[bookmark: _GoBack][MS-PST]:
Outlook Personal Folders (.pst) File Format

Intellectual Property Rights Notice for Open Specifications Documentation
· Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.
· Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.
· No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
· Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
· License Programs. To see all of the protocols in scope under a specific license program and the associated patents, visit the Patent Map.
· Trademarks. The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
· Fictitious Names. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.
Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.
Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.
Support. For questions and support, please contact dochelp@microsoft.com.
Revision Summary
	Date
	Revision History
	Revision Class
	Comments

	2/19/2010
	1.0
	Major
	Initial Availability

	3/31/2010
	1.01
	Editorial
	Revised and edited the technical content

	4/30/2010
	1.02
	Editorial
	Revised and edited the technical content

	6/7/2010
	1.03
	Editorial
	Revised and edited the technical content

	6/29/2010
	1.04
	Editorial
	Changed language and formatting in the technical content.

	7/23/2010
	1.05
	Minor
	Clarified the meaning of the technical content.

	9/27/2010
	1.05
	None
	No changes to the meaning, language, or formatting of the technical content.

	11/15/2010
	1.05
	None
	No changes to the meaning, language, or formatting of the technical content.

	12/17/2010
	1.06
	Editorial
	Changed language and formatting in the technical content.

	3/18/2011
	1.06
	None
	No changes to the meaning, language, or formatting of the technical content.

	6/10/2011
	1.06
	None
	No changes to the meaning, language, or formatting of the technical content.

	1/20/2012
	1.7
	Minor
	Clarified the meaning of the technical content.

	4/11/2012
	1.7
	None
	No changes to the meaning, language, or formatting of the technical content.

	7/16/2012
	1.7
	None
	No changes to the meaning, language, or formatting of the technical content.

	10/8/2012
	1.8
	Minor
	Clarified the meaning of the technical content.

	2/11/2013
	1.8
	None
	No changes to the meaning, language, or formatting of the technical content.

	7/30/2013
	1.8
	None
	No changes to the meaning, language, or formatting of the technical content.

	11/18/2013
	2.0
	Major
	Significantly changed the technical content.

	2/10/2014
	2.1
	Minor
	Clarified the meaning of the technical content.

	4/30/2014
	3.0
	Major
	Significantly changed the technical content.

	7/31/2014
	3.1
	Minor
	Clarified the meaning of the technical content.

	10/30/2014
	3.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	3/16/2015
	4.0
	Major
	Significantly changed the technical content.

	9/4/2015
	5.0
	Major
	Significantly changed the technical content.

	7/15/2016
	5.1
	Minor
	Clarified the meaning of the technical content.

	9/14/2016
	5.2
	Minor
	Clarified the meaning of the technical content.

	5/9/2017
	5.3
	Minor
	Clarified the meaning of the technical content.

	9/19/2017
	5.4
	Minor
	Clarified the meaning of the technical content.

	12/12/2017
	5.4
	None
	No changes to the meaning, language, or formatting of the technical content.

	4/27/2018
	6.0
	Major
	Significantly changed the technical content.

	8/28/2018
	7.0
	Major
	Significantly changed the technical content.

	3/19/2019
	7.1
	Minor
	Clarified the meaning of the technical content.

	9/24/2019
	7.2
	Minor
	Clarified the meaning of the technical content.

	5/19/2020
	7.3
	Minor
	Clarified the meaning of the technical content.

	8/18/2020
	7.4
	Minor
	Clarified the meaning of the technical content.

	11/17/2020
	7.5
	Minor
	Clarified the meaning of the technical content.

	2/16/2021
	7.6
	Minor
	Clarified the meaning of the technical content.

	4/22/2021
	8.0
	Major
	Significantly changed the technical content.

	8/17/2021
	9.0
	Major
	Significantly changed the technical content.

	11/16/2021
	9.1
	Minor
	Clarified the meaning of the technical content.

	2/15/2022
	9.2
	Minor
	Clarified the meaning of the technical content.

	11/15/2022
	9.3
	Minor
	Clarified the meaning of the technical content.

	4/16/2024
	10.0
	Major
	Significantly changed the technical content.

	8/20/2024
	11.0
	Major
	Significantly changed the technical content.

Table of Contents
1	Introduction	10
1.1	Glossary	10
1.2	References	11
1.2.1	Normative References	11
1.2.2	Informative References	11
1.3	Structure Overview	11
1.3.1	Logical Architecture of a PST File	12
1.3.1.1	Node Database (NDB) Layer	12
1.3.1.2	Lists, Tables, and Properties (LTP) Layer	13
1.3.1.2.1	Heap-on-Node (HN)	13
1.3.1.2.2	BTree-on-Heap (BTH)	13
1.3.1.3	Messaging Layer	13
1.3.2	Physical Organization of the PST File Format	14
1.3.2.1	Header	14
1.3.2.1.1	Metadata and State of the PST File	14
1.3.2.1.2	Root Record	14
1.3.2.1.3	Initial Free Map (FMap) and Free Page Map (FPMap)	15
1.3.2.2	Reserved Data	15
1.3.2.3	Density List (DList)	15
1.3.2.4	Allocation Map (AMap)	15
1.3.2.5	Page Map (PMap)	15
1.3.2.6	Data Section	15
1.3.2.7	Free Map (FMap)	15
1.3.2.8	Free Page Maps (FPMap)	16
1.4	Relationship to Protocols and Other Structures	16
1.5	Applicability Statement	16
1.6	Versioning and Localization	16
1.7	Vendor-Extensible Fields	16
2	Structures	17
2.1	Property and Data Type Definitions	17
2.1.1	Data Types	17
2.1.2	Properties	18
2.2	NDB Layer	18
2.2.1	Fundamental Concepts	18
2.2.1.1	Nodes	18
2.2.1.2	ANSI Versus Unicode	19
2.2.2	Data Structures	19
2.2.2.1	NID (Node ID)	19
2.2.2.2	BID (Block ID)	20
2.2.2.3	IB (Byte Index)	21
2.2.2.4	BREF	21
2.2.2.5	ROOT	22
2.2.2.6	HEADER	24
2.2.2.7	Pages	28
2.2.2.7.1	PAGETRAILER	28
2.2.2.7.2	AMap (Allocation Map) Page	29
2.2.2.7.2.1	AMAPPAGE	30
2.2.2.7.3	PMap (Page Map) Page	31
2.2.2.7.3.1	PMAPPAGE	31
2.2.2.7.4	Density List (DList)	32
2.2.2.7.4.1	DLISTPAGEENT	32
2.2.2.7.4.2	DLISTPAGE	33
2.2.2.7.5	FMap (Free Map) Page	34
2.2.2.7.5.1	FMAPPAGE	35
2.2.2.7.6	FPMap (Free Page Map) Page	35
2.2.2.7.6.1	FPMAPPAGE	36
2.2.2.7.7	BTrees	36
2.2.2.7.7.1	BTPAGE	36
2.2.2.7.7.2	BTENTRY (Intermediate Entries)	38
2.2.2.7.7.3	BBTENTRY (Leaf BBT Entry)	39
2.2.2.7.7.3.1	Reference Counts	39
2.2.2.7.7.4	NBTENTRY (Leaf NBT Entry)	40
2.2.2.7.7.4.1	Parent NID	41
2.2.2.8	Blocks	41
2.2.2.8.1	BLOCKTRAILER	42
2.2.2.8.2	Anatomy of a Block	42
2.2.2.8.3	Block Types	43
2.2.2.8.3.1	Data Blocks	44
2.2.2.8.3.1.1	Data Block Encoding/Obfuscation	45
2.2.2.8.3.2	Data Tree	45
2.2.2.8.3.2.1	XBLOCK	45
2.2.2.8.3.2.2	XXBLOCK	46
2.2.2.8.3.3	Subnode BTree	48
2.2.2.8.3.3.1	SLBLOCKs	48
2.2.2.8.3.3.1.1	SLENTRY (Leaf Block Entry)	48
2.2.2.8.3.3.1.2	SLBLOCK	49
2.2.2.8.3.3.2	SIBLOCKs	50
2.2.2.8.3.3.2.1	SIENTRY (Intermediate Block Entry)	50
2.2.2.8.3.3.2.2	SIBLOCK	51
2.3	LTP Layer	52
2.3.1	HN (Heap-on-Node)	53
2.3.1.1	HID	53
2.3.1.2	HNHDR	53
2.3.1.3	HNPAGEHDR	55
2.3.1.4	HNBITMAPHDR	55
2.3.1.5	HNPAGEMAP	55
2.3.1.6	Anatomy of HN Data Blocks	57
2.3.1.6.1	Single-Block Configuration	57
2.3.1.6.2	Data Tree Configuration	57
2.3.2	BTree-on-Heap (BTH)	58
2.3.2.1	BTHHEADER	58
2.3.2.2	Intermediate BTH (Index) Records	59
2.3.2.3	Leaf BTH (Data) Records	59
2.3.3	Property Context (PC)	60
2.3.3.1	Accessing the PC BTHHEADER	60
2.3.3.2	HNID	60
2.3.3.3	PC BTH Record	60
2.3.3.4	Multi-Valued Properties	61
2.3.3.4.1	MV Properties with Fixed-size Base Type	61
2.3.3.4.2	MV Properties with Variable-size Base Type	61
2.3.3.5	PtypObject Properties	62
2.3.3.6	Anatomy of a PC	62
2.3.4	Table Context (TC)	63
2.3.4.1	TCINFO	65
2.3.4.2	TCOLDESC	66
2.3.4.3	The RowIndex	66
2.3.4.3.1	TCROWID	66
2.3.4.4	Row Matrix	67
2.3.4.4.1	Row Data Format	68
2.3.4.4.2	Variable-sized Data	69
2.3.4.4.3	Cell Existence Test	70
2.4	Messaging Layer	70
2.4.1	Special Internal NIDs	71
2.4.2	Properties	71
2.4.2.1	Standard Properties	71
2.4.2.2	Named Properties	72
2.4.2.3	Calculated Properties	72
2.4.3	Message Store	72
2.4.3.1	Minimum Set of Required Properties	72
2.4.3.2	Mapping between EntryID and NID	73
2.4.3.3	PST Password Security	73
2.4.4	Folders	74
2.4.4.1	Folder object PC	74
2.4.4.1.1	Property Schema of a Folder object PC	74
2.4.4.1.2	Locating the Parent Folder object	74
2.4.4.2	Folder Template Tables	75
2.4.4.3	Data Duplication and Coherency Maintenance	75
2.4.4.4	Hierarchy Table	75
2.4.4.4.1	Hierarchy Table Template	75
2.4.4.4.2	Locating Sub-Folder Object Nodes	76
2.4.4.5	Contents Table	76
2.4.4.5.1	Contents Table Template	76
2.4.4.5.2	Locating Message Object Nodes	78
2.4.4.6	FAI Contents Table	78
2.4.4.6.1	FAI Contents Table Template	78
2.4.4.7	Anatomy of a Folder Hierarchy	79
2.4.4.8	Implications of Modifying a Folder Template Table	80
2.4.4.9	Implications of Modifying a Folder Object TC	80
2.4.5	Message Objects	81
2.4.5.1	Message Object PC	82
2.4.5.1.1	Property Schema of a Message Object PC	82
2.4.5.2	Locating the Parent Folder Object of a Message Object	82
2.4.5.3	Recipient Table	82
2.4.5.3.1	Recipient Table Template	82
2.4.5.3.2	Message Object Recipient Tables	83
2.4.6	Attachment Objects	83
2.4.6.1	Attachment Table	84
2.4.6.1.1	Attachment Table Template	84
2.4.6.1.2	Message Object Attachment Tables	84
2.4.6.1.3	Locating Attachment Object Nodes from the Attachment Table	84
2.4.6.2	Attachment Object PC	84
2.4.6.2.1	Property Schema of an Attachment Object PC	84
2.4.6.2.2	Attachment Data	85
2.4.6.3	Relationship between Attachment Table and Attachment objects	85
2.4.7	Named Property Lookup Map	85
2.4.7.1	NAMEID	86
2.4.7.2	GUID Stream	86
2.4.7.3	Entry Stream	87
2.4.7.4	The String Stream	87
2.4.7.5	Hash Table	87
2.4.7.6	Data Organization of the Name-to-ID Map	88
2.4.8	Search	89
2.4.8.1	Search Update Descriptor (SUD)	89
2.4.8.1.1	SUD Structure	90
2.4.8.2	SUDData Structures	92
2.4.8.2.1	SUD_MSG_ADD / SUD_MSG_MOD / SUD_MSG_DEL Structure	92
2.4.8.2.2	SUD_MSG_MOV Structure	92
2.4.8.2.3	SUD_FLD_ADD / SUD_FLD_MOV Structure	93
2.4.8.2.4	SUD_FLD_MOD / SUD_FLD_DEL Structure	93
2.4.8.2.5	SUD_SRCH_ADD / SUD_SRCH_DEL Structure	93
2.4.8.2.6	SUD_SRCH_MOD Structure	94
2.4.8.2.7	SUD_MSG_SPAM Structure	94
2.4.8.2.8	SUD_IDX_MSG_DEL Structure	94
2.4.8.2.9	SUD_MSG_IDX Structure	95
2.4.8.3	Basic Queue Node	95
2.4.8.4	Search Management Object (SMO)	96
2.4.8.4.1	Search Management Queue (SMQ)	96
2.4.8.4.2	Search Activity List (SAL)	96
2.4.8.4.3	Search Domain Object (SDO)	96
2.4.8.5	Search Gatherer Object (SGO)	96
2.4.8.5.1	Search Gatherer Queue (SGQ)	96
2.4.8.5.2	Search Gatherer Descriptor (SGD)	96
2.4.8.5.3	Search Gatherer Folder Queue (SGFQ)	97
2.4.8.6	Search Folder Objects	97
2.4.8.6.1	Search Folder Object (SF)	97
2.4.8.6.2	Search Folder Object Contents Table (SFCT)	97
2.4.8.6.2.1	Search Folder Contents Table Template	97
2.4.8.6.3	Search Update Queue (SUQ)	98
2.4.8.6.4	Search Criteria Object (SCO)	98
2.5	Calculated Properties	98
2.5.1	Attributes of a Calculated Property	99
2.5.2	Calculated Properties by Object Type	99
2.5.2.1	Message Store	99
2.5.2.2	Folder Objects	100
2.5.2.3	Message Objects	101
2.5.2.4	Embedded Message Objects	104
2.5.2.5	Attachment Objects	106
2.5.3	Calculated Property Behaviors	107
2.5.3.1	Behavior Descriptors for Get Operations	107
2.5.3.1.1	Message Subject Handling Considerations	110
2.5.3.1.1.1	Obtaining the Prefix and Normalized Subject from PidTagSubject	110
2.5.3.1.1.2	Rules for Parsing the Subject Prefix	111
2.5.3.2	Behavior Descriptors for Set Operations	111
2.5.3.3	Behavior Descriptors for Delete Operations	112
2.5.3.4	Interpreting the List Behavior Column	113
2.6	Maintaining Data Integrity	113
2.6.1	NDB Layer	113
2.6.1.1	Basic Operations	114
2.6.1.1.1	Allocating Space from the PST	114
2.6.1.1.2	Growing the PST File	115
2.6.1.1.3	Freeing Space Back to the PST	115
2.6.1.1.4	Creating a Page	115
2.6.1.1.5	Creating a Block	116
2.6.1.1.6	Freeing a Page in the PST	117
2.6.1.1.7	Dropping the Reference Count of a Block	117
2.6.1.1.8	Modifying a Page	117
2.6.1.1.9	Modifying a Block	118
2.6.1.2	NDB Operations	118
2.6.1.2.1	Creating a New Node	118
2.6.1.2.2	Creating or Adding a Subnode Entry	119
2.6.1.2.3	Modifying Node Data	119
2.6.1.2.4	Duplicating the Contents of One Node to Another	120
2.6.1.2.5	Modifying Subnode Entry Data	121
2.6.1.2.6	Deleting a Subnode	121
2.6.1.2.7	Deleting a Node	122
2.6.1.3	Special Considerations	122
2.6.1.3.1	Immutability	122
2.6.1.3.2	Single-Instance Storage	122
2.6.1.3.3	Transactional Semantics	122
2.6.1.3.4	Backfilling	123
2.6.1.3.5	Internal Fragmentation and Locality of Reference	123
2.6.1.3.6	Caching	123
2.6.1.3.7	Crash Recovery and AMap Rebuilding	124
2.6.2	LTP Layer	124
2.6.2.1	HN Operations	125
2.6.2.1.1	Creating an HN	125
2.6.2.1.2	Allocating from the HN	125
2.6.2.1.3	Freeing an Allocation	125
2.6.2.1.4	Deleting an HN	126
2.6.2.2	BTH Operations	126
2.6.2.2.1	Creating a BTH	126
2.6.2.2.2	Inserting into the BTH	127
2.6.2.2.3	Modifying Contents of a BTH Entry	127
2.6.2.2.4	Deleting a BTH Entry	127
2.6.2.2.5	Deleting a BTH	128
2.6.2.3	PC Operations	128
2.6.2.3.1	Creating a PC	128
2.6.2.3.2	Inserting into the PC	129
2.6.2.3.3	Modifying the Value of a Property	129
2.6.2.3.4	Deleting a Property	129
2.6.2.3.5	Deleting a PC	130
2.6.2.4	TC Operations	130
2.6.2.4.1	Creating a TC	130
2.6.2.4.2	Inserting into the TC	130
2.6.2.4.3	Modifying Contents of a Table Row	131
2.6.2.4.4	Adding a Column	131
2.6.2.4.5	Deleting the Value of a Column	132
2.6.2.4.6	Deleting a Column	132
2.6.2.4.7	Deleting a Row	132
2.6.2.4.8	Deleting a TC	133
2.6.3	Messaging Layer	133
2.6.3.1	Message Store Operations	134
2.6.3.1.1	Creating the Message Store	134
2.6.3.1.2	Modifying Properties of the Message Store	134
2.6.3.2	Folder Object Operations	135
2.6.3.2.1	Creating a Folder Object	135
2.6.3.2.2	Modifying Properties of a Folder Object	135
2.6.3.2.3	Adding a Sub-Folder Object	136
2.6.3.2.4	Moving a Folder Object	136
2.6.3.2.5	Copying a Folder Object	137
2.6.3.2.6	Adding a Message Object	137
2.6.3.2.7	Copying a Message Object	138
2.6.3.2.8	Moving a Message Object	138
2.6.3.2.9	Deleting a Sub-Folder Object	138
2.6.3.2.10	Deleting a Message Object	139
2.6.3.3	Message Object Operations	139
2.6.3.3.1	Creating a Message Object	139
2.6.3.3.2	Modifying Properties of a Message Object	140
2.6.3.3.3	Adding a Recipient	140
2.6.3.3.4	Modifying Recipient Properties	140
2.6.3.3.5	Adding an Attachment Object	141
2.6.3.3.6	Modifying Properties of an Attachment Object	141
2.6.3.3.7	Deleting a Recipient	142
2.6.3.3.8	Deleting an Attachment Object	142
2.6.3.4	Name-to-ID Map Operations	142
2.6.3.4.1	Creating the Name-to-ID Map	142
2.6.3.4.2	Adding a Named Property	143
2.6.3.4.3	Deleting a Named Property	143
2.7	Minimum PST Requirements	143
2.7.1	Mandatory Nodes	144
2.7.2	Minimum Folder Hierarchy	145
2.7.3	Minimum Object Requirements	145
2.7.3.1	Message Store	146
2.7.3.2	Name-to-ID Map	146
2.7.3.3	Template Objects	146
2.7.3.4	Folders	146
2.7.3.4.1	Root Folder	146
2.7.3.4.2	Top of Personal Folders (IPM SuBTree)	146
2.7.3.4.3	Search Root	147
2.7.3.4.4	Spam Search Folder	147
2.7.3.4.5	Deleted Items	147
2.7.3.5	Search-Related Objects	148
3	Structure Examples	149
3.1	Sample Node Database (NDB)	149
3.2	Sample Header	150
3.3	Sample Intermediate BT Page	152
3.4	Sample Leaf NBT Page	153
3.5	Sample Leaf BBT Page	154
3.6	Sample Data Tree	155
3.7	Sample SLBLOCK	155
3.8	Sample Heap-on-Node (HN)	156
3.9	Sample BTH	156
3.10	Sample Message Store	157
3.11	Sample TC	158
3.12	Sample Folder Object	159
3.13	Sample Message Object	162
4	Security Considerations	171
4.1	Strength of Encoded PST Data Blocks	171
4.2	Strength of PST Password	171
5	Appendix A: PST Data Algorithms	172
5.1	Permutative Encoding	172
5.2	Cyclic Encoding	174
5.3	CRC Calculation	175
5.4	Conversation ID	183
5.5	Block Signature	185
6	Appendix B: Product Behavior	186
7	Change Tracking	188
8	Index	189

