
1 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

[MS-SIPCOMP]:

Session Initiation Protocol (SIP) Compression Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for protocols,
file formats, languages, standards as well as overviews of the interaction among each of these
technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the

technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL's, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming
environments in order for you to develop an implementation. If you have access to Microsoft
programming tools and environments you are free to take advantage of them. Certain Open
Specifications are intended for use in conjunction with publicly available standard specifications and
network programming art, and assumes that the reader either is familiar with the aforementioned

material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Revision Summary

Date
Revision
History

Revision
Class Comments

4/4/2008 0.1 Initial version

4/25/2008 0.2 Updated based on feedback

6/27/2008 1.0 Updated based on feedback

8/15/2008 1.01 Updated based on feedback

12/12/2008 2.0 Updated with latest template bug fixes (redlined)

2/13/2009 2.01 Updated with latest template bug fixes (redlined)

3/13/2009 2.02 Updated with latest template bug fixes (redlined)

7/13/2009 2.03 Major Revised and edited the technical content

8/28/2009 2.04 Editorial Revised and edited the technical content

11/6/2009 2.05 Editorial Revised and edited the technical content

2/19/2010 2.06 Editorial Revised and edited the technical content

3/31/2010 2.07 Major Updated and revised the technical content

4/30/2010 2.08 Editorial Revised and edited the technical content

6/7/2010 2.09 Editorial Revised and edited the technical content

6/29/2010 2.10 Editorial Changed language and formatting in the technical content.

7/23/2010 2.10 No Change No changes to the meaning, language, or formatting of the
technical content.

9/27/2010 3.0 Major Significantly changed the technical content.

11/15/2010 3.0 No Change No changes to the meaning, language, or formatting of the
technical content.

12/17/2010 3.0 No Change No changes to the meaning, language, or formatting of the
technical content.

3/18/2011 3.0 No Change No changes to the meaning, language, or formatting of the
technical content.

6/10/2011 3.0 No Change No changes to the meaning, language, or formatting of the
technical content.

1/20/2012 3.1 Minor Clarified the meaning of the technical content.

4/11/2012 3.1 No Change No changes to the meaning, language, or formatting of the
technical content.

7/16/2012 3.1 No Change No changes to the meaning, language, or formatting of the
technical content.

10/8/2012 3.2 Minor Clarified the meaning of the technical content.

2/11/2013 3.2.1 Editorial Changed language and formatting in the technical content.

7/30/2013 3.2.1 No Change No changes to the meaning, language, or formatting of the

3 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Date
Revision
History

Revision
Class Comments

technical content.

11/18/2013 3.2.1 No Change No changes to the meaning, language, or formatting of the
technical content.

2/10/2014 3.2.1 No Change No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 3.2.1 No Change No changes to the meaning, language, or formatting of the
technical content.

7/31/2014 3.3 Minor Clarified the meaning of the technical content.

10/30/2014 3.4 Minor Clarified the meaning of the technical content.

9/4/2015 3.4 No Change No changes to the meaning, language, or formatting of the
technical content.

4 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 6

1.2.1 Normative References ... 7
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.3.1 Message Flow ... 7

1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 8
1.6 Applicability Statement ... 9
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields ... 9
1.9 Standards Assignments ... 9

2 Messages ... 10
2.1 Transport .. 10
2.2 Message Syntax ... 10

2.2.1 NEGOTIATE Request Message Format ... 10
2.2.2 Response to NEGOTIATE Request ... 10
2.2.3 Compression SIP Header Field Syntax ... 10
2.2.4 Compression Packet Header Format .. 11

3 Protocol Details ... 12
3.1 Compression Negotiation Details .. 12

3.1.1 Abstract Data Model .. 12
3.1.2 Timers .. 12
3.1.3 Initialization ... 12
3.1.4 Higher-Layer Triggered Events ... 12

3.1.4.1 Initiating Compression Negotiation .. 12
3.1.5 Message Processing Events and Sequencing Rules .. 12

3.1.5.1 Sending NEGOTIATE Request from the Client ... 12
3.1.5.2 Processing NEGOTIATE Request in the Server ... 12
3.1.5.3 Processing Response of NEGOTIATE Request in the Client 13

