
1 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

[MS-SIPAE]:

Session Initiation Protocol (SIP) Authentication Extensions

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

4/4/2008 0.1 New Initial Availability

4/25/2008 0.2 Major Revised and edited the technical content

6/27/2008 1.0 Major Revised and edited the technical content

8/15/2008 1.01 Major Revised and edited the technical content

12/12/2008 2.0 Major Revised and edited the technical content

2/13/2009 2.01 Minor Edited the technical content

3/13/2009 2.02 Minor Edited the technical content

7/13/2009 2.03 Major Revised and edited the technical content

8/28/2009 2.04 Editorial Revised and edited the technical content

11/6/2009 2.05 Editorial Revised and edited the technical content

2/19/2010 2.06 Editorial Revised and edited the technical content

3/31/2010 2.07 Major Updated and revised the technical content

4/30/2010 2.08 Editorial Revised and edited the technical content

6/7/2010 2.09 Editorial Revised and edited the technical content

6/29/2010 2.10 Editorial Changed language and formatting in the technical content.

7/23/2010 2.10 None
No changes to the meaning, language, or formatting of the
technical content.

9/27/2010 3.0 Major Significantly changed the technical content.

11/15/2010 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

12/17/2010 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/18/2011 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/10/2011 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/20/2012 4.0 Major Significantly changed the technical content.

4/11/2012 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/16/2012 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2012 4.1 Minor Clarified the meaning of the technical content.

2/11/2013 4.1 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

Date
Revision
History

Revision
Class Comments

7/30/2013 4.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/18/2013 4.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/10/2014 4.1 None
No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 4.2 Minor Clarified the meaning of the technical content.

7/31/2014 4.3 Minor Clarified the meaning of the technical content.

10/30/2014 4.3 None
No changes to the meaning, language, or formatting of the
technical content.

3/30/2015 5.0 Major Significantly changed the technical content.

9/4/2015 5.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/15/2016 5.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 10

1.2.1 Normative References ... 10
1.2.2 Informative References ... 11

1.3 Overview .. 11
1.4 Relationship to Other Protocols .. 11
1.5 Prerequisites/Preconditions ... 11
1.6 Applicability Statement ... 12
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor-Extensible Fields ... 12
1.9 Standards Assignments ... 12

2 Messages ... 13
2.1 Transport .. 13
2.2 Message Syntax ... 13

2.2.1 WWW-Authenticate and Proxy-Authenticate Response Header Fields 13
2.2.2 Authentication-Info and Proxy-Authentication-Info Header Fields 14
2.2.3 Authorization and Proxy-Authorization Header Fields 15
2.2.4 Endpoint Identification Extensions .. 15
2.2.5 Referred-By Header Field Extensions ... 16
2.2.6 p-session-on-behalf-of Header Field Syntax ... 16

3 Protocol Details ... 17
3.1 Protocol Overview .. 17

3.1.1 Abstract Data Model .. 18
3.1.2 Timers .. 19
3.1.3 Initialization ... 19
3.1.4 Higher-Layer Triggered Events ... 19
3.1.5 Message Processing Events and Sequencing Rules .. 19
3.1.6 Timer Events .. 19
3.1.7 Other Local Events .. 19

3.2 SIP Client Details ... 19
3.2.1 Abstract Data Model .. 19
3.2.2 Timers .. 20
3.2.3 Initialization ... 20
3.2.4 Higher-Layer Triggered Events ... 21

3.2.4.1 Sending Messages to the SIP Server ... 21
3.2.4.2 Communicating Alternate Identities in the Messages Sent to the SIP Server . 22
3.2.4.3 Establishing session as anonymous client ... 23
3.2.4.4 Specifying Referee Identity in the Referred-By Header Field in

Forwarded/Retargeted Calls ... 23
3.2.4.5 Specifying p-session-on-behalf-of Header .. 23

3.2.5 Message Processing Events and Sequencing Rules .. 24
3.2.5.1 Processing Challenges from the SIP Server .. 24
3.2.5.2 Processing Authenticated Messages from the SIP Server 26
3.2.5.3 Authenticated Address-Of-Record in Messages Signed By the SIP Server 28
3.2.5.4 Processing p-session-on-behalf-of Header in Messages from the SIP Server . 28
3.2.5.5 Responding as anonymous client to challenge from SIP Server 28
3.2.5.6 Continuing session as anonymous client .. 28

3.2.6 Timer Events .. 28
3.2.7 Other Local Events .. 29

3.3 SIP Server Details .. 29
3.3.1 Abstract Data Model .. 29
3.3.2 Timers .. 30

5 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

3.3.3 Initialization ... 31
3.3.4 Higher-Layer Triggered Events ... 31

3.3.4.1 Sending Messages to the SIP Client ... 31
3.3.5 Message Processing Events and Sequencing Rules .. 33

3.3.5.1 Processing Unauthenticated Messages from the SIP Client 33
3.3.5.2 Processing Messages with Authentication Response from the SIP Client 34
3.3.5.3 Processing Authorized Messages from the SIP Client 37
3.3.5.4 Establishing session with anonymous client .. 38
3.3.5.5 Processing Authorized Messages from anonymous client 39
3.3.5.6 Processing Alternate Identities in Messages from the SIP Client 39
3.3.5.7 Processing p-session-on-behalf-of Header in Messages from the SIP Client .. 39

3.3.6 Timer Events .. 40
3.3.7 Other Local Events .. 40

4 Protocol Examples ... 41
4.1 NTLM Authentication Example .. 41
4.2 Kerberos Authentication Example ... 43
4.3 Kerberos Authentication Example for version 4 of the protocol 45
4.4 TLS-DSK Authentication Example for version 4 of the protocol 47
4.5 Digest Authentication Example for Anonymous Join .. 50

5 Security ... 52
5.1 Security Considerations for Implementers ... 52
5.2 Index of Security Parameters .. 52

6 Appendix A: Product Behavior ... 53

7 Change Tracking .. 56

8 Index ... 57

6 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

1 Introduction

This document specifies the Session Initiation Protocol (SIP) Authentication Extensions protocol. This
protocol extends Session Initiation Protocol (SIP) for authentication functionality. SIP is used by
terminals to establish, modify, and terminate multimedia sessions or calls.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

200 OK: A response to indicate that the request has succeeded.

403 Forbidden: A response that indicates that a protocol server understood but denies a request.

address-of-record: A Session Initiation Protocol (SIP) URI that specifies a domain with a
location service that can map the URI to another URI for a user, as described in [RFC3261].

Augmented Backus-Naur Form (ABNF): A modified version of Backus-Naur Form (BNF),
commonly used by Internet specifications. ABNF notation balances compactness and simplicity
with reasonable representational power. ABNF differs from standard BNF in its definitions and
uses of naming rules, repetition, alternatives, order-independence, and value ranges. For more

information, see [RFC5234].

authentication: The act of proving an identity to a server while providing key material that binds
the identity to subsequent communications.

base16: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is converted to
a sequence of printable ASCII characters. Base16 uses only the digits 0 through 9 and the
letters A through F.

base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is

converted to a sequence of printable ASCII characters, as described in [RFC4648].

call: A communication between peers that is configured for a multimedia conversation.

certificate: A certificate is a collection of attributes (1) and extensions that can be stored
persistently. The set of attributes in a certificate can vary depending on the intended usage of
the certificate. A certificate securely binds a public key to the entity that holds the corresponding
private key. A certificate is commonly used for authentication and secure exchange of

information on open networks, such as the Internet, extranets, and intranets. Certificates are
digitally signed by the issuing certification authority (CA) and can be issued for a user, a
computer, or a service. The most widely accepted format for certificates is defined by the ITU-T
X.509 version 3 international standards. For more information about attributes and extensions,
see [RFC3280] and [X509] sections 7 and 8.

conference: A Real-Time Transport Protocol (RTP) session that includes more than one participant

(2).

credential: Previously established, authentication data that is used by a security principal to
establish its own identity. When used in reference to the Netlogon Protocol, it is the data that is
stored in the NETLOGON_CREDENTIAL structure.

datagram: A style of communication offered by a network transport protocol where each message
is contained within a single network packet. In this style, there is no requirement for
establishing a session prior to communication, as opposed to a connection-oriented style.

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=90487
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90590

7 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

delegate: A user or resource that has permissions to act on behalf of another user or resource.

delegator: A user or resource for which another user or resource has permission to act on its

behalf.

dialog: A peer-to-peer Session Initiation Protocol (SIP) relationship that exists between two

user agents and persists for a period of time. A dialog is established by SIP messages, such as
a 2xx response to an INVITE request, and is identified by a call identifier, a local tag, and a
remote tag.

digest: The fixed-length output string from a one-way hash function that takes a variable-length
input string and is probabilistically unique for every different input string. Also, a cryptographic
checksum of a data (octet) stream.

domain: A set of users and computers sharing a common namespace and management

infrastructure. At least one computer member of the set must act as a domain controller (DC)
and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication of members,

creating a unit of trust for its members. Each domain has an identifier that is shared among its
members. For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

domain controller (DC): The service, running on a server, that implements Active Directory, or

the server hosting this service. The service hosts the data store for objects and interoperates
with other DCs to ensure that a local change to an object replicates correctly across all DCs.
When Active Directory is operating as Active Directory Domain Services (AD DS), the DC
contains full NC replicas of the configuration naming context (config NC), schema naming
context (schema NC), and one of the domain NCs in its forest. If the AD DS DC is a global
catalog server (GC server), it contains partial NC replicas of the remaining domain NCs in its
forest. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. When

Active Directory is operating as Active Directory Lightweight Directory Services (AD LDS),
several AD LDS DCs can run on one server. When Active Directory is operating as AD DS, only
one AD DS DC can run on one server. However, several AD LDS DCs can coexist with one AD
DS DC on one server. The AD LDS DC contains full NC replicas of the config NC and the schema
NC in its forest. The domain controller is the server side of Authentication Protocol Domain

Support [MS-APDS].

endpoint: A device that is connected to a computer network.

focus: A single user agent that maintains a dialog and Session Initiation Protocol (SIP)
signaling relationship with each participant (2), implements conference policies, and ensures
that each participant receives the media that comprise the tightly coupled conference.

fully qualified domain name (FQDN): An unambiguous domain name (2) that gives an absolute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section
3.1 and [RFC2181] section 11.

Generic Security Services (GSS): An Internet standard, as described in [RFC2743], for providing
security services to applications. It consists of an application programming interface (GSS-API)
set, as well as standards that describe the structure of the security data.

Globally Routable User Agent URI (GRUU): A URI that identifies a user agent and is globally
routable. A URI possesses a GRUU property if it is useable by any user agent client (UAC)
that is connected to the Internet, routable to a specific user agent instance, and long-lived.

hash: A fixed-size result that is obtained by applying a one-way mathematical function, which is

sometimes referred to as a hash algorithm, to an arbitrary amount of data. If the input data
changes, the hash also changes. The hash can be used in many operations, including
authentication and digital signing.

%5bMS-AUTHSOD%5d.pdf#Section_953d700a57cb4cf7b0c3a64f34581cc9
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-APDS%5d.pdf#Section_dd444344fd7e430eb3137e95ab9c338e
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=127732
http://go.microsoft.com/fwlink/?LinkId=90378

8 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

Hash-based Message Authentication Code (HMAC): A mechanism for message
authentication using cryptographic hash functions. HMAC can be used with any iterative

cryptographic hash function (for example, MD5 and SHA-1) in combination with a secret shared
key. The cryptographic strength of HMAC depends on the properties of the underlying hash

function.

INVITE: A Session Initiation Protocol (SIP) method that is used to invite a user or a service to
participate in a session.

Kerberos: An authentication system that enables two parties to exchange private information
across an otherwise open network by assigning a unique key (called a ticket) to each user that
logs on to the network and then embedding these tickets into messages sent by the users. For
more information, see [MS-KILE].

Key Distribution Center (KDC): The Kerberos service that implements the authentication and
ticket granting services specified in the Kerberos protocol. The service runs on computers
selected by the administrator of the realm or domain; it is not present on every machine on the
network. It must have access to an account database for the realm that it serves. Windows

KDCs are integrated into the domain controller role of a Windows Server operating system
acting as a Domain Controller. It is a network service that supplies tickets to clients for use in

authenticating to services.

master secret: A key that is used to symmetrically encrypt and decrypt credentials and single
sign-on (SSO) tickets.

MD5: A one-way, 128-bit hashing scheme that was developed by RSA Data Security, Inc., as
described in [RFC1321].

nonce: A number that is used only once. This is typically implemented as a random number large
enough that the probability of number reuse is extremely small. A nonce is used in

authentication protocols to prevent replay attacks. For more information, see [RFC2617].

NT LAN Manager (NTLM) Authentication Protocol: A protocol using a challenge-response
mechanism for authentication in which clients are able to verify their identities without

sending a password to the server. It consists of three messages, commonly referred to as Type
1 (negotiation), Type 2 (challenge) and Type 3 (authentication). For more information, see [MS-
NLMP].

principal: (1) An identifier of such an entity.

(2) In Kerberos, a Kerberos principal.

proxy: A computer, or the software that runs on it, that acts as a barrier between a network and
the Internet by presenting only a single network address to external sites. By acting as a go-
between that represents all internal computers, the proxy helps protects network identities while
also providing access to the Internet.

REGISTER: A Session Initiation Protocol (SIP) method that is used by an SIP client to register

the client address with an SIP server.

security association (SA): A simplex "connection" that provides security services to the traffic

carried by it. See [RFC4301] for more information.

Security Support Provider Interface (SSPI): A Windows-specific API implementation that
provides the means for connected applications to call one of several security providers to
establish authenticated connections and to exchange data securely over those connections. This
is the Windows equivalent of Generic Security Services (GSS)-API, and the two families of APIs

are on-the-wire compatible.

%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
http://go.microsoft.com/fwlink/?LinkId=90275
http://go.microsoft.com/fwlink/?LinkId=90373
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
http://go.microsoft.com/fwlink/?LinkId=90465

9 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

security token service (STS): A web service that issues claims (2) and packages them in
encrypted security tokens.

server: A replicating machine that sends replicated files to a partner (client). The term "server"
refers to the machine acting in response to requests from partners that want to receive

replicated files.

Session Initiation Protocol (SIP): An application-layer control (signaling) protocol for creating,
modifying, and terminating sessions with one or more participants. SIP is defined in [RFC3261].

SHA-1: An algorithm that generates a 160-bit hash value from an arbitrary amount of input data,
as described in [RFC3174]. SHA-1 is used with the Digital Signature Algorithm (DSA) in the
Digital Signature Standard (DSS), in addition to other algorithms and standards.

SHA-1 hash: A hashing algorithm as specified in [FIPS180-2] that was developed by the National

Institute of Standards and Technology (NIST) and the National Security Agency (NSA).

SHA-256: An algorithm that generates a 256-bit hash value from an arbitrary amount of input
data, as described in [FIPS180-2].

SIP element: An entity that understands the Session Initiation Protocol (SIP).

SIP message: The data that is exchanged between Session Initiation Protocol (SIP) elements
as part of the protocol. An SIP message is either a request or a response.

SIP protocol client: A network client that sends Session Initiation Protocol (SIP) requests
and receives SIP responses. An SIP client does not necessarily interact directly with a human
user. User agent clients (UACs) and proxies are SIP clients.

SIP registrar: A Session Initiation Protocol (SIP) server that accepts REGISTER requests and
places the information that it receives from those requests into the location service for the
domain that it handles.

SIP transaction: A SIP transaction occurs between a UAC and a UAS. The SIP transaction

comprises all messages from the first request sent from the UAC to the UAS up to a final

response (non-1xx) sent from the UAS to the UAC. If the request is INVITE, and the final
response is a non-2xx, the SIP transaction also includes an ACK to the response. The ACK for
a 2xx response to an INVITE request is a separate SIP transaction.

ticket: A record generated by the key distribution center (KDC) that helps a client authenticate
to a service. It contains the client's identity, a unique cryptographic key for use with this ticket
(the session key), a time stamp, and other information, all sealed using the service's secret key.

It only serves to authenticate a client when presented along with a valid authenticator.

token: A word in an item or a search query that translates into a meaningful word or number in
written text. A token is the smallest textual unit that can be matched in a search query.
Examples include "cat", "AB14", or "42".

Transport Layer Security (TLS): A security protocol that supports confidentiality and integrity of
messages in client and server applications communicating over open networks. TLS supports

server and, optionally, client authentication by using X.509 certificates (as specified in [X509]).

TLS is standardized in the IETF TLS working group. See [RFC4346].

tuple: An ordered grouping of members from different dimensions or hierarchies. A single member
is a special case of a tuple and can be used as an expression. Every hierarchy does not have to
be represented in a tuple.

Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing
mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):

Generic Syntax [RFC3986].

http://go.microsoft.com/fwlink/?LinkId=90408
http://go.microsoft.com/fwlink/?LinkId=89868
http://go.microsoft.com/fwlink/?LinkId=90474
http://go.microsoft.com/fwlink/?LinkId=90453

10 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

user agent client (UAC): A logical entity that creates a new request, and then uses the client
transaction state machinery to send it. The role of UAC lasts only for the duration of that

transaction. In other words, if a piece of software initiates a request, it acts as a UAC for the
duration of that transaction. If it receives a request later, it assumes the role of a user agent

server (UAS) for the processing of that transaction.

user agent server (UAS): A logical entity that generates a response to a Session Initiation
Protocol (SIP) request. The response either accepts, rejects, or redirects the request. The role
of the UAS lasts only for the duration of that transaction. If a process responds to a request, it
acts as a UAS for that transaction. If it initiates a request later, it assumes the role of a user
agent client (UAC) for that transaction.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[FIPS180-2] National Institute of Standards and Technology, "Secure Hash Standard", FIPS PUB 180-
2, August 2002, http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[MS-CONFBAS] Microsoft Corporation, "Centralized Conference Control Protocol: Basic Architecture
and Signaling".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-OCAUTHWS] Microsoft Corporation, "OC Authentication Web Service Protocol".

[MS-PRES] Microsoft Corporation, "Presence Protocol".

[MS-SIPRE] Microsoft Corporation, "Session Initiation Protocol (SIP) Routing Extensions".