[bookmark: section_ad1e6f1a575d47e7be9c9433247d496c][bookmark: _Toc174686033]Introduction
The Outlook Personal Folders (.pst) File Format specifies the necessary technical information required to read and write the contents of a Personal Folders File (PST). This document also specifies the minimum requirements for a PST file to be recognizable as valid in order for implementers to create PST files that can be mounted and used by other implementations of the specification.
Sections 1.7 and 2 of this specification are normative. All other sections and examples in this specification are informative.
[bookmark: section_08220cc969b14072a2e72a0ff201d505][bookmark: _Toc174686034]Glossary
This document uses the following terms:
[bookmark: gt_6ab4cacc-0e1a-4843-b9e5-4f1fee5a695a]Attachment object: A set of properties that represents a file, Message object, or structured storage that is attached to a Message object and is visible through the attachments table for a Message object.
[bookmark: gt_ad861812-8cb0-497a-80bb-13c95aa4e425]binary large object (BLOB): A discrete packet of data that is stored in a database and is treated as a sequence of uninterpreted bytes.
[bookmark: gt_9cb45a36-92bb-4c14-b2fd-2ad7e2979bfd]cyclic redundancy check (CRC): An algorithm used to produce a checksum (a small, fixed number of bits) against a block of data, such as a packet of network traffic or a block of a computer file. The CRC is a broad class of functions used to detect errors after transmission or storage. A CRC is designed to catch random errors, as opposed to intentional errors. If errors might be introduced by a motivated and intelligent adversary, a cryptographic hash function has to be used instead.
[bookmark: gt_d7d60068-8690-4d36-8dae-9d7f73dc77b9]FAI contents table: A table of folder associated information (FAI) Message objects that are stored in a Folder object.
[bookmark: gt_6f222571-3f61-4250-a8a6-d56505335792]folder associated information (FAI): A collection of Message objects that are stored in a Folder object and are typically hidden from view by email applications. An FAI Message object is used to store a variety of settings and auxiliary data, including forms, views, calendar options, favorites, and category lists.
[bookmark: gt_0682daa7-c1b8-419b-8a32-6048833d0b72]Folder object: A messaging construct that is typically used to organize data into a hierarchy of objects containing Message objects and folder associated information (FAI) Message objects.
[bookmark: gt_b6c15d0c-d992-421d-ba96-99d3b63894cf]Message object: A set of properties that represents an email message, appointment, contact, or other type of personal-information-management object. In addition to its own properties, a Message object contains recipient properties that represent the addressees to which it is addressed, and an attachments table that represents any files and other Message objects that are attached to it.
[bookmark: gt_fda94a53-448d-48d5-9991-176c530ff597]message store: A unit of containment for a single hierarchy of Folder objects, such as a mailbox or public folders.
[bookmark: gt_e6245def-e67d-4ab2-8c7d-04863b1c1063]named property: A property that is identified by both a GUID and either a string name or a 32-bit identifier.
[bookmark: gt_0b28d5bf-a1bb-436d-a721-34e2cfae489b]property ID: A 16-bit numeric identifier of a specific attribute. A property ID does not include any property type information.
[bookmark: gt_382ac1cd-8ff9-493a-bfec-d9ad08955707]property identifier: A unique integer or a 16-bit, numeric identifier that is used to identify a specific attribute or property.
[bookmark: gt_dc3c2e4a-3b46-4284-973e-cc0e362a3264]property set: A set of attributes, identified by a GUID. Granting access to a property set grants access to all the attributes in the set.
[bookmark: gt_550ffe03-4145-49d1-8370-a9906b00452c]property tag: A 32-bit value that contains a property type and a property ID. The low-order 16 bits represent the property type. The high-order 16 bits represent the property ID.
[bookmark: gt_c17efaf4-bfdf-479d-8227-e165b647c933]property type: A 16-bit quantity that specifies the data type of a property value.
[bookmark: gt_3a066672-22ac-4bbf-b834-2431834e0631]spam: An unsolicited email message.
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
[bookmark: section_67f3c7c71b204430a65281ca16519b94][bookmark: _Toc174686035]References
Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.
[bookmark: section_ebb4eddeb1ea4a12aefadeea9865de8a][bookmark: _Toc174686036]Normative References
We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.
[MS-DTYP] Microsoft Corporation, "Windows Data Types".
[MS-OXCDATA] Microsoft Corporation, "Data Structures".
[MS-OXCFOLD] Microsoft Corporation, "Folder Object Protocol".
[MS-OXCMSG] Microsoft Corporation, "Message and Attachment Object Protocol".
[MS-OXCSTOR] Microsoft Corporation, "Store Object Protocol".
[MS-OXOMSG] Microsoft Corporation, "Email Object Protocol".
[MS-OXPROPS] Microsoft Corporation, "Exchange Server Protocols Master Property List".
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, https://www.rfc-editor.org/info/rfc2119
[bookmark: section_afd43dfbd61042c2ba8727368a764173][bookmark: _Toc174686037]Informative References
[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992, https://www.rfc-editor.org/info/rfc1321
[bookmark: section_dc7f82613151459c99b349d611d508ee][bookmark: _Toc174686038]Structure Overview
This file format is a stand-alone, self-contained, structured binary file format that does not require any external dependencies. Each PST file represents a message store that contains an arbitrary hierarchy of Folder objects, which contains Message objects, which can contain Attachment objects. Information about Folder objects, Message objects, and Attachment objects are stored in properties, which collectively contain all of the information about the particular item.
[bookmark: section_de4157d3fc534aec81bed1659c8a2302][bookmark: _Toc174686039]Logical Architecture of a PST File
The PST file structures are logically arranged in three layers: the NDB (Node Database) layer, the LTP (Lists, Tables, and Properties) layer, and the Messaging layer. The following diagram illustrates the logical hierarchy of these layers, and what abstractions are handled by each layer.
[image: Logical layers of a PST file]
Figure 1: Logical layers of a PST file
[bookmark: section_e4efaad01876446e9d34bb921588f924][bookmark: _Toc174686040]Node Database (NDB) Layer
The NDB layer consists of a database of nodes, which represents the lower-level storage facilities of the PST file format. From an implementation standpoint, the NDB layer consists of the header, file allocation information, blocks, nodes, and two BTrees: the Node BTree (NBT) and the Block BTree (BBT).
The NBT contains references to all of the accessible nodes in the PST file. Its BTree implementation allows for efficient searches to locate any specific node. Each node reference is represented using a set of four properties that includes its NID, parent NID, data BID, and subnode BID. The data BID points to the block that contains the data associated with the node, and the subnode BID points to the block that contains references to subnodes of this node. Top-level NIDs are unique across the PST and are searchable from the NBT. Subnode NIDs are only unique within a node and are not searchable (or found) from the NBT. The parent NID is an optimization for the higher layers and has no meaning for the NDB Layer.
The BBT contains references to all of the data blocks of the PST file. Its BTree implementation allows for efficient searches to locate any specific block. A block reference is represented using a set of four properties, which includes its BID, IB, CB, and CREF. The IB is the offset within the file where the block is located. The CB is the count of bytes stored within the block. The CREF is the count of references to the data stored within the block.
The roots of the NBT and BBT can be accessed from the header of the PST file.
The following diagram illustrates the high-level relationship between nodes and blocks.
[image: Relationship between nodes and blocks]
Figure 2: Relationship between nodes and blocks
The preceding figure illustrates how the data of a node with NID=100 can be accessed. The NBT is searched to find the record with NID=100. Once found, the record contains the BID (200) of the block that contains the node's data. With the BID, the BBT can be searched to locate the block that contains the node's data. As shown in the diagram, it is necessary to search both the NBT and BBT to locate the data for a top-level node.
[bookmark: section_4c24c7d25c5a4b9988b2f4b84cc293ae][bookmark: _Toc174686041]Lists, Tables, and Properties (LTP) Layer
The LTP layer implements higher-level concepts on top of the NDB construct. The core elements of the LTP Layer are the Property Context (PC) and Table Context (TC). A PC represents a collection of properties. A TC represents a two-dimensional table. The rows represent a collection of properties. The columns represent which properties are within the rows.
From a high-level implementation standpoint, each PC or TC is stored as data in a single node. The LTP layer uses NIDs to identify PCs and TCs.
To implement PCs and TCs efficiently, the LTP layer employs the following two types of data structures on top of each NDB node.
[bookmark: section_b4985c268c1c4ad0b2b8b7896c52a75d][bookmark: _Toc174686042]Heap-on-Node (HN)
A Heap-on-Node is a heap data structure that is implemented on top of a node. The HN enables sub-allocating the data stream of a node into small, variable-sized fragments. The prime example of HN usage is to store various string values into a single block. More complex data structures are built on top of the HN.
[bookmark: section_b1cb79f09b754ce9abddb4d382cdb64c][bookmark: _Toc174686043]BTree-on-Heap (BTH)
A BTree-on-Heap data structure is implemented by building inside of an HN structure. The HN provides a quick way to access the BTree structures, whereas the BTH provides an expedient way to search through data. PCs are implemented as BTHs.
[bookmark: section_3f1bc553d15d4dcf9b80fbf1dd6c7e79][bookmark: _Toc174686044]Messaging Layer
The Messaging layer consists of the higher-level rules and business logic that allow the structures of the LTP and NDB layers to be combined and interpreted as Folder objects, Message objects, Attachment objects, and properties. The Messaging layer also defines the rules and requirements that need to be followed when modifying the contents of a PST file so that the modified PST file can still be successfully read by implementations of this file format.
[bookmark: section_6b57253b085347bb99bbd4b8f78105f0][bookmark: _Toc174686045]Physical Organization of the PST File Format
This section provides an overview of the physical layout of the various concepts that were introduced in section 1.3.1. The following diagram illustrates the high-level file organization of a PST.
[image: Physical organization of the PST file format]
Figure 3: Physical organization of the PST file format
This file format is organized with a header element followed by allocation information pages at regular intervals that are interspersed with extensible data blocks. The header section includes metadata about the PST and information that points to the data sections that contain the message store and its contents. The following sections cover each of these elements in further detail.
[bookmark: section_fc4c74cbec8a42ffa2c52d6e3fa16394][bookmark: _Toc174686046]Header
The header resides at the very beginning of the file, and contains three main groups of information: Metadata, root record, and initial free map (FMap) and free page map (FPMap). For more information about the HEADER structure, see section 2.2.2.6.
[bookmark: section_3448abe434ee4230a18fc7ca6dee4347][bookmark: _Toc174686047]Metadata and State of the PST File
The metadata includes information such as version numbers, checksums, persistent counters, and namespace tables. Using this information, an implementation can determine the version and format of the PST file, which determines the layout of the subsequent data in the file.
[bookmark: section_dbcd7bbad0f9418ab0752eb21c2c2011][bookmark: _Toc174686048]Root Record
The root record contains information about the actual data that is stored in the PST file. This includes the root of the NBT and BBT, size and allocation information required to manage the free space and file growth, as well as file integrity information. For more information about the ROOT structure, see section 2.2.2.5.
[bookmark: section_ca65faa6a85046b8b9016fb1ee33a330][bookmark: _Toc174686049]Initial Free Map (FMap) and Free Page Map (FPMap)
[bookmark: Appendix_A_Target_1]Free Maps (FMaps) and Free Page Maps (FPMaps) are used to search for contiguous free space within a PST file.<1> FMaps and FPMaps are further described in greater detail in sections section 1.3.2.7 and section 1.3.2.8.
[bookmark: section_962338e1dd46458c8ea8a705ebb0d70f][bookmark: _Toc174686050]Reserved Data
A number of octets have been reserved between the end of the HEADER and the beginning of the Density List (DList). Part of this space is reserved for future expansion of the PST file HEADER structure, while the rest is reserved for persisting transient, implementation-specific data.
[bookmark: section_dc716741bee646eabbb3773e6e828fda][bookmark: _Toc174686051]Density List (DList)
[bookmark: Appendix_A_Target_2]The Density List consists of an ordered list of references to Allocation Map (AMap) pages (see section 1.3.2.4). It is sorted in order of ascending density (that is, by descending amount of free space available). Its function is to optimize the space allocation so that space referred to by pages with the most abundant free space (that is, lowest density) is allocated first. There is only one DList in the PST, which is located at a fixed offset in the PST file. For more details about the technical details of the DList, see section 2.2.2.7.4.<2>
[bookmark: section_2d29c497b5d24fb1b8cfc888104362a4][bookmark: _Toc174686052]Allocation Map (AMap)
An Allocation Map page is a fixed-size page that is used to track the allocation status of the data section that immediately follows the AMap page in the file. The entire AMap page can be viewed as an array of bits, where each bit corresponds to the allocation state of 64 bytes of data. An AMap page appears roughly every 250 kilobytes in the PST (see the diagram in section 1.3.2). For more details about the AMap, see section 2.2.2.7.2.
[bookmark: section_6f1f7f0d6ea14037be8673d9475caa21][bookmark: _Toc174686053]Page Map (PMap)
A Page Map is a block of data that is 512 bytes in size (including overhead), which is used for storing almost all of the metadata in the PST (that is, the BBT and NBT). The PMap is created to optimize for the search of available pages. The PMap is almost identical to the AMap, except that each bit in the PMap maps the allocation state of 512 bytes rather than instead of 64 because each bit in the PMap covers eight times the data of an AMap, a PMap page appears roughly every 2 megabytes (or one PMap for every eight AMaps). For more details about the PMap, see section 2.2.2.7.3.
[bookmark: section_f8fb872d70b248f78bec880c02ea9f6e][bookmark: _Toc174686054]Data Section
Data sections are groups of data roughly 250 kilobytes in size that contain allocations. Each individual allocation is aligned to a 64-byte boundary, and is in sizes that are multiples of 64 bytes. All of the blocks referred to by the BBT are allocated out of these data sections. Data sections are represented by the blocks labeled "Data" in the diagram in section 1.3.2.
[bookmark: section_289b28b01e9a4fa5a4d1cd214c275a16][bookmark: _Toc174686055]Free Map (FMap)
An FMap page provides a mechanism to quickly locate contiguous free space. Each byte in the FMap corresponds to one AMap page. The value of each byte indicates the longest number of free bits found in the corresponding AMap page. Because each bit in the AMap maps to 64 bytes, the FMap contains the maximum amount of contiguous free space in that AMap, up to about 16 kilobytes. Generally, because each AMap covers about 250 kilobytes of data, each FMap page (496 bytes) covers around 125 megabytes of data.
However, a special case exists for the initial FMap. As shown in the diagram in section 1.3.2, the HEADER contains an initial FMap, which is only 128 bytes, and which covers the first 32 megabytes of data.
[bookmark: section_e3948d318c7a41a6b08c5edf1f7274a4][bookmark: _Toc174686056]Free Page Maps (FPMap)
An FPMap is similar to the FMap except that it is used to quickly find free pages. Each bit in the FPMap corresponds to a PMap page, and the value of the bit indicates whether there are any free pages within that PMap page. With each PMap covering about 2 megabytes, and an FPMap page at 496 bytes, it follows that an FPMap page covers about 8 gigabytes of space.
However, a special case exists for the initial FPMap. As shown in the diagram in section 1.3.2, the HEADER contains an initial FPMap, which is only 128 bytes, which covers the first 2 gigabytes of data.
ANSI PST files only contain the initial FPMap in the HEADER and no additional FPMap pages. This limits the size of an ANSI PST file to about 2 gigabytes.
[bookmark: section_d852176ec5b144a4bda74d1ae62a26f6][bookmark: _Toc174686057]Relationship to Protocols and Other Structures
This file format uses structures described in [MS-OXCDATA] and property tags described in [MS-OXPROPS].
[bookmark: section_c944f0de5d854ef4993904a9afa4ae24][bookmark: _Toc174686058]Applicability Statement
This file format allows implementers to read and write PST files that are compatible with other implementations of this file format specification.
[bookmark: section_10e825c1787e4e409bd2a8598ed3c75c][bookmark: _Toc174686059]Versioning and Localization
None.
[bookmark: section_4ff658a6e45c42219c50960108ceccc0][bookmark: _Toc174686060]Vendor-Extensible Fields
None.
[bookmark: section_330bef4aba944f1cb7fee00c05adbd0e][bookmark: _Toc174686061]Structures
This section provides detailed technical information about all of the data structures that are used in the PST file format, as applicable to the scope of this document.
[bookmark: section_d3e8c5ce110949ffb8ce98a0a85cbf12][bookmark: _Toc174686062]Property and Data Type Definitions
[bookmark: section_1d61ee78446641418276f45153484619][bookmark: _Toc174686063]Data Types
The following data types are specified in [MS-DTYP]:
· bit
· byte
· DWORD
· GUID
· ULONGLONG
· LONG
· WCHAR
· WORD
The following data types are specified in [MS-OXCDATA] section 2.11.1:
· PtypBinary
· PtypBoolean
· PtypGuid
· PtypInteger32
· PtypInteger64
· PtypMultipleInteger32
· PtypObject
· PtypString
· PtypString8
· PtypTime
This specification uses the notations described in the following table to indicate data size.
	Notation
	Meaning
	Value

