

1 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

[MS-SQP]:
MSSearch Query Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

04/04/2008 0.1 Initial Availability

06/27/2008 1.0 Major Revised and edited the technical content

12/12/2008 1.01 Editorial Revised and edited the technical content

07/13/2009 1.02 Major Revised and edited the technical content

08/28/2009 1.03 Editorial Revised and edited the technical content

11/06/2009 1.04 Editorial Revised and edited the technical content

02/19/2010 2.0 Editorial Revised and edited the technical content

03/31/2010 2.01 Editorial Revised and edited the technical content

04/30/2010 2.02 Editorial Revised and edited the technical content

06/07/2010 2.03 Editorial Revised and edited the technical content

06/29/2010 2.04 Editorial Changed language and formatting in the technical
content.

07/23/2010 2.05 Minor Clarified the meaning of the technical content.

09/27/2010 2.05 No change No changes to the meaning, language, or formatting of
the technical content.

11/15/2010 2.05 No change No changes to the meaning, language, or formatting of
the technical content.

12/17/2010 2.06 Editorial Changed language and formatting in the technical
content.

03/18/2011 2.06 No change No changes to the meaning, language, or formatting of
the technical content.

06/10/2011 2.06 No change No changes to the meaning, language, or formatting of
the technical content.

01/20/2012 2.7 Minor Clarified the meaning of the technical content.

04/11/2012 2.7 No change No changes to the meaning, language, or formatting of
the technical content.

07/16/2012 2.7 No change No changes to the meaning, language, or formatting of
the technical content.

09/12/2012 2.7 No change No changes to the meaning, language, or formatting of
the technical content.

10/08/2012 2.7 No change No changes to the meaning, language, or formatting of
the technical content.

3 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

Date

Revision

History

Revision

Class Comments

02/11/2013 2.7 No change No changes to the meaning, language, or formatting of
the technical content.

07/30/2013 2.7 No change No changes to the meaning, language, or formatting of
the technical content.

11/18/2013 2.7 No change No changes to the meaning, language, or formatting of
the technical content.

02/10/2014 2.7 No change No changes to the meaning, language, or formatting of
the technical content.

04/30/2014 2.7 No change No changes to the meaning, language, or formatting of
the technical content.

07/31/2014 2.7 No change No changes to the meaning, language, or formatting of
the technical content.

10/30/2014 2.7 No change No changes to the meaning, language, or formatting of
the technical content.

4 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

Table of Contents

1 Introduction ... 7
1.1 Glossary ... 7
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.3.1 Remote Querying ... 9

1.4 Relationship to Other Protocols .. 9
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 10
1.8 Vendor-Extensible Fields ... 10
1.9 Standards Assignments .. 10

2 Messages.. 11
2.1 Transport .. 11
2.2 Message Syntax .. 11

2.2.1 Structures ... 11
2.2.1.1 CBaseStorageVariant .. 12

2.2.1.1.1 CBaseStorageVariant Structures ... 16
2.2.1.1.1.1 VT_VECTOR .. 16

2.2.1.2 CFullPropSpec .. 17
2.2.1.3 CContentRestriction .. 17
2.2.1.4 CNatLanguageRestriction ... 19
2.2.1.5 CNodeRestriction .. 20
2.2.1.6 CPropertyRestriction ... 20
2.2.1.7 CSort .. 21
2.2.1.8 CVectorRestriction .. 22
2.2.1.9 CRestriction ... 23
2.2.1.10 CColumnSet ... 24
2.2.1.11 CDbColId ... 24
2.2.1.12 CDbProp .. 25

2.2.1.12.1 Database Properties ... 26
2.2.1.13 CDbPropSet ... 26
2.2.1.14 CPidMapper .. 27
2.2.1.15 CRowsetProperties .. 27
2.2.1.16 CRowVariant .. 29
2.2.1.17 CSortSet .. 29
2.2.1.18 CTableColumn .. 30
2.2.1.19 QUERYMETADATA ... 31

2.2.2 Message Headers ... 32
2.2.3 Messages .. 33

2.2.3.1 CPMConnectIn .. 34
2.2.3.2 CPMConnectOut .. 36
2.2.3.3 CPMCreateQueryIn ... 37
2.2.3.4 CPMCreateQueryOut ... 39
2.2.3.5 CPMSetBindingsIn ... 39
2.2.3.6 CPMGetRowsIn ... 41
2.2.3.7 CPMGetRowsOut ... 42
2.2.3.8 CPMFetchValueIn .. 43

5 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

2.2.3.9 CPMFetchValueOut .. 44
2.2.3.10 CPMFreeCursorIn .. 45
2.2.3.11 CPMFreeCursorOut .. 45
2.2.3.12 CPMDisconnect ... 45

2.2.4 Errors ... 46

3 Protocol Details .. 47
3.1 Server Details ... 47

3.1.1 Abstract Data Model ... 47
3.1.2 Timers .. 48
3.1.3 Initialization .. 48
3.1.4 Higher-Layer Triggered Events ... 48
3.1.5 Message Processing Events and Sequencing Rules .. 49

3.1.5.1 Receiving a CPMConnectIn Request .. 50
3.1.5.2 Receiving a CPMCreateQueryIn Request .. 50
3.1.5.3 Receiving a CPMSetBindingsIn Request ... 51
3.1.5.4 Receiving a CPMFetchValueIn Request... 51
3.1.5.5 Receiving a CPMGetRowsIn Request .. 52
3.1.5.6 Receiving a CPMFreeCursorIn Request... 52
3.1.5.7 Receiving a CPMDisconnect Request .. 53

3.1.6 Timer Events ... 53
3.1.7 Other Local Events ... 53

3.2 Client Details ... 53
3.2.1 Abstract Data Model ... 53
3.2.2 Timers .. 53
3.2.3 Initialization .. 53
3.2.4 Higher-Layer Triggered Events ... 54

3.2.4.1 Query Server Query Messages.. 54
3.2.4.1.1 Sending a CPMConnectIn Request ... 54
3.2.4.1.2 Sending a CPMCreateQueryIn Request ... 55
3.2.4.1.3 Sending a CPMSetBindingsIn Request .. 55
3.2.4.1.4 Sending a CPMGetRowsIn Request .. 56
3.2.4.1.5 Sending a CPMFetchValueIn Request ... 56
3.2.4.1.6 Sending a CPMFreeCursorIn Request ... 56
3.2.4.1.7 Sending a CPMDisconnect Message.. 57

3.2.5 Message Processing Events and Sequencing Rules .. 57
3.2.5.1 Receiving a CPMCreateQueryOut Response .. 57
3.2.5.2 Receiving a CPMFetchValueOut Response .. 57
3.2.5.3 Receiving a CPMGetRowsOut Response ... 57
3.2.5.4 Receiving a CPMFreeCursorOut Response .. 58

3.2.6 Timer Events ... 58
3.2.7 Other Local Events ... 58

4 Protocol Examples .. 59
4.1 Obtaining Document Identifiers Based on Query Text ... 59

5 Security .. 66
5.1 Security Considerations for Implementers ... 66
5.2 Index of Security Parameters .. 66

6 Appendix A: Product Behavior .. 67

7 Change Tracking... 69

6 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

8 Index ... 70

7 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

1 Introduction

This document specifies the MSSearch Query Protocol, which enables a protocol client to
communicate with a protocol server to issue search queries.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-OFCGLOS]:

binary large object (BLOB)
column
command tree

Coordinated Universal Time (UTC)
full-text index catalog

GUID
handle
HRESULT
index server
inflectional form
item

language code identifier (LCID)
little-endian
named pipe
natural language query
noise word
property identifier
query expansion

query result
query server
restriction
row
search catalog
search query
sort order

stemming
token

The following terms are specific to this document:

SharePoint Search SQL syntax: A set of SQL-based rules that govern the construction of a
search query.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90317

8 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

1.2 References

References to Microsoft Open Specification documents do not include a publishing year because links
are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information.

[IEEE754] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", IEEE 754-1985, October

1985, http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-LCID] Microsoft Corporation, "Windows Language Code Identifier (LCID) Reference".

[MS-SEARCH] Microsoft Corporation, "Search Protocol".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[SALTON] Salton, G., "Automatic Text Processing: The Transformation Analysis and Retrieval of
Information by Computer", 1988, ISBN: 0201122278.

[UNICODE] The Unicode Consortium, "The Unicode Consortium Home Page", 2006,
http://www.unicode.org/

1.2.2 Informative References

[MSDN-FULLPROPSPEC] Microsoft Corporation, "FULLPROPSPEC structure",
http://msdn.microsoft.com/en-us/library/ms690996.aspx

[MSDN-OLEDBP-OI] Microsoft Corporation, "OLE DB Programming", http://msdn.microsoft.com/en-
us/library/502e07a7(VS.80).aspx

[MSDN-PROPSET] Microsoft Corporation, "Property Sets", http://msdn.microsoft.com/en-
us/library/ms691041.aspx

[MSDN-QUERYERR] Microsoft Corporation, "Query-Execution Values",

http://msdn.microsoft.com/en-us/library/ms690617.aspx

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary".

1.3 Overview

The search service running on a query server helps efficiently organize the extracted features of a
collection of items. The MSSearch Query Protocol allows a protocol client to communicate with a
protocol server hosting a search service to issue search queries. When processing files, an index

server analyzes a set of items, extracts useful information, and then organizes the extracted
information in such a way that properties of those items can be efficiently returned in response to
search queries. A collection of items that can be queried comprises a search catalog. A search

mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-ERREF%5d.pdf
%5bMS-LCID%5d.pdf
%5bMS-SEARCH%5d.pdf
%5bMS-SMB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90550
http://go.microsoft.com/fwlink/?LinkId=103235
http://go.microsoft.com/fwlink/?LinkId=119666
http://go.microsoft.com/fwlink/?LinkId=119666
http://go.microsoft.com/fwlink/?LinkId=101368
http://go.microsoft.com/fwlink/?LinkId=101368
http://go.microsoft.com/fwlink/?LinkId=90070
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

9 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

catalog contains a mechanism for quick word matching and a mechanism for quick retrieval of
property values. The index server makes search catalogs available to query servers.

Conceptually, a search catalog consists of a logical table of properties with the text or value and
corresponding language code identifier (LCID) stored in columns (1) of the table. Each row of

the table corresponds to a separate item in the scope of the search catalog, and each column of the
table corresponds to a property.

1.3.1 Remote Querying

The MSSearch Query Protocol enables protocol clients to perform search queries against a remote
protocol server hosting a search service. See [MS-SEARCH] for more information about the
SharePoint Search SQL syntax.

The protocol client initiates a search query with the following steps:

1. The protocol client requests a connection to a protocol server hosting a search service.

2. The protocol client sends the following parameters for the search query:

Rowset properties, for example the search catalog name and configuration information.

The restriction (1) to specify what items are to be included or excluded from the query

results.

The order in which the query results are to be returned.

The columns to be returned in the result set.

The maximum number of rows (1) that are to be returned for the search query.

The maximum time for query execution.

3. The protocol client requests a result set from the protocol server, and the protocol server

responds by sending the protocol client the property values for the items that were included in
the query results for the protocol client's query. After the protocol client is finished with the
search query, or no longer requires additional query results, the protocol client contacts the
protocol server to release the search query.

After the protocol server has released the search query, the protocol client sends a request to
disconnect from the protocol server. The protocol client may also disconnect from the protocol

server without issuing a disconnect request. The connection is then closed. Alternatively, the
protocol client issues another search query and repeats the sequence from step 2.

1.4 Relationship to Other Protocols

The MSSearch Query Protocol relies on the SMB protocol, as described in [MS-SMB], for message
transport. No other protocol depends directly on the MSSearch Protocol<1>.

1.5 Prerequisites/Preconditions

It is assumed that the protocol client has obtained the name of the protocol server and a search
catalog name before this protocol is invoked. How a protocol client does this is not addressed in this
specification.

It is also assumed that the protocol client and protocol server have a security association that is
usable with named pipes, as described in [MS-SMB].

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-SEARCH%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-SMB%5d.pdf

10 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

1.6 Applicability Statement

The MSSearch Query protocol is designed for querying search catalogs on a remote server from a
client. The MSSearch Query protocol is designed to handle a query load of up to 100 search queries

per second. Typical size of the rowset is expected in the range of 0-5000, with up to 4 columns.

1.7 Versioning and Capability Negotiation

None.

1.8 Vendor-Extensible Fields

This protocol uses HRESULT values as defined in [MS-ERREF] section 2.1. Vendors can define their

own HRESULT values, provided that they set the C bit (0x20000000) for each vendor-defined value,
indicating the value is a customer code.

This protocol uses NTSTATUS values as defined in [MS-ERREF] section 2.3. Vendors can choose their

own values for this field, as long as the C bit (0x20000000) is set, indicating it is a customer code.

Property Identifiers

Properties are represented by property identifiers. Each property MUST have a GUID. This
identifier consists of a GUID, representing a collection of properties called a property set plus either

a string or a 32-bit integer to identify the property within the set. If the integer form of the identifier
is used, the value MUST NOT be one of the following: 0x00000000, 0xFFFFFFFF, and 0xFFFFFFFE.
Vendors can guarantee that their properties are uniquely defined by placing them in a property set
defined by their own GUIDs<2>.

1.9 Standards Assignments

This protocol has no standards assignments, only private assignments that are made by using the
allocation procedures described in other protocols.

A named pipe has been allocated to this protocol as described in [MS-SMB]; the assignments are
shown in the following table.

Parameter Value Reference

Pipe name \pipe\OSearch [MS-SMB]

Pipe name \pipe\SPSearch [MS-SMB]

%5bMS-OFCGLOS%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-SMB%5d.pdf

11 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

2 Messages

The following sections specify how MSSearch Query Protocol messages are transported and common
MSSearch Query Protocol data types.

Note All 2-byte, 4-byte, and 8-byte signed and unsigned integers in the following structures and
messages MUST be transferred in little-endian byte order.

2.1 Transport

All messages MUST be transported using a named pipe, as specified in [MS-SMB]. The following pipe

names are used<3>:

\pipe\OSearch

\pipe\SPSearch

This protocol uses the underlying SMB named pipe protocol to retrieve the identity of the caller that
made the connection, as specified in [MS-SMB]. The protocol client MUST set
SECURITY_IDENTIFICATION as the ImpersonationLevel in the request [MS-SMB] to open the

named pipe.