3.1.6 Timer Events .. 13
3.1.7 Other Local Events .. 13

3.2 Compression Transport Details .. 13
3.2.1 Abstract Data Model .. 14
3.2.2 Timers .. 14
3.2.3 Initialization ... 14
3.2.4 Higher-Layer Triggered Events ... 14
3.2.5 Message Processing Events and Sequencing Rules .. 14

3.2.5.1 Compressing Data ... 15
3.2.5.1.1 Setting the Compression Flags .. 16

3.2.5.2 Decompressing Data ... 17
3.2.6 Timer Events .. 18
3.2.7 Other Local Events .. 19

4 Protocol Examples ... 20
4.1 NEGOTIATE Request for Compression Negotiation .. 20
4.2 OK to the NEGOTIATE Request .. 20

5 Security ... 21
5.1 Security Considerations for Implementers ... 21
5.2 Index of Security Parameters .. 21

6 Appendix A: Product Behavior ... 22

5 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

7 Change Tracking .. 23

8 Index ... 24

6 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

1 Introduction

The Session Initiation Protocol (SIP) Compression Protocol is the protocol for SIP signaling traffic
compression. This protocol has two phases. The negotiation phase, which advertises and exchanges
compression capabilities, and the transport phase that deals with encoding and decoding of the
payload. This protocol is used by both the protocol client and the proxy.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,

MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are specific to this document:

200 OK: A response to indicate that the request has succeeded.

Augmented Backus-Naur Form (ABNF): A modified version of Backus-Naur Form (BNF),
commonly used by Internet specifications. ABNF notation balances compactness and simplicity
with reasonable representational power. ABNF differs from standard BNF in its definitions and
uses of naming rules, repetition, alternatives, order-independence, and value ranges. For more

information, see [RFC5234].

proxy: A computer, or the software that runs on it, that acts as a barrier between a network and
the Internet by presenting only a single network address to external sites. By acting as a go-
between that represents all internal computers, the proxy helps protects network identities while
also providing access to the Internet.

Request-URI: A URI in an HTTP request message, as described in [RFC2616].

Session Initiation Protocol (SIP): An application-layer control (signaling) protocol for creating,

modifying, and terminating sessions with one or more participants. SIP is defined in [RFC3261].

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

Transport Layer Security (TLS): A security protocol that supports confidentiality and integrity of

messages in client and server applications communicating over open networks. TLS supports
server and, optionally, client authentication by using X.509 certificates (as specified in [X509]).
TLS is standardized in the IETF TLS working group. See [RFC4346].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90590
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx

7 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[MS-CONMGMT] Microsoft Corporation, "Connection Management Protocol".

[RFC2118] Pall, G., "Microsoft Point-To-Point Compression (MPPC) Protocol", RFC 2118, March 1997,
http://www.ietf.org/rfc/rfc2118.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,

Handley, M., and Schooler, E., "SIP: Session Initiation Protocol", RFC 3261, June 2002,
http://www.ietf.org/rfc/rfc3261.txt

[RFC4346] Dierks, T., and Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.1",
RFC 4346, April 2006, http://www.ietf.org/rfc/rfc4346.txt

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD
68, RFC 5234, January 2008, http://www.rfc-editor.org/rfc/rfc5234.txt

1.2.2 Informative References

[MS-SIPAE] Microsoft Corporation, "Session Initiation Protocol (SIP) Authentication Extensions".

1.3 Overview

This protocol provides a way to perform compression between the protocol client and its first hop
Session Initiation Protocol (SIP) proxy. This protocol defines the usage of a modified form of the
Microsoft Point-to-Point Compression (MPPC) protocol to perform compression of SIP data. This

protocol also defines the protocol for negotiating compression capability. The protocol client and
server can operate as the sender of compressed data.