	KB
	kilobyte
	1024 bytes

	MB
	megabyte
	1024 kilobytes

	GB
	gigabyte
	1024 megabytes

[bookmark: section_1b8e3307c8ea48858fc89db4c34f8048][bookmark: _Toc174686064]Properties
This file format specification defines the property tags described in the following table. The PropertyTag structure is specified in [MS-OXCDATA] section 2.9.
	Canonical name
	PropertyTag.PropertyId
	PropertyTag.PropertyType

	PidTagNameidBucketCount
	0x0001
	PtypInteger32

	PidTagNameidStreamGuid
	0x0002
	PtypBinary

	PidTagNameidStreamEntry
	0x0003
	PtypBinary

	PidTagNameidStreamString
	0x0004
	PtypBinary

	PidTagNameidBucketBase
	0x1000
	PtypBinary

	PidTagItemTemporaryFlags
	0x1097
	PtypInteger32

	PidTagPstBestBodyProptag
	0x661D
	PtypInteger32

	PidTagPstHiddenCount
	0x6635
	PtypInteger32

	PidTagPstHiddenUnread
	0x6636
	PtypInteger32

	PidTagPstIpmsubTreeDescendant
	0x6705
	PtypBoolean

	PidTagPstSubTreeContainer
	0x6772
	PtypInteger32

	PidTagLtpParentNid
	0x67F1
	PtypInteger32

	PidTagLtpRowId
	0x67F2
	PtypInteger32

	PidTagLtpRowVer
	0x67F3
	PtypInteger32

	PidTagPstPassword
	0x67FF
	PtypInteger32

	PidTagMapiFormComposeCommand
	0x682F
	PtypString

[bookmark: section_cf7df7baf925459fb6436431ec953124][bookmark: _Toc174686065]NDB Layer
The following sections describe the data structures used in the NDB Layer of the PST file.
[bookmark: section_3ba34bdb611e40eda725fcb64f1fa7af][bookmark: _Toc174686066]Fundamental Concepts
The NDB layer provides the abstractions to:
· Divide the PST file into logical streams.
· Establish hierarchical relationships between the streams.
· Provide transaction functionality when modifying data within the streams.
[bookmark: section_a595a372090c42e1913cfad7873b202c][bookmark: _Toc174686067]Nodes
The NDB layer uses the concept of nodes to divide the data in the PST file into logical streams. A node is an abstraction that consists of a stream of bytes and a collection of subnodes. It is implemented by the NDB layer as a data block (section 2.2.2.8.3.1) and a subnode BTree (section 2.2.2.8.3.3). The NBTENTRY structures in the Node BTree (section 2.2.2.7.7.4) exist to define which blocks combine to form nodes.
[bookmark: section_cdad232fe7d941c19773c7561b9cba04][bookmark: _Toc174686068]ANSI Versus Unicode
[bookmark: Appendix_A_Target_3]There are currently two versions of the PST file format: ANSI and Unicode. The ANSI PST file format is the legacy format and SHOULD NOT be used to create new PST files. The Unicode PST file format is the currently-used format.<3>
While the nomenclature suggests a difference in how the internal strings are represented in the PST file, there are other significant differences between the ANSI and Unicode PST file formats. The most significant difference is the sizes of various core data elements that are used throughout the NDB layer. Specifically, the ANSI version uses 32-bit values to represent block IDs (BIDs) and absolute file offsets (IB). The Unicode version uses 64-bit values instead. Some other values that were represented using 32-bits have also been extended to use 64-bits. Those cases are discussed on a case-by-case basis.
Because BIDs and IBs are used extensively throughout the NDB layer, the version-specific size differences affect most of the NDB data structures. ANSI and Unicode versions of the data structures are defined separately whenever there are material differences between the two versions.
[bookmark: section_0383bcce4c0a4304afc9d51a3c73874a][bookmark: _Toc174686069]Data Structures
[bookmark: section_18d7644ecb334e1195c034d8a84fbff6][bookmark: _Toc174686070]NID (Node ID)
Nodes provide the primary abstraction used to reference data stored in the PST file that is not interpreted by the NDB layer. Each node is identified using its NID. Each NID is unique within the namespace in which it is used. Each node referenced by the NBT MUST have a unique NID. However, two subnodes of two different nodes can have identical NIDs, but two subnodes of the same node MUST have different NIDs.
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nidType
	nidIndex

nidType (5 bits): Identifies the type of the node represented by the NID. The following table specifies a list of values for nidType. However, it is worth noting that nidType has no meaning to the structures defined in the NDB Layer.
	Value
	Friendly name
	Description

	0x00
	NID_TYPE_HID
	Heap node

	0x01
	NID_TYPE_INTERNAL
	Internal node (section 2.4.1)

	0x02
	NID_TYPE_NORMAL_FOLDER
	Normal Folder object (PC)

	0x03
	NID_TYPE_SEARCH_FOLDER
	Search Folder object (PC)

	0x04
	NID_TYPE_NORMAL_MESSAGE
	Normal Message object (PC)

	0x05
	NID_TYPE_ATTACHMENT
	Attachment object (PC)

	0x06
	NID_TYPE_SEARCH_UPDATE_QUEUE
	Queue of changed objects for search Folder objects

	0x07
	NID_TYPE_SEARCH_CRITERIA_OBJECT
	Defines the search criteria for a search Folder object

	0x08
	NID_TYPE_ASSOC_MESSAGE
	Folder associated information (FAI) Message object (PC)

	0x0A
	NID_TYPE_CONTENTS_TABLE_INDEX
	Internal, persisted view-related

	0X0B
	NID_TYPE_RECEIVE_FOLDER_TABLE
	Receive Folder object (Inbox)

	0x0C
	NID_TYPE_OUTGOING_QUEUE_TABLE
	Outbound queue (Outbox)

	0x0D
	NID_TYPE_HIERARCHY_TABLE
	Hierarchy table (TC)

	0x0E
	NID_TYPE_CONTENTS_TABLE
	Contents table (TC)

	0x0F
	NID_TYPE_ASSOC_CONTENTS_TABLE
	FAI contents table (TC)

	0x10
	NID_TYPE_SEARCH_CONTENTS_TABLE
	Contents table (TC) of a search Folder object

	0x11
	NID_TYPE_ATTACHMENT_TABLE
	Attachment table (TC)

	0x12
	NID_TYPE_RECIPIENT_TABLE
	Recipient table (TC)

	0x13
	NID_TYPE_SEARCH_TABLE_INDEX
	Internal, persisted view-related

	0x1F
	NID_TYPE_LTP
	LTP

nidIndex (27 bits): The identification portion of the NID.
[bookmark: section_d3155aa1ccdd4deea0a95363ccca5352][bookmark: _Toc174686071]BID (Block ID)
Every block allocated in the PST file is identified using the BID structure. This structure varies in size according the format of the file. In the case of ANSI files, the structure is a 32-bit unsigned value, while in Unicode files it is a 64-bit unsigned long. In addition, there are two types of BIDs:
1. BIDs used in the context of Pages (section 2.2.2.7) use all of the bits of the structure (below) and are incremented by 1.
2. Block BIDs (section 2.2.2.8) reserve the two least significant bits for flags (see below). As a result these increment by 4 each time a new one is assigned.
Shown as used by Blocks (section 2.2.2.8):
Unicode:

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	A
	B
	bidIndex

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	A
	B
	bidIndex

[bookmark: Appendix_A_Target_4]A - r (1 bit): Reserved bit. Readers MUST ignore this bit and treat it as zero before looking up the BID from the BBT. Writers MUST<4> set this bit to zero.
B - i (1 bit): MUST set to 1 when the block is "Internal", or zero when the block is not "Internal". An internal block is an intermediate block that, instead of containing actual data, contains metadata about how to locate other data blocks that contain the desired information. For more details about technical details regarding blocks, see section 2.2.2.8.
bidIndex (Unicode: 62 bits; ANSI: 30 bits): A monotonically increasing value that uniquely identifies the BID within the PST file. bidIndex values are assigned based on the bidNextB value in the HEADER structure (see section 2.2.2.6). The bidIndex increments by one each time a new BID is assigned.
[bookmark: section_7d53d413b4924483b6244e2fa2a08cf3][bookmark: _Toc174686072]IB (Byte Index)
The IB (Byte Index) is used to represent an absolute offset within the PST file with respect to the beginning of the file. The IB is a simple unsigned integer value and is 64 bits in Unicode versions and 32 bits in ANSI versions.
[bookmark: section_844a5ebf488a45fd8fce92a84d8e24a3][bookmark: _Toc174686073]BREF
The BREF is a record that maps a BID to its absolute file offset location.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	bid

	...

	ib

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	bid

	ib

bid (Unicode: 64 bits; ANSI: 32 bits): A BID structure, as specified in section 2.2.2.2.
ib (Unicode: 64 bits; ANSI: 32 bits): An IB structure, as specified in section 2.2.2.3.
[bookmark: section_32ce8c94475746c8a1693fd21abee584][bookmark: _Toc174686074]ROOT
The ROOT structure contains current file state.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	dwReserved

	ibFileEof

	...

	ibAMapLast

	...

	cbAMapFree

	...

	cbPMapFree

	...

	BREFNBT (16 bytes)

	...

	...

	BREFBBT (16 bytes)

	...

	...

	fAMapValid
	bReserved
	wReserved

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	dwReserved

	ibFileEof

	ibAMapLast

	cbAMapFree

	cbPMapFree

	BREFNBT

	...

	BREFBBT

	...

	fAMapValid
	bReserved
	wReserved

[bookmark: Appendix_A_Target_5]dwReserved (4 bytes): Implementations SHOULD ignore this value and SHOULD NOT modify it. Creators of a new PST file MUST initialize this value to zero.<5>
ibFileEof (Unicode: 8 bytes; ANSI 4 bytes): The size of the PST file, in bytes.
ibAMapLast (Unicode: 8 bytes; ANSI 4 bytes): An IB structure (section 2.2.2.3) that contains the absolute file offset to the last AMap page of the PST file.
cbAMapFree (Unicode: 8 bytes; ANSI 4 bytes): The total free space in all AMaps, combined.
cbPMapFree (Unicode: 8 bytes; ANSI 4 bytes): The total free space in all PMaps, combined. Because the PMap is deprecated, this value SHOULD be zero. Creators of new PST files MUST initialize this value to zero.
BREFNBT (Unicode: 16 bytes; ANSI: 8 bytes): A BREF structure (section 2.2.2.4) that references the root page of the Node BTree (NBT).
BREFBBT (Unicode: 16 bytes; ANSI: 8 bytes): A BREF structure that references the root page of the Block BTree (BBT).
fAMapValid (1 byte): Indicates whether all of the AMaps in this PST file are valid. For more details, see section 2.6.1.3.7. This value MUST be set to one of the pre-defined values specified in the following table.
	Value
	Friendly name
	Meaning

	0x00
	INVALID_AMAP
	One or more AMaps in the PST are INVALID

	0x01
	VALID_AMAP1
	[bookmark: Appendix_A_Target_6]Deprecated. Implementations SHOULD NOT use this value. The AMaps are VALID.<6>

	0x02
	VALID_AMAP2
	The AMaps are VALID.

[bookmark: Appendix_A_Target_7]bReserved (1 byte): Implementations SHOULD ignore this value and SHOULD NOT modify it. Creators of a new PST file MUST initialize this value to zero.<7>
[bookmark: Appendix_A_Target_8]wReserved (2 bytes): Implementations SHOULD ignore this value and SHOULD NOT modify it. Creators of a new PST file MUST initialize this value to zero.<8>
[bookmark: section_c9876f5a664b46a39887ba63f113abf5][bookmark: _Toc174686075]HEADER
The HEADER structure is located at the beginning of the PST file (absolute file offset 0), and contains metadata about the PST file, as well as the ROOT information to access the NDB Layer data structures. Note that the layout of the HEADER structure, including the location and relative ordering of some fields, differs between the Unicode and ANSI versions.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	dwMagic

	dwCRCPartial

	wMagicClient
	wVer

	wVerClient
	bPlatformCreate
	bPlatformAccess

	dwReserved1

	dwReserved2

	bidUnused

	...

	bidNextP

	...

	dwUnique

	rgnid[] (128 bytes)

	...

	qwUnused

	...

	root (72 bytes)

	...

	dwAlign

	rgbFM (128 bytes)

	...

	...

	rgbFP (128 bytes)

	...

	...

	bSentinel
	bCryptMethod
	rgbReserved

	bidNextB

	...

	dwCRCFull

	rgbReserved2
	bReserved

	rgbReserved3 (32 bytes)

	...

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	dwMagic

	dwCRCPartial

	wMagicClient
	wVer

	wVerClient
	bPlatformCreate
	bPlatformAccess

	dwReserved1

	dwReserved2

	bidNextB

	bidNextP

	dwUnique

	rgnid[] (128 bytes)

	...

	...

	root (40 bytes)

	...

	...

	rgbFM (128 bytes)

	...

	...

	rgbFP (128 bytes)

	...

	...

	bSentinel
	bCryptMethod
	rgbReserved

	ullReserved

	...

	dwReserved

	rgbReserved2
	bReserved

	rgbReserved3 (32 bytes)

	...

	...

dwMagic (4 bytes): MUST be "{ 0x21, 0x42, 0x44, 0x4E } ("!BDN")".
dwCRCPartial (4 bytes): The 32-bit cyclic redundancy check (CRC) value of the 471 bytes of data starting from wMagicClient (0ffset 0x0008)
wMagicClient (2 bytes): MUST be "{ 0x53, 0x4D }".
wVer (2 bytes): File format version. This value MUST be 14 or 15 if the file is an ANSI PST file, and MUST be greater than 23 if the file is a Unicode PST file. If the value is 37, it indicates that the file is written by an Outlook of version that supports Windows Information Protection (WIP). The data MAY have been protected by WIP.
wVerClient (2 bytes): Client file format version. The version that corresponds to the format described in this document is 19. Creators of a new PST file based on this document SHOULD initialize this value to 19.
bPlatformCreate (1 byte): This value MUST be set to 0x01.
bPlatformAccess (1 byte): This value MUST be set to 0x01.
[bookmark: Appendix_A_Target_9]dwReserved1 (4 bytes): Implementations SHOULD ignore this value and SHOULD NOT modify it. Creators of a new PST file MUST initialize this value to zero.<9>
[bookmark: Appendix_A_Target_10]dwReserved2 (4 bytes): Implementations SHOULD ignore this value and SHOULD NOT modify it. Creators of a new PST file MUST initialize this value to zero.<10>
bidUnused (8 bytes Unicode only): Unused padding added when the Unicode PST file format was created.
bidNextB (4 bytes ANSI only): Next BID. This value is the monotonic counter that indicates the BID to be assigned for the next allocated block. BID values advance in increments of 4. For more details, see section 2.2.2.2.
bidNextP (Unicode: 8 bytes; ANSI: 4 bytes): Next page BID. Pages have a special counter for allocating bidIndex values. The value of bidIndex for BIDs for pages is allocated from this counter.
dwUnique (4 bytes): This is a monotonically-increasing value that is modified every time the PST file's HEADER structure is modified. The function of this value is to provide a unique value, and to ensure that the HEADER CRCs are different after each header modification.
rgnid[] (128 bytes): A fixed array of 32 NIDs, each corresponding to one of the 32 possible NID_TYPEs (section 2.2.2.1). Different NID_TYPEs can have different starting nidIndex values. When a blank PST file is created, these values are initialized by NID_TYPE according to the following table. Each of these NIDs indicates the last nidIndex value that had been allocated for the corresponding NID_TYPE. When an NID of a particular type is assigned, the corresponding slot in rgnid is also incremented by 1.
	NID_TYPE
	Starting nidIndex

	NID_TYPE_NORMAL_FOLDER
	1024 (0x400)

	NID_TYPE_SEARCH_FOLDER
	16384 (0x4000)

	NID_TYPE_NORMAL_MESSAGE
	65536 (0x10000)

	NID_TYPE_ASSOC_MESSAGE
	32768 (0x8000)

	Any other NID_TYPE
	1024 (0x400)

qwUnused (8 bytes): Unused space; MUST be set to zero. Unicode PST file format only.
root (Unicode: 72 bytes; ANSI: 40 bytes): A ROOT structure (section 2.2.2.5).
dwAlign (4 bytes): Unused alignment bytes; MUST be set to zero. Unicode PST file format only.
rgbFM (128 bytes): Deprecated FMap. This is no longer used and MUST be filled with 0xFF. Readers SHOULD ignore the value of these bytes.
rgbFP (128 bytes): Deprecated FPMap. This is no longer used and MUST be filled with 0xFF. Readers SHOULD ignore the value of these bytes.
bSentinel (1 byte): MUST be set to 0x80.
bCryptMethod (1 byte): Indicates how the data within the PST file is encoded. MUST be set to one of the pre-defined values described in the following table.
	Value
	Friendly name
	Meaning

	0x00
	NDB_CRYPT_NONE
	Data blocks are not encoded.