2.2 Message Syntax

2.2.1 Structures

This section details data structures that are defined and used by the MSSearch Query Protocol. The
following table summarizes the data structures defined in this section.

Structure Description

CBaseStorageVariant Contains the value on which to perform a match operation for a property that
is specified in a CPropertyRestriction structure.

CFullPropSpec Contains a property specification.

CContentRestriction Contains a string to match for a property.

CNatLanguageRestriction Contains a natural language query match for a property.

CNodeRestriction Contains an array of command tree nodes specifying the restrictions (1) for a
search query.

CPropertyRestriction Contains a property value to match with an operation.

CSort Identifies a column to sort.

CVectorRestriction Contains an array of command tree nodes specifying the restrictions (1) for a
vector space array query, as specified in [SALTON].

CRestriction A restriction (1) node in a query command tree.

CColumnSet Describes the columns to return.

CDbColId Contains a column identifier.

%5bMS-OFCGLOS%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

12 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

Structure Description

CDbProp Contains a rowset property.

CDbPropSet Contains a set of rowset properties.

CPidMapper Maps from message internal property identifiers to CFullPropSpecs.

CRowsetProperties Contains the configuration information for a search query.

CRowVariant Contains the fixed-size portion of a variable-length data type stored in the
CPMGetRowsOut message.

CSortSet Contains the sort orders (1) for a search query.

CTableColumn Contains a column for the CPMSetBindingsIn message.

QUERYMETADATA Contains information about a search query.

2.2.1.1 CBaseStorageVariant

The CBaseStorageVariant structure contains the value on which to perform a match operation for
a property specified in the CPropertyRestriction structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Padding1 (variable)

...

vType vData1 vData2

vValue (variable)

...

Padding1 (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be
such that the following field begins at an offset that is a multiple of 4 bytes from the beginning
of the message that contains this structure. If this field is present (that is, length nonzero),
the value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

vType (2 bytes): A type indicator that indicates the type of vValue. It MUST be one of the

values specified in the following table.

Value Meaning

VT_EMPTY

0x0000

vValue is not present.

VT_NULL

0x0001

vValue is not present.

VT_I1 A 1-byte signed integer.

%5bMS-OFCGLOS%5d.pdf

13 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

Value Meaning

0x0010

VT_UI1

0x0011

A 1-byte unsigned integer.

VT_I2

0x0002

A 2-byte signed integer.

VT_UI2

0x0012

A 2-byte unsigned integer.

VT_BOOL

0x000B

A Boolean value; a 2-byte integer.

Note Contains 0x0000 (FALSE) or 0xFFFF (TRUE).

VT_I4

0x0003

A 4-byte signed integer.

VT_UI4

0x0013

A 4-byte unsigned integer.

VT_R4

0x0004

An IEEE 32-bit floating point number, as specified in [IEEE754].

VT_INT

0x0016

A 4-byte signed integer.

VT_UINT

0x0017

A 4-byte unsigned integer.

Note that this is identical to VT_UI4 except that VT_UINT cannot be used with
VT_VECTOR (defined in the following table); the value chosen is a choice
made by the higher layer that provides it to MSSearch Query Protocol, but the
MSSearch Query Protocol treats VT_UINT and VT_UI4 as identical, with the
exception noted previously.

VT_ERROR

0x000A

A 4-byte unsigned integer containing an HRESULT, as specified in [MS-
ERREF], section 2.

VT_I8

0x0014

An 8-byte signed integer.

VT_UI8

0x0015

An 8-byte unsigned integer.

VT_R8

0x0005

An IEEE 64-bit floating point number, as specified in [IEEE754].

VT_CY

0x0006

An 8-byte two's complement integer (scaled by 10,000).

VT_DATE

0x0007

A 64-bit floating point number, as specified in [IEEE754], representing the
number of days since 00:00:00 on December 31, 1899, Coordinated
Universal Time (UTC).

VT_FILETIME

0x0040

A 64-bit integer representing the number of 100-nanosecond intervals since
00:00:00 on January 1, 1601, UTC.

http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89903
http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

14 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

Value Meaning

VT_CLSID

0x0048

A 16-byte binary value containing a GUID.

VT_BLOB

0x0041

A 4-byte unsigned integer count of bytes in the binary large object (BLOB)
followed by that many bytes of data.

VT_BLOB_OBJECT

0x0046

A 4-byte unsigned integer count of bytes in the BLOB followed by that many
bytes of data.

VT_BSTR

0x0008

A 4-byte unsigned integer count of bytes in the string followed by a string, as
specified in the following section under vValue.

VT_LPSTR

0x001E

A null-terminated ANSI string.

VT_LPWSTR

0x001F

A null-terminated Unicode (as specified in [UNICODE]) string.

VT_VARIANT

0x000C

When used in a CTableColumn description, vValue is a CRowVariant structure.
Otherwise, it is a CBaseStorageVariant structure. MUST be combined with a
type modifier of VT_VECTOR.

The following table specifies the type modifiers for vType. Type modifiers can be combined

with vType using the bitwise OR operation to change the meaning of vValue to indicate it is
one of the possible array types.

Value Meaning

VT_VECTOR

0x1000

If the type indicator is combined with VT_VECTOR by using an OR operator, vValue
is a counted array of values of the indicated type. See section 2.2.1.1.1.1.

This type modifier MUST NOT be combined with the following types: VT_INT,
VT_UINT, VT_BLOB, and VT_BLOB_OBJECT.

When the VT_VARIANT vType is used in a CBaseStorageVariant structure, it MUST be
combined with a type modifier of VT_VECTOR. There is no such limitation when the
VT_VARIANT vType is used in a CTableColumn structure, which specifies individual binding.

vData1 (1 byte): The value of this field MUST be set to 0x00.

vData2 (1 byte): The value of this field MUST be set to 0x00.

vValue (variable): The value for the match operation. The syntax MUST be as indicated in the
vType field. The following table summarizes sizes for the vValue field, dependent on the
vType field for fixed-length data types. The size is in bytes.

vType Size

VT_I1, VT_UI1 1

VT_I2, VT_UI2, VT_BOOL 2

VT_I4, VT_UI4, VT_R4, VT_INT, VT_UINT, VT_ERROR 4

VT_I8, VT_UI8, VT_R8, VT_CY, VT_DATE, VT_FILETIME 8

%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90550

15 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

vType Size

VT_CLSID 16

If vType is set to VT_BLOB or VT_BSTR, the structure of vValue is specified in the following
diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

cbSize

blobData (variable)

...

cLen

String (variable)

...

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

cbSize

blobData (variable)

...

For vType set to VT_BLOB, this field is opaque binary BLOB data.

For vType set to VT_BSTR, this field is a set of characters. The protocol client and protocol
server MUST be configured to have interoperable character sets (which is not addressed in

this protocol). There is no requirement that it be null-terminated.

cbSize (4 bytes): A 32-bit unsigned integer. Indicates the size of the blobData field in bytes. If
vType is set to VT_BSTR, cbSize MUST be set to 0x00000000 when the string represented is
an empty string.

blobData (variable): MUST be of length cbSize in bytes.

For a vType set to either VT_LPSTR or VT_LPWSTR, the structure of vValue is shown in the
following diagram, with these caveats:

If vType is set to VT_LPSTR, cLen indicates the size of the string in ANSI characters, and

string is a null-terminated ANSI string.

16 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

If vType is set to VT_LPWSTR, cLen indicates the size of the string in Unicode characters,

and string is a null-terminated Unicode string.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

cLen

String (variable)

...

cLen (4 bytes): A 32-bit unsigned integer, indicating the size of the string field including the
terminating null. A value of 0x00000000 indicates that no such string is present.

String (variable): Null-terminated string. This field MUST be absent if cLen equals

0x00000000.

2.2.1.1.1 CBaseStorageVariant Structures

The VT_VECTOR structure is used in the CBaseStorageVariant structure.

2.2.1.1.1.1 VT_VECTOR

The VT_VECTOR structure is used to pass one-dimensional arrays.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

vVectorElements

vVectorData (variable)

...

vVectorElements (4 bytes): Unsigned 32-bit integer, indicating the number of elements in the
vVectorData field.

vVectorData (variable): An array of items that have a type indicated by vType with the
0x1000 bit cleared. The size of an individual fixed-length item can be obtained from the fixed-
length data type table, as specified in section 2.2.1.1. The length of this field in bytes can be

calculated by multiplying vVectorElements by the size of an individual item.

For variable-length data types, vVectorData contains a sequence of consecutively marshaled
simple types in which the type is indicated by vType with the 0x1000 bit cleared.

The elements in the vVectorData field MUST be separated by 0 to 3 padding bytes such that
each element begins at an offset that is a multiple of 4 bytes from the beginning of the
message that contains this array. If padding bytes are present, the value they contain is
arbitrary. The contents of the padding bytes MUST be ignored by the receiver.

17 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

2.2.1.2 CFullPropSpec

The CFullPropSpec structure contains a property set GUID and a property identifier to uniquely
identify a property. A CFullPropSpec instance has a property set GUID and either an integer

property identifier or a string property name. For properties to match, the CFullPropSpec structure
MUST match the column identifier in the full-text index catalog. There is no conversion between
property identifiers and property names. Property names are case insensitive.

For more information, see the Indexing Service definition of FULLPROPSPEC in [MSDN-
FULLPROPSPEC].

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

paddingPropSet (variable)

...

_guidPropSet (16 bytes)

...

ulKind

PrSpec

paddingPropSet (variable): This field MUST be 0 to 7 bytes in length. The length of this field
MUST be such that the following field begins at an offset that is a multiple of 8 bytes from the

beginning of the message that contains this structure. If this field is present (that is, length
nonzero), the value it contains is arbitrary. The content of this field MUST be ignored by the

receiver.

_guidPropSet (16 bytes): The GUID of the property set to which the property belongs.

ulKind (4 bytes): A 32-bit unsigned integer. MUST be set to 0x00000001.

PrSpec (4 bytes): A 32-bit unsigned integer which contains the property identifier.

2.2.1.3 CContentRestriction

The CContentRestriction structure contains a word or phrase to match in the search catalog for a
specific property.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_Property (variable)

...

Padding1 (variable)

%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=103235
http://go.microsoft.com/fwlink/?LinkId=103235

18 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

...

Cc

_pwcsPhrase (variable)

...

Padding2 (variable)

...

Lcid

_ulGenerateMethod

_Property (variable): A CFullPropSpec structure. This field indicates the property on which to
perform a match operation.

Padding1 (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be

such that the following field begins at an offset that is a multiple of 4 bytes from the beginning
of the message that contains this structure. If this field is present (that is, length nonzero),
the value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

Cc (4 bytes): A 32-bit unsigned integer, specifying the number of characters in the
_pwcsPhrase field.

_pwcsPhrase (variable): A Unicode string that is not null-terminated representing the word or

phrase to match for the property. This field MUST NOT be empty. The Cc field contains the
length of the string.

Padding2 (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be
such that the following field begins at an offset that is a multiple of 4 bytes from the beginning
of the message that contains this structure. If this field is present (that is, length nonzero),
the value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

Lcid (4 bytes): A 32-bit unsigned integer, indicating the LCID of _pwcsPhrase, as specified in

[MS-LCID].

_ulGenerateMethod (4 bytes): A 32-bit unsigned integer, specifying the method to use when
generating alternate word forms. The following table specifies the possible values for this field
along with their meanings.

Value Meaning

GENERATE_METHOD_EXACT
0x00000000

Exact match. Each word in the phrase MUST match exactly in
the search catalog.

GENERATE_METHOD_PREFIX
0x00000001

Prefix match. Each word in the phrase is considered a match if
the word is a prefix of a crawled string. For example, if the

word "barking" is crawled, then "bar" would match when
performing a prefix match.

%5bMS-LCID%5d.pdf

19 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

Value Meaning

GENERATE_METHOD_INFLECT
0x00000002

Matches inflectional forms of a word. An inflectional form of a
word is a variant of the root word in the same part of speech
that has been modified, according to linguistic rules of a given
language. For example, inflectional forms of the verb swim in
English include swim, swims, swimming, and swam.

2.2.1.4 CNatLanguageRestriction

The CNatLanguageRestriction structure contains a natural language query match for a property.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_Property (variable)

...

_padding_cc (variable)

...

Cc

_pwcsPhrase (variable)

...

_padding_lcid (variable)

...

Lcid

_Property (variable): A CFullPropSpec structure. This field indicates the property on which to
perform the match operation.

_padding_cc (variable): This field MUST be 0 to 3 bytes in length. The length of this field
MUST be such that the following field begins at an offset that is a multiple of 4 bytes from the
beginning of the message that contains this structure. If this field is present (that is, length
nonzero), the value it contains is arbitrary. The content of this field MUST be ignored by the

receiver.

Cc (4 bytes): A 32-bit unsigned integer, specifying the number of characters in the
_pwcsPhrase field.

_pwcsPhrase (variable): A Unicode string that is not null-terminated with the text to be
searched for within the specific property. This string MUST NOT be empty. The Cc field
contains the length of the string.

%5bMS-OFCGLOS%5d.pdf

20 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_padding_lcid (variable): This field MUST be 0 to 3 bytes in length. The length of this field
MUST be such that the following field begins at an offset that is a multiple of 4 bytes from the

beginning of the message that contains this structure. If this field is present (that is, length
nonzero), the value it contains is arbitrary. The content of this field MUST be ignored by the

receiver.

Lcid (4 bytes): A 32-bit unsigned integer indicating the LCID of _pwcsPhrase, as specified in
[MS-LCID].

2.2.1.5 CNodeRestriction

The CNodeRestriction structure contains an array of command tree restriction (1) nodes for
constraining the results of a search query.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_cNode

_paNode (variable)

...

_cNode (4 bytes): A 32-bit unsigned integer specifying the number of CRestriction structures
contained in the _paNode field.

_paNode (variable): An array of CRestriction structures. Structures in the array MUST be

separated by 0 to 3 padding bytes such that each structure begins at an offset that is a
multiple of 4 bytes from the beginning of the message that contains this array. If padding
bytes are present, the value they contain is arbitrary. The content of the padding bytes MUST
be ignored by the receiver.

