit coercion will be defined to use either Let-coercion or Set-coercion.
Note that only implicit coercion is covered here. Explicit coercion functions, such as CInt, are covered in the VBA Standard Library section 6.1.2.3.
The exact semantics of implicit Let and Set coercion are described in the following sections.
[bookmark: section_74614d3e70684c33b149029534522472][bookmark: _Toc181684009]Let-coercion
Let-coercion occurs in contexts where non-object values are expected, typically where the declared type of the destination is not a class or Object.
Within the following sections, Decimal and Error are treated as though they are declared types, even though VBA does not define a Decimal or Error declared type (data values of these value types can be represented only within a declared type of Variant). The semantics defined in this section for conversions to Decimal and Error are used by the definition of CDec (section 6.1.2.3.1.6) and CvErr (section 6.1.2.3.1.14), respectively.
[bookmark: section_4ef8471333da445b942e345982b3267d][bookmark: _Toc181684010]Static semantics
Let-coercion between the following pairs of source declared types or literals and destination declared types is invalid:
	Source Declared Type or Literal
	Destination Declared Type

	Any type
	Any fixed-size array

	Any numeric type or Boolean or Date
	Resizable Byte()

	Any type except a non-Byte resizable or fixed-size array or Variant
	Any non-Byte resizable array

	Any type except a UDT or Variant
	Any UDT

	Any type except Variant
	Any class or Object

	Any class which has no accessible default Property
Get or function, or which has an accessible default Property Get or function for which it is statically invalid to Let-coerce its declared type to the destination declared type
	Any type

	Any non-Byte resizable or fixed-size array
	Resizable array of different element type than source type or any non-array type except Variant

	Any UDT
	Different UDT than source type or any non-UDT type except Variant

	UDT not imported from external reference or array of UDTs not imported from external reference or array of fixed-length strings
	Variant

	Nothing
	Any type except a class or Object or Variant

It is also invalid to implicitly Let-coerce from the LongLong declared type to any declared type other than LongLong or Variant. Such coercions are only valid when done explicitly by use of a CType explicit coercion function.
[bookmark: section_3e5fb49feb204562a6bd4a26dc5fa733][bookmark: _Toc181684011]Runtime semantics
[bookmark: section_56fb78c3a0ea4bf08ee4eb5f89bda4f7][bookmark: _Toc181684012]Let-coercion between numeric types
The most fundamental coercions are conversions from a numeric value type (Integer, Long, LongLong, Byte, Single, Double, Currency, Decimal) to a numeric declared type (Integer, Long, LongLong, Byte, Single, Double, Currency).
Numeric value types can be broken down into 3 categories:
· Integral: Integer, Long, LongLong and Byte
· Floating-point: Single and Double
· Fixed-point: Currency and Decimal
Similarly, numeric declared types can be broken down into 3 categories:
· Integral: Integer, Long (including any Enum), LongLong and Byte
· Floating-point: Single and Double
· Fixed-point: Currency and Decimal
The semantics of numeric Let-coercion depend on the source’s value type and the destination’s declared type:
	Source Value Type
	Destination
Declared Type
	Semantics

	Any integral type
	Any numeric type
	If the source value is within the range of the destination type, the result is a copy of the value.

Otherwise, runtime error 6 (Overflow) is raised.

	Any floating point or fixed point type
	Any integral type
	If the source value is finite (not positive infinity, negative infinity or NaN) and is within the range of the destination type, the result is the value converted to an integer using Banker’s rounding (section 5.5.1.2.1.1).

Otherwise, runtime error 6 (Overflow) is raised.

	Any integral type
	Any numeric type
	If the source value is within the range of the destination type, the result is a copy of the value.

Otherwise, runtime error 6 (Overflow) is raised.

	Any integral type
	Any floating point or fixed point type
	If the source value is finite (not positive infinity, negative infinity or NaN) and is within the magnitude range of the destination type, the result is the value rounded to the nearest value representable in the destination type using Banker’s rounding.

Otherwise, runtime error 6 (Overflow) is raised.

Note that the conversion can result in a loss of precision, and if the value is too small it can become 0.

[bookmark: section_98152b5a4d864acbb87566cb1f49433e][bookmark: _Toc181684013]Banker’s rounding
Banker’s rounding is a midpoint rounding scheme, also known as round-to-even.
During rounding, ambiguity can arise when the original value is at the midpoint between two potential rounded values. Under Banker’s rounding, such ambiguity is resolved by rounding to the nearest rounded value such that the least-significant digit is even.
For example, when using Banker’s rounding to round to the nearest 1, both 73.5 and 74.5 round to 74, while 75.5 and 76.5 round to 76.
[bookmark: section_3a9f52275fd54240949a51ffc32e71a9][bookmark: _Toc181684014]Let-coercion to and from Boolean
When not stored as a Boolean value, False is represented by 0, and True is represented by nonzero values, usually -1.
The semantics of Boolean Let-coercion depend on the source’s value type and the destination’s declared type:
	Source Value Type
	Destination
Declared Type
	Semantics

	Boolean
	Boolean
	The result is a copy of the source value.

	Boolean
	Any numeric type except Byte
	If the source value is False, the result is 0. Otherwise, the result is -1.

	Boolean
	Byte
	If the source value is False, the result is 0. Otherwise, the result is 255.

	Any numeric type
	Boolean
	If the source value is 0, the result is False. Otherwise, the result is True.

[bookmark: section_8a4a92014e7f4856b9fc5927d2879723][bookmark: _Toc181684015]Let-coercion to and from Date
A Date value can be converted to or from a standard Double representation of a date/time, defined as the fractional number of days after 12/30/1899 00:00:00. As Date values representing times with no date are represented as times within the date 12/30/1899, their standard Double representation becomes a Double value greater than or equal to 0 and less than 1.
The semantics of Date Let-coercion depend on the source’s value type and the destination’s declared type:
	Source Value Type
	Destination
Declared Type
	Semantics

	Date
	Date
	The result is a copy of the source date.

	Date
	Any numeric type or Boolean
	The result is the standard Double representation of the source date Let-coerced to the destination type.

	Any numeric type or Boolean
	Date
	The source value is converted to a Double using the Let-coercion rules for Double. This Double representation is then interpreted as a standard Double representation of a date/time and converted to a Date value. If this date value is within the range of valid Date values, the result is the converted date.

Otherwise, runtime error 6 (Overflow) is raised.

[bookmark: section_00113388401b41c28107dc3fc0485554][bookmark: _Toc181684016]Let-coercion to and from String
The formats accepted or produced when coercing number, currency and date values to or from String respects host-defined regional settings. Excess whitespace is ignored at the beginning or end of the value or when inserted before or after date/time separator characters such as "/" and ":", sign characters such as "+", "-" and the scientific notation character "E".
The semantics of String Let-coercion depend on the source’s value type and the destination’s declared type:
	Source Value Type
	Destination
Declared Type
	Semantics

	String
	String
	The result is a copy of the source string.

	String
	Any numeric type
	The source string is parsed as a numeric-coercion-string using the following case-insensitive, whitespace-sensitive grammar:

numeric-coercion-string = [WS] [sign [WS]] regionalnumber-string [exponentclause] [WS]

exponent-clause = ["e" / "d"] [sign] integer-literal

sign = "+" / "-"

regional-number-string = <unsigned number or currency value interpreted according to the active host-defined regional settings>
If the <regional-number-string> can be interpreted as an unsigned number or unsigned currency value according to the active host-defined regional settings, an interpreted value is determined as follows:
· If the destination type is an integral or fixed-point numeric type, <regional-number-string> is interpreted as an infinite-precision fixed-point numeric value.
· Otherwise, if the destination type is a floating-point numeric type, <regional-number-string> is interpreted as an infinite-precision floating-point numeric value.

A scaled value is then determined as follows:
· If <exponent-clause> is not specified, the scaled value is the interpreted value.
· Otherwise, if <exponent-clause> is specified, an exponent is determined. The magnitude of the exponent is the value of the <integer-literal> within exponent. If a <sign> is specified, the exponent is given that sign, otherwise the sign of the exponent is positive. The scaled value is the interpreted value multiplied by 10exponent.

A signed value is then determined as follows:
· If a <sign> is specified, the scaled value is given the specified sign.
· Otherwise, the sign of the scaled value is positive.

The result is then determined from the signed value as follows:
· If the destination type is an integral numeric type, and the signed value is within the range of the destination type, the result is the signed value converted to an integer using Banker’s rounding (section 5.5.1.2.1.1).
· Otherwise, if the destination type is a fixed-point or floating-point numeric type, and the signed value is within the magnitude range of the destination type, the result is the signed value converted to the nearest value that has a representation in the destination type.

If the <regional-number-string> could not be interpreted as a number or currency value, runtime error 13 (Type mismatch) is raised. If the value could be interpreted as a number, but was out of the range of the destination type, runtime error 6 (Overflow) is raised.

Note that the conversion can result in a loss of precision, and if the value is too small the result can be 0.

	String
	Boolean
	If the source string is equal to "True" or "False", case-insensitive, the result is True or False, respectively. If the source string is equal to "#TRUE#" or "#FALSE#", case-sensitive, the result is True or False, respectively. The case sensitivity of these string comparisons is not affected by Option Compare.

Otherwise, the result is the source string Let-coerced to a
Double value, which is then Let-coerced to a Boolean value.

	String
	Date
	If the source string can be interpreted as either a date/time, time, or date value (in that precedence order) according to the host-defined regional settings, the value is converted to a Date.

Otherwise, if the source string can be interpreted as a number or currency value according to the host-defined regional settings, and the resulting value is within the magnitude range of Double, the value is converted to the nearest representable Double value, and then this value is Let-coerced to Date. If this coerced value is within the range of Date, the result is the date value.

If the source string could not be interpreted as a date/time, time, date, number or currency value, runtime error 13 (Type mismatch) is raised. If the conversion to Double resulted in an overflow, runtime error 13 (Type mismatch) is raised instead of the runtime error 6 (Overflow) that would otherwise be raised.

	Any numeric type
	String
	The maximum number of integral significant figures that can be output is based on the value type of the source as follows:
· Single: 7
· Double: 15
· Any integral or fixed-point type: Infinite

The number is converted to a string using the following format (note that some host-defined regional number formatting settings, such as custom negative sign symbols and digit grouping, can be ignored):

· If the number is 0, the result is the string "0".
· If the number is positive infinity, the result is the string "1.#INF".
· If the number is negative infinity, the result is the string "1.#INF".
· If the number is NaN (not a number), the result is the string "-1.#IND".
· If the number is not 0 and there are less than or equal to the maximum number of integral significant figures in the integer part of the number, normal notation is used; for example, -123.45. The resulting string is in the following format:
· - if the number is negative
· The digits of the integer part of the number with no digit grouping (thousands separators) applied
· The host-defined regional decimal symbol (such as . or ,) if any fractional digits will be printed next
· As many digits as possible of the fractional part of the number such that a maximum of 15 integer and fractional digits are printed total with trailing zeros removed
· If the number is not 0 and there are more than the maximum number of integral significant figures in the integer part of the number, scientific notation is used; for example, -1.2345E+2. The number is converted to its equivalent form s × 10e, where s is the significand (the number scaled such that there is exactly one nonzero digit before the decimal point), and e is the exponent (equal to the number of places the decimal point was moved to form the significand). The resulting string is in the following format:
· - if the number is negative
· The single digit of the integer part of the significand
· The host-defined regional decimal symbol (such as . or ,) if any fractional digits of the significand will be printed next
· As many digits as possible of the significand such that a maximum of 15 integer and significand digits are printed total with trailing zeros removed
· E
· + or - depending on the sign of the exponent
· The digits of the exponent
Note that the string conversion always interprets the source value as a number, not a currency value, even for fixed-point numeric types such as Currency or Decimal.

	Boolean
	String
	If the source value is False, the result is "False". Otherwise, the result is "True".

	Date
	String
	If the day value of the source date is 12/30/1899, only the date’s time is converted to a string according to the host-defined regional Long Time format, and the result is this time string.

Otherwise, the source date’s full date and time value is converted to a string according to the platform’s host-defined regional Short Date format, and the result is this date/time string.

The Long Time format represents the platform’s standard time format that includes hours, minutes and seconds. The Short Date format represents the platform’s standard date format where the month, day and year are all expressed in their shortest form (that is, as numbers).

[bookmark: section_442a2cdd118a4c0b99d19b494633fabb][bookmark: _Toc181684017]Let-coercion to String * length (fixed-length strings)
The semantics of String * length Let-coercion depend on the source’s value type:
	Source Value Type
	Destination
Declared Type
	Semantics

	String
	String * length
	If the source string has more than length characters, the result is a copy of the source string truncated to the first length characters.

Otherwise, the result is a copy of the source string padded on the right with space characters to reach a total of length characters.

	Any numeric type, Boolean or Date
	String * length
	The result is the source value Let-coerced to a String value and then Let-coerced to a String * length value.

[bookmark: section_acf31907ebaf48309892bfabe6fe1416][bookmark: _Toc181684018]Let-coercion to and from resizable Byte()
The semantics of Byte() Let-coercion depend on the source’s value type and the destination’s declared type:
	Source Value Type
	Destination
Declared Type
	Semantics

	Byte()
	Resizable Byte()
	The result is a copy of the source Byte array.

	Byte()
	String or String * length
	The binary data within the source Byte array is interpreted as if it represents the implementation-defined binary format used to store String data. Even if this implementation-defined format includes a prefixed length and/or end marker, these elements are not read from the Byte array and MUST instead be inferred from the String data. The result is the string produced.

This coercion never raises a runtime error. If the byte array is uninitialized, the result is a 0-length string. If binary data in the array cannot be interpreted as a character, or if the character specified is cannot be represented on the current platform, that character is output in the String as a ? character. Any trailing bytes leftover at the end of the byte array that could not be interpreted are discarded.

	Byte()
	Any numeric type, Boolean or Date
	The result is undefined.

	String
	Resizable Byte()
	The result is a copy of the implementation-defined binary data used to store the String value, excluding any prefixed length and/or end marker.

	Any numeric type, Boolean or Date
	Resizable Byte()
	Runtime error 13 (Type mismatch) is raised.

[bookmark: section_38315eed8ea84e2ab91c25a96910407a][bookmark: _Toc181684019]Let-coercion to and from non-Byte arrays
The semantics of non-Byte array Let-coercion depend on the source’s value type and the destination’s declared type:
	Source Value Type
	Destination
Declared Type
	Semantics

	Any non-Byte array
	Array with same element type as source type
	The result is a shallow copy of the array. Elements with a value type of a class or Nothing are Set-assigned to the destination array element and all other elements are Let-assigned.

	Any non-Byte array
	Any other type except Variant
	Runtime error 13 (Type mismatch) is raised.

	Any numeric type, Boolean, Date, or String
	Any fixed-size array or non-Byte resizable array
	Runtime error 13 (Type mismatch) is raised.

[bookmark: section_d5727cbc068f45f081197e7f13db9d54][bookmark: _Toc181684020]Let-coercion to and from a UDT
The semantics of UDT Let-coercion depend on the source’s value type and the destination’s declared type:
	Source Value Type
	Destination
Declared Type
	Semantics

	Any UDT
	Same UDT as source type
	The result is a shallow copy of the UDT. Elements with a value type of a class or Nothing are Set-assigned to the destination UDT field and all other elements are Let-assigned.

	Any UDT
	Any other type except Variant
	Runtime error 13 (Type mismatch) is raised.

	Any numeric type, Boolean, Date, String or array
	Any UDT
	Runtime error 13 (Type mismatch) is raised.

[bookmark: section_a7ac9943219846cf9fb6a3dd5e029e44][bookmark: _Toc181684021]Let-coercion to and from Error
The semantics of Error Let-coercion depend on the source’s value type and the destination’s declared type:
	Source Value Type
	Destination
Declared Type
	Semantics

	Error
	Any type except a fixed-size array or Variant
	Runtime error 13 (Type mismatch) is raised.

	Any numeric type, Boolean, Date, String, array or UDT
	Error
	The source value is converted to a Long using the Let-coercion rules for Long. If this Long representation is between 0 and 65535, inclusive, the result is an Error data value representing the standard error code specified by the Long value.

Otherwise, runtime error 5 (Invalid procedure call or argument) is raised.

[bookmark: section_deab39e38dbf4bbeb3f55aa12c542fe6][bookmark: _Toc181684022]Let-coercion from Null
The semantics of Null Let-coercion depend on the destination’s declared type:
	Source Value Type
	Destination
Declared Type
	Semantics

	Null
	Any resizable array or UDT
	Runtime error 13 (Type mismatch) is raised.

	Null
	Any other type except a fixed-size array or Variant
	Runtime error 94 (Invalid use of Null) is raised.

[bookmark: section_e26377233010449dbead9f17533dc105][bookmark: _Toc181684023]Let-coercion from Empty
The semantics of Empty Let-coercion depend on the destination’s declared type:
	Source Value Type
	Destination
Declared Type
	Semantics

	Empty

	Any numeric type
	The result is 0.

	Empty

	Boolean
	The result is False.

	Empty

	Date
	The result is 12/30/1899 00:00:00.

	Empty

	String
	The result is a 0-length string.

	Empty

	String * length
	The result is a string containing length spaces.

	Empty

	Any class or Object
	Runtime error 424 (Object required) is raised.

	Empty

	Any other type except Variant
	Runtime error 13 (Type mismatch) is raised.

[bookmark: section_2ae5553a651549679b91e06b527b137f][bookmark: _Toc181684024]Let-coercion to Variant
The semantics of Variant Let-coercion depend on the source’s value type:
	Source Value Type
	Destination
Declared Type
	Semantics

	Any type except a class or Nothing
	Variant
	The result is a copy of the source value, Let-coerced to the destination declared type.

[bookmark: section_9b8fc7b48329497db2dd2d0fa2b7b48c][bookmark: _Toc181684025]Let-coercion to and from a class or Object or Nothing
The semantics of object Let-coercion depend on the source’s value type and the destination’s declared type:
	Source Value Type
	Destination
Declared Type
	Semantics

	Any class
	Any type
	The result is the simple data value of the object, Let-coerced to the destination declared type.

	Nothing
	Any type
	Runtime error 91 (Object variable or With block variable not set) is raised.

	Any type except a class or Nothing
	Any class or Object
	Runtime error 424 (Object required) is raised.

[bookmark: section_4a496c575e6f4f389cf9ef804ea04350][bookmark: _Toc181684026]Set-coercion
Set-coercion occurs in contexts where object values are expected, typically where the declared type of the destination is a class or where the Set keyword has been used explicitly.
[bookmark: section_53f9bdd4575945fbb13d57e3445bde6d][bookmark: _Toc181684027]Static semantics
Set-coercion between the following pairs of source declared types and destination declared types is invalid:
	Source Declared Type
	Destination Declared Type

	Any type
	Any type except a class or Object or Variant

	Any type except a class or Object or Variant
	Any class or Object or Variant

[bookmark: section_bdd2d85a32364381b289002bf0bf8ffd][bookmark: _Toc181684028]Runtime semantics
[bookmark: section_83404cf09a0f49f593bdeb4c473492c5][bookmark: _Toc181684029]Set-coercion to and from a class or Object or Nothing
The semantics of object Set-coercion depend on the source’s value type and the destination’s declared type:
	Source Value Type
	Destination
Declared Type
	Semantics

	Any class
	Same class as source type or class implemented by source type or Object or Variant
	The result is a copy of the source object reference. The source and destination now refer to the same object.

	Any class
	Different class not implemented by source type
	Runtime error 13 (Type mismatch) is raised.

	Nothing
	Any class or
Object or Variant
	The result is the Nothing reference.

[bookmark: section_9a2eb890a7c84f10b86c3ec77a564294][bookmark: _Toc181684030]Set-coercion to and from non-object types
The semantics of non-object Set-coercion with the Set keyword depend on the source’s value type and the destination’s declared type:
	Source Value Type
	Destination
Declared Type
	Semantics

	Any type except a class or Nothing
	Any class or Object
	Runtime error 424 (Object required) is raised.

	Any type except a class or Nothing
	Variant
	Runtime error 13 (Type mismatch) is raised.

[bookmark: section_65a708dce805442e8b9cc02acb6254b2][bookmark: _Toc181684031]Expressions
An expression is a hierarchy of values, identifiers and subexpressions that evaluates to a value, or references an entity such as a variable, constant, procedure or type. Besides its tree of subexpressions, an expression also has a declared type which can be determined statically, and a value type which can vary depending on the runtime value of its values and subexpressions. This section defines the syntax of expressions, their static resolution rules and their runtime evaluation rules.
expression = value-expression / l-expression
value-expression = literal-expression / parenthesized-expression / typeof-is-expression / new-expression / operator-expression
l-expression = simple-name-expression / instance-expression / member-access-expression / index-expression / dictionary-access-expression / with-expression
[bookmark: section_4d999406a0ab4f45a8ef03d10f911740][bookmark: _Toc181684032]Expression Classifications
Every expression has one of the following classifications:
· A value expression. A value expression represents an immutable data value, and also has a declared type.
· A variable expression. A variable expression references a variable declaration, and also has an argument list queue and a declared type.
· A property expression. A property expression references a property, and also has an argument list queue and a declared type.
· A function expression. A function expression references a function, and also has an argument list queue and a declared type.
· A subroutine expression. A subroutine expression references a subroutine, and also has an argument list queue.
· An unbound member expression. An unbound member expression references a variable, property, subroutine or function, whose classification or target reference cannot be statically determined, and also has an optional member name and an argument list queue.
· A project expression. A project expression references a project.
· A procedural module expression. A procedural module expression references a procedural module.
· A type expression. A type expression references a declared type.
[bookmark: section_1d6362a20d3c41a79c9fc3afa0a11335][bookmark: _Toc181684033]Expression Evaluation
The data value or simple data value of an expression can be obtained through the process of expression evaluation. Both data values and simple data values represent an immutable value and have a declared type, but simple data values can not represent objects or the value Nothing.
[bookmark: section_ff101375b3014cba80b9e1ab59f7a8be][bookmark: _Toc181684034]Evaluation to a data value
Static semantics. The following types of expressions can be evaluated to produce a data value:
· An expression classified as a value expression or variable expression can be evaluated as a data value with the same declared type as the expression, based on the following rules:
· If this expression’s argument list queue is empty, the declared type of the data value is that of the value.
· Otherwise, if this expression’s argument list queue has a first unconsumed argument list (perhaps with 0 arguments):
· If the declared type of the expression is Object or Variant, the declared type of the data value is Variant.
· If the declared type of the expression is a specific class:
· If the declared type of the variable has a public default Property Get or function and this default member’s parameter list is compatible with this argument list, the declared type of the data value is the declared type of this default member.
· Otherwise, the evaluation is invalid.
· If the declared type of the expression is an array type:
· If the number of arguments specified is equal to the rank of the array, the declared type of the data value is the array’s element type.
· Otherwise, if one or more arguments have been specified and the number of arguments specified is different than the rank of the array, the evaluation is invalid.
· Otherwise, if the declared type is a type other than Object, Variant, a specific class or an array type, the evaluation is invalid.
· An expression classified as a property with an accessible Property Get or a function can be evaluated as a data value with the same declared type as the property or function.
· An expression classified as an unbound member can be evaluated as a data value with a declared type of Variant.
Runtime semantics.
At runtime, the data value’s value is determined based on the classification of the expression, as follows:
· If the expression is classified as a value, the data value’s value is that of the expression.
· If the expression is classified as an unbound member, the member is resolved as a variable, property, function or subroutine:
· If the member was resolved as a variable, property or function, evaluation continues as if the expression had statically been resolved as a variable expression, property expression or function expression, respectively.
· If the member was resolved as a subroutine, the subroutine is invoked with the same target and argument list as the unbound member expression. The data value’s value is the value Empty.
· If the expression is classified as a variable:
· If the argument list queue is empty, the data value’s value is a copy of the variable’s data value.
· Otherwise, if the argument list queue has a first unconsumed argument list (perhaps empty):
· If the value type of the expression’s target variable is a class:
· If the declared type of the target is Variant, runtime error 9 (Subscript out of range) is raised.
· If the declared type of the target is not Variant, and the target has a public default Property Get or function, the data value’s value is the result of invoking this default member for that target with this argument list. This consumes the argument list.
· Otherwise, runtime error 438 (Object doesn’t support this property or method) is raised.
· If the value type of the expression’s target is an array type:
· If the number of arguments specified is equal to the rank of the array, and each argument is within its respective array dimension, the data value’s value is a copy of the value stored in the element of the array indexed by the argument list specified. This consumes the argument list.
· Otherwise, runtime error 9 (Subscript out of range) is raised.
· Otherwise, if the value type of the expression’s target variable is a type other than a class or array type, runtime error 9 (Subscript out of range) is raised.
· If the expression is classified as a property or a function:
· If the enclosing procedure is either a Property Get or a function, and this procedure matches the procedure referenced by the expression, evaluation restarts as if the expression was a variable expression referencing the current procedure’s return value.
· Otherwise, the data value’s value is the result of invoking this referenced property’s named Property Get procedure or function for that target. The argument list for this invocation is determined as follows:
· If the procedure being invoked has a parameter list that cannot accept any parameters or the argument queue is empty, the procedure is invoked with an empty argument list. In this case, if the argument queue has a first unconsumed argument list and this list is empty, this argument list is consumed.
· Otherwise, if the procedure being invoked has a parameter list with at least one named or optional parameter, and the argument list queue has a first unconsumed argument list (perhaps empty), the procedure is invoked with this argument list. This consumes the argument list.
[bookmark: section_f1cc9a8de6814e209c5ee3385545440e][bookmark: _Toc181684035]Evaluation to a simple data value
Static semantics. The following types of expressions can be evaluated to produce a simple data value:
· An expression classified as a value expression can be evaluated as a simple data value based on the following rules:
· If the declared type of the expression is a type other than a specific class, Variant or Object, the declared type of the simple data value is that of the expression.
· If the declared type of the expression is Variant or Object, the declared type of the simple data value is Variant.
· If the declared type of the expression is a specific class:
· If this class has a public default Property Get or function and this default member’s parameter list is compatible with an argument list containing 0 parameters, simple data value evaluation restarts as if this default member was the expression.
· An expression classified as an unbound member, variable, property or function can be evaluated as a simple data value if it is both valid to evaluate the expression as a data value, and valid to evaluate an expression with the resulting classification and declared type as a simple data value.
Runtime semantics. At runtime, the simple data value’s value and value type are determined based on the classification of the expression, as follows:
· If the expression is a value expression:
· If the expression’s value type is a type other than a specific class or Nothing, the simple data value’s value is that of the expression.
· If the expression’s value type is a specific class:
· If the source object has a public default Property Get or a public default function, and this default member’s parameter list is compatible with an argument list containing 0 parameters, the simple data value’s value is the result of evaluating this default member as a simple data value.
· Otherwise, if the source object does not have a public default Property Get or a public default function, runtime error 438 (Object doesn’t support this property or method) is raised.
· If the expression’s value type is Nothing, runtime error 91 (Object variable or With block variable not set) is raised.
· If the expression is classified as an unbound member, variable, property or function, the expression is first evaluated as a data value and then the resulting expression is reevaluated as a simple data value.
[bookmark: section_b57f9c36de214fe3afa653668192ae18][bookmark: _Toc181684036]Default Member Recursion Limits
Evaluation of an object whose default Property Get or default function returns another object can lead to a recursive evaluation process if the returned object has a further default member. Recursion through this chain of default members can be implicit if evaluating to a simple data value and each default member has an empty parameter list, or explicit if index expressions are specified that specifically parameterize each default member.
An implementation can define limits on when such a recursive default member evaluation is valid. The limits can depend on factors such as the depth of the recursion, implicit vs. explicit specification of empty argument lists, whether members return specific classes vs. returning Object or Variant, whether the default members are functions vs. Property Gets, and whether the expression occurs on the left side of an assignment. The implementation can determine such an evaluation to be invalid statically or can raise error 9 (Subscript out of range) or 13 (Type mismatch) during evaluation at runtime.
[bookmark: section_5ef0cb6d7cb348068edf926a530b4b89][bookmark: _Toc181684037]Member Resolution
An expression statically classified as a member can be resolved at runtime to produce a variable, property, function or subroutine reference through the process of member resolution.
Runtime semantics.
At runtime, an unbound member expression can be resolved as a variable, property, function or subroutine as follows:
· First, the target entity is evaluated to a target data value. Member resolution continues if the value type of the data value is a class or a UDT.
· If the value type of the target data value is Nothing, runtime error 91 (Object variable or With block variable not set) is raised.
· If the value type of the target data value is a type other than a class, a UDT or Nothing, runtime error 424 (Object required) is raised.
· If a member name has been specified and an accessible variable, property, function or subroutine with the given member name exists on the target data value, the member resolves as a variable expression, property expression, function expression or subroutine expression, respectively, referencing the named member with the target data value as the target entity and with the same argument list queue.
· If no member name has been specified, and the target data value has a public default Property Get or a public default function, the member resolves as a property expression or function expression respectively, referencing this default member with the target data value as the target entity and with the same argument list queue.
· Otherwise, if no resolution was possible:
· If the value type of the target entity is a class, runtime error 438 (Object doesn’t support this property or method) is raised. o If the value type of the target entity is a UDT, runtime error 461 (Method or data member not found) is raised.
[bookmark: section_b892f8d6cd0e419e8a02bc932b8eff5c][bookmark: _Toc181684038]Expression Binding Contexts
An expression can perform name lookup using one of the following binding contexts:
· The default binding context. This is the binding context used by most expressions.
· The type binding context. This is the binding context used by expressions that expect to reference a type or class name.
· The procedure pointer binding context. This is the binding context used by expressions that expect to return a pointer to a procedure.
· The conditional compilation binding context. This is the binding context used by expressions within conditional compilation statements.
Unless otherwise specified, expressions use the default binding context to perform name lookup.
[bookmark: section_13557712af014c82acfa01a440a27262][bookmark: _Toc181684039]Literal Expressions
A literal expression consists of a literal.
Static semantics. A literal expression is classified as a value. The declared type of a literal expression is that of the specified token.
literal-expression = INTEGER / FLOAT / DATE / STRING / (literal-identifier [type-suffix])
Runtime semantics. A literal expression evaluates to the data value represented by the specified token. The value type of a literal expression is that of the specified token.
Any <type-suffix> following a <literal-identifier> has no effect.
[bookmark: section_8c1b7427670d45e2bc4b39ab84ba5b20][bookmark: _Toc181684040]Parenthesized Expressions
A parenthesized expression consists of an expression enclosed in parentheses.
Static semantics. A parenthesized expression is classified as a value expression, and the enclosed expression MUST able to be evaluated to a simple data value. The declared type of a parenthesized expression is that of the enclosed expression.
parenthesized-expression = "(" expression ")"
Runtime semantics. A parenthesized expression evaluates to the simple data value of its enclosed expression. The value type of a parenthesized expression is that of the enclosed expression.
[bookmark: section_22d0220a65bc412a9052adb02aadb875][bookmark: _Toc181684041]TypeOf…Is Expressions
A TypeOf...Is expression is used to check whether the value type of a value is compatible with a given type.
typeof-is-expression = "typeof" expression "is" type-expression
Static semantics. A TypeOf...Is expression is classified as a value and has a declared type of Boolean. <expression> MUST be classified as a variable, function, property with a visible Property Get, or unbound member and MUST have a declared type of a specific UDT, a specific class, Object or Variant.
Runtime semantics. The expression evaluates to True if any of the following are true:
· The value type of <expression> is the exact type specified by <type-expression>.
· The value type of <expression> is a specific class that implements the interface type specified by <type-expression>.
· The value type of <expression> is any class and <type-expression> specifies the type Object.
 Otherwise the expression evaluates to False.
If the value type of <expression> is Nothing, runtime error 91 (Object variable or With block variable not set) is raised.
[bookmark: section_b16c311f364845fca3821e6ddea34191][bookmark: _Toc181684042]New Expressions
A New expression is used to instantiate an object of a specific class.
new-expression = "New" type-expression
Static semantics. A New expression is invalid if the type referenced by <type-expression> is not instantiable.
A New expression is classified as a value and its declared type is the type referenced by <type-expression>.
Runtime semantics. Evaluation of a New expression instantiates a new object of the type referenced by <type-expression> and returns that object.
[bookmark: section_4d159cdd679643c78a61021cc81d0594][bookmark: _Toc181684043]Operator Expressions
There are two kinds of operators. Unary operators take one operand and use prefix notation (for example, –x). Binary operators take two operands and use infix notation (for example, x + y). With the exception of the relational operators, which result in Boolean, an operator defined for a particular type results in that type. The operands to an operator MUST be classified as a value; the result of an operator expression is classified as a value.
operator-expression = arithmetic-operator-expression / concatenation-operator-expression / relational-operator-expression / like-operator-expression / is-operator-expression / logical-operator-expression
Static semantics. An operator expression is classified as a value.
[bookmark: section_24cb214aef264e36973d43f715c8b127][bookmark: _Toc181684044]Operator Precedence and Associativity
When an expression contains multiple binary operators, the precedence of the operators controls the order in which the individual binary operators are evaluated. For example, in the expression x + y * z is evaluated as x + (y * z) because the * operator has higher precedence than the + operator. The following table lists the binary operators in descending order of precedence:
	Category
	Operators