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed-Hashing for Message
Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
http://www.rfc-editor.org/rfc/rfc2246.txt

[RFC2716] Aboba, B. and Simon, D., "PPP EAP TLS Authentication Protocol", RFC 2716, October 1999,
http://www.ietf.org/rfc/rfc2716.txt

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1", RFC
2743, January 2000, http://www.rfc-editor.org/rfc/rfc2743.txt

http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89868
%5bMS-CONFBAS%5d.pdf#Section_6cb739fe3a8442668d520af777f6f1fa
%5bMS-CONFBAS%5d.pdf#Section_6cb739fe3a8442668d520af777f6f1fa
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-OCAUTHWS%5d.pdf#Section_63749828ab8d4b24941cb11985d854c5
%5bMS-PRES%5d.pdf#Section_741d682d590b4600916e8deeee426a5c
%5bMS-SIPRE%5d.pdf#Section_ab4ab24937964ed18cecf496d81a1a83
http://go.microsoft.com/fwlink/?LinkId=90314
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90324
http://go.microsoft.com/fwlink/?LinkId=90374
http://go.microsoft.com/fwlink/?LinkId=90378

11 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000, http://www.rfc-
editor.org/rfc/rfc2818.txt

[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,
Handley, M., and Schooler, E., "SIP: Session Initiation Protocol", RFC 3261, June 2002,
http://www.ietf.org/rfc/rfc3261.txt

[RFC3323] Peterson, J., "A Privacy Mechanism for the Session Initiation Protocol (SIP)", RFC 3323,

November 2002, http://www.rfc-editor.org/rfc/rfc3323.txt

[RFC3325] Jennings, C., Peterson, J., and Watson, M., "Private Extensions to the Session Initiation
Protocol (SIP) for Asserted Identity within Trusted Networks", RFC 3325, November 2002,
http://www.rfc-editor.org/rfc/rfc3325.txt

[RFC3548] Josefsson, S., Ed., "The Base16, Base32, and Base64 Data Encodings", RFC 3548, July
2003, http://www.rfc-editor.org/rfc/rfc3548.txt

[RFC3892] Sparks, R., "The Session Initiation Protocol (SIP) Referred-By Mechanism", RFC 3892,

September 2004, http://www.rfc-editor.org/rfc/rfc3892.txt

[RFC4028] Donovan, S., and Rosenberg, J., "Session Timers in the Session Initiation Protocol (SIP)",
RFC 4028, April 2005, http://www.rfc-editor.org/rfc/rfc4028.txt

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network Authentication
Service (V5)", RFC 4120, July 2005, http://www.rfc-editor.org/rfc/rfc4120.txt

[RFC4121] Zhu, L., Jaganathan, K., and Hartman, S., "The Kerberos Version 5 Generic Security

Service Application Program Interface (GSS-API) Mechanism: Version 2", RFC 4121, July 2005,
http://www.ietf.org/rfc/rfc4121.txt

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD
68, RFC 5234, January 2008, http://www.rfc-editor.org/rfc/rfc5234.txt

1.2.2 Informative References

[RFC3324] Watson, M., "Short Term Requirements for Network Asserted Identity", RFC 3324,
November 2002, http://www.rfc-editor.org/rfc/rfc3324.txt

1.3 Overview

This protocol specifies the authentication extensions to Session Initiation Protocol (SIP). This
protocol defines NT LAN Manager (NTLM), Kerberos, and Transport Layer Security with Derived
Session Key (TLS-DSK) authentication schemes based on the general authentication framework
described in [RFC3261], where the authentication mechanism is extended as described in Protocol

Overview (section 3.1). This protocol also specifies the details and extensions for the Asserted Identity
mechanism, which is based on [RFC3325], and the Referred-By mechanism, which is based on
[RFC3892].

1.4 Relationship to Other Protocols

This protocol depends on SIP and makes use of the NT LAN Manager (NTLM) Authentication
Protocol, as described in [MS-NLMP], and the Kerberos protocol, as described in [RFC4120] and [MS-
KILE]. It also makes use of the Transport Layer Security (TLS) protocol, as described in
[RFC2246].

http://go.microsoft.com/fwlink/?LinkId=90383
http://go.microsoft.com/fwlink/?LinkId=90383
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=114240
http://go.microsoft.com/fwlink/?LinkId=114232
http://go.microsoft.com/fwlink/?LinkId=90432
http://go.microsoft.com/fwlink/?LinkId=114234
http://go.microsoft.com/fwlink/?LinkId=114248
http://go.microsoft.com/fwlink/?LinkId=90458
http://go.microsoft.com/fwlink/?LinkId=90459
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=114478
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=114232
http://go.microsoft.com/fwlink/?LinkId=114234
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
http://go.microsoft.com/fwlink/?LinkId=90458
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
http://go.microsoft.com/fwlink/?LinkId=90324

12 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

1.5 Prerequisites/Preconditions

This protocol assumes that SIP protocol clients and the server support SIP. The prerequisites for
this protocol are the same as the prerequisites for SIP.

1.6 Applicability Statement

This protocol is applicable when protocol clients and the server support SIP and intend to use one or
more of the enhancements offered by this protocol.

1.7 Versioning and Capability Negotiation

Versions of this protocol prior to version 3 did not carry the version identifier in protocol messages.
Versions of this protocol starting with version 3 carry a version identifier in the authentication
header fields, as specified in section 2.2.1 and section 2.2.2. The differences between versions are

covered in message processing sections, specifically 3.2.4.1, 3.2.5.1, 3.2.5.2, 3.2.5.3, 3.3.4.1,
3.3.5.2, and 3.3.5.3.

1.8 Vendor-Extensible Fields

There are no vendor-extensible fields specific to this protocol. Standard extension mechanisms of the

SIP can be used by vendors as needed.

1.9 Standards Assignments

None.

13 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

2 Messages

2.1 Transport

The messages specified by this protocol are carried in the SIP authentication exchanges in SIP

authentication headers. This protocol does not introduce a new transport to exchange messages and
is capable of being used with any transport used by SIP.

2.2 Message Syntax

This protocol relies on the SIP message format, as specified in [RFC3261] section 25.1, and extends
definitions of authentication-related header fields, specifically Authentication-Info, Authorization,
Proxy-Authenticate, Proxy-Authorization, and WWW-Authenticate, as well as the Referred-By
header field, which is specified in [RFC3892]. This protocol defines two new header fields, Proxy-
Authentication-Info and p-session-on-behalf-of, and makes use of endpoint identification
extensions that are specified in [MS-SIPRE].

All of the message syntax specified in this protocol is described in both prose and an Augmented

Backus-Naur Form (ABNF) defined in [RFC5234].

2.2.1 WWW-Authenticate and Proxy-Authenticate Response Header Fields

[RFC3261] Section 25.1 defines the syntax for the WWW-Authenticate and Proxy-Authenticate
header fields as follows.

Proxy-Authenticate = "Proxy-Authenticate" HCOLON challenge

WWW-Authenticate = "WWW-Authenticate" HCOLON challenge

challenge = ("Digest" LWS digest-cln *(COMMA digest-cln))

 / other-challenge

This protocol defines the following extensions.

challenge = ("Digest" LWS digest-cln *(COMMA digest-cln))

 / "NTLM" LWS msspi-cln *(COMMA msspi-cln)

 / "Kerberos" LWS msspi-cln *(COMMA msspi-cln)

 / "TLS-DSK" LWS msspi-cln *(COMMA msspi-cln)

 / other-challenge

digest-cln = realm / domain / nonce

 / opaque / stale / algorithm

 / qop-options / auth-param

algorithm = "algorithm" EQUAL

 ("MD5" / "MD5-sess"/ "SHA256-sess" / token)

msspi-cln = realm / opaque

 / targetname / gssapi-data / version / sts-uri

targetname = "targetname" EQUAL target-value

target-value = DQUOTE (ntlm-target-val

 / ("sip/" kerberos-target-val)

 / tls-dsk-target-val) DQUOTE

ntlm-target-val = token

kerberos-target-val = token

tls-dsk-target-val = token

gssapi-data = "gssapi-data" EQUAL gssapi-data-value

gssapi-data-value = quoted-string

version = "version" EQUAL version-value

version-value = 1*DIGIT

sts-uri = "sts-uri" EQUAL DQUOTE absoluteURI DQUOTE

http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=114234
%5bMS-SIPRE%5d.pdf#Section_ab4ab24937964ed18cecf496d81a1a83
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=90410

14 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

The other-challenge, LWS, COMMA, realm, domain, nonce, opaque, stale, qop-options, auth-
param, EQUAL, quoted-string, token, absoluteURI, and DIGIT attributes are defined in

[RFC3261] Section 25.

The ntlm-target-val, kerberos-target-val, and tls-dsk-target-val values carry a token that

uniquely identifies the SIP server among all the possible principals (1) within the NTLM, Kerberos,
and TLS-DSK authentication protocol namespaces.

The gssapi-data-val value carries the cryptographic token generated by the authentication protocol
implementation.

The version-value value carries the version number of the protocol.

2.2.2 Authentication-Info and Proxy-Authentication-Info Header Fields

[RFC3261] Section 25 defines the syntax for the Authentication-Info header field.

Authentication-Info = "Authentication-Info" HCOLON ainfo

 *(COMMA ainfo)

ainfo = nextnonce / message-qop

 / response-auth / cnonce

 / nonce-count

This protocol defines a new header field, Proxy-Authentication-Info, and the following extensions
for the Authentication-Info and Proxy-Authentication-Info header fields.

 Authentication-Info = "Authentication-Info" HCOLON
 ("NTLM" / "Kerberos" / "TLS-DSK")
 LWS ainfo *(COMMA ainfo)
 Proxy-Authentication-Info = "Proxy-Authentication-Info" HCOLON
 ("NTLM" / "Kerberos" / "TLS-DSK")
 LWS ainfo *(COMMA ainfo)

 ainfo = nextnonce / message-qop
 / response-auth / cnonce
 / nonce-count
 / snum / srand
 / realm / targetname / opaque / version

 snum = "snum" EQUAL snum-value
 snum-value = 1*DIGIT / DQUOTE 1*DIGIT DQUOTE
 srand = "srand" EQUAL srand-value
 srand-value = 8LHEX / DQUOTE 8HEXDIG DQUOTE
 version = "version" EQUAL version-value
 version-value = 1*DIGIT

The nextnonce, message-qop, response-auth, cnonce, nonce-count, realm, opaque, EQUAL,

DIGIT, DQUOTE, and HEXDIG attributes are defined in [RFC3261] Section 25.

The targetname attribute is defined in section 2.2.1.

The version-value value carries the version number of the protocol.

[RFC3261] section 20 specifies that the Authentication-Info header field MUST NOT be used in any
but the 200 OK response, and MUST NOT be used in ACK and CANCEL requests. This protocol allows
the Authentication-Info header field in any response and in ACK and CANCEL requests. It also
allows Proxy-Authentication-Info in any request or response.

http://go.microsoft.com/fwlink/?LinkId=90410

15 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

2.2.3 Authorization and Proxy-Authorization Header Fields

[RFC3261] section 25.1 defines the syntax for the Authorization and Proxy-Authorization header
fields as follows.

Authorization = "Authorization" HCOLON credentials

Proxy-Authorization = "Proxy-Authorization" HCOLON credentials

credentials = ("Digest" LWS digest-response)

 / other-response

This specification defines the following extensions:

 credentials = ("Digest" LWS digest-response)
 / ("NTLM" LWS msspi-response)
 / ("Kerberos" LWS msspi-response)
 / ("TLS-DSK" LWS msspi-response)
 / other-response
 digest-response = dig-resp *(COMMA dig-resp)
 dig-resp = username / realm / nonce / digest-uri
 / dresponse / algorithm / cnonce
 / opaque / message-qop
 / nonce-count / auth-param
 algorithm = "algorithm" EQUAL ("MD5" / "MD5-sess"
 / "SHA256-sess" / token)
 msspi-response = msspi-resp *(COMMA msspi-resp)
 msspi-resp = message-qop / realm / opaque
 / version / targetname / gssapi-data
 / crand / cnum / msspi-resp-data
 cnum = "cnum" EQUAL cnum-value
 cnum-value = 1*DIGIT / DQUOTE 1*DIGIT DQUOTE
 crand = "crand" EQUAL crand-val
 crand-val = 8LHEX / DQUOTE 8LHEX DQUOTE
 msspi-resp-data = "response" EQUAL msspi-resp-data-value
 msspi-resp-data-val = quoted-string

The LWS, COMMA, realm, opaque, EQUAL, quoted-string, DIGIT, DQUOTE, LHEX, username,
nonce, digest-uri, dresponse, cnonce, message-qop, nonce-count, auth-param, and other-

response attributes are defined in [RFC3261] section 25.1.

The targetname and version attributes are defined in section 2.2.1.

The gssapi-data attribute is defined in section 2.2.1.

[RFC3261] section 20 specifies that the Authorization and Proxy-Authorization header fields MUST
NOT be used in responses. A Proxy-Authorization header field MUST NOT be used in a CANCEL
request. This protocol allows these header fields in any response, as well as in a CANCEL request.

2.2.4 Endpoint Identification Extensions

This specification makes use of the following endpoint identification extensions defined in [MS-SIPRE].

 epid parameter in From and To header fields,

 +sip.instance parameter in a Contact header field,

 Globally Routable User Agent URI (GRUU) as the Uniform Resource Identifier (URI) of the
Contact header field.

http://go.microsoft.com/fwlink/?LinkId=90410
%5bMS-SIPRE%5d.pdf#Section_ab4ab24937964ed18cecf496d81a1a83

16 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

2.2.5 Referred-By Header Field Extensions

This protocol extends the syntax of the ReferredBy header field defined in [RFC3892] section 3. The
extensions to the original ABNF, as defined in [RFC5234], are as follows.

 Referred-By = ("Referred-By" / "b") HCOLON referrer-uri
 *(SEMI (referredby-id-param
 / ms-identity-param
 / ms-identity-alg-param
 / ms-identity-info-param
 / ms-identity-cookie-param
 / ms-referee-uri-param
 / generic-param))
 ms-identity-param = "ms-identity" EQUAL ms-identity-token
 ms-identity-token = quoted-string
 ms-identity-alg-param = "ms-identity-alg" EQUAL token
 ms-identity-info-param = "ms-identity-info" EQUAL ms-identity-info-val
 ms-identity-info-val = quoted-string
 ms-identity-cookie-param = "ms-identity-cookie" EQUAL
 ms-identity-cookie-token
 ms-identity-cookie-token = quoted-string
 ms-referee-uri-param = "ms-referee-uri" EQUAL DQUOTE SIP-URI DQUOTE

EQUAL, generic-param, quoted-string, and token are defined in [RFC3261] section 25.1.

Referrer-uri and referredby-id-param are defined in [RFC3892] section 3.

The ms-referee-uri-param parameter used in the protocol between the SIP protocol client and the
server is documented in section 3.2.4.4. Other extension parameters are used only for
communications between SIP servers and have the following definitions.

 ms-identity-param: A token that cryptographically verifies the identity of the referrer within the
context of the referred call.

 ms-identity-alg-param: A token that specifies the cryptographic algorithm used for the ms-

identity-param computation.

 ms-identity-info-param: Information about the server that performed the ms-identity-param
computation.

 ms-identity-cookie-param: Cryptographic token that verifies the content of the ReferredBy
header field.

2.2.6 p-session-on-behalf-of Header Field Syntax

This protocol defines a new header field called p-session-on-behalf-of. This header field is populated
in a message by a client when it wishes to convey to the target of the message that it is acting on
behalf of another user. The value of the header field is the address-of-record of the user, or
delegator, that it is acting on behalf of, and the client initiating this message is the delegate. Setting

up the delegate relation is specified in [MS-PRES]. The ABNF for it, as defined in [RFC5234], is:

p-session-on-behalf-of = "p-session-on-behalf-of" HCOLON

 (name-addr / addr-spec)

The name-addr and addr-spec are defined in [RFC3261] section 25.

http://go.microsoft.com/fwlink/?LinkId=114234
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=90410
%5bMS-PRES%5d.pdf#Section_741d682d590b4600916e8deeee426a5c
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=90410

17 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

3 Protocol Details

3.1 Protocol Overview

This protocol implements a proprietary Kerberos, NTLM, and TLS-DSK<1> authentication mechanism

that is used by the SIP protocol client for client-to-server authentication and mutual signing of
messages by both the SIP client and the SIP server. For more information about NTLM, see [MS-
NLMP]. For more information about Kerberos, see [RFC4120] and [MS-KILE]. For more information
about TLS, see [RFC2246].

Authentication consists of two phases. In the first phase, a security association (SA) is established
between the protocol client and the server. In the second phase, the protocol client and server use the

existing SA to sign messages that they send, and to verify the messages that they receive. The exact
message exchange in the first phase differs depending on whether NTLM, Kerberos, or TLS-DSK
authentication is used.

The primary distinction between NTLM and Kerberos is the need for connectivity to the domain

controller (DC). In Kerberos, the protocol client MUST request a Kerberos ticket from the Key
Distribution Center (KDC), which in the proprietary implementation is a process that resides on the
DC. In NTLM, the server verifies the protocol client's credentials by contacting the DC. This difference

allows protocol clients that do not have connectivity to the DC to authenticate with the server using
NTLM authentication, and it is the main reason for supporting NTLM in addition to the more secure and
standard Kerberos authentication.

The TLS-DSK authentication is based on certificates that SHOULD be obtained by the client through
an out-of-band mechanism, such as contacting a security token service (STS). One such
mechanism is specified in [MS-OCAUTHWS].

During the NTLM SA establishment phase, a three-way handshake, or three round trips, occurs

between the protocol client and the protocol server.

 The protocol client sends a request with no credential or authentication (2) information. The
server (2) responds to that request with a 401 Unauthorized or 407 Proxy Authentication

Required, indicating that it supports NTLM and possibly other protocols, such as Kerberos or TLS-
DSK, and requires authentication (2).

 The protocol client reissues the request, indicating its preference for NTLM authentication and

including the content of NTLM NEGOTIATE_MESSAGE, as described in [MS-NLMP]. The server
responds with an NTLM CHALLENGE_MESSAGE in a 401 Unauthorized or 407 Proxy
Authentication Required.

 The protocol client reissues the request with an NTLM response, an AUTHENTICATE_MESSAGE,
to the server's challenge. If the protocol client negotiates version 4 of the authentication protocol,
it MUST also sign the request, or include NTLMSSP_MESSAGE_SIGNATURE. The server
processes the request and responds, including NTLMSSP_MESSAGE_SIGNATURE for the

response.

 The SA is now established on both the protocol client and server, and subsequent messages

between the protocol client and server are signed, which means that they carry a signature
formatted as NTLMSSP_MESSAGE_SIGNATURE in the message.

During the Kerberos SA establishment phase, a two-way handshake, or two round trips, occurs
between the SIP protocol client and the SIP server (2).

 The protocol client sends a request with no credential or authentication (2) information. The

server (2) responds to that request with a 401 Unauthorized or 407 Proxy Authentication
Required, indicating that it supports Kerberos and possibly other protocols, such as NTLM or TLS-
DSK, and requires authentication (2).