2.2.1.6 CPropertyRestriction

The CPropertyRestriction structure contains a property to get from each row, a comparison

operator, and a constant. For each row, the value returned by the specific property in the row is
compared against the constant to see if it has the relationship specified by the _relop field. For the
comparison to be true, the data types of the values must match.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_relop

_Property (variable)

...

_prval (variable)

...

%5bMS-LCID%5d.pdf

21 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_relop (4 bytes): A 32-bit unsigned integer specifying the relation to perform on the property.
_relop MUST be one of the following values with an optional bitwise-OR mask applied to the

value.

Value Meaning

PREQ

0x00000004

An equality comparison.

PRNE

0x00000005

A not-equal comparison.

The possible values for the optional mask are listed in the following table.

Value Meaning

PRAny

0x00000200

The restriction (1) is true if any element in the property value has the relationship
with some element in the _prval field.

_Property (variable): A CFullPropSpec structure indicating the property on which to perform a

match operation.

_prval (variable): A CBaseStorageVariant structure containing the value to relate to the
property

2.2.1.7 CSort

The CSort structure identifies a column, direction and LCID to sort by.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

pidColumn

dwOrder

Locale

pidColumn (4 bytes): A 32-bit unsigned integer. This is the index in CPidMapper for the
property to sort by.

dwOrder (4 bytes): A 32-bit unsigned integer. MUST be one of the following values, specifying
how to sort based on the column.

Value Meaning

QUERY_SORTASCEND

0x00000000

The rows are to be sorted in ascending order based on the values in the
column specified.

QUERY_SORTDESCEND

0x00000001

The rows are to be sorted in descending order based on the values in the
column specified.

22 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

Locale (4 bytes): A 32-bit unsigned integer indicating the LCID (as specified in [MS-LCID]) of
the column. The LCID determines the sorting rules to use when sorting textual values.

2.2.1.8 CVectorRestriction

The CVectorRestriction structure contains a weighted OR operation over restriction (1) nodes.
Vector restrictions (1) represent queries using the full text vector space model of ranking (as
specified in [SALTON]). In addition to the OR operation they also compute a rank depending on the
ranking algorithm.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_pres (variable)

...

_padding (variable)

...

_ulRankMethod

_pres (variable): A CNodeRestriction command tree on which a ranked OR operation is to be
performed.

_padding (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be
such that the following field begins at an offset that is a multiple of 4 bytes from the beginning
of the message that contains this structure. If this field is present (that is, length nonzero),
the value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

_ulRankMethod (4 bytes): A 32-bit unsigned integer specifying a ranking algorithm that MUST
be set to one of the following values.

Value Meaning

VECTOR_RANK_MIN

0x00000000

Use the minimum algorithm as specified in [SALTON].

VECTOR_RANK_MAX

0x00000001

Use the maximum algorithm as specified in [SALTON].

VECTOR_RANK_INNER

0x00000002

Use the inner product algorithm as specified in [SALTON].

VECTOR_RANK_DICE

0x00000003

Use the Dice coefficient algorithm as specified in [SALTON].

VECTOR_RANK_JACCARD

0x00000004

Use the Jaccard coefficient algorithm as specified in [SALTON].

%5bMS-LCID%5d.pdf

23 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

2.2.1.9 CRestriction

The CRestriction structure contains a restriction (1) node in a query command tree.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_ulType

Weight

Restriction (variable)

...

_ulType (4 bytes): A 32-bit unsigned integer indicating the restriction (1) type used for the

command tree node. The type determines what is found in the Restriction field of the
structure, as described in the following table. This MUST be set to one of the following values.

Value Meaning

RTNone

0x00000000

The node represents a noise word in a vector query.

RTAnd

0x00000001

The node contains a CNodeRestriction on which a logical AND operation is to be
performed.

RTOr

0x00000002

The node contains a CNodeRestriction on which a logical OR operation is to be
performed.

RTNot

0x00000003

The node contains a CRestriction on which a NOT operation is to be performed.

RTContent

0x00000004

The node contains a CContentRestriction.

RTProperty

0x00000005

The node contains a CPropertyRestriction.

RTProximity

0x00000006

The node contains a CNodeRestriction with an array of CContentRestriction
structures. Any other kind of restriction (1) is undefined. The restriction (1)
requires the words or phrases found in the CContentRestriction structures to
be within a query server defined range to be a match. The query server can also
compute a rank based on how far apart the words or phrases are.

RTVector

0x00000007

The node contains a CVectorRestriction.

RTNatLanguage

0x00000008

The node contains a CNatLanguageRestriction.

RTPhrase

0xFFFFFFFD

The node contains a CNodeRestriction on which a phrase match is to be
performed.

%5bMS-OFCGLOS%5d.pdf

24 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

Weight (4 bytes): A 32-bit unsigned integer representing the weight of the node. Weight
indicates the node's importance relative to other nodes in the query command tree. Higher

weight values are more important.

Restriction (variable): The restriction (1) type for the command tree node. The syntax MUST

be as indicated by the _ulType field.

2.2.1.10 CColumnSet

The CColumnSet structure specifies the column numbers to be returned. This structure is always
used in reference to a specific CPidMapper structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Count

indexes (variable)

...

Count (4 bytes): A 32-bit unsigned integer specifying the number of elements in the indexes
array.

indexes (variable): An array of 4-byte unsigned integers representing zero-based indexes into
the aPropSpec array in the corresponding CPidMapper structure. The corresponding
property values are returned as columns in the result set.

2.2.1.11 CDbColId

The CDbColId structure contains a column identifier.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

eKind

padding (variable)

...

GUID (16 bytes)

...

ulId

eKind (4 bytes): MUST be set to 0x00000001.

padding (variable): This field MUST be 0 to 7 bytes in length. The length of this field MUST be
such that the following field begins at an offset that is a multiple of 8 bytes from the beginning

25 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

of the message that contains this structure. If this field is present (that is, length nonzero),
the value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

GUID (16 bytes): The property GUID.

ulId (4 bytes): This field contains an unsigned 32-bit integer specifying the property identifier.

2.2.1.12 CDbProp

The CDbProp structure contains an OLE-DB DBPROP database property. These properties control
how search queries are interpreted by the query server. For more information about OLE-DB, see
[MSDN-OLEDBP-OI].

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DBPROPID

DBPROPOPTIONS

DBPROPSTATUS

colid (variable)

...

_padding (variable)

...

vValue (variable)

...

DBPROPID (4 bytes): A 32-bit unsigned integer indicating the property identifier. This field
uniquely identifies each property in a particular search query but has no other interpretation.
In particular, it is not a ulId as found in the CDbColId structure.

DBPROPOPTIONS (4 bytes): Property options. This field MUST be set to 0x00000000.

DBPROPSTATUS (4 bytes): Property status. This field MUST be set to 0x00000000.

colid (variable): A CDbColId structure that defines the database property being passed.

_padding (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be

such that the following field begins at an offset that is a multiple of 4 bytes from the beginning
of the message that contains this structure. If this field is present (that is, length nonzero),
the value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

vValue (variable): A CBaseStorageVariant containing the property value.

http://go.microsoft.com/fwlink/?LinkId=119666

26 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

2.2.1.12.1 Database Properties

The MSSearch Query Protocol supports the following database properties to control the behavior of
the query server. These properties are grouped into three property sets identified in the

guidPropertySet field of the CDbPropSet structure.

The following table lists the properties that are part of the DBPROPSET_FSCIFRMWRK_EXT
property set.

Value Meaning

DBPROP_CI_CATALOG_NAME

0x00000002

Specifies the name of the search catalog or search catalogs to query.
Value MUST be a VT_LPWSTR or a VT_BSTR. The structure MUST be set
such that the eKind field contains 0x00000001 and the GUID and ulID
fields are filled with zeros.

DBPROP_CI_QUERY_TYPE

0x00000007

Specifies the type of query using a CDbColId structure. The structure
MUST be set such that the eKind field contains 0x00000001 and the
GUID and ulID fields are filled with zeros. When this property is specified
the vValue field MUST contain 0x00000000, indicating a regular search
query.

2.2.1.13 CDbPropSet

The CDbPropSet structure contains a set of properties. The first field, guidPropertySet, is not
padded and will begin where the previous structure in the message ended (as indicated by the
"previous structure" entry in the following diagram). The 1-byte length of "previous structure" is
arbitrary, and is not meant to suggest guidPropertySet will begin on any particular boundary.

However, the cProperties field MUST be aligned to begin at a multiple of 4 bytes from the
beginning of the message, and, hence, the format is depicted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

guidPropertySet (16 bytes)

...

_padding (variable)

...

cProperties

aProps (variable)

...

guidPropertySet (16 bytes): A GUID identifying the property set. MUST be set to the binary

form of the value DBPROPSET_FSCIFRMWRK_EXT (A9BD1526-6A80-11D0-8C9D-
0020AF1D740E), identifying the property set of the properties contained in the aProps field.

27 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_padding (variable): This field MUST be 0 to 3 bytes in length. The length of this field MUST be
such that the following field begins at an offset that is a multiple of 4 bytes from the beginning

of the message that contains this structure. If this field is present (that is, length nonzero),
the value it contains is arbitrary. The content of this field MUST be ignored by the receiver.

cProperties (4 bytes): A 32-bit unsigned integer containing the number of elements in the
aProps array.

aProps (variable): An array of CDbProp structures containing properties. Structures in the
array MUST be separated by 0 to 3 padding bytes such that each structure begins at an offset
that is a multiple of 4 bytes from the beginning of the message that contains this array. If
padding bytes are present, the value they contain is arbitrary. The content of the padding
bytes MUST be ignored by the receiver.

2.2.1.14 CPidMapper

The CPidMapper structure contains an array of property specifications and serves to map from a
property offset to a CFullPropSpec. The more compact property offsets are used to name properties

in other parts of the protocol. Because offsets are more compact they allow shorter property
references in other parts of the protocol.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

paddingCount (variable)

...

count

aPropSpec (variable)

...

paddingCount (variable): This field MUST be 0 to 3 bytes in length. The length of this field
MUST be such that the byte offset from the beginning of the message to the count field is a
multiple of 4 bytes. The value of the bytes can be any arbitrary value, and MUST be ignored
by the receiver.

count (4 bytes): A 32-bit unsigned integer containing the number of elements in the
aPropSpec array.

aPropSpec (variable): An array of CFullPropSpec structures.

2.2.1.15 CRowsetProperties

The CRowsetProperties structure contains configuration information for a search query.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_uBooleanOptions

28 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_ulMaxOpenRows

_ulMemoryUsage

_cMaxResults

_cCmdTimeout

_dwQueryID (optional)

_uBooleanOptions (4 bytes): This field specifies various query Boolean options.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

A

A

B

A

C

A

D

A

E

A

F

A - U0: MUST be set to 1 and MUST be ignored.

B through O - U1, U2, A1, A2, U3, U4, U5, U6, U7, U8, U9, U10, U11, U12: MUST be set
to 0 and MUST be ignored.

P - IN: Specifies the desired noise word behavior. Its value MUST be 1 if the noise words are

ignored, and 0 otherwise.

Q through U - U13, U14, U15, U16, U17: MUST be set to 0 and MUST be ignored.

V - AT: Specifies the desired token inclusion behavior that MUST be used by the server

unless the inclusion behavior is specified explicitly by keyword syntax as specified in [MS-
SEARCH] section 2.2.11.8. If the value is 0, the server MUST return only the search results
containing all of the tokens in the query. Otherwise, the server MUST return search results
that contain any of the tokens.

W - ES: Specifies the desired stemming query expansion behavior. If the value is 1, the
server MUST use stemming query expansion. If the value is 0, the server MUST NOT use
stemming query expansion.

X through AF - EP, EN, IT, U18, U19, U20, U21, U22, U23: MUST be set to 0 and MUST
be ignored.

_ulMaxOpenRows (4 bytes): A 32-bit unsigned integer. MUST be set to 0x00000000. Not

used, and MUST be ignored.

_ulMemoryUsage (4 bytes): A 32-bit unsigned integer. MUST be set to 0x00000000. Not used,

and MUST be ignored.

_cMaxResults (4 bytes): A 32-bit unsigned integer, specifying the maximum number of rows
that are to be returned for the query. If _cMaxResults is set to 0x00000000 then server
assumes all results are requested and behaves as if 0xFFFFFFFF was specified in
_cMaxResults.

%5bMS-OFCGLOS%5d.pdf
%5bMS-SEARCH%5d.pdf
%5bMS-SEARCH%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

29 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_cCmdTimeout (4 bytes): A 32-bit unsigned integer, specifying the number of seconds at
which a query is to time out, counting from the time the query starts executing on the server.

On a timeout, the query is interrupted and terminated, and the server continues to
communicate with the client using the regular sequence of messages. A value of 0x00000000

means that the query is not to time out.

_dwQueryID (4 bytes): A 32-bit unsigned integer that identifies the query for debugging
purposes. This field MUST only be present if both protocol client and protocol server are
capable of handling _dwQueryID value as indicated by the _iClientVersion field in the
CPMConnectIn message and the _serverVersion field in the CPMConnectOut message. The
value of this field can be any arbitrary value. The protocol server SHOULD use this value in
any logging related to the query being executed (if any).

2.2.1.16 CRowVariant

The CRowVariant structure contains the fixed-size portion of a variable-length data type stored in
the CPMGetRowsOut message.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

vType reserved1

reserved2

Offset (variable)

...

vType (2 bytes): A type indicator, indicating the type of vValue. It MUST be set to VT_I4 or
VT_LPWSTR, as specified in section 2.2.1.1.

reserved1 (2 bytes): Not used. MUST be ignored on receipt.

reserved2 (4 bytes): Not used. MUST be ignored on receipt.

Offset (variable): An offset to variable-length data (for example, a string). This MUST be a 32-
bit value (4-bytes long) if 32-bit offsets are being used (per the rules in section 2.2.3.7), or a
64-bit value (8-bytes long) if 64-bit offsets are being used.

2.2.1.17 CSortSet

The CSortSet structure contains the sort order of the search query.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Count

sortArray (variable)

30 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

...

count (4 bytes): A 32-bit unsigned integer specifying the number of elements in sortArray.

sortArray (variable): An array of CSort structures describing the order in which to sort the
results of the search query. Structures in the array MUST be separated by 0 to 3 padding
bytes such that each structure has a 4-byte alignment from the beginning of a message. Such
padding bytes can be any arbitrary value, and MUST be ignored on receipt.