	Primary
	All expressions not explicitly listed in this table

	Exponentiation
	^

	Unary negation
	-

	Multiplicative
	*, /

	Integer division
	\

	Modulus
	Mod

	Additive
	+, -

	Concatenation
	&

	Relational
	=, <>, <, >, <=, >=, Like, Is

	Logical NOT
	Not

	Logical AND
	And

	Logical OR
	Or

	Logical XOR
	Xor

	Logical EQV
	Eqv

	Logical IMP
	Imp

When an expression contains two operators with the same precedence, the associativity of the operators controls the order in which the operations are performed. All binary operators are left-associative, meaning that operations are performed from left to right. Precedence and associativity can be controlled using parenthetical expressions.
[bookmark: section_dccbdeae5b2e4c2e857e1ad9b861e196][bookmark: _Toc181684045]Simple Data Operators
Simple data operators are operators that first evaluate their operands as simple data values. Specific operators defined in later sections can be designated as simple data operators.
Static semantics. A simple data operator is valid only if it is statically valid to evaluate each of its operands as a simple data value. The declared types of the operands after this static validation are used when determining the declared type of the operator, as defined in each operator’s specific section.
Runtime semantics. A simple data operator’s operands are first evaluated as simple data values before proceeding with the runtime semantics of operator evaluation.
[bookmark: section_e070115f8d4040cfac6dab18b9c6c906][bookmark: _Toc181684046]Arithmetic Operators
Arithmetic operators are simple data operators that perform numerical computations on their operands.
arithmetic-operator-expression = unary-minus-operator-expression / addition-operator-expression / subtraction-operator-expression / multiplication-operator-expression / division-operator-expression / integer-division-operator-expression / modulo-operator-expression / exponentiation-operator-expression
Static semantics. Arithmetic operators are statically resolved as simple data operators.
An arithmetic operator is invalid if the declared type of any operand is an array or a UDT.
For unary arithmetic operators, unless otherwise specified in the specific operator’s section, the operator has the following declared type, based on the declared type of its operand:
	Operand Declared Type
	Operator Declared Type

	Byte
	Byte

	Boolean or Integer
	Integer

	Long
	Long

	LongLong
	LongLong

	Single
	Single

	Double, String or String * length
	Double

	Currency
	Currency

	Date
	Date

	Variant
	Variant

For binary arithmetic operators, unless otherwise specified in the specific operator’s section, the operator has the following declared type, based on the declared type of its operands:
	Left Operand Declared Type
	Right Operand Declared Type
	Operator Declared Type

	Byte
	Byte
	Byte

	Boolean or Integer
	Byte, Boolean or Integer
	Integer

	Byte, Boolean or Integer
	Boolean or Integer
	Integer

	Long
	Byte, Boolean, Integer or Long
	Long

	Byte, Boolean, Integer or Long
	Long
	Long

	LongLong
	Any integral numeric type
	LongLong

	Any integral numeric type
	LongLong
	LongLong

	Single
	Byte, Boolean, Integer or Single
	Single

	Byte, Boolean, Integer or Single
	Single
	Single

	Single
	Long or LongLong
	Double

	Long or LongLong
	Single
	Double

	Double, String or String * length
	Any integral or floating-point numeric type, String or String * length
	Double

	Any integral or floating-point numeric type, String or String * length
	Double, String or String * length
	Double

	Currency
	Any numeric type, String or String * length
	Currency

	Any numeric type, String or String * length
	Currency
	Currency

	Date
	Any numeric type, String, String * length or Date
	Date

	Any numeric type, String, String * length or Date
	Date
	Date

	Any type except an array or UDT
	Variant
	Variant

	Variant
	Any type except an array or UDT
	Variant

Runtime semantics:
· Arithmetic operators are first evaluated as simple data operators.
· If the value type of any operand is an array, UDT or Error, runtime error 13 (Type mismatch) is raised.
· Before evaluating the arithmetic operator, its non-Null operands undergo Let-coercion to the operator’s effective value type.
· For unary arithmetic operators, unless otherwise specified, the effective value type is determined as follows, based on the value type of the operand:
	Operand Value Type
	Effective Value Type

	Byte
	Byte

	Boolean or Integer or Empty
	Integer

	Long
	Long

	LongLong
	LongLong

	Single
	Single

	Double or String
	Double

	Currency
	Currency

	Date
	Date (however, the operand is Let-coerced to Double instead)

	Decimal
	Decimal

	Null
	Null

· For binary arithmetic operators, unless otherwise specified, the effective value type is determined as follows, based on the value types of the operands:
	Left Operand Value Type
	Right Operand Value Type
	Effective Value Type

	Byte
	Byte or Empty
	Byte

	Byte or Empty
	Byte
	Byte

	Boolean or Integer
	Byte, Boolean, Integer or Empty
	Integer

	Byte, Boolean, Integer or Empty
	Boolean or Integer
	Integer

	Empty
	Empty
	Integer

	Long
	Byte, Boolean, Integer, Long or Empty
	Long

	Byte, Boolean, Integer, Long or Empty
	Long
	Long

	LongLong
	Any integral numeric type or
Empty
	LongLong

	Any integral numeric type or
Empty
	LongLong
	LongLong

	Single
	Byte, Boolean, Integer, Single or
Empty
	Single

	Byte, Boolean, Integer, Single or
Empty
	Single
	Single

	Single
	Long or LongLong
	Double

	Long or LongLong
	Single
	Double

	Double or String
	Any integral or floating-point numeric type, String or Empty
	

	Any integral or floating-point numeric type, String or Empty
	Double or String
	

	Currency
	Any integral or floating-point numeric type, Currency, String or Empty
	Currency

	Any integral or floating-point
numeric type, Currency, String or Empty
	Currency
	Currency

	Date
	Any integral or floating-point numeric type, Currency, String, Date or Empty
	Date (however, the operands are Let-coerced to Double instead)

	Any integral or floating-point numeric type, Currency, String, Date or Empty
	Date
	Date (however, the operands are Let-coerced to Double instead)

	Decimal
	Any numeric type, String, Date or
Empty
	Decimal

	Any numeric type, String, Date or
Empty
	Decimal
	Decimal

	Null
	Any numeric type, String, Date, Empty, or Null
	Null

	Any numeric type, String, Date, Empty, or Null
	Null
	Null

	Error
	Error
	Error

	Error
	Any type except Error
	Runtime error 13 (Type mismatch) is raised.

	Any type except Error
	Error
	Runtime error 13 (Type mismatch) is raised.

The value type of an arithmetic operator is determined from the value the operator produces, the effective value type and the declared type of its operands as follows:
· If the arithmetic operator produces a value within the valid range of its effective value type, the operator’s value type is its effective value type.
· Otherwise, if the arithmetic operator produces a value outside the valid range of its effective value type, arithmetic overflow occurs. The behavior of arithmetic overflow depends on the declared types of the operands:
· If neither operand has a declared type of Variant, runtime error 6 (Overflow) is raised.
· If one or both operands have a declared type of Variant:
· If the operator’s effective value type is Integer, Long, Single or Double, the operator’s value type is the narrowest type of either Integer, Long or Double such that the operator value is within the valid range of the type. If the result does not fit within Double, runtime error 6 (Overflow) is raised.
· If the operator’s effective value type is LongLong, runtime error 6 (Overflow) is raised.
· If the operator’s effective value type is Date, the operator’s value type is Double. If the result does not fit within Double, runtime error 6 (Overflow) is raised.
· If the operator’s effective value type is Currency or Decimal, runtime error 6 (Overflow) is raised.
The operator’s result value is Let-coerced to this value type.
Arithmetic operators with an effective value type of Single or Double perform multiplication, floatingpoint division and exponentiation according to the rules of IEEE 754 arithmetic, which can operate on or result in special values such as positive infinity, negative infinity, positive zero, negative zero or NaN (not a number).
An implementation can choose to perform floating point operations with a higher-precision than the effective value type (such as an "extended" or "long double" type) and coerce the resulting value to the destination declared type. This can be done for performance reasons as some processors are only able to reduce the precision of their floating-point calculations at a severe performance cost.
[bookmark: section_181ac00171564feda518fb90b828ec59][bookmark: _Toc181684047]Unary - Operator
The unary - operator returns the value of subtracting its operand from 0.
unary-minus-operator-expression = "-" expression
Static semantics:
· A unary - operator expression has the standard static semantics for unary arithmetic operators.
· A unary - operator expression has the standard static semantics for unary arithmetic operators (section 5.6.9.3) with the following exceptions when determining the operator’s declared type:
	Operand Declared Type
	Operator Declared Type

	Byte
	Integer

Runtime semantics:
· A unary - operator expression has the standard runtime semantics for unary arithmetic operators (section 5.6.9.3) with the following exceptions when determining the operator’s effective value type:
	Operand Value Type
	Effective Value Type

	Byte
	Integer

· The semantics of the unary - operator depend on the operator’s effective value type:
	Effective Value Type
	Runtime Semantics

	Byte, Integer, Long, LongLong,
Single, Double, Currency or
Decimal
	The result is the operand subtracted from 0.

	Date

 	
	The Double value is the operand subtracted from 0. The result is the Double value Let-coerced to Date.

If overflow occurs during the coercion to Date, and the operand has a declared type of Variant, the result is the Double value.

	Null
	The result is the value Null.

[bookmark: section_91621d4b3da34fe99581adda857efe05][bookmark: _Toc181684048]+ Operator
The + operator returns the sum or concatenation of its two operands, depending on their value types.
addition-operator-expression = expression "+" expression
Static semantics:
· A + operator expression has the standard static semantics for binary arithmetic operators with the following exceptions when determining the operator’s declared type:
	Left Operand Declared Type
	Right Operand Declared Type
	Operator Declared Type

	String or String * length
	String or String * length
	String

Runtime semantics:
· A + operator expression has the standard runtime semantics for binary arithmetic operators with the following exceptions when determining the operator’s effective value type:
	Left Operand Value Type
	Right Operand Value Type
	Effective Value Type

	String
	String
	String

· The semantics of the + operator depend on the operator’s effective value type:
	Effective Value Type
	Runtime Semantics

	Byte, Integer, Long, LongLong,
Single, Double, Currency or
Decimal
	The result is the right operand added to the left operand.

	Date
	The Double sum is the right operand added to the left operand. The result is the Double sum Let-coerced to Date.

If overflow occurs during the coercion to Date, and one or both operands have a declared type of Variant, the result is the Double sum.

	String
	The result is the right operand string concatenated to the left operand string.

	Null
	The result is the value Null.

[bookmark: section_c966fa50f49f44aba8f8f2691fffe048][bookmark: _Toc181684049]Binary - Operator
The binary - operator (Unicode U+2212) returns the difference between its two operands.
subtraction-operator-expression = expression "-" expression
Static semantics:
· A binary - operator expression has the standard static semantics for binary arithmetic operators (section 5.6.9.3) with the following exceptions when determining the operator’s declared type:
	Left Operand Declared Type
	Right Operand Declared Type
	Operator Declared Type

	Date
	Date
	Double

Runtime semantics:
· A - operator expression has the standard runtime semantics for binary arithmetic operators (section 5.6.9.3) with the following exceptions when determining the operator’s effective value type:
	Left Operand Value Type
	Right Operand Value Type
	Effective Value Type

	Date
	Date
	Double

· The semantics of the - operator depend on the operator’s effective value type:
	Effective Value Type
	Runtime Semantics

	Byte, Integer, Long, LongLong,
Single, Double, Currency or
Decimal
	The result is the right operand subtracted from the left operand.

	Date
	The Double difference is the right operand subtracted from the left operand. The result is the Double difference Let-coerced to Date.

If overflow occurs during the coercion to Date, and one or both operands have a declared type of Variant, the result is the Double difference.

	Null
	The result is the value Null.

[bookmark: section_917bed61f19f4e7d9f932e44d4ec7432][bookmark: _Toc181684050]* Operator
The * operator returns the product of its two operands.
multiplication-operator-expression = expression "*" expression
Static semantics:
· A * operator expression has the standard static semantics for binary arithmetic operators (section 5.6.9.3) with the following exceptions when determining the operator’s declared type:
	Left Operand Declared Type
	Right Operand Declared Type
	Operator Declared Type

	Currency
	Single, Double, String or String * length
	Double

	Single, Double, String or String * length
	Currency
	Double

	Date
	Any numeric type, String, String * length or Date
	Double

	Any numeric type, String, String * length or Date
	Date
	Double

Runtime semantics:
· A * operator expression has the standard runtime semantics for binary arithmetic operators (section 5.6.9.3) with the following exceptions when determining the operator’s effective value type:
	Left Operand Value Type
	Right Operand Value Type
	Effective Value Type

	Currency
	Single, Double or String
	Double

	Single, Double or String
	Currency
	Double

	Date
	Any integral or floating-point numeric type, Currency, String, Date or Empty
	

	Any integral or floating-point numeric type, Currency, String, Date or Empty
	Date
	

· The semantics of the * operator depend on the operator’s effective value type:
	Effective Value Type
	Runtime Semantics

	Byte, Integer, Long, LongLong, Currency or Decimal
	The result is the left operand multiplied with the right operand.

	Single or Double
	The result is the left operand multiplied with the right operand.

If this results in multiplying positive or negative infinity by 0, runtime error 6 (Overflow) is raised. In this case, if this expression was within the right-hand side of a Let assignment and both operands have a declared type of Double, the resulting IEEE 754 Double special value (such as positive/negative infinity or NaN) is assigned before raising the runtime error.

	Null
	The result is the value Null.

[bookmark: section_8628f21c3f0242b1908c201bd7ffe1b5][bookmark: _Toc181684051]/ Operator
The / operator returns the quotient of its two operands.
division-operator-expression = expression "/" expression
Static semantics:
· A / operator expression has the standard static semantics for binary arithmetic operators (section 5.6.9.3) with the following exceptions when determining the operator’s declared type:
	Left Operand Declared Type
	Right Operand Declared Type
	Operator Declared Type

	Byte, Boolean, Integer, Long or LongLong
	Byte, Boolean, Integer, Long or LongLong
	Double

	Double, String, String * length, Currency or Date
	Any numeric type, String, String * length or Date
	Double

	Any numeric type, String, String * length or Date
	Double, String, String * length, Currency or Date
	Double

Runtime semantics:
· A / operator expression has the standard runtime semantics for binary arithmetic operators (section 5.6.9.3) with the following exceptions when determining the operator’s effective value type:
	Left Operand Value Type
	Right Operand Value Type
	Effective Value Type

	Byte, Boolean, Integer, Long, LongLong or Empty
	Byte, Boolean, Integer, Long, LongLong or Empty
	Double

	Double, String, Currency or Date
	Any numeric type, String, Date or
Empty
	Double

	Any numeric type, String, Date or
Empty
	Double, String, Currency or Date
	Double

· The semantics of the / operator depend on the operator’s effective value type:
	Effective Value Type
	Runtime Semantics

	Decimal
	The result is the left operand divided by the right operand.

If this results in dividing by 0, runtime error 11 (Division by zero) is raised.

	Single or Double
	The result is the left operand divided by the right operand.

If this results in dividing a nonzero value by 0, runtime error 11 (Division by zero) is raised.

If this results in dividing 0 by 0, runtime error 6 (Overflow) is raised, unless the original value type of the left operand is Single, Double, String, or Date, and the right operand is Empty, in which case runtime error 11 (Division by zero) is raised.

In either of these cases, if this expression was within the right-hand side of a Let assignment and both operands have a declared type of Double, the resulting IEEE 754 Double special value (such as positive/negative infinity or NaN) is assigned before raising the runtime error.

	Null
	The result is the value Null.

[bookmark: section_09fdf266a9d54ecbb7d8ffd1361cb349][bookmark: _Toc181684052]\ Operator and Mod Operator
The \ operator calculates an integral quotient of its two operands, rounding the quotient towards zero.
The Mod operator calculates the remainder formed when dividing its two operands.
integer-division-operator-expression = expression "\" expression
modulo-operator-expression = expression "mod" expression
Static semantics:
· A \ operator expression or Mod operator expression has the standard static semantics for binary arithmetic operators (section 5.6.9.3) with the following exceptions when determining the operator’s declared type:
	Left Operand Declared Type
	Right Operand Declared Type
	Operator Declared Type

	Any floating-point or fixed-point numeric type, String, String * length or Date
	Any numeric type, String, String * length or Date
	Long

	Any numeric type, String, String * length or Date
	Any floating-point or fixed-point numeric type, String, String * length or Date
	Long

Runtime semantics:
· A \ operator expression or Mod operator expression has the standard runtime semantics for binary arithmetic operators (section 5.6.9.3) with the following exceptions when determining the operator’s effective value type:
	Left Operand Value Type
	Right Operand Value Type
	Effective Value Type

	Byte
	Empty
	Integer

	Empty
	Byte
	Integer

	Boolean or Integer
	Single, Double, String, Currency, Date or Decimal
	Integer

	Any floating-point or fixed-point numeric type, String, or Date
	Any numeric type except
LongLong, String, Date or Empty
	Long

	Any numeric type except
LongLong, String, Date or Empty
	Any floating-point or fixed-point numeric type, String, or Date
	Long

	LongLong
	Any numeric type, String, Date or
Empty
	LongLong

	Any numeric type, String, Date or
Empty
	LongLong
	LongLong

· The semantics of the \ operator depend on the operator’s effective value type:
	Effective Value Type
	Runtime Semantics

	Byte, Integer, Long or LongLong
	The quotient is the left operand divided by the right operand.

If the quotient is an integer, the result is the quotient.

Otherwise, if the quotient is not an integer, the result is the integer nearest to the quotient that is closer to zero than the quotient.

If this results in dividing by 0, runtime error 11 (Division by zero) is raised.

	Null
	The result is the value Null.

· The semantics of the Mod operator depend on the operator’s effective value type:
	Effective Value Type
	Runtime Semantics

	Byte, Integer, Long or LongLong
	The quotient is the left operand divided by the right operand.

If the quotient is an integer, the result is 0.

Otherwise, if the quotient is not an integer, the truncated quotient is the integer nearest to the quotient that is closer to zero than the quotient. The result is the absolute value of the difference between the left operand and the product of the truncated quotient and the right operand.

If this results in dividing by 0, runtime error 11 (Division by zero) is raised.

	Null
	The result is the value Null.

[bookmark: section_c3f526af9d5847f9a6be22ab81e8747a][bookmark: _Toc181684053]^ Operator
The ^ operator calculates the value of its left operand raised to the power of its right operand.
exponentiation-operator-expression = expression "^" expression
Static semantics:
· A ^ operator expression has the standard static semantics for binary arithmetic operators (section 5.6.9.3) with the following exceptions when determining the operator’s declared type:
	Left Operand Declared Type
	Right Operand Declared Type
	Operator Declared Type

	Any numeric type, String, String * length or Date
	Any numeric type, String, String * length or Date
	Double

Runtime semantics:
· A ^ operator expression has the standard runtime semantics for binary arithmetic operators (section 5.6.9.3) with the following exceptions when determining the operator’s effective value type:
	Left Operand Value Type
	Right Operand Value Type
	Effective Value Type

	Any numeric type, String, Date or
Empty
	Any numeric type, String, Date or
Empty
	Double

· The semantics of the ^ operator depend on the operator’s effective value type:
	Effective Value Type
	Runtime Semantics

	Double
	The result is the left operand raised to the power of the right operand.

If the left operand is 0 and the right operand is 0, the result is 1.

If the left operand is 0 and the right operand is negative, runtime error 5 (Invalid procedure call or argument) is raised.

	Null
	The result is the value Null.

[bookmark: section_9f072ffce9434fcca4d0f3c7db96abd9][bookmark: _Toc181684054]& Operator
The & operator is a simple data operator that performs concatenation on its operands. This operator can be used to force concatenation when + would otherwise perform addition.
concatenation-operator-expression = expression "&" expression
Static semantics:
· The & operator is statically resolved as a simple data operator.
· The & operator is invalid if the declared type of either operand is an array or UDT.
· The & operator has the following declared type, based on the declared types of its operands:
	Left Operand Declared Type
	Right Operand Declared Type
	Operator Declared Type

	Any numeric type, String, String * length, Date or Null
	Any numeric type, String, String * length or Date
	String

	Any numeric type, String, String
	Any numeric type, String, String
	String

	* length or Date
	* length, Date or Null
	

	Any type except an array or UDT
	Variant
	Variant

	Variant
	Any type except an array or UDT
	Variant

Runtime semantics:
· The & operator is first evaluated as a simple data operator.
· If the value type of any operand is a non-Byte array, UDT or Error, runtime error 13 (Type mismatch) is raised.
· Before evaluating the & operator, its non-Null operands undergo Let-coercion to the operator’s value type.
· The operator’s value type is determined as follows, based on the value types of the operands:
	Left Operand Value Type
	Right Operand Value Type
	Value Type

	Any numeric type, String, Byte(), Date, Null or Empty
	Any numeric type, String, Byte(), Date or Empty
	String

	Any numeric type, String, Byte(), Date or Empty
	Any numeric type, String, Byte(), Date, Null or Empty
	String

	Null
	Null
	Null

· The semantics of the & operator depend on the operator’s value type:
	Value Type
	Runtime Semantics

	String
	The result is the right operand string concatenated to the left operand string.

	Null
	The result is the value Null.

[bookmark: section_f8acd63155c14199bc1e022aaab6d9c8][bookmark: _Toc181684055]Relational Operators
Relational operators are simple data operators that perform comparisons between their operands.
relational-operator-expression = equality-operator-expression / inequality-operator-expression / less-than-operator-expression / greater-than-operator-expression / less-than-equal-operator-expression / greater-than-equal-operator-expression
Static semantics:
· Relational operators are statically resolved as simple data operators.
· A relational operator is invalid if the declared type of any operand is an array or UDT.
· A relational operator has the following declared type, based on the declared type of its operands:
	Left Operand Declared Type
	Right Operand Declared Type
	Operator Declared Type

	Any type except an array, UDT or Variant
	Any type except an array, UDT or Variant
	Boolean

	Any type except an array or UDT
	Variant
	Variant

	Variant
	Any type except an array or UDT
	Variant

Runtime semantics:
· Relational operators are first evaluated as simple data operators.
· If the value type of any operand is an array or UDT, runtime error 13 (Type mismatch) is raised.
· Before evaluating the relational operator, its non-Null operands undergo Let-coercion to the operator’s effective value type.
· The effective value type is determined as follows, based on the value types of the operands:
	Left Operand Value Type
	Right Operand Value Type
	Effective Value Type

	Byte
	Byte, String or Empty
	Byte

	Byte, String or Empty
	Byte
	Byte

	Boolean
	Boolean or String
	Boolean

	Boolean or String
	Boolean
	Boolean

	Integer
	Byte, Boolean, Integer, String or
Empty
	Integer

	Byte, Boolean, Integer, String or
Empty
	Integer
	Integer

	Boolean
	Byte or Empty
	Integer

	Byte or Empty
	Boolean
	Integer

	Empty
	Empty
	Integer

	Long
	Byte, Boolean, Integer, Long, String or Empty
	Long

	Byte, Boolean, Integer, Long, String or Empty
	Long
	Long

	LongLong
	Any integral numeric type, String or Empty
	LongLong

	Any integral numeric type, String or Empty
	LongLong
	LongLong

	Single
	Byte, Boolean, Integer, Single, Double, String or Empty
	Single

	Byte, Boolean, Integer, Single, Double, String or Empty
	Single
	Single

	Single
	Long
	Double

	Long
	Single
	Double

	Double
	Any integral numeric type, Double, String or Empty
	

	Any integral numeric type, Double, String or Empty
	Double
	

	String
	String or Empty
	String

	String or Empty
	String
	String

	Currency
	Any integral or floating-point
numeric type, Currency, String or Empty
	Currency

	Any integral or floating-point
numeric type, Currency, String or Empty
	Currency
	Currency

	Date
	Any integral or floating-point numeric type, Currency, String, Date or Empty
	Date

	Any integral or floating-point numeric type, Currency, String, Date or Empty
	Date
	Date

	Decimal
	Any numeric type, String, Date or
Empty
	Decimal

	Any numeric type, String, Date or
Empty
	Decimal
	Decimal

	Null
	Any numeric type, String, Date, Empty, or Null
	Null

	Any numeric type, String, Date, Empty, or Null
	Null
	Null

	Error
	Error
	Error

	Error
	Any type except Error
	Runtime error 13 (Type mismatch) is raised.

	Any type except Error
	Error
	Runtime error 13 (Type mismatch) is raised.

· Relational comparisons can test whether operands are considered equal or if one operand is considered less than or greater than the other operand. Such comparisons are governed by the following rules, based on the effective value type:
	Effective Value Type
	Runtime Semantics

	Byte, Integer, Long, LongLong, Currency, Decimal
	The numeric values of the operands are compared. Operands MUST match exactly to be considered equal.

	Single or Double
	The floating-point values of the operands are compared according to the rules of IEEE 754 arithmetic. If either operand is the special value NaN, runtime error 6 (Overflow) is raised.

	Boolean
	The Boolean values are compared. True is considered less than False.

	String
	The String values are compared according to the Option Compare comparison mode (section 5.2.1.1) setting of the enclosing module as follows:
· If the active Option Compare comparison mode is binary-compare-mode (section 5.2.1.1), each byte of the implementation-specific representation of the string data is compared, starting from the byte representing the first character of each string. At any point, if one point is not equal to the other byte, the result of comparing those bytes is the overall result of the comparison. If all bytes in one string are equal to their respective bytes in the other string, but the other string is longer, the longer string is considered greater. Otherwise, if the strings are identical, they are considered equal.
· If the active Option Compare comparison mode is text-compare-mode (section 5.2.1.1), the text of the strings is compared in a case-insensitive manner according to the platform’s host-defined regional settings for text collation.

	Null
	The result is the value Null.

	Error
	If both Error values are standard error codes, their numeric values
(between 0 are 65535) are compared. If either value is an implementation-defined error value, the result of the comparison is undefined.

· There is an exception to the rules in the preceding table when both operands have a declared type of Variant, with one operand originally having a value type of String, and the other operand originally having a numeric value type. In this case, the numeric operand is considered to be less than (and not equal to) the String operand, regardless of their values.
[bookmark: section_34660fe02ce94526b0c300613c9fa19e][bookmark: _Toc181684056]= Operator
The = operator performs a value equality comparison on its operands.
equality-operator-expression = expression "=" expression
Runtime semantics:
· If the operands are considered equal, True is returned. Otherwise, False is returned.
[bookmark: section_a5a4bd2ca89d4e88a63440a8bca8d458][bookmark: _Toc181684057]<> Operator
The <> operator performs a value inequality comparison on its operands. An equivalent alternate operator >< is also accepted.
inequality-operator-expression = expression ("<"">" / ">""<") expression
Runtime semantics:
· If the operands are considered not equal, True is returned. Otherwise, False is returned.
[bookmark: section_6b25b2c5a96f4e20b77ed328a13c66cd][bookmark: _Toc181684058]< Operator
The < operator performs a less-than comparison on its operands.
less-than-operator-expression = expression "<" expression
Runtime semantics:
· If the left operand is considered less than the right operand, True is returned. Otherwise, False is returned.
[bookmark: section_c648bb41d1b044629da1a37c251521a4][bookmark: _Toc181684059]> Operator
The > operator performs a greater-than comparison on its operands.
greater-than-operator-expression = expression ">" expression
Runtime semantics:
· If the left operand is considered greater than the right operand, True is returned. Otherwise, False is returned.
[bookmark: section_66dfebc2a5e143fd965f75334e04f5ec][bookmark: _Toc181684060]<= Operator
The <= operator performs a less-than-or-equal comparison on its operands.
less-than-equal-operator-expression = expression ("<""=" / "=""<") expression
Runtime semantics:
· If the left operand is considered less than or equal to the right operand, True is returned. Otherwise, False is returned.
[bookmark: section_0720f47442ca429cac1d09f2453128a6][bookmark: _Toc181684061]>= Operator
The >= operator performs a greater-than-or-equal comparison on its operands.
greater-than-equal-operator-expression = expression (">""=" / "="">") expression
Runtime semantics:
· If the left operand is considered greater than or equal to the right operand, True is returned. Otherwise, False is returned.
[bookmark: section_792d4f8072c149da98a737d5783a8615][bookmark: _Toc181684062]Like Operator
The Like operator is a simple data operator that performs a string matching test of the source string in the left operand against the pattern string in the right operand.
like-operator-expression = expression "like" like-pattern-expression
like-pattern-expression = expression
Static semantics:
· The Like operator is statically resolved as a simple data operator.
· A Like operator expression is invalid if the declared type of any operand is an array or a UDT.
· A Like operator has the following declared type, based on the declared type of its operands:
	Left Operand Declared Type
	Right Operand Declared Type
	Operator Declared Type

	Any type except an array, UDT or Variant
	Any type except an array, UDT or Variant
	Boolean

	Any type except an array or UDT
	Variant
	Variant

	Variant
	Any type except an array or UDT
	Variant

Runtime semantics:
· The Like operator is first evaluated as a simple data operator.
· If either <expression> or <like-pattern-expression> is Null, the result is Null.
· Otherwise, <expression> and <like-pattern-expression> are both Let-coerced to String. The grammar for the String value of <like-pattern-expression> is interpreted as <like-pattern-string>, according to the following grammar:
like-pattern-string = *like-pattern-element
like-pattern-element = like-pattern-char / "?" / "#" / "*" / like-pattern-charlist
like-pattern-char = <Any character except "?", "#", "*" and "[" >
like-pattern-charlist = "[" ["!"] ["-"] *like-pattern-charlist-element ["-"] "]"
like-pattern-charlist-element = like-pattern-charlist-char / like-pattern-charlist-range
like-pattern-charlist-range = like-pattern-charlist-char "-" like-pattern-charlist-char
like-pattern-charlist-char = <Any character except "-" and "]">
· The pattern in <like-pattern-expression> is matched one <like-pattern-element> at a time to the characters in <expression> until either:
· All characters of <expression> and <like-pattern-expression> have been matched. In this case, the result is True.
· Either <expression> or <like-pattern-expression> is fully matched, while the other string still has unmatched characters. In this case, the result is False.
· A <like-pattern-element> does not match the next characters in <expression>. In this case, the result is False.
· The next characters in <like-pattern-expression> do not form a valid, complete <like-pattern-element> according to the grammar. In this case, runtime error 93 (Invalid pattern string) is raised. Note that this runtime error is only raised if no other result has been produced before pattern matching proceeds far enough to encounter this error in the pattern.
· String matching uses the Option Compare comparison mode (section 5.2.1.1) setting of the enclosing module, as well as any implementation-defined regional settings related to text collation. When the comparison mode is text-compare-mode (section 5.2.1.1), some number of actual characters in <expression> can match a different number of characters in the pattern, according to the host-defined regional text collation settings. This means that the single pattern character "æ" can match the expression characters "ae". A pattern character can also match just part of an expression character, such as the two pattern characters "ae" each matching part of the single expression character "æ".
· Each <like-pattern-element> in the pattern has the following meaning:
	Pattern element
	Meaning

	<like-pattern-char>
	Matches the specified character.

	?
	Matches any single actual character in the expression, or the rest of a partially matched actual character.

When the comparison mode is text-compare-mode, the ? pattern element matches all the way to the end of one actual character in <expression>, which can be just the last part of a partially matched expression character. This means that the expression "æ" can be matched by the pattern "a?", but might not be matched by the pattern "?e".

	#
	Matches a single character representing a digit.

	*
	Matches zero or more characters.

When a * pattern element is encountered, the rest of the pattern is immediately checked to ensure it can form a sequence of valid, complete <like-pattern-element> instances according to the grammar. If this is not possible, runtime error 93 (Invalid pattern string) is raised.

When the comparison mode is text-compare-mode, the * pattern element can match part of a character. This means that the expression "æ" can be matched by the pattern "a*" or the pattern "*e".

	<like-pattern-charlist>
	Matches one of the characters in the specified character list.

A <like-pattern-charlist> contains a sequence of <like-pattern-charlist-element> instances, representing the set of possible characters that can be matched. Each <like-pattern-charlist-element> can be one of the following:
· <like-pattern-charlist-char>: This adds the specified character to the character list.
· <like-pattern-charlist-range>: This adds a range of characters to the character list, including all characters considered greater than or equal to the first <like-pattern-charlist-char> and considered less than or equal to the second <like-pattern-charlist-char>. If the end character of this range is considered less than the start character, runtime error 93 (Invalid pattern string) is raised. Semantics are undefined if a compound character such as "æ" that can match multiple expression characters is used within a <like-pattern-charlist-range> when the comparison mode is text-compare-mode.
If the optional "-" is specified at the beginning or end of <like-pattern-charlist>, the character "-" is included in the character list.

If the optional "!" is specified at the beginning of <like-pattern-charlist>, this pattern element will instead match characters not in the specified character list.

When the comparison mode is text-compare-mode, the first specified element of the character list that can match part of the actual expression character is chosen as the match. This means that the expression "æ" can be matched by the pattern "a[ef]" or "[æa]", but might not be matched by the pattern "[aæ]".