%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
http://go.microsoft.com/fwlink/?LinkId=90458
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
http://go.microsoft.com/fwlink/?LinkId=90324
%5bMS-OCAUTHWS%5d.pdf#Section_63749828ab8d4b24941cb11985d854c5

18 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

 The protocol client requests a Kerberos ticket for the server from the KDC, and reissues the
request with this encoded Kerberos ticket information, or KRB_AP_REQ, as defined in

[RFC4120]. If the protocol client negotiates version 4 of the authentication (2) protocol, it MUST
also sign the request, or include a Kerberos signature.

 The server (2) processes the request and responds, including a Kerberos signature for the
response.

 The SA is now established on both the protocol client and server, and subsequent messages
between the protocol client and server are signed, which means that they carry an MIC token, as
defined in [RFC4121], in the message.

During the TLS-DSK SA establishment phase, a four-way handshake, or four round trips, occurs
between the SIP protocol client and the SIP server (2).

 The protocol client sends a request with no credential or authentication information. The server
responds to that request with a 401 Unauthorized or 407 Proxy Authentication Required, indicating
that it supports TLS-DSK, and possibly other protocols, such as NTLM or Kerberos, and requires

authentication. The response from the server SHOULD include a URI of a STS that the client can
contact to obtain a certificate for authentication using the TLS-DSK protocol.

 The protocol client locates or obtains a certificate and reissues the request, indicating its

preference for TLS-DSK authentication and including data that encapsulates one or more TLS
records in TLS record layer format, typically containing a TLS client_hello handshake message,
as specified in [RFC2246]. The server responds with a 401 Unauthorized or 407 Proxy
Authentication Required response that encapsulates one or more TLS records that contain a TLS
server_hello handshake message, followed by a TLS certificate, such as
server_key_exchange, and then certificate_request, server_hello_done handshake
messages.

 The protocol client processes the response, reissues the request with data that encapsulates one
or more TLS records containing TLS certificate, client_key_exchange, certificate_verify,
change_cipher_spec, and finished handshake messages. The server processes the request,
verifies the client certificate, and responds with a 401 Unauthorized or 407 Proxy Authentication

Required response that encapsulates one or more TLS records that contain TLS
change_cipher_spec and finished handshake messages.

 The protocol client processes the response, and computes, or derives, client and server signing

keys from the TLS-negotiated key material using an algorithm similar to the one specified in
[RFC2716], and reissues the request with the signature. The server (2) also computes, or derives,
the server (2) and client signing keys using the same algorithm and verifies the signature in the
request. It can now respond and include the signature.

 The SA is now established on both the protocol client and server (2), and subsequent messages
between the protocol client and server (2) are signed, which means that they carry a signature

computed with the client and server (2) signing keys.

For each SA, both the SIP protocol client and the server (2) MUST keep track of the message
sequence numbers by maintaining a sliding window. The initial range of this window is 1 to 256, and it
is adjusted upward based on the highest sequence number received, while maintaining a window size

of 256. Messages within the window can arrive in any order with regard to their sequence number, as
long as no sequence number is used more than once. The purpose of maintaining this sliding window
is to provide replay protection while allowing pipelining of messages for performance reasons.

3.1.1 Abstract Data Model

None.

http://go.microsoft.com/fwlink/?LinkId=90459
http://go.microsoft.com/fwlink/?LinkId=90374

19 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

 None.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 SIP Client Details

3.2.1 Abstract Data Model

The protocol client establishes and maintains an SA with each protocol server that challenges it. The

security association data includes the following attributes.

Authenticating server identification: A tuple that consists of a realm parameter value and
authentication target derived from the targetname parameter value from the authentication header
field WWW-Authenticate or Proxy-Authenticate of the challenge received by the protocol client
when the SA was created. For the NTLM and TLS-DSK<2> authentication protocols, the authentication
target is the value of the targetname parameter without quotes. For the Kerberos authentication

protocol, the authentication target is the value of targetname without quotes and the sip/ service
descriptor.

Authenticating server protocol version: The value of the version parameter from the
authentication header field of the challenge received by the protocol client when the SA was created.

Authenticating server opaque value: The value of the opaque parameter from the
authentication header of the challenge received by the protocol client when the SA was created or
during the "establishing" state.

Whether the authenticating server is a proxy or a user agent server (UAS): If the
authenticating server used the Proxy-Authenticate header field in its challenge, it is a proxy. If it
used WWW-Authenticate, it is a UAS.

State or phase: The "establishing" state occurs during an NTLM, TLS-DSK, or Kerberos authentication
handshake. The "established" state occurs after NTLM, Kerberos, or TLS-DSK authentication completes
and the protocol client signs outgoing messages and verifies signatures on incoming messages. The
"expired" state occurs when the expiration timer fires.

SA expiration time: The time when the SA expires and needs to be recreated.

20 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

Outgoing message sequence number counter: The counter that is incremented every time the
message is sent with an authorization header created using this SA.

High sequence number (SnumHigh): The highest sequence number for messages received from
the server so far and verified using this SA.

The list of received sequence numbers within the sliding window: All sequence numbers
extracted from messages sent by the server that fit into the sliding window between SnumHigh-256
and SnumHigh.

Authentication protocol context: The context information used by an authentication protocol that is
compliant with the Generic Security Services (GSS) Application Programming Interface, as
specified in [RFC2743], and further clarified for NTLM in [MS-NLMP] and for Kerberos in [MS-KILE].
The context allows the authentication protocol to perform an authentication handshake when the SA is

still in the "establishing" state and to sign outgoing messages or verify the integrity of incoming
messages using an attached signature when the SA enters the "established" state. For the TLS-DSK
authentication protocol, when the SA is still in the "establishing" state, the client maintains enough
context information to process TLS messages, as specified in [RFC2246]. Once the SA enters the

"established" state, the client context maintains the hash function from the ciphersuite negotiated by
TLS, and client and server authentication keys generated at the end of the TLS negotiation.

The protocol client maintains a table of SAs it has established, indexed by authenticating server (2)
identity.

The protocol client links each SA with one or more proxies or servers (2) from which it received the
challenge, with the authentication (2) server (2) identity matching the one stored in the SA.

3.2.2 Timers

When the NTLM, Kerberos, or TLS-DSK<3> authentication handshake completes and the SA enters
the "established" state, the SIP protocol client MUST start an SA expiration timer. For an SA
established using NTLM, the expiration timer value is eight (8) hours reduced by some buffer time. For
an SA established using the Kerberos authentication protocol, the protocol client MUST also retrieve
the service ticket expiry time, as specified in [MS-KILE], when the SA enters the "established" state.

The expiration timer value is the lesser of the service ticket expiry time and eight hours, further
reduced by some buffer time. For an SA established using the TLS-DSK authentication protocol, the
client MUST retrieve the expiration time of its certificate. The expiration timer value is the lesser of the
interval to the certificate (1) expiration and eight hours, further reduced by some buffer time.

The protocol client MUST choose a sufficient buffer time to allow for the NTLM, Kerberos, or TLS-DSK
authentication handshake that reestablishes the SA to complete before the eight-hour SA expiration
time that is maintained by the SIP server, and before the Kerberos ticket expiry time or certificate (1)

expiration time. This value SHOULD be five (5) minutes or longer.

3.2.3 Initialization

If the SIP protocol client does not already have a security association linked with the SIP server to
which it intends to send the message for the first time, the protocol client SHOULD initiate the

authentication handshake by sending a REGISTER request without any authorization, Authorization

or Proxy-Authorization, header fields. The protocol client can use other requests, such as INVITE
or SUBSCRIBE, also without authorization header fields. The protocol client SHOULD NOT use ACK or
CANCEL requests or other requests that the SIP protocol does not allow to challenge. The request that
initiates the authentication handshake MUST include a protocol client endpoint identifier, such as
"epid", "+sip.instance", or "GRUU", as specified in [MS-SIPRE].

http://go.microsoft.com/fwlink/?LinkId=90378
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
http://go.microsoft.com/fwlink/?LinkId=90324
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-SIPRE%5d.pdf#Section_ab4ab24937964ed18cecf496d81a1a83

21 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

3.2.4 Higher-Layer Triggered Events

3.2.4.1 Sending Messages to the SIP Server

When a SIP protocol client needs to send a message to a server or proxy, it MUST check for SAs that
were established as the result of challenges received from this server or proxy, such as SAs linked to
the server. If there are SAs in the "establishing" state linked to the same server, the protocol client
SHOULD postpone sending the message until authentication handshakes for such SAs are complete. If
all SAs linked to the same server are in the "established" state, the protocol client MUST use each of

the SAs to generate and insert an authorization header field using the following steps.

1. The protocol client increments its outgoing message sequence number counter and generates a
protocol client random value.

The protocol client outgoing sequence number, cnum, is maintained on a per-SA basis and
incremented each time this procedure is performed. It is stored as an unsigned decimal number,
as described in ABNF in section 2.2.3.

A protocol client random value, crand, is a 32-bit nonce, which is a random number large enough
that the probability of number re-use is vanishingly small. It is stored as an eight-digit
hexadecimal number, as described in ABNF in section 2.2.3.

2. The protocol client constructs a buffer with the information from the message and the SA that will
be used in signature computation.

The buffer is constructed from the following string values encoded in UTF8, in order, each enclosed
by angle brackets (<>) with the same syntax and case (even if the field is case-insensitive) as

when they appear in the message header fields:

1. Authentication (2) protocol ("NTLM", "Kerberos", or "TLS-DSK").

2. crand value as an eight-digit hexadecimal number.

3. cnum value as a decimal number.

4. realm parameter value without quotes as it appears in the challenge message sent by the
server when the SA was created.

5. targetname parameter value without quotes as it appears in the challenge message sent by

the server when the SA was created.

6. The value of the Call-ID header field from the message.

7. The sequence number from the CSeq header field.

8. The method from the CSeq header field.

9. The URI in the From header field.

10. The tag parameter value from the From header field.

11. If the authenticating server protocol version is 3 or higher, the URI in the To header field.

12. The tag parameter value from the To header field.

13. If the authenticating server protocol version is 3 or higher, the "sip" URI from the P-
Asserted-Identity or P-Preferred-Identity header field.

14. If the authenticating server protocol version is 3 or higher, the "tel" URI from the P-
Asserted-Identity or P-Preferred-Identity header field.

22 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

15. The value of the Expires header field.

16. If the message is a response, the response code value as a decimal string.

If a field mentioned in the list does not exist in the message, an empty string enclosed by angle
brackets is included. This does not apply to fields included conditionally depending on protocol

version or message type; an empty string enclosed by angle brackets is not needed if the
condition is not satisfied. However, empty angle brackets are included if the condition is satisfied,
but there is no corresponding header field in the message.

3. The protocol client uses an authentication protocol GSS_GetMIC() call, as specified in [MS-NLMP]
section 3.1.4 for NTLM, and in [RFC2743] section 2.3.1 for Kerberos, to generate a signature
token for the buffer constructed in the preceding step 2 using the authentication protocol context
stored in the SA.

Note that for the NTLM Security Support Provider Interface (SSPI), the protocol client
provides a fixed message sequence number of 100 in addition to the buffer and protocol context.

For TLS-DSK<4>, the client computes the signature token using the Hash-based Message

Authentication Code (HMAC) algorithm specified in [RFC2104], with the hash function and
client authentication key obtained when the TLS negotiation completed, which means that the
finished handshake message was received from the server, as described in section 3.3.5.1, and

the buffer constructed in the preceding step 2.

4. The binary token returned by the authentication protocol implementation in the preceding step 3
is then encoded using the Base16 encoding procedure specified in [RFC3548] section 6. The
characters 'A' through 'F' in the output of the Base16 encoding procedure SHOULD be replaced
with their lowercase equivalents ('a' through 'f').

5. The protocol client generates an Authorization header field if the challenge that established the
SA contained a WWW-Authenticate header field or a Proxy-Authorization header field if the

challenge that established the SA contained a Proxy-Authenticate header field, according to the
syntax described in section 2.2.3, with the data generated in the preceding steps and the data
copied from the challenge message sent by the server (2) when the SA was established.

Specifically, it adds the following fields:

1. Authentication protocol ("NTLM", "Kerberos", or "TLS-DSK").

2. realm with the value copied from the challenge message sent by the server when the SA was
created.

3. targetname with the value copied from the challenge message sent by the server when the
SA was created.

4. opaque with the value copied from the challenge message sent by the server when the SA
was created.

5. qop with the value "auth".

6. cnum with the value generated in step 1.

7. crand with the value generated in step 1.

8. response with the value generated in step 4.

3.2.4.2 Communicating Alternate Identities in the Messages Sent to the SIP Server

The SIP protocol client might need to communicate a user's identity in addition to one in the address-

of-record of the From header field of the request, or the To header field of the response. Moreover, if

%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
http://msdn.microsoft.com/en-us/library/f7ca18e1-37e8-4f0b-8d6c-ddbb2bd06bc2/
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90314
http://go.microsoft.com/fwlink/?LinkId=90432

23 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

the request is forwarded, or re-targeted, from one user to another, the address-of-record in the To
header field might represent the user who was called originally and not the user who responds to the

request, so the protocol client that formulates the response might need to insert the correct identity of
the responding user without modifying the URI in the To header field.

In both of the preceding cases, the protocol client SHOULD add a P-Preferred-Identity header field
with one or two values. If there is one value, it MUST be a sip or tel URI. If there are two values, one
of them MUST be a sip URI and the other MUST be a tel URI.

If the identity inserted in the P-Preferred-Identity header field by a protocol client is not to be
communicated outside the trust domain with which it authenticated, the client SHOULD insert a
Privacy header field with the value "id", as described in [RFC3325] section 9.3. If, however, the client
identity in the P-Preferred-Identity header field is to propagate outside the trust domain, the client

SHOULD insert a Privacy header field with the value "none", as described in [RFC3323]. The
definition of trust domain is based on [RFC3324] and comprises the network of securely
interconnected server nodes.

3.2.4.3 Establishing session as anonymous client

The client MUST<5> only establish anonymous sessions for joining conferences of the type specified
in [MS-CONFBAS].

When a client is required to establish a session with a remote entity that has a URI in the form of a
conference GRUU, as specified in [MS-SIPRE], and the client does not have a registered endpoint, the
client MUST establish the aforementioned session by creating a random anonymous URI and use that
as the From: header of the sessions established. The client MUST use a URI of the form

<username>@anonymous.invalid.

3.2.4.4 Specifying Referee Identity in the Referred-By Header Field in

Forwarded/Retargeted Calls

When a dialog-establishing request is forwarded, or retargeted, from one user or phone number to
another, the address-of-record in the URI of the To header field in mid-dialog requests might still

reflect the SIP identity of the original user or phone number, before forwarding or retargeting. If such
a mid-dialog request, with the original address-of-record or phone number in the URI of the To
header field, is a REFER request and the protocol client sending it intends to communicate to the SIP
server the address-of-record that represents the identity of the actual message recipient after

forwarding or retargeting, it SHOULD insert the ms-referee-uri parameter with the value of the SIP
URI representing the address-of-record of the actual message recipient into the Referred-By header
field in the REFER request. See section 2.2.5 for the specifications of the ms-referee-uri parameter.

3.2.4.5 Specifying p-session-on-behalf-of Header

This section follows the product behavior described in product behavior note <6>.

If a user has been configured as a delegate of another user, which is referred to here as the delegator,
and the UAC of the delegate sends an INVITE on behalf of the delegator, it SHOULD set the p-
session-on-behalf-of header field in the INVITE. The value of the p-session-on-behalf-of header

field SHOULD be set to the address-of-record of the delegator user agent.

When a request intended for a delegator is routed to a delegate client endpoint and the delegate client

accepts the request on behalf of the delegator, it SHOULD set the p-session-on-behalf-of header
field in the 2xx response to indicate that the request has been responded to on the delegator's behalf.
The value of the p-session-on-behalf-of header field SHOULD be set to the address-of-record of the
delegator.

For more information about setting up delegates, see [MS-PRES].

http://go.microsoft.com/fwlink/?LinkId=114232
http://go.microsoft.com/fwlink/?LinkId=114240
http://go.microsoft.com/fwlink/?LinkId=114478
%5bMS-CONFBAS%5d.pdf#Section_6cb739fe3a8442668d520af777f6f1fa
%5bMS-SIPRE%5d.pdf#Section_ab4ab24937964ed18cecf496d81a1a83
%5bMS-PRES%5d.pdf#Section_741d682d590b4600916e8deeee426a5c

24 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Processing Challenges from the SIP Server

When a SIP protocol client receives a 401 Unauthorized or 407 Proxy Authentication Required
response, or challenge, to the request that it previously sent to the server, it MUST examine
authentication headers WWW-Authenticate and Proxy-Authenticate in the response. If
authentication headers are for Digest authentication protocol, the challenge SHOULD<7> be handled
as described in the section 3.2.5.5 and the rest of this section SHOULD NOT be used. Otherwise, the

client MUST attempt to locate an existing security association that was created from the challenge that
had the same realm parameter value and the same authentication target. For the NTLM and TLS-
DSK<8> authentication protocols, the authentication target is the value of the targetname
parameter without quotes. For the Kerberos authentication protocol, the authentication target is the
targetname value without quotes and the sip/ service descriptor. The protocol client MUST then
process the response, or challenge, as follows.

1. The protocol client examines the Date header field in the challenge. The difference between the

value in the Date header field inserted by the server and the current date and time at the protocol
client could result in the server's failure to authenticate the protocol client. The protocol client
prompts the user to synchronize the date with the server if there is a difference between the Date
header field value and the current date and time at the protocol client, referred to as the clock
skew, in excess of the maximum allowed by the authentication protocol, and the server fails to
validate the user's credentials. As specified in [MS-KILE], the default acceptable clock skew for

Kerberos is 5 minutes. No maximum time difference value is defined for NTLM and TLS-DSK.

2. If the protocol client finds the SA with a matching realm and authentication target, and the SA is
in the "established" state, the protocol client determines whether the SA was used to sign the
request to which the server responded with the challenge. The signing procedure is described in
section 3.2.4.1.

If the request is not signed, the protocol client resends the request with the signature and stops
processing this challenge.

If the request is already signed, the protocol client destroys the SA and proceeds to step 4.

If the protocol client finds the SA with a matching realm and authentication target and the SA is
not yet established, the protocol client determines whether the authentication header field is for
the NTLM or TLS-DSK protocol and whether it contains a gssapidata parameter.

3. If the authentication header field is for the NTLM protocol and it contains a gssapi-data
parameter, the protocol client decodes its value using the base64 decoding procedure, as

specified in [RFC3548] section 3, and passes it, along with the authentication protocol context
associated with the SA and the value of the targetname parameter in the
GSS_Init_sec_context call of the NTLM implementation, as specified in [MS-NLMP] section
3.1.4. This primitive in the NTLM protocol implementation generates the
AUTHENTICATE_MESSAGE, and the protocol client then proceeds to step 5 to encode it and
send it to the server (2).