1.3.1 Message Flow

The following figure shows the message flow for a typical compression session for this protocol.

mailto:dochelp@microsoft.com
%5bMS-CONMGMT%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90316
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90474
http://go.microsoft.com/fwlink/?LinkId=123096
%5bMS-SIPAE%5d.pdf

8 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Figure 1: Typical message flow for this protocol

This protocol begins immediately following Transport Layer Security (TLS) negotiation. A protocol
session has a negotiation phase and a transport phase. In the negotiation phase, the protocol client

and server exchange a compression negotiation request and a compression negotiation response. In
the transport phase, the protocol client and server exchange compression packet headers and data.

1.4 Relationship to Other Protocols

This protocol depends on the Microsoft Point-to-Point Compression (MPPC) protocol described in

[RFC2118] for encoding and decoding compressed data. The compressed data is transported over a

TLS channel.

The negotiation phase of the session determines whether data is compressed using this protocol or is
sent uncompressed.

The following figure shows the logical relationship among the various protocols.

Figure 2: This protocol in relation to other protocols

1.5 Prerequisites/Preconditions

The TLS channel has to be established before this protocol starts the compression negotiation. In

addition, the protocol client and server cannot have sent any SIP traffic on this connection before the
compression negotiation.

http://go.microsoft.com/fwlink/?LinkId=90316

9 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

1.6 Applicability Statement

This protocol is applicable when both the protocol client and the server support SIP and will use the
enhancement offered by this protocol.

1.7 Versioning and Capability Negotiation

Protocol clients and servers supporting this protocol negotiate compression capability using the new
NEGOTIATE method specified in section 2.2.1. The compression algorithm is negotiated using the
Compression header field specified in section 2.2.3.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

10 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2 Messages

2.1 Transport

The negotiation messages and payload for this protocol MUST be transported over an established TLS

channel.

2.2 Message Syntax

All of the message syntax specified in this document is described in both prose and an Augmented

Backus-Naur Form (ABNF), as defined in [RFC5234].

2.2.1 NEGOTIATE Request Message Format

This protocol extends [RFC3261] in defining a new SIP method for negotiation of compression. The
capitalized NEGOTIATE token is an extension-method conforming to the method and extension-

method grammar specified in [RFC3261] section 25.1 as follows:

Method = INVITEm / ACKm / OPTIONSm / BYEm

 / CANCELm / REGISTERm

 / extension-method

extension-method = token

The NEGOTIATE request MUST include the CSeq, Via, Call-ID, From, and To header fields
constructed as specified in [RFC3261].

The NEGOTIATE request MUST<1> have a Max-Forwards header field value of 0. The NEGOTIATE
method is not intended to be proxied beyond the first hop proxy.

The NEGOTIATE request MUST also include the Compression header field specified in section 2.2.3.

The NEGOTIATE request SHOULD NOT contain a Content-Type header field and it SHOULD NOT
contain a message body.

2.2.2 Response to NEGOTIATE Request

The response for a NEGOTIATE request is constructed following the steps specified in [RFC3261]

section 8.2.6.

In addition, the 200 OK response for the NEGOTIATE request MUST contain a Compression header
field, as specified in section 2.2.3.

2.2.3 Compression SIP Header Field Syntax

This protocol defines a new Compression SIP header field.

Compression = "Compression" HCOLON compression-value

compression-value = "LZ77-8K" / token

The Compression header field is used to exchange the compression algorithm to be used. Currently,
"LZ77-8K" is the only supported value.

http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=90410

11 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.2.4 Compression Packet Header Format

Once compression capability is negotiated, a Compression Packet header MUST precede a data
segment to be sent over the compression negotiated TLS channel, as specified in [RFC4346].

The size of the Compression Packet header MUST be 6 bytes. The Compression Packet header
has the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

flags type reserved

Uncompressed size Data (variable, not part of the header)

...

flags (4 bits): The size of the flags MUST be 4 bits. The value is produced by performing a logical OR
of the values in PACKET_FLUSHED, PACKET_AT_FRONT, and PACKET_COMPRESSED. The
use of this value is further specified in section 3.2.5.1.1.

Name Value Description

PACKET_FLUSHED 0x8 If this flag is set, the data is not compressed and the receiver MUST
reset the history buffer state. This flag MUST NOT be used in
conjunction with PACKET_COMPRESSED.