	0x01
	NDB_CRYPT_PERMUTE
	Encoded with the Permutation algorithm (section 5.1).

	0x02
	NDB_CRYPT_CYCLIC
	Encoded with the Cyclic algorithm (section 5.2).

	0x10
	NDB_CRYPT_EDPCRYPTED
	Encrypted with Windows Information Protection.

rgbReserved (2 bytes): Reserved; MUST be set to zero.
bidNextB (Unicode ONLY: 8 bytes): Next BID. This value is the monotonic counter that indicates the BID to be assigned for the next allocated block. BID values advance in increments of 4. For more details, see section 2.2.2.2.
dwCRCFull (4 bytes): The 32-bit CRC value of the 516 bytes of data starting from wMagicClient to bidNextB, inclusive. Unicode PST file format only.
ullReserved (8 bytes): Reserved; MUST be set to zero. ANSI PST file format only.
dwReserved (4 bytes): Reserved; MUST be set to zero. ANSI PST file format only.
[bookmark: Appendix_A_Target_11]rgbReserved2 (3 bytes): Implementations SHOULD ignore this value and SHOULD NOT modify it. Creators of a new PST MUST initialize this value to zero.<11>
[bookmark: Appendix_A_Target_12]bReserved (1 byte): Implementations SHOULD ignore this value and SHOULD NOT modify it. Creators of a new PST file MUST initialize this value to zero.<12>
[bookmark: Appendix_A_Target_13]rgbReserved3 (32 bytes): Implementations SHOULD ignore this value and SHOULD NOT modify it. Creators of a new PST MUST initialize this value to zero.<13>
[bookmark: section_5774b4f2cdc4453e996a8c8230116930][bookmark: _Toc174686076]Pages
A page is a fixed-size structure of 512 bytes that is used in the NDB Layer to represent allocation metadata and BTree data structures. A page trailer is placed at the very end of every page such that the end of the page trailer is aligned with the end of the page.
[bookmark: section_f4ccb38a930a4db498dfa69c195926ba][bookmark: _Toc174686077]PAGETRAILER
A PAGETRAILER structure contains information about the page in which it is contained. PAGETRAILER structure is present at the very end of each page in a PST file.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ptype
	ptypeRepeat
	wSig

	dwCRC

	bid

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ptype
	ptypeRepeat
	wSig

	bid

	dwCRC

ptype (1 byte): This value indicates the type of data contained within the page. This field MUST contain one of the following values.
	Value
	Friendly name
	Meaning
	wSig value

	0x80
	ptypeBBT
	Block BTree page.
	Block or page signature (section 5.5).

	0x81
	ptypeNBT
	Node BTree page.
	Block or page signature (section 5.5).

	0x82
	ptypeFMap
	Free Map page.
	0x0000

	0x83
	ptypePMap
	Allocation Page Map page.
	0x0000

	0x84
	ptypeAMap
	Allocation Map page.
	0x0000

	0x85
	ptypeFPMap
	Free Page Map page.
	0x0000

	0x86
	ptypeDL
	Density List page.
	Block or page signature (section 5.5).

ptypeRepeat (1 byte): MUST be set to the same value as ptype.
wSig (2 bytes): Page signature. This value depends on the value of the ptype field. This value is zero (0x0000) for AMap, PMap, FMap, and FPMap pages. For BBT, NBT, and DList pages, a page / block signature is computed (see section 5.5).
dwCRC (4 bytes): 32-bit CRC of the page data, excluding the page trailer. See section 5.3 for the CRC algorithm. Note the locations of the dwCRC and bid are differs between the Unicode and ANSI version of this structure.
bid (Unicode: 8 bytes; ANSI 4 bytes): The BID of the page's block. AMap, PMap, FMap, and FPMap pages have a special convention where their BID is assigned the same value as their IB (that is, the absolute file offset of the page). The bidIndex for other page types are allocated from the special bidNextP counter in the HEADER structure.
[bookmark: section_60466ef4af1549b68413b3a72f0e9bdb][bookmark: _Toc174686078]AMap (Allocation Map) Page
An AMap page contains an array of 496 bytes that is used to track the space allocation within the data section that immediately follows the AMap page. Each bit in the array maps to a block of 64 bytes in the data section. Specifically, the first bit maps to the first 64 bytes of the data section, the second bit maps to the next 64 bytes of data, and so on. AMap pages map a data section that consists of 253,952 bytes (496 * 8 * 64).
An AMap is allocated out of the data section and, therefore, it actually "maps itself". What this means is that the AMap actually occupies the first page of the data section and the first byte (that is, 8 bits) of the AMap is 0xFF, which indicates that the first 512 bytes are allocated for the AMap.
The first AMap of a PST file is located at absolute file offset 0x4400, and subsequent AMaps appear at intervals of 253,952 bytes thereafter. The following is the structural representation of an AMap page.
[bookmark: section_43d8f5562c0e49768ec784e57f8b1234][bookmark: _Toc174686079]AMAPPAGE
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	rgbAMapBits (496 bytes)

	...

	...

	pageTrailer (16 bytes)

	...

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	dwPadding

	rgbAMapBits (496 bytes)

	...

	...

	pageTrailer

	...

	...

dwPadding (ANSI file format only, 4 bytes): Unused padding; MUST be set to zero.
rgbAMapBits (496 bytes): AMap data. This is represented as a sequence of bits that marks whether blocks of 64 bytes of data have been allocated. If the nth bit is set to 1, then the nth block of 64 bytes has been allocated. Alternatively, if the nth bit is set to 0, the nth block of 64 bytes is not allocated (free).
pageTrailer (Unicode: 16 bytes; ANSI: 12 bytes): A PAGETRAILER structure (section 2.2.2.7.1). The ptype subfield of pageTrailer MUST be set to ptypeAMap. The other subfields of pageTrailer MUST be set as specified in section 2.2.2.7.1.
[bookmark: section_e0c59db8970a40df9547c136e8858291][bookmark: _Toc174686080]PMap (Page Map) Page
A PMap is the same as an AMap, except that each bit in the PMap tracks 512-byte pages instead of blocks of 64 bytes. Because a page is equivalent to eight 64-byte blocks in size, one PMap appears for every eight AMaps. The purpose of the PMap is to optimize locating frequently-needed free pages for allocating metadata and BTree data structures. PMap pages, similar to AMap pages, are allocated from the data section whose allocation is also mapped in the corresponding AMap.
The PMap works by pre-allocating 4 kilobytes (eight pages) of memory from the AMap at a time. Once the memory is reserved from the AMap, the corresponding byte (eight pages equals 8 bits) in the PMap is zeroed out to indicate reserved pages. Implementations seeking to allocate a page search for bits set to 0 in the PMap to find free pages. The coverage of a PMap page is 2,031,616 bytes (496 * 8 * 512) of data space.
[bookmark: Appendix_A_Target_14]The functionality of the PMap has been deprecated by the Density List. If a Density List is present in the PST file, then implementations SHOULD NOT use the PMap to locate free pages, and SHOULD instead use the Density List instead.<14> However, implementations MUST ensure the presence of PMaps at the correct intervals and maintain valid checksums to ensure backward-compatibility with older clients.
The first PMap of a PST file is located at absolute file offset 0x4600. The following is the structural representation of a PMap page.
[bookmark: section_7e64a91fcbd14a1190c9df5789e7d9a1][bookmark: _Toc174686081]PMAPPAGE
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	rgbPMapBits (496 bytes)

	...

	...

	pageTrailer (16 bytes)

	...

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	dwPadding

	rgbPMapBits (496 bytes)

	...

	...

	pageTrailer

	...

	...

dwPadding (ANSI file format only, 4 bytes): Unused padding; MUST be set to zero.
rgbPMapBits (496 bytes): PMap data. Each 0 bit corresponds to an available page that can be allocated. The meaning of 1 bits is ambiguous and SHOULD be ignored.
pageTrailer (Unicode: 16 bytes; ANSI: 12 bytes): A PAGETRAILER structure (section 2.2.2.7.1). The ptype subfield of pageTrailer MUST be set to ptypePMap. The other subfields of pageTrailer MUST be set as specified in section 2.2.2.7.1.
[bookmark: section_412104355580417fbfa3dbba7083b82e][bookmark: _Toc174686082]Density List (DList)
The Density List is a list of references to AMap pages that is sorted in order of ascending density (descending amount of free space available). Its purpose is to optimize the space allocation strategy where allocations are made from the pages with the most abundant free space first. The DList is an optional part of a PST file. However, implementations SHOULD create and use DLists.
[bookmark: Appendix_A_Target_15]There is at most one DList page in each PST file. If present, this page is located at absolute file offset 0x4200. To maintain backward compatibility with older clients, the location of the DList is allocated out of the Reserved data area (section 1.3.2.2) that is also used for transient storage. Because of the fact that this area is not dedicated exclusively for the DList, the DList can be over-written at any time by other transient processes and, therefore, the DList is not guaranteed to be valid. If a DList page contains an invalid CRC, then its contents MUST NOT be used and SHOULD be recreated by using the information from all of the AMap pages in the PST file. Implementations SHOULD use the DList when a valid DList exists.<15>
[bookmark: section_9d3c45b9a415446c954fb1b473dbb415][bookmark: _Toc174686083]DLISTPAGEENT
Each DLISTPAGEENT record in the DList represents a reference to an AMap PAGE in the PST file.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	dwPageNum
	dwFreeSlots

dwPageNum (20 bits): AMap page number. This is the zero-based index to the AMap page that corresponds to this entry. A dwPageNum of "n" corresponds to the nth AMap from the beginning of PST file.
dwFreeSlots (12 bits): Total number of free slots in the AMap. This value is the aggregate sum of all free 64-byte slots in the AMap. Note that the free slots can be of any random configuration, and are not guaranteed to be contiguous.
[bookmark: section_5d426b2dec104614b76846813652d5e3][bookmark: _Toc174686084]DLISTPAGE
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	bFlags
	cEntDList
	wPadding

	ulCurrentPage

	rgDListPageEnt (476 bytes)

	...

	...

	...

	rgPadding

	...

	...

	pageTrailer

	...

	...

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	bFlags
	cEntDList
	wPadding

	ulCurrentPage

	rgDListPageEnt (480 bytes)

	...

	...

	...

	rgPadding

	...

	...

	pageTrailer

	...

	...

bFlags (1 byte): Flags; MUST be set to zero or a combination of the defined values described in the following table.
	Value
	Friendly name
	Meaning

	0x01
	DFL_BACKFILL_COMPLETE
	A DList backfill is not in progress

cEntDList (1 byte): Number of entries in the rgDListPageEnt array.
wPadding (2 bytes): Padding bytes; MUST be set to zero.
ulCurrentPage (4 bytes): The meaning of this field depends on the value of bFlags. If DFL_BACKFILL_COMPLETE is set in bFlags, then this value indicates the AMap page index that is used in the next allocation. If DFL_BACKFILL_COMPLETE is not set in bFlags, then this value indicates the AMap page index that is attempted for backfilling in the next allocation. See section 2.6.1.3.4 for more information regarding Backfilling.
rgDListPageEnt (Unicode: 476 bytes; ANSI: 480 bytes): DList page entries. This is an array of DLISTPAGEENT records with cEntDList entries that constitute the DList. Each record contains an AMap page index and the aggregate amount of free slots available in that AMap. Note that, while the size of the field is fixed, the size of valid data within the field is not. Implementations MUST only read the number of DLISTPAGEENT entries from the array indicated by cEntDList.
rgPadding (12 bytes): Unused padding; MUST be set to zero. This padding comes before the pageTrailer field to make sure it aligns with the very end of the pages as specified in section 2.2.2.7
pageTrailer (Unicode: 16 bytes; ANSI: 12 bytes): A PAGETRAILER structure (section 2.2.2.7.1). The ptype subfield of pageTrailer MUST be set to ptypeDL. The other subfields of pageTrailer MUST be set as specified in section 2.2.2.7.1.
[bookmark: section_9054ab042bc44e3da1aff72cd46394a1][bookmark: _Toc174686085]FMap (Free Map) Page
The general layout of an FMap is identical to that of an AMap, except that each byte in the FMap corresponds to one AMap page. The value of each byte indicates the longest number of free bits found in the corresponding AMap page. Generally, because each AMap covers about 250 kilobytes of data, each FMap page (496 bytes) covers around 125 megabytes of data.
[bookmark: Appendix_A_Target_16]Implementations SHOULD NOT use FMaps. The Density List SHOULD be used for location free space.<16> However, the presence of FMap pages at the correct intervals MUST be preserved, and all corresponding checksums MUST be maintained for a PST file to remain valid.
[bookmark: section_26273ead797e4ea69b3c9b9a5c581115][bookmark: _Toc174686086]FMAPPAGE
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	rgbFMapBits (496 bytes)

	...

	...

	pageTrailer (16 bytes)

	...

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	dwPadding

	rgbFMapBits (496 bytes)

	...

	...

	pageTrailer

	...

	...

dwPadding (ANSI only, 4 bytes): Unused padding; MUST be set to zero.
rgbFMapBits (496 bytes): FMap data. Each byte represents the maximum number of contiguous "0" bits in the corresponding AMap (up to 16 kilobytes).
pageTrailer (Unicode: 16 bytes; ANSI: 12 bytes): A PAGETRAILER structure (section 2.2.2.7.1). The ptype subfield of pageTrailer MUST be set to ptypeFMap. The other subfields of pageTrailer MUST be set as specified in section 2.2.2.7.1.
[bookmark: section_dd913b8e51134b83a5ea351a08b4237b][bookmark: _Toc174686087]FPMap (Free Page Map) Page
The general layout of an FPMap is identical to that of an AMap, except that each bit in the FPMap corresponds to a PMap page, and the value of the bit indicates whether there are any free pages within that PMap page. With each PMap covering about 2 megabytes and an FPMap page at 496 bytes, an FPMap page covers about 8 gigabytes of space.
[bookmark: Appendix_A_Target_17]Implementations SHOULD NOT use FPMaps. The Density List SHOULD be used for location free space.<17> However, the presence of FPMap pages at the correct intervals MUST be preserved, and all corresponding checksums MUST be maintained for a PST file to remain valid.
[bookmark: section_913a72b083f64c298b0b40967579a534][bookmark: _Toc174686088]FPMAPPAGE
Unicode only:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	 rgbFPMapBits (496 bytes)

	...

	...

	pageTrailer (16 bytes)

	...

	...

rgbFPMapBits (496 bytes): FPMap data. Each bit corresponds to a PMap page. If the nth bit is set to 0, then the nth PMap page from the beginning of the PST File has free pages. If the nth bit is set to 1, then the nth PMap page has no free pages.
pageTrailer (Unicode: 16 bytes): A PAGETRAILER structure (section 2.2.2.7.1). The ptype subfield of pageTrailer MUST be set to ptypeFPMap. The other subfields of pageTrailer MUST be set as specified in section 2.2.2.7.1.
[bookmark: section_7d759bcb7864480c8746f6af913ab085][bookmark: _Toc174686089]BTrees
BTrees are widely used throughout the PST file format. In the NDB Layer, BTrees are the building blocks for the NBT and BBT, which are used to quickly navigate and search nodes and blocks. The PST file format uses a general BTree implementation that supports up to 8 intermediate levels.
[bookmark: section_4f0cd8e7c2d0497590a4d417cfca77f8][bookmark: _Toc174686090]BTPAGE
A BTPAGE structure implements a generic BTree using 512-byte pages.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	rgentries (488 bytes)

	...

	...

	cEnt
	cEntMax
	cbEnt
	cLevel

	dwPadding

	pageTrailer (16 bytes)

	...

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	rgentries (496 bytes)

	...

	...

	cEnt
	cEntMax
	cbEnt
	cLevel

	pageTrailer (12 bytes)

	...

	...

rgentries (Unicode: 488 bytes; ANSI: 496 bytes): Entries of the BTree array. The entries in the array depend on the value of the cLevel field. If cLevel is greater than 0, then each entry in the array is of type BTENTRY. If cLevel is 0, then each entry is either of type BBTENTRY or NBTENTRY, depending on the ptype of the page.
cEnt (1 byte): The number of BTree entries stored in the page data.
cEntMax (1 byte): The maximum number of entries that can fit inside the page data.
cbEnt (1 byte): The size of each BTree entry, in bytes. Note that in some cases, cbEnt can be greater than the corresponding size of the corresponding rgentries structure because of alignment or other considerations. Implementations MUST use the size specified in cbEnt to advance to the next entry.
	BTree Type
	cLevel
	rgentries structure
	cbEnt (bytes)

	NBT
	0
	NBTENTRY
	ANSI: 16, Unicode: 32

	
	Greater than 0
	BTENTRY
	ANSI: 12, Unicode: 24

	BBT
	0
	BBTENTRY
	ANSI: 12, Unicode: 24

	
	Less than 0
	BTENTRY
	ANSI: 12, Unicode: 24

cLevel (1 byte): The depth level of this page. Leaf pages have a level of zero, whereas intermediate pages have a level greater than 0. This value determines the type of the entries in rgentries, and is interpreted as unsigned.
dwPadding (Unicode: 4 bytes): Padding; MUST be set to zero. Note there is no padding in the ANSI version of this structure.
pageTrailer (Unicode: 16 bytes; ANSI: 12 bytes): A PAGETRAILER structure (section 2.2.2.7.1). The ptype subfield of pageTrailer MUST be set to ptypeBBT for a Block BTree page, or ptypeNBT for a Node BTree page. The other subfields of pageTrailer MUST be set as specified in section 2.2.2.7.1.
[bookmark: section_bc8052a3f3004022be31f0f408fffca0][bookmark: _Toc174686091]BTENTRY (Intermediate Entries)
BTENTRY records contain a key value (NID or BID) and a reference to a child BTPAGE page in the BTree.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	btkey

	...