[bookmark: section_4730e54187474259ae76128c7024b3b8][bookmark: _Toc181684063]Is Operator
The Is operator performs reference equality comparison.
is-operator-expression = expression "is" expression
Static semantics:
· Each expression MUST be classified as a value and the declared type of each expression MUST be a specific class, Object or Variant.
· An Is operator has a declared type of Boolean.
Runtime semantics:
· The expression evaluates to True if both values refer to the same instance or False otherwise.
· If either expression has a value type other than a specific class or Nothing, runtime error 424 (Object required) is raised.
[bookmark: section_2d70780d6e9947d697592b3a46b8e862][bookmark: _Toc181684064]Logical Operators
Logical operators are simple data operators that perform bitwise computations on their operands.
logical-operator-expression = not-operator-expression / and-operator-expression / or-operator-expression / xor-operator-expression / imp-operator-expression / eqv-operator-expression
Static semantics:
· Logical operators are statically resolved as simple data operators.
· A logical operator is invalid if the declared type of any operand is an array or a UDT.
· For unary logical operators, the operator has the following declared type, based on the declared type of its operand:
	Operand Declared Type
	Operator Declared Type

	Byte
	Byte

	Boolean
	Boolean

	Integer
	Integer

	Any floating-point or fixed-point numeric type, Long, String, String * length or Date
	Long

	LongLong
	LongLong

	Variant
	Variant

· For binary logical operators, the operator has the following declared type, based on the declared type of its operands:
	Left Operand Declared Type
	Right Operand Declared Type
	Operator Declared Type

	Byte
	Byte
	Byte

	Boolean
	Boolean
	Boolean

	Byte or Integer
	Boolean or Integer
	Integer

	Boolean or Integer
	Byte or Integer
	Integer

	Any floating-point or fixed-point numeric type, Long, String, String * length or Date
	Any numeric type except
LongLong, String, String * length or Date
	Long

	Any numeric type except
LongLong, String, String * length or Date
	Any floating-point or fixed-point numeric type, Long, String, String * length or Date
	Long

	LongLong
	Any numeric type, String, String * length or Date
	LongLong

	Any numeric type, String, String * length or Date
	LongLong
	LongLong

	Any type except an array or UDT
	Variant
	Variant

Runtime semantics:
· Logical operators are first evaluated as simple data operators.
· If the value type of any operand is an array, UDT or Error, runtime error 13 (Type mismatch) is raised.
· Before evaluating the logical operator, its non-Null operands undergo Let-coercion to the operator’s effective value type.
· For unary logical operators, the effective value type is determined as follows, based on the value type of the operand:
	Operand Value Type
	Effective Value Type

	Byte
	Byte

	Boolean or Integer or Empty
	Integer

	Long
	Long

	LongLong
	LongLong

	Single
	Single

	Double or String
	Double

	Currency
	Currency

	Date
	Date (however, the operand is Let-coerced to Double instead)

	Decimal
	Decimal

	Null
	Null

· For binary logical operators, if either operator is null, the effective value type is determined as follows, based on the value types of the operands:
	Left Operand Value Type
	Right Operand Value Type
	Effective Value Type

	Byte or Null
	Byte
	Byte

	Byte
	Byte or Null
	Byte

	Boolean or Null
	Boolean
	Boolean (however, the operands are Let-coerced to Integer instead)

	Boolean
	Boolean or Null
	Boolean (however, the operands are Let-coerced to Integer instead)

	Byte, Boolean, Integer, Null or
Empty
	Integer or Empty
	Integer

	Integer or Empty
	Byte, Boolean, Integer, Null or
Empty
	Integer

	Byte
	Boolean
	Integer

	Boolean
	Byte
	Integer

	Any floating-point or fixed-point numeric type, Long, String, Date or Empty
	Any numeric type except
LongLong, String, Date, Null or
Empty
	Long

	Any numeric type except
LongLong, String, Date, Null or
Empty
	Any floating-point or fixed-point numeric type, Long, String, Date or Empty
	Long

	LongLong
	Any numeric type, String, Date or
Empty
	LongLong

	Any numeric type, String, Date or
Empty
	LongLong
	LongLong

	Null
	Null
	Null

· The value type of a logical operator is determined from the value the operator produces:
· If the logical operator produces a value other than Null, the operator’s value type is its effective value type. The operator’s result value is Let-coerced to this value type.
· Otherwise, if the logical operator produces Null, the operator’s value is Null.
[bookmark: section_16b0090224c64b52937e61fae205557f][bookmark: _Toc181684065]Not Operator
The Not operator performs a bitwise negation on its operand.
not-operator-expression = "not" expression
Runtime semantics:
· The operation to produce the result is determined based on the values of the operand, as follows:
	Operand Value
	Result

	Integral value
	Bitwise Not of operand

	Null
	Null

· If a bitwise Not of the operand is indicated, the result is produced by generating a corresponding result bit for each identically positioned bit in the implementation format of the operand according to the following table:
	Operand Bit
	Result Bit

	0
	1

	1
	0

[bookmark: section_d53142ee9ac24ecfbc24d7167b806eb3][bookmark: _Toc181684066]And Operator
The And operator performs a bitwise conjunction on its operands.
and-operator-expression = expression "and" expression
Runtime semantics:
· The operation to produce the result is determined based on the values of the operands, as follows:
	Left Operand Value
	Right Operand Value
	Result

	Integral value
	Integral value
	Bitwise And of operands

	Integral value other than 0
	Null
	Null

	0
	Null
	0

	Null
	Integral value other than 0
	Null

	Null
	0
	0

	Null
	Null
	Null

· If a bitwise And of the operands is indicated, the result is produced by generating a corresponding result bit for each pair of identically positioned bits in the implementation format of the operands according to the following table:
	Left Operand Bit
	Right Operand Bit
	Result Bit

	0
	0
	0

	0
	1
	0

	1
	0
	0

	1
	1
	1

[bookmark: section_8067b6840a624860840e4a20abc10c02][bookmark: _Toc181684067]Or Operator
The Or operator performs a bitwise disjunction on its operands.
or-operator-expression = expression "or" expression
Runtime semantics:
· The operation to produce the result is determined based on the values of the operands, as follows:
	Left Operand Value
	Right Operand Value
	Result

	Integral value
	Integral value
	Bitwise Or of operands

	Integral value
	Null
	Left operand

	Null
	Integral value
	Right operand

	Null
	Null
	Null

· If a bitwise Or of the operands is indicated, the result is produced by generating a corresponding result bit for each pair of identically positioned bits in the implementation format of the operands according to the following table:
	Left Operand Bit
	Right Operand Bit
	Result Bit

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	1

[bookmark: section_dbbcec623c824fdeac28af1503954000][bookmark: _Toc181684068]Xor Operator
The Xor operator performs a bitwise exclusive disjunction on its operands.
xor-operator-expression = expression "xor" expression
Runtime semantics:
· The operation to produce the result is determined based on the values of the operands, as follows:
	Left Operand Value
	Right Operand Value
	Result

	Integral value
	Integral value
	Bitwise Xor of operands

	Integral value
	Null
	Null

	Null
	Integral value
	Null

	Null
	Null
	Null

· If a bitwise Xor of the operands is indicated, the result is produced by generating a corresponding result bit for each pair of identically positioned bits in the implementation format of the operands according to the following table:
	Left Operand Bit
	Right Operand Bit
	Result Bit

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	0

[bookmark: section_0ac9d786ab114fe7bcbb46a7d4707aaa][bookmark: _Toc181684069]Eqv Operator
The Eqv operator performs a bitwise material equivalence on its operands.
eqv-operator-expression = expression "eqv" expression
Runtime semantics:
· The operation to produce the result is determined based on the values of the operands, as follows:
	Left Operand Value
	Right Operand Value
	Result

	Integral value
	Integral value
	Bitwise Eqv of operands

	Integral value
	Null
	Null

	Null
	Integral value
	Null

	Null
	Null
	Null

· If a bitwise Eqv of the operands is indicated, the result is produced by generating a corresponding result bit for each pair of identically positioned bits in the implementation format of the operands according to the following table:
	Left Operand Bit
	Right Operand Bit
	Result Bit

	0
	0
	1

	0
	1
	0

	1
	0
	0

	1
	1
	1

[bookmark: section_9d1d4bb97e954d538f3cb696e4924b56][bookmark: _Toc181684070]Imp Operator
The Imp operator performs a bitwise material implication on its operands.
imp-operator-expression = expression "imp" expression
Runtime semantics:
· The operation to produce the result is determined based on the values of the operands, as follows:
	Left Operand Value
	Right Operand Value
	Result

	Integral value
	Integral value
	Bitwise Imp of operands

	-1
	Null
	Null

	Integral value other than -1
	Null
	Bitwise Imp of left operand and 0

	Null
	Integral value other than 0
	Right operand

	Null
	0
	Null

	Null
	Null
	Null

· If a bitwise Imp of the operands is indicated, the result is produced by generating a corresponding result bit for each pair of identically positioned bits in the implementation format of the operands according to the following table:
	Left Operand Bit
	Right Operand Bit
	Result Bit

	0
	0
	1

	0
	1
	1

	1
	0
	0

	1
	1
	1

[bookmark: section_e3af3398f09040dbade6de3a93589c76][bookmark: _Toc181684071]Simple Name Expressions
A simple name expression consists of a single identifier with no qualification or argument list.
simple-name-expression = name / special-form / reserved-name
Static semantics. Simple name expressions are resolved and classified by matching <name> against a set of namespace tiers in order.
The first tier where the name value of <name> matches the name value of at least one element of the tier is the selected tier. The match that the simple name expression references is chosen as follows:
· If the selected tier contains matches from multiple referenced projects, the matches from the project that has the highest reference precedence are retained and all others are discarded.
· If both an Enum type match and an Enum member match are found within the selected tier, the match that is defined later in the module is discarded. In the case where an Enum member match is defined within the body of an Enum type match, the Enum member match is considered to be defined later in the module.
· If there is a single match remaining in the selected tier, that match is chosen.
· If there are 2 or more matches remaining in the selected tier, the simple name expression is invalid.
If all tiers have no matches, unless otherwise specified, the simple name expression is invalid.
If <name> specifies a type character, and this type character’s associated type does not match the declared type of the match, the simple name expression is invalid.
The simple name expression refers to the chosen match, inheriting the declared type, if any, from the match.
Simple name expressions are classified based on the entity they match:
	Match
	Simple Name Expression Classification

	Constant or Enum member
	Value expression

	Variable, including implicitly-defined variables
	Variable expression

	Property
	Property expression

	Function
	Function expression

	Subroutine
	Subroutine expression

	Project
	Project expression

	Procedural module
	Procedural module expression

	Class module, UDT or Enum type
	Type expression

The namespace tiers under the default binding context are as follows, in order of precedence:
· Procedure namespace: A local variable, reference parameter binding or constant whose implicit or explicit definition precedes this expression in an enclosing procedure.
· Enclosing Module namespace: A variable, constant, Enum type, Enum member, property, function or subroutine defined at the module-level in the enclosing module.
· Enclosing Project namespace: The enclosing project itself, a referenced project, or a procedural module contained in the enclosing project.
· Other Procedural Module in Enclosing Project namespace: An accessible variable, constant, Enum type, Enum member, property, function or subroutine defined in a procedural module within the enclosing project other than the enclosing module.
· Referenced Project namespace: An accessible procedural module contained in a referenced project.
· Module in Referenced Project namespace: An accessible variable, constant, Enum type, Enum member, property, function or subroutine defined in a procedural module or as a member of the default instance of a global class module within a referenced project.
There is a special exception to these namespace tiers when the match has the name value "Left":
· If the match has the name value "Left", references a function or subroutine that has no parameters, or a property with a Property Get that has no parameters, the declared type of the match is any type except a specific class, Object or Variant, and this simple name expression is the <l-expression> within an index expression with an argument list containing 2 arguments, discard the match and continue searching for a match on lower tiers.
Under the default binding context, if all tiers have no matches:
· If the variable declaration mode for the enclosing module is explicit-mode, the simple name expression is invalid.
· Otherwise, if the variable declaration mode for the enclosing module is implicit-mode, a new local variable is implicitly declared in the current procedure as if by a local variable declaration statement immediately preceding this statement with a <variable-declaration-list> containing a single <variable-dcl> element consisting of the text of <name>. This newly created variable is the match.
The namespace tiers under the type binding context are as follows, in order of precedence:
· Enclosing Module namespace: A UDT or Enum type defined at the module-level in the enclosing module.
· Enclosing Project namespace: The enclosing project itself, a referenced project, or a procedural module or class module contained in the enclosing project.
· Other Module in Enclosing Project namespace: An accessible UDT or Enum type defined in a procedural module or class module within the enclosing project other than the enclosing module.
· Referenced Project namespace: An accessible procedural module or class module contained in a referenced project.
· Module in Referenced Project namespace: An accessible UDT or Enum type defined in a procedural module or class module within a referenced project.
The namespace tiers under the procedure pointer binding context are as follows, in order of precedence:
· Enclosing Module namespace: A function, subroutine or property with a Property Get defined at the module-level in the enclosing module.
· Enclosing Project namespace: The enclosing project itself or a procedural module contained in the enclosing project.
· Other Procedural Module in Enclosing Project namespace: An accessible function, subroutine or property with a Property Get defined in a procedural module within the enclosing project other than the enclosing module.
The namespace tiers under the conditional compilation binding context are as follows, in order of precedence:
· Enclosing Module namespace: A conditional compilation constant defined at the module-level in the enclosing module.
· Enclosing Project namespace: A conditional compilation constant defined in an implementation-defined way by the enclosing project itself.
[bookmark: section_6665e1e56c4043a3a989da7ee48e7bd1][bookmark: _Toc181684072]Instance Expressions
An instance expression consists of the keyword Me.
instance-expression = "me"
Static semantics. An instance expression is classified as a value. The declared type of an instance expression is the type defined by the class module containing the enclosing procedure. It is invalid for an instance expression to occur within a procedural module.
Runtime semantics. The keyword Me represents the current instance of the type defined by the enclosing class module and has this type as its value type.
[bookmark: section_af3a405930594e798aa5685324fb266a][bookmark: _Toc181684073]Member Access Expressions
A member access expression is used to reference a member of an entity.
member-access-expression = l-expression NO-WS "." unrestricted-name
member-access-expression =/ l-expression line-continuation "." unrestricted-name
Static semantics. The semantics of a member access expression depend on the binding context.
A member access expression under the default binding context is valid only if one of the following is true:
· <l-expression> is classified as a variable, a property or a function and one of the following is true:
· The declared type of <l-expression> is a UDT type or specific class, this type has an accessible member named <unrestricted-name>, <unrestricted-name> either does not specify a type character or specifies a type character whose associated type matches the declared type of the member, and one of the following is true:
· The member is a variable, property or function. In this case, the member access expression is classified as a variable, property or function, respectively, refers to the member, and has the same declared type as the member.
· The member is a subroutine. In this case, the member access expression is classified as a subroutine and refers to the member.
· The declared type of <l-expression> is Object or Variant. In this case, the member access expression is classified as an unbound member and has a declared type of Variant.
· <l-expression> is classified as an unbound member. In this case, the member access expression is classified as an unbound member and has a declared type of Variant.
· <l-expression> is classified as a project, this project is either the enclosing project or a referenced project, and one of the following is true:
· <l-expression> refers to the enclosing project and <unrestricted-name> is either the name of the enclosing project or a referenced project. In this case, the member access expression is classified as a project and refers to the specified project.
· The project has an accessible procedural module named <unrestricted-name>. In this case, the member access expression is classified as a procedural module and refers to the specified procedural module.
· The project does not have an accessible procedural module named <unrestricted-name> and exactly one of the procedural modules within the project has an accessible member named <unrestricted-name>, <unrestricted-name> either does not specify a type character or specifies a type character whose associated type matches the declared type of the member, and one of the following is true:
· The member is a variable, property or function. In this case, the member access expression is classified as a variable, property or function, respectively, refers to the member, and has the same declared type as the member.
· The member is a subroutine. In this case, the member access expression is classified as a subroutine and refers to the member.
· The member is a value. In this case, the member access expression is classified as a value with the same declared type as the member.
· <l-expression> is classified as a procedural module, this procedural module has an accessible member named <unrestricted-name>, <unrestricted-name> either does not specify a type character or specifies a type character whose associated type matches the declared type of the member, and one of the following is true:
· The member is a variable, property or function. In this case, the member access expression is classified as a variable, property or function, respectively, and has the same declared type as the member.
· The member is a subroutine. In this case, the member access expression is classified as a subroutine.
· The member is a value. In this case, the member access expression is classified as a value with the same declared type as the member.
· <l-expression> is classified as a type, this type is an Enum type, and this type has an enum member named <unrestricted-name>. In this case, the member access expression is classified as a value with the same declared type as the enum member.
A member access expression under the type binding context is valid only if one of the following is true:
· <l-expression> is classified as a project, this project is either the enclosing project or a referenced project, and one of the following is true:
· <l-expression> refers to the enclosing project and <unrestricted-name> is either the name of the enclosing project or a referenced project. In this case, the member access expression is classified as a project and refers to the specified project.
· The project has an accessible procedural module named <unrestricted-name>. In this case, the member access expression is classified as a procedural module and refers to the specified procedural module.
· The project has an accessible class module named <unrestricted-name>. In this case, the member access expression is classified as a type and refers to the specified class.
· The project does not have an accessible module named <unrestricted-name> and exactly one of the procedural modules within the project contains a UDT or Enum definition named <unrestricted-name>. In this case, the member access expression is classified as a type and refers to the specified UDT or enum.
· <l-expression> is classified as a procedural module or a type referencing a class defined in a class module, and one of the following is true:
· This module has an accessible UDT or Enum definition named <unrestricted-name>. In this case, the member access expression is classified as a type and refers to the specified UDT or Enum type.
A member access expression under the procedure pointer binding context is valid only if <l-expression> is classified as a procedural module, this procedural module has an accessible function or subroutine with the same name value as <unrestricted-name>, and <unrestricted-name> either does not specify a type character or specifies a type character whose associated type matches the declared type of the function or subroutine. In this case, the member access expression is classified as a function or subroutine, respectively.
[bookmark: section_551030b272a44c959cb0fb8f8c8774b4][bookmark: _Toc181684074]Index Expressions
An index expression is used to parameterize an expression by adding an argument list to its argument list queue.
index-expression = l-expression "(" argument-list ")"
Static semantics. An index expression is valid only if under the default binding context and one of the following is true:
· <l-expression> is classified as a variable, or <l-expression> is classified as a property or function with a parameter list that cannot accept any parameters and an <argument-list> that is not empty, and one of the following is true:
· The declared type of <l-expression> is Object or Variant, and <argument-list> contains no named arguments. In this case, the index expression is classified as an unbound member with a declared type of Variant, referencing <l-expression> with no member name.
· The declared type of <l-expression> is a specific class, which has a public default Property Get, Property Let, function or subroutine, and one of the following is true:
· This default member’s parameter list is compatible with <argument-list>. In this case, the index expression references this default member and takes on its classification and declared type.
· This default member cannot accept any parameters. In this case, the static analysis restarts recursively, as if this default member was specified instead for <l-expression> with the same <argument-list>.
· The declared type of <l-expression> is an array type, an empty argument list has not already been specified for it, and one of the following is true:
· <argument-list> represents an empty argument list. In this case, the index expression takes on the classification and declared type of <l-expression> and references the same array.
· <argument-list> represents an argument list with a number of positional arguments equal to the rank of the array, and with no named arguments. In this case, the index expression references an individual element of the array, is classified as a variable and has the declared type of the array’s element type.
· <l-expression> is classified as a property or function and its parameter list is compatible with <argument-list>. In this case, the index expression references <l-expression> and takes on its classification and declared type.
· <l-expression> is classified as a subroutine and its parameter list is compatible with <argument-list>. In this case, the index expression references <l-expression> and takes on its classification and declared type.
· <l-expression> is classified as an unbound member. In this case, the index expression references <l-expression>, is classified as an unbound member and its declared type is Variant.
In any of these cases where the index expression is valid, the resulting expression adopts the argument list queue of <l-expression> as its own, adding <argument-list> to the end of the queue. The argument list queue of <l-expression> is cleared.
[bookmark: section_5b35d80613054427a120d25a71c45c02][bookmark: _Toc181684075]Argument Lists
An argument list represents an ordered list of positional arguments and a set of named arguments that are used to parameterize an expression.
argument-list = [positional-or-named-argument-list]
positional-or-named-argument-list = *(positional-argument ",") required-positional-argument
positional-or-named-argument-list =/ *(positional-argument ",") named-argument-list
positional-argument = [argument-expression]
required-positional-argument = argument-expression
named-argument-list = named-argument *("," named-argument)
named-argument = unrestricted-name ":""=" argument-expression
argument-expression = ["byval"] expression
argument-expression =/ addressof-expression
Static semantics. An argument list is composed of positional arguments and named arguments.
If <positional-or-named-argument-list> is omitted, the argument list is said to represent an empty argument list and has no positional arguments and no named arguments.
Each <positional-argument> or <required-positional-argument> represents a specified positional argument. If a specified positional argument omits its <argument-expression>, the specified positional argument is said to be omitted. Each specified positional argument consists of a position based on its order in the argument list from left to right, as well as an expression from its <argument-expression>, if not omitted.
Each <named-argument > represents a named argument. Each named argument consists of a name value from its <unrestricted-name>, as well as an expression from its <argument-expression>.
The "byval" keyword flags a specific argument as being a ByVal argument. It is invalid for an argument list to contain a ByVal argument unless it is the argument list for an invocation of an external procedure.
[bookmark: section_9a66cbdbd2af40e4b6f2b63bcde2a1f3][bookmark: _Toc181684076]Argument List Queues
An argument list queue is a FIFO (first-in-first-out) sequence of argument lists belonging to a particular expression.
During evaluation and member resolution, argument lists within a queue are statically consumed to determine that an expression is valid. At runtime, these argument lists start out unconsumed and are consumed again as they are applied to specific array or procedure references. An argument list is considered empty, either statically or at runtime, if the queue has no argument lists or if all of its argument lists are currently consumed.
[bookmark: section_f20c9ebc3365461497881cd50a504574][bookmark: _Toc181684077]Dictionary Access Expressions
A dictionary access expression is an alternate way to invoke an object’s default member with a String parameter.
dictionary-access-expression = l-expression NO-WS "!" NO-WS unrestricted-name
dictionary-access-expression =/ l-expression line-continuation "!" NO-WS unrestricted-name
dictionary-access-expression =/ l-expression line-continuation "!" line-continuation unrestricted-name
Static semantics. A dictionary access expression is invalid if the declared type of <l-expression> is a type other than a specific class, Object or Variant.
A dictionary access expression is syntactically translated into an index expression with the same expression for <l-expression> and an argument list with a single positional argument with a declared type of String and a value equal to the name value of <unrestricted-name>.
[bookmark: section_97f83233034d4a41ba621b5518da85a2][bookmark: _Toc181684078]With Expressions
A With expression is a member access or dictionary access expression with its <l-expression> implicitly supplied by the innermost enclosing With block.
with-expression = with-member-access-expression / with-dictionary-access-expression

with-member-access-expression = "." unrestricted-name
with-dictionary-access-expression = "!" unrestricted-name
Static semantics. A <with-member-access-expression> or <with-dictionary-access-expression> is statically resolved as a normal member access or dictionary access expression, respectively, as if the innermost enclosing With block variable was specified for <l-expression>. If there is no enclosing With block, the <with-expression> is invalid.
[bookmark: section_4ac0d7e3a3e94c2483ba17295c91823b][bookmark: _Toc181684079]Constrained Expressions
Constrained expressions are special-purpose expressions that statically permit only a subset of the full expression grammar.
[bookmark: section_d3ffced966c143529f55ef7942e4b1bc][bookmark: _Toc181684080]Constant Expressions
A constant expression is an expression usable in contexts which require a value that can be fully evaluated statically.
constant-expression = expression
Static semantics. A constant expression is valid only when <expression> is composed solely of the following constructs:
· Numeric, String, Date, Empty, Null, or Nothing literal.
· Reference to a module-level constant.
· Reference to a procedure-level constant explicitly declared in the enclosing procedure, if any.
· Reference to a member of an enumeration type.
· Parenthesized subexpression, provided the subexpression is itself valid as a constant expression.
· - or Not unary operator, provided the operand is itself valid as a constant expression.
· +, -, *, ^, Mod, /, \, &, And, Or, Xor, Eqv, Imp, =, <, >, <>, <=, => or Like binary operator, provided each operand is itself valid as a constant expression.
· The Is binary operator, provided each operand is itself valid as a constant expression.
· Simple name expression invoking the VBA intrinsic function Int, Fix, Abs, Sgn, Len, LenB, CBool, CByte, CCur, CDate, CDbl, CInt, CLng, CLngLng, CLngPtr, CSng, CStr or CVar.
References within constant expressions might not refer to the implicit With block variable.
The constant value of a constant expression is determined statically by evaluating <expression> as if it was being evaluated at runtime.
[bookmark: section_efd3d84d0d784456882e8422cf2938a5][bookmark: _Toc181684081]Conditional Compilation Expressions
A conditional compilation expression is an expression usable within conditional compilation statements.
cc-expression = expression
Static semantics. The semantics of conditional compilation expressions are only defined when <expression> is composed solely of the following constructs:
· Numeric, String, Date, Empty, Null, or Nothing literal.
· Reference to a conditional compilation constant.
· Parenthesized subexpression, provided the subexpression is itself valid as a conditional compilation expression.
· The - and Not unary operators, provided the operand is itself valid as a conditional compilation expression.
· The +, -, *, ^, Mod, /, \, &, And, Or, Xor, Eqv, Imp, =, <, >, <>, <=, => or Like, provided each operand is itself valid as a conditional compilation expression.
· The Is binary operator, provided each operand is itself valid as a conditional compilation expression.
· Simple name expression invoking the VBA intrinsic function Int, Fix, Abs, Sgn, Len, LenB, CBool, CByte, CCur, CDate, CDbl, CInt, CLng, CLngLng, CLngPtr, CSng, CStr or CVar.
References within conditional compilation expressions might not refer to the implicit With block variable.
The constant value of a conditional compilation expression is determined statically by evaluating <expression> as if it was being evaluated at runtime with conditional compilation constants being replaced by their defined values.
[bookmark: section_77c33f33dfd4402e83d68fe78918bde6][bookmark: _Toc181684082]Boolean Expressions
boolean-expression = expression
Static Semantics. A <boolean-expression> is invalid if a Let coercion from the declared type of <expression> to Boolean is invalid. The declared type of a <boolean-expression> is Boolean.
Runtime Semantics.
· If <expression> does not have the data value Null, <expression> is Let-coerced to Boolean, and the value of <expression> is this coerced value.
· Otherwise, if <expression> has the data value Null, the value of <expression> is False.
[bookmark: section_38dc09d150ce45f197b0535c64dc7216][bookmark: _Toc181684083]Integer Expressions
integer-expression = expression
Static Semantics.
An <integer-expression> is invalid if a Let coercion from the declared type of <expression> to Long is invalid. The declared type of an <integer-expression> is Long.
Runtime Semantics. The value of an <integer-expression> is the value of its <expression> Let-coerced to Long.
[bookmark: section_e59342b3dfe44c1e9c43acd48fc18a3b][bookmark: _Toc181684084]Variable Expressions
variable-expression = l-expression
Static Semantics.
A <variable-expression> is invalid if it is classified as something other than a variable or unbound member.
[bookmark: section_018d50baa3f848ffaffc39bc5ac41888][bookmark: _Toc181684085]Bound Variable Expressions
bound-variable-expression = l-expression
Static Semantics.
A <bound-variable-expression> is invalid if it is classified as something other than a variable expression. The expression is invalid even if it is classified as an unbound member expression that could be resolved to a variable expression.
[bookmark: section_0b940919e81d46018d30bcd6dd4d3ddb][bookmark: _Toc181684086]Type Expressions
type-expression = BUILTIN-TYPE / defined-type-expression
defined-type-expression = simple-name-expression / member-access-expression
Static Semantics. A <defined-type-expression> performs name binding under the type binding context. A <defined-type-expression> is invalid if it is not classified as a type. A <type-expression> is classified as a type.
[bookmark: section_0e8eb1baf6fb4865a33417ec012c1756][bookmark: _Toc181684087]AddressOf Expressions
addressof-expression = "addressof" procedure-pointer-expression
procedure-pointer-expression = simple-name-expression / member-access-expression
Static semantics.
<procedure-pointer-expression> performs name binding under the procedure pointer binding context, and MUST be classified as a subroutine, function or a property with a Property Get. The procedure referenced by this expression is the referenced procedure.
An AddressOf expression is invalid if <procedure-pointer-expression> refers to a subroutine, function or property defined in a class module and the expression is qualified with the name of the class module.
The AddressOf expression is classified as a value expression. The declared type and value type of an AddressOf expression is implementation-defined, and can be Long, LongLong or other implementation-defined types.
Runtime semantics. The result is an implementation-defined value capable of serving as an invocable reference to the referenced procedure when passed directly as a parameter to an external procedure call. An implementation where such a value would exceed the range of the integral value types supported by VBA can choose to truncate these values when not passed directly to such an external procedure.
If the referenced procedure was in a class module, the runtime semantics of expressions within that procedure that depend on the current instance, such as instance expressions, are implementation-defined.
[bookmark: section_c645c9039bd4484987353136e867536a][bookmark: _Toc181684088]VBA Standard Library
[bookmark: section_f96f7c1e448246038833ed3cd2b4ac09][bookmark: _Toc181684089]VBA Project
"VBA" is the project name (section 4.1) of a host project (section 4.1) that is present in every VBA Environment. The VBA project consists of a set of classes, functions, Enums and constants that form VBA’s standard library.
[bookmark: section_cc0c4b7cbd09448b9eeb19a9d4c19504][bookmark: _Toc181684090]Predefined Enums
[bookmark: section_bea504ff53dd48c8b165e0a4e8ce3bba][bookmark: _Toc181684091]FormShowConstants
	Constant
	Value

	vbModal
	1

	vbModeless
	0

[bookmark: section_2bf1e79fd1814e3dbbb9bda24b2b8ea4][bookmark: _Toc181684092]VbAppWinStyle
	Constant
	Value

	vbHide 	
	0

	vbMaximizedFocus
	3

	vbMinimizedFocus
	2

	vbMinimizedNoFocus
	6

	vbNormalFocus 	
	1

	vbNormalNoFocus 	
	4

[bookmark: section_9ec531489a344add872899d8e1ef1feb][bookmark: _Toc181684093]VbCalendar
	Constant
	Value

	vbCalGreg
	0

	vbCalHijri
	1

[bookmark: section_3e5c6a2c757b410781f3ef7112afdf2d][bookmark: _Toc181684094]VbCallType

	Constant
	Value

	vbGet
	2

	vbLet
	4

	vbMethod
	1

	vbSet
	8

[bookmark: section_92f41ee159f547929a20208e6b62d699][bookmark: _Toc181684095]VbCompareMethod
	Constant
	Value

	vbBinaryCompare
	0

	vbTextCompare
	1

[bookmark: section_b6fd045712214b32b70957abd0235230][bookmark: _Toc181684096]VbDateTimeFormat
	Constant
	Value

	vbGeneralDate
	0

	vbLongDate
	1

	vbLongTime
	3

	vbShortDate
	2

	vbShortTime
	4

[bookmark: section_3cedd8d41e8a4955a34f8c54e82456f1][bookmark: _Toc181684097]VbDayOfWeek
	Constant
	Value

	vbFriday 	
	6

	vbMonday 	
	2

	vbSaturday 	
	7

	vbSunday 	
	1

	vbThursday 	
	5

	vbTuesday 	
	3

	vbUseSystemDayOfWeek
	0

	vbWednesday 	
	4

[bookmark: section_50ea77eeb3984a8d943aedf517d35401][bookmark: _Toc181684098]VbFileAttribute
This Enum is used to encode the return value of the function VBA.Interaction.GetAttr.
	Constant 	
	Value
	Description

	vbNormal 	
	0
	Specifies files with no attributes.

	vbReadOnly
	1
	Specifies read-only files.

	vbHidden 	
	2
	Specifies hidden files.

	VbSystem 	
	4
	Specifies system files.

	vbVolume 	
	8
	Specifies volume label; if any other attributed is specified, vbVolume is ignored

	vbDirectory
	16
	Specifies directories or folders.

	vbArchive
	32
	Specifies files that have changed since the last backup.

	vbAlias
	64
	Specifies file aliases on platforms that support them.