PACKET_AT_FRONT 0x4 If this flag is set, uncompressed data is set at the beginning of the
history buffer.

PACKET_COMPRESSED 0x2 If this flag is set, it indicates that the data is compressed. This flag
MUST NOT be used in conjunction with PACKET_FLUSHED.

Undefined 0x1 This flag is not used. This flag MUST NOT be set.

type (4 bits): A 4-bit value used for the type of compression used. This value MUST be set to zero for
this protocol. The server and client SHOULD ignore this value.

reserved (3 bytes): Three bytes that are not used. All bits MUST be set to zero by the sender, and

MUST be ignored by the receiver.

Uncompressed size (2 bytes): The uncompressed size MUST be a 16-bit unsigned value containing
the size of the original data before compression. An incorrect size MAY cause decompression to
fail.

Data (variable): The data for the packet. This is not part of the header.

http://go.microsoft.com/fwlink/?LinkId=90474

12 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

3 Protocol Details

3.1 Compression Negotiation Details

Both the protocol client and the server can operate as senders of compressed data. The protocol client

and server advertise their compression capability and algorithm using the mechanism specified in this
section.

3.1.1 Abstract Data Model

None.

3.1.2 Timers

After the protocol client sends the NEGOTIATE request, the protocol client MUST set timer F for the
non-INVITE protocol client transaction, as specified in [RFC3261] section 17.1.2.2. However, instead

of setting timer F to T1*64 seconds (with T1 having a default of 500ms as specified in [RFC3261]
section 17.1.1.1), the protocol client SHOULD set timer F to 5 seconds. This smaller timer F value
forces compression negotiation to complete within 5 seconds and shortens the maximum transport
establishment delay between protocol client and server.

3.1.3 Initialization

The protocol client participating in this protocol MUST obtain the IP address of the first hop SIP proxy
and the remote port with which the protocol client established the Transmission Control Protocol
(TCP) connection and successfully negotiated the TLS channel. The first hop SIP proxy IP address and
port is used to construct the Request-URI of the NEGOTIATE request.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Initiating Compression Negotiation

To participate in compression, a protocol client MUST send the compression negotiation request to the
first hop SIP proxy after TLS negotiation is successfully finished and before sending any data on the
TLS channel.

3.1.5 Message Processing Events and Sequencing Rules

This protocol uses the NEGOTIATE SIP non-INVITE transaction to negotiate compression capability.
The NEGOTIATE request communicates the request to start compression. The NEGOTIATE is always
sent from the protocol client to the server. The server MUST NOT start compression negotiation by
sending a NEGOTIATE request to the protocol client.

3.1.5.1 Sending NEGOTIATE Request from the Client

The protocol client participating in compression MUST construct a NEGOTIATE message, as specified in
section 2.2.1.

3.1.5.2 Processing NEGOTIATE Request in the Server

The server can receive a NEGOTIATE request after a TCP connection to a protocol client is established
and TLS negotiation completes successfully. To participate in compression, the server MUST inspect
the Compression header field and match the value "LZ77-8K". If the Compression header field does

http://go.microsoft.com/fwlink/?LinkId=90410

13 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

not contain "LZ77-8K", the server MUST respond to the NEGOTIATE request with a failure response
code greater than or equal to 400.

If the server is unable to support compression negotiation for any reason, including internal causes
such as resource limitations, the server MUST respond to the NEGOTIATE request with a failure

response code greater than or equal to 400.

If the server receives a NEGOTIATE request with a Max-Forwards header field value greater than 0,
it MUST<2> respond to the NEGOTIATE request with a failure response code greater than or equal to
400.

If the server receives a NEGOTIATE request with a Content-Type header field, it SHOULD ignore the
header field.

If the server receives a NEGOTIATE request with a message body, it SHOULD ignore the message

body. To proceed with compression negotiation, the server MUST construct a 200 OK response to the
NEGOTIATE request, as specified in section 2.2.2.

The server MUST send a response to the NEGOTIATE request within 5 seconds, to prevent timer F in

the protocol client from expiring.