	BREF (16 bytes)

	...

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	btkey

	BREF

	...

btkey (Unicode: 8 bytes; ANSI: 4 bytes): The key value associated with this BTENTRY. All the entries in the child BTPAGE referenced by BREF have key values greater than or equal to this key value. The btkey is either an NID (zero extended to 8 bytes for Unicode PSTs) or a BID, depending on the ptype of the page.
BREF (Unicode: 16 bytes; ANSI: 8 bytes): BREF structure (section 2.2.2.4) that points to the child BTPAGE.
[bookmark: section_53a4b9268ac445c99c6d8358d951dbcd][bookmark: _Toc174686092]BBTENTRY (Leaf BBT Entry)
BBTENTRY records contain information about blocks and are found in BTPAGES with cLevel equal to 0, with the ptype of "ptypeBBT". These are the leaf entries of the BBT. As noted in section 2.2.2.7.7.1, these structures might not be tightly packed and the cbEnt field of the BTPAGE SHOULD be used to iterate over the entries.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	BREF (16 bytes)

	...

	...

	cb
	cRef

	dwPadding

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	BREF

	...

	cb
	cRef

BREF (Unicode: 16 bytes; ANSI: 8 bytes): BREF structure (section 2.2.2.4) that contains the BID and IB of the block that the BBTENTRY references.
cb (2 bytes): The count of bytes of the raw data contained in the block referenced by BREF excluding the block trailer and alignment padding, if any.
cRef (2 bytes): Reference count indicating the count of references to this block. See section 2.2.2.7.7.3.1 regarding how reference counts work.
dwPadding (Unicode file format only, 4 bytes): Padding; MUST be set to zero.
[bookmark: section_3301874b715049689a2d1425ca494c21][bookmark: _Toc174686093]Reference Counts
To improve storage efficiency, the NDB supports single-instancing by allowing multiple entities to reference the same data block. This is supported at the BBT level by having reference counts for blocks.
For example, when a node is copied, a new node is created with a new NID, but instead of making a separate copy of the entire contents of the node, the new node simply references the existing immediate data and subnode blocks by incrementing the reference count of each block.
The single-instance is only broken when the data referenced needs to be changed by a referencing node. This requires creation of a new block into which the new data is written and the reference count to the original block is decremented. When the reference count of a block reaches one, then the block is no longer use in use and is marked as "Free" in the corresponding AMap. Finally, the corresponding leaf BBT entry is removed from the BBT.
In addition to the BBTENTRY, other types of structures can also hold references to a block. The following is a list of structures that can hold reference counts to a block:
· Leaf BBTENTRY: Any leaf BBT entry that points to a BID holds a reference count to it.
· NBTENTRY: A reference count is held if a block is referenced in the bidData or bidSub fields of a NBTENTRY.
· SLBLOCK: a reference count is held if a block is referenced in the bidData or bidSub fields of an SLENTRY.
· Data tree: A reference count is held if a block is referenced in an rgbid slot of an XBLOCK.
For example, consider a node called "Node1". The data block of Node1 has a reference count of 2 (BBTENTRY and Node1's NBTENTRY.bidData). If a copy of Node1 is made (Node2), then the block's reference count becomes 3 (Node2's NBTENTRY.bidData). If a change is made to Node2's data, then a new data block is created for the modified copy with a reference count of 2 (BBTENTRY, Node2's NBTENTRY.bidData), and the reference count of Node1's data block returns to 2 (BBTENTRY, Node1's NBTENTRY.bidData).
[bookmark: section_28fb21160998448598449711b95603ba][bookmark: _Toc174686094]NBTENTRY (Leaf NBT Entry)
NBTENTRY records contain information about nodes and are found in BTPAGES with cLevel equal to 0, with the ptype of ptypeNBT. These are the leaf entries of the NBT.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nid

	...

	bidData

	...

	bidSub

	...

	nidParent

	dwPadding

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nid

	bidData

	bidSub

	nidParent

nid (Unicode: 8 bytes; ANSI: 4 bytes): The NID (section 2.2.2.1) of the entry. Note that the NID is a 4-byte value for both Unicode and ANSI formats. However, to stay consistent with the size of the btkey member in BTENTRY, the 4-byte NID is extended to its 8-byte equivalent for Unicode PST files.
bidData (Unicode: 8 bytes; ANSI: 4 bytes): The BID of the data block for this node.
bidSub (Unicode: 8 bytes; ANSI: 4 bytes): The BID of the subnode block for this node. If this value is zero, a subnode block does not exist for this node.
nidParent (4 bytes): If this node represents a child of a Folder object defined in the Messaging Layer, then this value is nonzero and contains the NID of the parent Folder object's node. Otherwise, this value is zero. See section 2.2.2.7.7.4.1 for more information. This field is not interpreted by any structure defined at the NDB Layer.
dwPadding (Unicode file format only, 4 bytes): Padding; MUST be set to zero.
[bookmark: section_65b9823b530e430aaa4cd4bad9ece9d3][bookmark: _Toc174686095]Parent NID
A specific challenge exists when a simple node database is used to represent hierarchical concepts such as a tree of Folder objects where top-level nodes are disjoint items that do not contain hierarchical semantics. While subnodes have a hierarchical structure, the fact that internal subnodes are not addressable outside of the NDB Layer makes them unsuitable for this purpose.
The concept of a parent NID (nidParent) is introduced to address this challenge, providing a simple and efficient way for each Folder object node to point back to its parent Folder object node in the hierarchy. This link enables traversing up the Folder object tree to find its parent Folder objects, which is necessary and common for many Folder object-related operations, without having to read the raw data associated with each node.
The parent NID concept described here is separate from the node/subnode relationship. The parent NID, as described here has no meaning to the NDB layer and is merely maintained as an optimization for the Messaging layer.
[bookmark: section_a9c1981dd1ea457cb39edc7fb0eb95d4][bookmark: _Toc174686096]Blocks
Blocks are the fundamental units of data storage at the NDB layer. Blocks are assigned in sizes that are multiples of 64 bytes and are aligned on 64-byte boundaries. The maximum size of any block is 8 kilobytes (8192 bytes).
Similar to pages, each block stores its metadata in a block trailer placed at the very end of the block so that the end of the trailer is aligned with the end of the block.
Blocks generally fall into one of two categories: data blocks and subnode blocks. Data blocks are used to store raw data, where subnode blocks are used to represent nodes contained within a node.
The storage capacity of each data block is the size of the data block (from 64 to 8192 bytes) minus the size of the trailer block.
[bookmark: section_a14943ef70c2403f898c5bc3747117e1][bookmark: _Toc174686097]BLOCKTRAILER
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	cb
	wSig

	dwCRC

	bid

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	cb
	wSig

	bid

	dwCRC

cb (2 bytes): The amount of data, in bytes, contained within the data section of the block. This value does not include the block trailer or any unused bytes that can exist after the end of the data and before the start of the block trailer.
wSig (2 bytes): Block signature. See section 5.5 for the algorithm to calculate the block signature.
dwCRC (4 bytes): 32-bit CRC of the cb bytes of raw data, see section 5.3 for the algorithm to calculate the CRC. Note the locations of the dwCRC and bid are differs between the Unicode and ANSI version of this structure.
bid (Unicode: 8 bytes; ANSI 4 bytes): The BID (section 2.2.2.2) of the data block.
[bookmark: section_ddeb714d8fd54a4880198338cb511c80][bookmark: _Toc174686098]Anatomy of a Block
The following example attempts to illustrate the anatomy of a block allocated at absolute file offset 0x5000 to store 236 (0xEC) bytes of raw data in a Unicode PST file.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	data (236 bytes)

	...

	...

	padding

	cb
	wSig

	dwCRC

	Bid

	...

data (236 bytes): Raw data.
padding (4 bytes): Reserved.
cb (2 bytes): The amount of data, in bytes, contained within the data section of the block. This value does not include the block trailer or any unused bytes that can exist after the end of the data and before the start of the block trailer.
wSig (2 bytes): Block signature. See section 5.5 for the algorithm to calculate the block signature.
dwCRC (4 bytes): 32-bit CRC of the cb bytes of raw data, see section 5.3 for the algorithm to calculate the CRC
Bid (8 bytes): The BID (section 2.2.2.2) of the data block.
Given the raw data size of 236 bytes and a block trailer size of 16 bytes, the smallest multiple of 64 that can hold both items is 256 (0x100). Thus, the size of the data block required is 256 bytes. However, the raw data and the trailer only add up to 252 bytes, which results in a 4-byte gap between the end of the raw data and the beginning of the trailer. This gap of "wasted space" is necessitated by the alignment of the trailer block with respect to the end of the block and can be as large as 63 bytes.
Because the data in the padding field is undetermined (that is, not guaranteed to be zero-filled), implementers MUST NOT include unused data in CRC calculations. In this particular case, the value of cb is 236 (not 240) and the calculation for the value in dwCRC MUST NOT include the 4 bytes of unused data in the padding field.
The data contained in the data section of most blocks within a PST file have no meaning to the structures defined at the NDB Layer. However, some blocks contain metadata that is interpreted by the NDB Layer.
[bookmark: section_8f34ce817a044a31ba48e05543daa77f][bookmark: _Toc174686099]Block Types
Several types of blocks are defined at the NDB Layer. The following table defines the block type mapping.
	Block type
	Data structure
	Internal BID?
	Header level
	Array content

	Data Tree
	Data block
	No
	N/A
	Bytes

	
	XBLOCK
	Yes
	1
	Data block reference

	
	XXBLOCK
	
	2
	XBLOCK reference

	Subnode BTree data
	SLBLOCK
	
	0
	SLENTRY

	
	SIBLOCK
	
	1
	SIENTRY

[bookmark: section_d0e6fbaf00e34d4dbea88ab3cdb4fde6][bookmark: _Toc174686100]Data Blocks
A data block is a block that is "External" (that is, not marked "Internal") and contains data streamed from higher layer structures. The data contained in data blocks have no meaning to the structures defined at the NDB Layer.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	data (variable)

	...

	padding (variable, optional)

	...

	blockTrailer (16 bytes)

	...

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	data (variable)

	...

	padding (variable, optional)

	...

	blockTrailer

	...

	...

data (variable): The value of this field SHOULD be treated as an opaque binary large object (BLOB) by the NDB Layer. The size of this field is indicated by the cb subfield of the blockTrailer field.
padding (variable, optional): This field is present if the size of the data field plus the size of the blockTrailer field is not a multiple of 64. The size of this field is the smallest number of bytes required to make the size of the data block a multiple of 64. Implementations MUST ignore this field.
blockTrailer (Unicode: 16 bytes; ANSI: 12 bytes): A BLOCKTRAILER structure (section 2.2.2.8.1).
[bookmark: section_27ffd5b2bfac466bbc3f96534c895758][bookmark: _Toc174686101]Data Block Encoding/Obfuscation
A special case exists when a PST file is configured to encode its contents. In that case, the NDB Layer encodes the data field of data blocks to obfuscate the data using one of two keyless ciphers. Section 5.1 and section 5.2 contain further information about the two cipher algorithms used to encode the data. Only the data field is encoded. The padding and blockTrailer are not encoded.
[bookmark: section_4568831746fb40389ed3b845d80bdabb][bookmark: _Toc174686102]Data Tree
A data tree collectively refers to all the elements that are used to store data. In the simplest case, a data tree consists of a single data block, which can hold up to 8,176 bytes. If the data is more than 8,176 bytes, a construct using XBLOCKs and XXBLOCKs is used to store the data in a series of data blocks arranged in a tree format. The layout of the XBLOCK and XXBLOCK structures are defined in the following sections.
[bookmark: section_5b7a6935e83d49179f626ce3707f09e0][bookmark: _Toc174686103]XBLOCK
[bookmark: OLE_LINK4][bookmark: OLE_LINK5]XBLOCKs are used when the data associated with a node data that exceeds 8,176 bytes in size. The XBLOCK expands the data that is associated with a node by using an array of BIDs that reference data blocks that contain the data stream associated with the node. A BLOCKTRAILER is present at the end of an XBLOCK, and the end of the BLOCKTRAILER MUST be aligned on a 64-byte boundary.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	btype
	cLevel
	cEnt

	lcbTotal

	rgbid (variable)

	...

	rgbPadding (variable, optional)

	...

	blockTrailer (16 bytes)

	...

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	btype
	cLevel
	cEnt

	lcbTotal

	rgbid (variable)

	...

	rgbPadding (variable, optional)

	...

	blockTrailer

	...

	...

btype (1 byte): Block type; MUST be set to 0x01 to indicate an XBLOCK or XXBLOCK.
cLevel (1 byte): MUST be set to 0x01 to indicate an XBLOCK.
cEnt (2 bytes): The count of BID entries in the XBLOCK.
lcbTotal (4 bytes): Total count of bytes of all the external data stored in the data blocks referenced by XBLOCK.
rgbid (variable): Array of BIDs that reference data blocks. The size is equal to the number of entries indicated by cEnt multiplied by the size of a BID (8 bytes for Unicode PST files, 4 bytes for ANSI PST files).
rgbPadding (variable, optional): This field is present if the total size of all of the other fields is not a multiple of 64. The size of this field is the smallest number of bytes required to make the size of the XBLOCK a multiple of 64. Implementations MUST ignore this field.
blockTrailer (ANSI: 12 bytes; Unicode: 16 bytes): A BLOCKTRAILER structure (section 2.2.2.8.1).
[bookmark: section_061b6ac4d1da468cb75d0303a0a8f468][bookmark: _Toc174686104]XXBLOCK
The XXBLOCK further expands the data that is associated with a node by using an array of BIDs that reference XBLOCKs. A BLOCKTRAILER is present at the end of an XXBLOCK, and the end of the BLOCKTRAILER MUST be aligned on a 64-byte boundary.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	btype
	cLevel
	cEnt

	lcbTotal

	rgbid (variable)

	...

	rgbPadding (variable, optional)

	...

	blockTrailer (16 bytes)

	...

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	btype
	cLevel
	cEnt

	lcbTotal

	rgbid (variable)

	...

	rgbPadding (variable, optional)

	...

	blockTrailer

	...

	...

btype (1 byte): Block type; MUST be set to 0x01 to indicate an XBLOCK or XXBLOCK.
cLevel (1 byte): MUST be set to 0x02 to indicate and XXBLOCK.
cEnt (2 bytes): The count of BID entries in the XXBLOCK.
lcbTotal (4 bytes): Total count of bytes of all the external data stored in XBLOCKs under this XXBLOCK.
rgbid (variable): Array of BIDs that reference XBLOCKs. The size is equal to the number of entries indicated by cEnt multiplied by the size of a BID (8 bytes for Unicode PST files, 4 bytes for ANSI PST Files).
rgbPadding (variable, optional): This field is present if the total size of all of the other fields is not a multiple of 64. The size of this field is the smallest number of bytes required to make the size of the XXBLOCK a multiple of 64. Implementations MUST ignore this field.
blockTrailer (ANSI: 12 bytes; Unicode: 16 bytes): A BLOCKTRAILER structure (section 2.2.2.8.1).
[bookmark: section_0c7d9bd5e3cf43cc9292a32c7b2666da][bookmark: _Toc174686105]Subnode BTree
The subnode BTree collectively refers to all the elements that make up a subnode. The subnode BTree is a BTree that is made up of SIBLOCK and SLBLOCK structures, which contain SIENTRY and SLENTRY structures, respectively. These structures are defined in the following sections.
[bookmark: section_03fddfe612864588ac01e12a5fd8dec9][bookmark: _Toc174686106]SLBLOCKs
An SLBLOCK is a block that contains an array of SLENTRYs. It is used to reference the subnodes of a node.
[bookmark: section_85c4d943077943c5bd9861dc9bb5dfd6][bookmark: _Toc174686107]SLENTRY (Leaf Block Entry)
SLENTRY are records that refer to internal subnodes of a node.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nid

	...

	bidData

	...

	bidSub

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nid

	bidData

	bidSub

nid (Unicode: 8 bytes; ANSI: 4 bytes): Local NID of the subnode. This NID is guaranteed to be unique only within the parent node.
bidData (Unicode: 8 bytes; ANSI: 4 bytes): The BID of the data block associated with the subnode.
bidSub (Unicode: 8 bytes; ANSI: 4 bytes): If nonzero, the BID of the subnode of this subnode.
[bookmark: section_5182eb244b0b4816aa3f719cc6e6b018][bookmark: _Toc174686108]SLBLOCK
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	btype
	cLevel
	cEnt

	dwPadding

	rgentries (variable)

	...

	rgbPadding (variable, optional)

	...

	blockTrailer (16 bytes)

	...

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	btype
	cLevel
	cEnt

	rgentries (variable)

	...

	rgbPadding (variable, optional)

	...

	blockTrailer

	...

	...

btype (1 byte): Block type; MUST be set to 0x02.
cLevel (1 byte): MUST be set to 0x00.
cEnt (2 bytes): The number of SLENTRYs in the SLBLOCK. This value and the number of elements in the rgentries array MUST be non-zero. When this value transitions to zero, it is required for the block to be deleted.
dwPadding (4 bytes, Unicode only): Padding; MUST be set to zero.
rgentries (variable size): Array of SLENTRY structures. The size is equal to the number of entries indicated by cEnt multiplied by the size of an SLENTRY (24 bytes for Unicode PST files, 12 bytes for ANSI PST Files).
rgbPadding (optional, variable): This field is present if the total size of all of the other fields is not a multiple of 64. The size of this field is the smallest number of bytes required to make the size of the SLBLOCK a multiple of 64. Implementations MUST ignore this field.
blockTrailer (ANSI: 12 bytes; Unicode: 16 bytes): A BLOCKTRAILER structure (section 2.2.2.8.1).
[bookmark: section_1e606d2fe0434373a32df5d1557612c9][bookmark: _Toc174686109]SIBLOCKs
An SIBLOCK is a block that contains an array of SIENTRYs. It is used to extend the number of subnodes that a node can reference by chaining SLBLOCKS.
[bookmark: section_9e79c673d2f449fba00b51b08fd2d1e4][bookmark: _Toc174686110]SIENTRY (Intermediate Block Entry)
SIENTRY are intermediate records that point to SLBLOCKs.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nid

	...

	bid

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nid

	bid

nid (Unicode: 8 bytes; ANSI: 4 bytes): The key NID value to the next-level child block. This NID is only unique within the parent node. The NID is extended to 8 bytes in order for Unicode PST files to follow the general convention of 8-byte indices (see section 2.2.2.7.7.4 for details).
bid (Unicode: 8 bytes; ANSI: 4 bytes): The BID of the SLBLOCK.
[bookmark: section_729fb9bd060a4bbc9b3b8f014b487dad][bookmark: _Toc174686111]SIBLOCK
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	btype
	cLevel
	cEnt

	dwPadding

	rgentries (variable)

	...

	rgbPadding (variable, optional)

	...

	blockTrailer (16 bytes)

	...