[bookmark: section_fe5b361255ed4757807cc3608c90b495][bookmark: _Toc181684099]VbFirstWeekOfYear
	Constant
	Value

	vbFirstFourDays
	2

	vbFirstFullWeek
	3

	vbFirstJan1
	1

	vbUseSystem 	
	0

[bookmark: section_910e9de170aa4bb2a793b380faad2052][bookmark: _Toc181684100]VbIMEStatus
	Constant
	Value

	vbIMEAlphaDbl
	7

	vbIMEAlphaSng
	8

	vbIMEDisable
	3

	vbIMEHiragana
	4

	vbIMEKatakanaDbl
	5

	vbIMEKatakanaSng
	6

	vbIMEModeAlpha
	8

	vbIMEModeAlphaFull
	7

	vbIMEModeDisable
	3

	vbIMEModeHangul
	10

	vbIMEModeHangulFull
	9

	vbIMEModeHiragana
	4

	vbIMEModeKatakana
	5

	vbIMEModeKatakanaHalf
	6

	vbIMEModeNoControl
	0

	vbIMEModeOff
	2

	vbIMEModeOn
	1

	vbIMENoOp
	0

	vbIMEOff
	2

	vbIMEOn
	1

[bookmark: section_f566f64b966740f59b6d8c3264e3f562][bookmark: _Toc181684101]VbMsgBoxResult
	Constant
	Value

	vbAbort
	3

	vbCancel
	2

	vbIgnore
	5

	vbNo
	7

	vbOK
	1

	vbRetry
	4

	vbYes
	6

[bookmark: section_f18d1d6322a9499fb970ecd0d4c5a30b][bookmark: _Toc181684102]VbMsgBoxStyle

	Constant
	Value

	vbAbortRetryIgnore 	
	2

	vbApplicationModal 	
	0

	vbCritical 	
	16

	vbDefaultButton1
	0

	vbDefaultButton2
	256

	vbDefaultButton3
	512

	vbDefaultButton4 	
	768

	vbExclamation 	
	48

	vbInformation 	
	64

	vbMsgBoxHelpButton 	
	16384

	vbMsgBoxRight 	
	524288

	vbMsgBoxRtlReading 	
	1048576

	vbMsgBoxSetForeground
	65536

	vbOKCancel 	
	1

	vbOKOnly
	0

	vbQuestion
	32

	vbRetryCancel 	
	5

	vbSystemModal
	4096

	vbYesNo 	
	4

	vbYesNoCancel
	3

[bookmark: section_89023539ebf14e5cac50b7d335ec42d3][bookmark: _Toc181684103]VbQueryClose
	Constant
	Value

	vbAppTaskManager
	3

	vbAppWindows 	
	2

	vbFormCode 	
	1

	vbFormControlMenu
	0

	vbFormMDIForm 	
	4

[bookmark: section_f03af91f5ee042dc8b2cf93e0a372524][bookmark: _Toc181684104]VbStrConv
	Constant
	Value

	vbFromUnicode
	128

	vbHiragana
	32

	vbKatakana
	16

	vbLowerCase
	2

	vbNarrow
	8

	vbProperCase
	3

	vbUnicode
	64

	vbUpperCase
	1

	vbWide
	4

[bookmark: section_98bc1324a43f4bdda1a6a5cba137a809][bookmark: _Toc181684105]VbTriState
	Constant
	Value

	vbFalse
	0

	vbTrue
	-1

	vbUseDefault
	-2

[bookmark: section_c15d74834ac048e0a23b8bfb91a57cad][bookmark: _Toc181684106]VbVarType
	Constant
	Value

	vbArray 	
	8192

	vbBoolean 	
	11

	vbByte 	
	17

	vbCurrency 	
	6

	vbDataObject 	
	13

	vbDate 	
	7

	vbDecimal 	
	14

	vbDouble
	5

	vbEmpty
	0

	vbError
	10

	vbInteger
	2

	vbLong 	
	3

	vbLongLong
	20 (defined only on implementations that support a LongLong value type)

	vbNull 	
	1

	vbObject 	
	9

	vbSingle 	
	4

	vbString 	
	8

	vbUserDefinedType
	36

	vbVariant 	
	12

[bookmark: section_e74eaaebe2e54ec59fb0f3c739c53403][bookmark: _Toc181684107]Predefined Procedural Modules
Unless otherwise specified, all Predefined Procedural Modules in the VBA Standard Library defined with the attribute VB_GlobalNamespace set to "True" are global modules, allowing simple name access to their public constants, variables, and procedures as specified in section 5.6.10.
The following modules define their public constants as if they were defined using a <public-const-declaration>.
[bookmark: section_3201c251c1a1446596fa78f4c9510978][bookmark: _Toc181684108]ColorConstants Module
	Constant
	Value

	vbBlack
	0

	vbBlue
	16711680

	vbCyan
	16776960

	vbGreen
	65280

	vbMagenta
	16711935

	vbRed
	255

	vbWhite
	16777215

	vbYellow
	65535

[bookmark: section_52c853c1fda248538069172e515310f9][bookmark: _Toc181684109]Constants Module
	Constant
	Value

	vbBack
	VBA.Strings.Chr$(8)

	vbCr
	VBA.Strings.Chr$(13)

	vbCrLf
	VBA.Strings.Chr$(13) + VBA.Strings.Chr$(10)

	vbFormFeed
	VBA.Strings.Chr$(12)

	vbLf
	VBA.Strings.Chr$(10)

	vbNewLine
	An implementation-defined String value representing a new line

	vbNullChar
	VBA.Strings.Chr$(0)

	vbTab
	VBA.Strings.Chr$(9)

	vbVerticalTab
	VBA.Strings.Chr$(11)

	vbNullString
	An implementation-defined String value representing a null string pointer

	vbObjectError
	-2147221504

[bookmark: section_498c1238f7354e3b810fe0999b4d5fda][bookmark: _Toc181684110]Conversion Module
[bookmark: section_1951c2a775274d8db4a53b212d2442d5][bookmark: _Toc181684111]Public Functions
Note that these explicit-coercion functions are the only way to convert values from the LongLong type to any other type, as implicit conversions from LongLong to a declared type other than LongLong or Variant are not allowed.
[bookmark: section_fb8b7a865c7a4623807a9b6551dadfa5][bookmark: _Toc181684112]CBool
Function Declaration
Function CBool(Expression As Variant) As Boolean

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· If the value of Expression is an Error (section 2.1) data value then return the Integer data value that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced to Boolean (section 5.5.1.2.2).
· If the value of Expression is not an Error data value return the Boolean data value that is the result of Expression being Let-coerced to Boolean.
[bookmark: section_fd97115aea2b49ba94ebccfbf8701861][bookmark: _Toc181684113]CByte
Function Declaration
Function CByte(Expression As Variant) As Byte

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· If the value of Expression is an Error (section 2.1) data value then return the Byte data value that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced to Byte (section 5.5.1.2.1).
· If the value of Expression is not an Error data value return the Byte data value that is the result of Expression being Let-coerced to Byte.
[bookmark: section_ec718b0a6c8d4ada90fadbb331516b58][bookmark: _Toc181684114]CCur
Function Declaration
Function CCur(Expression As Variant) As Currency

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· If the value of Expression is an Error (section 2.1) data value then return the Currency data value that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced to Currency (section 5.5.1.2.1).
· If the value of Expression is not an Error data value return the Currency data value that is the result of Expression being Let-coerced to Currency.
[bookmark: section_1f287742e07f41698ce75ddfe0f951fb][bookmark: _Toc181684115]CDate / CVDate
Function Declaration
Function CDate(Expression As Variant) As Date
Function CVDate(Expression As Variant)As Variant

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· If the value of Expression is an Error (section 2.1) data value then raise error 13, "Type mismatch".
· If the value of Expression is not an Error data value return the Date data value that is the result of Expression being Let-coerced to Date (section 5.5.1.2.3).
· CDate MAY recognizes string date formats according to implementation defined locale settings.
· CVDate is identical to CDate except for the declared type of its return value.
[bookmark: section_03e8d20d83564080809c6f1b563af0d0][bookmark: _Toc181684116]CDbl
Function Declaration
Function CDbl(Expression As Variant) As Double

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· If the value of Expression is an Error (section 2.1) data value then return the Double data value that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced to Double (section 5.5.1.2.1).
· If the value of Expression is not an Error data value return the Double data value that is the result of Expression being Let-coerced to Double.
[bookmark: section_07360f3012204c1fafc38ba7a7dac332][bookmark: _Toc181684117]CDec
Function Declaration
Function CDec(Expression As Variant)As Variant

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· Return the Decimal data value that is the result of Expression being Let-coerced to Decimal (section 5.5.1.2.1).
[bookmark: section_8d3ac81d00ba4ceebda04bf7c32a7fc8][bookmark: _Toc181684118]CInt
Function Declaration
Function CInt(Expression As Variant) As Integer

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· If the value of Expression is an Error (section 2.1) data value then return the Integer data value that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced to Integer (section 5.5.1.2.1).
· If the value of Expression is not an Error data value return the Integer data value that is the result of Expression being Let-coerced to Integer.
[bookmark: section_c5c2f77f10e84a818eac2ea15c13db8b][bookmark: _Toc181684119]CLng
Function Declaration
Function CLng(Expression As Variant) As Long

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· If the value of Expression is an Error (section 2.1) data value then return the data value of the Long error code (section 2.1) of the Error data value.
· If the value of Expression is not an Error data value return the Long data value that is the result of Expression being Let-coerced to Long (section 5.5.1.2.1).
[bookmark: section_4ca05bda57b14f0fbdc874febb84a1bb][bookmark: _Toc181684120]CLngLng
Function Declaration
Function CLngLng(Expression As Variant) As LongLong

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· If the value of Expression is an Error (section 2.1) data value then return the LongLong data value that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced to LongLong.
· If the value of Expression is not an Error data value, then return the LongLong data value that is the result of Expression being Let-coerced to LongLong.
[bookmark: section_39e8676c5beb4f2fb7ac8f4e832c5d62][bookmark: _Toc181684121]CLngPtr
Function Declaration
Function CLngPtr(Expression As Variant) As LongPtr

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· If the value of Expression is an Error (section 2.1) data value then return the LongPtr data value that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced to LongPtr.
· If the value of Expression is not an Error data value, then return the LongPtr data value that is the result of Expression being Let-coerced to LongPtr.
[bookmark: section_f4161bc8127a4ecc99e8b6bb964e277d][bookmark: _Toc181684122]CSng
Function Declaration
Function CSng(Expression As Variant) As Single

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· If the value of Expression is an Error (section 2.1) data value then return the Single data value that is the result of the Long error code (section 2.1) of the Error data value being Let-coerced to Single (section 5.5.1.2.1).
· If the value of Expression is not an Error data value return the Single data value that is the result of Expression being Let-coerced to Single.
[bookmark: section_0fff7d0882fc43bdbc754782cfa2f08d][bookmark: _Toc181684123]CStr
Function Declaration
Function CStr(Expression As Variant) As String

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· If the value of Expression is an Error (section 2.1) data value then the returned value is the String data value consisting of "Error" followed by a single space character followed by the String that is the result of the Long error code (section 2.1) of the Error data value Let-coerced to String (section 5.5.1.2.4).
· If the value of Expression is not an Error data value return the String data value that is the result of Expression being Let-coerced to String (section 5.5.1.2.4).
[bookmark: section_6b423db1cc794d289c4e301d7781d41e][bookmark: _Toc181684124]CVar
Function Declaration
Function CVar(Expression As Variant) As Variant

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· The argument data value is returned.
[bookmark: section_7a7facef2f524d08918e63bf6a9261ed][bookmark: _Toc181684125]CVErr
Function Declaration
Function CVErr(Expression As Variant) As Variant

	Parameter
	Description

	Expression
	Any data value (section 2.1).

Runtime Semantics.
· If the value of Expression is an Error (section 2.1) data value then the value of Expression is returned without raising an error.
· The data value of Expression is Let-coerced to Long (section 5.5.1.2.1) for use as an error code (section 2.1). If the resulting data value is not in the inclusive range 0 to 65535, Error 5 is raised.
· Return an Error (section 2.1) data value whose error code is the result of Expression being Let-coerced to Long (section 5.5.1.2.1).
[bookmark: section_549925255c6f476886abb97f3d0e2705][bookmark: _Toc181684126]Error / Error$
Function Declaration
Function Error(Optional ErrorNumber)
Function Error$(Optional ErrorNumber) As String

	Parameter
	Description

	ErrorNumber
	Any data value (section 2.1).

Runtime Semantics.
· If the parameter ErrorNumber is present its data value is Let-coerced to Long (section 5.5.1.2.1) for use as an error code (section 2.1). If the resulting data value is greater than 65,535 then Error 6 is raised. Negative values for ErrorNumber are acceptable.
· If the parameter ErrorNumber is not present, the most recently raised error number (or 0 if no error has been raised) is used as the error code. Note that the most recently raised error number might not necessarily be the same as the current value of Err.Number (section 6.1.3.2.2.5)
· The string data value returned by the function is determined based upon the error code as follows:
· If the error code is 0 the data value is the zero length String.
· If a descriptive text is specified for the error code, the data value is a String containing that descriptive text.
· If the error code has an implementation specific meaning the descriptive text is also implementation specific.
· Otherwise, the data value is "Application-defined or object-defined error."
· Error$ is identical to Error except for the declared type of its return value.
[bookmark: section_97f8abc4fd644ae49c801548db613ec9][bookmark: _Toc181684127]Fix
Returns the integer portion of a number.
Function Declaration
Function Fix(Number As Variant)

	Parameter
	Description

	Number
	Any data value (section 2.1).

Runtime Semantics.
· If the data value of Number is Null, Null is returned.
· If the value type (section 2.1) of Number is Integer, Long or LongLong, the data value of Number is returned.
· If the value type of Number is any numeric value type (section 5.5.1.2.1) other than Integer or Long, the returned value is a data value whose value type is the same as the value type of Number and whose value that is the smallest integer greater than or equal to the data value of Number. If the value to be returned is not in the range of the value type of Number, raise error 6, "Overflow".
· If the value type of Number is String, the returned value is the result of the Fix function applied to the result of Let-coercing Number to Double.
· If the value type (section 2.1) of Number is Date, the returned value is the same as result of evaluating the expression: CDate(Fix(CDbl(Number)))
· Otherwise, the returned value is the result of Number being Let-coerced to Integer.
[bookmark: section_b5f1801d2e68418bb9db1803368f012f][bookmark: _Toc181684128]Hex / Hex$
Function Declaration
Function Hex(Number As Variant)
Function Hex$(Number As Variant) As String

	Parameter
	Description

	Number
	Any data value (section 2.1).

Runtime Semantics.
· If the data value of the parameter Number is the data value Null the function Hex$ raises error 94, "Invalid use of Null" and the function Hex returns the data value Null.
· If the data value of the parameter Number is the data value Empty the function returns the String data value "0"
· If the data value of the parameter Number has the value type LongLong, it is not coerced.
· If the data value of the parameter Number is any other value, it is Let-coerced to Long (section 5.5.1.2.1).
· If the Let-coerced value of Number is positive, the function result is a String data value consisting of the characters of the hexadecimal encoding with no leading zeros of the value.
· If the Let-coerced value of Number is in the range -32,767 to -1, the function result is a four character String data value consisting of the characters of the 16-bit 2’s complement hexadecimal encoding of the value.
· If the Let-coerced value of Number is in the range -2,147,483,648 to -32,768, the function result is an eight character String data value consisting of the characters of the 32-bit 2’s complement hexadecimal encoding of the value.
· If the Let-coerced value of Number is in the range -9,223,372,036,854,775,808 to 2,147,483,649, the function result is a sixteen character String data value consisting of the characters of the 64-bit 2’s complement hexadecimal encoding of the value.
· Except for the case where the parameter Number is Null, the semantics of Hex$ is identical to Hex except for the declared type of its returned value.
[bookmark: section_db6d8be782cd423c83cb3e6eff0a3363][bookmark: _Toc181684129]Int
Returns the integer portion of a number.
Function Declaration
Function Int(Number As Variant)

	Parameter
	Description

	Number
	Any data value (section 2.1).

Runtime Semantics.
· If the data value of Number is Null, Null is returned.
· If the value type (section 2.1) of Number is Integer, Long or LongLong, the data value of Number is returned.
· If the value type of Number is any numeric value type (section 5.5.1.2.1) other than Integer or Long, the returned value is a data value whose value type is the same as the value type of Number and whose value that is the greatest integer that is less than or equal to the data value of Number. If the value to be returned is not in the range of the value type of Number, raise error 6, "Overflow".
· If the value type of Number is String, the returned value is the result of the Int function applied to the result of Let-coercing Number to Double.
· If the value type (section 2.1) of Number is Date, the returned value is the same as result of evaluating the expression: CDate(Int(CDbl(Number)))
· Otherwise, the returned value is the result of Number being Let-coerced to Integer.
[bookmark: section_f8c3018b70054e1d9c3b6caea2a2625e][bookmark: _Toc181684130]Oct / Oct$
Function Declaration
Function Oct(Number As Variant)
Function Oct$(Number As Variant) As String

	Parameter
	Description

	Number
	Any data value (section 2.1).

Runtime Semantics.
· If the data value of the parameter Number is the data value Null the function Oct$ raises error 94, "Invalid use of Null" and the function Oct returns the data value Null.
· If the data value of the parameter Number is the data value Empty the function returns the String data value "0".
· If the data value of the parameter Number has the value type LongLong, it is not coerced.
· If the data value of the parameter Number is any other value, it is Let-coerced to Long (section 5.5.1.2.1).
· If the Let-coerced value of Number is positive, the function result is a String data value consisting of the characters of the hexadecimal encoding of the value with no leading zeros.
· If the Let-coerced value of Number is in the range -32,767 to -1, the function result is a six character String data value consisting of the characters of the 16-bit 2’s complement octal encoding of the value.
· If the Let-coerced value of Number is in the range -2,147,483,648 to -32,768, the function result is an eleven character String data value consisting of the characters of the 32-bit 2’s complement octal encoding of the value.
· If the Let-coerced value of Number is in the range -9,223,372,036,854,775,808 to 2,147,483,649, the function result is a twenty-two character String data value consisting of the characters of the 64-bit 2’s complement hexadecimal encoding of the value.
· Except for the case where the parameter Number is Null, the semantics of Oct$ is identical to Oct except for the declared type of its returned value.
[bookmark: section_c4ecaf21da574f88b5db0276dd0693de][bookmark: _Toc181684131]Str / Str$
Function Declaration
Function Str(Number As Variant)
Function Str$(Number As Variant) As String

	Parameter
	Description

	Number
	Any data value (section 2.1).

Runtime Semantics.
· If the data value of Number is Null, Null is returned.
· If the value of Number is an Error (section 2.1) data value then the returned value is the String data value consisting of "Error" followed by a single space character followed by the String that is the result of the Long error code (section 2.1) of the Error data value Let-coerced to String (section 5.5.1.2.4).
· If the value type of Number is Date, the returned value is the result of Let-coercing Number to String.
· If the data value of Number is any numeric value type, let S be the result of Let-coercing Number to String using "." as the decimal separator. If the data value of Number is positive (or zero) the result is S with a single space character appended as its first character, otherwise the result is S.
· Otherwise, the returned value is the result of the Str function applied to the result of Let-coercing Number to Double.
· Str$ is identical to Str except for the declared type of its return value.
[bookmark: section_6dff8d10d57343ad8197ca8cd509acf1][bookmark: _Toc181684132]Val
Function Declaration
Function Val(Value As String) As Double

	Parameter
	Description

	Value
	Any String data value (section 2.1).

Runtime Semantics.
· If Value is the 0 length String data value return the Double data value 0.
· Returns the numbers contained in a string as a Double.
· The Val function stops reading the string at the first character it can't recognize as part of a number. Symbols and characters that are often considered parts of numeric values, such as dollar signs and commas, are not recognized. However, the function recognizes the radix prefixes &O (for octal) and &H (for hexadecimal).
· Blanks, tabs, and linefeed characters are stripped from the argument.
[bookmark: section_ccbe147a4f634f728404b4e5b1ad4427][bookmark: _Toc181684133]DateTime Module
[bookmark: section_e6a037636801405fa55c9b3c9f27bc7a][bookmark: _Toc181684134]Public Functions
[bookmark: section_4fd0361f289b43959623beae29e39ffc][bookmark: _Toc181684135]DateAdd
Function Declaration
Function DateAdd(Interval As String,
 Number As Double,
 Date As Variant)

	Parameter
	Description

	Interval
	String data value (section 2.1) that specifies the interval of time to add.

	Number
	The number of intervals to add. It can be positive (to get dates in the future) or negative (to get dates in the past). If it is not a integer value, it is rounded to the nearest whole number.

	Date
	Date, data value to which the interval is added.

Runtime Semantics.
· The DateAdd function returns the result of adding or subtracting a specified time interval from a base date. For example, it can be used to calculate a date 30 days from today or a time 45 minutes from now.
· The interval argument is interpreted according to this table:
	Interval Data Value
	Meaning

	"yyyy"
	Year

	"q"
	Quarter

	"m"
	Month

	"y"
	Day of year

	"d"
	Day

	"w"
	Weekday

	"ww"
	Week

	"h"
	Hour

	"n"
	Minute

	"s"
	Second

	Any other data value
	Raise Error 5, "Invalid procedure call or argument"

· The interpretation of the Interval data value is not case sensitive.
· The DateAdd function won't return an invalid date. The following example adds one month to January 31:
DateAdd("m", 1, "31-Jan-95")
In this case, DateAdd returns 28-Feb-95, not 31-Feb-95. If date is 31-Jan-96, it returns 29-Feb96 because 1996 is a leap year.
· If the calculated date would precede the year 100 (that is, you subtract more years than are in date), an error 5 is raised.
· For date, if the Calendar property setting is Gregorian, the supplied date MUST be Gregorian. If the calendar is Hijri, the supplied date MUST be Hijri. If month values are names, the name MUST be consistent with the current Calendar property setting. To minimize the possibility of month names conflicting with the current Calendar property setting, enter numeric month values (Short Date format).
[bookmark: section_0c1b8433c74f4f238517098256b0abf1][bookmark: _Toc181684136]DateDiff
Function Declaration
Function DateDiff(Interval As String,
 Date1 As Variant,
 Date2 As Variant,
 Optional FirstDayOfWeek
 As VbDayOfWeek = vbSunday,
 Optional FirstWeekOfYear
 As VbFirstWeekOfYear = vbFirstJan1
)

	Parameter
	Description

	Interval
	String data value (section 2.1) that specifies the interval of time to use to calculate the difference between Date1 and Date2.

	Date1, Date2
	The two dates to use in the calculation.

	FirstDayOfWeek
	A constant that specifies the first day of the week. If not specified, Sunday is assumed. See section 6.1.1.7.

	FirstWeekOfYear
	A constant that specifies the first week of the year. If not specified, the first week is assumed to be the week in which January 1 occurs.

Runtime Semantics.
· Returns a Long data value specifying the number of time intervals between two specified dates.
· The Interval argument is interpreted according to this table:

	Interval Data Value
	Meaning

	"yyyy"
	Year

	"q"
	Quarter

	"m"
	Month

	"y"
	Day of year

	"d"
	Day

	"w"
	Weekday

	"ww"
	Week

	"h"
	Hour

	"n"
	Minute

	"s"
	Second

	Any other data value
	Raise Error 5, "Invalid procedure call or argument"

· The interpretation of the Interval data value is not case sensitive.
· If Date1 falls on a Monday, DateDiff counts the number of Mondays until Date2. It counts Date2 but not Date1. If interval is Week ("ww"), however, the DateDiff function returns the number of calendar weeks between the two dates. It counts the number of Sundays between Date1 and Date2. DateDiff counts Date2 if it falls on a Sunday; but it doesn't count Date1, even if it does fall on a Sunday.
· If Date1 refers to a later point in time than Date2, the DateDiff function returns a negative number.
· The FirstDayOfWeek argument affects calculations that use the "w" and "ww" interval symbols.
· When comparing December 31 to January 1 of the immediately succeeding year, DateDiff for Year ("yyyy") returns 1 even though only a day has elapsed.
· For Date1 and Date2, if the Calendar property setting is Gregorian, the supplied date MUST be Gregorian. If the calendar is Hijri, the supplied date MUST be Hijri.
[bookmark: section_8936e45a990242c3a9057c24b3e53d5d][bookmark: _Toc181684137]DatePart
Function Declaration
Function DatePart(Interval As String,
 BaseDate As Variant,
 Optional FirstDayOfWeek
 As VbDayOfWeek = vbSunday,
 Optional FirstWeekOfYear
 As VbFirstWeekOfYear = vbFirstJan1
)

	Parameter
	Description

	Interval
	String data value (section 2.1) that specifies the interval of time to extract from BaseDate.

	BaseDate
	Date data value from which the interval is extracted.

	FirstDayOfWeek
	A constant that specifies the first day of the week. If not specified, Sunday is assumed. See section 6.1.1.7.

	FirstWeekOfYear
	A constant that specifies the first week of the year. If not specified, the first week is assumed to be the week in which January 1 occurs.

Runtime Semantics.
· Returns a Integer data value containing the specified part of a given date
· The Interval argument is interpreted according to this table:

	Interval Data Value
	Meaning

	"yyyy"
	Year

	"q"
	Quarter

	"m"
	Month

	"y"
	Day of year

	"d"
	Day

	"w"
	Weekday

	"ww"
	Week

	"h"
	Hour

	"n"
	Minute

	"s"
	Second

	Any other data value
	Raise Error 5, "Invalid procedure call or argument"

· The interpretation of the Interval data value is not case sensitive.
· The FirstDayOfWeek argument affects calculations that use the "w" and "ww" interval symbols.
· For BaseDate, if the Calendar property setting is Gregorian, the supplied date MUST be Gregorian. If the calendar is Hijri, the supplied date MUST be Hijri.
· The returned date part is in the time period units of the current Arabic calendar. For example, if the current calendar is Hijri and the date part to be returned is the year, the year value is a Hijri year.
[bookmark: section_051aa28f0ea740a595ab8428ac682826][bookmark: _Toc181684138]DateSerial
Function Declaration
Function DateSerial(Year As Integer, Month As Integer,
 Day As Integer)

	Parameter
	Description

	Year
	An Integer data value (section 2.1) in the range 100 and 9999, inclusive.

	Month
	An Integer data value (section 2.1).

	Day
	An Integer data value (section 2.1).

Runtime Semantics.
· The DateSerial function returns a Date for a specified year, month, and day.
· To specify a date, such as December 31, 1991, the range of numbers for each DateSerial argument SHOULD be in the accepted range for the unit; that is, 1-31 for days and 1-12 for months. However, you can also specify relative dates for each argument using any numeric expression that represents some number of days, months, or years before or after a certain date.
· Two digit years for the year argument are interpreted based on implementation defined settings. The default settings are that values between 0 and 29, inclusive, are interpreted as the years 2000-2029. The default values between 30 and 99 are interpreted as the years 19301999. For all other year arguments, use a four-digit year (for example, 1800).
· When any argument exceeds the accepted range for that argument, it increments to the next larger unit as appropriate. For example, if you specify 35 days, it is evaluated as one month and some number of days, depending on where in the year it is applied. If any single argument is outside the range -32,768 to 32,767, an error occurs. If the date specified by the three arguments falls outside the acceptable range of dates, an error occurs.
· For Year, Month, and Day, if the Calendar property setting is Gregorian, the supplied value is assumed to be Gregorian. If the Calendar property setting is Hijri, the supplied value is assumed to be Hijri.
· The returned date part is in the time period units of the current Visual Basic calendar. For example, if the current calendar is Hijri and the date part to be returned is the year, the year value is a Hijri year. For the argument year, values between 0 and 99, inclusive, are interpreted as the years 1400-1499. For all other year values, use the complete four-digit year (for example, 1520).
[bookmark: section_e61ba5e5f7c147999c199f33d924fe2f][bookmark: _Toc181684139]DateValue
Function Declaration
Function DateValue(Date As String) As Variant

	Parameter
	Description

	Date
	String data value (section 2.1) representing a date from January 1, 100 through December 31, 9999. The value can also be a date, a time, or both a date and time.

Runtime Semantics.
· Returns a Date data value.
· If Date is a string that includes only numbers separated by valid date separators, DateValue recognizes the order for month, day, and year according to the implementation-defined Short Date format. DateValue also recognizes unambiguous dates that contain month names, either in long or abbreviated form. For example, in addition to recognizing 12/30/1991 and 12/30/91, DateValue also recognizes December 30, 1991 and Dec 30, 1991.
· If the year part of Date is omitted, DateValue uses the current year from the system’s date.
· If the Date argument includes time information, DateValue doesn't return it. However, if Date includes invalid time information (such as "89:98"), an error occurs.
· For Date, if the Calendar property setting is Gregorian, the supplied date MUST be Gregorian. If the calendar is Hijri, the supplied date MUST be Hijri. If the supplied date is Hijri, the argument date is a String representing a date from 1/1/100 (Gregorian Aug 2, 718) through 4/3/9666 (Gregorian Dec 31, 9999).
[bookmark: section_b257b1deaccf465abeb4483316d45ab4][bookmark: _Toc181684140]Day
Function Declaration
Function Day(Date As Variant) As Variant

	Parameter
	Description

	Date
	Any data value (section 2.1). The data value SHOULD be Let-coercible to Date.

Runtime Semantics.
· Date is Let-coerced to Date and an Integer data value specifying a whole number between 1 and 31, inclusive, representing the day of the month is returned.
· If Date is Null, Null is returned.
· If the Calendar property setting is Gregorian, the returned Integer represents the Gregorian day of the month for the Date argument. If the calendar is Hijri, the returned Integer represents the Hijri day of the month for the Date argument.
[bookmark: section_dea063c733574c06abbe2f22d16a1aca][bookmark: _Toc181684141]Hour
Function Declaration
Function Hour(Time As Variant) As Variant

	Parameter
	Description

	Time
	Any data value (section 2.1). The data value SHOULD be Let-coercible to Date.

Runtime Semantics.
· Time is Let-coerced to Date and an Integer specifying a whole number between 0 and 23, inclusive representing the hour of the day specified by the date is returned.
· If Time is Null, Null is returned.
[bookmark: section_373bd4dbcb634c5595b6304b8e5841bc][bookmark: _Toc181684142]Minute
Function Declaration
Function Hour(Time As Variant) As Variant

	Parameter
	Description

	Time
	Any data value (section 2.1). The data value SHOULD be Let-coercible to Date.

Runtime Semantics.
· Time is Let-coerced to Date and an Integer specifying a whole number between 0 and 59, inclusive representing the minute of the hour specified by the date is returned.
· If Time is Null, Null is returned.
[bookmark: section_797ca6f3d6d446fa84d20964c713ecf4][bookmark: _Toc181684143]Month
Function Declaration
Function Month(Date As Variant) As Variant

	Parameter
	Description

	Date
	Any data value (section 2.1). The data value SHOULD be Let-coercible to Date.

Runtime Semantics.
· Date is Let-coerced to Date and an Integer data value specifying a whole number between 1 and 12, inclusive, representing the month of the year is returned.
· If Date is Null, Null is returned.
[bookmark: section_61c09f9c9e664727808c364339437bf8][bookmark: _Toc181684144]Second
Function Declaration
Function Second(Time As Variant) As Variant

	Parameter
	Description

	Time
	Any data value (section 2.1). The data value SHOULD be Let-coercible to Date.

Runtime Semantics.
· Time is Let-coerced to Date and an Integer specifying a whole number between 0 and 59, inclusive representing the second of the minute specified by the date is returned.
· If Time is Null, Null is returned.
[bookmark: section_3f2478d78abf4489b89ee56eca57d047][bookmark: _Toc181684145]TimeSerial
Function Declaration
Function TimeSerial(Hour As Integer,
 Minute As Integer,
 Second As Integer) As Variant

	Parameter
	Description

	Hour
	An Integer data value (section 2.1) in the range 0 and 23, inclusive.

	Minute
	An Integer data value (section 2.1).

	Second
	An Integer data value (section 2.1).

Runtime Semantics.
· Returns a Date containing the time for a specific hour, minute, and second.
· To specify a time, such as 11:59:59, the range of numbers for each TimeSerial argument SHOULD be in the normal range for the unit; that is, 023 for hours and 059 for minutes and seconds. However, one can also specify relative times for each argument using any Integer data value that represents some number of hours, minutes, or seconds before or after a certain time.
· When any argument exceeds the normal range for that argument, it increments to the next larger unit as appropriate. For example, if Minute specifies 75 minutes, it is evaluated as one hour and 15 minutes. If the time specified by the three arguments causes the date to fall outside the acceptable range of dates, an error is raised.
[bookmark: section_57993b1f63b94656988df094dfdea777][bookmark: _Toc181684146]TimeValue
Function Declaration
Function TimeValue(Time As String) As Variant

	Parameter
	Description

	Time
	String data value (section 2.1) representing a time from 0:00:00 (12:00:00 A.M.) to 23:59:59 (11:59:59 P.M.), inclusive. The value can also be a date, a time, or both a date and time.

Runtime Semantics.
· Returns a Date containing the time. The argument string is Let-coerced to value type Date and the date portions of the data value are set to zero.
· If Time is Null, Null is returned.
· If the Time argument contains date information, TimeValue doesn't return it. However, if Time includes invalid date information, an error occurs.
[bookmark: section_305c3db107ba4e5e8782300a604712cb][bookmark: _Toc181684147]Weekday
Function Declaration
Function Weekday(Date,
 Optional FirstDayOfWeek
 As VbDayOfWeek = vbSunday) As Variant

	Parameter
	Description

	Date
	Any data value (section 2.1). The data value SHOULD be Let-coercible to Date. If Date contains Null, Null is returned.

	FirstDayOfWeek
	A constant that specifies the first day of the week. If not specified, Sunday is assumed. See section 6.1.1.7.

Runtime Semantics.
· Returns an Integer containing a whole number representing the day of the week.
· The Weekday function can return any of these values (see section 6.1.1.7):
	Constant
	Value
	Description

	vbSunday
	1
	Sunday

	vbMonday
	2
	Monday

	vbTuesday
	3
	Tuesday

	vbWednesday
	4
	Wednesday

	vbThursday
	5
	Thursday

	vbFriday
	6
	Friday

	vbSaturday
	7
	Saturday

· If the Calendar property setting is Gregorian, the returned Integer represents the Gregorian day of the week for the Date argument. If the calendar is Hijri, the returned Integer represents the Hijri day of the week for the Date argument. For Hijri dates, the argument number is any numeric expression that can represent a date and/or time from 1/1/100 (Gregorian Aug 2, 718) through 4/3/9666 (Gregorian Dec 31, 9999).
[bookmark: section_79964d2e97f841fdad5e6ac5e4702d5c][bookmark: _Toc181684148]Year
Function Declaration
Function Year(Date As Variant) As Variant

	Parameter
	Description

	Date
	Any data value (section 2.1). The data value SHOULD be Let-coercible to Date.

Runtime Semantics.
· Date is Let-coerced to Date and an Integer data value specifying a whole number between 100 and 9999, inclusive, representing the year is returned.
· If Date is Null, Null is returned.
[bookmark: section_f934f4308fe84deda778aadbca928b31][bookmark: _Toc181684149]Public Properties
[bookmark: section_e64366000b0d49329b4ac8999a6628b0][bookmark: _Toc181684150]Calendar
Property Declaration
Property Calendar As VbCalendar
Runtime Semantics.
· Returns or sets a value specifying the type of calendar to use by subsequent calls to the functions defined in section 6.1.2.4.
[bookmark: section_53387d55dd1b49f2a2a175170476eddc][bookmark: _Toc181684151]Date/Date$
Property Declaration
Property Date As Variant
Property Date$ As String
Runtime Semantics.
· Returns a String or a Date containing the current system date.
· Date, and if the calendar is Gregorian, Date$ behavior is unchanged by the Calendar property setting. If the calendar is Hijri, Date$ returns a 10-character string of the form mm-dd-yyyy, where mm (01-12), dd (01-30) and yyyy (1400-1523) are the Hijri month, day and year. The equivalent Gregorian range is Jan 1, 1980 through Dec 31, 2099.
[bookmark: section_bb44575f250442afb39d9a321cd5e354][bookmark: _Toc181684152]Now
Property Declaration
Property Now As Variant
Runtime Semantics.
· Returns a Date data value specifying the current date and time.
[bookmark: section_bcea9c1683344c1b8467aaf016119849][bookmark: _Toc181684153]Time/Time$
Property Declaration [Get Property]
Property Time As Variant
Property Time$ As String
Runtime Semantics.
· Returns a String or Date containing the current system time.
Property Declaration [Set Property]
Property Time As Variant
Runtime Semantics.
· Sets the system time.
· The value assigned to the Time property MUST be Let-coercible to a Date data value. The time portion of the Date data value is used to set the system time.
· If Time is a string, Time attempts to convert it to a time using the time separators specified for the system. If it can't be converted to a valid time, an error occurs.
[bookmark: section_1b430e82b37b474b83db5f2303104090][bookmark: _Toc181684154]Timer
Function Declaration
Property Timer As Single
Runtime Semantics.
· Returns a Single data value representing the number of seconds elapsed since midnight.
· The sub-second resolution is implementation dependent.
[bookmark: section_bf77cb3b1e754dadb84956d661ce1990][bookmark: _Toc181684155]FileSystem
[bookmark: section_a7ed12988f9841aca1216349f4a3a152][bookmark: _Toc181684156]Public Functions
[bookmark: section_8e82dffcc9204ed99960cbd9b6613069][bookmark: _Toc181684157]CurDir/CurDir$
Function CurDir(Optional Drive As Variant) As Variant
Function CurDir$(Optional Drive As Variant) As String

	Parameter
	Description

	Drive
	Optional String data value that identifiers an storage drive in an implementation defined manner.