If the authentication header field is for the TLS-DSK protocol and it contains the gssapi-data

parameter, the client decodes its value using the base64 decoding procedure, as specified in
[RFC3548] section 3, and passes it, along with the current TLS context, to the TLS protocol
implementation for processing. If the gssapi-data parameter value carried the TLS server_hello
handshake message, followed by a TLS certificate, and possibly server_key_exchange, and then
certificate_request, and server_hello_done handshake messages, the client validates the
server certificate, obtains or locates a previously obtained client certificate, and generates an
output token that carries TLS certificate, client_key_exchange, certificate_verify,

change_cipher_spec, and finished handshake messages, as specified in [RFC2246]. If the
gssapi-data parameter value carried TLS change_cipher_spec and finished handshake

%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
http://go.microsoft.com/fwlink/?LinkId=90432
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
http://msdn.microsoft.com/en-us/library/f7ca18e1-37e8-4f0b-8d6c-ddbb2bd06bc2/
http://go.microsoft.com/fwlink/?LinkId=90324

25 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

messages, the client verifies that authentication and key exchanges were successful, and notes
the cryptographic hash function selected by TLS ciphersuite negotiation, such as MD5, SHA-1, or

SHA-256. The client then generates client and server authentication (2) keys as follows.

1. Given the master secret negotiated by the TLS handshake, the pseudo-random function

(PRF) defined in the specification for the version of TLS in use, and the value randomly defined
as the concatenation of the handshake message fields client_hello.random and
server_hello.random, in that order, the value PRF (master secret, "client EAP encryption",
random) is computed up to 128 bytes.

2. The client authentication (2) key used for computing and validating signatures for messages
from client to server (2) is obtained by truncating to the correct length the third 32 bytes of
the PRF output string.

3. The server (2) authentication (2) key used for computing and validating signatures for
messages from server (2) to client is obtained by truncating to the correct length the fourth
32 bytes of this same PRF output string.

The preceding key derivation procedure is similar to the one specified in [RFC2716] section 3.5.

The client then proceeds to step 5.

If the authentication header field is for the Kerberos protocol or it does not contain a

gssapidata parameter, the protocol client destroys the SA and proceeds to step 4.

4. If the protocol client does not find the matching SA or it has destroyed the SA in the preceding
steps 2 or 3, the protocol client creates a new SA, and invokes a GSS_Init_sec_context call of
the authentication protocol to initialize the security context.

5. For NTLM, the protocol client obtains user credentials, such as user name, password, and domain,
and requests the following parameters, as specified in [MS-NLMP]:

 Datagram

 Identify

 Integrity

The NTLM implementation returns NEGOTIATE_MESSAGE as the output from the call to
GSS_Init_sec_context. However, in the current NTLM implementation, this message is not
generated for datagram NTLM contexts, and thus the output from NTLM is an empty buffer.

For Kerberos, the protocol client first requests a ticket to a service named in the targetname
parameter value. It then creates the context by a call to GSS_Init_sec_context and requests

the following parameters, as specified in [MS-KILE]:

 Integrity

 Identify

For TLS-DSK, the client initializes a context for performing TLS negotiation and generates a token

with the client_hello handshake message, as specified in [RFC2246].

The protocol client stores generated context with the SA and accepts any token generated by the

authentication (2) protocol to be encoded and sent to the server (2) in the following step.

6. The protocol client generates an Authorization header field if the challenge contained a WWW-
Authenticate header field or a Proxy-Authorization header field if the challenge contained a
Proxy-Authenticate header field, according to the syntax described in section 2.2.3, with the
following data:

http://go.microsoft.com/fwlink/?LinkId=90374

26 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

1. Authentication protocol ("NTLM", "Kerberos", or "TLS-DSK").

2. realm with the value copied from the challenge response.

3. targetname with the value copied from the challenge response.

4. opaque with the value copied from the challenge response if it was present.

5. qop with the value "auth".

6. gssapi-data with the value of the token generated in the preceding steps 3 or 4 and encoded
using the base64 encoding procedure, as specified in [RFC3548] section 3. If the
authentication protocol does not generate a token in step 3, such as in the case of the TLS-
DSK protocol, the client does not add the gssapi-data parameter to the header field.
However, if the authentication protocol generated an empty token in step 4, as in the case of
the NTLM protocol, the gssapi-data parameter is added with an empty string as its value.

7. If the protocol client implements version 3 of this protocol, and the server challenge response
carries a version parameter, and its value is 3 or higher or the protocol client implements

version 4 of this protocol and the server response carries a version parameter, and its value
is 3, the protocol client adds a version parameter with a value of 3.

8. If the protocol client implements version 4 of this protocol, and the server challenge response
carries a version parameter and its value is 4 or higher, the protocol client adds a version

parameter with a value of 4. The protocol client also generates cnum, crand, and response
values, as described in section 3.2.4.1, steps 1, 2, and 3, and adds them to the header.

9. The protocol client resends the original request that was challenged by the server with the
Authorization or Proxy-Authorization header created in step 5.

3.2.5.2 Processing Authenticated Messages from the SIP Server

When a SIP protocol client receives a message from the server that contains an Authentication-Info
or Proxy-Authentication-Info header field, it MUST attempt to locate an existing security

association that was created from the challenge that had the same authentication protocol, realm,
and authentication target values as in the Authentication-Info or Proxy-Authentication-Info
header field. For the NTLM and TLS-DSK<9> authentication protocols, the authentication target is the

value of the targetname parameter without quotes. For the Kerberos authentication protocol, the
authentication target is the value of the targetname parameter without quotes and the sip/ service
descriptor. The protocol client MUST then process the message as described in the following steps:

1. If the protocol client does not find the SA with a matching authentication protocol, realm, and

authentication target values, it discards the message and stops further processing.

2. If the protocol client does find the SA with a matching authentication protocol, realm, and
authentication (2) target values, the protocol client constructs a buffer with the information from
the message that will be used in signature verification.

The buffer is constructed from the following string values in order, each of them enclosed by angle

brackets (<>), and with the same syntax and case, even if the field is case-insensitive, as they

appear in the message headers:

1. Authentication protocol ("NTLM", "Kerberos", or "TLS-DSK").

2. srand value.

3. snum value.

4. realm parameter value without quotes.

27 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

5. targetname parameter value without quotes.

6. The value of the Call-ID header field.

7. The sequence number from the CSeq header field.

8. The method from the CSeq header field.

9. The URI in the From header field.

10. The tag parameter value from the From header field.

11. If the protocol version on the authenticating server is 3 or higher, the URI in the To header
field.

12. The tag parameter value from the To header field.

13. If the protocol version on the authenticating server is 3 or higher, the sip URI from the P-
AssertedIdentity header field.

14. If the protocol version on the authenticating server is 3 or higher, the tel URI from the P-
AssertedIdentity header field.

15. The value of the Expires header field.

16. If the message is a response, the response code value as a decimal string.

If a field mentioned in the list does not exist in the message, an empty string enclosed by angle
brackets is included. This does not apply to fields included conditionally depending on protocol

version or message type; an empty string enclosed by angle brackets is not needed if the
condition is not satisfied. However, empty angle brackets are included if the condition is satisfied,
but there is no corresponding header field in the message.

3. The protocol client decodes the value of the rspauth parameter using the base16 decoding
procedure, as specified in [RFC3548] section 6, and passes it, along with the buffer constructed in

the preceding step 2, and the authentication protocol context from the SA to the GSS_VerifyMic
call, as specified in [MS-NLMP] section 3.1.4 for NTLM, or [RFC2743] section 2.3.2 for Kerberos.

Note that for the NTLM SSPI, the protocol client provides a fixed message sequence number of
100 in addition to the buffer.

For TLS-DSK, the client computes the signature token using the HMAC algorithm specified in
[RFC2104], with the hash function and server authentication key obtained when TLS negotiation
completed, which means that the finished handshake message was received from the server, as
described in section 3.2.5.1, and the buffer constructed in step 2. It then compares the binary
value of the computed signature token with the decoded binary value of the rspauth parameter.

4. If the GSS_VerifyMic call fails, indicating that the signature could not be verified or the binary
value of the computed TLS-DSK signature token is not the same as the binary value of the
rspauth parameter, the protocol client discards the message and stops further processing.

5. If the GSS_VerifyMic call succeeds, the protocol client verifies that the sequence number in the
snum parameter value does not fall outside the sliding window that it maintains and is not a
replay of the message within the window. If the highest sequence number that the protocol client

has processed so far for this SA exceeds the received sequence number by more than 256, or
another message with the same sequence number has been received, the protocol client discards
the message and stops processing.

6. If the sequence number is the highest seen so far for the SA, the protocol client adjusts the
window and records the fact that this particular sequence number has been used.

http://go.microsoft.com/fwlink/?LinkId=90432
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
http://msdn.microsoft.com/en-us/library/f7ca18e1-37e8-4f0b-8d6c-ddbb2bd06bc2/
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90314

28 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

7. If the SA used for verification is not yet in the "established" state, the protocol client determines
whether the message it is processing is a 403 Forbidden response. If the message is a 403

Forbidden response, the protocol client destroys the SA and requests different credentials from the
user to retry the authentication.

Otherwise, the protocol client transitions the SA to the "established" state and destroys any other
SAs with the same realm and authentication target values.

3.2.5.3 Authenticated Address-Of-Record in Messages Signed By the SIP Server

If the SIP protocol client needs to obtain an authenticated identity, or address-of-record, from the
message signed by the SIP server that the SIP client has verified, as described in [MS-NLMP]
section 3.2.5.2, the protocol client MUST use the following procedure.

1. If the authenticating server protocol version is 3 or higher and the P-AssertedIdentity header
field is present in the message, the protocol client uses the sip URI from the P-AssertedIdentity
header field if it needs the SIP address-of-record, or uses the tel URI from the P-
AssertedIdentity header field if it needs a telephone number.

2. If the authenticating server protocol version is less than 3 or if the P-AssertedIdentity header
field is NOT present in the message, the protocol client uses the URI in the From header field if
the message is a request, and uses the URI in the To header field if the message is a response.

For more information about server protocol version, see [MS-NLMP] section 6.

3.2.5.4 Processing p-session-on-behalf-of Header in Messages from the SIP Server

This section follows the product behavior described in product behavior note <10>.

When a SIP protocol client receives an incoming request or a 2xx response with a p-session-on-
behalf-of header, it MAY use this information to indicate to the end user that the message originator
is acting on behalf of the address-of-record specified in the p-session-on-behalf-of header field.

For more information about setting up delegates, see [MS-PRES].

3.2.5.5 Responding as anonymous client to challenge from SIP Server

When the client receives a 401 Unauthorized challenge with digest and its From: header is an
anonymous URI of the form <username>@anonymous.invalid and the destination is a conference
GRUU, as specified in [MS-SIPRE], it SHOULD<11> check that algorithm is either MD5-sess or

SHA256-sess and perform digest authentication, as specified in [RFC3261] section 22.4. The client
SHOULD use the conference-key as the password for the computation of the digest for the
response parameter of the Authorization or Proxy-Authorization header field. The protocol for
obtaining the conference-key is specified in [MS-CONFBAS], with an example in [MS-CONFBAS]
section 4.1. When using SHA256sess algorithm, the computation of the message digest in the
response field SHOULD be performed as described in [FIPS180-2].

3.2.5.6 Continuing session as anonymous client

Once the SA is established between the anonymous client and the server, further messages from the
client to the server (2) SHOULD<12> have the Authorization header constructed pre-emptively to
reduce the round-trip cost associated with the challenge and response.

3.2.6 Timer Events

When the SA expiration timer fires, the SIP protocol client MUST initiate establishment of a new SA
with the authenticating SIP server. The protocol client SHOULD send the REGISTER request without

%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
http://msdn.microsoft.com/en-us/library/f1b13962-3d25-429d-a1ff-fe62d1a9aa67/
http://msdn.microsoft.com/en-us/library/26c42637-9549-46ae-be2e-90f6f1360193/
%5bMS-PRES%5d.pdf#Section_741d682d590b4600916e8deeee426a5c
%5bMS-SIPRE%5d.pdf#Section_ab4ab24937964ed18cecf496d81a1a83
http://go.microsoft.com/fwlink/?LinkId=90410
%5bMS-CONFBAS%5d.pdf#Section_6cb739fe3a8442668d520af777f6f1fa
http://go.microsoft.com/fwlink/?LinkId=89868

29 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

authorization header fields, as described in section 3.1.3, to establish a new SA. The protocol client
MAY use other requests, such as INVITE and SUBSCRIBE, also without header fields. The protocol

client SHOULD NOT use ACK or CANCEL requests or other requests that the SIP protocol does not
allow to challenge.

If establishment of a new SA completes successfully, the expired SA is destroyed, as described in
section 3.2.5.2. Otherwise, the protocol client SHOULD keep the expired SA for the maximum duration
of the SIP transaction. This timer is Timer B for INVITE transactions and Timer F for non-INVITE
transactions, both 32 seconds by default, as described in [RFC3261].

3.2.7 Other Local Events

None.

3.3 SIP Server Details

3.3.1 Abstract Data Model

If the server is configured to authenticate the endpoints from which it receives messages, the server
establishes and maintains a security association with each of these SIP client endpoints. SA
establishment is initiated by the protocol client sending a REGISTER or other request, without

authorization header fields, to the server.

The SA data includes:

 Endpoint identification: A tuple that consists of the address-of-record and one of the endpoint
identifiers described in the Session Initiation Protocol Routing Extensions, as specified in [MS-
SIPRE], such as the epid parameter in the From header field, the +sip.instance parameter in
the Contact header field, or the GRUU in the Contact header field.

 Client protocol version: The value of the version parameter from the authorization header
field of the protocol client's message that it sends in response to the challenge when the SA is

created.

 Server opaque value: An arbitrary value that satisfies the syntax requirements specified in
[RFC3261] section 25.1. It is generated by the server when it creates the SA.

 State or phase: The "establishing" state occurs during the NTLM, Kerberos, or TLS-DSK<13>
authentication handshake. The "established" state occurs after NTLM, Kerberos, or TLS-DSK

authentication completes and the server signs outgoing messages and verifies signatures on
incoming messages.

 Waiting for signature flag: If the server implements version 4 of the authentication protocol, it
sets this flag if the message with the authentication response from the protocol client does not
carry a signature, and clears this flag when it receives a subsequent message from the protocol
client with a valid signature.

 SA expiration time: The time when the SA expires and needs to be destroyed.

 The SA idle time: The time when the SA is destroyed if there is no message traffic from or to the
client.

 Outgoing message sequence number counter: The counter that is incremented every time
the message is sent with an authentication information header field created using this SA.

 The high sequence number (SnumHigh): The highest sequence number for messages received
from the protocol client endpoint so far, and verified using this SA.

http://go.microsoft.com/fwlink/?LinkId=90410
%5bMS-SIPRE%5d.pdf#Section_ab4ab24937964ed18cecf496d81a1a83
%5bMS-SIPRE%5d.pdf#Section_ab4ab24937964ed18cecf496d81a1a83
http://go.microsoft.com/fwlink/?LinkId=90410

30 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

 The list of received sequence numbers within sliding window: All sequence numbers
extracted from messages sent by the protocol client that fit into the sliding window between

SnumHigh-256 and SnumHigh.

 The authentication protocol context: The context information used by an authentication

protocol compliant with GSS, and further clarified for NTLM in [MS-NLMP] and for Kerberos in [MS-
KILE]. The context allows the authentication protocol to perform an authentication handshake
when the SA is still in the "establishing" state, and to sign outgoing messages or verify the
integrity of incoming messages using the attached signature when the SA enters the "established"
state. For the TLS-DSK authentication protocol, when the SA is still in the "establishing" state, the
server maintains enough context information to process TLS messages, as specified in [RFC2246].
Once the SA enters the "established" state, the server context maintains the hash function from

the ciphersuite negotiated by TLS, and client and server authentication keys generated at the end
of the TLS negotiation.

 DelegateSet: A set of delegate entries. Entries are keyed on the URI of the delegate. This is
further defined in [MS-PRES].<14>

 DelegateEntry: Information about an individual delegate. This is further defined in [MS-
PRES].<15>

The server (2) maintains a table of SAs that it has established, indexed by protocol client endpoint
(5) identity.

The server (2) maintains a database that maps users identified through authentication (2) protocol
processing to the address-of-records that these users are allowed to use.

If the server is a proxy and it forwards requests after processing them with the SA, as described in
section 3.3.4.1 and 3.3.5.2, it saves the reference to the SA in the Via, Record-Route or Path
header fields that it inserts into the request, as specified in [MS-SIPRE] section 3.7, before

forwarding the request to another SIP element. The content of the header fields is preserved
within the transaction, dialog, or registration correspondingly, and the proxy recovers the
reference to the SA that it saved, and use it to sign the messages it forwards to the protocol client
endpoint (5) or to verify the signature in the messages it receives from the protocol client

endpoint (5).

3.3.2 Timers

When the NTLM, Kerberos, or TLS-DSK<16> authentication handshake completes and the SA
enters the "established" state, the SIP server MUST start an SA expiration timer with a value of 8
hours.

When the server finishes processing a message that it sends to the protocol client, as described in

section 3.3.4.1, or when it successfully finishes authenticating or validating a signature in a
message from the protocol client, as described in sections 3.3.5.2 or 3.3.5.3, the server (2)
SHOULD start an idle timer or reset the idle timer, if it is already running, with a value chosen
based on the following criteria evaluated in order:

1. If the message being sent to the protocol client is a 2xx response to the REGISTER request and it

contains an Expires header field, the server SHOULD extract the delta-seconds value from the
Expires header field and use it as the timer value in seconds.

2. If the message being sent to the protocol client is a 2xx response to the INVITE or UPDATE
request and it contains a Session-Expires header field, as specified in [RFC4028], and either the
idle timer is not already running or its last value was not set from the Expires header field of the
2xx response to the REGISTER request, as described previously, the server SHOULD extract the
delta-seconds value from the Session-Expires header field and use it as the timer value in
seconds.

%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
http://go.microsoft.com/fwlink/?LinkId=90324
%5bMS-PRES%5d.pdf#Section_741d682d590b4600916e8deeee426a5c
http://go.microsoft.com/fwlink/?LinkId=114248

31 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

3. If the message is received from the protocol client and either the idle timer is not already running
or its last value was not set from the Expires or Session-Expires header fields as described

previously, the server SHOULD set the timer value to 900 seconds, or 15 minutes.