	...

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	btype
	cLevel
	cEnt

	rgentries (variable)

	...

	...

	...

	rgbPadding (variable, optional)

	...

	...

	...

	blockTrailer

	...

	...

btype (1 byte): Block type; MUST be set to 0x02.
cLevel (1 byte): MUST be set to 0x01.
cEnt (2 bytes): The number of SIENTRYs in the SIBLOCK.
dwPadding (4 bytes, Unicode only): Padding; MUST be set to zero.
rgentries (variable size): Array of SIENTRY structures. The size is equal to the number of entries indicated by cEnt multiplied by the size of an SIENTRY (16 bytes for Unicode PST files, 8 bytes for ANSI PST Files).
rgbPadding (optional, variable): This field is present if the total size of all of the other fields is not a multiple of 64. The size of this field is the smallest number of bytes required to make the size of the SIBLOCK a multiple of 64. Implementations MUST ignore this field.
blockTrailer (ANSI: 12 bytes; Unicode: 16 bytes): A BLOCKTRAILER structure (section 2.2.2.8.1).
[bookmark: section_77007716799344fe9b409526157cfc6d][bookmark: _Toc174686112]LTP Layer
The LTP layer builds on top of the NDB infrastructure to provide the structured storage elements that are required to represent complex messaging-related objects such as Folder objects, Message objects and Attachment objects.
The LTP defines a heap on an NDB node as well as a BTree that is defined within the heap structure.
The LTP uses these abstractions to further define property contexts and table contexts which represent collections of property-value pairs and tables consisting of rows of columns, respectively.
[bookmark: section_77ce49a337724d8dbb2c2f7520a238a6][bookmark: _Toc174686113]HN (Heap-on-Node)
The Heap-on-Node defines a standard heap over a node's data stream. Taking advantage of the flexible structure of the node, the organization of the heap data can take on several forms, depending on how much data is stored in the heap.
For heaps whose size exceed the amount of data that can fit in one data block, the first data block in the HN contains a full header record and a trailer record. With the exception of blocks that require an HNBITMAPHDR structure, subsequent data blocks only have an abridged header and a trailer. This is explained in more detail in the following sections. Because the heap is a structure that is defined at a higher layer than the NDB, the heap structures are written to the external data sections of data blocks and do not use any information from the data block's NDB structure.
[bookmark: section_85b9e985ea53447fb70ceb82bfbdcbc9][bookmark: _Toc174686114]HID
An HID is a 4-byte value that identifies an item allocated from the heap. The value is unique only within the heap itself. The following is the structure of an HID.
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	hidType
	hidIndex
	hidBlockIndex

hidType (5 bits): HID Type; MUST be set to 0 (NID_TYPE_HID) to indicate a valid HID.
hidIndex (11 bits): HID index. This is the 1-based index value that identifies an item allocated from the heap node. This value MUST NOT be zero.
hidBlockIndex (16 bits): This is the zero-based data block index. This number indicates the zero-based index of the data block in which this heap item resides.
[bookmark: section_8e4ae05c3c244103b7e5ffef6f244834][bookmark: _Toc174686115]HNHDR
The HNHDR record resides at the beginning of the first data block in the HN (an HN can span several blocks), which contains root information about the HN.
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ibHnpm
	bSig
	bClientSig

	hidUserRoot

	rgbFillLevel

ibHnpm (2 bytes): The byte offset to the HN page Map record (section 2.3.1.5), with respect to the beginning of the HNHDR structure.
bSig (1 byte): Block signature; MUST be set to 0xEC to indicate an HN.
bClientSig (1 byte): Client signature. This value describes the higher-level structure that is implemented on top of the HN. This value is intended as a hint for a higher-level structure and has no meaning for structures defined at the HN level. The following values are pre-defined for bClientSig. All other values not described in the following table are reserved and MUST NOT be assigned or used.
	Value
	Friendly name
	Meaning

	0x6C
	bTypeReserved1
	Reserved

	0x7C
	bTypeTC
	Table Context (TC/HN)

	0x8C
	bTypeReserved2
	Reserved

	0x9C
	bTypeReserved3
	Reserved

	0xA5
	bTypeReserved4
	Reserved

	0xAC
	bTypeReserved5
	Reserved

	0xB5
	bTypeBTH
	BTree-on-Heap (BTH)

	0xBC
	bTypePC
	Property Context (PC/BTH)

	0xCC
	bTypeReserved6
	Reserved

hidUserRoot (4 bytes): HID that points to the User Root record. The User Root record contains data that is specific to the higher level.
rgbFillLevel (4 bytes): Per-block Fill Level Map. This array consists of eight 4-bit values that indicate the fill level for each of the first 8 data blocks (including this header block). If the HN has fewer than 8 data blocks, then the values corresponding to the non-existent data blocks MUST be set to zero. The following table explains the values indicated by each 4-bit value.
	Value
	Friendly name
	Meaning

	0x0
	FILL_LEVEL_EMPTY
	At least 3584 bytes free / data block does not exist

	0x1
	FILL_LEVEL_1
	2560-3584 bytes free

	0x2
	FILL_LEVEL_2
	2048-2560 bytes free

	0x3
	FILL_LEVEL_3
	1792-2048 bytes free

	0x4
	FILL_LEVEL_4
	1536-1792 bytes free

	0x5
	FILL_LEVEL_5
	1280-1536 bytes free

	0x6
	FILL_LEVEL_6
	1024-1280 bytes free

	0x7
	FILL_LEVEL_7
	768-1024 bytes free

	0x8
	FILL_LEVEL_8
	512-768 bytes free

	0x9
	FILL_LEVEL_9
	256-512 bytes free

	0xA
	FILL_LEVEL_10
	128-256 bytes free

	0xB
	FILL_LEVEL_11
	64-128 bytes free

	0xC
	FILL_LEVEL_12
	32-64 bytes free

	0xD
	FILL_LEVEL_13
	16-32 bytes free

	0xE
	FILL_LEVEL_14
	8-16 bytes free

	0xF
	FILL_LEVEL_FULL
	Data block has less than 8 bytes free

[bookmark: section_9c34ecf836bc45a1a2dfee35c6dc840a][bookmark: _Toc174686116]HNPAGEHDR
This is the header record used in subsequent data blocks of the HN that do not require a new Fill Level Map (see next section). This is only used when multiple data blocks are present.
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ibHnpm

ibHnpm (2 bytes): The bytes offset to the HNPAGEMAP record (section 2.3.1.5), with respect to the beginning of the HNPAGEHDR structure.
[bookmark: section_822e2327b29d4ec491be45637a438d40][bookmark: _Toc174686117]HNBITMAPHDR
Beginning with the eighth data block, a new Fill Level Map is required. An HNBITMAPHDR fulfills this requirement. The Fill Level Map in the HNBITMAPHDR can map 128 blocks. This means that an HNBITMAPHDR appears at data block 8 (the first data block is data block 0) and thereafter every 128 blocks. (that is, data block 8, data block 136, data block 264, and so on).
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ibHnpm
	rgbFillLevel (64 bytes)

	...

	...

ibHnpm (2 bytes): The byte offset to the HNPAGEMAP record (section 2.3.1.5) relative to the beginning of the HNPAGEHDR structure.
rgbFillLevel (64 bytes): Per-block Fill Level Map. This array consists of one hundred and twenty-eight (128) 4-bit values that indicate the fill level for the next 128 data blocks (including this data block). If the HN has fewer than 128 data blocks after this data block, then the values corresponding to the non-existent data blocks MUST be set to zero. See rgbFillLevel in section 2.3.1.2 for possible values.
[bookmark: section_291653c0b3474c5bba4185ad780b4ba4][bookmark: _Toc174686118]HNPAGEMAP
The HNPAGEMAP is the last item in the variable length data portion of the block immediately following the last heap item. There can be anywhere from 0 to 63 bytes of padding between the HNPAGEMAP and the block trailer. The beginning of the HNPAGEMAP is aligned on a 2-byte boundary so there can be an additional 1 byte of padding between the last heap item and the HNPAGEMAP.
The HNPAGEMAP structure contains the information about the allocations in the page. The HNPAGEMAP is located using the ibHnpm field in the HNHDR, HNPAGEHDR and HNBITMAPHDR records.
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	cAlloc
	cFree

	rgibAlloc (variable)

	...

cAlloc (2 bytes): Allocation count. This represents the number of items (allocations) in the HN.
cFree (2 bytes): Free count. This represents the number of freed items in the HN.
rgibAlloc (variable): Allocation table. This contains cAlloc + 1 entries. Each entry is a WORD value that is the byte offset to the beginning of the allocation. An extra entry exists at the cAlloc + 1st position to mark the offset of the next available slot. Therefore, the nth allocation starts at offset rgibAlloc[n] (from the beginning of the HN header), and its size is calculated as rgibAlloc[n + 1] – rgibAlloc[n] bytes.
[bookmark: section_a3fa280ceba3434f86e4b95141b3c7b1][bookmark: _Toc174686119]Anatomy of HN Data Blocks
The following diagram shows the organization of a Heap node.[image: Data organization of a Heap node]
Figure 4: Data organization of a Heap node
This illustrates the data organization for an HN that consists of a single data block, and an HN that consists of multiple data blocks through the use of a data tree construct. Note than an XXBLOCK can be used if the space required exceeds the capacity of an XBLOCK.
[bookmark: section_5025dd4ecca84d12ad51f40e992c9506][bookmark: _Toc174686120]Single-Block Configuration
The single-block HN consists of a single data block with an HNHDR header structure and an HNPAGEMAP trailer structure at the end. The diagram in section 2.3.1.6 also shows how all the items allocated from the heap are located in the space between the HNHDR and the HNPAGEMAP structures.
[bookmark: section_1bf67b8acbe84b589ddc89997126da17][bookmark: _Toc174686121]Data Tree Configuration
In the case of the multi-block HN, a data tree is used to fan out into multiple data blocks. An XXBLOCK is used if the HN exceeds the capacity of an XBLOCK, but the maximum number of blocks is 2 to the 16th power because of the 16-bit capacity of hidBlockIndex (section 2.3.1.1). The first data block is identical to the single-block case. Because the HNHDR has eight Fill Level Map slots, the next seven blocks only have the abbreviated HNPAGEHDR header structure. The eighth block, however, only has an HNBITMAPHDR header structure because a new Fill Level Map is needed. Because HNBITMAPHDR has 128 slots, it is only required once every 128 blocks thereafter. All the blocks in-between have the HNPAGEHDR header instead.
In terms of data arrangement, the data tree case is an extension to the single-block case, where individual heap items are allocated from the leaf data blocks in a similar manner.
[bookmark: section_2dd1a95ac8b14ac587d110cb8de64053][bookmark: _Toc174686122]BTree-on-Heap (BTH)
A BTree-on-Heap implements a classic BTree on a heap node. A BTH consists of several parts: A header, the BTree records, and optional BTree data. The following diagram shows a high-level schematic of a BTH.
[image: Data organization of a BTH]
Figure 5: Data organization of a BTH
The preceding diagram shows a BTH with two levels of indices. The top-level index (Key, HID) value pairs actually point to heap items that contain the Level 1 Indices, which, in turn, point to heap items that contain the leaf (Key, data) value pairs. Each of the six boxes in the diagram actually represents six separate items allocated out of the same HN, as indicated by their associated HIDs.
[bookmark: section_5a6ab19e1f444defad647bd82d94bd78][bookmark: _Toc174686123]BTHHEADER
The BTHHEADER contains the BTH metadata, which instructs the reader how to access the other objects of the BTH structure.
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	bType
	cbKey
	cbEnt
	bIdxLevels

	hidRoot

bType (1 byte): MUST be bTypeBTH.
cbKey (1 byte): Size of the BTree Key value, in bytes. This value MUST be set to 2, 4, 8, or 16.
cbEnt (1 byte): Size of the data value, in bytes. This MUST be greater than zero and less than or equal to 32.
bIdxLevels (1 byte): Index depth. This number indicates how many levels of intermediate indices exist in the BTH. Note that this number is zero-based, meaning that a value of zero actually means that the BTH has one level of indices. If this value is greater than zero, then its value indicates how many intermediate index levels are present.
hidRoot (4 bytes): This is the HID that points to the BTH entries for this BTHHEADER. The data consists of an array of BTH records. This value is set to zero if the BTH is empty.
[bookmark: section_2c992ac11b214167b111f76cf609005f][bookmark: _Toc174686124]Intermediate BTH (Index) Records
Index records do not contain actual data, but point to other index records or leaf records. The format of the intermediate index record is as follows. The number of index records can be determined based on the size of the heap allocation.
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	key (variable)

	...

	hidNextLevel

key (variable): This is the key of the first record in the next level index record array. The size of the key is specified in the cbKey field in the corresponding BTHHEADER structure (section 2.3.2.1). The size and contents of the key are specific to the higher level structure that implements this BTH.
hidNextLevel (4 bytes): HID of the next level index record array. This contains the HID of the heap item that contains the next level index record array.
[bookmark: section_660db569c8f7451682ad44709b1c667f][bookmark: _Toc174686125]Leaf BTH (Data) Records
Leaf BTH records contain the actual data associated with each key entry. The BTH records are tightly packed (that is, byte-aligned), and each record is exactly cbKey + cbEnt bytes in size. The number of data records can be determined based on the size of the heap allocation.
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	key (variable)

	...

	data (variable)

	...

key (variable): This is the key of the record. The size of the key is specified in the cbKey field in the corresponding BTHHEADER structure(section 2.3.2.1). The size and contents of the key are specific to the higher level structure that implements this BTH.
data (variable): This contains the actual data associated with the key. The size of the data is specified in the cbEnt field in the corresponding BTHHEADER structure. The size and contents of the data are specific to the higher level structure that implements this BTH.
[bookmark: section_294c83c6ff9242f5b6b6876c29fa9737][bookmark: _Toc174686126]Property Context (PC)
The Property Context is built directly on top of a BTH. The existence of a PC is indicated at the HN level, where bClientSig is set to bTypePC. Implementation-wise, the PC is simply a BTH with cbKey set to 2 and cbEnt set to 6 (see section 2.3.3.3). The following section explains the layout of a PC BTH record.
Each property is stored as an entry in the BTH. Accessing a specific property is just a matter of searching the BTH for a key that matches the property identifier of the desired property, as the following data structure illustrates.
[bookmark: section_dbd9b0b584fa435aba1d67790d358c41][bookmark: _Toc174686127]Accessing the PC BTHHEADER
The BTHHEADER structure of a PC is accessed through the hidUserRoot of the HNHDR structure of the containing HN.
[bookmark: section_7ac490ce31af4a7597dfeb9d07a003fd][bookmark: _Toc174686128]HNID
An HNID is a 32-bit hybrid value that represents either an HID or an NID. The determination is made by examining the hidType (or equivalently, nidType) value. The HNID refers to an HID if the hidType is NID_TYPE_HID. Otherwise, the HNID refers to an NID.
An HNID that refers to an HID indicates that the item is stored in the data block. An HNID that refers to an NID indicates that the item is stored in the subnode block, and the NID is the local NID under the subnode where the raw data is located.
[bookmark: section_7daab6f5ce65437e80d51b1be4088bd3][bookmark: _Toc174686129]PC BTH Record
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	wPropId
	wPropType

	dwValueHnid

wPropId (2 bytes): Property ID, as specified in [MS-OXCDATA] section 2.9. This is the upper 16 bits of the property tag value. This is a manifestation of the BTH record (section 2.3.2.3) and constitutes the key of this record.
wPropType (2 bytes): Property type. This is the lower 16 bits of the property tag value, which identifies the type of data that is associated with the property. The complete list of property type values and their data sizes are specified in [MS-OXCDATA] section 2.11.1.
dwValueHnid (4 bytes): Depending on the data size of the property type indicated by wPropType and a few other factors, this field represents different values. The following table explains the value contained in dwValueHnid based on the different scenarios. In the event where the dwValueHnid value contains an HID or NID (section 2.3.3.2), the actual data is stored in the corresponding heap or subnode entry, respectively.
	Variable size?
	Fixed data size
	NID_TYPE(dwValueHnid) == NID_TYPE_HID?
	dwValueHnid

	N
	<= 4 bytes
	-
	Data Value

	
	> 4 bytes
	Y
	HID

	Y
	-
	Y
	HID (<= 3580 bytes)

	
	
	N
	NID (subnode, > 3580 bytes)

[bookmark: section_8867b1c4d15c49aebb785e35615c4cfd][bookmark: _Toc174686130]Multi-Valued Properties
Multi-valued (MV) properties are properties that contain an array of values. A Multi-Valued property can be derived from any basic property type, for example: PtypInteger32, PtypGuid, PtypString, PtypBinary ([MS-OXCDATA] section 2.11.1). The value of an MV property is stored using an HNID, and is encoded in a packed binary format. The following explains the data format for Multi-valued properties:
[bookmark: section_73b910ea09c045128cd2e98d06497d51][bookmark: _Toc174686131]MV Properties with Fixed-size Base Type
When an MV property contains elements of fixed size, such as PtypInteger32 or PtypGuid, the data layout is very straightforward. The number of elements present is determined by dividing the size of the heap or node data size by the size of the data type. Each data element is aligned with respect to its own data type, which results in a tightly-packed array of elements.
For example, if the HID points to an allocation of 64 bytes, and the Fixed-size type is a PtypInteger64 (8 bytes), then the number of items in the MV property is 64 / 8 = 8 items. The size of the heap or node data MUST be an integer multiple of the data type size.
[bookmark: section_45063075c65d48cda441f86809bcc6eb][bookmark: _Toc174686132]MV Properties with Variable-size Base Type
When the MV property contains variable-size elements, such as PtypBinary, PtypString, or PtypString8), the data layout is more complex. The following is the data format of a multi-valued property with variable-size base type.
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ulCount

	rgulDataOffsets (variable)