2.2.1.18 CTableColumn

The CTableColumn structure contains a column of a CPMSetBindingsIn message

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PropSpec (variable)

...

vType

ValueUsed _padding1 (optional) ValueOffset

ValueSize StatusUsed _padding2 (optional)

StatusOffset LengthUsed _padding3 (optional)

LengthOffset

PropSpec (variable): A CFullPropSpec structure.

vType (4 bytes): A 32-bit reserved field. MUST be set to 0x0000000C.

ValueUsed (1 byte): A 1-byte reserved field. MUST be set to 0x01.

_padding1 (1 byte): A 1-byte field.

Note This field MUST be inserted before ValueOffset if, without it, ValueOffset would not
begin at an even offset from the beginning of the message. The value of this byte is arbitrary,
and MUST be ignored.

ValueOffset (2 bytes): An unsigned 2-byte integer specifying the offset of the column value in

the row.

ValueSize (2 bytes): An unsigned 2-byte integer specifying the size of the column value in
bytes.

StatusUsed (1 byte): A 1-byte reserved field. MUST be set to 0x01.

31 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_padding2 (1 byte): A 1-byte field. Note This field MUST be inserted before StatusOffset if,
without it, the StatusOffset field would not begin at an even offset from the beginning of the

message. The value of this byte is arbitrary, and MUST be ignored.

StatusOffset (2 bytes): An unsigned 2-byte integer. Specifies the offset of the column status in

the row.

Status is represented as one byte in the response by the offset specified in the StatusOffset
request field. The status byte MUST be equal to 0x00.

LengthUsed (1 byte): A reserved 1-byte field. MUST be set to 0x01.

_padding3 (1 byte): A 1-byte field.

Note This field MUST be inserted before LengthOffset if, without it, LengthOffset would not
begin at an even offset from the beginning of a message. The value of this byte is arbitrary, and

MUST be ignored.

LengthOffset (2 bytes): An unsigned 2-byte integer specifying the offset of the column length
in the row. In CPMGetRowsOut, length is represented by a 32-bit unsigned integer by the
offset specified in LengthOffset.

2.2.1.19 QUERYMETADATA

The QUERYMETADATA structure contains a serialized representation of the metadata about a
search query. This structure is returned in the vValue field of the CPMFetchValueOut message.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

vType Reserved0

vLen

NoiseWords (variable)

...

SpellingSuggestion (variable)

...

QueryTerms (variable)

...

TermIds (variable)

...

EstimatedCount

32 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

vType (2 bytes): A 16-bit reserved field describing the type of the property. MUST be set to
VT_BLOB as specified in section 2.2.1.1.

Reserved0 (2 bytes): A reserved 16-bit field. MUST be set to 0x0000.

vLen (4 bytes): A 32-bit field. MUST be set to the length in bytes of the NoiseWords,

SpellingSuggestion, QueryTerms, TermIds and EstimatedCount fields.

NoiseWords (variable): A CBaseStorageVariant containing terms which were treated as
noise words during query execution. The vType field of this structure MUST be set to
VT_VECTOR | VT_LPWSTR (0x101F). The vValue field MUST contain an array of 0 or more
query terms which were treated as noise words by the query. See serialization for vValue in
section 2.2.1.1.

SpellingSuggestion (variable): A CBaseStorageVariant containing terms which have been

determined by the server as being alternate spelling of terms specified in the query<4>. The
vType field of this structure MUST be set to VT_LPWSTR (0x001F). The vValue field MUST
contain space-delimited keywords and any keywords which are spelling suggestions MUST be

prefixed with "<suggestion>" and post fixed with "</suggestion>". If there are no spelling
suggestions then the vValue MUST contain a null-terminated empty VT_LPWSTR. See
serialization for vValue in section 2.2.1.1.

QueryTerms (variable): A CBaseStorageVariant containing terms from the query. The
vType field of this structure MUST be set to VT_VECTOR | VT_LPWSTR (0x101F). The vValue
field MUST contain an array of 0 or more query terms. See serialization for vValue in section
2.2.1.1.

TermIds (variable): A CBaseStorageVariant containing term identifiers from the search
query. The vType field of the TermIds field MUST be set to VECTOR | VT_UI4 (0x1013), and
the vVectorElements field of the TermIds structure MUST be set to the same value as the

vVectorElements field of the QueryTerms structure. The vVectorData field SHOULD
contain term identifier values that are specific to the protocol server implementation. The
protocol client MUST ignore the values in vVectorData<5>.

See serialization for vValue in section 2.2.1.1.

EstimatedCount (4 bytes): A 32-bit field containing the estimated number of total results,
regardless of the number of rows requested by the protocol client.

2.2.2 Message Headers

All MSSearch Query Protocol messages have a 16-byte header.

The following diagram shows the MSSearch Query Protocol message header format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_msg

_status

_ulChecksum

33 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_ulReserved2

_msg (4 bytes): A 32-bit integer that identifies the type of message following the header.

The following table lists the MSSearch Query Protocol messages and the integer values
specified for each message. As shown in the table, some values identify two messages in the
table. In those instances, the message following the header can be identified by the direction
of the message flow. If the direction is protocol client to protocol server, the message with
"In" appended to the message name is indicated. If the direction is protocol server to protocol

client, the message with "Out" appended to the message name is indicated.

Value Meaning

0x000000C8 CPMConnectIn or CPMConnectOut

0x000000C9 CPMDisconnect

0x000000CA CPMCreateQueryIn or CPMCreateQueryOut

0x000000CB CPMFreeCursorIn or CPMFreeCursorOut

0x000000CC CPMGetRowsIn or CPMGetRowsOut

0x000000D0 CPMSetBindingsIn

0x000000E4 CPMFetchValueIn or CPMFetchValueOut

_status (4 bytes): An HRESULT, indicating the status of the requested operation. When sent by
the protocol client, this field MAY contain any value and the protocol server MUST ignore the
value<6>.

_ulChecksum (4 bytes): A 32-bit integer field. The _ulChecksum MUST be calculated as

specified in section 3.2.4 for the following messages:

CPMConnectIn

CPMCreateQueryIn

CPMSetBindingsIn

CPMGetRowsIn

CPMFetchValueIn

Note For all other messages from the protocol client, _ulChecksum MUST be ignored
by the receiver. A protocol client MUST ignore the _ulChecksum field.

_ulReserved2 (4 bytes): A 32-bit integer field. If the message type is CPMGetRowsIn and 64-
bit offsets are used, as specified in section 2.2.3.7, this field MUST contain the upper 32 bits
of the base value to use for pointer calculations in the row buffer (the _ulClientBase field of

the CPMGetRowsIn message contains the lower 32 bits). Otherwise, the value MUST be set to
0x00000000.

2.2.3 Messages

The following sections specify the MSSearch Query Protocol messages.

34 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

2.2.3.1 CPMConnectIn

The CPMConnectIn message begins a session between the protocol client and protocol server.

The format of the CPMConnectIn message that follows the header is shown in the following

diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_iClientVersion

_fClientIsRemote

_cbBlob1

_paddingcbdBlob2 (variable)

...

_cbBlob2

_padding

...

...

MachineName (variable)

...

UserName (variable)

...

_paddingcPropSets (variable)

...

cPropSets

PropertySets (variable)

...

_paddingExtPropset (variable)

35 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

...

cExtPropSet

ExtPropertySets (variable)

...

_iClientVersion (4 bytes): A 32-bit integer indicating whether the protocol client is assumed
capable of handling 64-bit offsets in CPMGetRowsOut messages<7>.and whether the protocol
client is assumed capable of handling the _dwQueryID field in the CRowsetProperties

structure. The value for this field MUST be set to one of the following values.

Value Meaning

0x00000102 The protocol client is not capable of handling 64-bit offsets in CPMGetRowsOut
messages and is not capable of handling the _dwQueryID field in the
CRowsetProperties structure.

0x00010102 The protocol client is capable of handling 64-bit offsets in CPMGetRowsOut
messages and is not capable of handling the _dwQueryID field in the
CRowsetProperties structure.

0x00000103 The protocol client is not capable of handling 64-bit offsets in CPMGetRowsOut

messages and is capable of handling the _dwQueryID field in the
CRowsetProperties structure.

0x00010103 The protocol client is capable of handling 64-bit offsets in CPMGetRowsOut
messages and is capable of handling the _dwQueryID in the CRowsetProperties
structure.

_fClientIsRemote (4 bytes): A Boolean value indicating whether the protocol client is running

on a different computer than the protocol server.

_cbBlob1 (4 bytes): A 32-bit unsigned integer indicating the size in bytes of the cPropSets

and PropertySets fields, combined.

_paddingcbdBlob2 (variable): This field MUST be 0 to 7 bytes in length. The length of this
field MUST be such that the byte offset from the beginning of the message to the first
structure contained in the _cbBlob2 field is a multiple of 8 bytes. The value of the bytes can
be any arbitrary value, and MUST be ignored by the receiver.

_cbBlob2 (4 bytes): A 32-bit unsigned integer indicating the size in bytes of the cExPropSet

and ExtPropertySets fields, combined.

_padding (12 bytes): 12 bytes of padding. MUST be ignored.

MachineName (variable): The computer name of the protocol client. The name string MUST be

a null-terminated array of less than 512 Unicode characters, including the NULL terminator.

UserName (variable): A string that represents the user name of the person who is running the
application that invoked this protocol. The name string MUST be a null-terminated array of
fewer than 512 Unicode characters when concatenated with MachineName.

36 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_paddingcPropSets (variable): This field MUST be 0 to 7 bytes in length. The number of bytes
MUST be the number required to make the byte offset of the cPropSets field a multiple of 8

from the beginning of the message that contains this structure. The value of the bytes can be
any arbitrary value, and MUST be ignored by the receiver.

cPropSets (4 bytes): A 32-bit unsigned integer indicating the number of CDbPropSet
structures following this field. This field MUST be set to 0x00000001.

PropertySets (variable): An array of CDbPropSet structures. The number of elements in this
array MUST be equal to cPropSets.

_paddingExtPropset (variable): This field MUST be 0 to 7 bytes in length. The number of
bytes MUST be the number required to make the byte offset of the cExtPropSets field from
the beginning of the message that contains this structure equal a multiple of 8. The value of

the bytes can be any arbitrary value, and MUST be ignored by the receiver.

cExtPropSet (4 bytes): A 32-bit reserved field. MUST be set to 0x00000001.

ExtPropertySets (variable): An array of CDbPropSet structures. The number of elements in
this array MUST be equal to cExtPropSet.

2.2.3.2 CPMConnectOut

The CPMConnectOut message contains a response to a CPMConnectIn message. The format of the
CPMConnectOut message that follows the header is shown in the following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_serverVersion

_reserved (20 bytes)

...

_serverVersion (4 bytes): A 32-bit integer, indicating whether the server can support 64-bit
offsets, as specified in section 2.2.3.7 and whether the server can support the _dwQueryID

field in the CRowsetProperties structure.

Value Meaning

0x00000102 The protocol server can only send 32-bit offsets and can only work with
CRowsetProperties structure without the _dwQueryID field.

0x00010102 The protocol server can send 32-bit or 64-bit offsets and can only work with a
CRowsetProperties structure without the _dwQueryID field.

0x00000103 The protocol server can only send 32-bit offsets and can work with a
CRowsetProperties structure with and without the _dwQueryID field.

0x00010103 The protocol server can send 32-bit or 64-bit offsets and can work with
CRowsetProperties structure with and without the _dwQueryID field.

_reserved (20 bytes): A reserved field. The protocol server SHOULD<8> set all bits of this field
to 0. The protocol client MUST ignore this value.

37 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

2.2.3.3 CPMCreateQueryIn

The CPMCreateQueryIn message creates a new search query. The format of the
CPMCreateQueryIn message that follows the header is shown in the following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Size

A Align0 (variable)

...

ColumnSet (variable)

...

B Reserved2 Align1 (variable)

...

Restriction (variable)

...

C Align2 (variable)

...

SortSet (variable)

...

Reserved0 Align3 (variable)

...

RowSetProperties (variable)

...

PidMapper (variable)

...

Reserved1

38 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

LCID

Size (4 bytes): A 32-bit unsigned integer indicating the number of bytes from the beginning of
this field to the end of the message.

A - CColumnSetPresent (1 byte): A byte field indicating if the ColumnSet field is present.
This field MUST be set to one of the following values.

Value Meaning

0x00 The ColumnSet field MUST be absent.

0x01 The ColumnSet field MUST be present.

Align0 (variable): A field structure of 0, 1, 2 or 3 bytes that is used to align the next field to a
4-byte boundary. MUST be ignored by the protocol server.

ColumnSet (variable): A CColumnSet structure containing the property offsets for properties in
CPidMapper that are returned as a column.

B - CRestrictionPresent (1 byte): A byte field indicating if the Restriction field is present.

Note If set to any nonzero value, the Restriction field MUST be present. If set to 0x00,
Restriction MUST be absent.

Reserved2 (2 bytes): A 16-bit reserved field. MUST contain the value 0x0101.

Align1 (variable): A field structure of 0, 1, 2 or 3 bytes that is used to align the next field to a
4-byte boundary. MUST be ignored by the protocol server.

Restriction (variable): A CRestriction structure containing the command tree of the search
query.

C - CSortSetPresent (1 byte): A byte field indicating if the SortSet field is present.

Note If set to any nonzero value, the SortSet field MUST be present. If set to 0x00, SortSet
MUST be absent.

Align2 (variable): A field structure of 0, 1, 2 or 3 bytes that is used to align the next field to a
4-byte boundary. MUST be ignored by the protocol server.

SortSet (variable): A CSortSet structure indicating the sort order of the search query.

Reserved0 (1 byte): An 8-bit reserved field reserved for future use. MUST be ignored by the
protocol server.

Align3 (variable): A field structure of 0, 1, 2 or 3 bytes that is used to align the next field to a
4-byte boundary. MUST be ignored by the protocol server.

RowSetProperties (variable): A CRowsetProperties structure providing configuration
information for the search query.

PidMapper (variable): A CPidMapper structure that maps from property offsets to full

property descriptions.

Reserved1 (4 bytes): A 32-bit reserved field. MUST be set to 0x00000000.