3.3.3 Initialization

The SIP server MUST select realm and targetname values that uniquely identify it among all the
possible principals (1) within the NTLM, Kerberos, and TLS-DSK<17> authentication protocol
namespaces. The exact meaning of realm is specified in [RFC3261] section 22.1. The

targetname corresponds to the TargetName in NTLM, as specified in [MS-NLMP] and principal
name for Kerberos, as specified in [RFC4120]. For Kerberos, the targetname value MUST be
prefixed with a sip/ service descriptor and the server MUST register its targetname value with
the KDC database. For TLS-DSK, targetname MUST match the value of the subjectAltName
extension of type "dNSName", if one is present, or the Common Name field in the Subject field
of the server certificate, as specified in [RFC2818] section 3.1. If the server supports more than
one authentication protocol, the targetname value in NTLM and TLS-DSK MUST be the same as

the targetname value in Kerberos without the sip/ service descriptor. The server SHOULD use

its fully qualified domain name (FQDN) as the targetname value for NTLM and TLS-DSK, and
its FQDN prefixed with a sip/ service descriptor for Kerberos.

3.3.4 Higher-Layer Triggered Events

3.3.4.1 Sending Messages to the SIP Client

When the SIP server needs to send a message to a SIP protocol client endpoint, it MUST check for
security associations that were established with that endpoint. The server SHOULD use an SA

reference that it has previously placed into the Via, Record-Route, or Path header field of the
associated message. This could be a request that initiated the transaction if the message being
processed is a response, a request that initiated the dialog if the message being processed is a mid-
dialog request, or a REGISTER request if the message being processed is a request that is delivered
along the registration path. If there is an SA in the "established" state, the server MUST use this SA to
generate and insert an authorization header field using the following steps:

1. If the server implements version 4 of the authentication protocol and the waiting for signature

flag in the SA is set, and the message being processed is a request, the server MUST reject the
request with 500 Server Internal response and stop further processing.

2. The server (2) increments its outgoing message sequence number counter and generates a server
(2) random value.

The server (2) outgoing sequence number (snum) is maintained on a per-SA basis and
incremented each time this procedure is performed. It is stored as an unsigned decimal
number, as described in ABNF in section 2.2.2.

A server (2) random value (srand) is a 32-bit nonce. It is stored as an eight-digit hexadecimal
number, as described in ABNF in section 2.2.2.

The server (2) constructs a buffer with the information from the message and the SA that will

be used in the signature computation.

3. The buffer is constructed from the following string values encoded in UTF8 in order, each of them
enclosed by angle brackets (<>), and with the same syntax and case, even if the field is case-

insensitive, as they appear in the message header fields:

1. Authentication protocol ("NTLM", "Kerberos", or "TLS-DSK").

2. srand value as an eight-digit hexadecimal number.

http://go.microsoft.com/fwlink/?LinkId=90410
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
http://go.microsoft.com/fwlink/?LinkId=90458
http://go.microsoft.com/fwlink/?LinkId=90383

32 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

3. snum value as a decimal number.

4. realm with the value selected by the server during initialization.

5. targetname with the value selected by the server during initialization.

6. The value of the Call-ID header field from the message.

7. The sequence number from the CSeq header field.

8. The method from the CSeq header field.

9. The URI in the From header field.

10. The tag parameter value from the From header field.

11. If the authenticating server protocol version is 3 or higher, the URI in the To header field.

12. The tag parameter value from the To header field.

13. If the protocol client protocol version stored in the SA is 3 or higher, the sip URI from the P-

Asserted-Identity header field.

14. If the protocol client protocol version stored in the SA is 3 or higher, the tel URI from the P-
Asserted-Identity header field.

15. The value of the Expires header field.

16. If the message is a response, the response code value as a decimal string.

If any field mentioned in the list does not exist in the message, an empty string enclosed by

angle brackets is included. This does not apply to fields included conditionally depending on
protocol version or message type; an empty string enclosed by angle brackets is not needed if
the condition is not satisfied. However, empty angle brackets are included if the condition is
satisfied, but there is no corresponding header field in the message.

4. The server uses an authentication protocol GSS_GetMIC() call, as described in [MS-NLMP]
section 3.1.4 for NTLM, or in [RFC2743] section 2.3.1 for Kerberos, to generate a signature token
for the buffer constructed in step 3, using the authentication protocol context stored in the SA.

Note that for the NTLM SSPI, the server (2) provides a fixed message sequence number of
100, in addition to the buffer and protocol context.

For TLS-DSK<18>, the server computes the signature token using the HMAC algorithm
specified in [RFC2104], with the hash function and server authentication key obtained when
TLS negotiation completed, which means the finished handshake message was received from
the client, as described in section 3.3.5.1, and the buffer constructed in step 3.

The binary token returned by the authentication protocol implementation is then encoded

using the Base16 encoding procedure specified in [RFC3548] section 6. The characters 'A'
through 'F' in the output of the Base16 encoding procedure SHOULD be replaced with their
lowercase equivalents ('a' through 'f').

5. The server generates an Authentication-Info header field, if it acted as a UAS when the SA was
established, or a Proxy-Authentication-Info header field, if it acted as a proxy when the SA was
established, according to the syntax described in section 2.2.2, with the data generated in the

preceding steps and data generated during initialization or SA creation.

Specifically, it MUST add the following fields:

1. Authentication protocol ("NTLM", "Kerberos", or "TLS-DSK").

%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
http://msdn.microsoft.com/en-us/library/f7ca18e1-37e8-4f0b-8d6c-ddbb2bd06bc2/
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90314
http://go.microsoft.com/fwlink/?LinkId=90432

33 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

2. realm with the value selected by the server during initialization.

3. targetname with the value selected by the server during initialization.

4. opaque with the value that the server generated during SA creation.

5. qop with the value "auth".

6. snum with the value generated in step 2.

7. srand with the value generated in step 2.

8. rspauth with the value generated in step 4.

9. version with the value of 3 if the server implements version 3 of this protocol or 4 if the
server implements version 4 of this protocol

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Processing Unauthenticated Messages from the SIP Client

When a SIP server that is configured to authenticate all SIP protocol clients that talk to it receives
a message from the protocol client that does not carry an either an Authorization or Proxy-
Authorization header field, or the realm and targetname parameter value pairs in all of the
authorization header fields do not match the values that the server created during initialization,
the server MUST reject the message. If the message is not an ACK or CANCEL, the server MUST
send a 401 Unauthorized or 407 Proxy Authentication Required response, or challenge, back to the
protocol client with one or more authentication header fields. If the message is an ACK or

CANCEL, the server MUST discard it.

When forming a challenge response, the server SHOULD add an authentication header field for
each authentication protocol that it supports, such as NTLM, Kerberos, and TLS-DSK<19>
authentication header fields that are covered in this protocol, with the following content:

 Authentication protocol ("NTLM", "Kerberos", or "TLS-DSK").

 realm with the value selected by the server during initialization.

 targetname with the value selected by the server during initialization.

 version with the value of 3<20> if the server implements version 3 of this protocol or 4<21> if
the server implements version 4 of this protocol.

 For TLS-DSK authentication protocol the server SHOULD add an sts-uri parameter with the value
of the URL of the Certificate Provisioning Service described in [MS-OCAUTHWS].

However, if the request is destined to a conference GRUU, as specified in [MS-SIPRE] and the
From: header in the request is an anonymous URI of the form <username>@anonymous.invalid,

the server SHOULD<22> form the challenge response as described in section 3.3.5.4 and the rest
of this section SHOULD NOT be followed.

The server SHOULD use a 401 Unauthorized response with a WWW-Authenticate header field if
it acts as a UAS when processing the request, and it SHOULD use a 407 Proxy Authentication
Required response with a Proxy-Authenticate header field if it acts as a proxy when processing
the request.

The server MUST add a Date header field with the value obtained from the computer or device on

which it runs.

%5bMS-OCAUTHWS%5d.pdf#Section_63749828ab8d4b24941cb11985d854c5
%5bMS-SIPRE%5d.pdf#Section_ab4ab24937964ed18cecf496d81a1a83

34 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

3.3.5.2 Processing Messages with Authentication Response from the SIP Client

When the SIP server receives a request from the SIP protocol client that carries either an
Authorization or Proxy-Authorization header field and the realm and targetname parameter

values in this header field match the values that the server created during initialization, and the
gssapi-data parameter is present, the server MUST perform the following steps:

1. Extract all endpoint identifiers for the UAC endpoint that are present in the request. The server
compliant with this specification MUST use the following UAC endpoint identifiers, as specified in
[MS-SIPRE]:

1. Address-of-record from the From header field and the epid parameter value from the From
header field.

2. Address-of-record from the From header field and the +sip.instance parameter value from
the Contact header field.

3. Address-of-record from the From header field and the GRUU from the Contact header field.

A message can have one or more endpoint identifiers. If more than one endpoint identifier is
present in the request, the server MUST validate that the +sip.instance value was properly
derived from the epid value, as specified in [MS-SIPRE], and that the GRUU was generated by

the SIP registrar for the endpoint identified with either the epid or the +sip.instance
values, as specified in [MS-SIPRE].

2. If the authorization header field is for the NTLM or TLS-DSK<23> authentication protocols,
which require more than one round trip to complete the handshake, the server MUST attempt to
locate the SA that it already created during the first round-trip of the negotiation.

To locate the SA, the server SHOULD use the opaque parameter value from the
authorization header field in the request along with the UAC endpoint identifier extracted

from the request in step 1. If the server locates such an SA, it MUST skip step 3 and proceed
directly to step 4.

3. If the authorization header field is for the Kerberos authentication protocol, or the server could

not locate the SA for the NTLM or TLS-DSK protocol in the previous step, it MUST create the SA
and capture the authentication protocol and the identity of the UAC endpoint in it. The server
MUST also capture the version parameter value from the authorization header field in the
request. If the version parameter does not exist, the server MUST conclude that the protocol

client uses a version number of 2. The server SHOULD generate the value for the opaque
parameter and capture it in the SA.

4. The server MUST then decode the value of the gssapi-data parameter from the authorization
header field using the base64 encoding defined in [RFC3548] section 3, and use it in the
GSS_accept_security_context call, as specified in [RFC2743] for Kerberos, or pass it down to
the NTLM implementation as NEGOTIATE_MESSAGE if this is the first round-trip of the NTLM

handshake, or as AUTHENTICATE_MESSAGE if it is the second round-trip, as specified in [MS-
NLMP]. When creating a security context for the Kerberos authentication protocol, the server
MUST use the Mutual Authentication, Integrity, and Identify parameters, as specified in [MS-
KILE]. When creating a security context for the NTLM authentication protocol, the server MUST

use the Datagram, Identify, and Integrity parameters, as specified in [MS-NLMP]. For TLS-
DSK, the server MUST pass the decoded value of the gssapi-data parameter to the TLS
implementation for processing, as specified in [RFC2246]. During the first round-trip, the value

contains the TLS client_hello handshake message, while during the second round-trip the value
carries the TLS certificate, client_key_exchange, certificate_verify, change_cipher_spec,
and finished handshake messages, and the third round-trip does not have the gssapi-data
parameter.

5. If the authentication protocol processing in step 4 failed, indicating that the protocol client could
not be authenticated, and the authorization header field is for the Kerberos authentication

%5bMS-SIPRE%5d.pdf#Section_ab4ab24937964ed18cecf496d81a1a83
http://go.microsoft.com/fwlink/?LinkId=90432
http://go.microsoft.com/fwlink/?LinkId=90378
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
%5bMS-KILE%5d.pdf#Section_2a32282edd484ad9a542609804b02cc9
http://go.microsoft.com/fwlink/?LinkId=90324

35 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

protocol, or it is for NTLM and this is the second round-trip, which means that the SA already
existed when the request arrived and it was located in step 2, or it is for TLS-DSK and this is the

second or the third round trip, which means that the SA already existed when the request arrived
and it was located in step 2, the server MUST reject the request with a 401 Unauthorized or 407

Proxy Authentication Required response and stop further processing, as described in section
3.2.5.1, as though the request did not have the authorization header field.

6. If authentication protocol processing in step 4 succeeded and returned no output data, the server
MUST proceed directly to the next step . If the authentication protocol implementation produced
output data, the server MUST process the output of the authentication protocol and send it back to
the protocol client using a 401 Unauthorized response with a WWW-Authenticate header field if
the server is acting as a UAS, and a 407 Proxy Authentication Required response with a Proxy-

Authenticate header field if the server is acting as a proxy as follows:

1. If the authorization header field is for the NTLM authentication protocol and this is the first
round-trip and the SA was created in step 3, the NTLM authentication protocol implementation
on the server generates the CHALLENGE_MESSAGE.If the authorization header field is for
the TLS-DSK authentication protocol and this is the first round trip, the TLS implementation on

the server generates a response that encapsulates one or more TLS records that contain a TLS
server_hello handshake message, followed by a TLS certificate, such as

server_key_exchange, and then the certificate_request and server_hello_done

handshake messages, as specified in [RFC2246]. If the authorization header field is for the

TLS-DSK authentication protocol and it is the second round trip, the TLS implementation on
the server generates a response that encapsulates one or more TLS records that contain TLS
change_cipher_spec and finished handshake messages. At this point the server MUST note

the hash function from the ciphersuite selected by the TLS negotiation and compute the server
and client authentication keys as follows (the key derivation procedure that follows is similar
to the one described in [RFC2716] section 3.5):

1. Given the master secret negotiated by the TLS handshake, the pseudo-random function
(PRF) defined in the specification for the version of TLS in use, and the value randomly

defined as the concatenation of the handshake message fields client_hello.random and
server_hello.random, in that order, the value PRF (master secret, "client EAP

encryption", random) is computed up to 128 bytes.

2. The client authentication (2) key, which is the one used for computing and validating
signatures for messages from client to server (2), is obtained by truncating to the correct
length the third 32 bytes of the PRF output string.

3. The server (2) authentication (2) key, which is the one used for computing and validating

signatures for messages from server (2) to client, is obtained by truncating to the correct
length the fourth 32 bytes of this same PRF output string.

2. The server MUST encode the CHALLENGE_MESSAGE returned by the NTLM implementation
or the preceding TLS responses, using the base64 encoding described in [RFC3548] section 3,
and populate the WWW-Authenticate or Proxy-Authenticate header field with the
following parameters:

 Authentication protocol ("NTLM" or "TLS-DSK").

 realm with the value selected by the server during initialization.

 targetname with the value selected by the server during initialization.

 opaque with the value that the server generated during SA creation.

 version with a value of 3 or 4, depending on the version of the authentication protocol
that the server supports.

http://go.microsoft.com/fwlink/?LinkId=90374

36 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

 gssapi-data with the base64 encoded CHALLENGE_MESSAGE from NTLM or the
response from TLS.

3. After sending the 401 or 407 response with the data described in the previous step, the server
(2) MUST discard the request and stop further processing.

7. If the server implements version 4 of the authentication protocol, and the authorization header
has a version parameter with a value of 4 or higher, the server MUST check if the authorization
header also contains response, crand, and cnum parameters. If any of these parameters are not
present, the server MUST reject the request with a 401 Unauthorized or 407 Proxy Authentication
Required response and stop further processing, as described in section 3.2.5.1, as though the
request did not have the authorization header field.

8. If the server implements version 4 of the authentication protocol, it MUST check if the

authorization header contains the response, crand, and cnum parameters. These parameters
MUST be present if the protocol client also implements version 4 of the authentication protocol and
are enforced by the check in the previous step. However, they might also be present in the
responses generated by the protocol client implementing a lower version of the authentication

protocol.

1. If all of the parameters are present, the server MUST perform signature validation, as

described in section 3.3.5.3 steps 2, 3, 4, and 5. If one of the steps failed, the server MUST
stop further processing. Otherwise it MUST proceed to step 9.

2. If not all of the parameters are present and the server already has an SA in "established" state
and not marked as waiting for signature with the same protocol client endpoint connected
from the same transport address, the server MUST proceed to the step 9 as though it has
successfully validated the signature.

3. If not all of the parameters are present and message being processed is:

1. A REGISTER request with the Expires header field value greater than 0, or

2. An INVITE request with a URI in the To header field that conforms to the ABNF of conf-
endpoint-gruu, as specified in [MS-SIPRE] section 2, or

3. A SUBSCRIBE request with the Event header field value of "vndmicrosoftprovisioningv2"
and the Content-Type header field value of "application/vnd-microsoft-roaming-
provisioning-v2+xml", the server MUST set the waiting for signature flag in the SA and
proceed to step 9.

4. Otherwise, the server MUST reject the request with a 401 Unauthorized or 407 Proxy
Authentication Required response and stop further processing, as described in section 3.3.5.1,
as though the request did not have the authorization header field.

9. If the authentication processing in the preceding steps succeeded, the server MUST determine
whether the user authenticated by the NTLM, Kerberos, or TLS-DSK protocol is authorized to use
the address-of-record in the URI of the From header field of the request.

If an authenticated user is not authorized, the server MUST reject the request with a 403
Forbidden response. The server MUST add an authentication information header field to

the 403 Forbidden response, as described in section 3.3.4.1, using the SA located in step 2 or
created in step 3. After a 403 Forbidden response is sent, the server (2) MUST destroy the SA
and stop further processing.

10. If the authorization in step 9 succeeded, the server (2) MUST transition the SA into the
"established" state. The server (2) SHOULD then continue processing the request as required by

the SIP protocol.

37 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

3.3.5.3 Processing Authorized Messages from the SIP Client

When the SIP server receives a message from a SIP protocol client endpoint that contains an
authorization header field, which is either an Authorization or Proxy-Authorization header field,

with a response parameter, and the realm and targetname parameter values in the authorization
header field match the values that the server created during initialization, the server MUST perform
the following steps.

1. The server attempts to locate an existing security association that it previously created for the
protocol client endpoint that matches the authentication protocol in the authorization header.
The server uses one or a combination of the following methods to identify the protocol client
endpoint:

1. The reference to the SA that it placed into the Via or RecordRoute header fields in previous
messages in the same transaction or dialog with the same endpoint.

2. The opaque parameter that it previously placed into the authentication header fields of the
previous messages with the same endpoint.

3. The endpoint identifier, as specified in [MS-SIPRE].

If the server cannot locate the SA, or the SA it located is not in the "established" state, the

server MUST reject the message and respond with a 401 Unauthorized or 407 Proxy
Authentication Required response code if the message was a request, and stop further
processing, as described in section 3.3.5.1, as though the message did not have the
authorization header field.

2. Otherwise, the server (2) constructs a buffer with the information from the message that will be
used in signature verification. The buffer is constructed from the following string values in order,
each of them enclosed by angle brackets (<>), with the same syntax and case, even if the field is

case-insensitive, as they appear in the message headers:

1. Authentication protocol ("NTLM", "Kerberos", or "TLS-DSK").

2. crand value.