Runtime Semantics.
· The valid format of a Drive String is implementation defined.
· If Drive is unspecified, or if Drive is a zero-length string, CurDir returns the current file path for the implementation-defined current drive as a String data value. If Drive validly identifies a storage drive, the current file path for that drive is returned a String data value.
· If the value of Drive is not a valid drive identifier, Error 68 ("Device Unavailable") is raised.
[bookmark: section_bebf1c39de9f4e6eb25bf05dbf77f091][bookmark: _Toc181684158]Dir
Function Declaration
Function Dir(Optional PathName As Variant,
 Optional Attributes
 As VbFileAttribute = vbNormal)As String

	Parameter
	Description

	PathName
	Any data value (section 2.1) that specifies a file name. It can include directory or folder, and drive. The data value SHOULD be Let-coercible to String. A zero-length string ("") is returned if PathName is not found.

	Attributes
	Constant or numeric expression, whose sum specifies file attributes. If omitted, returns files that match PathName but have no attributes.

Runtime Semantics.
· Returns a String data value representing the name of a file, directory, or folder that matches a specified pattern or file attribute, or the volume label of a drive.
· The attributes argument can be the logical or any combination of the values of the vbFileAttribute enumeration.
· Dir supports the use of multiple character (*) and single character (?) wildcards to specify multiple files.
[bookmark: section_6822235fd1ca48809a01c311268ebdb8][bookmark: _Toc181684159]EOF
Function Declaration
Function EOF(FileNumber As Integer) As Boolean

	Parameter
	Description

	FileNumber
	Any data value that is Let-coercible to declared type Integer and that is a valid file number (section 5.4.5).

Runtime Semantics.
· Returns a Boolean data value indicating whether or not the current file-pointer-position (section 5.4.5) is at the end of a file that has been opened for Random or sequential Input.
· The EOF function returns False until the file-pointer-position is at the end of the file. With files opened for Random or Binary access, EOF returns False until the last executed Get statement is unable to read an entire record.
· Files opened for Output, EOF returns True.
[bookmark: section_a9b90423b7ed4d5e850aedd7e8e76cb3][bookmark: _Toc181684160]FileAttr
Function Declaration
Function FileAttr(FileNumber As Integer,
 Optional ReturnType As Integer = 1) As Long

	Parameter
	Description

	FileNumber
	An Integer data value that is a valid file number (section 5.4.5).

	ReturnType
	An Integer data value that indicating the type of information to return. Specify the data value 1 to return a value indicating the file mode. The meaning of other data values is implementation defined.

Runtime Semantics.
· Returns a Long representing the file mode (section 5.4.5) for files opened using the Open statement.
· When the ReturnType argument is 1, the following return values indicate the file access mode:
	Mode 	
	Value

	Input 	
	1

	Output
	2

	Random
	4

	Append
	8

	Binary 	
	32

[bookmark: section_c2f27ce8ae8e4698993dc488df2535bd][bookmark: _Toc181684161]FileDateTime
Function Declaration
Function FileDateTime(PathName As String) As Variant

	Parameter
	Description

	PathName
	String expression that specifies a file name; can include directory or folder, and drive. An error is raised if PathName is not found.

Runtime Semantics.
· Returns a Date data value that indicates the date and time when a file was created or last modified.
[bookmark: section_59ca6577d7814b83b384edca362726a4][bookmark: _Toc181684162]FileLen
Function Declaration
Function FileLen(PathName As String) As Long

	Parameter
	Description

	PathName
	String expression that specifies a file name; can include directory or folder, and drive. An error is raised if PathName is not found.

Runtime Semantics.
· Returns a Long specifying the length of a file in bytes.
· If the specified file is open when the FileLen function is called, the value returned represents the size of the file immediately before it was opened.
[bookmark: section_1d34a82b051a4b369c9a0d35819c2f08][bookmark: _Toc181684163]FreeFile
Function Declaration
Function FreeFile(Optional RangeNumber As Variant) As Integer

	Parameter
	Description

	RangeNumber
	Integer data value that specifies the range from which the next free file number (section 5.4.5) is to be returned. Specify the data value 0 (default) to return a file number in the range 1-255, inclusive. Specify the data value 1 to return a file number in the range 256-511, inclusive.

Runtime Semantics.
· Returns an Integer representing the next file number available for use by the Open statement.
[bookmark: section_911ae09f00f14e778f515cd5dbd761c6][bookmark: _Toc181684164]Loc
Function Declaration
Function Loc(FileNumber As Integer) As Long

	Parameter
	Description

	FileNumber
	An Integer data value that is a valid file number (section 5.4.5).

Runtime Semantics.
· Returns a Long specifying the current read/write position (in other words, the current file-pointer-position (section 5.4.5)) within an open file. The interpretation of the returned value depends upon the file access mode of the open file.
· The following describes the return value for each file access mode:
	Mode
	Return Value

	Random
	Number of the last record read from or written to the file.

	Sequential
	Current byte position in the file divided by 128. However, information returned by Loc for sequential files is neither used nor required.

	Binary
	Position of the last byte read or written.

[bookmark: section_9094d0703a3544c2a2ab75497b8aa58b][bookmark: _Toc181684165]LOF
Function Declaration
Function LOF(FileNumber As Integer) As Long

	Parameter
	Description

	FileNumber
	An Integer data value that is a valid file number (section 5.4.5).

Runtime Semantics.
· Returns a Long representing the size, in bytes, of a file opened using the Open statement.
[bookmark: section_70ceea5255ed4ea4a9e0804586da69a6][bookmark: _Toc181684166]Seek
Function Declaration
Function Seek(FileNumber As Integer) As Long

	Parameter
	Description

	FileNumber
	An Integer data value that is a valid file number (section 5.4.5).

Runtime Semantics.
· Returns a Long specifying the current read/write position (in other words, the file-current file-pointer-position (section 5.4.5)) within a file opened using the Open statement. This value will be between 1 and 2,147,483,647 (equivalent to 2^31 - 1), inclusive.
· The following describes the return values for each file access mode:
	Mode
	Return Value

	Random
	Number of the next record read or written.

	Binary, Output, Append, Input
	Byte position at which the next operation takes place. The first byte in a file is at position 1, the second byte is at position 2, and so on.

[bookmark: section_edf2728349d44aeaa681721532898a66][bookmark: _Toc181684167]Public Subroutines
[bookmark: section_167a74376a7f4b0a919a4bfeeea57622][bookmark: _Toc181684168]ChDir
Subroutine Declaration
Sub ChDir(Path As String)

	Parameter
	Description

	Path
	String data value that identifies which directory or folder becomes the new default directory or folder. The path can include the drive. If no drive is specified, ChDir changes the default directory or folder on the current drive.

Runtime Semantics.
· ChDir changes the system’s current directory or folder, but not the default drive.
[bookmark: section_43cb6c5a3cff442f80ba4817a19ccd4e][bookmark: _Toc181684169]ChDrive
Subroutine Declaration
Sub ChDrive(Drive As String)

	Parameter
	Description

	Drive
	String data value that specifies an existing drive. If Drive is a zero-length string (""), the current drive doesn't change. If the drive argument is a multiple-character string, ChDrive uses only the first letter.

Runtime Semantics.
· ChDrive changes the current default drive.

[bookmark: section_4f065ccfce8e4ef9afefc5f133bdd768][bookmark: _Toc181684170]FileCopy
Subroutine Declaration
Sub FileCopy(Source As String, Destination As String)

	Parameter
	Description

	Source
	String data value that specifies the name of the file to be copied. The string can include directory or folder, and drive.

	Destination
	String data value that specifies the target file name. The string can include directory or folder, and drive.

Runtime Semantics.
· Copies a file in an implementation-defined manner.
· If the Source file is currently open, an error occurs.

[bookmark: section_56c9177f946f45458b22b22d5c3828ad][bookmark: _Toc181684171]Kill
Subroutine Declaration
Sub Kill(PathName)
	Parameter
	Description

	PathName
	String data value that specifies one or more file names to be deleted; can include directory or folder, and drive.

Runtime Semantics.
· Kill deletes files from a disk.
· Kill supports the use of multiple-character (*) and single-character (?) wildcards to specify multiple files.
[bookmark: section_5c10bd46147147859663e20699c1207b][bookmark: _Toc181684172]MkDir
Subroutine Declaration
Sub MkDir(Path As String)

	Parameter
	Description

	Path
	String data value that identifies the directory or folder to be created. The path can include the drive. If no drive is specified, MkDir creates the new directory or folder on the current drive.

Runtime Semantics.
· MkDir creates a new directory or folder.

[bookmark: section_da2d004306724783ba76ae823663d073][bookmark: _Toc181684173]RmDir
Subroutine Declaration
Sub RmDir(Path As String)

	Parameter
	Description

	Path
	String data value that identifies the directory or folder to be removed. The path can include the drive. If no drive is specified, RmDir removes the directory or folder on the current drive.

Runtime Semantics.
· RmDir removes an existing directory or folder.
· An error occurs when using RmDir on a directory or folder containing files.
[bookmark: section_6ba633dee14f41f8a30132aad27e4bf7][bookmark: _Toc181684174]SetAttr
Subroutine Declaration
Sub SetAttr(PathName As String,
 Attributes As VbFileAttribute)

	Parameter
	Description

	PathName
	String data value that specifies a file name can include directory or folder, and drive.

	Attributes
	Constant or numeric expression, whose sum specifies file attributes.

Runtime Semantics.
· Sets attribute information for a file.
· A run-time error occurs when trying to set the attributes of an open file.
[bookmark: section_368e927218bc4632a4c3f7dd2c64b215][bookmark: _Toc181684175]Financial
[bookmark: section_89736f0dd6fa47a39472ac8ee640c77d][bookmark: _Toc181684176]Public Functions
[bookmark: section_3f4a111258694672a010735bcf07d757][bookmark: _Toc181684177]DDB
Function Declaration
Function DDB(Cost As Double, Salvage As Double,
 Life As Double, Period As Double,
 Optional Factor As Variant) As Double

	Parameter
	Description

	Cost
	Double specifying initial cost of the asset.

	Salvage
	Double specifying value of the asset at the end of its useful life.

	Life
	Double specifying length of useful life of the asset.

	Period
	Double specifying period for which asset depreciation is calculated.

	Factor
	Double data value specifying rate at which the balance declines. If omitted, the data value 2 (double-declining method) is assumed.

Runtime Semantics.
· Returns a Double data value specifying the depreciation of an asset for a specific time period using the double-declining balance method (or some other specified method).
· The Life and Period arguments MUST be expressed in the same units. For example, if Life is given in months, Period MUST also be given in months. All arguments MUST be positive numbers.
· The DDB function uses the following formula to calculate depreciation for a given period:
Depreciation / Period = ((Cost - Salvage) * Factor) / Life
[bookmark: section_a869b0ff5bda40ef8c3633ece76a6844][bookmark: _Toc181684178]FV
Function Declaration
Function FV(Rate As Double, NPer As Double, Pmt As Double, PV As Variant, Due As Variant) As Double

	Parameter
	Description

	Rate
	Double specifying interest rate per period. For example, if you get a car loan at an annual percentage rate (APR) of 10 percent and make monthly payments, the rate per period is 0.1/12, or 0.0083.

	NPer
	Integer specifying total number of payment periods in the annuity. For example, if you make monthly payments on a four-year car loan, your loan has a total of 4 * 12 (or 48) payment periods.

	Pmt
	Double specifying payment to be made each period. Payments usually contain principal and interest that doesn't change over the life of the annuity.

	Pv
	Double data value specifying present value (or lump sum) of a series of future payments. For example, when borrowing money to buy a car, the loan amount is the present value to the lender of the monthly car payments that will be made. If omitted, the data value 0 is assumed.

	Due
	Integer data value specifying when payments are due. Use the data value 0 if payments are due at the end of the payment period, or use the data value 1 if payments are due at the beginning of the period. If omitted, the data value 0 is assumed.

Runtime Semantics.
· Returns a Double specifying the future value of an annuity based on periodic, fixed payments and a fixed interest rate.
· The Rate and NPer arguments MUST be calculated using payment periods expressed in the same units. For example, if Rate is calculated using months, NPer MUST also be calculated using months.
· For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers; cash received (such as dividend checks) is represented by positive numbers.
[bookmark: section_e8e71a40b540429489fec64453ae83d0][bookmark: _Toc181684179]IPmt
Function Declaration
Function IPmt(Rate As Double, Per As Double,
 NPer As Double, PV As Double,
 Optional FV As Variant,
 Optional Due As Variant) As Double

	Parameter
	Description

	Rate
	Double data value specifying interest rate per period. For example, given a car loan at an annual percentage rate (APR) of 10 percent and making monthly payments, the rate per period is 0.1/12, or 0.0083.

	Per
	Double data value specifying payment period in the range 1 through NPer.

	NPer
	Double specifying total number of payment periods in the annuity. For example, if you make monthly payments on a four-year car loan, your loan has a total of 4 * 12 (or 48) payment periods.

	Pv
	Double data value specifying present value, or value today, of a series of future payments or receipts.

	Fv
	Double data value specifying future value or cash balance desired after final payment has been made. For example, the future value of a loan is $0 because that's its value after the final payment. However, if someone wants to save $50,000 over 18 years for their child's education, then $50,000 is the future value. If omitted, the data value 0.0 is assumed.

	Due
	Integer data value specifying when payments are due. Use the data value 0 if payments are due at the end of the payment period, or use the data value 1 if payments are due at the beginning of the period. If omitted, the data value 0 is assumed.

Runtime Semantics.
· Returns a Double specifying the interest payment for a given period of an annuity based on periodic, fixed payments and a fixed interest rate.
· The Rate and NPer arguments MUST be calculated using payment periods expressed in the same units. For example, if Rate is calculated using months, NPer MUST also be calculated using months.
· For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers; cash received (such as dividend checks) is represented by positive numbers.
[bookmark: section_526c8b089ba04a249032bd542062dd25][bookmark: _Toc181684180]IRR
Function Declaration
Function IRR(ValueArray() As Double,
 Optional Guess As Variant) As Double

	Parameter
	Description

	Values
	Array of Double data values specifying cash flow values. The array MUST contain at least one negative value (a payment) and one positive value (a receipt).

	Guess
	Double data value specifying estimated value that will be returned by IRR. If omitted, Guess is the data value 0.1 (10 percent).

Runtime Semantics.
· Returns a Double data value specifying the internal rate of return for a series of periodic cash flows (payments and receipts).
· The internal rate of return is the interest rate received for an investment consisting of payments and receipts that occur at regular intervals.
· The IRR function uses the order of values within the array to interpret the order of payments and receipts. The cash flow for each period doesn't have to be fixed, as it is for an annuity.
· IRR is calculated by iteration. Starting with the value of guess, IRR cycles through the calculation until the result is accurate to within 0.00001 percent. If IRR can't find a result after 20 tries, it fails.
[bookmark: section_3474340017d945e283f4ab9522f6d598][bookmark: _Toc181684181]MIRR
Function Declaration
Function MIRR(ValueArray() As Double,
 Finance_Rate As Double,
 Reinvest_Rate As Double) As Double

	Parameter
	Description

	Values
	Array of Double data values specifying cash flow values. The array MUST contain at least one negative value (a payment) and one positive value (a receipt).

	Finance_Rate
	Double data value specifying interest rate paid as the cost of financing.

	Reinvest_Rate
	Double data value specifying interest rate received on gains from cash reinvestment.

Runtime Semantics.
· Returns a Double data value specifying the modified internal rate of return for a series of periodic cash flows (payments and receipts).
· The modified internal rate of return is the internal rate of return when payments and receipts are financed at different rates. The MIRR function takes into account both the cost of the investment (Finance_Rate) and the interest rate received on reinvestment of cash (Reinvest_Rate).
· The Finance_Rate and Reinvest_Rate arguments are percentages expressed as decimal values. For example, 12 percent is expressed as 0.12.
· The MIRR function uses the order of values within the array to interpret the order of payments and receipts.
[bookmark: section_b924c22baf5949078423d891aa06f4e6][bookmark: _Toc181684182]NPer
Function Declaration
Function NPer(Rate As Double, Pmt As Double, PV As Double,
 Optional FV As Variant,
 Optional Due As Variant) As Double

	Parameter
	Description

	Rate
	Double data value specifying interest rate per period. For example, given a loan at an annual percentage rate (APR) of 10 percent and making monthly payments, the rate per period is 0.1/12, or 0.0083.

	Pmt
	Double data value specifying payment to be made each period.

	Pv
	Double specifying present value, or value today, of a series of future payments or receipts.

	Fv
	Double data value specifying future value or cash balance desired after final payment has been made. If omitted, the Double data value 0.0 is assumed.

	Due
	Integer data value specifying when payments are due. Use the data value 0 if payments are due at the end of the payment period, or use the data value 1 if payments are due at the beginning of the period.
If omitted, the data value 0 is assumed.

Runtime Semantics.
· Returns a Double data value specifying the number of periods for an annuity based on periodic, fixed payments and a fixed interest rate.
· For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers; cash received (such as dividend checks) is represented by positive numbers.
[bookmark: section_be4a037619334fa0a144e8074b66da14][bookmark: _Toc181684183]NPV
Function Declaration
Function NPV(Rate As Double, ValueArray() As Double) As Double

	Parameter
	Description

	Rate
	Double data value specifying discount rate over the length of the period, expressed as a decimal fraction.

	Values
	Array of Double data values specifying cash flow values. The array MUST contain at least one negative value (a payment) and one positive value (a receipt).

Runtime Semantics.
· Returns a Double data value specifying the net present value of an investment based on a series of periodic cash flows (payments and receipts) and a discount rate.
· The NPV function uses the order of values within the array to interpret the order of payments and receipts.
· The NPV investment begins one period before the date of the first cash flow value and ends with the last cash flow value in the array.
· The net present value calculation is based on future cash flows. If the first cash flow occurs at the beginning of the first period, the first value MUST be added to the value returned by NPV and MUST NOT be included in the cash flow values of Values().
· The NPV function is similar to the PV function (present value) except that the PV function allows cash flows to begin either at the end or the beginning of a period. Unlike the variable NPV cash flow values, PV cash flows MUST be fixed throughout the investment.
[bookmark: section_26a4e5ea07e142d68ac658c37ac3c406][bookmark: _Toc181684184]Pmt
Function Declaration
Function Pmt(Rate As Double, NPer As Double, PV As Double,
 Optional FV As Variant,
 Optional Due As Variant) As Double

	Parameter
	Description

	Rate
	Double data value specifying interest rate per period as a decimal fraction.

	NPer
	Integer data value specifying total number of payment periods in the annuity.

	Pv
	Double data value specifying present value (or lump sum) that a series of payments to be paid in the future is worth now.

	Fv
	Double data value specifying future value or cash balance desired after the final payment has been made. If omitted, the data value 0.0 is assumed.

	Due
	Integer data value specifying when payments are due. Use the data value 0 if payments are due at the end of the payment period, or use the data value1 if payments are due at the beginning of the period.
If omitted, the data value 0 is assumed.

Runtime Semantics.
· Returns a Double data value specifying the payment for an annuity based on periodic, fixed payments and a fixed interest rate.
· The Rate and NPer arguments MUST be calculated using payment periods expressed in the same units. For example, if Rate is calculated using months, NPer MUST also be calculated using months.
· For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers; cash received (such as dividend checks) is represented by positive numbers.
[bookmark: section_a39ac6ed01c04d16a58864b0f2391f64][bookmark: _Toc181684185]PPmt
Function Declaration
Function PPmt(Rate As Double, Per As Double,
 NPer As Double, PV As Double,
 Optional FV As Variant,
 Optional Due As Variant) As Double

	Parameter
	Description

	Rate
	Double data value specifying interest rate per period. For example, given a loan at an annual percentage rate (APR) of 10 percent and making monthly payments, the rate per period is 0.1/12, or 0.0083.

	Per
	Integer data value specifying payment period in the range 1 through NPer.

	NPer
	Integer data value specifying total number of payment periods in the annuity. For example, if making monthly payments on a four-year loan, the loan has a total of 4 * 12 (or 48) payment periods.

	Pv
	Double data value specifying present value, or value today, of a series of future payments or receipts.

	Fv
	Double data value specifying future value or cash balance desired after the final payment has been made. If omitted, the data value 0.0 is assumed.

	Due
	Integer data value specifying when payments are due. Use the data value 0 if payments are due at the end of the payment period, or use the data value1 if payments are due at the beginning of the period.
If omitted, the data value 0 is assumed.

Runtime Semantics.
· Returns a Double data value specifying the principal payment for a given period of an annuity based on periodic, fixed payments and a fixed interest rate. The Rate and NPer arguments MUST be calculated using payment periods expressed in the same units. For example, if Rate is calculated using months, NPer MUST also be calculated using months.
· For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers; cash received (such as dividend checks) is represented by positive numbers.
[bookmark: section_2dd124669a474b64a81a21ee598c0b83][bookmark: _Toc181684186]PV
Function Declaration
Function PV(Rate As Double, NPer As Double, Pmt As Double,
 Optional FV As Variant,
 Optional Due As Variant) As Double

	Parameter
	Description

	Rate
	Double data value specifying interest rate per period. For example, given a loan at an annual percentage rate (APR) of 10 percent and making monthly payments, the rate per period is 0.1/12, or 0.0083.

	NPer
	Integer data value specifying total number of payment periods in the annuity.

	Pmt
	Double data value specifying present value (or lump sum) that a series of payments to be paid in the future is worth now.

	Fv
	Double data value specifying future value or cash balance desired after the final payment has been made.

	Due
	Integer data value specifying when payments are due. Use the data value 0 if payments are due at the end of the payment period, or use the data value 1 if payments are due at the beginning of the period.
If omitted, the data value 0 is assumed.

Runtime Semantics.
· Returns a Double data value specifying the present value of an annuity based on periodic, fixed payments to be paid in the future and a fixed interest rate.
· The Rate and NPer arguments MUST be calculated using payment periods expressed in the same units. For example, if Rate is calculated using months, NPer MUST also be calculated using months.
· For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers; cash received (such as dividend checks) is represented by positive numbers.
[bookmark: section_23d51c12c6ec4c1085f880e3cb7e573b][bookmark: _Toc181684187]Rate
Function Declaration
Function Rate(NPer As Double, Pmt As Double, PV As Double,
 Optional FV As Variant,
 Optional Due As Variant,
 Optional Guess As Variant) As Double

	Parameter
	Description

	NPer
	Double data value specifying total number of payment periods in the annuity.

	Pmt
	Double data value specifying payment to be made each period.

	Pv
	Double data value specifying present value, or value today, of a series of future payments or receipts.

	Fv
	Double data value specifying future value or cash balance desired after the final payment has been made. If omitted, the data value 0.0 is assumed.

	Due
	Integer data value specifying when payments are due. Use the data value 0 if payments are due at the end of the payment period, or use the data value1 if payments are due at the beginning of the period. If omitted, the data value 0 is assumed.

	Guess
	Double data value specifying the estimated value that will be returned by Rate. If omitted, guess is the data value 0.1 (10 percent).

Runtime Semantics.
· Returns a Double data value specifying the interest rate per period for an annuity.
· For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers; cash received (such as dividend checks) is represented by positive numbers.
· Rate is calculated by iteration. Starting with the value of Guess, Rate cycles through the calculation until the result is accurate to within 0.00001 percent. If Rate can't find a result after 20 tries, it fails.
[bookmark: section_b90ea8bfb3d14996b659d6ef4c2c908b][bookmark: _Toc181684188]SLN
Function Declaration
Function SLN(Cost As Double, Salvage As Double,
 Life As Double) As Double

	Parameter
	Description

	Cost
	Double data value specifying initial cost of the asset.

	Salvage
	Double data value specifying value of the asset at the end of its useful life.

	Life
	Double data value specifying length of useful life of the asset.

Runtime Semantics.
· Returns a Double data value specifying the straight-line depreciation of an asset for a single period.
· The depreciation period MUST be expressed in the same unit as the life argument. All arguments MUST be positive numbers.

[bookmark: section_688e1306bcfd4a5ea27b2463ed3b83cb][bookmark: _Toc181684189]SYD
Function Declaration
Function SYD(Cost As Double, Salvage As Double,
 Life As Double, Period As Double) As Double

	Parameter
	Description

	Cost
	Double data value specifying initial cost of the asset.

	Salvage
	Double data value specifying value of the asset at the end of its useful life.

	Life
	Double data value specifying length of useful life of the asset.

	Period
	Double data value specifying period for which asset depreciation is calculated.

Runtime Semantics.
· Returns a Double data value specifying the sum-of-years' digits depreciation of an asset for a specified period.
· The Life and Period arguments MUST be expressed in the same units. For example, if Life is given in months, period MUST also be given in months. All arguments MUST be positive numbers.

[bookmark: section_fd00fc8fea7d4c3bb7a55e55377551e4][bookmark: _Toc181684190]Information
[bookmark: section_f0bab2d6d9af4bbc9cad18011c755afb][bookmark: _Toc181684191]Public Functions
[bookmark: section_4743ffad82af4f999335de011458bb0c][bookmark: _Toc181684192]IMEStatus
Function Declaration
Function IMEStatus() As VbIMEStatus
Runtime Semantics.
· Returns an Integer data value specifying the current implementation dependent Input Method Editor (IME) mode.
[bookmark: section_777dec2585484603873bec6fbdc66ad3][bookmark: _Toc181684193]IsArray
Function Declaration
Function IsArray(Arg As Variant) As Boolean

	Parameter
	Description

	Arg
	Data value to test to see if it is an array.

Runtime Semantics.
· IsArray returns True if the data value of Arg is an array data value; otherwise, it returns False
[bookmark: section_adbaa664a4b64a08a1f08e3d7ea306b3][bookmark: _Toc181684194]IsDate
Function Declaration
Function IsDate(Arg As Variant) As Boolean

	Parameter
	Description

	Arg
	Data value to test to see if it is a Date.

Runtime Semantics.
· Returns a Boolean value indicating whether Arg is a Date data value or a String data value that can be Let-coerced to a Date data value.
[bookmark: section_f8585baaabdc42a0a10044e868ea49b5][bookmark: _Toc181684195]IsEmpty
Function Declaration
Function IsEmpty(Arg As Variant) As Boolean

	Parameter
	Description

	Arg
	Any data value.

Runtime Semantics.
· IsEmpty returns True if the data value of Arg is the data value Empty. Otherwise, it returns False.
[bookmark: section_9de7208760d94ec8ab52b473760a83ed][bookmark: _Toc181684196]IsError
Function Declaration
Function IsError(Arg As Variant) As Boolean

	Parameter
	Description

	Arg
	Any data value.

Runtime Semantics.
· IsError returns True if the data value of Arg is an Error data value. Otherwise, it returns False.
[bookmark: section_9ec6f6f114a6458e902405dd0d9afb26][bookmark: _Toc181684197]IsMissing
Function Declaration
Function IsMissing(Arg As Variant) As Boolean

	Parameter
	Description

	Arg
	Any data value.

Runtime Semantics.
· IsMissing returns True if the data value of Arg is the Missing data value. Otherwise, it returns False.
· If IsMissing is used on a ParamArray argument, it returns False.
[bookmark: section_7f9d8aa815cd471bbe0a4a889295fb42][bookmark: _Toc181684198]IsNull
Function Declaration
Function IsNull(Arg As Variant) As Boolean

	Parameter
	Description

	Arg
	Any data value.

Runtime Semantics.
· IsNull returns True if the data value of Arg is the Null data value. Otherwise, it returns False.

[bookmark: section_d920bc45c366415197dc58c6a5b82780][bookmark: _Toc181684199]IsNumeric
Function Declaration
Function IsNumeric(Arg As Variant) As Boolean

	Parameter
	Description

	Arg
	Any data value.

Runtime Semantics.
· IsNumeric returns True if the value type of the data value of Arg is any of Byte, Currency, Decimal, Double, Integer, Long, LongLong, Single, or Boolean. Otherwise, it returns False.

[bookmark: section_bcd5cbad9d044b64a098c6031a6135d5][bookmark: _Toc181684200]IsObject
Function Declaration
Function IsObject(Arg As Variant) As Boolean
	Parameter
	Description

	Arg
	Any data value.

Runtime Semantics.
· Returns True if the value type of the data value of Arg is Object Reference. Otherwise, it returns False.
[bookmark: section_4b7087c620fc4d908d83730a0c6a4aad][bookmark: _Toc181684201]QBColor
Function Declaration
Function QBColor(Color As Integer) As Long

	Parameter
	Description

	Color
	Integer data value in the range 0-15.

Runtime Semantics.
· If the data value of Color is outside of the range 0-15 then Error 5 ("Invalid procedure call or argument") is raised.
· The color argument represents color values used by earlier versions of Visual Basic. Starting with the least-significant byte, the returned value specifies the red, green, and blue values used to set the appropriate color in the RGB system used by Visual Basic for Applications.
· If the return value is specified by the following table:
	Color data value
	Returned data value
	Common name of color

	0
	0
	Black

	1
	&H800000
	Blue

	2
	&H8000
	Green

	3
	&H808000
	Cyan

	4
	&H80
	Red

	5
	&H800080
	Magenta

	6
	&H8080
	Yellow

	7
	&HC0C0C0
	White

	8
	&H808080
	Gray

	9
	&HFF0000
	Light Blue

	10
	&HFF00
	Light Green

	11
	&HFFFF00
	Light Cyan

	12
	&HFF
	Light Red

	13
	&HFF00FF
	Light Magenta

	14
	&HFFFF
	Light Yellow

	15
	&HFFFFFF
	Bright White

[bookmark: section_2a99cfd654fd4e91abd52aab8ee4b7c4][bookmark: _Toc181684202]RGB
Function Declaration
Function RGB(Red As Integer, Green As Integer,
 Blue As Integer) As Long

	Parameter
	Description

	Red
	Integer data value in the range 0-255, inclusive, that represents the red component of the color.

	Green
	Integer data value in the range 0-255, inclusive, that represents the green component of the color.

	Blue
	Integer data value in the range 0-255, inclusive, that represents the blue component of the color.

Runtime Semantics.
· Returns the Long data value:
 (max(Blue,255)*65536)+(max(Green,255)*256)+max(Red,255).

[bookmark: section_713495ae6a5446f4ad76a7e7697803af][bookmark: _Toc181684203]TypeName
Function Declaration
Function TypeName(Arg As Variant) As String

	Parameter
	Description

	Arg
	Any data value.

Runtime Semantics.
· Returns a String that provides information about a variable.
· The string returned by TypeName can be any one of the following:
	Value type of data value of Arg
	String data value returned

	An object whose type is Object
	The name of the object type

	Byte
	"Byte"

	Integer
	"Integer"

	Long
	"Long"

	LongLong
	"LongLong"

	Single
	"Single"

	Double
	"Double"

	Currency
	"Currency"

	Decimal
	"Decimal"

	Date
	"Date"

	String
	"String"

	Boolean
	"Boolean"

	An error value or Missing
	"Error"

	Empty
	"Empty"

	Null
	"Null"

	Any Object Reference except Nothing
	"Object"

	An object whose type is unknown
	"Unknown"

	Nothing
	"Nothing"

· If Arg is an array, the returned string can be any one of the possible returned strings (or Variant) with empty parentheses appended. For example, if Arg is an array of Integer, TypeName returns "Integer()". If Arg is an array of Variant values, TypeName returns "Variant()".
[bookmark: section_2deec703c2ef4bf1a2461d51c60895da][bookmark: _Toc181684204]VarType
Function Declaration
Function VarType(VarName As Variant) As VbVarType

	Parameter
	Description

	VarName
	Any data value.

Runtime Semantics.
· Returns an Integer indicating the subtype of a variable.
· The required VarName argument is a Variant containing any variable except a variable of a user-defined type.
· Returns a value from the following table based on VarName’s value type:
	VarName’s value type
	Value

	Any Array type
	8192 + VarType of element’s type

	Boolean
	11

	Byte
	17

	Currency
	6

	Date
	7

	Decimal
	14

	Double
	5

	Empty
	0

	Error or Missing
	10

	Integer
	2

	Long
	3

	LongLong (defined only on implementations that support a LongLong value type)
	20

	Null
	1

	Object reference
	9

	Single
	4

	String
	8

	Any UDT
	36 when the declared type is Variant.

0 when the declared type is a UDT.

	Variant (as an element type of an array)
	12

	An implementation-defined value that can be stored in a Variant but that has no value in VBA
	13

[bookmark: section_9a7e0f79316441ddbedabcc02dc79d1f][bookmark: _Toc181684205]Interaction
[bookmark: section_5253bced81cd4a45a4da0270224bf0e5][bookmark: _Toc181684206]Public Functions
[bookmark: section_b195f168fb71428db12d1ab490ba64a4][bookmark: _Toc181684207]CallByName
Function Declaration
Function CallByName(Object As Object, ProcName As String, CallType As VbCallType, Args() As Variant)

	Parameter
	Description

	Object
	Object containing the object on which the function will be executed.

	ProcName
	String containing the name of a property or method of the object.

	CallType
	A constant of type vbCallType representing the type of procedure being called.

	Args()
	Variant array containing arguments to be passed to the method.