39 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

LCID (4 bytes): A 32-bit unsigned integer, indicating the LCID of the search query, as specified
in [MS-LCID].

2.2.3.4 CPMCreateQueryOut

The CPMCreateQueryOut message contains a response to a CPMCreateQueryIn message.

The format of the CPMCreateQueryOut message that follows the header is shown in the following
diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_fTrueSequential

_fWorkIdUnique

Cursor

_fTrueSequential (4 bytes): A 32-bit unsigned integer that indicates whether the protocol
server can use the search catalog in such a way that query results will likely be delivered
faster. This field MUST be set to one of the values in the following table.

Value Meaning

0x00000000 For the search query provided in CPMCreateQueryIn, there would be a bigger
latency in delivering query results.

0x00000001 For the search query provided in CPMCreateQueryIn, the protocol server can use
the search catalog in such a way that query results will likely be delivered faster.

_fWorkIdUnique (4 bytes): A Boolean value indicating if the document identifiers pointed to
by the cursors are unique throughout query results. MUST be set to one of the following
values.

Value Meaning

0x00000000 The document identifiers are unique only throughout the rowset.

0x00000001 The document identifiers are unique across multiple query results.

Cursor (4 bytes): A 32-bit unsigned integer representing the handle to the cursor that
identifies the query being executed.

2.2.3.5 CPMSetBindingsIn

The CPMSetBindingsIn message requests the binding of columns to a rowset. The protocol server

will reply to the CPMSetBindingsIn request message using the header section of the
CPMSetBindingsIn message with the results of the request contained in the _status field. The

format of the CPMSetBindingsIn message that follows the header is shown in the following
diagram.

%5bMS-LCID%5d.pdf
%5bMS-OFCGLOS%5d.pdf

40 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_hCursor (optional)

_cbRow (optional)

_cbBindingDesc (optional)

_dummy (optional)

cColumns (optional)

aColumns (variable)

...

padding (variable)

...

_hCursor (4 bytes, optional): A 32-bit value representing the handle from the
CPMCreateQueryOut message that identifies the search query for which to set bindings. This
field MUST be present when the message is sent by the protocol client, and MUST be absent
when the message is sent by the protocol server.

_cbRow (4 bytes, optional): A 32-bit unsigned integer indicating the size in bytes of a row.
This field MUST be present when the message is sent by the protocol client, and MUST be
absent when the message is sent by the protocol server.

_cbBindingDesc (4 bytes, optional): A 32-bit unsigned integer indicating the length in bytes
of the fields following the _dummy field. This field MUST be present when the message is sent
by the protocol client, and MUST be absent when the message is sent by the protocol server.

_dummy (4 bytes, optional): This field is unused, and MUST be ignored. It can be set to any
arbitrary value. This field MUST be present when the message is sent by the protocol client,
and MUST be absent when the message is sent by the protocol server.

cColumns (4 bytes, optional): A 32-bit unsigned integer indicating the number of elements in

the aColumns array. This field MUST be present when the message is sent by the protocol
client, and MUST be absent when the message is sent by the protocol server.

aColumns (variable): An array of the CTableColumn structures describing the columns of a row
in the rowset. This field MUST be present when the message is sent by the protocol client, and
MUST be absent when the message is sent by the protocol server. Structures in the array

MUST be separated by 0 to 3 padding bytes such that each structure has a 4-byte alignment
from the beginning of a message. Such padding bytes can be any arbitrary value, and MUST

be ignored on receipt.

padding (variable): This field MUST be of the length necessary (0 to 3 bytes) to pad the
message out to a multiple of 4 bytes in length. The value of the padding bytes can be any
arbitrary value. This field MUST be ignored by the receiver. This field MUST be present when

41 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

the message is sent by the protocol client, and MUST be absent when the message is sent by
the protocol server.

2.2.3.6 CPMGetRowsIn

The CPMGetRowsIn message requests rows from a search query. The format of the
CPMGetRowsIn message that follows the header is shown in the following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_hCursor

_cRowsToTransfer

_cbRowWidth

_cbSeek

_cbReserved

_cbReadBuffer

_ulClientBase

Reserved4

Reserved1

Reserved2

Reserved3

_hCursor (4 bytes): A 32-bit value representing the handle from the CPMCreateQueryOut

message identifying the search query for which to retrieve rows.

_cRowsToTransfer (4 bytes): A 32-bit unsigned integer indicating the maximum number of
rows the protocol client expects to receive in response to this message.

_cbRowWidth (4 bytes): A 32-bit unsigned integer indicating the length of a row in bytes.

_cbSeek (4 bytes): A 32-bit reserved field. MUST be set to 0x0000000C.

_cbReserved (4 bytes): A 32-bit unsigned integer indicating the offset, in bytes, of the Rows

field in the CPMGetRowsOut response message. This offset begins from the first byte of the

message header and MUST be set such that the Rows field follows the Reserved1 field.

_cbReadBuffer (4 bytes): A 32-bit unsigned integer. Note This field MUST be set to the
maximum of the following two values rounded up to the nearest 512-byte multiple: the value
of _cbRowWidth, or 1,000 times the value of _cRowsToTransfer. The value MUST NOT
exceed 0x00004000.

42 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_ulClientBase (4 bytes): A 32-bit unsigned integer indicating the base value to use for pointer
calculations in the row buffer. If 64-bit offsets are being used, the _ulReserved2 field of the

message header is used as the upper 32 bits, and _ulClientBase is used as the lower 32 bits
of a 64-bit value. See section 2.2.3.7.

Reserved (4 bytes)4: A 32-bit reserved field. MUST be set to 0x00000000.

Reserved1 (4 bytes): A 32-bit reserved field. MUST be set to 0x00000001.

Reserved2 (4 bytes): A 32-bit reserved field. MUST be set to 0x00000000.

Reserved3 (4 bytes): A 32-bit reserved filed. MUST be set to 0x00000000.

2.2.3.7 CPMGetRowsOut

The CPMGetRowsOut message replies to a CPMGetRowsIn message with the rows of a search

query. Protocol servers MUST format offsets to variable-length data types in the row field as follows.

The protocol client indicated it was a 32-bit system (0x00000102 or 0x00000103 in the

_iClientVersion field of CPMConnectIn): Offsets are 32-bit integers.

The protocol client indicated it was a 64-bit system (_iClientVersion set to 0x00010102 or

0x00010103 in CPMConnectIn), and the protocol server indicated that it was a 32-bit system

(_serverVersion set to 0x00000102 or 0x00000103 in CPMConnectOut): Offsets are 32-bit
integers.

The protocol client indicated it was a 64-bit system (_iClientVersion set to 0x00010102 or

0x00010103 in CPMConnectIn), and the protocol server indicated that it was a 64-bit system
(_serverVersion set to 0x00010102 or 0x00010103 in CPMConnectOut): Offsets are 64-bit
integers.

The format of the CPMGetRowsOut message that follows the header is depicted in the following

diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_cRowsReturned

Reserved0

Reserved2

Reserved1

paddingRows (variable)

...

Rows (variable)

...

43 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_cRowsReturned (4 bytes): A 32-bit unsigned integer indicating the number of rows returned
in the Rows field.

Reserved0 (4 bytes): A 32-bit reserved field. MUST be set to 0x000000.

Reserved2 (4 bytes): A 32-bit reserved field. MUST be ignored by the receiver.

Reserved1 (4 bytes): A 32-bit reserved field. MUST be ignored by the receiver.

paddingRows (variable): This field MUST be of sufficient length (0 to _cbReserved-1 bytes)
to pad the Rows field to _cbReserved offset from the beginning of a message where
_cbReserved is the value in the CPMGetRowsIn message. Padding bytes used in this field
can be any arbitrary value. This field MUST be ignored by the receiver.

Rows (variable): Row data is formatted as prescribed by column information in the most recent
CPMSetBindingsIn message. Rows MUST be stored in forward order (for example, row 1

before row 2). Fixed-sized columns MUST be stored at the offsets specified by the most recent
CPMSetBindingsIn message.

Columns MUST be stored as CRowVariants with vType set to VT_I4 or VT_LPWSTR. Because
the total size of the Rows field is specified by the _cbReadBuffer field of the CPMGetRowsIn
message, if row data does not fit exactly into the Rows field of the CPMGetRowsOut
message then there will be unused padding within the Rows field.

2.2.3.8 CPMFetchValueIn

The CPMFetchValueIn message requests metadata about the most recent search query initiated
with a CPMCreateQueryIn message.

The format of the CPMFetchValueIn message that follows the header is shown in the following
diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_wid

_cbSoFar

_cbPropSpec

_cbChunk

PropSpec (variable)

...

_padding (variable)

...

_wid (4 bytes): A 32-bit reserved field. MUST be set to 0xFFFFFFFF.

44 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_cbSoFar (4 bytes): A 32-bit unsigned integer containing the number of bytes previously
transferred for this property. Note This field MUST be set to 0x00000000 in the first message.

_cbPropSpec (4 bytes): A 32-bit unsigned integer containing the size of the PropSpec field in
bytes. The value MUST NOT be 0x00000000 for the first message. It MUST be 0x00000000 for

subsequent messages.

_cbChunk (4 bytes): A 32-bit unsigned integer containing the maximum number of bytes that
the sender can accept in a CPMFetchValueOut message<9>. The value of this field MUST be
greater than 0x0000001C.

PropSpec (variable): A CFullPropSpec structure specifying the property to retrieve. If
_cbPropSpec is not 0 then the following field values MUST be set on this structure, otherwise
this structure MUST be omitted:

Field Value

_guidPropSet E83758B4-0C6E-435B-BCC6-268021EFAD6C

ulKind PRSPEC_PROPID (0x00000001)

PrSpec 0x00000000

_padding (variable): This field MUST be of the length necessary (0 to 3 bytes) to pad the
message out to a multiple of 4 bytes in length. The value of the padding bytes can be any
arbitrary value. This field MUST be ignored by the receiver.

2.2.3.9 CPMFetchValueOut

The CPMFetchValueOut message replies to a CPMFetchValueIn message with a metadata about
the most recent previously issued query. As specified in section 3.1.5.4, this message is sent after

each CPMFetchValueIn message until all bytes of the metadata are transferred. The message
length including header MUST be less than or equal to the value of _cbChunk specified in the

CPMFetchValueIn message.

The format of the CPMFetchValueOut message that follows the header is shown in the following
diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_cbValue

_fMoreExists

_fValueExists

vValue (variable)

...

_cbValue (4 bytes): A 32-bit unsigned integer containing the size in bytes of the vValue field.

45 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_fMoreExists (4 bytes): A Boolean value indicating whether there are additional
CPMFetchValueOut messages available. If this value is set to 0x00000001, the message size

MUST be equal to the value of the _cbChunk field in CPMFetchValueIn.

Value Meaning

0x00000000 There are no additional data available.

0x00000001 There are additional data available.

_fValueExists (4 bytes): A reserved 32-bit unsigned integer. MUST be set to 0x00000001.

vValue (variable): A portion of a byte array containing a QUERYMETADATA where the offset of
the beginning of the portion is the value of _cbSoFar in CPMFetchValueIn.

2.2.3.10 CPMFreeCursorIn

The CPMFreeCursorIn message requests the release of a cursor. The format of the
CPMFreeCursorIn message that follows the header is shown in the following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_hCursor

_hCursor (4 bytes): A 32-bit value representing the handle of the cursor from the
CPMCreateQueryOut message to release.

2.2.3.11 CPMFreeCursorOut

The CPMFreeCursorOut message replies to a CPMFreeCursorIn message with the results of freeing
a cursor. The format of the CPMFreeCursorOut message that follows the header is shown in the

following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

_cCursorsRemaining

_cCursorsRemaining (4 bytes): A 32-bit unsigned integer indicating the number of cursors
still in use for the search query.

2.2.3.12 CPMDisconnect

The CPMDisconnect message ends the connection with the server.

The message MUST NOT include a body; only the message header (as specified in section 2.2.2) is
to be sent.

46 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

2.2.4 Errors

All MSSearch Query Protocol messages MUST return a successful HRESULT code on success;
otherwise, they return a 32-bit nonzero error code that can be either an HRESULT or an NTSTATUS

value (see section 1.8).

All error values MUST be treated the same; the error MUST be considered fatal and reported to the
higher-level caller. Future messages MAY be sent over the same pipe as if no error had
occurred<10>.

47 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

3 Protocol Details

MSSearch Query Protocol message requests require only minimal sequencing. All messages MUST
be preceded by an initial CPMConnectIn message (for example, at least one CPMConnectIn for
each named pipe connection). Beyond the initial connection, there is no other sequencing required
by the protocol. However, it is advised that the higher layer adhere to a meaningful message
sequence; and for messages that are received out of this sequence or with invalid data, the protocol
server will respond with an error. Note that some messages are also dependent on the higher layer,
providing valid data that was received in messages earlier in the sequence.

A typical message sequence for a simple search query from a protocol client to a remote computer
is illustrated in the following diagram.

Figure 1: Typical message sequence for a simple query from protocol client to remote
computer

The messages represented in the preceding diagram represent a subset of all of the MSSearch
Query Protocol messages used for querying a remote query server search catalog.

3.1 Server Details

3.1.1 Abstract Data Model

The following section specifies data and state maintained by the MSSearch Query Protocol server.
The data provided in this document explains how the protocol behaves. This section does not
mandate that implementations adhere to this model as long as their external behavior is consistent
with that described in this document.

48 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

A query server implementing the MSSearch Query Protocol maintains the following abstract data
elements:

The list of protocol clients connected to the protocol server.

Information about each protocol client, which includes:

Protocol client's version (as specified in the CPMConnectIn message.

Search catalog associated with the protocol client (by a CPMConnectIn message).

Additional client properties as specified in the database properties.

Protocol client's search query.

List of cursor handles for the search query and position in result set for each handle.

Current set of bindings.

Current status of the search query which includes (for each cursor):

Number of rows in query result.

Numerator and denominator of query completion.

The current state of the query server, which is one of "not initialized", "running", or "shutting

down".

Note that most of the time the protocol server is in "running" state. The following is the state
machine diagram for the protocol server.

Figure 2: State machine diagram for the protocol server

3.1.2 Timers

None.

3.1.3 Initialization

Upon initialization, the protocol server MUST set its state to "not initialized" and begin listening for
messages on the named pipe specified in section 1.9. After doing any other internal initialization, it
MUST transition to the "running" state.