3. cnum value.

4. realm parameter value without quotes.

5. targetname parameter value without quotes.

6. The value of the Call-ID header field.

7. The sequence number from the CSeq header field.

8. The method from the CSeq header field.

9. The URI in the From header field.

10. The tag parameter value from the From header field.

11. If the protocol version of the protocol client captured in the SA is 3 or higher, the URI in the
To header field.

12. The tag parameter value from the To header field.

13. If the protocol version of the protocol client captured in the SA is 3 or higher, the sip URI from
the PAssertedIdentity or P-Preferred-Identity header field.

%5bMS-SIPRE%5d.pdf#Section_ab4ab24937964ed18cecf496d81a1a83

38 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

14. If the protocol version of the protocol client captured in the SA is 3 or higher, the tel URI from
the PAssertedIdentity or P-Preferred-Identity header field.

15. The value of the Expires header field.

16. If the message is a response, the response code value as a decimal string.

If any field mentioned in the list does not exist in the message, an empty string enclosed by
angle brackets is included. This does not apply to fields included conditionally, depending on
protocol version or message type. An empty string enclosed by the angle brackets is not
needed if the condition is not satisfied; however, empty angle brackets are included if the
condition is satisfied, but there is no corresponding header field in the message.

3. The server decodes the value of the response parameter, using the base16 decoding procedure
as specified in [RFC3548] section 6, and passes it along with the buffer constructed in step 2, and

the authentication protocol context from the SA to the GSS_VerifyMic call, as described in [MS-
NLMP] section 3.1.4 for NTLM, or [RFC2743] section 2.3.2 for Kerberos.

Note that for the NTLM SSPI, the server (2) provides a fixed message sequence number of

100 in addition to the buffer.

For TLS-DSK<24>, the server computes the signature token using the HMAC algorithm
specified in [RFC2104] with the hash function and client authentication key obtained when TLS

negotiation completed, which means that the finished handshake message was received from
the client, as described in section 3.3.5.1, and the buffer constructed in step 2. It then
compares the binary value of the computed signature token with the decoded binary value of
the response parameter.

4. If the GSS_VerifyMic call fails, indicating that the signature could not be verified, or the binary
value of the computed TLS-DSK signature token is not the same as the binary value of the
response parameter, the server rejects the message and responds with a 401 Unauthorized or

407 Proxy Authentication Required response code if the message was a request, and stops further
processing, as described in section 3.3.5.1, as though the message did not have the
authorization header field.

5. The server then verifies that the sequence number in the cnum parameter value does not fall
outside the sliding window that it maintains and is not a replay of the message within the window.
If the highest sequence number that the server has processed so far for this SA exceeds the
received sequence number by more than 256, or if another message with the same sequence

number has been received, the server rejects the message and responds with a 401 Unauthorized
or 407 Proxy Authentication Required response code if the message was a request, and stops
further processing, as described in section 3.3.5.1, as though the message did not have the
authorization header field.

Otherwise, the server (2) adjusts the window if the sequence number is the highest seen so
far for the SA, and records the fact that this particular sequence number has already been

used.

6. If the server implements version 4 of the authentication protocol, and it has previously set the
waiting for signature flag in the SA, it clears this flag.

7. The server removes the authorization header field from the message and continues processing
the message as required by the SIP protocol.

3.3.5.4 Establishing session with anonymous client

When the server receives a request that is destined to a conference GRUU, as specified in [MS-SIPRE]
and the From: header in the message is an anonymous URI of the form
<username>@anonymous.invalid and the request does not carry either an Authorization or Proxy-

http://go.microsoft.com/fwlink/?LinkId=90432
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
%5bMS-NLMP%5d.pdf#Section_b38c36ed28044868a9ff8dd3182128e4
http://msdn.microsoft.com/en-us/library/f7ca18e1-37e8-4f0b-8d6c-ddbb2bd06bc2/
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90314
%5bMS-SIPRE%5d.pdf#Section_ab4ab24937964ed18cecf496d81a1a83

39 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

Authorization header field, it SHOULD<25> challenge with Digest authentication protocol as
described in [RFC3261] section 22.4 with algorithm parameter value of MD5-sess or SHA256-sess.

For an example, see section 4.5.

3.3.5.5 Processing Authorized Messages from anonymous client

This section follows the product behavior described in endnote<26>.

When the server receives a request that is destined to a conference GRUU, as specified in [MS-SIPRE],
and the From: header in the message is an anonymous URI of the form

<username>@anonymous.invalid and the message contains an authorization header field, which is
either an authorization or proxy-authorization header field, it SHOULD validate that the
authorization header field uses digest as authentication protocol and the algorithm parameter is
either MD5sess or SHA256sess. If validation fails, the server SHOULD reject the request and
respond with a 401 Unauthorized or 407 Proxy Authentication Required response code and stop
further processing, as described in section 3.3.5.4, as though the request did not have the
authorization header field.

If validation succeeds, the server SHOULD perform validation of the authorization header with
digest authentication protocol as described in [RFC3261] section 22.4. The server SHOULD use the
conference PIN as the password for the computation of the digest for the response parameter of the
authorization or proxy-authorization header field. When using the SHA256sess algorithm, the
computation of the message digest in the response field SHOULD be performed as described in
[FIPS180-2].

3.3.5.6 Processing Alternate Identities in Messages from the SIP Client

The SIP server MUST process P-Asserted-Identity and P-Preferred-Identity header field values in
messages that it receives from the SIP protocol client as described in [RFC3325] sections 5, 6, and 7.
For the purposes of this specification, the server MUST consider any protocol client to be a node that it

does not trust. It MUST consider other servers in the same domain as nodes that it trusts, and servers
in other domains as nodes that it does not trust.

3.3.5.7 Processing p-session-on-behalf-of Header in Messages from the SIP Client

This section follows the product behavior described in product behavior note <27>.

When the authenticating SIP server receives a message that contains a p-session-on-behalf-of
header, it MUST verify that the URI of the sender is a valid delegate by ensuring that it matches a
DelegateEntry in the DelegateSet of the delegator, identified by the URI in the p-session-on-
behalf-of header field.

If a matching DelegateEntry is found and the message is an INVITE request and the message does
not have a Referred-By header field, the SIP server MUST insert a referred-by header with a
Referrer-uri value set to the delegator's address-of-record. If no matching DelegateEntry is found,

the SIP server MUST reject the message with a 403 Forbidden response if the message is a request. If
no matching DelegateEntry is found and the message is an ACK or CANCEL, the SIP server MAY
discard the message and stop processing.

The SIP server SHOULD reject a request message by returning a 400 response when the request
message has a p-session-on-behalf-of header field value that contains URI or header parameters.
The SIP server SHOULD discard and stop processing a response message if the message is an ACK or

CANCEL response.

For more information about setting up delegates, see [MS-PRES].

http://go.microsoft.com/fwlink/?LinkId=90410
%5bMS-SIPRE%5d.pdf#Section_ab4ab24937964ed18cecf496d81a1a83
http://go.microsoft.com/fwlink/?LinkId=90410
http://go.microsoft.com/fwlink/?LinkId=89868
http://go.microsoft.com/fwlink/?LinkId=114232
%5bMS-PRES%5d.pdf#Section_741d682d590b4600916e8deeee426a5c

40 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

3.3.6 Timer Events

When the SA expiration timer fires, the SIP server MUST discard the SA.

When the SA idle timer fires, the server (2) SHOULD discard the SA.

3.3.7 Other Local Events

None.

41 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

4 Protocol Examples

4.1 NTLM Authentication Example

1. Alice's SIP protocol client sends a REGISTER request with no authorization header field to the

SIP server.

 REGISTER sip:contoso.com SIP/2.0
 Via: SIP/2.0/TLS 192.0.2.1:4320
 From: <sip:alice@contoso.com>;tag=4a2b44d131;epid=8248ca9ebb
 To: <sip:alice@contoso.com>
 Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7
 CSeq: 169 REGISTER
 Contact: <sip:192.0.2.1:4320;transport=tls>;proxy=replace;+sip.instance="<urn:uuid:4233FD41-
093B-5FD6-B5D2-651ED55969E6>"

 UserAgent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Microsoft Office Communicator)
 Supported: gruu-10
 Content-Length: 0

2. Authentication is enabled at the server, which then challenges Alice's protocol client. The server
indicates support for NTLM and Kerberos in the challenge and returns the realm and targetname
values that it created during initialization, the version of the authentication protocol that it
implements, and the Date header field.

SIP/2.0 401 Unauthorized

Date: Thu, 31 Jan 2008 00:01:56 GMT

WWW-Authenticate: NTLM realm="SIP Communications Service", targetname="server.contoso.com

", version=3

WWW-Authenticate: Kerberos realm="SIP Communications Service", targetname="sip/server.con

toso.com", version=3

From: <sip:alice@contoso.com>;tag=4a2b44d131;epid=8248ca9ebb

To: <sip:alice@contoso.com>;tag=0858513FA91D3AAE1A5840DDB99599DF

Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7

CSeq: 169 REGISTER

Via: SIP/2.0/TLS 192.0.2.1:4320;ms-received-cid=1C500

Content-Length: 0

3. The protocol client decides to use NTLM and creates an SA with data from the authentication

header, specifically, NTLM, realm, targetname, and version. It calls the NTLM authentication
protocol implementation with Alice's credentials (user name, domain, and password) and
Datagram, Identify, and Integrity parameters, to initialize the security context and generate
NEGOTIATE_MESSAGE. In the current NTLM implementation, this message is not generated for
datagram NTLM contexts, so the output from NTLM is an empty buffer. Thus, the protocol client
generates an authorization header field and sends the following request to the server.

REGISTER sip:contoso.com SIP/2.0

Via: SIP/2.0/TLS 192.0.2.1:4320

From: <sip:alice@contoso.com>;tag=4a2b44d131;epid=8248ca9ebb

To: <sip:alice@contoso.com>

Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7

CSeq: 170 REGISTER

Authorization: NTLM qop="auth", realm="SIP Communications Service", targetname="server.co

ntoso.com", gssapi-data="", version=3

Contact: <sip:192.0.2.1:4320;transport=tls>;proxy=replace;+sip.instance="<urn:uuid:4233FD

41-093B-5FD6-B5D2-651ED55969E6>"

UserAgent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Microsoft Office Communicator)

Supported: gruu-10

Content-Length: 0

42 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

4. The server extracts the protocol client endpoint identity as the address-of-record in the From
header field ("alice@contoso.com") and either the value of the epid parameter in the From

header field ("8248ca9ebb") or the value of the +sip.instance parameter in the Contact header
field ("urn:uuid:4233FD41093B5FD6B5D2651ED55969E6"). It creates the SA for the NTLM

protocol, initializing it with the protocol client endpoint identifier, version (3), generated opaque
value ("BCDC0C9D"), and calls into the NTLM implementation to process an empty
NEGOTIATE_MESSAGE. The NTLM implementation creates the security context and generates a
CHALLENGE_MESSAGE token that the server encodes and sends back to the protocol client in
the following 401 Unauthorized response.

SIP/2.0 401 Unauthorized

Date: Thu, 31 Jan 2008 00:01:56 GMT

WWW-Authenticate: NTLM opaque="BCDC0C9D", gssapi-

data="12345678ABCDEF", targetname="server.contoso.com", realm="SIP Communications Service

", version=3

From: <sip:alice@contoso.com>;tag=4a2b44d131;epid=8248ca9ebb

To: <sip:alice@contoso.com>;tag=0858513FA91D3AAE1A5840DDB99599DF

Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7

CSeq: 170 REGISTER

Via: SIP/2.0/TLS 192.0.2.1:4320;ms-received-cid=1C500

Content-Length: 0

5. The protocol client locates the SA which it created for the first challenge message from the server,
decodes the value of the gssapi-data parameter using the base64 algorithm, and passes it along
as the security context information stored in the SA down to the NTLM implementation as

CHALLENGE_MESSAGE. The NTLM implementation generates AUTHENTICATE_MESSAGE,
which the protocol client encodes using the base64 algorithm, generates the authorization
header field, and sends the following request to the server.

REGISTER sip:contoso.com SIP/2.0

Via: SIP/2.0/TLS 192.0.2.1:4320

From: <sip:alice@contoso.com>;tag=4a2b44d131;epid=8248ca9ebb

To: <sip:alice@contoso.com>

Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7

CSeq: 171 REGISTER

Authorization: NTLM opaque="BCDC0C9D", qop="auth", realm="SIP Communications Service", ta

rgetname="server.contoso.com", gssapi-data="12345678ABCDE", version=3

Contact: <sip:192.0.2.1:4320;transport=tls>;proxy=replace;+sip.instance="<urn:uuid:4233FD

41-093B-5FD6-B5D2-651ED55969E6>"

UserAgent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Microsoft Office Communicator)

Supported: gruu-10

Content-Length: 0

6. The server extracts the protocol client endpoint identity from the request and the opaque value
from the authorization header field, finds the existing SA and calls into the NTLM implementation
to process AUTHENTICATE_MESSAGE. The NTLM implementation authenticates the protocol
client. The server then extracts the user identity from the authentication protocol context and
validates that the user is authorized to use the "alice@contoso.com" address-of-record. The server
can now continue processing the REGISTER request, as described in [RFC3261], and pass it to the

SIP registrar component.

7. After the SIP registrar component completes processing, it sends back a 200 OK response to the
protocol client, which is processed by the authentication component on the server. This
component locates the SA based on the reference it stored in the Via header field, or some other
mechanism, and calls into the NTLM authentication protocol implementation to generate a
signature token for the response. Based on the contents of the response shown in the following

example, the server constructs the following buffer for the GSS_GetMic() call to NTLM.

http://go.microsoft.com/fwlink/?LinkId=90410

43 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

<NTLM><0B9D33A2><1><SIP Communications Service><server.contoso.com><d5f2b95d5be64c2cbfb38

aa5d3a87ae7><171><REGISTER><sip:alice@contoso.com><4a2b44d131><sip:alice@contoso.com><085

8513FA91D3AAE1A5840DDB99599DF><><><7200><200>

8. NTLM returns the signature, and the server creates an authentication information header field
and sends the following message to the protocol client.

SIP/2.0 200 OK

Authentication-Info: NTLM rspauth="01000000000000005CD422F0C750C7C6", srand="0B9D33A2", s

num="1", opaque="BCDC0C9D", qop="auth", targetname="server.contoso.com", realm="SIP Commu

nications Service"

From: <sip:alice@contoso.com>;tag=4a2b44d131;epid=8248ca9ebb

To: <sip:alice@contoso.com>;tag=0858513FA91D3AAE1A5840DDB99599DF

Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7

CSeq: 171 REGISTER

Via: SIP/2.0/TLS 192.0.2.1:4320;ms-received-cid=1C500

Contact: <sip:192.0.2.1:4320;transport=tls;msreceivedcid=1C500>;expires=7200;+sip.instanc

e="<urn:uuid:4233fd41093b5fd6b5d2651ed55969e6>";gruu="sip:alice@contoso.com;opaque=user:e

pid:Qf0zQjsJ1l10mUe1Vlp5gAA;gruu"

Expires: 7200

Content-Length: 0

9. The protocol client receives the message, locates the SA, and uses it to call into the NTLM
implementation to verify the signature using its GSS_VerifyMIC call. The buffer that the protocol
client creates for signature verification is identical to the buffer created by the server when it
generated the signature.

4.2 Kerberos Authentication Example

1. Alice's SIP protocol client sends a REGISTER request with no authorization header field to the
SIP server.

 REGISTER sip:contoso.com SIP/2.0
 Via: SIP/2.0/TLS 192.0.2.1:4849
 From: <sip:alice@contoso.com>;tag=604168c9c0;epid=2ebb6f264f
 To: <sip:alice@contoso.com>
 Call-ID: c7142b90f8c94668807a382f552a6770
 CSeq: 1 REGISTER
 Contact: <sip:192.0.2.1:4849;transport=tls>;proxy=replace;+sip.instance="<urn:uuid:124841E4-
264D-52E8-96C5-D22AA8CDC316>"

 UserAgent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Microsoft Office Communicator)
 Supported: gruu-10
 Content-Length: 0

2. Authentication is enabled at the server, which then challenges Alice's protocol client. The server
indicates support for NTLM and Kerberos in the challenge and returns the realm and targetname
values that it created during initialization, the version of the authentication protocol that it
implements, and the Date header field.

SIP/2.0 401 Unauthorized

Date: Sun, 16 Dec 2007 05:11:19 GMT

WWW-Authenticate: NTLM realm="SIP Communications Service", targetname="server.contoso.com

", version=3

WWW-Authenticate: Kerberos realm="SIP Communications Service", targetname="sip/server.con

toso.com", version=3

From: <sip:alice@contoso.com>;tag=604168c9c0;epid=2ebb6f264f

To: <sip:alice@contoso.com>;tag=9588410E2DA11CEE9D0AE7733E07830F

Call-ID: c7142b90f8c94668807a382f552a6770

CSeq: 1 REGISTER

44 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

Via: SIP/2.0/TLS 192.0.2.1:4849;ms-received-cid=900

Content-Length: 0

3. The protocol client decides to use Kerberos and creates an SA with data from the authentication
header field, specifically, Kerberos, realm, targetname, and version. It obtains a Kerberos
ticket for the service principal (2) in the targetname parameter ("sip/server.contoso.com"), and
calls the Kerberos authentication protocol implementation with it and the Identify and Integrity

parameters to initialize the security context and generate a KRB_AP_REQ token. The protocol
client encodes the Kerberos token, using the base64 algorithms, and sends the following request
to the server.

REGISTER sip:contoso.com SIP/2.0

Via: SIP/2.0/TLS 192.0.2.1:4849

From: <sip:alice@contoso.com>;tag=604168c9c0;epid=2ebb6f264f

To: <sip:alice@contoso.com>

Call-ID: c7142b90f8c94668807a382f552a6770

CSeq: 2 REGISTER

Authorization: Kerberos qop="auth", realm="SIP Communications Service", targetname="sip/s

erver.contoso.com", gssapi-data="1234ABCDEF", version=3

Contact: <sip:192.0.2.1:4849;transport=tls>;proxy=replace;+sip.instance="<urn:uuid:124841

E4-264D-52E8-96C5-D22AA8CDC316>"

UserAgent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Microsoft Office Communicator)

Supported: gruu-10

Content-Length: 0

4. The server extracts the protocol client endpoint identity as the address-of-record in the From
header field ("alice@contoso.com") and either the value of the epid parameter in the From
header field ("2ebb6f264f") or the value of the +sip.instance parameter in the Contact header
field ("urn:uuid:124841E4-264D-52E8-96C5-D22AA8CDC316"). It creates the SA for the Kerberos
protocol, initializing it with a protocol client endpoint identifier, version, the generated opaque

value ("A9A0BB9C"), and calls into the Kerberos implementation to initialize the security context
and process the KRB_AP_REQ token. The Kerberos implementation authenticates the protocol
client. The server then extracts the user identity from the authentication protocol context and

validates that the user is authorized to use the "alice@contoso.com" address-of-record. The server
can now continue processing the REGISTER request, as described in [RFC3261], and pass it to the
SIP registrar component.