3.1.5.3 Processing Response of NEGOTIATE Request in the Client

When the protocol client receives a response for the NEGOTIATE request, the protocol client MUST
cancel the pending timer F. The protocol client then inspects the response code. Any response code
other than 200 is treated as compression declined, and the protocol client and server MUST NOT start
the transport phase of this protocol. If the response code is 200, the protocol client MUST inspect the
Compression header field. If the header field value does not match "LZ77-8K", the server supports a

compression algorithm that is different from the one used in this protocol. In this case, the protocol
client MUST fail compression negotiation and tear down the TCP connection. If the header field value
matches the expected value, the negotiation phase is successfully finished. This protocol then moves
into the transport phase.

3.1.6 Timer Events

The protocol client's timer F for the NEGOTIATE non-INVITE transaction fires when the protocol client
does not receive a response to the NEGOTIATE request. This is treated as compression declined, and
the protocol client MUST reject any compressed data sent by the server, and MUST NOT start the
transport phase of this protocol.

3.1.7 Other Local Events

If the established TCP connection is torn down on either the protocol client side or the server side, the
negotiation phase is aborted and the connection is torn down, as specified in [MS-CONMGMT].

3.2 Compression Transport Details

Once the compression capability and algorithm are negotiated successfully, this protocol enters the

transport phase. This protocol uses a modified form of the Point-to-Point Compression (MPPC) protocol
specified in [RFC2118]. Unlike MPPC, instead of assuming an unreliable transport, this protocol
compressed data is carried over a TLS channel on top of a TCP connection, which guarantees in-order

transport.

Each data packet MUST include the compression packet header specified in section 2.2.4 when
transporting over a connection on which this protocol has been successfully negotiated.

%5bMS-CONMGMT%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90316

14 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

3.2.1 Abstract Data Model

This section describes a conceptual model of data organization that an implementation can maintain to
participate in this protocol. The described organization is provided to facilitate the explanation of how

the protocol behaves. This document does not mandate that implementations adhere to this model as
long as their external behavior is consistent with that described in this protocol.

The shared state necessary to support the transmission and reception of compressed data between a
protocol client and server requires a history buffer and a current offset into the history buffer
(HistoryOffset). The size of the history buffer is 8 kilobytes. While compressing data, the sender
inserts the uncompressed data that does not exceed 8 kilobytes at the position in the history buffer
given by the HistoryOffset. After insertion, the HistoryOffset is advanced by the length of data

added. If the data does not fit into the history buffer (the sum of the HistoryOffset and the size of
the uncompressed data exceeds the size of the history buffer), the HistoryOffset MUST be reset to
the start of the history buffer (offset 0).

As the receiver endpoint decompresses the data, it inserts the decompressed data at the position in
the history buffer given by its local copy of HistoryOffset. If a reset occurs, the sender MUST notify

the target receiver by setting the PACKET_FLUSHED flag in the compression packet header so it can

reset its local state. After the data is decompressed, the receiver's history buffer and HistoryOffset
are identical to the sender's history buffer and HistoryOffset.

Because the protocol client and server can send and receive compressed data, the protocol client and
server MUST maintain two sets of state, one for sending and the other for receiving. Thus, the server
maintains a history buffer and a HistoryOffset to send data to the protocol client, and a history
buffer and a HistoryOffset to receive data from the protocol client. Similarly, the protocol client
maintains a history buffer and a HistoryOffset to send data to the server, and a history buffer and a

HistoryOffset to receive data from the server.

Both the protocol client and server SHOULD also maintain output buffers to store the output for
compression and decompression operation.

3.2.2 Timers

None.

3.2.3 Initialization

The history buffer and HistoryOffset MUST both start initialized to zero.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

The protocol server MAY start sending compressed data immediately after enters the transport phase.
The protocol server SHOULD start sending compressed data only after it validates client identity to

avoid committing memory and other resources for clients that were not yet validated. The server
SHOULD use an authentication mechanism for client identity validation, such as the one those which

are described in [MS-SIPAE] and MAY use any other mechanism of its choice.

The protocol client MUST NOT start compression before it receives the first compressed data from the
server. The protocol client SHOULD start sending compressed data after it receives first compressed
data from the server.