3.1.4 Higher-Layer Triggered Events

None.

49 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

3.1.5 Message Processing Events and Sequencing Rules

Whenever an error occurs during processing of a message sent by a protocol client, the protocol
server MUST report an error back to the protocol client as follows:

1. Stop processing the message sent by the protocol client.

2. Respond with the message header (only) of the message sent by the protocol client, keeping
_msg field intact.

3. Set the _status field to the error code value.

When a message arrives, the protocol server MUST check the field value to see if it is a known type
(see section 2.2.2). If the type is not known, it MUST report a STATUS_INVALID_PARAMETER
(0xC000000D) error. The protocol server MUST then validate the _ulChecksum field value if the

message type is one of the following:

CPMConnectIn (0x000000C8)

CPMCreateQueryIn (0x000000CA)

CPMSetBindingsIn (0x000000D0)

CPMGetRowsIn (0x000000CC)

CPMFetchValueIn (0x000000E4)

The protocol server MUST validate that the _ulChecksum field was calculated as specified in
section 3.2.4. If the _ulChecksum value is invalid, the protocol server MUST report a
STATUS_INVALID_PARAMETER (0xC000000D) error.

Next, the protocol server checks which state is it in. If its state is "not initialized", the protocol
server MUST report a CI_E_NOT_INITIALIZED (0x8004180B) error. If the state is "shutting down",

the protocol server MUST report a CI_E_SHUTDOWN (0x80041812) error.

After a header has been determined to be valid and the protocol server to be in "running" state,
further message-specific processing MUST be done as specified in the following subsections.

Some messages are only valid after a previous message has been sent. An identifier or handle from
the earlier message can be required as input to the later message. These requirements are detailed
in the following sections. In the following table that summarizes the relationship between messages,

an X mark means that the protocol client MUST NOT send the message specified in the row before it
received the response specified in the column.

CPMConn

ectOut

CPMCreateQ

ueryOut

CPMSetBin

dingsIn

CPMGetRo

wsOut

CPMFetchV

alueOut

CPMFreeCu

rsorOut

CPMConnec
tIn

CPMCreate
QueryIn

X

CPMSetBind
ingsIn

X X

CPMGetRow
sIn

X X X

50 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

CPMConn

ectOut

CPMCreateQ

ueryOut

CPMSetBin

dingsIn

CPMGetRo

wsOut

CPMFetchV

alueOut

CPMFreeCu

rsorOut

CPMFetchV
alueIn

X X X

CPMFreeCur
sorIn

X X

3.1.5.1 Receiving a CPMConnectIn Request

When the protocol server receives a CPMConnectIn request from a protocol client, the protocol
server MUST do the following:

1. Check if the protocol client is in the list of connected clients. If this is the case, the protocol

server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Checks if the specified search catalog exists and not in the stopped state. If this is not the case,

the protocol server MUST report a MSS_E_CATALOGNOTFOUND (0x80042103) error.

3. Add the protocol client to the list of connected clients.

4. Associate the search catalog with the protocol client.

5. Store the information passed in the CPMConnectIn message (such as search catalog name or

protocol client version) in the protocol client state.

6. Respond to the protocol client with a CPMConnectOut message.

3.1.5.2 Receiving a CPMCreateQueryIn Request

When the protocol server receives a CPMCreateQueryIn message request from a protocol client, the
protocol server MUST do the following:

1. Check if the protocol client is in the list of connected clients. If this is not the case, the protocol

server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check if the protocol client already has a search query associated with it. If this is the case, the
protocol server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

3. Parse the restriction (1) set, sort orders, and groupings that are specified in the search query. If
the protocol server encounters an error, it MUST report an appropriate error. If this step fails for
any other reason, the protocol server MUST report the error encountered. For information about
query server query errors, see [MSDN-QUERYERR].

4. Save the search query in the state for the protocol client.

5. Make any preparations required to serve rows to a protocol client and associate the search query
with new cursor handles. The cursor handles MUST be returned to the protocol client in the
CPMCreateQueryOut response.

6. Initialize the number of rows to the currently calculated number of rows (which can be 0 if the
search query did not begin to execute or some number if the search query is in a process of

execution), and initialize the numerator and denominator of search query completion.

7. Respond to the protocol client with a CPMCreateQueryOut message.

http://go.microsoft.com/fwlink/?LinkId=90070

51 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

3.1.5.3 Receiving a CPMSetBindingsIn Request

When the protocol server receives a CPMSetBindingsIn message request from a protocol client, the
protocol server MUST do the following:

1. Check if the protocol client has a query associated with it. If this is not the case, the protocol
server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check if the cursor handle passed is in the list of the protocol client's cursor handles. If this is not
the case, the protocol server MUST report an E_INVALIDARG (0x80070057) error.

3. Verify that binding information is valid (that is, the column at least specifies value, length or
status to be returned; no overlap in bindings for value, length or status; and value, length and
status fit in the row size specified) and if not, report a DB_E_BADBINDINFO (0x80040E08) error.

4. Save the binding information associated with the columns specified in the aColumns field. If this
step fails for any reason, the protocol server MUST report that an error was encountered.

5. Respond to the protocol client with a message header (only) with _msg set to CPMSetBindingsIn,
and _status set to the results of the specified binding.

3.1.5.4 Receiving a CPMFetchValueIn Request

When the protocol server receives a CPMFetchValueIn message request from a protocol client, the
protocol server MUST do the following:

1. Check if the protocol client has a query associated with it. If this is not the case, the protocol
server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Prepare a CPMFetchValueOut message. If this step fails for any reason, the protocol server MUST
report the error encountered, which is an HRESULT or an NTSTATUS value (see section 1.8).

3. Set _fValueExists to 0x00000001.

4. Set vType to 0x41 (VT_BLOB).

The protocol server MUST store the ignored terms of the search query into a CBaseStorageVariant
with vType VT_VECTOR | VT_LPWSTR. The server MUST use VT_VECTOR | VT_LPWSTR with zero
elements if there were no ignored terms.

The protocol server MUST store any spelling suggestions of the query terms into a
CBaseStorageVariant with vType VT_LPWSTR. MUST contain space-delimited keywords and any
keywords which are spelling suggestions MUST be prefixed with "<suggestion>" and post fixed with

"</suggestion>". If there are no spelling suggestions then vValue MUST contain a null-terminated
empty VT_LPWSTR.

The protocol server MUST store the query terms into a CBaseStorageVariant with vType
VT_VECTOR | VT_LPWSTR. The protocol server MUST use VT_VECTOR | VT_LPWSTR with zero
elements if there were no query terms.

For each query term the protocol server MUST determine a term identifier or 0x0000000. The

protocol server MUST store the term identifiers into a CBaseStorageVariant with vType
VT_VECTOR | VT_UI4.

The protocol server MUST serialize the estimated total number of results for the search query into a
32-bit value. The protocol server MUST then:

52 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

1. Serialize the values of the CBaseStorageVariants and 32-bit value from steps 0-0 to a
QUERYMETADATA structure and copy, starting from the _cbSoFar offset, at most _cbChunk

bytes (but not past the end of the serialized property) to vValue field. If this step fails for any
reason, the protocol server MUST report an error.

2. Set _cbValue to the size of the sent.

3. If the length of serialized property is greater than _cbSoFar added to _cbValue, set
_fMoreExists to 0x00000001; otherwise, set it to 0x00000000.

4. Respond to the protocol client with the CPMFetchValueOut message.

3.1.5.5 Receiving a CPMGetRowsIn Request

When the protocol server receives a CPMGetRowsIn message request from a protocol client, the

protocol server MUST do the following:

1. Check if the protocol client has a query associated with it. If this is not the case, the protocol

server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check if the cursor handle passed is in the list of the protocol client's cursor handles. If this is not
the case, the protocol server MUST report an E_INVALIDARG (0x80070057) error.

3. Check if the protocol client has a current set of bindings. If this is not the case, the protocol

server MUST report an E_UNEXPECTED (0x8000FFFF) error.

4. Prepare a CPMGetRowsOut message. The protocol server MUST position the cursor at the
beginning of the query results. If this step fails for any reason, the protocol server MUST report
the error encountered, which is an HRESULT or an NTSTATUS value (see section 1.8).

5. Fetch as many rows as will fit in a buffer, the size of which is indicated by _cbReadBuffer, but
not more than indicated by _cRowsToTransfer. When fetching rows, the protocol server MUST
compare each selected column's property value type to the type that is specified in the protocol

client's current set of bindings (see section 3.1.1). Store the actual number of rows fetched in

_cRowsReturned.

6. Store fetched rows in the Rows field (see section 2.2.3.7 on the structure of the Rows field).

7. Respond to the protocol client with the CPMGetRowsOut message.

3.1.5.6 Receiving a CPMFreeCursorIn Request

When the protocol server receives a CPMFreeCursorIn message request from the protocol client, the

protocol server MUST do the following:

1. Check if the protocol client has a query associated with it. If this is not the case, the protocol
server MUST report a STATUS_INVALID_PARAMETER (0xC000000D) error.

2. Check if the cursor handle passed is in the list of the protocol client's cursor handles. If this is not
the case, the protocol server MUST report an E_INVALIDARG (0x80070057) error.

3. Release the cursor and associated resources (see section 3.1.1 for a complete list) for this cursor

handle.

4. Remove the cursor from the list of cursors for that protocol client.

53 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

5. Respond with a CPMFreeCursorOut message, setting the _cCursorsRemaining field with the
number of cursors remaining in this protocol client's list.

If there are no more cursors for this protocol client, the protocol server MUST release the query and
associated resources (see section 3.1.1).

3.1.5.7 Receiving a CPMDisconnect Request

When the protocol server receives a CPMDisconnect message request from the protocol client, the
protocol server MUST remove the protocol client from the list of connected protocol clients and
release all resources associated with the protocol client.

3.1.6 Timer Events

When the protocol server receives a CPMConnectIn request with a nonzero value in the
cCmdTimeout field of CRowsetProperties then the protocol server MUST use a timer event to
interrupt a search query that runs longer than the value specified by cCmdTimeout..

3.1.7 Other Local Events

When the protocol server is stopped, it MUST first transition to the "shutting down" state. It MUST
then stop listening to the pipe, perform any other implementation-specific shutdown tasks, and then

transition into the "stopped" state.

3.2 Client Details

3.2.1 Abstract Data Model

The following section describes data and state maintained by the MSSearch Query Protocol client.
The data is provided to help explain how the protocol behaves. This section does not mandate that

implementations adhere to this model as long as their external behavior is consistent with what is
described in this document.

A protocol client has the following abstract state:

Last Message Sent: A copy of the last message sent to the protocol server.

Current Property Value: A partial value of a deferred property, which is in the process of being

retrieved.

Current Bytes Received: The number of bytes received for Current Property Value so far.

Named Pipe Connection State: A connection to the protocol server.

3.2.2 Timers

None.

3.2.3 Initialization

No actions are taken until a higher-layer request is received.

54 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

3.2.4 Higher-Layer Triggered Events

When a request is received from a higher layer, the protocol client MUST create a named pipe
connection to the protocol server, using the details specified in section 2.1. If it is unable to do so,

the higher-layer request MUST be failed. That is, in case of a failure to connect, it is the
responsibility of the higher level to retry.

A header MUST be prepended with fields set as specified in section 2.2.2.

For messages that are specified as requiring a nonzero checksum, the _ulChecksum value MUST
be calculated as follows:

1. The content of the message after the _ulReserved2 field in the message header MUST be
interpreted as a sequence of 32-bit integers. The protocol client MUST calculate the sum of the

numeric values given by these integers.

2. Calculate the bitwise XOR of this value with 0x59533959.

3. Subtract the value given by _msg from the value that results from the bitwise XOR.

3.2.4.1 Query Server Query Messages

With the exception of CPMGetRowsIn/CPMGetRowsOut and CPMFetchValueIn/CPMFetchValueOut,

there is a one-to-one relationship between MSSearch Query Protocol messages and higher-layer
requests. For the two exceptions previously mentioned, there can be multiple messages generated
by the protocol client to either satisfy size requirements or to retrieve a complete property. The
higher layer SHOULD keep track of all query-specific information (such as cursor handles opened
and _wid values for deferred property values) and also track if the protocol client is in a connected
state, but this is not enforced in any way by the protocol client.

The client portion of the diagram in section 3 illustrates this sequence for a simple query.

3.2.4.1.1 Sending a CPMConnectIn Request

This message SHOULD be the very first request from the higher layer (if the protocol client is not
connected, the protocol server will fail most of the messages). The higher level provides the protocol
client with information necessary to connect. To serve the higher layer, the protocol client MUST do
the following:

1. Fill in the message, using information that the higher layer client provided (see section 2.2.3.1)

in _iClientVersion, MachineName, UserName, PropertySets, and ExtPropertySets.

2. Set _fClientIsRemote, _cbBlob1, _cbBlob2, cPropSet, and cExtPropSet, as specified in
section 2.2.3.1.

3. Set the checksum in the _ulChecksum field.

4. Send the CPMConnectIn message to the protocol server.

5. Wait to receive a CPMConnectOut message back from the protocol server, silently discarding all

other messages.

6. Report the value of the _status field of the response (and, if it was successful, the
_serverVersion) back to the higher layer.

The higher layers SHOULD do the following actions on successful connection, but these are not
enforced by the MSSearch Query Protocol client:

55 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

Use a CPMCreateQueryIn request to create a search query with a purpose of retrieving results

from the search catalog.

3.2.4.1.2 Sending a CPMCreateQueryIn Request

The higher layer SHOULD provide information for the query creation after the protocol client is
connected. The higher layer provides the protocol client with a restriction (1) set, columns set, sort
order (can be omitted), rowset properties, and property identifier mapper structure. When this
request is received from a higher layer, the protocol client MUST do the following:

1. Prepare a CPMCreateQueryIn as follows:

If a columns set is present, set CColumnSetPresent to 0x01 and fill the ColumnsSet field.

If restrictions (1) are present, set CRestrictionPresent to 0x01 and fill the Restriction field.

If a sort set is present, set CSortSetPresent to 0x01 and fill the SortSet field.

Set the rest of fields as specified in section 2.2.3.3.

Calculate the _ulCheckSum field in the header.