5. After the SIP registrar component completes processing, it sends back a 200 OK response to the
protocol client, which is processed by the authentication component on the server. The component
locates the SA based on the reference it stored in the Via header field, or on some other
mechanism, and calls into the Kerberos authentication protocol implementation to generate a
signature token for the response. Based on the content of the following response, the server
constructs the following buffer for the GSS_GetMic() call to Kerberos.

<Kerberos><211639C4><1><SIP Communications Service><sip/server.contoso.com><c7142b90f8c94

668807a382f552a6770><2><REGISTER><sip:alice@contoso.com><604168c9c0><sip:alice@contoso.co

m><9588410E2DA11CEE9D0AE7733E07830F><><><7200><200>

6. Kerberos returns the signature, and the server creates an authentication information header
field and sends the following message to the protocol client.

SIP/2.0 200 OK

Authentication-Info: Kerberos rspauth="602306092", srand="211639C4", snum="1", opaque="A9

A0BB9C", qop="auth", targetname="sip/server.contoso.com", realm="SIP Communications Servi

ce"

From: <sip:alice@contoso.com>;tag=604168c9c0;epid=2ebb6f264f

To: <sip:alice@contoso.com>;tag=9588410E2DA11CEE9D0AE7733E07830F

Call-ID: c7142b90f8c94668807a382f552a6770

http://go.microsoft.com/fwlink/?LinkId=90410

45 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

CSeq: 2 REGISTER

Via: SIP/2.0/TLS 192.0.2.1:4849;ms-received-cid=900

Contact: <sip:192.0.2.1:4849;transport=tls;msreceivedcid=900>;expires=7200;+sip.instance=

"<urn:uuid:124841E4264D52E896C5D22AA8CDC316>";gruu="sip:alice@contoso.com;opaque=user:epi

d:5EFIEk0m6FKWxdIqqM3DFgAA;gruu"

Expires: 7200

Content-Length: 0

7. The protocol client receives the message, locates the SA, and uses it to call into the Kerberos
implementation to verify the signature using its GSS_VerifyMIC call. The buffer that it creates for
signature verification is identical to the buffer created by the server when it generated the
signature.

4.3 Kerberos Authentication Example for version 4 of the protocol

1. Alice's SIP protocol client sends a REGISTER request with no authorization header field to the
SIP server.

 REGISTER sip:contoso.com SIP/2.0
 Via: SIP/2.0/TLS 192.0.2.1:4849
 From: <sip:alice@contoso.com>;tag=22fafb15b8;epid=2ebb6f264f
 To: <sip:alice@contoso.com>
 Call-ID: c7142b90f8c94668807a382f552a6770
 CSeq: 1 REGISTER
 Contact: <sip:192.0.2.1:4849;transport=tls>;proxy=replace;+sip.instance="<urn:uuid:124841E4-
264D-52E8-96C5-D22AA8CDC316>"

 UserAgent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Microsoft Office Communicator)
 Supported: gruu-10
 Content-Length: 0

2. Authentication is enabled at the server, which then challenges Alice's protocol client. The server
indicates support for NTLM and Kerberos in the challenge and returns the realm and targetname
values that it created during initialization, the version of the authentication protocol that it

implements, and the Date header field.

SIP/2.0 401 Unauthorized

Date: Sun, 16 Dec 2007 05:11:19 GMT

WWW-

Authenticate: NTLM realm="SIP Communications Service", targetname="server.contoso.com", v

ersion=4

WWW-

Authenticate: Kerberos realm="SIP Communications Service", targetname="sip/server.contoso

.com", version=4

From: <sip:alice@contoso.com>;tag=22fafb15b8;epid=2ebb6f264f

To: <sip:alice@contoso.com>;tag=9588410E2DA11CEE9D0AE7733E07830F

Call-ID: c7142b90f8c94668807a382f552a6770

CSeq: 1 REGISTER

Via: SIP/2.0/TLS 192.0.2.1:4849;ms-received-cid=900

Content-Length: 0

3. The protocol client decides to use Kerberos and creates an SA with data from the authentication
header field, specifically, Kerberos, realm, targetname, and version. It obtains a Kerberos
ticket for the service principal (2) in the targetname parameter (sip/server.contoso.com) and
calls the Kerberos authentication protocol implementation with it and the Identify and Integrity
parameters to initialize the security context and generate a KRB_AP_REQ token. Because the

server indicated support for version 4 of the protocol in the challenge and the protocol client
supports version 4, the protocol client generates a crand parameter value and calls Kerberos
GSS_GetMic() with the following buffer, which is based on the content of the REGISTER request.

46 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

<Kerberos><1d7d4ecf><SIP Communications Service><sip/server.contoso.com><c7142b90f8c94668

807a382f552a6770><2><REGISTER><alice@contoso.com><604168c9c0><alice@contoso.com><9588410E

2DA11CEE9D0AE7733E07830F><><><>

4. The protocol client encodes the Kerberos KRB_AP_REQ token as the gssapi-data parameter and
the result of the GSS_GetMic() call as the response parameter using the base16 algorithm,
replaces characters 'A' through 'F' in the output with their lowercase equivalents ('a' through 'f'),
and sends the following request to the server.

REGISTER sip:contoso.com SIP/2.0

Via: SIP/2.0/TLS 192.0.2.1:4849

From: <sip:alice@contoso.com>;tag=604168c9c0;epid=2ebb6f264f

To: <sip:alice@contoso.com>

Call-ID: c7142b90f8c94668807a382f552a6770

CSeq: 2 REGISTER

Authorization: Kerberos qop="auth", realm="SIP Communications Service", targetname="sip/s

erver.contoso.com", gssapi-data="1234ABCDEF", version=4, crand="1d7d4ecf", cnum="1",

response="4321abcdef"

Contact: <sip:192.0.2.1:4849;transport=tls>;proxy=replace;+sip.instance="<urn:uuid:124841

E4-264D-52E8-96C5-D22AA8CDC316>"

UserAgent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Microsoft Office Communicator)

Supported: gruu-10

Content-Length: 0

5. The server extracts the protocol client endpoint identity as the address-of-record in the From

header field ("alice@contoso.com") and either the value of the epid parameter in the From
header field ("2ebb6f264f") or the value of the +sip.instance parameter in the Contact header
field ("urn:uuid:124841E4-264D-52E8-96C5-D22AA8CDC316"). It creates the SA for the Kerberos
protocol, initializing it with a protocol client endpoint identifier, version ("4"), the generated
opaque value ("A9A0BB9C"), and calls into the Kerberos implementation to initialize the security
context and process the KRB_AP_REQ token. The Kerberos implementation authenticates the

protocol client. The server also extracts the signature from the response parameter and calls
Kerberos GSS_VerifyMIC to verify it against the buffer, which is the same as constructed by the

protocol client in step 3. The server then extracts the user identity from the authentication
protocol context and validates that the user is authorized to use the "alice@contoso.com" address-
of-record. The server can now continue processing the REGISTER request, as described in
[RFC3261], and pass it to the SIP registrar component.

6. After the SIP registrar component completes processing, it sends back a 200 OK response to the

protocol client, which is processed by the authentication component on the server. The component
locates the SA based on the reference it stored in the Via header field, or on some other
mechanism, and it calls into the Kerberos authentication protocol implementation to generate a
signature token for the response. Based on the content of the response, the server constructs the
following buffer for the GSS_GetMic() call to Kerberos.

<Kerberos><211639C4><SIP Communications Service><sip/server.contoso.com><c7142b90f8c94668

807a382f552a6770><2><REGISTER><alice@contoso.com><604168c9c0><alice@contoso.com><><><><72

00>

7. Kerberos returns the signature and the server creates an authentication information header
field and sends the following message to the protocol client.

SIP/2.0 200 OK

AuthenticationInfo: Kerberos rspauth="602306092", srand="211639C4", snum="1", opaque="A9A

0BB9C", qop="auth", targetname="sip/server.contoso.com", realm="SIP Communications Servic

e"

From: <sip:alice@contoso.com>;tag=604168c9c0;epid=2ebb6f264f

To: <sip:alice@contoso.com>;tag=9588410E2DA11CEE9D0AE7733E07830F

http://go.microsoft.com/fwlink/?LinkId=90410

47 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

Call-ID: c7142b90f8c94668807a382f552a6770

CSeq: 2 REGISTER

Via: SIP/2.0/TLS 192.0.2.1:4849;ms-received-cid=900

Contact: <sip:192.0.2.1:4849;transport=tls;msreceivedcid=900>;expires=7200;+sip.instance=

"<urn:uuid:124841E4264D52E896C5D22AA8CDC316>";gruu="sip:alice@contoso.com;opaque=user:epi

d:5EFIEk0m6FKWxdIqqM3DFgAA;gruu"

Expires: 7200

Content-Length: 0

8. The protocol client receives the message, locates the SA, and uses it to call into the Kerberos
implementation to verify the signature using its GSS_VerifyMIC call. The buffer that it creates for
signature verification is identical to the buffer created by the server when it generated the

signature.

4.4 TLS-DSK Authentication Example for version 4 of the protocol

1. Alice's SIP protocol client sends a REGISTER request with no authorization header field to the

SIP server.

 REGISTER sip:contoso.com SIP/2.0
 Via: SIP/2.0/TLS 192.0.2.1:4849
 From: <sip:alice@contoso.com>;tag=22fafb15b8;epid=2ebb6f264f
 To: <sip:alice@contoso.com>
 Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7
 CSeq: 1 REGISTER
 Contact: <sip:192.0.2.1:4849;transport=tls>;proxy=replace;+sip.instance="<urn:uuid:124841E4-
264D-52E8-96C5-D22AA8CDC316>"

 UserAgent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Microsoft Office Communicator)
 Supported: gruu-10
 Content-Length: 0

2. Authentication is enabled at the server, which then challenges Alice's client. The server indicates

support for TLS-DSK, Kerberos, and NTLM in the challenge and returns the realm and
targetname values that it created during initialization, the version of the authentication protocol
that it implements, and the Date header field.

 SIP/2.0 401 Unauthorized
 Date: Sun, 16 Dec 2007 05:11:19 GMT
 WWW-Authenticate: TLS-
DSK realm="SIP Communications Service", targetname="server.contoso.com", version=4

 WWW-
Authenticate: Kerberos realm="SIP Communications Service", targetname="sip/server.contoso.com

", version=4

 WWW-
Authenticate: NTLM realm="SIP Communications Service", targetname="server.contoso.com", versi

on=4

 From: <sip:alice@contoso.com>;tag=22fafb15b8;epid=2ebb6f264f
 To: <sip:alice@contoso.com>;tag=9588410E2DA11CEE9D0AE7733E07830F
 Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7
 CSeq: 1 REGISTER
 Via: SIP/2.0/TLS 192.0.2.1:4849;ms-received-cid=900
 Content-Length: 0

3. The client decides to use TLS-DSK and creates an SA with data from the authentication header
field, specifically TLS-DSK, realm, targetname, and version. It uses the TLS protocol
implementation to generate a client_hello handshake message, which the client then encodes as
the gssapi-data parameter, using the base64 algorithm, and sends the following request to the
server.

48 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

 REGISTER sip:contoso.com SIP/2.0
 Via: SIP/2.0/TLS 192.0.2.1:4849
 From: <sip:alice@contoso.com>;tag=604168c9c0;epid=2ebb6f264f
 To: <sip:alice@contoso.com>
 Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7
 CSeq: 2 REGISTER
 Authorization: TLS-
DSK qop="auth", realm="SIP Communications Service", targetname="server.contoso.com", gssa

pi-data="FgMBAJMBAACPAwFJ5nVu5crf6v0bJApguL4gJbjafFaRyH7qNr", version=4

 Contact: <sip:192.0.2.1:4849;transport=tls>;proxy=replace;+sip.instance="<urn:uuid:124841
E4-264D-52E8-96C5-D22AA8CDC316>"

 User Agent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Microsoft Office Communicator)
Supported: gruu-10

Content-Length: 0

4. The server extracts the client endpoint identity as the address-of-record in the From header field
("alice@contoso.com") and either the value of the epid parameter in the From header field

("2ebb6f264f") or the value of the +sip.instance parameter in the Contact header field
("urn:uuid:124841E4264D52E896C5D22AA8CDC316"). It creates the SA for the TLS-DSK

protocol, initializing it with the client endpoint identifier, version ("3"), generated opaque value
("72118CF0"), and calls into the TLS implementation to process a client_hello message. The TLS
implementation creates the negotiation context and generates a response that encapsulates
several TLS records containing a TLS server_hello handshake message, followed by a TLS
certificate, such as server_key_exchange, and then certificate_request and

server_hello_done handshake messages. The server encodes the TLS response as the gssapi-
data parameter, using the base64 algorithm, and sends it back to the client in the following 401
Unauthorized response.

 SIP/2.0 401 Unauthorized
 WWW-Authenticate: TLS-DSK opaque="72118CF0", gssapi-data="FgMBCJasdasd",
targetname="server.contoso.com", realm="SIP Communications Service", version=4

 From: <sip:alice@contoso.com>;tag=4a2b44d131;epid=8248ca9ebb
 To: <sip:alice@contoso.com>;tag=0858513FA91D3AAE1A5840DDB99599DF
 Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7
 CSeq: 2 REGISTER
 Via: SIP/2.0/TLS 192.0.2.1:4320;ms-received-cid=1C500
 Content-Length: 0

5. The client locates the SA that it created for the first challenge message from the server, decodes
the value of the gssapi-data parameter using the base64 algorithm, and passes it along with the
security context information stored in the SA down to the TLS implementation. The client obtains
or locates a previously obtained certificate, and calls the TLS implementation to generate an
output token that carries TLS certificate, client_key_exchange, certificate_verify,

change_cipher_spec, and finished handshake messages. The client then encodes the TLS
token as the gssapi-data parameter, using the base64 algorithm, generates the authorization
header field, and sends the following request to the server.

 REGISTER sip:contoso.com SIP/2.0
 Via: SIP/2.0/TLS 192.0.2.1:4320
 From: <sip:alice@contoso.com>;tag=4a2b44d131;epid=2ebb6f264f
 To: <sip:alice@contoso.com>
 Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7
 CSeq: 3 REGISTER
 Authorization: TLS-
DSK opaque="72118CF0", qop="auth", realm="SIP Communications Service", targetname="server.con

toso.com", gssapi-data="FgMBAzasdasd", version=4

 Contact: <sip:192.0.2.1:4849;transport=tls>;proxy=replace;+sip.instance="<urn:uuid:124841E4-
264D-52E8-96C5-D22AA8CDC316>"

 UserAgent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Microsoft Office Communicator)
 Supported: gruu-10
 Content-Length: 0

49 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

6. The server extracts the client endpoint identity from the request and the opaque value from the
authorization header field, finds the existing SA, decodes the value of the gssapi-data
parameter using the base64 algorithm, and passes it, along with the security context information
stored in the SA, down to the TLS implementation. The TLS implementation validates the
information passed to it and generates a response that encapsulates one or more TLS records that
contain TLS change_cipher_spec and finished handshake messages. At this point, the server
notes that TLS negotiation resulted in selecting a ciphersuite with SHA-1 hash function. The

server also computes, or derives, client and server authentication keys, as described in section
3.3.5.2. The server then encodes the TLS response as the gssapi-data parameter, using the
base64 algorithm, and sends it back to the client in the following 401 Unauthorized response.

 SIP/2.0 401 Unauthorized
 WWW-Authenticate: TLS-DSK opaque="72118CF0", gssapi-
data="FAMBAAEBFgasdasd", targetname="server.contoso.com", realm="SIP Communications Service",

 version=4

 From: <sip:alice@contoso.com>;tag=4a2b44d131;epid=8248ca9ebb
 To: <sip:alice@contoso.com>;tag=0858513FA91D3AAE1A5840DDB99599DF
 Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7
 CSeq: 3 REGISTER
 Via: SIP/2.0/TLS 192.0.2.1:4320;ms-received-cid=1C500
 Content-Length: 0

7. The client locates the SA that it created for the first challenge message from the server and used
in the second challenge, decodes the value of the gssapi-data parameter using the base64
algorithm, and passes it, along with the security context information stored in the SA, down to the
TLS implementation for validation. Once server information is validated, the client notes that the
TLS negotiation resulted in selecting a ciphersuite with SHA-1 hash function. The client also
computes, or derives, client and server authentication keys as described in section 3.2.5.1.

Because the server indicated support for version 4 of the protocol in the challenge, and the client

also supports version 4, the client generates a crand parameter value, and performs the HMAC
computation with the client authentication key and the following buffer, which is based on the
content of the REGISTER request.

 <TLS-
DSK><1d7d4ecf><1><SIP Communications Service><server.contoso.com><d5f2b95d5be64c2cbfb38aa5d3a

87ae7><4><REGISTER><alice@contoso.com><4a2b44d131><alice@contoso.com><><><><>

8. The client encodes the result of the HMAC computation call as the response parameter, using the
base16 algorithm, replaces characters 'A' through 'F' in the output with their lowercase equivalents

('a' through 'f'), and sends the following request to the server (2).

 REGISTER sip:contoso.com SIP/2.0
 Via: SIP/2.0/TLS 192.0.2.1:4849
 From: <sip:alice@contoso.com>;tag=4a2b44d131;epid=8248ca9ebb
 To: <sip:alice@contoso.com>
 Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7
 CSeq: 4 REGISTER
 Authorization: TLS-
DSK qop="auth", realm="SIP Communications Service", targetname="server.contoso.com", version=

4, crand="1d7d4ecf", cnum="1", response="4321abcdef"

 Contact: <sip:192.0.2.1:4849;transport=tls>;proxy=replace;+sip.instance="<urn:uuid:124841E4-
264D-52E8-96C5-D22AA8CDC316>"

 UserAgent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Microsoft Office Communicator)
 Supported: gruu-10

50 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

 Content-Length: 0

9. The server extracts the client endpoint identity from the request and the opaque value from the
authorization header field, finds the existing SA, decodes the value of the response parameter,
using the base16 algorithm, and performs HMAC with the client authentication key and the buffer,
which is the same as constructed by the client in step 7. The server then extracts the user identity
from the authentication protocol context and validates that the user is authorized to use the
"alice@contoso.com" address-of-record. The server can now continue processing the REGISTER
request, as described in [RFC3261], and pass it to the SIP registrar component.