%5bMS-SIPAE%5d.pdf

15 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

3.2.5.1 Compressing Data

The uncompressed data is first inserted into the local history buffer at the position indicated by the
sender's HistoryOffset. The compressor then searches the uncompressed data for repeated series of

characters, and produces output that is comprised of a sequence of literals (bytes to be sent
uncompressed) and copy-tuples. Each copy-tuple represents a series of repeated characters, and
consists of a <copy-offset, length-of-match> pair.

The copy-offset component of the copy-tuple is an index into the history buffer (counting backwards
from the current byte towards the start of the buffer) to the most recent match of the data
represented by the copy-tuple. The length-of-match component of the copy-tuple is the length of that
match in bytes.

For example, consider the following string:

0 1 2 3 4

012345678901234567890123456789012345678901234567890

for whom the bell tolls, the bell tolls for thee.

The compressor produces the following:

for whom the bell tolls,<16,15> <40,4><19,3>e.

The <16,15> tuple is the compression of ".the.bell.tolls" and <40,4> is "for.", <19,3> gives "the".

The period (.) values indicate space characters.

After all data in the buffer is compressed into a sequence of literals and copy-tuples, it is then encoded
using the MPPC protocol encoding scheme specified in [RFC2118] section 4.1 and section 4.2.

The tuple is constructed with the offset followed by the length-of-match.

According to [RFC2118], the offset in the tuple is to be encoded as follows:

 If the offset value is less than 64, the offset is encoded as 1111 followed by the lower 6 bits of the
offset value.

 If the offset value is between 64 and 320, the offset is encoded as 1110 followed by the lower 8
bits of the offset value.

 If the offset value is between 320 and 8191, the offset is encoded as 110 followed by the lower 13
bits of the offset value.

 The offset value cannot be great than 8191 because the size of the history buffer is only 8
kilobytes.

According to [RFC2118], the length-of-match is to be encoded as follows:

 Bytes of a match of length less than 3 are encoded as literals.

 Length of 3 is encoded with bit 0.

 Length values from 4 to 7 are encoded as 10 followed by lower 2 bits of the value.

 Length values from 8 to 15 are encoded as 110 followed by lower 3 bits of the value.

 Length values from 16 to 31 are encoded as 1110 followed by lower 4 bits of the value.

 Length values from 32 to 63 are encoded as 11110 followed by lower 5 bits of the value.

http://go.microsoft.com/fwlink/?LinkId=90316

16 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 Length values from 64 to 127 are encoded as 111110 followed by lower 6 bits of the value.

 Length values from 128 to 255 are encoded as 1111110 followed by lower 7 bits of the value.

 Length values from 256 to 511 are encoded as 11111110 followed by lower 8 bits of the value.

 Length values from 512 to 1023 are encoded as 111111110 followed by lower 9 bits of the value.

 Length values from 1024 to 2047 are encoded as 1111111110 followed by lower 10 bits of the
value.

 Length values from 2048 to 4095 are encoded as 11111111110 followed by lower 11 bits of the
value.

 Length values from 4096 to 8191 are encoded as 111111111110 followed by lower 12 bits of the
value.

To use the preceding example, the <16,15> tuple is encoded as 1111010000110111 where the higher

10 bits 1111010000 represents the offset (16) and the lower 6 bits 110111 represents the length of

match (15).

If the resulting data after encoding is greater than the original bytes (that is, expansion instead of
compression results), this results in a flush and the data is sent uncompressed to avoid sending more
data than the original uncompressed bytes.

3.2.5.1.1 Setting the Compression Flags

The sender MUST always specify the compression flags associated with a compressed payload. These
flags MUST be set in the flags field in the compression packet header.

The compression flags are produced by performing a logical OR of the values in PACKET_FLUSHED,
PACKET_AT_FRONT, and PACKET_COMPRESSED.

PACKET_FLUSHED: Indicates that the history buffer MUST be reinitialized. This value corresponds to
the MPPC protocol bit A, as specified in [RFC2118] section 3.1. This flag MUST be set without setting

any other flags.