2. Send the CPMCreateQueryIn message to the protocol server.

3. Wait to receive the CPMCreateQueryOut message (see section 3.2.5.1), silently discarding all
other messages.

4. Report the value of the _status field of the response (and, if it was successful, the array of
cursor handles and informative Boolean values, as specified in section 2.2.3.3) back to the higher
layer.

3.2.4.1.3 Sending a CPMSetBindingsIn Request

The higher layer SHOULD set bindings for each column to be returned in the rows when it already

has a valid cursor handle (after successfully receiving CPMCreateQueryOut, see section 3.2.5.1).
The higher layer is expected to provide an array of CTableColumn structures for the aColumns field
and a valid cursor handle. When this request is received from the higher layer, the protocol client
MUST do the following:

1. Calculate the number of CTableColumn structures in the aColumns array and set the

cColumns field to this value.

2. Calculate the total size in bytes of the cColumns and aColumns fields and set the
_cbBindingDesc field to this value.

3. Set specified fields in the CPMSetBindingsIn message to the values provided by the higher
application layer. Set the ulChecksum field to the value calculated as specified in section 3.2.5.

4. Send the finished CPMSetBindingsIn message to the protocol server.

5. Wait to receive a CPMSetBindingsIn message from the protocol server, discarding other

messages.

6. Indicate the status from the _status field of the response to the higher layer.

The higher layers SHOULD then request a protocol client to send a CPMGetRowsIn message, but this
is not enforced by the MSSearch Query Protocol.

56 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

3.2.4.1.4 Sending a CPMGetRowsIn Request

When the higher layer is about to receive rows data, it will provide the protocol client with a valid
cursor. The higher layer SHOULD do so when it has a valid cursor, and the bindings had been set

with a CPMSetBindingsIn message.

When this request is received from the higher layer, the protocol client MUST do the following:

1. Determine what unsigned integer value to specify for the _cbReadBuffer field. To determine
this value, the client SHOULD take the maximum value from the following:

One thousand times the value of the _cRowsToTransfer field, rounded up to the nearest 512-

byte multiple.

Value of _cbRowWidth, rounded up to the nearest 512-byte multiple.

Take the higher of these two values, up to the 16-kilobytes limit.

In cases where a single row is larger than 16 kilobytes, the protocol server cannot return results

to this query.

2. Specify a client base for variable-sized row data in the client address space in _ulClientBase

field<11>.

3. Set the value of _cbSeek (which would act as an offset for Rows start) to 0x0000000C.

4. Send a CPMGetRowsIn message to the protocol server.

3.2.4.1.5 Sending a CPMFetchValueIn Request

If this is the first CPMFetchValueIn message the protocol client has sent to request the specified
property, the protocol client MUST do the following:

1. Set all the fields in a message, as specified in section 2.2.3.8.

2. Set _cbSoFar to 0x00000000.

3. Set Current Bytes Received to 0.

4. Send the CPMFetchValueIn message to the server.

3.2.4.1.6 Sending a CPMFreeCursorIn Request

After the higher level is no longer using the search query, it can release the resources on the

protocol server by asking the protocol client to send a CPMFreeCursorIn message.

When this request is received, the protocol client MUST send a CPMFreeCursorIn message to the
protocol server, containing the handle specified by the upper layer.

The protocol client MUST do the following:

1. Send the finished CPMFreeCursorIn message to the protocol server.

2. Wait to receive a CPMFreeCursorOut message from protocol server, discarding other messages.

57 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

3.2.4.1.7 Sending a CPMDisconnect Message

If the higher layer has no more queries for the query server, the application may request that the
protocol client send a CPMDisconnect message to the protocol server to make more server resources

available. When the application makes the request, the protocol client MUST simply send the
message as requested. There is no response to this message from the protocol server.

3.2.5 Message Processing Events and Sequencing Rules

When the protocol client receives a message response from the protocol server, the protocol client
MUST use the Last Sent Message to determine if the message received from the protocol server is
the one expected by the protocol client. All messages with the _msg field different from the one in

Last Sent Message MUST be ignored.

3.2.5.1 Receiving a CPMCreateQueryOut Response

When the protocol client receives a CPMCreateQueryOut message response from the protocol

server, the protocol client MUST return _status (and, if the status is successful, cursor handle
values) back to the higher layer. Any further actions are up to the higher layer.

For informative purposes, it is expected that higher layers can do the following actions, but these

are not enforced by the MSSearch Query Protocol client.

Use CPMSetBindingsIn to set bindings for individual columns and do any subsequent actions on the
query path.

3.2.5.2 Receiving a CPMFetchValueOut Response

When the protocol client receives a CPMFetchValueOut message response from the protocol server,

the protocol client MUST do the following:

1. Check if the _status field in the header indicates success or failure. In case of failure, notify the
higher layer. Otherwise, continue to the next step.

2. Check _fValueExist, and, if set to 0x00000000, notify the higher layer that the value was not
found.

3. Otherwise, append _cbValue bytes from vValue to current metadata.

4. If _fMoreExists is set to 0x00000001, increment Current Bytes Received by _cbValue and send

a CPMFetchValueIn message to the server, setting _cbSoFar to the value of Current Bytes
Received, _cbPropSpec to zero, and _cbChunk to the buffer size requested by the higher layer.

5. If _fMoreExists is set to 0x00000000, interpret the value of the QUERYMETADATA structure as
specified in section 2.2.1.19 and report it to the higher level.

3.2.5.3 Receiving a CPMGetRowsOut Response

When the protocol client receives a CPMGetRowsOut message response from the protocol server,

the protocol client MUST do the following:

1. Check if the _status field in the header indicates success or failure.

2. If the _status value is STATUS_BUFFER_TOO_SMALL (0xC0000023), the protocol client MUST
check the Last Message Sent state. If it does not contain a CPMGetRowsIn message, the received
message MUST be silently ignored. Otherwise, the protocol client MUST send to the protocol

58 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

server a new CPMGetRowsIn message with all fields identical to the stored one except that the
_cbReadBuffer MUST be increased by 512 (but not greater than 0x4000). If _status is

STATUS_BUFFER_TOO_SMALL (0xC0000023), and Last Message Sent already has
_cbReadBuffer equal to 0x4000, the protocol client MUST report the error up to the higher

level.

3. If the _status value is any other error value, the protocol client MUST indicate the failure up to
the higher layer.

4. If the _status value indicates success, the results MUST be indicated up to the higher layer
requesting the information, and further actions are up to the higher layer.

Higher layers SHOULD do the following actions, but these are not enforced by the MSSearch Query
Protocol client:

The higher layer SHOULD store, display, or otherwise use the data from row values.

3.2.5.4 Receiving a CPMFreeCursorOut Response

When the protocol client receives a successful CPMFreeCursorOut message response from the
protocol server, the protocol client MUST return the _cCursorsRemaining value to the higher
layer.

The following information is given for informative purposes only and is not enforced by the
MSSearch Query Protocol client. The higher layer is expected to keep track of cursor handles and
not to use ones that have already been freed. Once the number of _cCursorsRemaining is equal
to 0x00000000, the higher layer can use the connection to specify another query (using a
CPMCreateQueryIn message).

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

59 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

4 Protocol Examples

4.1 Obtaining Document Identifiers Based on Query Text

In the following example, consider a scenario in which the user JOHN on computer A wants to obtain
the document identifiers of files that contain the word "Microsoft" from the set of items stored on
server X in catalog SYSTEM. Assume that both computer A and B are running a 32-bit Windows
Server 2003 operating system.

1. The user launches a Search Query Protocol client application and enters the search query. The

application in turn passes the search query to the protocol client.

2. The protocol client establishes a connection with indexing server X. The protocol client uses the
named pipe \pipe\OSearch to connect to the server X over SMB.

3. The protocol client then prepares a CPMConnectIn message with the following values.

1. The header of the message is populated as follows:

_msg is set to 0x000000C8, indicating that this is a CPMConnectIn message.

_status is set to 0x00000000.

_ulChecksum contains the checksum, computed as specified in section 3.2.4.

_ulReserved2 is set to 0x00000000.

2. The body of the message is populated as follows:

_iClientVersion is set to 0x00000102, indicating that the client is not capable of handling

64-bit offsets in CPMGetRowsOut messages.

_fClientIsRemote is set to 0x00000001, indicating that the server is a remote server.

_cbBlob1 is set to the size in bytes of the cPropSet and PropertySets fields combined.

_cbBlob2 is set to the size in bytes of the cExtPropSet and ExtPropertySets fields

combined.

MachineName is set to A.

UserName is set to JOHN.

cPropSets is set to 0x00000001.

The PropertySets[0] field is of type CDbPropSet. The CDbPropSet structure comprising

PropertySets[0] field is populated as follows:

The GuidPropSet field is set to A9BD1526-6A80-11D0-8C9D-0020AF1D740E

(DBPROPSET_FSCIFRMWRK_EXT).

The cProperties field is set to 0x00000002.

The aProps field is an array of CDbProp structures.

For the aProps[0] element:

DBPROPID is set to 0x00000002 (DBPROP_CI_CATALOG_NAME).

60 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

DBPROPOPTIONS is set to 0x0000000.

DBPROPSTATUS is set to 0x00000000.

For the ColId element:

eKind is set to 0x00000001.

GUID is null (all zeros), meaning the value applies to the query, not just a single

column.

ulID is set to 0x00000000.

For the vValue element:

vType is set to 0x001F (VT_LPWSTR).

vData1 is set to 0x00.

vData2 is set to 0x00.

vValue is set to "SYSTEM", the name of the search catalog being requested.

For the aProps[1] element:

DBPROPID is set to 0x00000007 (DBPROP_CI_QUERY_TYPE).

DBPROPOPTIONS is set to 0x0000000.

DBPROPSTATUS is set to0x00000000.

For the ColId element:

eKind is set to 0x00000001.

GUID is null (all zeros), meaning the value applies to the query, not just a single

column.

ulID is set to 0x00000000.

For the vValue element:

vType is set to 0x0003 (VT_I4).

vData1 is set to 0x00.

vData2 is set to 0x00.

vValue is set to 0x00000000, meaning it is a regular query.

The cExtPropSet field is set to 0x00000001.

The ExtPropertySets [0] field is of type CDbPropSet. The CDbPropSet structure

comprising ExtPropertySets [0] field is populated as follows:

The GuidPropSet field is set to A9BD1526-6A80-11D0-8C9D-0020AF1D740E

(DBPROPSET_FSCIFRMWRK_EXT).

The cProperties field is set to 0x00000001.

61 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

The aProps field is an array of CDbProp structures.

For the aProps[0] element:

DBPROPID is set to 0x00000002 (DBPROP_CI_CATALOG_NAME).

DBPROPOPTIONS is set to 0x0000000.

DBPROPSTATUS is set to 0x00000000.

For the ColId element:

eKind is set to 0x00000001.

GUID is null (all zeros), meaning the value applies to the query, not just a single

column.

ulID is set to 0x00000000.

For the vValue element:

vType is set to 0x0008 (VT_BSTR).

vData1 is set to 0x00.

vData2 is set to 0x00.

vValue is set to "SYSTEM", the name of the search catalog being requested.

3. Various padding fields are filled in as needed. The message is sent to the protocol server.

4. The protocol server verifies that the _ulChecksum is correct, verifies that the user is authorized

to make this request, and responds with a CPMConnectOut message.

1. The header of the message is populated as follows:

_msg is set to 0x000000C8, indicating that this is a CPMConnectOut message.

_status is set to 0x0000000 indicating SUCCESS.

_ulChecksum is set to 0.

_ulReserved2 is set to 0x00000000.

2. The body of the message is populated as follows:

The _serverVersion field is set to 0x00000102.

The _reserved fields are filled with arbitrary data.

5. The protocol client prepares a CPMCreateQueryIn message.

1. The header of the message is populated as follows:

_msg is set to 0x000000CA, indicating that this is a CPMCreateQueryIn message.

_status is set to 0x00000000.

_ulChecksum contains the checksum, computed according to section 3.2.4.

62 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_ulReserved2 is set to 0x00000000.

2. The body of the message is populated as follows:

The Size field is set to the size of the rest of the message.

The CColumnSetPresent field is set to 0x01.

The ColumnSet field is of type CColumnSet. The CColumnSet structure comprising this

field is set as follows:

The count field is set to 0x00000001 indicating one column is returned.

The indexes array contains one element with value 0x00000000, indicating the first

entry in _aPropSpec.

The CRestrictionPresent field is set to 0x01, indicating the Restriction field is present.

The Restriction field is of type CRestriction and is set to:

_ulType is set to 0x00000004 (RTContent).

Weight is set to 0x00000000.

The Restriction field contains a CContentRestriction structure:

_Property is set to GUID 012357BD-1113-171D-1F25-292BB0B0B0B0 /

0x00000001 / 0x00000001, which represents the document body on the particular
protocol server implementation.

Cc is set to 0x00000009.

_pwcsphrase is set to the string "Microsoft".

Lcid is set to 0x00000409 (for English).

_ulGenerateMethod is set to 0x00000000 (exact match).

CSortSetPresent is set to 0x00.

RowSetProperties is set as follows:

_uBooleanOptions is set to 0x00008001 (sequential, ignore noise-only).

_ulMaxOpenRows is set to 0x00000000.

_ulMemoryUsage is set to 0x00000000.

_cMaxResults is set to 0x00000100 (return at most 256 rows).

_cCmdTimeOut is set to 0x00000000 (never time out).

PidMapper is set to:

count is set to 0x00000001.

_aPropSpec is set to GUID 012357BD-1113-171D-1F25-292BB0B0B0B0 / 0x00000001

/ 0x0000002F, which represents the document identifier property on the particular
protocol server implementation.

63 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

Reserved1 is set to 0x00000000.

LCID is set to 0x409 (for English).

6. The protocol server processes it and responds with a CPMCreateQueryOut message.

1. The header of the message is populated as follows:

_msg is set to 0x000000CA, indicating that this is a CPMCreateQueryOut message.

_status is set to SUCCESS.

_ulChecksum is set to 0x00000000 (or any other arbitrary value).

_ulReserved2 is set to 0x00000000.

2. The body of the message is populated as follows:

_fTrueSequential is set to 0x00000000.

_fWorkIdUnique is set to 0x00000001.

The Cursor field contains a cursor handle to this query. The value depends on the state of

the protocol server, assuming that the returned value is 0xAAAAAAAA.