Runtime Semantics.
· The CallByName function is used to get or set a property, or invoke a method at run time using a string name, based on the value of the CallType argument:
	Constant
	Value
	Action

	vbGet
	2
	Property Get

	vbLet
	4
	Property Let

	vbMethod
	1
	Method invocation

	vbSet
	8
	Property Set

· If CallType has the value vbSet, the last argument in the Args array represents the value to set.
[bookmark: section_2f1789718a8b4d07a21ed0fa82b9db7c][bookmark: _Toc181684208]Choose
Function Declaration
Function Choose(Index As Single, ParamArray Choice() As Variant)

	Parameter
	Description

	Index
	Numeric expression that results in a value between the data value 1 and the number of available choices.

	Choice
	A ParamArray argument containing all the functions arguments starting with the second argument.

Runtime Semantics.
· Returns a value from its list of arguments.
· Choose returns a value from the list of choices based on the value of index. If Index is n, Choose returns the n-th element of the Choice ParamArray.
· The Choose function returns the data value Null if Index is less than 1 or greater than the number of choices listed.
· If Index argument is Let-coerced to declared type Integer before being used to select
[bookmark: section_03942db82ce246f5b7dcd32779b89101][bookmark: _Toc181684209]Command
Function Declaration
Function Command() As Variant
Function Command$() As String
Runtime Semantics.
· Returns the argument portion of the implementation dependent command used to initiate execution of the currently executing VBA program.
· The runtime semantics of Command$ are identical to those of Command with the exception that the declared type of the return value is String rather than Variant.
[bookmark: section_a2040e6467244bf6a4967ef01ec9af31][bookmark: _Toc181684210]CreateObject
Function Declaration
Function CreateObject(Class As String, Optional ServerName
As String)

	Parameter
	Description

	Class
	A String data value, containing the application name and class of the object to create.

	ServerName
	A String data value, containing the name of the network server where the object will be created. If ServerName is an empty string (""), the local machine is used.

Runtime Semantics.
· Creates and returns an object reference to an externally provided and possibly remote object.
· The class argument uses the Function Declaration AppName.ObjectType and has these parts:
	Parameter
	Description

	AppName
	The name of the application providing the object. The form and interpretation of an AppName is implementation defined.

	ObjectType
	The name of the type or class of object to create. The form and interpretation of an ObjectType name is implementation defined.

· The data value returned by CreateObject is an object reference and can be used in any context where an object reference is expected.
· If remote objects are supported it is via an implementation defined mechanism.
· The format and interpretation of the ServerName argument is implementation defined but the intent is to identify a specific remote computer that that is responsible for providing a reference to a remote object.
· An implementation can provide implementation defined mechanisms for designating single instance classes in which case only one instance of such a class is created, no matter how many times CreateObject is call requesting an instance of such a class.
[bookmark: section_83c90f9196e7421e8fafa07b1c0cbb68][bookmark: _Toc181684211]DoEvents
Function Declaration
Function DoEvents() As Integer
Runtime Semantics.
· Yields execution so that the operating system can process externally generated events.
· The DoEvents function returns an Integer with an implementation defined meaning.
· DoEvents passes control to the operating system. Control is returned after the operating system has finished processing any events in its queue and all keys in the SendKeys queue have been sent.
[bookmark: section_efa62d4987ea4b55949d69a7fc7e08bb][bookmark: _Toc181684212]Environ / Environ$
Function Declaration
Function Environ(Key As Variant) As Variant
Function Environ$(Key As Variant) As Variant

	Parameter
	Description

	Key
	Either a String or a data value that is Let-coercible to Long

Runtime Semantics.
· Returns the String associated with an implementation-defined environment variable.
· If Key is a String and is not the name of a defined environment variable, a zero-length string ("") is returned. Otherwise, Environ returns the string value of the environment variable whose name is the value of Key.
· If Key is numeric the string occupying that numeric position in the environment-string table is returned. The first value in the table starts at position 1. In this case, Environ returns a string of the form "name=value" where name is the name of the environment variable and value is its value. If there is no environment string in the specified position, Environ returns a zero-length string.
· The runtime semantics of Environ$ are identical to those of Environ with the exception that the declared type of the return value is String rather than Variant.
[bookmark: section_a2b5707d9a114cca99203a2b7e7ff518][bookmark: _Toc181684213]GetAllSettings
Function Declaration
Function GetAllSettings(AppName As String, Section As String)

	Parameter
	Description

	AppName
	String expression containing the name of the application or project whose key settings are requested.

	Section
	String expression containing the name of the section whose key settings are requested.

Runtime Semantics.
· If either AppName or Section does not exist in the settings store, return the data value Empty.
· Returns a two-dimensional array of strings containing all the key settings in the specified section and their corresponding values. The lower bound of each dimension is 1. The upper bound of the first dimension is the number of key/value pair. The upper bound of the second dimension is 2.
[bookmark: section_f4c6a91bd66d4eb7878d24974d8e80ac][bookmark: _Toc181684214]GetAttr
Function Declaration
Function GetAttr(PathName As String) As VbFileAttribute

	Parameter
	Description

	PathName
	Expression that specifies a file name; can include directory or folder, and drive.

Runtime Semantics.
· The argument MUST be a valid implementation defined external file identifier.
· Returns an Integer representing attributes of the file, directory, or folder identified by PathName.
· The value returned by GetAttr is composed of the sum of the following of the Enum elements of the Enum VBA.VbFileAttribute and have the following meanings:
	Constant
	Value
	Description

	vbNormal
	0
	Normal.

	vbReadOnly
	1
	Read-only.

	vbHidden
	2
	Hidden.

	vbSystem
	4
	System file.

	vbDirectory
	16
	Directory or folder.

	vbArchive
	32
	File has changed since last backup.

[bookmark: section_7428135320cb4a128deb47839d290132][bookmark: _Toc181684215]GetObject
Function Declaration
Function GetObject(Optional PathName As Variant, Optional Class As Variant)

	Parameter
	Description

	Class
	String, containing the application name and class of the object to create.

	PathName
	String, containing the name of the network server where the object will be created. If PathName is an empty string (""), the local machine is used.

Runtime Semantics.
· Returns an object reference to an externally provided and possibly remote object.
· The Class argument uses the syntax AppName.ObjectType and has these parts:
	Parameter
	Description

	AppName
	The name of the application providing the object. The form and interpretation of an AppName is implementation defined.

	ObjectType
	The name of the type or class of object to create. The form and interpretation of an ObjectType name is implementation defined.

· Returns an object reference to an externally provided and possibly remote object.
· If an object has registered itself as a single-instance object, only one instance of the object is created, no matter how many times CreateObject is executed. With a single-instance object, GetObject always returns the same instance when called with the zero-length string ("") syntax, and it causes an error if the pathname argument is omitted. You can't use GetObject to obtain a reference to a class created with Visual Basic.
[bookmark: section_7e55c0a62fc2425c9f4cbe88cff4f629][bookmark: _Toc181684216]GetSetting
Function Declaration
Function GetSetting(AppName As String, Section As String, Key As String, Optional Default As Variant) As String

	Parameter
	Description

	AppName
	String expression containing the name of the application or project whose key setting is requested.

	Section
	String expression containing the name of the section where the key setting is found.

	Key
	String expression containing the name of the key setting to return.

	Default
	Variant expression containing the value to return if no value is set in the key setting. If omitted, default is assumed to be a zero-length string ("").

Runtime Semantics.
· Returns a key setting value from an application's entry in an implementation dependent application registry.
· If any of the items named in the GetSetting arguments do not exist, GetSetting returns the value of Default.
[bookmark: section_3593c073c77040608416aaf7545ea5fe][bookmark: _Toc181684217]IIf
Function Declaration
Function IIf(Expression As Variant, TruePart As Variant, FalsePart As Variant) As Variant

	Parameter
	Description

	Expression
	Variant containing the expression to be evaluated.

	TruePart
	Variant, containing the value to be returned if Expression evaluates to the data value True.

	FalsePart
	Variant, containing the value to be returned if Expression evaluates to the data value False.

Runtime Semantics.
· Returns one of two parts, depending on the evaluation of an expression.
· IIf always evaluates both TruePart (first) and FalsePart, even though it returns only one of them. For example, if evaluating FalsePart results in a division by zero error, an error occurs even if Expression is True.
[bookmark: section_64b763ff9f5f43cdb247c75557e51989][bookmark: _Toc181684218]InputBox
Function Declaration
Function InputBox(Prompt As Variant, Optional Title As
Variant, Optional Default As Variant, Optional XPos As
Variant, Optional YPos As Variant, Optional HelpFile As
Variant, Optional Context As Variant) As String

	Parameter
	Description

	Prompt
	String data value to be displayed as the message in the dialog box. The maximum length of prompt is approximately 1024 characters, depending on the width of the characters used. If prompt consists of more than one line, the lines can be separated using a carriage return character (Chr(13)), a linefeed character (Chr(10)), or carriage return + linefeed character combination (Chr(13) & Chr(10)) between each line.

	Title
	String to be displayed in the title bar of the dialog box. If Title is omitted, the project name(4.1) is placed in the title bar.

	Default
	String to be displayed in the text box as the default response if no other input is provided. If Default is omitted, the text box is displayed empty.

	XPos
	Long that specifies, in twips, the horizontal distance of the left edge of the dialog box from the left edge of the screen. If XPos is omitted, the dialog box is horizontally centered.

	YPos
	Long that specifies, in twips, the vertical distance of the upper edge of the dialog box from the top of the screen. If YPos is omitted, the dialog box is vertically positioned approximately one-third of the way down the screen.

	HelpFile
	String that identifies the Help file to use to provide context-sensitive Help for the dialog box. If HelpFile is provided, Context MUST also be provided.

	Context
	Long that is the Help context number assigned to the appropriate Help topic by the Help author. If Context is provided, HelpFile MUST also be provided.

Runtime Semantics.
· Displays a prompt in a dialog box, waits for the user to input text or click a button, and returns a String containing the contents of the text box.
· When both HelpFile and Context are provided, the user can press F1 to view the Help topic corresponding to the context. Some host applications can also automatically add a Help button to the dialog box. If the user clicks OK or presses ENTER , the InputBox function returns whatever is in the text box. If the user clicks Cancel, the function returns a zero-length string ("").
· Note: to specify more than the first named argument, you MUST use InputBox in an expression.
To omit some positional arguments, you MUST include the corresponding comma delimiter.
[bookmark: section_ba0375ee936a482c8a9fe9fa4515d191][bookmark: _Toc181684219]MsgBox
Function Declaration
Function MsgBox(Prompt As Variant, Optional Buttons As
VbMsgBoxStyle = vbOKOnly, Optional Title As Variant,
Optional HelpFile As Variant, Optional Context As Variant) As VbMsgBoxResult

	Parameter
	Description

	Prompt
	String to be displayed as the message in the dialog box. The maximum length of prompt is approximately 1024 characters, depending on the width of the characters used. If prompt consists of more than one line, the lines can be separated using a carriage return character (Chr(13)), a linefeed character (Chr(10)), or carriage return + linefeed character combination (Chr(13) & Chr(10)) between each line.

	Buttons
	Numeric expression that is the sum of values specifying the number and type of buttons to display, the icon style to use, the identity of the default button, and the modality of the message box. If omitted, the default value for Buttons is 0.

	Title
	String to be displayed in the title bar of the dialog box. If Title is omitted, the project name (section 4.1) is placed in the title bar.

	HelpFile
	String that identifies the Help file to use to provide context-sensitive Help for the dialog box. If HelpFile is provided, Context MUST also be provided.

	Context
	Long that is the Help context number assigned to the appropriate Help topic by the Help author. If Context is provided, HelpFile MUST also be provided.

Runtime Semantics.
· Displays a message in a dialog box, waits for the user to click a button, and returns an Integer indicating which button the user clicked.
· The Buttons argument settings are:
	Constant
	Value
	Description

	vbOKOnly
	0
	Display OK button only.

	vbOKCancel
	1
	Display OK and Cancel buttons.

	vbAbortRetryIgnore
	2
	Display Abort, Retry, and Ignore buttons.

	vbYesNoCancel
	3
	Display Yes, No, and Cancel buttons.

	vbYesNo
	4
	Display Yes and No buttons.

	vbRetryCancel
	5
	Display Retry and Cancel buttons.

	vbCritical
	16
	Display Critical Message icon.

	vbQuestion
	32
	Display Warning Query icon.

	vbExclamation
	48
	Display Warning Message icon.

	vbInformation
	64
	Display Information Message icon.

	vbDefaultButton1
	0
	First button is default.

	vbDefaultButton2
	256
	Second button is default.

	vbDefaultButton3
	512
	Third button is default.

	vbDefaultButton4
	768
	Fourth button is default.

	vbApplicationModal
	0
	Application modal; the user MUST respond to the message box before continuing work in the current application.

	vbSystemModal
	4096
	System modal; all applications are suspended until the user responds to the message box.

	vbMsgBoxHelpButton
	16384
	Adds Help button to the message box

	VbMsgBoxSetForeground
	65536
	Specifies the message box window as the foreground window

	vbMsgBoxRight
	524288
	Text is right aligned

	vbMsgBoxRtlReading
	1048576
	Specifies text SHOULD appear as right-to-left reading on Hebrew and Arabic systems

· The first group of values (05) describes the number and type of buttons displayed in the dialog box; the second group (16, 32, 48, 64) describes the icon style; the third group (0, 256, 512) determines which button is the default; and the fourth group (0, 4096) determines the modality of the message box. When adding numbers to create a final value for the buttons argument, use only one number from each group.
· The MsgBox function can return one of the following values:
	Constant
	Value
	Description

	vbOK
	1
	OK

	vbCancel
	2
	Cancel

	vbAbort
	3
	Abort

	vbRetry
	4
	Retry

	vbIgnore
	5
	Ignore

	vbYes
	6
	Yes

	vbNo
	7
	No

· When both HelpFile and Context are provided, the user can press F1 to view the Help topic corresponding to the context. Some host applications, for example, Microsoft Excel 2010, also automatically add a Help button to the dialog box.
· If the dialog box displays a Cancel button, pressing the ESC key has the same effect as clicking Cancel. If the dialog box contains a Help button, context-sensitive Help is provided for the dialog box. However, no value is returned until one of the other buttons is clicked.
· Note: to specify more than the first named argument, you MUST use MsgBox in an expression.
To omit some positional arguments, you MUST include the corresponding comma delimiter.
[bookmark: section_44e5d3f261264a0eb047de2d546995c4][bookmark: _Toc181684220]Partition
Function Declaration
Function Partition(Number As Variant, Start As Variant, Stop As Variant, Interval As Variant) As Variant

	Parameter
	Description

	Number
	Long to be evaluated against the ranges.

	Start
	Long that is the start of the overall range of numbers. The number can't be less than 0.

	Stop
	Long that is the end of the overall range of numbers. The number can't be equal to or less than Start.

	Interval
	Long that is the interval of each range. The number can’t be less than 1.

Runtime Semantics.
· Returns a String indicating where a number occurs within a calculated series of ranges.
· The Partition function identifies the particular range in which Number falls and returns a String describing that range. The Partition function is most useful in queries. You can create a select query that shows how many orders fall within various ranges, for example, order values from 1 to 1000, 1001 to 2000, and so on.
· The following table shows how the ranges are determined using three sets of Start, Stop, and Interval parts. The First Range and Last Range columns show what Partition returns. The ranges are represented by lowervalue:uppervalue, where the low end (lowervalue) of the range is separated from the high end (uppervalue) of the range with a colon (:).
	Start
	Stop
	Interval
	Before First
	First Range
	Last Range
	After Last

	0
	99
	5
	" :-1"
	" 0: 4"
	" 95: 99"
	" 100: "

	20
	199
	10
	" : 19"
	" 20: 29"
	" 190: 199"
	" 200: "

	100
	1010
	20
	" : 99"
	" 100: 119"
	" 1000: 1010"
	" 1011: "

· In the preceding table, the third line shows the result when Start and Stop define a set of numbers that can't be evenly divided by Interval. The last range extends to Stop (11 numbers) even though Interval is 20.
· If necessary, Partition returns a range with enough leading spaces so that there are the same number of characters to the left and right of the colon as there are characters in Stop, plus one. This ensures that if you use Partition with other numbers, the resulting text will be handled properly during any subsequent sort operation.
· If Interval is 1, the range is number:number, regardless of the Start and Stop arguments. For example, if Interval is 1, Number is 100 and Stop is 1000, Partition returns " 100: 100".
· If any of the parts is Null, Partition returns the data value Null.
[bookmark: section_70501cdb03224e1f915f819dced09534][bookmark: _Toc181684221]Shell
Function Declaration
Function Shell(PathName As Variant, Optional WindowStyle As VbAppWinStyle = vbMinimizedFocus) As Double

	Parameter
	Description

	PathName
	String, containing the name of the program to execute and any required arguments or command-line switches; can include directory or folder and drive.

	WindowStyle
	Integer corresponding to the style of the window in which the program is to be run. If WindowStyle is omitted, the program is started minimized, with focus.

Runtime Semantics.
· Runs an executable program and returns a Double representing the implementation-defined program's task ID if successful, otherwise it returns the data value 0.
· The WindowStyle parameter accepts these values:
	Constant
	Value
	Description

	vbHide
	0
	Window is hidden and focus is passed to the hidden window.

	vbNormalFocus
	1
	Window has focus and is restored to its original size and position.

	vbMinimizedFocus
	2
	Window is displayed as an icon with focus.

	vbMaximizedFocus
	3
	Window is maximized with focus.

	vbNormalNoFocus
	4
	Window is restored to its most recent size and position. The currently active window remains active.

	vbMinimizedNoFocus
	6
	Window is displayed as an icon. The currently active window remains active.

· If the Shell function successfully executes the named file, it returns the task ID of the started program. The task ID is an implementation-defined unique number that identifies the running program. If the Shell function can't start the named program, an error occurs.
· Note: by default, the Shell function runs other programs asynchronously. This means that a program started with Shell might not finish executing before the statements following the Shell function are executed.
[bookmark: section_7136c7fd223c4870b2ba9fe2cc9a2baa][bookmark: _Toc181684222]Switch
Function Declaration
Function Switch(ParamArray VarExpr() As Variant) As Variant

	Parameter
	Description

	VarExpr
	Array of type Variant containing expressions to be evaluated.

Runtime Semantics.
· Evaluates a list of expressions and returns a Variant value or an expression associated with the first expression in the list that evaluates to the data value True.
· The Switch function argument list consists of pairs of expressions and values. The expressions are evaluated from left to right, and the value associated with the first expression to evaluate to True is returned. If the parts aren't properly paired, a run-time error occurs. For example, if VarExpr(0) evaluates to the data value True, Switch returns VarExpr(1). If VarExpr(0) evaluates to the data value False, but VarExpr(2) evaluates to the data value True, Switch returns VarExpr(3), and so on.
· Switch returns a Null value if:
· None of the expressions evaluates to the data value True.
· The first True expression has a corresponding value that is the data value Null.
· Switch evaluates all of the expressions, even though it returns only one of them. For example, if the evaluation of any expression results in a division by zero error, an error occurs.
[bookmark: section_9af0f4b69d304c6ca8f1fb32903f8142][bookmark: _Toc181684223]Public Subroutines
[bookmark: section_6e739dc67eea4f95ba0aef632e2608ba][bookmark: _Toc181684224]AppActivate
Function Declaration
Sub AppActivate(Title As Variant, Optional Wait As Variant)

	Parameter
	Description

	Title
	String specifying the title in the title bar of the application window to activate. The task ID returned by the Shell function can be used in place of title to activate an application.

	Wait
	Boolean value specifying whether the calling application has the focus before activating another. If False (default), the specified application is immediately activated, even if the calling application does not have the focus. If True, the calling application waits until it has the focus, then activates the specified application.

Runtime Semantics.
· Activates an application window.
· The AppActivate statement changes the focus to the named application or window but does not affect whether it is maximized or minimized. Focus moves from the activated application window when the user takes some action to change the focus or close the window. Use the Shell function to start an application and set the window style.
· In determining which application to activate, Title is compared to the title string of each running application. If there is no exact match, any application whose title string begins with Title is activated. If there is more than one instance of the application named by Title, the window that is activated is implementation-defined.
[bookmark: section_f154435f5eb64300a1c761b925f0cf0a][bookmark: _Toc181684225]Beep
Function Declaration
Sub Beep()
Runtime Semantics.
· Sounds a tone through the computer's speaker.
· The frequency and duration of the beep depend on hardware and system software, and vary among computers.
[bookmark: section_295c31a2a9f64326b69e3d6f5549abec][bookmark: _Toc181684226]DeleteSetting
Function Declaration
Sub DeleteSetting(AppName As String, Optional Section As String, Optional Key As String)

	Parameter
	Description

	AppName
	String expression containing the name of the application or project to which the section or key setting applies.

	Section
	String expression containing the name of the section where the key setting is being deleted. If only AppName and Section are provided, the specified section is deleted along with all related key settings.

	Key
	String expression containing the name of the key setting being deleted.

Runtime Semantics.
· Deletes a section or key setting from an application's entry in an implementation dependent application registry.
· If all arguments are provided, the specified setting is deleted. A run-time error occurs if you attempt to use the DeleteSetting statement on a non-existent Section or Key setting.
[bookmark: section_98261176760c4257847649669bd36053][bookmark: _Toc181684227]SaveSetting
Function Declaration
Sub SaveSetting(AppName As String, Section As String, Key
As String, Setting As String)
	Parameter
	Description

	AppName
	String expression containing the name of the application or project to which the setting applies.

	Section
	String expression containing the name of the section where the key setting is being saved.

	Key
	String expression containing the name of the key setting being saved.

	Setting
	String expression containing the value that key is being set to.

Runtime Semantics.
· Saves or creates an application entry in the application's entry in the implementation dependent application registry.
· An error occurs if the key setting can’t be saved for any reason.
[bookmark: section_df1a061c0f22445993f7a8ada7148bb7][bookmark: _Toc181684228]SendKeys
Function Declaration
Sub SendKeys(String As String, Optional Wait As Variant)

	Parameter
	Description

	String
	String expression specifying the keystrokes to send.

	Wait
	Boolean containing a value specifying the wait mode. If it evaluates to the data value False (default), control is returned to the procedure immediately after the keys are sent. If it evaluates to the data value True, keystrokes MUST be processed before control is returned to the procedure.

Runtime Semantics.
· Sends one or more keystrokes to the active window as if typed at the keyboard.
· Each key is represented by one or more characters. To specify a single keyboard character, use the character itself. For example, to represent the letter A, use
"A"
for String. To represent more than one character, append each additional character to the one preceding it. To represent the letters A, B, and C, use
"ABC"
 	 	for String.
The plus sign (+), caret (^), percent sign (%), tilde (~), and parentheses () have special meanings to SendKeys. To specify one of these characters, enclose it within braces (
{}
). For example, to specify the plus sign, use
{+}
Brackets ([]) have no special meaning to SendKeys, but you MUST enclose them in braces. In other applications, brackets do have a special meaning that can be significant when dynamic data exchange (DDE) occurs. To specify brace characters, use
{{}
 	 	and
{}}
To specify characters that aren't displayed when you press a key, such as ENTER or TAB, and keys that represent actions rather than characters, use the codes shown in the following table:
	Key
	Code

	BACKSPACE
	{BACKSPACE}, {BS}, or {BKSP}

	BREAK
	{BREAK}

	CAPS LOCK
	{CAPSLOCK}

	DEL or DELETE
	{DELETE} or {DEL}

	DOWN ARROW
	{DOWN}

	END
	{END}

	ENTER
	{ENTER}or ~

	ESC
	{ESC}

	HELP
	{HELP}

	HOME
	{HOME}

	INS or INSERT
	{INSERT} or {INS}

	LEFT ARROW
	{LEFT}

	NUM LOCK
	{NUMLOCK}

	PAGE DOWN
	{PGDN}

	PAGE UP
	{PGUP}

	PRINT SCREEN
	{PRTSC}

	RIGHT ARROW
	{RIGHT}

	SCROLL LOCK
	{SCROLLLOCK}

	TAB
	{TAB}

	UP ARROW
	{UP}

	F1
	{F1}

	F2
	{F2}

	F3
	{F3}

	F4
	{F4}

	F5
	{F5}

	F6
	{F6}

	F7
	{F7}

	F8
	{F8}

	F9
	{F9}

	F10
	{F10}

	F11
	{F11}

	F12
	{F12}

	F13
	{F13}

· To specify keys combined with any combination of the SHIFT, CTRL, and ALT keys, precede the key code with one or more of the following codes:
	Key 	
	Code

	SHIFT 	
	+

	CTRL 	
	^

	ALT 	
	%

· To specify that any combination of SHIFT, CTRL, and ALT SHOULD be held down while several other keys are pressed, enclose the code for those keys in parentheses. For example, to specify to hold down SHIFT while E and C are pressed, use "+(EC)". To specify to hold down SHIFT while E is pressed, followed by C without SHIFT, use "+EC".
· To specify repeating keys, use the form {key number}. You MUST put a space between key and number. For example, {LEFT 42} means press the LEFT ARROW key 42 times; {h 10} means press H 10 times.
[bookmark: section_56e717e8b7dc4153afd6db8418f807f6][bookmark: _Toc181684229]KeyCodeConstants

	Constant
	Value
	Description

	vbKeyLButton
	1
	Left mouse button

	vbKeyRButton
	2
	Right mouse button

	vbKeyCancel
	3
	CANCEL key

	vbKeyMButton
	4
	Middle mouse button

	vbKeyBack
	8
	BACKSPACE key

	vbKeyTab
	9
	TAB key

	vbKeyClear
	12
	CLEAR key

	vbKeyReturn
	13
	ENTER key

	vbKeyShift
	16
	SHIFT key

	vbKeyControl
	17
	CTRL key

	vbKeyMenu
	18
	MENU key

	vbKeyPause
	19
	PAUSE key

	vbKeyCapital
	20
	CAPS LOCK key

	vbKeyEscape
	27
	ESC key

	vbKeySpace
	32
	SPACEBAR key

	vbKeyPageUp
	33
	PAGE UP key

	vbKeyPageDown
	34
	PAGE DOWN key

	vbKeyEnd
	35
	END key

	vbKeyHome
	36
	HOME key

	vbKeyLeft
	37
	LEFT ARROW key

	vbKeyUp
	38
	UP ARROW key

	vbKeyRight
	39
	RIGHT ARROW key

	vbKeyDown
	40
	DOWN ARROW key

	vbKeySelect
	41
	SELECT key

	vbKeyPrint
	42
	PRINT SCREEN key

	vbKeyExecute
	43
	EXECUTE key

	vbKeySnapshot
	44
	SNAPSHOT key

	vbKeyInsert
	45
	INS key

	vbKeyDelete
	46
	DEL key

	vbKeyHelp
	47
	HELP key

	vbKeyNumlock
	144
	NUM LOCK key

	vbKeyA
	65
	A key

	vbKeyB
	66
	B key

	vbKeyC
	67
	C key

	vbKeyD
	68
	D key

	vbKeyE
	69
	E key

	vbKeyF
	70
	F key

	vbKeyG
	71
	G key

	vbKeyH
	72
	H key

	vbKeyI
	73
	I key

	vbKeyJ
	74
	J key

	vbKeyK
	75
	K key

	vbKeyL
	76
	L key

	vbKeyM
	77
	M key

	vbKeyN
	78
	N key

	vbKeyO
	79
	O key

	vbKeyP
	80
	P key

	vbKeyQ
	81
	Q key

	vbKeyR
	82
	R key

	vbKeyS
	83
	S key

	vbKeyT
	84
	T key

	vbKeyU
	85
	U key

	vbKeyV
	86
	V key

	vbKeyW
	87
	W key

	vbKeyX
	88
	X key

	vbKeyY
	89
	Y key

	vbKeyZ
	90
	Z key

	vbKey0
	48
	0 key

	vbKey1
	49
	1 key

	vbKey2
	50
	2 key

	vbKey3
	51
	3 key

	vbKey4
	52
	4 key

	vbKey5
	53
	5 key

	vbKey6
	54
	6 key

	vbKey7
	55
	7 key

	vbKey8
	56
	8 key

	vbKey9
	57
	9 key

	vbKeyNumpad0
	96
	Numpad 0 key

	vbKeyNumpad1
	97
	Numpad 1 key

	vbKeyNumpad2
	98
	Numpad 2 key

	vbKeyNumpad3
	99
	Numpad 3 key

	vbKeyNumpad4
	100
	Numpad 4 key

	vbKeyNumpad5
	101
	Numpad 5 key

	vbKeyNumpad6
	102
	Numpad 6 key

	vbKeyNumpad7
	103
	Numpad 7 key

	vbKeyNumpad8
	104
	Numpad 8 key

	vbKeyNumpad9
	105
	Numpad 9 key

	vbKeyMultiply
	106
	Numpad MULTIPLICATION SIGN (*) key

	vbKeyAdd
	107
	Numpad PLUS SIGN (+) key

	vbKeySeparator
	108
	Numpad ENTER (keypad) key

	vbKeySubtract
	109
	Numpad MINUS SIGN (-) key

	vbKeyDecimal
	110
	Numpad DECIMAL POINT(.) key

	vbKeyDivide
	111
	Numpad DIVISION SIGN (/) key

	vbKeyF1
	112
	F1 key

	vbKeyF2
	113
	F2 key

	vbKeyF3
	114
	F3 key

	vbKeyF4
	115
	F4 key

	vbKeyF5
	116
	F5 key

	vbKeyF6
	117
	F6 key

	vbKeyF7
	118
	F7 key

	vbKeyF8
	119
	F8 key

	vbKeyF9
	120
	F9 key

	vbKeyF10
	121
	F10 key

	vbKeyF11
	122
	F11 key

	vbKeyF12
	123
	F12 key

	vbKeyF13
	124
	F13 key

	vbKeyF14
	125
	F14 key

	vbKeyF15
	126
	F15 key

	vbKeyF16
	127
	F16 key

[bookmark: section_4f944a0e59e2432fa6ed8e54311690d1][bookmark: _Toc181684230]Math
[bookmark: section_443a9a6fbe5d4f74bd58769b445c46e3][bookmark: _Toc181684231]Public Functions
[bookmark: section_24ae4ed90c6347a4bf49571cacde6816][bookmark: _Toc181684232]Abs
Function Declaration
Function Abs(Number As Variant) As Variant

	Parameter
	Description

	Number
	Any data value.

Runtime Semantics.
· If Number is the data value Null, returns Null.
· If Number is the data value Empty, returns the Integer data value 0.
· If Number is of a numeric value type, returns a value of the same value type specifying the absolute value of a number.
· Otherwise, the data value of Number is Let-coerced to Double and the absolute value of that data value is returned.
[bookmark: section_d46b696e7b4a4da495733ce16800d5d4][bookmark: _Toc181684233]Atn
Function Declaration
Function Atn(Number As Double) As Double

	Parameter
	Description

	Number
	Double containing any valid numeric expression.

Runtime Semantics.
· Returns a Double specifying the arctangent of a number.
· The Atn function takes the ratio of two sides of a right triangle (Number) and returns the corresponding angle in radians. The ratio is the length of the side opposite the angle divided by the length of the side adjacent to the angle.
· The range of the result is -pi/2 to pi/2 radians.
[bookmark: section_121d275b00dc42eeb12fbd53689a6c5e][bookmark: _Toc181684234]Cos
Function Declaration
Function Cos(Number As Double) As Double

	Parameter
	Description

	Number
	Double containing any valid numeric expression that expresses an angle in radians.

Runtime Semantics.
· Returns a Double specifying the cosine of an angle.
· The Cos function takes an angle and returns the ratio of two sides of a right triangle. The ratio is the length of the side adjacent to the angle divided by the length of the hypotenuse. The result lies in the range -1 to 1.
[bookmark: section_d9a53c4b484943e8b8ef8ead54e9e2e6][bookmark: _Toc181684235]Exp
Function Declaration
Function Exp(Number As Double) As Double

	Parameter
	Description

	Number
	Double containing any valid numeric expression.

Runtime Semantics.
· Returns a Double specifying e (the base of natural logarithms) raised to a power.
· If the value of Number exceeds 709.782712893, an error occurs. The constant e is approximately 2.718282.
[bookmark: section_29162478e7564ab0a7ba466e0d11bcd2][bookmark: _Toc181684236]Log
Function Declaration
Function Log(Number As Double) As Double

	Parameter
	Description

	Number
	Double containing any valid numeric expression greater than zero.

Runtime Semantics.
· Returns a Double specifying the natural logarithm of a number.
· The natural logarithm is the logarithm to the base e. The constant e is approximately 2.718282.
[bookmark: section_d6cdff3d627b42039ea3bca5def01444][bookmark: _Toc181684237]Rnd
Function Declaration
Function Rnd(Optional Number As Variant) As Single

	Parameter
	Description

	Number
	Single containing any valid numeric expression.

Runtime Semantics.
· Returns a Single containing a random number, according to the following table:
	If number is
	Rnd generates

	Less than zero
	The same number every time, using Number as the seed.

	Greater than zero
	The next random number in the sequence.

	Equal to zero
	The most recently generated number.

	Not supplied
	The next random number in the sequence.

· The Rnd function returns a value less than 1 but greater than or equal to zero.
· The value of Number determines how Rnd generates a random number:
o For any given initial seed, the same number sequence is generated because each successive call to the Rnd function uses the previous number as a seed for the next number in the sequence.
· Before calling Rnd, use the Randomize statement without an argument to initialize the random-number generator with a seed based on the system timer.
· To produce random integers in a given range, use this formula:
Int((upperbound - lowerbound + 1) * Rnd + lowerbound)
Here, upperbound is the highest number in the range, and lowerbound is the lowest number in the range.
· An implementation is only required to repeat sequences of random numbers when Rnd is called with a negative argument before calling Randomize with a numeric argument. Using Randomize without calling Rnd in such a way yields implementation-defined results.
· The Rnd function necessarily generates numbers in a predictable sequence, and therefore is not required to use cryptographically-random number generators.
[bookmark: section_7e05d3eb503d4e328ab95dea04531845][bookmark: _Toc181684238]Round
Function Declaration
Function Round(Number As Variant, Optional
NumDigitsAfterDecimal As Long) As Variant

	Parameter
	Description

	Number
	Variant containing the numeric expression being rounded.