	...

	rgDataItems (variable)

	...

ulCount (4 bytes): Number of data items in the array.
rgulDataOffsets (variable): An array of ULONG values that represent offsets to the start of each data item for the MV array. Offsets are relative to the beginning of the MV property data record. The length of the Nth data item is calculated as: rgulDataOffsets[N+1] – rgulDataOffsets[N], with the exception of the last item, in which the total size of the MV property data record is used instead of rgulDataOffsets[N+1].
rgDataItems (variable): A byte-aligned array of data items. Individual items are delineated using the rgulDataOffsets values.
[bookmark: section_49457d57820e453dbbc01d192a999814][bookmark: _Toc174686133]PtypObject Properties
When a property of type PtypObject is stored in a PC, the dwValueHnid value described in section 2.3.3.3 points to a heap allocation that contains a structure that defines the size and location of the object data.
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Nid

	ulSize

Nid (4 bytes): The subnode identifier that contains the object data.
ulSize (4 bytes): The total size of the object.
[bookmark: section_235cb001ebd64124872a73b7d2485b8f][bookmark: _Toc174686134]Anatomy of a PC
The following diagram provides a visual representation how the various storage scenarios play out in a PC.
[image: Data organization of a property context]
Figure 6: Data organization of a property context
This example shows a PC that is represented using a single data block and the subnode. For a small BTH, a subnode is not used. The data block points to an HN, which in turn contains a BTH that is built on top of an HN as shown. For a PC, the hidUserRoot of the HN points to the BTHHEADER (allocated form the heap with HID set to 0x20). The hidRoot of the BTHHEADER points to the array of PC BTH records, which is also allocated from the heap (with HID set to 0x40).
The property-value pairs in the PC BTH records are stored using the rules described in the previous sections. For a 32-bit PtypInteger32 ([MS-OXCDATA] section 2.11.1) property, the value is stored inline. For variable-size properties such as strings and binary BLOBs, an HNID is used to reference the data location. For the PtypString ([MS-OXCDATA] section 2.11.1) case, the data fits into the available space in the heap, and therefore is stored in the heap (HNID=0x60).
In the PtypBinary ([MS-OXCDATA] section 2.11.1) case, because the BLOB is too large to fit within the heap (larger than 3580 bytes), the subnode is used to store the data. In this case, the value of HNID is set to the subnode NID that contains the binary data. Note that the subnode structure in the diagram is significantly simplified for illustrative purposes.
[bookmark: section_5e48be0da75a4918a27750408ff96740][bookmark: _Toc174686135]Table Context (TC)
A Table Context represents a table with rows of columns. From an implementation perspective, a TC is a complex, composite structure that is built on top of an HN. The presence of a TC is indicated at both the NDB and LTP Layers. At the NDB Layer, a TC is indicated through one of the special NID_TYPEs, and at the LTP Layer, a value of bTypeTC for bClientSig in the HNHDR structure is reserved for TCs. The underlying TC data is separated into 3 entries: a header with Column descriptors, a RowIndex (a nested BTH), and the actual table data (known as the Row Matrix).
The Row Matrix contains the actual row data for the TC. New rows are appended to the end of the Row Matrix, which means that the rows are not sorted in any meaningful manner. To provide a way to efficiently search the Row Matrix for a particular data row, each TC also contains an embedded BTH, known as the RowIndex, to provide a 32-bit "primary index" for the Row Matrix. Each 32-bit value is a key that uniquely identifies a row within the Row Matrix.
In practice, the Row Matrix is stored in a subnode because of its typical size, but in rare cases, a TC can fit into a single data block if it is small enough. To facilitate navigation between rows, each row of data is of the same size, and the size is stored in the TCINFO header structure (section 2.3.4.1). To further help with data packing and alignment, the data values are grouped according to its corresponding data size. DWORD and ULONGLONG values are grouped first, followed by WORD-sized data, and then byte-sized data. The TCINFO structure contains an array of offsets that points to the starting offset of each group of data.
The TC also includes a construct known as a Cell Existence Bitmap (CEB), which is used to denote whether a particular column in a particular row actually "exists". A CEB is present at the end of each row of data in the Row Matrix that indicates which columns in that row exists and which columns don't exist.
The following diagram depicts the various elements of a TC, and how they relate to each other.
[image: Data organization of a Table Context]
Figure 7: Data organization of a Table Context
The preceding example illustrates a typical TC arrangement, where the metadata is stored in the main data block (a data tree can be used if the TC is large), and the Row Matrix is stored in the corresponding subnode. Note that the numerical values used in the example are for reference purposes only.
The hidUserRoot of the HNHDR points to the TC header, which is allocated from the heap with HID=0x20. The TC header contains a TCINFO structure, followed by an array of column descriptors. The TCINFO structure contains pointers that point to the RowIndex (hidRowIndex) and The Row Matrix (hnidRowData). The RowIndex is allocated off the heap, whereas the Row Matrix is stored in the subnode (in rare cases where the TC is very small, the Row Matrix can be stored in a heap allocation instead. Note that the subnode structure in the diagram is significantly simplified for illustrative purposes.
The next sections describe actual data structures associated with Table Contexts:
[bookmark: section_45b3a0c5d6d64e02aebf13766ff693f0][bookmark: _Toc174686136]TCINFO
TCINFO is the header structure for the TC. The TCINFO is accessed using the hidUserRoot field in the HNHDR structure of the containing HN. The header contains the column definitions and other relevant data.
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	bType
	cCols
	rgib

	...

	...
	hidRowIndex

	...
	hnidRows

	...
	hidIndex

	...
	rgTCOLDESC (variable)

	...

bType (1 byte): TC signature; MUST be set to bTypeTC.
cCols (1 byte): Column count. This specifies the number of columns in the TC.
rgib (8 bytes): This is an array of 4 16-bit values that specify the offsets of various groups of data in the actual row data. The application of this array is specified in section 2.3.4.4, which covers the data layout of the Row Matrix. The following table lists the meaning of each value:
	Index
	Friendly name
	Meaning of rgib[Index] value

	0
	TCI_4b
	Ending offset of 8- and 4-byte data value group.

	1
	TCI_2b
	Ending offset of 2-byte data value group.

	2
	TCI_1b
	Ending offset of 1-byte data value group.

	3
	TCI_bm
	Ending offset of the Cell Existence Block.

hidRowIndex (4 bytes): HID to the Row ID BTH. The Row ID BTH contains (RowID, RowIndex) value pairs that correspond to each row of the TC. The RowID is a value that is associated with the row identified by the RowIndex, whose meaning depends on the higher level structure that implements this TC. The RowIndex is the zero-based index to a particular row in the Row Matrix.
hnidRows (4 bytes): HNID to the Row Matrix (that is, actual table data). This value is set to zero if the TC contains no rows.
hidIndex (4 bytes): Deprecated. Implementations SHOULD ignore this value, and creators of a new PST MUST set this value to zero.
rgTCOLDESC (variable): Array of Column Descriptors. This array contains cCols entries of type TCOLDESC structures that define each TC column. The entries in this array MUST be sorted by the tag field of TCOLDESC.
[bookmark: section_3a2f63cfbb404559910ce55ec43d9cbb][bookmark: _Toc174686137]TCOLDESC
The TCOLDESC structure describes a single column in the TC, which includes metadata about the size of the data associated with this column, as well as whether a column exists, and how to locate the column data from the Row Matrix.
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	tag

	ibData
	cbData
	iBit

tag (4 bytes): This field specifies that 32-bit tag that is associated with the column.
ibData (2 bytes): Data Offset. This field indicates the offset from the beginning of the row data (in the Row Matrix) where the data for this column can be retrieved. Because each data row is laid out the same way in the Row Matrix, the Column data for each row can be found at the same offset.
cbData (1 byte): Data size. This field specifies the size of the data associated with this column (that is, "width" of the column), in bytes per row. However, in the case of variable-sized data, this value is set to the size of an HNID instead. This is explained further in section 2.3.4.4.
iBit (1 byte): Cell Existence Bitmap Index. This value is the 0-based index into the CEB bit that corresponds to this Column. A detailed explanation of the mapping mechanism will be discussed in section 2.3.4.4.1.
[bookmark: section_bba20ff275fd474ab3e7a46f0d9116db][bookmark: _Toc174686138]The RowIndex
The hidRowIndex member in TCINFO points to an embedded BTH that contains an array of (dwRowID, dwRowIndex) value pairs, which provides a 32-bit primary index for searching the Row Matrix. Simply put, the RowIndex maps dwRowID, a unique identifier, to the index of a particular row in the Row Matrix.
The RowIndex itself is a generic mechanism to provide a 32-bit primary key and therefore it is up to the implementation to decide what value to use for the primary key. However, an NID value is used as the primary key because of its uniqueness within a PST.
The following is the layout of the BTH data record used in the RowIndex.
[bookmark: section_e20b5cf4ea5648b8a8fae086c9b862ca][bookmark: _Toc174686139]TCROWID
The TCROWID structure is a manifestation of the BTH data record (section 2.3.2.3). The size of the TCROWID structure varies depending on the version of the PST. For the Unicode PST, each record in the BTH are 8 bytes in size, where cbKey is set to 4 and cEnt is set to 4. For an ANSI PST, each record is 6 bytes in size, where cbKey is set to 4 and cEnt is set to 2. The following is the binary layout of the TCROWID structure.
Unicode:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	dwRowID

	dwRowIndex

ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	dwRowID

	dwRowIndex

dwRowID (4 bytes): This is the 32-bit primary key value that uniquely identifies a row in the Row Matrix.
dwRowIndex (Unicode: 4 bytes; ANSI: 2 bytes): The 0-based index to the corresponding row in the Row Matrix. Note that for ANSI PSTs, the maximum number of rows is 2^16.
[bookmark: section_7f5ec68fd4fd404f95c3fe3495a034ec][bookmark: _Toc174686140]Row Matrix
The Row Matrix contains the actual data for the rows and columns of the TC. The data is physically arranged in rows; each row contains the data for each of its columns. Each row of column data in the Row Matrix is of the same size and is arranged in the same layout, and the size of each row is specified in the rgib[TCI_bm] value in the TCINFO header structure.
However, in many cases, the Row Matrix is larger than 8 kilobytes and therefore cannot fit in a single data block, which means that a data tree is used to store the Row Matrix in separate data blocks. This means that the row data is partitioned across two or more data blocks and needs special handling considerations.
The design of a TC dictates that each data block MUST store an integral number of rows, which means that rows cannot span across two blocks, and that each block MUST start with a fresh row. This also means that in order for a client to access a particular row in the Row Matrix, it first calculates how many rows fit in a block, and calculates the row index within that block at which the row data is located. The general formulas to calculate the block index and row index for the Nth row are as follows:
Rows per block = Floor((sizeof(block) – sizeof(BLOCKTRAILER)) / TCINFO.rgib[TCI_bm])
Block index = N / (rows per block)
Row index = N % (rows per block)
Each block except the last one MUST have a size of 8192 bytes. If not, the file is considered corrupted. The size of a block is specified in the formula by sizeof(block).
The following diagram illustrates how the data in the Row Matrix is organized.
[image: Data organization of the Row Matrix]
Figure 8: Data organization of the Row Matrix
In addition to showing the data organization of the Row Matrix, this diagram also illustrates how the rows in the RowIndex relate to the row data in the Row Matrix. As illustrated by the crossing of dotted lines between the two structures, the Row Matrix data is unsorted, which makes searching inefficient. The RowIndex, which is implemented using an embedded BTH indexed by dwRowID, provides the primary search key to lookup specific rows in the Row Matrix.
It is also worth noting that because of the fact that partial rows are not allowed, there might be unused space at the end of the data block (shaded in gray in the diagram). Readers MUST ignore any such "dead space" and MUST NOT interpret its contents.
[bookmark: section_c48fa6b4bfd449d780f88718bc4bcddc][bookmark: _Toc174686141]Row Data Format
The following is the organization of a single row of data in the Row Matrix. Rows of data are tightly-packed in the Row Matrix, and the size of each data row is TCINFO.rgib[TCI_bm] bytes. The following constraints exist for the columns within the structure.
Columns MUST be sorted
1. PidTagLtpRowId MUST be assigned iBit == 0
2. PidTagLtpRowId MUST be assigned ibData == 0
3. PidTagLtpRowVer MUST be assigned iBit == 1
4. PidTagLtpRowVer MUST be assigned ibData == 4
5. For any other columns, iBit can change/be any valid value (other than 0 and 1)
6. For any other columns, ibData can be any valid value (other than 0 and 4)
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	dwRowID

	rgdwData (variable)

	...

	rgwData (variable)

	...

	rgbData (variable)

	...

	rgbCEB (variable)

	...

dwRowID (4 bytes): The 32-bit value that corresponds to the dwRowID value in this row's corresponding TCROWID record. Note that this value corresponds to the PidTagLtpRowId property.
rgdwData (variable): 4-byte-aligned Column data. This region contains data with a size that is a multiple of 4 bytes. The types of data stored in this region are 4-byte and 8-byte values.
rgwData (variable): 2-byte-aligned Column data. This region contains data that are 2 bytes in size.
rgbData (variable): Byte-aligned Column data. This region contains data that are byte-sized.
rgbCEB (variable): Cell Existence Block. This array of bits comprises the CEB, in which each bit corresponds to a particular Column in the current row. The mapping between CEB bits and actual Columns is based on the iBit member of each TCOLDESC (section 2.3.4.2), where an iBit value of zero maps to the Most Significant Bit (MSB) of the 0th byte of the CEB array (rgCEB[0]). Subsequent iBit values map to the next less-significant bit until the Least Significant Bit (LSB) is reached, where the subsequent iBit can be found in the MSB of the next byte in the CEB array and the process repeats itself. Programmatically, the Cell Existence Bit that corresponds to iBit can be extracted as follows:
BOOL fCEB = !!(rgCEB[iBit / 8] & (1 << (7 - (iBit % 8))));
Space is reserved for a column in the Row Matrix, regardless of the corresponding CEB bit value for that column. Specifically, an fCEB bit value of TRUE indicates that the corresponding column value in the Row matrix is valid and SHOULD be returned if requested. However, an fCEB bit value of false indicates that the corresponding column value in the Row matrix is "not set" or "invalid". In this case, the property MUST be "not found" if requested.
The size of rgCEB is CEIL(TCINFO.cCols / 8) bytes. Extra lower-order bits SHOULD be ignored. Creators of a new PST MUST set the extra lower-order bits to zero.
[bookmark: section_a8da3d6660514e308b8c2b7d3c373834][bookmark: _Toc174686142]Variable-sized Data
With respect to the TC, variable-sized data is defined as any data type that allows a variable size (such as strings), or any fixed-size data type that exceeds 8 bytes (for example, a GUID). In the case of variable-sized data, the actual data is stored elsewhere in the heap or in a subnode, and the HNID that references the data is stored the corresponding rgdwData slot instead. The following is a list of the property types that are stored using an HNID. A complete list of property types is specified in [MS-OXCDATA] section 2.11.1.
· PtypString
· PtypString8
· PtypBinary
· PtypObject
· PtypGuid
· All multi-valued types
The following table illustrates the handling of fixed- and variable-sized data in the TC (see section 2.3.3.2 for determining if an HNID is an HID or an NID).
	Variable size?
	Fixed data size
	NID_TYPE(dwValueHnid) == NID_TYPE_HID?
	rgdwData value

	N
	<= 8 bytes*
	-
	Data value

	
	> 8 bytes*
	Y
	HID

	Y
	-
	Y
	HID (<= 3580 bytes)

	
	
	N
	NID (subnode, > 3580 bytes)

This contrasts with the PC in that the TC stores 8-byte values inline (in rgdwData), whereas a PC would use an HNID for any data that exceeds 4-bytes in size.
All property value not stored inline in the Row Matrix are processed as described in section 2.3.3 Property Context (PC).
[bookmark: section_dc3b980b9d164451ad1c7384540f11ec][bookmark: _Toc174686143]Cell Existence Test
Despite the existence of the CEB, the size of each row of column data is still the same for every row. This means that a data slot exists for a column, whether or not the column exists for that row. Because the data slot of a non-existent column contains random values, third-party implementations MUST first check the CEB to determine if a column exists, and only process the column data if the column exists. This prevents any confusion resulting from interpreting invalid data from non-existent columns. Implementations MUST set the value of a non-existent column to zero.
[bookmark: section_e2e7a5aac89f4fb8b04415ac76e5207e][bookmark: _Toc174686144]Messaging Layer
The Messaging layer is a high-level layer that exposes functionality provided in the LTP Layer through Messaging semantics. Instead of primitive Property and Table Contexts, the Messaging Layer exposes objects in terms of message store, Folder objects, Message objects and Attachment objects, and defines the composite structures for each of these objects, as well as defines the rules that interrelate these objects with each other.
[bookmark: section_0510ece468534bef8cc88df3468e3ff1][bookmark: _Toc174686145]Special Internal NIDs
This section focuses on a special NID_TYPE: NID_TYPE_INTERNAL (0x01). As specified in section 2.2.2.1, the nidType of an NID is ignored by the NDB Layer, and is left for the interpretation by higher level implementations.
In the Messaging layer, nodes with various nidType values are also used to build related structures that collectively represent complex structures (for example, a Folder object is a composite object that consists of a PC and three TCs of various nidType values). In addition, the Messaging layer also uses NID_TYPE_INTERNAL to define special NIDs that have special functions.
Because top-level NIDs are globally-unique within a PST, it follows that each instance of a special NID can only appear once in a PST. The following table lists all predefined internal NIDs.
	Value
	Friendly name
	Meaning

	0x21
	NID_MESSAGE_STORE
	Message store node (section 2.4.3).