7. The protocol client issues a CPMSetBindingsIn request message to define the format of a row.

1. The header of the message is populated as follows:

_msg is set to 0x000000D0, indicating that this is a CPMSetBindingsIn message.

_status is set to SUCCESS.

_ulChecksum contains the checksum, computed according to section 3.2.4.

_ulReserved2 is set to 0x00000000.

2. The body of the message is populated as follows:

_hCursor is set to 0xAAAAAAAA.

_cbRow is set to 0x10 (big enough to fit columns).

_cbBindingDesc is set to the size of the _cColumns and _aColumns fields combined.

_dummy is set to 0x00000000 (or any other arbitrary value).

_cColumns is set to 0x00000001.

The _aColumns array is set to contain one CTableColumn structure containing:

_PropSpec is set to GUID 012357BD-1113-171D-1F25-292BB0B0B0B0 / 0x00000001 /

0x0000002F, which represents the document identifier property on the particular server
implementation.

_vType is set to 0x000C (VT_VARIANT).

_ValueUsed is set to 0x01 (column transferred in row).

_ValueOffset is set to 0x0008 (at beginning of row).

64 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

_ValueSize is set to 0x10 (size of a CRowVariant).

_StatusUsed is set to 0x01.

_StatusOffset is set to 0x02.

_LengthUsed is set to 0x01.

_LengthOffset is set to 0x04.

8. The protocol server processes it and responds with a CPMSetBindingsIn message.

The header of the message is populated as follows:

_msg is set to 0x000000D0.

_status is set to SUCCESS.

_ulChecksum is set to 0x00000000 (or any other arbitrary value).

_ulReserved2 is set to 0x00000000.

9. The protocol client issues a CPMGetRowsIn request message, assuming that the protocol client is

prepared to accept 100 rows at this point, in ascending order.

1. The header of the message is populated as follows:

_msg is set to 0x000000CC, indicating that this is a CPMGetRowsIn message.

_status is set to 0x00000000.

_ulChecksum contains the checksum, computed as specified in section 3.2.4.

_ulReserved2 is set to 0x00000000.

2. The body of the message is populated as follows:

_hCursor is set to 0xAAAAAAAA.

_cRowsToTransfer is set to 0x00000064.

_cRowWidth is set to 0x00000030 (from bindings).

_cbSeek is set to 0x0000000C.

_cbReadBuffer is set to 0x4000 (the maximum value for this field).

_ulClientBase is set to 0x00000000.

Reserved1 is set to 0x00000000.

Reserved2 is set to 0x00000001.

Reserved3 is set to 0x00000000.

Reserved4 is set to 0x00000000.

10.The protocol server processes it and responds with a CPMGetRowsOut message, assuming the
protocol server found 100 items that contain the word "Microsoft".

65 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

1. The header of the message is populated as follows:

_msg is set to 0x000000CC, indicating that this is a CPMGetRowsOut message.

_status is set to SUCCESS.

_ulChecksum is set to 0x00000000.

_ulReserved2 is set to 0x00000000.

2. The body of the message is populated as follows:

_CRowsReturned is set to 0x00000012. (18 results returned).

Rows contains the 18 items that contain the word "Microsoft". Because this is fixed-size

data, it is simply structured as a list of 18, 48-byte CRowVariants that contain document
identifiers.

11.The protocol client sends a CPMDisconnect message to end the connection.

The header of the message is populated as follows:

_msg is set to 0x000000C9, indicating that this is a CPMDisconnect message.

_status is set to 0x00000000.

_ulChecksum is set to 0x00000000.

_ulReserved2 is set to 0x00000000.

12.The protocol server processes the message and removes all client states for the protocol client.

66 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

5 Security

5.1 Security Considerations for Implementers

Crawling implementations that crawl secure content use the user context provided by SMB (as
specified in [MS-SMB]) to enforce permissions on the named pipe used as the transport for this
protocol.

5.2 Index of Security Parameters

Security Parameter Section

Impersonation level 2.1

%5bMS-SMB%5d.pdf

67 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft Office SharePoint Server 2007

Windows SharePoint Services 3.0

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior

also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product

does not follow the prescription.

<1> Section 1.4: Applications SHOULD interact with an OLE DB interface wrapper such as a protocol

client, and not directly with the protocol. For more information, see [MSDN-OLEDBP-OI].

<2> Section 1.8: See [MSDN-PROPSET] for a list of supported property sets

<3> Section 2.1: Windows SharePoint Services 3.0 implementation always uses \pipe\SPSearch
name.

<4> Section 2.2.1.19: In Windows SharePoint Services 3.0 implementation alternative spellings are
not generated and the SpellingSuggestion field always contains an empty string.

<5> Section 2.2.1.19: In Office SharePoint Server 2007 for Search, Windows SharePoint Services
3.0 and Office SharePoint Server 2007 implementations, the vVectorData field is set to the values
of internal identifiers for query terms.

<6> Section 2.2.2: In Office SharePoint Server 2007 for Search, Office SharePoint Server 2007, and
Windows SharePoint Services 3.0 implementations, the protocol client always sets the _status field
to 0x00000000.

<7> Section 2.2.3.1: In Office SharePoint Server 2007 for Search, Office SharePoint Server 2007,

and Windows SharePoint Services 3.0 implementation, the _iClientVersion is set as specified in the
following table.

Version Value

32-bit, no SP1 0x00000102

64-bit, no SP1 0x00010102

32-bit, SP1 or higher 0x00000103

64-bit, SP1 or higher 0x00010103

<8> Section 2.2.3.2: The Windows SharePoint Services 3.0 and Microsoft Office SharePoint Server
2007 SP1 do not initialize the value of the _reserved field and send arbitrary data

<9> Section 2.2.3.8: This field is set to 0x00004000 for all versions of Windows

http://go.microsoft.com/fwlink/?LinkId=119666
http://go.microsoft.com/fwlink/?LinkId=101368

68 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

<10> Section 2.2.4: The same pipe connection is used for the following messages except when the
error is returned in a CPMConnectOut message. In the latter case, the pipe connection is terminated

by the client by closing the named pipe handle. Whenever the client end of pipe is closed the server
releases all resources associated with the connection including the named pipe instance.

<11> Section 3.2.4.1.4: For a 32-bit protocol client talking to a 32-bit protocol server or a 64-bit
protocol client talking to a 64-bit protocol server, this value is set to a memory address of the
receiving buffer in the application process. This allows for pointers received in the Rows field of
CPMGetRowsOut to be correct memory pointers in a client application process. Otherwise, it is set to
0x00000000.

69 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

70 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

8 Index

A

Abstract data model
client 53
server 47

Applicability 10

C

Capability negotiation 10
CBaseStorageVariant structure 12
CColumnSet structure 24
CContentRestriction structure 17
CDbColId structure 24
CDbProp structure 25
CDbPropSet structure 26
CFullPropSpec structure 17
Change tracking 69
Client

abstract data model 53
higher-layer triggered events 54
initialization 53
message processing 57
other local events 58
overview 47
sequencing rules 57
timer events 58
timers 53

Client - message processing 57
Client - sequencing rules 57
CNatLanguageRestriction structure 19
CNodeRestriction structure 20
CPidMapper structure 27
CPMConnectIn message 34
CPMConnectOut message 36
CPMCreateQueryIn message 37

CPMCreateQueryOut message 39
CPMDisconnect message 45
CPMFetchValueIn message 43
CPMFetchValueOut message 44
CPMFreeCursorIn message 45
CPMFreeCursorOut message 45
CPMGetRowsIn message 41
CPMGetRowsOut message 42
CPMSetBindingsIn message 39
CPropertyRestriction structure 20
CRestriction structure 23
CRowsetProperties structure 27
CRowVariant structure 29
CSort structure 21
CSortSet structure 29
CTableColumn structure 30
CVectorRestriction structure 22

D

Data model - abstract
client 53
server 47

E

Errors message 46
Examples

obtaining document identifiers based on query
text > 59

F

Fields - vendor-extensible 10

G

Glossary 7

H

Higher-layer triggered events
client 54
server 48

I

Implementer - security considerations 66

Index of security parameters 66
Informative references 8
Initialization

client 53
server 48

Introduction 7

M

Message Headers message 32
Message processing

client 57
server (section 3.1.5 49, section 3.1.5 49)

Message processing - client 57
Message processing - server

receiving a CPMConnectIn request 50
receiving a CPMCreateQueryIn request 50

Messages 11
CBaseStorageVariant structure 12
CColumnSet structure 24
CContentRestriction structure 17
CDbColId structure 24
CDbProp structure 25
CDbPropSet structure 26
CFullPropSpec structure 17
CNatLanguageRestriction structure 19
CNodeRestriction structure 20
CPidMapper structure 27
CPMConnectIn message 34
CPMConnectOut message 36
CPMCreateQueryIn message 37
CPMCreateQueryOut message 39
CPMDisconnect message 45
CPMFetchValueIn message 43

71 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

CPMFetchValueOut message 44
CPMFreeCursorIn message 45
CPMFreeCursorOut message 45
CPMGetRowsIn message 41
CPMGetRowsOut message 42
CPMSetBindingsIn message 39
CPropertyRestriction structure 20
CRestriction structure 23
CRowsetProperties structure 27
CRowVariant structure 29
CSort structure 21
CSortSet structure 29
CTableColumn structure 30
CVectorRestriction structure 22
Errors 46
Message Headers 32
Messages 33
overview 11
QUERYMETADATA structure 31
Structures 11
transport 11

Messages message 33

N

Normative references 8

O

Obtaining document identifiers based on query text
example 59

Other local events
client 58
server 53

Overview (synopsis) 8

P

Parameters - security index 66
Preconditions 9
Prerequisites 9
Product behavior 67
Protocol

overview 47
Protocol Details

overview 47

Q

Query messages 54
QUERYMETADATA structure 31

R

References 8
informative 8
normative 8

Relationship to other protocols 9
Remote querying - overview 9

S

Security
implementer considerations 66
parameter index 66

Sequencing rules
client 57
server 49

Sequencing rules - client 57
Sequencing rules - server

receiving a CPMConnectIn request 50
receiving a CPMCreateQueryIn request 50

Server
abstract data model 47
higher-layer triggered events 48
initialization 48
message processing (section 3.1.5 49, section

3.1.5 49)
other local events 53
overview 47
sequencing rules (section 3.1.5 49, section 3.1.5

49)
timer events 53
timers 48

Server - message processing

receiving a CPMConnectIn request 50
receiving a CPMCreateQueryIn request 50

Server - sequencing rules
receiving a CPMConnectIn request 50
receiving a CPMCreateQueryIn request 50

Standards assignments 10
Structures

CBaseStorageVariant 12
CColumnSet 24
CContentRestriction 17
CDbColId 24
CDbProp 25
CDbPropSet 26
CFullPropSpec 17
CNatLanguageRestriction 19
CNodeRestriction 20
CPidMapper 27
CPropertyRestriction 20
CRestriction 23
CRowsetProperties 27
CRowVariant 29
CSort 21
CSortSet 29
CTableColumn 30
CVectorRestriction 22
QUERYMETADATA 31

Structures message 11

T

Timer events
client 58
server 53

Timers
client 53
server 48

Tracking changes 69
Transport 11
Triggered events - higher-layer

72 / 72

[MS-SQP] — v20141019
 MSSearch Query Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: October 30, 2014

client 54
server 48

V

Vendor-extensible fields 10
Versioning 10

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Remote Querying

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Structures
	2.2.1.1 CBaseStorageVariant
	2.2.1.1.1 CBaseStorageVariant Structures
	2.2.1.1.1.1 VT_VECTOR

	2.2.1.2 CFullPropSpec
	2.2.1.3 CContentRestriction
	2.2.1.4 CNatLanguageRestriction
	2.2.1.5 CNodeRestriction
	2.2.1.6 CPropertyRestriction
	2.2.1.7 CSort
	2.2.1.8 CVectorRestriction
	2.2.1.9 CRestriction
	2.2.1.10 CColumnSet
	2.2.1.11 CDbColId
	2.2.1.12 CDbProp
	2.2.1.12.1 Database Properties

	2.2.1.13 CDbPropSet
	2.2.1.14 CPidMapper
	2.2.1.15 CRowsetProperties
	2.2.1.16 CRowVariant
	2.2.1.17 CSortSet
	2.2.1.18 CTableColumn
	2.2.1.19 QUERYMETADATA

	2.2.2 Message Headers
	2.2.3 Messages
	2.2.3.1 CPMConnectIn
	2.2.3.2 CPMConnectOut
	2.2.3.3 CPMCreateQueryIn
	2.2.3.4 CPMCreateQueryOut
	2.2.3.5 CPMSetBindingsIn
	2.2.3.6 CPMGetRowsIn
	2.2.3.7 CPMGetRowsOut
	2.2.3.8 CPMFetchValueIn
	2.2.3.9 CPMFetchValueOut
	2.2.3.10 CPMFreeCursorIn
	2.2.3.11 CPMFreeCursorOut
	2.2.3.12 CPMDisconnect

	2.2.4 Errors

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Receiving a CPMConnectIn Request
	3.1.5.2 Receiving a CPMCreateQueryIn Request
	3.1.5.3 Receiving a CPMSetBindingsIn Request
	3.1.5.4 Receiving a CPMFetchValueIn Request
	3.1.5.5 Receiving a CPMGetRowsIn Request
	3.1.5.6 Receiving a CPMFreeCursorIn Request
	3.1.5.7 Receiving a CPMDisconnect Request

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Query Server Query Messages
	3.2.4.1.1 Sending a CPMConnectIn Request
	3.2.4.1.2 Sending a CPMCreateQueryIn Request
	3.2.4.1.3 Sending a CPMSetBindingsIn Request
	3.2.4.1.4 Sending a CPMGetRowsIn Request
	3.2.4.1.5 Sending a CPMFetchValueIn Request
	3.2.4.1.6 Sending a CPMFreeCursorIn Request
	3.2.4.1.7 Sending a CPMDisconnect Message

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Receiving a CPMCreateQueryOut Response
	3.2.5.2 Receiving a CPMFetchValueOut Response
	3.2.5.3 Receiving a CPMGetRowsOut Response
	3.2.5.4 Receiving a CPMFreeCursorOut Response

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	4.1 Obtaining Document Identifiers Based on Query Text

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