	NumDigitsAfterDecimal
	Long indicating how many places to the right of the decimal are included in the rounding. If omitted, integers are returned by the Round function.

Runtime Semantics.
· Returns a number rounded to a specified number of decimal places.
[bookmark: section_b7bbdcd3c8fc4f42b36218ace8f2be55][bookmark: _Toc181684239]Sgn
Function Declaration
Function Sgn(Number As Variant) As Variant

	Parameter
	Description

	Number
	Double containing any valid numeric expression.

Runtime Semantics.
· Returns an Integer indicating the sign of a number, according to the following table:
	If number is
	Sgn returns

	Greater than zero
	1

	Equal to zero
	0

	Less than zero
	-1

· The sign of the number argument determines the return value of the Sgn function.
[bookmark: section_3aa1e60fbd6548daabf396bfb17e22eb][bookmark: _Toc181684240]Sin
Function Declaration
Function Sin(Number As Double) As Double

	Parameter
	Description

	Number
	Double containing any valid numeric expression that expresses an angle in radians.

Runtime Semantics.
· Returns a Double specifying the sine of an angle.
· The Sin function takes an angle and returns the ratio of two sides of a right triangle. The ratio is the length of the side opposite the angle divided by the length of the hypotenuse.
· The result lies in the range -1 to 1.
[bookmark: section_46c6000dc50144f7927060d9a13fc8d4][bookmark: _Toc181684241]Sqr
Function Declaration
Function Sqr(Number As Double) As Double

	Parameter
	Description

	Number
	Double containing any valid numeric expression greater than zero.

Runtime Semantics.
· Returns a Double specifying the square root of a number.
[bookmark: section_9bf01a1bd5b340b5ab72d9eca988dc40][bookmark: _Toc181684242]Tan
Function Declaration
Function Tan(Number As Double) As Double

	Parameter
	Description

	Number
	Double containing any valid numeric expression that expresses an angle in radians.

Runtime Semantics.
· Returns a Double specifying the tangent of an angle.
· Tan takes an angle and returns the ratio of two sides of a right triangle. The ratio is the length of the side opposite the angle divided by the length of the side adjacent to the angle.
[bookmark: section_d968e1a4384e4a48896e523f4ccec631][bookmark: _Toc181684243]Public Subroutines
[bookmark: section_d9eb757d88e048428d10d0bbd7f0ac92][bookmark: _Toc181684244]Randomize
Function Declaration
Sub Randomize(Optional Number As Variant)

	Parameter
	Description

	Number
	Empty or numeric seed value. If the argument is not Empty it MUST be Let-coercible to Double.
Read Only

 Runtime Semantics.
· Initializes the random-number generator.
· Randomize uses Number to initialize the Rnd function's random-number generator, giving it a new seed value. If the argument is missing or Empty, the value returned by the system timer is used as the new seed value.
· If Randomize is not used, the Rnd function (with no arguments) uses the same number as a seed the first time it is called, and thereafter uses the last generated number as a seed value.
· An implementation is only required to repeat sequences of random numbers when Rnd is called with a negative argument before calling Randomize with a numeric argument. Using Randomize without calling Rnd in such a way yields implementation-defined results.
[bookmark: section_f87cc0fbf0ca4875969134d80e2933b0][bookmark: _Toc181684245]Strings
[bookmark: section_3e63046e6ccd4170a794f19dc9f0a84e][bookmark: _Toc181684246]Public Functions
[bookmark: section_5c7a1c4917694609a5aef67acbc30967][bookmark: _Toc181684247]Asc / AscW
Function Declaration
Function Asc(StringValue As String) As Integer

	Parameter
	Description

	StringValue
	String expression that SHOULD contain at least one character.

Runtime Semantics.
· Returns an Integer data value representing the 7-bit ASCII code point of the first character of StringValue. If the character does not correspond to an ASCII character the result is implementation defined.
· Code point value greater than 32,767 are returned as negative Integer data values.
· If the argument is the null string ("") Error Number 5 ("Invalid procedure call or argument") is raised.
[bookmark: section_70bbdd142cc640f78119ca0cd3a251c9][bookmark: _Toc181684248]AscB
Function Declaration
Function AscB(StringValue As String) As Integer

	Parameter
	Description

	StringValue
	String expression that SHOULD contain at least one character.

Runtime Semantics.
· Returns an Integer data value that is the first eight bits (the first byte) of the implementation dependent character encoding of the string. If individual character code points more than 8 bits it is implementation dependent as to whether the bits returned are the high order or low order bits of the code point.
· If the argument is the null string ("") Error Number 5 ("Invalid procedure call or argument") is raised.
[bookmark: section_aab8e1d9287d4098bf3a14271eaa4b8e][bookmark: _Toc181684249]AscW
Function Declaration
Function AscW(StringValue As String) As Integer

	Parameter
	Description

	StringValue
	String expression that SHOULD contain at least one character.

Runtime Semantics.
· If the implemented uses 16-bit Unicode code points returns an Integer data value that is the 16-bit Unicode code point of the first character of StringValue.
· If the implementation does not support Unicode, return the result of Asc(StringValue).
· Code point values greater than 32,767 are returned as negative Integer data values.
· If the argument is the null string ("") Error Number 5 ("Invalid procedure call or argument") is raised.
[bookmark: section_750a9a9e1df84f4aba4b83508af2ea7a][bookmark: _Toc181684250]Chr / Chr$
Function Declaration
Function Chr(CharCode As Long) As Variant
Function Chr$(CharCode As Long) As String

	Parameter
	Description

	CharCode
	Long whose value is a code point.

Runtime Semantics.
· Returns a String data value consisting of a single character containing the character whose code point is the data value of the argument.
· If the argument is not in the range 0 to 255, Error Number 5 ("Invalid procedure call or argument") is raised unless the implementation supports a character set with a larger code point range.
· If the argument value is in the range of 0 to 127, it is interpreted as a 7-bit ASCII code point.
· If the argument value is in the range of 128 to 255, the code point interpretation of the value is implementation defined.
· Chr$ has the same runtime semantics as Chr, however the declared type of its function result is String rather than Variant.
[bookmark: section_900323ac816042cdae524073f2a95116][bookmark: _Toc181684251]ChrB / ChrB$
Function Declaration
Function ChrB(CharCode As Long) As Variant
Function ChrB$(CharCode As Long) As String

	Parameter
	Description

	CharCode
	Long whose value is a code point.

Runtime Semantics.
· Returns a String data value consisting of a single byte character whose code point value is the data value of the argument.
· If the argument is not in the range 0 to 255, Error Number 6 ("Overflow") is raised.
· ChrB$ has the same runtime semantics as ChrB however the declared type of its function result is String rather than Variant.
· Note: the ChrB function is used with byte data contained in a String. Instead of returning a character, which can be one or two bytes, ChrB returns a single byte. The ChrW function returns a String containing the Unicode character except on platforms where Unicode is not supported, in which case, the behavior is identical to the Chr function.
[bookmark: section_de4b7500260f41c5b2fd082eddd5f0b2][bookmark: _Toc181684252]ChrW/ ChrW$
Function Declaration
Function ChrW(CharCode As Long) As Variant
Function ChrW$(CharCode As Long) As String

	Parameter
	Description

	CharCode
	Long whose value is a code point.

Runtime Semantics.
· Returns a String data value consisting of a single character containing the character whose code point is the data value of the argument.
· If the argument is not in the range -32,767 to 65,535 then Error Number 5 ("Invalid procedure call or argument") is raised.
· If the argument is a negative value it is treated as if it was the value: CharCode + 65,536.
· If the implemented uses 16-bit Unicode code points argument, data value is interpreted as a 16-bit Unicode code point.
· If the implementation does not support Unicode, ChrW has the same semantics as Chr.
· ChrW$ has the same runtime semantics as ChrW, however the declared type of its function result is String rather than Variant.
[bookmark: section_22ca3cbff56b47958f9cf0a59414eaad][bookmark: _Toc181684253]Filter
Function Declaration
Function Filter(SourceArray() As Variant, Match As String,
Optional Include As Boolean = True, Optional Compare As
VbCompareMethod = vbBinaryCompare)

	Parameter
	Description

	SourceArray
	Variant containing one-dimensional array of strings to be searched.

	Match
	String to search for.

	Include
	Boolean value indicating whether to return substrings that include or exclude match. If include is True, Filter returns the subset of the array that contains match as a substring. If include is False, Filter returns the subset of the array that does not contain match as a substring.

	Compare
	Numeric value indicating the kind of string comparison to use. See the next table in this section for values.

Runtime Semantics.
· Returns a zero-based array containing subset of a string array based on a specified filter criteria.
· The Compare argument can have the following values (if omitted, it uses the <option-compare-directive> of the calling module):
	Constant
	Value
	Description

	vbBinaryCompare
	0
	Performs a binary comparison.

	vbTextCompare
	1
	Performs a textual comparison.

· If no matches of Match are found within SourceArray, Filter returns an empty array. An error occurs if SourceArray is the data value Null or is not a one-dimensional array.
· The array returned by the Filter function contains only enough elements to contain the number of matched items.
[bookmark: section_c2022d5337dc45978321728e385afc92][bookmark: _Toc181684254]Format
Function Declaration
Function Format(Expression As Variant, Optional Format As
Variant, Optional FirstDayOfWeek As VbDayOfWeek = vbSunday,
Optional FirstWeekOfYear As VbFirstWeekOfYear = vbFirstJan1)

	Parameter
	Description

	Expression
	Any valid expression.

	Format
	A valid named or user-defined format expression.

	FirstDayOfWeek
	A constant that specifies the first day of the week.

	FirstWeekOfYear
	A constant that specifies the first week of the year.

Runtime Semantics.
· Returns a String containing an expression formatted according to instructions contained in a format expression.
· The FirstDayOfWeek argument has these settings:
	Constant
	Value
	Description

	vbUseSystem
	0
	Use NLS API setting.

	VbSunday
	1
	Sunday (default)

	vbMonday
	2
	Monday

	vbTuesday
	3
	Tuesday

	vbWednesday
	4
	Wednesday

	vbThursday
	5
	Thursday

	vbFriday
	6
	Friday

	vbSaturday
	7
	Saturday

· The FirstWeekOfYear argument has these settings:
	Constant
	Value
	Description

	vbUseSystem
	0
	Use NLS API setting.

	vbFirstJan1
	1
	Start with week in which January 1 occurs (default).

	vbFirstFourDays
	2
	Start with the first week that has at least four days in the year.

	vbFirstFullWeek
	3
	Start with the first full week of the year.

· To determine how to format a certain type of data, see the following table:
	To Format
	Do This

	Numbers
	Use predefined named numeric formats or create user-defined numeric formats.

	Dates and times
	Use predefined named date/time formats or create user-defined date/time formats.

	Date and time serial numbers
	Use date and time formats or numeric formats.

	Strings
	Create a user-defined string format.

· If you try to format a number without specifying Format, Format provides functionality similar to the Str function, although it is internationally aware. However, positive numbers formatted as strings using Format do not include a leading space reserved for the sign of the value; those converted using Str retain the leading space.
· When formatting a non-localized numeric string, use a user-defined numeric format to ensure that it gets formatted correctly.
· Note: if the Calendar property setting is Gregorian and format specifies date formatting, the supplied expression MUST be Gregorian. If the Visual Basic Calendar property setting is Hijri, the supplied expression MUST be Hijri.
· If the calendar is Gregorian, the meaning of format expression symbols is unchanged. If the calendar is Hijri, all date format symbols (for example, dddd, mmmm, yyyy) have the same meaning but apply to the Hijri calendar. Format symbols remain in English; symbols that result in text display (for example, AM and PM) display the string (English or Arabic) associated with that symbol. The range of certain symbols changes when the calendar is Hijri.
	Symbol
	Range

	d
	1-30

	dd
	1-30

	ww
	1-51

	mmm
	Displays full month names (Hijri month names have no abbreviations).

	y
	1-355

	yyyy
	100-9666

[bookmark: section_dc8463edbfe648d6b8043e993880ae45][bookmark: _Toc181684255]Format$
This function is functionally identical to the Format function, with the exception that the return type of the function is String rather than Variant.
[bookmark: section_2cf6e81fa6934884a211814c8c95e5a2][bookmark: _Toc181684256]FormatCurrency
Function Declaration
Function FormatCurrency(Expression As Variant, Optional
NumDigitsAfterDecimal As Long = -1, Optional
IncludeLeadingDigit As VbTriState = vbUseDefault, Optional
UseParensForNegativeNumbers As VbTriState = vbUseDefault,
Optional GroupDigits As VbTriState = vbUseDefault) As
String
	Parameter
	Description

	Expression
	Variant containing the expression to be formatted.

	NumDigitsAfterDecimal
	Numeric value indicating how many places to the right of the decimal are displayed. Default value is 1, which indicates that the computer's regional settings are used.

	IncludeLeadingDigit
	Tristate constant that indicates whether or not a leading zero is displayed for fractional values. See the next table in this section for values.

	UseParensForNegativeNumbers
	Tristate constant that indicates whether or not to place negative values within parentheses. See the next table in this section for values.

	GroupDigits
	Tristate constant that indicates whether or not numbers are grouped using the group delimiter specified in the computer's regional settings. See the next table in this section for values.

Runtime Semantics.
· Returns an expression formatted as a currency value using the implementation-defined currency symbol.
· The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the following settings:
	Constant
	Value
	Description

	vbTrue
	1
	True

	vbFalse
	0
	False

	vbUseDefault
	2
	Implementation-defined value.

· Returns an expression formatted as a currency value using the implementation-defined currency symbol.
· When one or more optional arguments are omitted, the values for omitted arguments are implementation-defined.
· The position of the currency symbol relative to the currency value is implementation-defined.
[bookmark: section_dc56ab7edc094b5090aed994460c99a6][bookmark: _Toc181684257]FormatDateTime
Function Declaration
Function FormatDateTime(Expression As Variant, NamedFormat As VbDateTimeFormat = vbGeneralDate) As String

	Parameter
	Description

	Expression
	Variant containing a Date expression to be formatted.

	NamedFormat
	Numeric value that indicates the date/time format used. If omitted, vbGeneralDate is used.

Runtime Semantics.
· Returns an expression formatted as a date or time.
· The NamedFormat argument has the following settings:
	Constant
	Value
	Description

	vbGeneralDate
	0
	Display a date and/or time. If there is a date part, display it as a short date. If there is a time part, display it as a long time. If present, both parts are displayed.

	vbLongDate
	1
	Display a date using the implementation-defined long date format.

	vbShortDate
	2
	Display a date using the implementation-defined short date format.

	vbLongTime
	3
	Display a time using the implementation-defined time format.

	vbShortTime
	4
	Display a time using the 24-hour format (hh:mm).

[bookmark: section_357ce1a8bacd4a69942e921a6bc76c6d][bookmark: _Toc181684258]FormatNumber
Function Declaration
Function FormatNumber(Expression, Optional
NumDigitsAfterDecimal As Long = -1, Optional
IncludeLeadingDigit As VbTriState = vbUseDefault, Optional
UseParensForNegativeNumbers As VbTriState = vbUseDefault,
Optional GroupDigits As VbTriState = vbUseDefault) As String

	Parameter
	Description

	Expression
	Variant containing the expression to be formatted.

	NumDigitsAfterDecimal
	Numeric value indicating how many places to the right of the decimal are displayed. Default value is 1, which indicates that implementation-defined settings are used.

	IncludeLeadingDigit
	Tristate constant that indicates whether or not a leading zero is displayed for fractional values. See the next table in this section for values.

	UseParensForNegativeNumbers
	Tristate constant that indicates whether or not to place negative values within parentheses. See the next table in this section for values.

	GroupDigits
	Tristate constant that indicates whether or not numbers are grouped using the implementation-defined group delimiter. See the next table in this section for values.

Runtime Semantics.
· Returns an expression formatted as a number.
· The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the following settings:
	Constant
	Value
	Description

	vbTrue
	1
	True

	vbFalse
	0
	False

	vbUseDefault
	2
	Implementation-defined value.

· Returns an expression formatted as a number.
· When one or more optional arguments are omitted, the values for omitted arguments are provided by the computer's regional settings.
[bookmark: section_60b37972e7104c3aa985c71794a60739][bookmark: _Toc181684259]FormatPercent
Function Declaration
Function FormatPercent(Expression, Optional
NumDigitsAfterDecimal As Long = -1, Optional
IncludeLeadingDigit As VbTriState = vbUseDefault, Optional
UseParensForNegativeNumbers As VbTriState = vbUseDefault,
Optional GroupDigits As VbTriState = vbUseDefault) As String

	Parameter
	Description

	Expression
	Variant containing the expression to be formatted.

	NumDigitsAfterDecimal
	Numeric value indicating how many places to the right of the decimal are displayed. Default value is 1, which indicates that implementation-defined settings are used.

	IncludeLeadingDigit
	Tristate constant that indicates whether or not a leading zero is displayed for fractional values. See the next table in this section for values.

	UseParensForNegativeNumbers
	Tristate constant that indicates whether or not to place negative values within parentheses. See the next table in this section for values.

	GroupDigits
	Tristate constant that indicates whether or not numbers are grouped using the implementation-defined group delimiter. See the next table in this section for values.

Runtime Semantics.
· Returns an expression formatted as a percentage (multiplied by 100) with a trailing % character.
· The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the following settings:
	Constant
	Value
	Description

	vbTrue
	1
	True

	vbFalse
	0
	False

	vbUseDefault
	2
	Use the setting from the computer's regional settings.

· When one or more optional arguments are omitted, the values for omitted arguments are implementation-defined.
[bookmark: section_33e810674b434c45a5010acf1616f2f9][bookmark: _Toc181684260]InStr / InStrB
Function Declaration
Function InStr(Optional Arg1 As Variant, Optional Arg2 As
Variant, Optional Arg3 As Variant, Optional Compare As
VbCompareMethod = vbBinaryCompare)
If Arg3 is not present then Arg1 is used as the string to be searched, and Arg2 is used as the pattern (and the start position is 1). If Arg3 IS present then Arg1 is used as a string and Arg2 is used as the pattern.
	Parameter
	Description

	Arg1
	Numeric expression that sets the starting position for each search. If omitted, search begins at the first character position. If start contains the data value Null, an error occurs. This argument is required if Compare is specified.

	Arg2
	String expression to search.

	Arg3
	String expression sought.

	Compare
	Specifies the type of string comparison. If compare is the data value Null, an error occurs. If Compare is omitted, the Option Compare setting determines the type of comparison. Specify a valid LCID (LocaleID) to use locale-specific rules in the comparison.

Runtime Semantics.
· Returns a Long specifying the position of the first occurrence of one string within another.
· The Compare argument can have the following values (if omitted, it uses the <option-compare-directive> of the calling module):
	Constant
	Value
	Description

	vbBinaryCompare
	0
	Performs a binary comparison.

	vbTextCompare
	1
	Performs a textual comparison.

· InStr returns the following values:
	If
	InStr returns

	Arg2 is zero-length
	0

	Arg2 is Null
	Null

	Arg3 is zero-length
	Arg1

	Arg3 is Null
	Null

	Arg3 is not found
	0

	Arg3 is found within Arg2
	Position at which match is found

	Arg1 > Arg3
	0

· The InStrB function is used with byte data contained in a string. Instead of returning the character position of the first occurrence of one string within another, InStrB returns the byte position.
[bookmark: section_9d45a1003a6d4cb6aa09772ccffe9706][bookmark: _Toc181684261]InStrRev
Function Declaration
Function InStrRev(StringCheck As String, StringMatch As
String, Optional Start As Long = -1, Optional Compare As VbCompareMethod = vbBinaryCompare) As Long

	Parameter
	Description

	StringCheck
	String expression to search.

	StringMatch
	String expression being searched for.

	Start
	Long containing a numeric expression that sets the starting position for each search. If omitted, the data value 1 is used, which means that the search begins at the last character position. If Start contains the data value Null, an error occurs.

	Compare
	Numeric value indicating the kind of comparison to use when evaluating substrings. If omitted, a binary comparison is performed. See the next table in this section for values.

Runtime Semantics.
· Returns the position of an occurrence of one string within another, from the end of string.
· The Compare argument can have the following values (if omitted, it uses the <option-compare-directive> of the calling module):
	Constant
	Value
	Description

	vbBinaryCompare
	0
	Performs a binary comparison.

	vbTextCompare
	1
	Performs a textual comparison.

· InStrRev returns the following values:
	If
	InStrRev returns

	StringCheck is zero-length
	0

	StringCheck is Null
	Null

	StringMatch is zero-length
	Start

	StringMatch is Null
	Null

	StringMatch is not found
	0

	StringMatch is found within StringCheck
	Position at which match is found

	Start > Len(StringMatch)
	0

[bookmark: section_1c276c6fc3b04de7ade57803f99eea44][bookmark: _Toc181684262]Join
Function Declaration
Function Join(SourceArray() As Variant, Optional Delimiter As Variant) As String

	Parameter
	Description

	SourceArray
	Variant containing one-dimensional array containing substrings to be joined.

	Delimiter
	String character used to separate the substrings in the returned string. If omitted, the space character (" ") is used. If Delimiter is a zero-length string (""), all items in the list are concatenated with no delimiters.

Runtime Semantics.
· Returns a string created by joining a number of substrings contained in an array.
[bookmark: section_bf65d9321cdf49e99e1235eb4d85f4f3][bookmark: _Toc181684263]LCase
Function Declaration
Function LCase(String As Variant)

	Parameter
	Description

	String
	Variant containing any valid String expression. If String contains the data value Null, Null is returned.

Runtime Semantics.
· Returns a String that has been converted to lowercase.
· Only uppercase letters are converted to lowercase; all lowercase letters and non-letter characters remain unchanged.
[bookmark: section_7d774803644b4366acd9c72f50488c48][bookmark: _Toc181684264]LCase$
This function is functionally identical to the LCase function, with the exception that the return type of the function is String rather than Variant.
[bookmark: section_82b33e27ed2b4eaf95950e7a47457d64][bookmark: _Toc181684265]Left / LeftB
Function Declaration
Function Left(String, Length As Long)

	Parameter
	Description

	String
	String expression from which the leftmost characters are returned. If string contains Null, Null is returned.

	Length
	Long containing a Numeric expression indicating how many characters to return. If it equals the data value 0, a zero-length string ("") is returned. If it’s greater than or equal to the number of characters in String, the entire string is returned.

Runtime Semantics.
· Returns a String containing a specified number of characters from the left side of a string.
· Note: use the LeftB function with byte data contained in a string. Instead of specifying the number of characters to return, length specifies the number of bytes.
[bookmark: section_5f10a9e1b6ba4a92bd94c4c99da74ef2][bookmark: _Toc181684266]Left$
This function is functionally identical to the Left function, with the exception that the return type of the function is String rather than Variant.
[bookmark: section_1afd1ea454ca4bd689377ff97ab16f94][bookmark: _Toc181684267]LeftB$
This function is functionally identical to the LeftB function, with the exception that the return type of the function is String rather than Variant.
[bookmark: section_a4d9985ae2cb489ca20a5da09d77a59e][bookmark: _Toc181684268]Len / LenB
Function Declaration
Function Len(Expression As Variant) As Variant
Function LenB(Expression As Variant) As Variant

	Parameter
	Description

	Expression
	Any valid string expression, or any valid variable name. If the variable name is a Variant, Len/LenB treats it the same as a String and always returns the number of characters it contains.

Runtime Semantics.
· Returns a Long containing the number of characters in a string or the number of bytes required to store a variable on the current platform.
· If Expression contains the data value Null, Null is returned.
· With user-defined types, Len returns the size as it will be written to the file.
· LenB will return the same value as Len, except for strings or UDTs:
· LenB can return different values than Len for Unicode strings or double-byte character set (DBCS) representations. Instead of returning the number of characters in a string, LenB returns the number of bytes used to represent that string.
· With user-defined types, LenB returns the in-memory size, including any implementation-specific padding between elements.
· Note: Len might not be able to determine the actual number of storage bytes required when used with variable-length strings in user-defined data types.
[bookmark: section_053cdd5ac8e24a0d882b46817b13243d][bookmark: _Toc181684269]LTrim / RTrim / Trim
Function Declaration
Function LTrim(String As Variant) As Variant
Function RTrim(String As Variant) As Variant
Function Trim(String As Variant) As Variant

	Parameter
	Description

	String
	Variant, containing any valid String expression.

Runtime Semantics.
· Returns a String containing a copy of a specified string without leading spaces (LTrim), trailing spaces (RTrim), or both leading and trailing spaces (Trim).
· If String contains the data value Null, Null is returned.
[bookmark: section_ea1d57eab712457bb12f0c4d6a5b9031][bookmark: _Toc181684270]LTrim$ / RTrim$ / Trim$
These functions are functionally identical to the LTrim, RTrim, and Trim functions respectively, with the exception that the return type of these functions is String rather than Variant.
[bookmark: section_4a65ee4eb6b945d3a3f6576fed4bb227][bookmark: _Toc181684271]Mid / MidB
Function Declaration
Function Mid(String As Variant, Start As Long, Optional
Length As Variant) As Variant

	Parameter
	Description

	String
	String expression from which characters are returned. If String contains the data value Null, Null is returned.

	Start
	Long containing the character position in String at which the part to be taken begins. If Start is greater than the number of characters in String, Mid returns a zero-length string ("").

	Length
	Long containing the number of characters to return. If omitted or if there are fewer than Length characters in the text (including the character at start), all characters from the start position to the end of the string are returned.

Runtime Semantics.
· Returns a String containing a specified number of characters from a string.
· To determine the number of characters in String, use the Len function.
· Note: use the MidB function with byte data contained in a string, as in double-byte character set languages. Instead of specifying the number of characters, the arguments specify numbers of bytes.
[bookmark: section_4430170b01874a5483b0cafbfadf8127][bookmark: _Toc181684272]Mid$
This function is functionally identical to the Mid function, with the exception that the return type of the function is String rather than Variant.
[bookmark: section_e612f091c89e4e65ad5a836f76b183ec][bookmark: _Toc181684273]MidB$
This function is functionally identical to the MidB function, with the exception that the return type of the function is String rather than Variant.
[bookmark: section_da532aeb53ec495fae661bcfbd97ef0b][bookmark: _Toc181684274]MonthName
Function Declaration
Function MonthName(Month As Long, Optional Abbreviate As Boolean = False) As String
	Parameter
	Description

	Month
	Long containing the numeric designation of the month. For example, January is 1, February is 2, and so on.

	Abbreviate
	Boolean value that indicates if the month name is to be abbreviated. If omitted, the default is False, which means that the month name is not abbreviated.

Runtime Semantics.
· Returns a String indicating the specified month.
[bookmark: section_6af9457c70ea469180d63dca9f152aee][bookmark: _Toc181684275]Replace
Function Declaration
Function Replace(Expression As String, Find As String,
Replace As String, Optional Start As Long = 1, Optional Count As Long = -1, Optional Compare As VbCompareMethod = vbBinaryCompare) As String

	Parameter
	Description

	Expression
	String expression containing substring to replace.

	Find
	Substring being searched for.

	Replace
	Replacement substring.

	Start
	Position within expression where substring search is to begin. If omitted, the data value 1 is assumed.

	Count
	Number of substring substitutions to perform. If omitted, the default value is the data value 1, which means make all possible substitutions.

	Compare
	Numeric value indicating the kind of comparison to use when evaluating substrings. See the next table in this section for values.

Runtime Semantics.
· Returns a String in which a specified substring has been replaced with another substring a specified number of times.
· The Compare argument can have the following values (if omitted, it uses the <option-compare-directive> of the calling module):
	Constant
	Value
	Description

	vbBinaryCompare
	0
	Performs a binary comparison.

	vbTextCompare
	1
	Performs a textual comparison.

· Replace returns the following values:
	If
	Replace returns

	Expression is zero-length
	Zero-length string ("")

	Expression is Null
	An error.

	Find is zero-length
	Copy of Expression.

	Replace is zero-length
	Copy of Expression with all occurrences of Find removed.

	Start > Len(Expression)
	Zero-length string.

	Count is 0
	Copy of Expression.

· The return value of the Replace function is a String, with substitutions made, that begins at the position specified by Start and concludes at the end of the Expression string. It is not a copy of the original string from start to finish.
[bookmark: section_59107ed45d21468e832382620b2f0442][bookmark: _Toc181684276]Right / RightB
Function Declaration
Function Right(String, Length As Long)

	Parameter
	Description

	String
	String expression from which the rightmost characters are returned. If string contains the data value Null, Null is returned.

	Length
	Long containing the numeric expression indicating how many characters to return. If it equals the data value 0, a zero-length string ("") is returned. If it is greater than or equal to the number of characters in String, the entire string is returned.

Runtime Semantics.
· Returns a String containing a specified number of characters from the right side of a string.
· To determine the number of characters in string, use the Len function.
· Note: use the RightB function with byte data contained in a String. Instead of specifying the number of characters to return, length specifies the number of bytes.
[bookmark: section_975e25823fee4006a0b548be3984982c][bookmark: _Toc181684277]Right$
This function is functionally identical to the Right function, with the exception that the return type of the function is String rather than Variant.
[bookmark: section_0be0e96786d9425daec5e7c2b8855cea][bookmark: _Toc181684278]RightB$
This function is functionally identical to the RightB function, with the exception that the return type of the function is String rather than Variant.
[bookmark: section_39487af8ae4f4703a7f9b2b220e80981][bookmark: _Toc181684279]Space
Function Declaration
Function Space(Number As Long) As Variant
	Parameter
	Description

	Number
	Long containing the number of spaces in the String.

Runtime Semantics.
· Returns a String consisting of the specified number of spaces.
· The Space function is useful for formatting output and clearing data in fixed-length strings.
[bookmark: section_3610e96f51cf44f6acbdc5d5244d917b][bookmark: _Toc181684280]Space$
This function is functionally identical to the Space function, with the exception that the return type of the function is String rather than Variant.
[bookmark: section_d9c2417c2d3645b1b3d71876064e6085][bookmark: _Toc181684281]Split
Function Declaration
Function Split(Expression As String, Optional Delimiter As
Variant, Optional Limit As Long = -1, Optional Compare As VbCompareMethod = vbBinaryCompare)

	Parameter
	Description

	Expression
	String expression containing substrings and delimiters. If expression is a zero-length string(""), Split returns an empty array, that is, an array with no elements and no data.

	Delimiter
	String containing the character used to identify substring limits. If omitted, the space character (" ") is assumed to be the delimiter. If delimiter is a zero-length string, a single-element array containing the entire expression string is returned.

	Limit
	Number of substrings to be returned; the data value 1 indicates that all substrings are returned.

	Compare
	Numeric value indicating the kind of comparison to use when evaluating substrings. See the next table in this section for values.

Runtime Semantics.
· Returns a zero-based, one-dimensional array containing a specified number of substrings.
· The Compare argument can have the following values (if omitted, it uses the <option-compare-directive> of the calling module):
	Constant
	Value
	Description

	vbBinaryCompare
	0
	Performs a binary comparison.

	vbTextCompare
	1
	Performs a textual comparison.

[bookmark: section_9541f02ae17347a78c0f4d91813c1c88][bookmark: _Toc181684282]StrComp
Function Declaration
Function StrComp(String1 As Variant, String2 As Variant,
Optional Compare As VbCompareMethod = vbBinaryCompare)

	Parameter
	Description

	String1
	Any valid String expression.

	String2
	Any valid String expression.

	Compare
	Specifies the type of string comparison. If the Compare argument is the data value Null, an error occurs.

Runtime Semantics.
· Returns an Integer indicating the result of a string comparison.
· The Compare argument can have the following values (if omitted, it uses the <option-compare-directive> of the calling module):
	Constant
	Value
	Description

	vbBinaryCompare
	0
	Performs a binary comparison.

	vbTextCompare
	1
	Performs a textual comparison.

· The StrComp function has the following return values:
	If
	StrComp returns

	String1 is less than String2
	-1

	String1 is equal to String2
	0

	String1 is greater than String2
	1

	String1 or String2 is Null
	Null

[bookmark: section_17afbc5be1c74717bfe39ae938ef0736][bookmark: _Toc181684283]StrConv
Function Declaration
Function StrConv(String As Variant, Conversion As VbStrConv, LocaleID As Long) As Variant

	Parameter
	Description

	String
	String containing the expression to be converted.

	Conversion
	Integer containing the sum of values specifying the type of conversion to perform.

	LCID
	The LocaleID, if different than the default implementation-defined LocaleID.

Runtime Semantics.
· Returns a String converted as specified.
· The Conversion argument settings are:
	Constant
	Value
	Description

	vbUpperCase
	1
	Converts the string to uppercase characters.

	vbLowerCase
	2
	Converts the string to lowercase characters.

	vbProperCase
	3
	Converts the first letter of every word in string to uppercase.

	vbWide*
	4*
	Converts narrow (single-byte) characters in string to wide (double-byte) characters.

	vbNarrow*
	8*
	Converts wide (double-byte) characters in string to narrow (single-byte) characters.

	vbKatakana**
	16**
	Converts Hiragana characters in string to Katakana characters.

	vbHiragana**
	32**
	Converts Katakana characters in string to Hiragana characters.

	vbUnicode
	64
	Converts the string to Unicode using the default code page of the system.

	vbFromUnicode
	128
	Converts the string from Unicode to the default code page of the system.

*Applies to East Asia locales.
**Applies to Japan only.
· Note: these constants are specified by VBA, and as a result, they can be used anywhere in code in place of the actual values. Most can be combined, for example, vbUpperCase + vbWide, except when they are mutually exclusive, for example, vbUnicode + vbFromUnicode. The constants vbWide, vbNarrow, vbKatakana, and vbHiragana cause run-time errors when used in locales where they do not apply.
· The following are valid word separators for proper casing: Null (Chr$(0)), horizontal tab
(Chr$(9)), linefeed (Chr$(10)), vertical tab (Chr$(11)), form feed (Chr$(12)), carriage return (Chr$(13)), space (SBCS) (Chr$(32)). The actual value for a space varies by country/region for DBCS.
· When converting from a Byte array in ANSI format to a String, use the StrConv function. When converting from such an array in Unicode format, use an assignment statement.
[bookmark: section_1bb5160c72034c3e8650e5aac19477a8][bookmark: _Toc181684284]String
Function Declaration
Function String(Number As Long, Character As Variant) As
Variant

	Parameter
	Description

	Number
	Long specifying the length of the returned string. If number contains the data value Null, Null is returned.