This flag MUST be set if the compression generates an expansion of the data and the flag indicates to
the decompressor that it needs to reset its history buffer, reset its HistoryOffset value, and then
restart the reception of the next batch of compressed bytes. If this condition occurs, the data MUST be
sent in uncompressed form.

PACKET_AT_FRONT: Indicates that the decompressed data MUST be placed at the beginning of the
local history buffer. This value corresponds to the MPPC protocol bit B, as specified in [RFC2118]

section 3.1. This flag MUST be set in conjunction with the PACKET_COMPRESSED (0x2) flag.

The following conditions on the compressor side generate this scenario:

 This is the first packet to be compressed.
 The data to be compressed will not fit at the end of the history buffer but, instead, needs to be

placed at the start of the history buffer.

PACKET_COMPRESSED: Indicates that the data is compressed. This value corresponds to the MPPC

protocol bit C, as specified in [RFC2118] section 3.1. This flag MUST be set when the data is
compressed.

The following figure shows the general operation of the compressor and the production of the various
flag values.

http://go.microsoft.com/fwlink/?LinkId=90316

17 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Figure 3: Compression flowchart

3.2.5.2 Decompressing Data

An endpoint which receives compressed data MUST decompress the data and store the resultant data

at the end of the history buffer. The order of actions depends on the compression flags associated with
the compressed data.

PACKET_FLUSHED: If this flag is set, the decompressor MUST reset its state by clearing the history
buffer and resetting the HistoryOffset to 0.

PACKET_AT_FRONT: If this flag is set, the decompressor MUST start decompressing to the start of
the history buffer, by resetting the HistoryOffset to 0. Otherwise, the decompressor MUST append

the decompressed data to the end of the history buffer.

18 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

PACKET_COMPRESSED: If this flag is set, the decompressor MUST decompress the data, appending
the decompressed data to the history buffer and advancing the HistoryOffset.

If the compression flags associated with the compressed data are inconsistent, the decompressor has
reached an undefined state, and the receiving endpoint MUST tear down the TCP connection.

Compression flags are inconsistent when PACKET_FLUSHED is set while PACKET_COMPRESSED is set.

The following diagram shows the general operation of the decompressor.

Figure 4: Decompression flowchart

3.2.6 Timer Events

None.

19 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

3.2.7 Other Local Events

None.

20 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

4 Protocol Examples

4.1 NEGOTIATE Request for Compression Negotiation

NEGOTIATE sip:192.0.0.1:5061 SIP/2.0

Via: SIP/2.0/TLS 192.0.0.2:2616

CSeq: 1 NEGOTIATE

Call-ID: 8d8b20f87c9c4221a732f3a70f57e9b8

From: <sip:192.0.0.2:2616>;tag=984721fb59b64e45b469c91aba8a9f8f

To: <sip:192.0.0.1:5061>

Compression: LZ77-8K

Max-Forwards: 0

Content-Length: 0

4.2 OK to the NEGOTIATE Request

SIP/2.0 200 OK

Compression: LZ77-8K

From: <sip:192.0.0.2:2616>;tag=984721fb59b64e45b469c91aba8a9f8f

To: <sip:192.0.0.1:5061>;tag=D76F601D7239923FBE84D78BF8821C85

Call-ID: 8d8b20f87c9c4221a732f3a70f57e9b8

CSeq: 1 NEGOTIATE

Via: SIP/2.0/TLS 192.0.0.2:2616;ms-received-port=2616;ms-received-cid=545400

Content-Length: 0

21 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

22 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Microsoft Office Communications Server 2007
 Microsoft Office Communicator 2007
 Microsoft Office Communications Server 2007 R2

 Microsoft Office Communicator 2007 R2
 Microsoft Lync 2010
 Microsoft Lync Server 2010
 Microsoft Lync Client 2013/Skype for Business
 Microsoft Lync Server 2013

 Microsoft Skype for Business 2016

 Microsoft Skype for Business Server 2015

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or

SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2.2.1: Office Communications Server 2007 R2 can accept a NEGOTIATE request that
does not have a Max-Forwards header, which is different from the specifications in [RFC3261]
section 8.1.1.