10. After the registrar component completes processing, it sends back a 200 OK response to the
client, which is processed by the authentication component on the server. The component locates
the SA based on the reference it stored in the Via header field, or on some other mechanism, and
it performs the HMAC computation using the server authentication key and the following buffer,
constructed based on the following 200 OK response.

 <TLS-
DSK><211639C4><SIP Communications Service><server.contoso.com><d5f2b95d5be64c2cbfb38aa5d3a87a

e7><4><REGISTER><alice@contoso.com><4a2b44d131><alice@contoso.com><9588410E2DA11CEE9D0AE7733E

07830F><><><7200>

11. The server creates an authentication information header field with the result of the preceding

HMAC computation, and sends the following response to the client.

 SIP/2.0 200 OK
 AuthenticationInfo: TLS-
DSK rspauth="602306092", srand="211639C4", snum="1", opaque="A9A0BB9C", qop="auth", targetnam

e="sip/server.contoso.com", realm="SIP Communications Service"

 From: <sip:alice@contoso.com>;tag=4a2b44d131;epid=8248ca9ebb
 To: <sip:alice@contoso.com>;tag=9588410E2DA11CEE9D0AE7733E07830F
 Call-ID: d5f2b95d5be64c2cbfb38aa5d3a87ae7
 CSeq: 4 REGISTER
 Via: SIP/2.0/TLS 192.0.2.1:4849;ms-received-cid=900
 Contact: <sip:192.0.2.1:4849;transport=tls;msreceivedcid=900>;expires=7200;+sip.instance="<ur
n:uuid:124841E4264D52E896C5D22AA8CDC316>";gruu="sip:alice@contoso.com;opaque=user:epid:5EFIEk

0m6FKWxdIqqM3DFgAA;gruu"

 Expires: 7200
 Content-Length: 0

12. The client receives the message, locates the SA, and uses it to compute the HMAC over the server
(2) authentication (2) key and buffer created based on the message data. The buffer that it
creates for signature verification is identical to the buffer created by the server (2) when it
generated the signature.

4.5 Digest Authentication Example for Anonymous Join

1. Alice sends an anonymous INVITE without any authorization header field to the conference

focus.

 INVITE sip:bob@contoso.com;gruu;opaque=app:conf:focus:id:854T0R7G SIP/2.0
 Via: SIP/2.0/TLS 157.56.64.61:13184
 Max-Forwards: 70
 From: "Alice" <sip:6551156d569c4b7d945f310ff10943c5@anonymous.invalid>;tag=c9ef6b0990;epid=c3
2b51b28c

 To: sip:bob@contoso.com;gruu;opaque=app:conf:focus:id:854T0R7G
 Call-ID: 6d5b48eabee745c49dcf7e064c37cbe9

http://go.microsoft.com/fwlink/?LinkId=90410

51 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

 CSeq: 1 INVITE
 Contact: <sip:6551156d569c4b7d945f310ff10943c5@anonymous.invalid>;proxy=replace;+sip.instance
="<urn:uuid:782873E3-EC25-5E64-B374-0FF05E0839A5>"

2. Authentication is enabled at the server, which then challenges Alice's client. The server indicates
support for digest in the challenge and returns the realm value that it created during initialization
and the version of the authentication protocol that it implements.

 SIP/2.0 401 Unauthorized
 Date: Thu, 25 Feb 2010 22:53:49 GMT
 WWW-Authenticate: Digest realm="bob@contoso.com", nonce="h8A4ZW22ygGZozIIGZcb43waVME-M6Gq",
opaque="0C1D4536", algorithm=MD5-sess, qop="auth"

 From: "Alice" <sip:6551156d569c4b7d945f310ff10943c5@anonymous.invalid>;tag=c9ef6b0990;epid=c3
2b51b28c

 To:<sip:bob@contoso.com;gruu;opaque=app:conf:focus:id:854T0R7G>;tag=B19EA55CEC3D9316761BE6483
19D2FA0

 Call-ID: 6d5b48eabee745c49dcf7e064c37cbe9
 CSeq: 1 INVITE
 Via: SIP/2.0/TLS 157.56.64.61:13184;received=157.54.78.7;ms-received-port=13184;ms-received-
cid=63995800

 Content-Length: 0

3. The client creates an SA with data from the authentication header field, specifically, Digest,
realm, and version. It hashes the user credential using the requested algorithm with the nonce,

nonce-count, and cnonce values. The client then sends the digest in the response parameter of
the authorization header.

 INVITE sip:bob@contoso.com;gruu;opaque=app:conf:focus:id:854T0R7G SIP/2.0
 Via: SIP/2.0/TLS 157.56.64.61:13184
 Max-Forwards: 70
 From: "Alice" <sip:6551156d569c4b7d945f310ff10943c5@anonymous.invalid>;tag=c9ef6b0990;epid=c3
2b51b28c

 To: sip:bob@contoso.com;gruu;opaque=app:conf:focus:id:854T0R7G
 Call-ID: 6d5b48eabee745c49dcf7e064c37cbe9
 CSeq: 2 INVITE
 Contact: <sip:6551156d569c4b7d945f310ff10943c5@anonymous.invalid>;proxy=replace;+sip.instance
="<urn:uuid:782873E3-EC25-5E64-B374-0FF05E0839A5>"

 Authorization: Digest username="6551156d-569c-4b7d-945f-310ff10943c5", realm="bob@contoso.com
", qop=auth, algorithm=MD5sess, uri="sip:bob@contoso.com;gruu;opaque=app:conf:focus:id:854T0R

7G", nonce="h8A4ZW22ygGZozIIGZcb43waVMEM6Gq", nc=1, cnonce="", opaque="0C1D4536",

response="b4543cd4d6a923b4ab4fd4583af48f0e"

4. The server validates the conference PIN by verifying the digest that was passed in the response
parameter of the authorization header field and returns a success response back to the client.
Alice has successfully joined the conference.

 SIP/2.0 200 Invite dialog created
 From: "Alice" <sip:6551156d569c4b7d945f310ff10943c5@anonymous.invalid>;tag=c9ef6b0990;epid=c3
2b51b28c

To: <sip:bob@contoso.com;gruu;opaque=app:conf:focus:id:854T0R7G>;tag=80730080

 Call-ID: 6d5b48eabee745c49dcf7e064c37cbe9
 CSeq: 2 INVITE
 Via: SIP/2.0/TLS 157.56.64.61:13184;received=157.54.78.7;ms-received-port=13184;ms-received-
cid=63995800

 Contact: <sip:bob@contoso.com;gruu;opaque=app:conf:focus:id:854T0R7G>;isfocus

52 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

5 Security

5.1 Security Considerations for Implementers

The proprietary extensions defined in this document do not require any special security considerations

beyond what is natively defined for SIP, NTLM, and Kerberos protocols.

5.2 Index of Security Parameters

None.

53 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Microsoft Office Communications Server 2007

 Microsoft Office Communicator 2007

 Microsoft Office Communications Server 2007 R2

 Microsoft Office Communicator 2007 R2

 Microsoft Lync Server 2010

 Microsoft Lync 2010

 Microsoft Lync Server 2013

 Microsoft Lync Client 2013/Skype for Business

 Microsoft Skype for Business 2016

 Microsoft Skype for Business Server 2015

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or

SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 3.1: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: TLS-DSK authentication protocol is
not supported.

<2> Section 3.2.1: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: TLS-DSK authentication protocol is

not supported.

<3> Section 3.2.2: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: TLS-DSK authentication protocol is
not supported

<4> Section 3.2.4.1: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: TLS-DSK authentication protocol is

not supported.

<5> Section 3.2.4.3: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: Anonymous Client sessions are not
supported.

<6> Section 3.2.4.5: Office Communications Server 2007, Office Communicator 2007: This behavior
is not supported.

54 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

<7> Section 3.2.5.1: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: Anonymous Client sessions are not

supported.

<8> Section 3.2.5.1: Office Communications Server 2007, Office Communicator 2007, Office

Communications Server 2007 R2, Office Communicator 2007 R2: TLS-DSK authentication protocol is
not supported.

<9> Section 3.2.5.2: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: TLS-DSK authentication protocol is
not supported.

<10> Section 3.2.5.4: Office Communications Server 2007, Office Communicator 2007: This behavior
is not supported.

<11> Section 3.2.5.5: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: Anonymous Client sessions are not
supported.

<12> Section 3.2.5.6: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: Anonymous Client sessions are not
supported.

<13> Section 3.3.1: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: TLS-DSK authentication protocol is
not supported.

<14> Section 3.3.1: Office Communications Server 2007, Office Communicator 2007: This behavior
is not supported.

<15> Section 3.3.1: Office Communications Server 2007, Office Communicator 2007: This behavior
is not supported.

<16> Section 3.3.2: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: TLS-DSK authentication protocol is

not supported.

<17> Section 3.3.3: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: TLS-DSK authentication protocol is
not supported.

<18> Section 3.3.4.1: Office Communications Server 2007, Office Communicator 2007, Office

Communications Server 2007 R2, Office Communicator 2007 R2: TLS-DSK authentication protocol is
not supported.

<19> Section 3.3.5.1: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: TLS-DSK authentication protocol is
not supported.

<20> Section 3.3.5.1: Office Communications Server 2007 "Communications Server 2007 Update

Package: March 2008" (http://support.microsoft.com/?kbid=949260) not installed implements version

3 of the authentication protocol.

<21> Section 3.3.5.1: Office Communications Server 2007 with "Communications Server 2007
Update Package: March 2008" (http://support.microsoft.com/?kbid=949260) or later update package
installed implements version 4 of the authentication protocol

<22> Section 3.3.5.1: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: Anonymous Client sessions are not

supported.

http://support.microsoft.com/?kbid=949260

55 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

<23> Section 3.3.5.2: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: TLS-DSK authentication protocol is

not supported.

<24> Section 3.3.5.3: Office Communications Server 2007, Office Communicator 2007, Office

Communications Server 2007 R2, Office Communicator 2007 R2: TLS-DSK authentication protocol is
not supported.

<25> Section 3.3.5.4: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: Anonymous Client sessions are not
supported.

<26> Section 3.3.5.5: Office Communications Server 2007, Office Communicator 2007, Office
Communications Server 2007 R2, Office Communicator 2007 R2: Anonymous Client sessions are not

supported.

<27> Section 3.3.5.7: Office Communications Server 2007, Office Communicator 2007: This behavior
is not supported.

56 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

57 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

8 Index

A

Abstract data model
 client (section 3.1.1 18, section 3.2.1 19)
 server (section 3.1.1 18, section 3.3.1 29)
Alternate identities
 client
 communicating identities to server 22
 server
 processing messages from client 39
Anonymous client
 example 50
 higher-layer triggered events 23
 message processing
 client
 continuing session 28
 responding to challenge 28
 server
 establish session 38
 process authorized messages 39
Applicability 12
Authentication-Info and Proxy-Authentication-Info

Header Fields message 14

Authorization and Proxy-Authorization Header Fields
message 15

C

Capability negotiation 12
Change tracking 56
Client
 abstract data model (section 3.1.1 18, section

3.2.1 19)
 higher-layer triggered events 19
 communicate alternate identities 22
 establish session as anonymous 23
 send messages to SIP server 21
 specify p-session-on-behalf-of header 23
 specify referee identity 23
 initialization (section 3.1.3 19, section 3.2.3 20)
 message processing 19
 address-of-record messages signed by server 28
 authenticated messages from server 26
 challenges from server 24
 continuing session as anonymous client 28
 p-session-on-behalf-of header 28
 responding as anonymous client 28
 other local events (section 3.1.7 19, section 3.2.7

29)
 overview 17
 sequencing rules 19
 address-of-record messages signed by server 28
 authenticated messages from server 26
 challenges from server 24
 continuing session as anonymous client 28
 p-session-on-behalf-of header 28
 responding as anonymous client 28
 timer events (section 3.1.6 19, section 3.2.6 28)
 timers (section 3.1.2 19, section 3.2.2 20)

D

Data model - abstract
 client (section 3.1.1 18, section 3.2.1 19)
 server (section 3.1.1 18, section 3.3.1 29)
digest authentication
 example 50

E

Endpoint Identification Extensions message 15
Examples
 digest authentication 50
 Kerberos authentication 43
 protocol version 4 45
 NTLM authentication 41
 TLS-DSK authentication 47

F

Fields - vendor-extensible 12

G

Glossary 6

H

Higher-layer triggered events
 client 19
 communicate alternate identities 22
 establish session as anonymous 23
 send messages to SIP server 21
 specify p-session-on-behalf-of header 23
 specify referee identity 23
 server 19
 send messages to client 31

I

Implementer - security considerations 52
Index of security parameters 52
Informative references 11
Initialization
 client (section 3.1.3 19, section 3.2.3 20)
 server (section 3.1.3 19, section 3.3.3 31)
Introduction 6

K

Kerberos authentication
 example 43
 protocol version 4 45

M

Message processing
 client 19
 address-of-record messages signed by server 28
 authenticated messages from server 26
 challenges from server 24
 continuing session as anonymous client 28
 p-session-on-behalf-of header 28
 responding as anonymous client 28

58 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

 server 19
 alternate identities from client 39
 authentication response from client 34
 authorized message from client 37
 establish session with anonymous client 38
 process authorized messages from anonymous

client 39
 p-session-on-behalf-of header from client 39
 unauthenticated message from client 33
Messages
 Authentication-Info and Proxy-Authentication-Info

Header Fields 14
 Authorization and Proxy-Authorization Header

Fields 15
 Endpoint Identification Extensions 15
 p-session-on-behalf-of Header Field Syntax 16
 Referred-By Header Field Extensions 16
 syntax 13
 transport 13
 WWW-Authenticate and Proxy-Authenticate

Response Header Fields 13

N

Normative references 10
NTLM authentication
 example 41

O

Other local events
 client (section 3.1.7 19, section 3.2.7 29)
 server (section 3.1.7 19, section 3.3.7 40)
Overview (synopsis) 11

P

Parameters - security index 52
Preconditions 11
Prerequisites 11
Product behavior 53
p-session-on-behalf-of header
 client
 higher-layer triggered events 23
 message processing 28
 server
 message processing 39
p-session-on-behalf-of Header Field Syntax message

16

R

References 10
 informative 11
 normative 10
Referred-By Header Field Extensions message 16
Relationship to other protocols 11

S

Security
 implementer considerations 52
 parameter index 52
Sequencing rules

 client 19
 address-of-record messages signed by server 28
 authenticated messages from server 26
 challenges from server 24
 continuing session as anonymous client 28
 p-session-on-behalf-of header 28
 responding as anonymous client 28
 server 19
 alternate identities from client 39
 authentication response from client 34
 authorized message from client 37
 establish session with anonymous client 38
 process authorized messages from anonymous

client 39
 p-session-on-behalf-of header from client 39
 unauthenticated message from client 33
Server
 abstract data model (section 3.1.1 18, section

3.3.1 29)
 higher-layer triggered events 19
 send messages to client 31
 initialization (section 3.1.3 19, section 3.3.3 31)
 message processing 19

 alternate identities from client 39
 authentication response from client 34
 authorized message from client 37
 establish session with anonymous client 38
 process authorized messages from anonymous

client 39
 p-session-on-behalf-of header from client 39
 unauthenticated message from client 33
 other local events (section 3.1.7 19, section 3.3.7

40)
 overview 17
 sequencing rules 19
 alternate identities from client 39
 authentication response from client 34
 authorized message from client 37
 establish session with anonymous client 38
 process authorized messages from anonymous

client 39
 p-session-on-behalf-of header from client 39
 unauthenticated message from client 33
 timer events (section 3.1.6 19, section 3.3.6 40)
 timers (section 3.1.2 19, section 3.3.2 30)
Standards assignments 12
Syntax 13

T

Timer events
 client (section 3.1.6 19, section 3.2.6 28)
 server (section 3.1.6 19, section 3.3.6 40)
Timers
 client (section 3.1.2 19, section 3.2.2 20)
 server (section 3.1.2 19, section 3.3.2 30)
TLS-DSK authentication
 example 47
Tracking changes 56
Transport 13
Triggered events
 client 19

 communicate alternate identities 22
 establish session as anonymous 23
 send messages to SIP server 21

59 / 59

[MS-SIPAE] - v20160715
Session Initiation Protocol (SIP) Authentication Extensions
Copyright © 2016 Microsoft Corporation
Release: July 15, 2016

 specify p-session-on-behalf-of header 23
 specify referee identity 23
 server 19
 send messages to client 31

V

Vendor-extensible fields 12
Versioning 12

W

WWW-Authenticate and Proxy-Authenticate
Response Header Fields message 13

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 WWW-Authenticate and Proxy-Authenticate Response Header Fields
	2.2.2 Authentication-Info and Proxy-Authentication-Info Header Fields
	2.2.3 Authorization and Proxy-Authorization Header Fields
	2.2.4 Endpoint Identification Extensions
	2.2.5 Referred-By Header Field Extensions
	2.2.6 p-session-on-behalf-of Header Field Syntax

	3 Protocol Details
	3.1 Protocol Overview
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 SIP Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Sending Messages to the SIP Server
	3.2.4.2 Communicating Alternate Identities in the Messages Sent to the SIP Server
	3.2.4.3 Establishing session as anonymous client
	3.2.4.4 Specifying Referee Identity in the Referred-By Header Field in Forwarded/Retargeted Calls
	3.2.4.5 Specifying p-session-on-behalf-of Header

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Processing Challenges from the SIP Server
	3.2.5.2 Processing Authenticated Messages from the SIP Server
	3.2.5.3 Authenticated Address-Of-Record in Messages Signed By the SIP Server
	3.2.5.4 Processing p-session-on-behalf-of Header in Messages from the SIP Server
	3.2.5.5 Responding as anonymous client to challenge from SIP Server
	3.2.5.6 Continuing session as anonymous client

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 SIP Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.4.1 Sending Messages to the SIP Client

	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Processing Unauthenticated Messages from the SIP Client
	3.3.5.2 Processing Messages with Authentication Response from the SIP Client
	3.3.5.3 Processing Authorized Messages from the SIP Client
	3.3.5.4 Establishing session with anonymous client
	3.3.5.5 Processing Authorized Messages from anonymous client
	3.3.5.6 Processing Alternate Identities in Messages from the SIP Client
	3.3.5.7 Processing p-session-on-behalf-of Header in Messages from the SIP Client

	3.3.6 Timer Events
	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 NTLM Authentication Example
	4.2 Kerberos Authentication Example
	4.3 Kerberos Authentication Example for version 4 of the protocol
	4.4 TLS-DSK Authentication Example for version 4 of the protocol
	4.5 Digest Authentication Example for Anonymous Join

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