	Character
	Variant containing the character code specifying the character or string expression whose first character is used to build the return string. If character contains Null, Null is returned.

Runtime Semantics.
· Returns a String containing a repeating character string of the length specified.
· If Character is a number greater than 255, String converts the number to a valid character code using the formula: character Mod 256
[bookmark: section_84f4df4e915645dbb4d4066d4848607b][bookmark: _Toc181684285]String$
This function is functionally identical to the String function, with the exception that the return type of the function is String rather than Variant.
[bookmark: section_4d48b91dd72d4f6f957c53e556007e80][bookmark: _Toc181684286]StrReverse
Function Declaration
Function StrReverse(Expression As String) As String

	Parameter
	Description

	Expression
	String whose characters are to be reversed.

Runtime Semantics.
· Returns a String in which the character order of a specified String is reversed.
· If Expression is a zero-length string (""), a zero-length string is returned. If Expression is Null, an error occurs.
[bookmark: section_29b5f1d124b84bc582cf8c98059a7116][bookmark: _Toc181684287]UCase
Function Declaration
Function UCase(String As Variant)

	Parameter
	Description

	String
	Variant containing any valid String expression. If String contains the data value Null, Null is returned.

Runtime Semantics.
· Returns a String that has been converted to uppercase.
· Only lowercase letters are converted to uppercase; all uppercase letters and non-letter characters remain unchanged.
[bookmark: section_5a417dfcc9ad4e0a97bc138dd35c479a][bookmark: _Toc181684288]UCase$
This function is functionally identical to the UCase function, with the exception that the return type of the function is String rather than Variant.
[bookmark: section_09423417ebcb4aa5bb732a8c1a19bd6a][bookmark: _Toc181684289]WeekdayName
Function Declaration
Function WeekdayName(Weekday As Long, Optional Abbreviate
As Boolean = False, Optional FirstDayOfWeek As VbDayOfWeek
= vbUseSystemDayOfWeek) As String

	Parameter
	Description

	Weekday
	Long containing the numeric designation for the day of the week. Numeric value of each day depends on setting of the FirstDayOfWeek setting.

	Abbreviate
	Boolean value that indicates if the weekday name is to be abbreviated. If omitted, the default is False, which means that the weekday name is not abbreviated.

	FirstDayOfWeek
	Numeric value indicating the first day of the week. See the next table in this section for values.

Runtime Semantics.
· Returns a String indicating the specified day of the week.
· The FirstDayOfWeek argument can have the following values:
	Constant
	Value
	Description

	vbUseSystem
	0
	Use National Language Support (NLS) API setting.

	vbSunday
	1
	Sunday (default)

	vbMonday
	2
	Monday

	vbTuesday
	3
	Tuesday

	vbWednesday
	4
	Wednesday

	vbThursday
	5
	Thursday

	vbFriday
	6
	Friday

	vbSaturday
	7
	Saturday

[bookmark: section_52478406c9924997a1ecc752f82915af][bookmark: _Toc181684290]SystemColorConstants
Whenever their values are used in contexts expecting a color value, these system color constants SHOULD be interpreted as their specified implementation-dependent colors.
	Constant
	Value
	Description

	vbScrollBars
	&H80000000
	Scroll bar color

	vbDesktop
	&H80000001
	Desktop color

	vbActiveTitleBar
	&H80000002
	Color of the title bar for the active window

	vbInactiveTitleBar
	&H80000003
	Color of the title bar for the inactive window

	vbMenuBar
	&H80000004
	Menu background color

	vbWindowBackground
	&H80000005
	Window background color

	vbWindowFrame
	&H80000006
	Window frame color

	vbMenuText
	&H80000007
	Color of text on menus

	vbWindowText
	&H80000008
	Color of text in windows

	vbTitleBarText
	&H80000009
	Color of text in caption, size box, and scroll arrow

	vbActiveBorder
	&H8000000A
	Border color of active window

	vbInactiveBorder
	&H8000000B
	Border color of inactive window

	vbApplicationWorkspace
	&H8000000C
	Background color of multiple-document interface (MDI) applications

	vbHighlight
	&H8000000D
	Background color of items selected in a control

	vbHighlightText
	&H8000000E
	Text color of items selected in a control

	vbButtonFace
	&H8000000F
	Color of shading on the face of command buttons

	vbButtonShadow
	&H80000010
	Color of shading on the edge of command buttons

	vbGrayText
	&H80000011
	Grayed (disabled) text

	vbButtonText
	&H80000012
	Text color on push buttons

	vbInactiveCaptionText
	&H80000013
	Color of text in an inactive caption

	vb3DHighlight
	&H80000014
	Highlight color for 3D display elements

	vb3DDKShadow
	&H80000015
	Darkest shadow color for 3D display elements

	vb3DLight
	&H80000016
	Second lightest of the 3D colors after vb3Dhighlight

	vb3DFace
	&H8000000F
	Color of text face

	vb3Dshadow
	&H80000010
	Color of text shadow

	vbInfoText
	&H80000017
	Color of text in ToolTips

	vbInfoBackground
	&H80000018
	Background color of ToolTips

[bookmark: section_6b7b6a273355455ea6ce93588373c783][bookmark: _Toc181684291]Predefined Class Modules
[bookmark: section_31ec9e63f71e4521863ba7d12007b7cc][bookmark: _Toc181684292]Collection Object
The Collection class defines the behavior of a collection, which represents a sequence of values.
[bookmark: section_3f2c31e1524e415c823cdc9d51bf9b7e][bookmark: _Toc181684293]Public Functions
[bookmark: section_6cfa955813374871be641dcef32fde8d][bookmark: _Toc181684294]Count
Function Declaration
Function Count() As Long
Runtime Semantics.
· Returns the number of objects in a collection.
[bookmark: section_2cc7e3b8a9b64f1e9b42960e67c45abe][bookmark: _Toc181684295]Item
Function Declaration
Function Item(Index As Variant) As Variant

	Parameter
	Description

	Index
	An expression that specifies the position of a member of the collection. If a numeric expression, Index MUST be a number from 1 to the value of the collection's Count property. If a string expression, Index MUST correspond to the Key argument specified when the member referred to was added to the collection.

Runtime Semantics.
· Returns a specific member of a Collection object either by position or by key.
· If the value provided as Index does not match any existing member of the collection, an error occurs.
· The Item method is the default method for a collection. Therefore, the following lines of code are equivalent:
Print MyCollection(1)
Print MyCollection.Item(1)
[bookmark: section_8f97f8a0e0a8430a8601330d589b8e3b][bookmark: _Toc181684296]Public Subroutines
[bookmark: section_07e970d80fb5461cbb6f7960e8c45699][bookmark: _Toc181684297]Add
Function Declaration
Sub Add(Item As Variant, Optional Key As Variant, Optional Before As Variant, Optional After As Variant)
	Parameter
	Description

	Item
	An expression of any type that specifies the member to add to the collection.

	Key
	A unique String expression that specifies a key string that can be used, instead of a positional index, to access a member of the collection.

	Before
	An expression that specifies a relative position in the collection. The member to be added is placed in the collection before the member identified by the before argument. If a numeric expression, before MUST be a number from 1 to the value of the collection's Count property. If a String expression, before MUST correspond to the key specified when the member being referred to was added to the collection. Either a Before position or an After position can be specified, but not both.

	After
	An expression that specifies a relative position in the collection. The member to be added is placed in the collection after the member identified by the After argument. If numeric, After MUST be a number from 1 to the value of the collection's Count property. If a String, After MUST correspond to the Key specified when the member referred to was added to the collection. Either a Before position or an After position can be specified, but not both.

Runtime Semantics.
· Adds a member to a Collection object.
· Whether the before or after argument is a string expression or numeric expression, it MUST refer to an existing member of the collection, or an error occurs.
· An error also occurs if a specified Key duplicates the key for an existing member of the collection.
· An implementation can define a maximum number of elements that a Collection object can contain.
[bookmark: section_93d5dcdd91a54fae9ba34472c55faf69][bookmark: _Toc181684298]Remove
Function Declaration
Sub Remove(Index As Variant)
	Parameter
	Description

	Index
	An expression that specifies the position of a member of the collection. If a numeric expression, Index MUST be a number from 1 to the value of the collection's Count property. If a String expression, Index MUST correspond to the Key argument specified when the member referred to was added to the collection.

Runtime Semantics.
· Removes a member from a Collection object.
· If the value provided as Index doesn’t match an existing member of the collection, an error occurs.
[bookmark: section_7075a4ae60554173b4b6e0dab68155e3][bookmark: _Toc181684299]Err Class
The Err Class defines the behavior of its sole instance, known as the Err object. The Err object’s properties and methods reflect and control the error state of the active VBA Environment and can be accessed inside any procedure. The Err Class is a global class module (section 5.2.4.1.2) with a default instance variable (section 5.2.4.1.2) so its sole instance can be directly referenced using the name Err.
[bookmark: section_0d8e11d536bf4bad9d45b54f9f473ba4][bookmark: _Toc181684300]Public Subroutines
[bookmark: section_8329612acea04f18a0bf5b5f77efbf7e][bookmark: _Toc181684301]Clear
Function Declaration
Sub Clear()
Runtime Semantics.
· Clears all property settings of the Err object.
· The Clear method is called automatically whenever any of the following statements is executed:
· Resume statement (section 5.4.4.2)
· Exit Sub (section 5.4.2.17)
· Exit Function (section 5.4.2.18)
· Exit Property (section 5.4.2.19)
· On Error statement (section 5.4.4.1)
[bookmark: section_51d5d48c8c9c4a5da5f0855eb28739f1][bookmark: _Toc181684302]Raise
Function Declaration
Sub Raise(Number As Long, Optional Source As Variant,
Optional Description As Variant, Optional HelpFile As Variant, Optional HelpContext As Variant)
	Parameter
	Description

	Number
	Long that identifies the nature of the error. VBA errors (both VBA-defined and user-defined errors) are in the range 0-65535. The range 0-512 is reserved for system errors; the range 513-65535 is available for user-defined errors. When setting the Number property to a custom error code in a class module, add the error code number to the vbObjectError constant. For example, to generate the error number 513, assign vbObjectError + 513 to the Number property.

	Source
	String expression naming the object or application that generated the error. When setting this property for an object, use the form project.class. If Source is not specified, current project name (section 4.1) is used.

	Description
	String expression describing the error. If unspecified, the value in Number is examined. If it can be mapped to a VBA run-time error code, the String that would be returned by the Error function is used as Description. If there is no VBA error corresponding to Number, the "Application-defined or object-defined error" message is used.

	HelpFile
	The fully qualified path to the Help file in which help on this error can be found. If unspecified, this value is implementation-defined.

	HelpContext
	The context ID identifying a topic within HelpFile that provides help for the error. If omitted, this value is implementation-defined.

Runtime Semantics.
· Generates a run-time error.
· If Raise is invoked without specifying some arguments, and the property settings of the Err object contain values that have not been cleared, those values serve as the values for the new error.
· Raise is used for generating run-time errors and can be used instead of the Error statement (section 5.4.4.3). Raise is useful for generating errors when writing class modules, because the Err object gives richer information than possible when generating errors with the Error statement. For example, with the Raise method, the source that generated the error can be specified in the Source property, online Help for the error can be referenced, and so on.
[bookmark: section_fbf7d695f4ad46e88980e41ffe32ca43][bookmark: _Toc181684303]Public Properties
[bookmark: section_9589efc8018346e9aa30980596f9ebda][bookmark: _Toc181684304]Description
[bookmark: section_e0c1ef21cfcc4dd1814a4bc037021059][bookmark: _Toc181684305]HelpContext
Property HelpContext As Long
Runtime Semantics.
· Returns or sets a String expression containing the context ID for a topic in a Help file.
· The HelpContext property is used to automatically display the Help topic specified in the HelpFile property. If both HelpFile and HelpContext are empty, the value of Number is checked. If Number corresponds to a VBA run-time error value, then the implementation-defined VBA Help context ID for the error is used. If the Number value doesn’t correspond to a VBA error, an implementation-defined Help screen is displayed.
[bookmark: section_60444e0c65ce4566ab7350b5c0c2077d][bookmark: _Toc181684306]HelpFile
Property HelpFile As String
Runtime Semantics.
· Returns or sets a String expression containing the fully qualified path to a Help file.
· If a Help file is specified in HelpFile, it is automatically called when the user presses the Help button (or the F1 KEY) in the error message dialog box. If the HelpContext property contains a valid context ID for the specified file, that topic is automatically displayed. If no HelpFile is specified, an implementation-defined Help file is displayed.
[bookmark: section_54c1352119f146aaa34d4cd5733102f8][bookmark: _Toc181684307]LastDIIError
Property LastDllError As Long
Runtime Semantics.
· Returns a system error code produced by a call to a dynamic-link library (DLL). This value is read-only.
· The LastDLLError property applies only to DLL calls made from VBA code. When such a call is made, the called function usually returns a code indicating success or failure, and the LastDLLError property is filled. Check the documentation for the DLL's functions to determine the return values that indicate success or failure. Whenever the failure code is returned, the VBA application SHOULD immediately check the LastDLLError property. No error is raised when the LastDLLError property is set.
[bookmark: section_af123ad2997f41809d9911d529757bf4][bookmark: _Toc181684308]Number
Property Number As Long
Runtime Semantics.
· Returns or sets a numeric value specifying an error. Number is the Err object's default property.
· When returning a user-defined error from an object, set Err.Number by adding the number selected as an error code to the vbObjectError constant. For example, use the following code to return the number 1051 as an error code:
Err.Raise Number := vbObjectError + 1051, Source:= "SomeClass"
[bookmark: section_a282720fa5584918b5cb6aa7114c0d47][bookmark: _Toc181684309]Source
Property Source As String
Runtime Semantics.
· Returns or sets a String expression specifying the name of the object or application that originally generated the error.
· This property has an implementation-defined default value for errors raised within VBA code.

[bookmark: section_02cee57d60b14335946ad73c9f6a0e20][bookmark: _Toc181684310]Global Class
[bookmark: section_900e6dfeaa5e4c5085c624a46a8033e4][bookmark: _Toc181684311]Public Subroutines
[bookmark: section_c711e6b6973d480bb5cbcf3a49fe049a][bookmark: _Toc181684312]Load
Subroutine Declaration
Sub Load(Object As Object)
Runtime Semantics.
· Loads a form or control into memory.
· Using the Load statement with forms is unnecessary unless you want to load a form without displaying it. Any reference to a form (except in a Set or If...TypeOf statement) automatically loads it if it's not already loaded. For example, the Show method loads a form before displaying it. Once the form is loaded, its properties and controls can be altered by the application, whether or not the form is actually visible.
· When VBA loads a Form object, it sets form properties to their initial values and then performs the Load event procedure. When an application starts, VBA automatically loads and displays the application's startup form.
· When loading a Form whose MDIChild property is set to True (in other words, the child form) before loading an MDIForm, the MDIForm is automatically loaded before the child form. MDI child forms cannot be hidden, and thus are immediately visible after the Form_Load event procedure ends.
[bookmark: section_c8116615fea74aa284afae4b56a903fd][bookmark: _Toc181684313]Unload
Unloads a form or control from memory.
Subroutine Declaration
Sub Unload(Object As Object)
Runtime Semantics.
· Unloads a form or control into memory.
· Unloading a form or control can be necessary or expedient in some cases where the memory used is needed for something else, or when there is a need to reset properties to their original values.
· Before a form is unloaded, the Query_Unload event procedure occurs, followed by the Form_Unload event procedure. Setting the cancel argument to True in either of these events prevents the form from being unloaded. For MDIForm objects, the MDIForm object's Query_Unload event procedure occurs, followed by the Query_Unload event procedure and Form_Unload event procedure for each MDI child form, and finally the MDIForm object's Form_Unload event procedure.
· When a form is unloaded, all controls placed on the form at run time are no longer accessible. Controls placed on the form at design time remain intact; however, any run-time changes to those controls and their properties are lost when the form is reloaded. All changes to form properties are also lost. Accessing any controls on the form causes it to be reloaded.
· Note: when a form is unloaded, only the displayed component is unloaded. The code associated with the form module remains in memory.
· Only control array elements added to a form at run time can be unloaded with the Unload statement. The properties of unloaded controls are reinitialized when the controls are reloaded.
[bookmark: section_ce7ca04af873423c9dc71b7dda2983ea][bookmark: _Toc181684314]Change Tracking
This section identifies changes that were made to this document since the last release. Changes are classified as Major, Minor, or None.
The revision class Major means that the technical content in the document was significantly revised. Major changes affect protocol interoperability or implementation. Examples of major changes are:
· A document revision that incorporates changes to interoperability requirements.
· A document revision that captures changes to protocol functionality.
The revision class Minor means that the meaning of the technical content was clarified. Minor changes do not affect protocol interoperability or implementation. Examples of minor changes are updates to clarify ambiguity at the sentence, paragraph, or table level.
The revision class None means that no new technical changes were introduced. Minor editorial and formatting changes may have been made, but the relevant technical content is identical to the last released version.
The changes made to this document are listed in the following table. For more information, please contact dochelp@microsoft.com.
	Section
	Description
	Revision class

	5.2.3.3 User Defined Type Declarations
	Removed the extra blocks and changed them to bullets.
	Minor

	5.4.1.1 Statement Labels
	Removed the extra blocks and changed them to bullets.
	Minor

	5.4.4.1 On Error Statement
	Updated the ABNF grammar.
	Minor

	5.6.16.1 Constant Expressions
	Removed the extra blocks and changed them to bullets.
	Minor

	6.1.2.6.1 Public Functions
	Updated "Type" in tables to "Due".
	Minor

	6.1.2.10.1.6 Rnd
	Removed the extra blocks and changed them to bullets.
	Minor

[bookmark: section_fcb50a640a7f4f3f9bb6d1e334a7bf2f][bookmark: _Toc181684315]Index
283 / 288
[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024
&

& operator 148

*

* operator 142

/

/ operator 143

\

\ operator 145

^

^ operator 147

+

+ operator 140

<

< operator 153
<= operator 153
<> operator 152
<access> 99
<access-clause> 99
<addition-operator> 140
<addressof-expression> 173
<alias-clause> 57
<ampm> 30
<and-operator> 160
<argument-expression> 169
<argument-list> 169
<arithmetic-operator> 135
<array-clause> 50
<array-designator> 65
<array-dim> 51
<as-auto-object> 52
<as-clause> 50
<as-type> 52
<attr-end> 41
<attr-eq> 41
<attribute> 41
<block-statement> 73
<boolean-expression> 172
<boolean-literal-identifier> 35
<bounds-list> 51
<bound-variable-expression> 172
<BUILTIN-TYPE> 37
<call-statement> 75
<case-clause> 82
<case-else-clause> 82
<cc-const> 38
<cc-else> 39
<cc-else-block> 39
<cc-elseif> 39
<cc-elseif-block> 39
<cc-endif> 39
<cc-expression> 171
<cc-if> 39
<cc-if-block> 39
<cc-var-lhs> 38
<class-attr> 41
<class-module> 41
<class-module-body> 44
<class-module-code-element> 61
<class-module-code-section> 61
<class-module-declaration-element> 44
<class-module-declaration-section> 44
<class-module-directive-element> 44
<class-module-header> 41
<class-type-name> 51
<close-statement> 102
<codepage-identifier> 33
<collection> 78
<comment-body> 25
<common-module-code-element> 61
<common-module-declaration-element> 48
<common-option-directive> 45
<comparison-operator> 82
<concatenation-operator> 148
<conditional-module-body> 38
<condition-clause> 79
<constant-expression> 170
<constant-name> 52
<const-as-clause> 53
<const-declaration> 53
<const-item> 53
<const-item-list> 53
<control-statement> 75
<control-statement-except-multiline-if> 75
<CP2-character> 33
<CP932-initial-character> 33
<CP932-subsequent-character> 33
<CP936-initial-character> 33
<CP936-subsequent-character> 33
<CP949-initial-character> 33
<CP949-subsequent-character> 33
<CP950-initial-character> 33
<CP950-subsequent-character> 33
<data> 113
<Data-manipulation-statement> 88
<DATE> 30
<date-or-time> 30
<date-separator> 30
<date-value> 30
<DBCS-whitespace> 25
<decimal-digit> 26
<decimal-literal> 26
<default-value> 65
<def-directive> 47
<defined-type-expression> 172
<def-type> 47
<dictionary-access-expression> 170
<dim-spec> 51
<division-operator> 143
<do-statement> 79
<double-quote> 32
<dynamic-array-clause> 89
<dynamic-array-dim> 89
<dynamic-bounds-list> 89
<dynamic-dim-spec> 89
<dynamic-lower-bound> 89
<dynamic-upper-bound> 89
<else-block> 81
<else-if-block> 81
<end-label> 62
<end-record-number> 103
<end-value> (section 5.4.2.3 76, section 5.4.2.10 82)
<English-month-name> 30
<enum-declaration> 56
<enum-element> 56
<EOL> 25
<eom-character> 25
<EOS> 25
<equality-operator> 152
<eqv-operator> 162
<erase-element> 90
<erase-list> 90
<erase-statement> 90
<error-behavior> 97
<error-handling-statement> 96
<error-number> 98
<Error-statement> 98
<event-argument> 86
<event-argument-list> 86
<event-declaration> 60
<event-handler-name> 68
<event-parameter-list> 60
<exit-do-statement> 80
<exit-for-statement> 79
<exit-function-statement> 86
<exit-property-statement> 86
<exit-sub-statement> 85
<explicit-for-each-statement> 78
<explicit-for-statement> 76
<exponent> 26
<exponent-clause> 119
<exponentiation-operator> 147
<exponent-letter> 26
<expression> 128
<extended-line> 25
<external-function> 57
<external-proc-dcl> 57
<external-sub> 57
<file-number> 102
<file-number-list> 102
<file-statement> 98
<first-Japanese-identifier-character> 33
<first-Korean-identifier-character> 33
<first-Latin-identifier-character> 33
<first-sChinese-identifier-character> 33
<first-tChinese-identifier-character> 33
<fixed-length-string-spec> 52
<FLOAT> 26
<floating-point-literal> 26
<floating-point-type-suffix> 26
<for-clause> 76
<for-each-clause> 78
<for-each-statement> 78
<FOREIGN-NAME> 37
<for-statement> 76
<fractional-digits> 26
<function-declaration> 62
<function-name> 64
<function-type> 65
<future-reserved> 35
<get-statement> 115
<global-enum-declaration> 56
<global-variable-declaration> 49
<gosub-statement> 84
<goto-statement> 83
<greater-than-equal-operator> 153
<greater-than-operator> 153
<hex-digit> 26
<hex-literal> 26
<hour-value> 30
<IDENTIFIER> 35
<identifier-statement-label> 74
<if-statement> 81
<if-with-empty-then> 81
<if-with-non-empty-then> 81
<implemented-name> 69
<implements-directive> 60
<imp-operator> 163
<index-expression> 168
<inequality-operator> 152
<initial-static> 64
<input-list> 111
<input-statement> 111
<input-variable> 111
<instance-expression> 166
<INTEGER> 26
<integer-digits> 26
<integer-division-operator> 145
<integer-expression> 172
<integer-literal> 26
<is-operator> 156
<Japanese-identifier> 33
<Korean-identifier> 33
<Latin-identifier> 33
<left-date-value> 30
<len-clause> 99
<length> 91
<less-than-equal-operator> 153
<less-than-operator> 153
<let-statement> 93
<letter-range> 47
<lex-identifier> 33
<l-expression> 128
<lib-clause> 57
<lib-info> 57
<lifecycle-handler-name> 70
<like-operator> 154
<like-pattern-char> 154
<like-pattern-charlist> 154
<like-pattern-charlist-char> 154
<like-pattern-charlist-element> 154
<like-pattern-charlist-range> 154
<like-pattern-element> 154
<like-pattern-expression> 154
<like-pattern-string> 154
<line-continuation> 25
<line-input-statement> 105
<line-number-label> 74
<line-terminator> 24
<line-width> 106
<list-or-label> 81
<literal-expression> 133
<literal-identifier> 35
<local-const-declaration> 89
<local-variable-declaration> 88
<lock> 99
<lock-statement> 103
<logical-line> 25
<logical-operator> 157
<lower-bound> 51
<lset-statement> 92
<marked-file-number> 102
<marker-keyword> 35
<member> 56
<member-access-expression> 166
<member-list> 56
<middle-date-value> 30
<mid-statement> 91
<minute-value> 30
<mode> 99
<mode-clause> 99
<mode-specifier> 91
<module-body-lines> 25
<module-body-logical-structure> 25
<module-body-physical-structure> 24
<module-const-declaration> 53
<module-variable-declaration> 49
<module-variable-declaration-list> 49
<modulo-operator> 145
<month-name> 30
<most-Unicode-class-Zs> 25
<multiplication-operator> 142
<name> 44
<named-argument> 169
<named-argument-list> 169
<nested-for-statement> 76
<new-expression> 134
<NO-LINE-CONTINUATION> 25
<non-line-termination-character> 24
<non-terminated-line> 24
<not-operator> 159
<NO-WS> 25
<numeric-coercion-string> 119
<object-literal-identifier> 35
<octal-digit> 26
<octal-literal> 26
<on-error-statement> 97
<on-gosub-statement> 85
<on-goto-statement> 84
<open-statement> 99
<operator-expression> 134
<operator-identifier> 35
<optional-array-clause> 54
<optional-param> 65
<optional-parameters> 65
<optional-prefix> 65
<option-base-directive> 45
<option-compare-directive> 45
<option-explicit-directive> 46
<option-private-directive> 46
<or-operator> 161
<output-clause> 108
<output-expression> 108
<output-item> 108
<output-list> 108
<param-array> 65
<param-dcl> 65
<parameter-list> 65
<parameter-mechanism> 65
<parameter-type> 65
<parenthesized-expression> 133
<path-name> 99
<position> 103
<positional-argument> 169
<positional-or-named-argument-list> 169
<positional-param> 65
<positional-parameters> 65
<prefixed-name> 64
<print-statement> 107
<private-external-procedure-declaration> 57
<private-variable-declaration> 49
<procedural-module> 41
<procedural-module-body> 44
<procedural-module-code-element> 61
<procedural-module-code-section> 61
<procedural-module-declaration-element> 44
<procedural-module-declaration-section> 44
<procedural-module-directive-element> 44
<procedural-module-header> 41
<procedure-body> 73
<procedure-declaration> 61
<procedure-parameters> 65
<procedure-pointer-expression> 173
<procedure-scope> 63
<property-get-declaration> 62
<property-lhs-declaration> 62
<property-parameters> 65
<public-const-declaration> 53
<public-enum-declaration> 56
<public-external-procedure-declaration> 57
<public-type-declaration> 54
<public-variable-declaration> 49
<put-statement> 113
<quoted-identifier> 41
<raiseevent-statement> 86
<range-clause> 82
<rec-length> 99
<record-number> 113
<record-range> 103
<redim-declaration-list> 89
<redim-statement> 89
<redim-typed-variable-dcl> 89
<redim-untyped-dcl> 89
<redim-variable-dcl> 89
<regional-number-string> 119
<relational-operator> 149
<rem-keyword> 35
<rem-statement> 75
<required-positional-argument> 169
<reserved-for-implementation-use> 35
<reserved-identifier> 35
<reserved-member-name> 54
<reserved-name> 35
<reserved-type-identifier> 35
<resume-statement> 97
<return-statement> 85
<right-date-value> 30
<rset-statement> 92
<same-line-statement> 81
<second-value> 30
<seek-statement> 103
<select-case-statement> 82
<select-expression> 82
<set-statement> 95
<sign> 119
<simple-for-each-statement> 78
<simple-for-statement> 76
<simple-name-expression> 163
<simplified-Chinese-identifier> 33
<single-letter> 47
<single-line-else-clause> 81
<single-line-if-statement> 81
<single-quote> 25
<source-line> 24
<space-character> 25
<spc-clause> 108
<spc-number> 108
<special-form> 35
<special-token> 25
<start -record-number> 103
<start> 91
<start-value> (section 5.4.2.3 76, section 5.4.2.10 82)
<statement> 73
<statement-block> 73
<Statement-keyword> 35
<statement-label> 74
<statement-label-definition> 74
<statement-label-list> 74
<static-variable-declaration> 88
<step-clause> 76
<step-increment> 76
<stop-statement> 83
<STRING> 32
<string-argument> 91
<string-character> 32
<string-length> 52
<subroutine-declaration> 62
<subroutine-name> 64
<subsequent-Japanese-identifier-character> 33
<subsequent-Korean-identifier-character> 33
<subsequent-sChinese-identifier-character> 33
<subsequent-tChinese-identifier-character> 33
<subtraction-operator> 141
<tab-character> 25
<tab-clause> 108
<tab-number> 108
<tab-number-clause> 108
<time-separator> 30
<time-value> 30
<traditional-Chinese-identifier> 33
<trailing-static> 64
<TYPED-NAME> 37
<typed-name-const-item> 53
<typed-name-param-dcl> 65
<typed-variable-dcl> 50
<type-expression> 172
<typeof-is-expression> 133
<type-spec> 52
<type-suffix> 37
<udt-declaration> 54
<udt-member> 54
<udt-member-list> 54
<unary-minus-operator> 139
<underscore> 25
<universal-letter-range> 47
<unlock-statement> 104
<unmarked-file-number> 102
<unrestricted-name> 44
<until-clause> 79
<untyped-name> 44
<untyped-name-const-item> 53
<untyped-name-member-dcl> 54
<untyped-name-param-dcl> 65
<untyped-variable-dcl> 50
<upper-bound> 51
<value-expression> 128
<value-param> 65
<variable> 115
<variable-dcl> 50
<variable-declaration-list> 49
<variable-expression> 172
<variable-name> 105
<variant-literal-identifier> 35
<while-clause> 79
<while-statement> 76
<width-statement> 106
<with-dictionary-access-expression> 170
<withevents-variable-dcl> 51
<with-expression> 170
<with-member-access-expression> 170
<with-statement> 87
<write-statement> 109
<WS> 25
<WSC> 25
<xor-operator> 161

=

= operator 152

>

> operator 153
>= operator 153

A

AddressOf expression 173
Aggregate data values 16
Aggregate Extent 19
Aggregate variables 20
And operator 160
Array type 14
Automatic object instantiation 22

B

binary - operator 141
Boolean 14
boolean expression 172
bound variable expression 172
Byte 14

C

Change tracking 282
Character encodings 24
Class 21
class module 58
Conditional compilation 38
 Const directive 38
 If directives 39
conditional compilation expression 171
Const directive 38
constant expression 170
constrained expression 170
Currency 14

D

Data values 14
Date 14
Date tokens 30
Decimal 14
Declared type (section 2.2 17, section 2.3 19)
Dependent variables 20
dictionary access expression 170
Double 14

E

Empty 14
Entity 17
Enum 14
Eqv operator 162
Error 14
Events 21
expression 128
 AddressOf 173
 binding context 132
 boolean 172
 bound variable 172
 classifications 128
 conditional compilation 171
 constant 170
 constrained 170
 dictionary access 170
 evaluation 129
 index 168
 instance 166
 integer 172
 literal 133
 member access 166
 New 134
 operator 134
 parenthesized 133
 simple name 163
 type 172
 TypeOf ... Is 133
 variable 172
 With 170
Extended environment 22
extensible module 43
External entities 23

F

file statement 98

G

Glossary 11

H

Host application 14
Host environment 23
host project 41

I

Identifier tokens 33
If directives 39
Imp operator 163
implicit coercion 116
index expression 168
Informative references 11
instance expression 166
Integer 14
integer expression 172
Introduction 11
Is operator 156

L

Let-coercion 116
Lexical rules 24
Lexical tokens 25
library project 41
Like operator 154
literal expression 133
Logical line grammar 25
logical operators 157
Long 14
LongLong 14
LongPtr 17

M

member access expression 166
Member resolution 132
Missing 14
Mod operator 145
module
 bodies 44
 body 41
 class 58
 declaration section 44
 declarations 48
 extensibility 43
 header 41
 predefined procedural 179
Module Extent 19
Module line structure 24

N

New expression 134
Normative references 11
Not operator 159
Null 14
Number tokens 26

O

Object Extent 19
Object reference 14
Objects 21
 events 21
operator expression 134
option directives 45
Or operator 161
Overview (synopsis) 12

P

parenthesized expression 133
Physical line grammar 24
predefined procedural modules 179
procedure body 73
Procedure Extent 19
Procedures 21
Program Extent 19
project 41
 VBA 174
project name 41
project reference 41
Projects 22
Property 21

R

References
 informative 11
 normative 11
relational operator 149

S

Separator and special tokens 25
Set-coercion 127
simple name expression 163
Single 14
source project 41
Specification conventions 12
String 14
String tokens 32

T

Tracking changes 282
type expression 172
TypeOf ... Is expression 133

U

UDT (user-defined type) 14
unary - operator 139
User-defined type (UDT) 14

V

Value types 14
variable expression 172
Variables 19
 aggregate 20
 dependent 20
Variant 17
VBA environment 14
 extended 22
 program organization 41
VBA project 174
VBA standard library 22

W

With expression 170

X

Xor operator 161
[bookmark: EndOfDocument_ST]
288 / 288
[MS-VBAL] - v20241112
VBA Language Specification
Copyright © 2024 Microsoft Corporation
Release: November 12, 2024
image1.bin
r=(i+f107%)10*

image2.bin
LegalMonth(x) = {

true,0 < x <12
false, otherwise

image3.bin
year < 0 or year > 32767,0r
false { LegalMonth(month) is false, or

day is not a valid day for the specified month and year
true, otherwise

LegalDay (month,day, year) =

image4.bin
x+2000,0<x < 29
Year(x) = {x +1900,30 < x <99
X, otherwise