<2> Section 3.1.5.2: Office Communications Server 2007 R2, Office Communicator 2007 R2: If the
server receives a NEGOTIATE request with a Max-Forwards header field value greater than 0, it

ignores the header field value.

http://go.microsoft.com/fwlink/?LinkId=90410

23 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

24 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

8 Index

A

Abstract data model
 compression negotiation 12
 compression transport 14
Applicability 9

C

Capability negotiation 9
Change tracking 23
Compression negotiation
 abstract data model 12
 higher-layer triggered events 12
 initialization 12
 local events 13
 message processing 12
 process NEGOTIATE request 12

 process response to NEGOTIATE request 13
 send NEGOTIATE request 12
 overview 12
 sequencing rules 12
 process NEGOTIATE request 12
 process response to NEGOTIATE request 13
 send NEGOTIATE request 12
 timer events 13
 timers 12
Compression Packet Header Format message 11
Compression SIP Header Field Syntax message 10
Compression transport
 abstract data model 14
 higher-layer triggered events 14
 initialization 14
 local events 19
 message processing 14
 compress data 15
 decompress data 17
 overview 13
 sequencing rules
 compress data 15
 decompress data 17
 timer events 18
 timers 14

D

Data model - abstract
 compression negotiation 12
 compression transport 14

E

Examples
 200 OK to NEGOTIATE request 20
 NEGOTIATE request 20

F

Fields - vendor-extensible 9

G

Glossary 6

H

Higher-layer triggered events
 compression negotiation 12
 compression transport 14

I

Implementer - security considerations 21
Index of security parameters 21
Informative references 7
Initialization
 compression negotiation 12
 compression transport 14
Introduction 6

L

Local events
 compression negotiation 13
 compression transport 19

M

Message flow 7
Message processing
 compression negotiation 12
 process NEGOTIATE request 12
 process response to NEGOTIATE request 13
 send NEGOTIATE request 12
 compression transport 14
 compress data 15
 decompress data 17
Messages
 Compression Packet Header Format 11
 Compression SIP Header Field Syntax 10
 NEGOTIATE Request Message Format 10
 Response to NEGOTIATE Request 10
 transport 10

N

NEGOTIATE request 200 OK example 20

NEGOTIATE request example 20
NEGOTIATE Request Message Format message 10
Normative references 7

O

Overview (synopsis) 7

P

Parameters - security index 21
Preconditions 8
Prerequisites 8
Product behavior 22
Protocol overview
 message flow 7

25 / 25

[MS-SIPCOMP] - v20150904
Session Initiation Protocol (SIP) Compression Protocol
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

R

References 6
 informative 7
 normative 7
Relationship to other protocols 8
Response to NEGOTIATE Request message 10

S

Security
 implementer considerations 21

 parameter index 21
Sequencing rules
 compression negotiation 12
 process NEGOTIATE request 12
 process response to NEGOTIATE request 13
 send NEGOTIATE request 12
 compression transport
 compress data 15
 decompress data 17
Standards assignments 9

T

Timer events
 compression negotiation 13
 compression transport 18
Timers
 compression negotiation 12
 compression transport 14
Tracking changes 23
Transport 10
Triggered events
 compression negotiation 12
 compression transport 14

V

Vendor-extensible fields 9
Versioning 9

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Message Flow

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 NEGOTIATE Request Message Format
	2.2.2 Response to NEGOTIATE Request
	2.2.3 Compression SIP Header Field Syntax
	2.2.4 Compression Packet Header Format

	3 Protocol Details
	3.1 Compression Negotiation Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Initiating Compression Negotiation

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Sending NEGOTIATE Request from the Client
	3.1.5.2 Processing NEGOTIATE Request in the Server
	3.1.5.3 Processing Response of NEGOTIATE Request in the Client

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Compression Transport Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Compressing Data
	3.2.5.1.1 Setting the Compression Flags

	3.2.5.2 Decompressing Data

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	4.1 NEGOTIATE Request for Compression Negotiation
	4.2 OK to the NEGOTIATE Request

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