	0x61
	NID_NAME_TO_ID_MAP
	Named Properties Map (section 2.4.7).

	0xA1
	NID_NORMAL_FOLDER_TEMPLATE
	Special template node for an empty Folder object.

	0xC1
	NID_SEARCH_FOLDER_TEMPLATE
	Special template node for an empty search Folder object.

	0x122
	NID_ROOT_FOLDER
	Root Mailbox Folder object of PST.

	0x1E1
	NID_SEARCH_MANAGEMENT_QUEUE
	Queue of Pending Search-related updates.

	0x201
	NID_SEARCH_ACTIVITY_LIST
	Folder object NIDs with active Search activity.

	0x241
	NID_RESERVED1
	Reserved.

	0x261
	NID_SEARCH_DOMAIN_OBJECT
	Global list of all Folder objects that are referenced by any Folder object's Search Criteria.

	0x281
	NID_SEARCH_GATHERER_QUEUE
	Search Gatherer Queue (section 2.4.8.5.1).

	0x2A1
	NID_SEARCH_GATHERER_DESCRIPTOR
	Search Gatherer Descriptor (section 2.4.8.5.2).

	0x2E1
	NID_RESERVED2
	Reserved.

	0x301
	NID_RESERVED3
	Reserved.

	0x321
	NID_SEARCH_GATHERER_FOLDER_QUEUE
	Search Gatherer Folder Queue (section 2.4.8.5.3).

[bookmark: section_36c1290e8b1b4d8c91e1d9fb3147c11c][bookmark: _Toc174686146]Properties
A property is the basic unit of information in the Messaging layer. Each property consists of a property tag, and a value. The property tag consists of a property identifier, which identifies the property, and a property type, which identifies the type of data associated with the property.
[bookmark: section_8aa62bdf96d446d09e941f0808bbaabe][bookmark: _Toc174686147]Standard Properties
This document assumes the reader is already familiar with the concept of properties, and does not delve into details about properties beyond what is required to describe how properties are stored and handled in the PST file format. Property definitions are specified in [MS-OXPROPS].
[bookmark: section_60003704dfa6476fb782ce8bb52a2df3][bookmark: _Toc174686148]Named Properties
Named properties are a special type of properties which reside in a reserved range of property identifier values (that is, WORD values between 0x8000 and 0x8FFF). Named properties, unlike standard properties, have names and meanings that are context-specific.
The assignment of named property identifiers is sequential and starts from 0x8000. The first named property in the message store has a property identifier of 0x8000, followed by 0x8001, and so on. A mapping exists to map these property identifiers to property names. Note that a named property only maps a property identifier to a property name (which is a (GUID, Value) pair), but it says nothing about the data type of the named property. The data type of the named property is specified in property tag when the property is actually used (or stored). The effective scope of named properties is limited to the current PST only. In other words, the same named property identifier (for example, 0x8003) might map to different properties in different PSTs.
There are two ways to map a named property identifier (NPID) to a property name, the first way is to associate the NPID to a (GUID, string) value pair, and the second way is to associate the NPID to a (GUID, NameID) value pair. Each PST contains a special construct to provide the mapping between NPIDs to their property names. The technical details of this mapping mechanism are quite involved, and is presented in section 2.4.7.
[bookmark: section_db5192a953074c2d8278ae1c36be852d][bookmark: _Toc174686149]Calculated Properties
Calculated properties are properties that are well-known to the public but are not physically stored in the PST as individual properties. Instead, these properties are derived or calculated in one way or another using other properties and other existing data. A detailed account of all the calculated properties and how they are evaluated can be found in section 2.5.
[bookmark: section_aa0539bde7bf4cec8bde0b87c2a86baf][bookmark: _Toc174686150]Message Store
At the PST level, the message store is the root of the PST, which is the rough equivalent of the top of a Mailbox. The message store contains the top-level PST settings and metadata that are required to access and manage the PST contents.
At the LTP Level, the message store is implemented as a regular PC. At the NDB Layer, the message store is identified with a special internal NID value of NID_MESSAGE_STORE (0x21) (see section 2.4.1). Any valid PST MUST have exactly one message store node.
[bookmark: section_5493a0eb03564e88b4f50433ce0a93fa][bookmark: _Toc174686151]Minimum Set of Required Properties
The following properties MUST be present in any valid message store PC.
	Property identifier
	Property type
	Friendly name
	Description

	0x0FF9
	PtypBinary
	PidTagRecordKey
	Record key. This is the Provider UID of this PST.

	0x3001
	PtypString
	PidTagDisplayName
	Display name of PST

	0x35E0
	PtypBinary
	PidTagIpmSubTreeEntryId
	EntryID of the Root Mailbox Folder object

	0x35E3
	PtypBinary
	PidTagIpmWastebasketEntryId
	EntryID of the Deleted Items Folder object

	0x35E7
	PtypBinary
	PidTagFinderEntryId
	EntryID of the search Folder object

[bookmark: section_9378e8b97b6a45bfa51af21daf24d9ce][bookmark: _Toc174686152]Mapping between EntryID and NID
Objects in the message store are accessed externally using EntryIDs ([MS-OXCDATA] section 2.2), where within the PST, objects are accessed using their respective NIDs. The following explains the layout of the ENTRYID structure, which is used to map between an NID and its EntryID:
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	rgbFlags

	uid (16 bytes)

	...

	...

	nid

rgbFlags (4 bytes): Flags; each of these bytes MUST be initialized to zero.
uid (16 bytes): The provider UID of this PST, which is the value of the PidTagRecordKey property in the message store. If this property does not exist, the PST client MAY generate a new unique ID, or reject the PST as invalid.
nid (4 bytes): This is the corresponding NID of the underlying node that represents the object.
The corresponding NID of an EntryID can be directly extracted from the EntryID structure. In addition, the NID_TYPE of the NID can be further verified to ensure that the type of node (for example, NID_TYPE_NORMAL_MESSAGE) actually matches the type of object being referenced. Also, as a further verification mechanism, implementations can compare the uid field against the PidTagRecordKey property in the message store to ensure the EntryID actually refers to an item in the current PST. This is particularly useful if the implementation supports opening more than one PST at a time.
Conversely, the procedure for converting an NID to an EntryID simply involves constructing the ENTRYID structure from the NID and the PST Provider UID (PidTagRecordKey).
[bookmark: section_48468b1ecc814e2b82a79bf61adc948e][bookmark: _Toc174686153]PST Password Security
PST files support a password-protect feature that requires an end user to enter a pre-defined password before the PST can be opened. In practice, the PST password is just implemented at the UI level, meaning that the password is only required to gain access of the PST through the UI. The password itself is not used to secure the PST data in any way.
Specifically, the CRC-32 hash of the password text is stored in the PidTagPstPassword property in the PC associated with NID_MESSAGE_STORE, and if the property exists and is nonzero, implementations SHOULD prompt the end user for a password, compute the CRC-32 hash of the user password, and verify it against the value stored in PidTagPstPassword. Implementations MUST enforce the PST Password check if a nonzero value for PidTagPstPassword is set in the message store. Further discussion on PST Password Security can be found in section 4.2.
[bookmark: section_dee5b9d055134c5e94aa8bd28a9350b2][bookmark: _Toc174686154]Folders
Folder objects are hierarchical containers that are used to create a storage hierarchy for the message store. In the PST architecture, a single root Folder object exists at the top of the message store, from which an arbitrarily complex hierarchy of Folder objects descends to provide structured storage for all the Messaging objects.
At the LTP level, a Folder object is a composite entity that is represented using four LTP constructs. Specifically, each Folder object consists of one PC, which contains the properties directly associated with the Folder object, and three TCs for information about the contents, hierarchy and other associated information of the Folder object. Some Folder objects MAY have additional nodes that pertain to Search, which is discussed in section 2.4.8.6.
At the NDB level, the 4 LTP constructs are persisted as 4 separate top-level nodes (that is, 4 different NIDs). For identification purposes, the nidIndex portion for each of the NIDs is the same to indicate that these nodes collectively make up a Folder object. However, each of the 4 NIDs has a different nidType value to differentiate their respective function. The following diagram indicates the relationships among these elements.
[image: Components of a Folder object]
Figure 9: Components of a Folder object
The following sections explain the structure and function of each of the 4 composite elements of a Folder object,
[bookmark: section_2cdb6e4661b94426af1ee0c7bd889293][bookmark: _Toc174686155]Folder object PC
The Folder object PC is a PC that contains the immediate properties of the Folder object. The NID of a Folder object PC MUST have an NID_TYPE of NID_TYPE_NORMAL_FOLDER.
[bookmark: section_ec5b8b408b31461288c8510745f7ae80][bookmark: _Toc174686156]Property Schema of a Folder object PC
The default property schema of a Folder object is specified in [MS-OXCFOLD] and [MS-OXPROPS]. However, the following properties MUST be present in any valid Folder object PC.
	Property identifier
	Property type
	Friendly name
	Description

	0x3001
	PtypString
	PidTagDisplayName
	Display name of the Folder object.

	0x3602
	PtypInteger32
	PidTagContentCount
	Total number of items in the Folder object.

	0x3603
	PtypInteger32
	PidTagContentUnreadCount
	Number of unread items in the Folder object.

	0x360A
	PtypBoolean
	PidTagSubfolders
	Whether the Folder object has any sub-Folder objects.

[bookmark: section_5c9168e6c2c4496db8501dec10d9aef1][bookmark: _Toc174686157]Locating the Parent Folder object
The nidParent member in a Folder object PC node contains the NID of its parent Folder object. This allows efficient recursive traversal of parent Folder objects by only accessing the Folder object PC node of each Folder object.
[bookmark: section_fc498696c7994662b6e34b2854b9d6c0][bookmark: _Toc174686158]Folder Template Tables
The PST has the notion of folder template tables, which are blank TCs (that is, no data rows) with a set of columns. A folder template table exists for each of the three Folder object TCs (Hierarchy, Contents, and folder associated information (FAI)), and the folder template table serves two purposes:
· Defines the default column schema for each Folder object TC.
· Specifies which columns to copy from the child object into the TC.
In the first case, whenever a new Folder object is created, each of the folder template table TCs is duplicated into the new Folder object, which defines the default set of columns for each of the Folder object TCs. For the second case, when a new child object is created under the Folder object (for example, sub-Folder object, Message object, and so on), the default columns determine which properties of the child object is to be copied into the TC row.
[bookmark: section_0ca6bb6592c34c949276a7d5f8b15abe][bookmark: _Toc174686159]Data Duplication and Coherency Maintenance
It follows from the previous sections that information in each row of the Folder object TC are duplicates of properties in a child object. While this duplication of information allows efficient enumeration of sub-objects without having to enumerate and examine the sub-object nodes one-by-one, this duplication of information also requires additional effort to keep both copies of the information in sync. Implementations MUST ensure that changes to the underlying child object are correctly reflected in the parent Folder object TC.
[bookmark: section_63a983fc6d5b4573aa4c2858116c0f73][bookmark: _Toc174686160]Hierarchy Table
The hierarchy table is implemented as a TC. The NID of a hierarchy table MUST have an NID_TYPE of NID_TYPE_HIERARCHY_TABLE. Its function is to list the immediate sub-Folder objects of the Folder object. Note that the hierarchy table only contains sub-Folder object information. Information about Message objects stored in the Folder object is stored in the Contents Table (section 2.4.4.5) instead.
[bookmark: section_c08fb6cb2d9142e5b70df3e4f9781a2a][bookmark: _Toc174686161]Hierarchy Table Template
Each PST MUST have one hierarchy table template, which is identified with an NID value of NID_HIERARCHY_TABLE_TEMPLATE (0x60D). The hierarchy table template defines the set of columns for every new hierarchy table that is created. The hierarchy table template MUST have no data rows, and MUST contain the following property columns. The list of columns below represent the required properties, and different versions of Outlook can add additional properties to the template.
	Property identifier
	Property type
	Friendly name
	Description
	Copied?

	0x0E30
	PtypInteger32
	PidTagReplItemid
	Replication Item ID.
	N

	0x0E33
	PtypInteger64
	PidTagReplChangenum
	Replication Change Number.
	N

	0x0E34
	PtypBinary
	PidTagReplVersionHistory
	Replication Version History.
	N

	0x0E38
	PtypInteger32
	PidTagReplFlags
	Replication flags.
	Y

	0x3001
	PtypString
	PidTagDisplayName
	Display name of sub-Folder object. This property has an alternate name of PidTagDisplayName_W.
	Y

	0x3602
	PtypInteger32
	PidTagContentCount
	Total number of items in the Folder object.
	Y

	0x3603
	PtypInteger32
	PidTagContentUnreadCount
	Number of unread items in the Folder object.
	Y

	0x360A
	PtypBoolean
	PidTagSubfolders
	Whether the Folder object has any sub-Folder objects.
	Y

	0x3613
	PtypBinary
	PidTagContainerClass
	Container class of the sub-Folder object. This property has an alternate name of PidTagContainerClass_W.
	Y

	0x6635
	PtypInteger32
	PidTagPstHiddenCount
	Total number of hidden Items in sub-Folder object.
	Y

	0x6636
	PtypInteger32
	PidTagPstHiddenUnread
	Unread hidden items in sub-Folder object.
	Y

	0x67F2
	PtypInteger32
	PidTagLtpRowId
	LTP Row ID.
	Y

	0x67F3
	PtypInteger32
	PidTagLtpRowVer
	LTP Row Version.
	Y

The right-most column indicates whether the property is copied from the child Folder object PC into the hierarchy TC row when a new child Folder object is created.
[bookmark: section_7ed1b488f1194d0cbe70015dd360fc6d][bookmark: _Toc174686162]Locating Sub-Folder Object Nodes
The RowIndex (section 2.3.4.3) of the hierarchy table TC provides a mechanism for efficiently locating immediate sub-Folder objects. The dwRowIndex field represents the 0-based sub-Folder object row in the Row Matrix, whereas the dwRowID value represents the NID of the sub-Folder object node that corresponds to the row specified by RowIndex. For example, if a TCROWID is: "{ dwRowID=0x8022, dwRowIndex=3 }", the sub-Folder object NID that corresponds to the fourth (first being 0th) sub-Folder object row in the Row Matrix is 0x8022.
[bookmark: section_53148bd269f3442a947c1d8b88f4abf9][bookmark: _Toc174686163]Contents Table
The contents table is a TC node that is identified with an NID_TYPE of NID_TYPE_CONTENTS_TABLE. Its function is to list the Message objects in the Folder object.
[bookmark: section_f58e1ea9b592408db89e53fd4cd6024b][bookmark: _Toc174686164]Contents Table Template
Each PST MUST have one contents table template, which is identified with an NID value of NID_CONTENTS_TABLE_TEMPLATE (0x60E). The contents table template MUST have no data rows, and MUST contain the property columns described in the following table. These properties represent ONLY the required properties; additional properties can be added by newer versions of Outlook.
	Property identifier
	Property type
	Friendly name
	Description
	Copied?

	0x0017
	PtypInteger32
	PidTagImportance
	Importance
	Y

	0x001A
	PtypString
	PidTagMessageClassW
	Message class. This property has an alternate name of PidTagMessageClass_W.
	Y

	0x0036
	PtypInteger32
	PidTagSensitivity
	Sensitivity
	Y

	0x0037
	PtypString
	PidTagSubjectW
	Subject. This property has an alternate name of PidTagSubject_W.
	Y

	0x0039
	PtypTime
	PidTagClientSubmitTime
	Submit timestamp
	Y

	0x0042
	PtypString
	PidTagSentRepresentingNameW
	Sender representative name. This property has an alternate name of PidTagSentRepresentingName_W.
	Y

	0x0057
	PtypBoolean
	PidTagMessageToMe
	Whether recipient is in To: line
	Y

	0x0058
	PtypBoolean
	PidTagMessageCcMe
	Whether recipient is in Cc: line
	Y

	0x0070
	PtypString
	PidTagConversationTopicW
	Conversation topic. This property has an alternate name of PidTagConversationTopic_W.
	Y

	0x0071
	PtypBinary
	PidTagConversationIndex
	Conversation index
	Y

	0x0E03
	PtypString
	PidTagDisplayCcW
	Cc: line. This property has an alternate name of PidTagDisplayCc_W.
	Y

	0x0E04
	PtypString
	PidTagDisplayToW
	To: line. This property has an alternate name of PidTagDisplayTo_W.
	Y

	0x0E06
	PtypTime
	PidTagMessageDeliveryTime
	Message delivery timestamp
	Y

	0x0E07
	PtypInteger32
	PidTagMessageFlags
	Message flags
	Y

	0x0E08
	PtypInteger32
	PidTagMessageSize
	Message size
	Y

	0x0E17
	PtypInteger32
	PidTagMessageStatus
	Message status
	Y

	0x0E30
	PtypInteger32
	PidTagReplItemid
	Replication item ID
	Y

	0x0E33
	PtypInteger64
	PidTagReplChangenum
	Replication change number
	Y

	0x0E34
	PtypBinary
	PidTagReplVersionHistory
	Replication version history
	Y

	0x0E38
	PtypInteger32
	PidTagReplFlags
	Replication flags
	Y

	0x0E3C
	PtypBinary
	PidTagReplCopiedfromVersionhistory
	Replication version information
	Y

	0x0E3D
	PtypBinary
	PidTagReplCopiedfromItemid
	Replication item ID information
	Y

	0x1097
	PtypInteger32
	PidTagItemTemporaryFlags
	Temporary flags
	Y

	0x3008
	PtypTime
	PidTagLastModificationTime
	Last modification time of Message object
	Y

	0x65C6
	PtypInteger32
	PidTagSecureSubmitFlags
	Secure submit flags
	Y

	0x67F2
	PtypInteger32
	PidTagLtpRowId
	LTP row ID
	Y

	0x67F3
	PtypInteger32
	PidTagLtpRowVer
	LTP row version
	Y

The right-most column indicates whether the property is copied from the Message object PC into the Contents TC row when a new Message object is created.
[bookmark: section_5a8713b7efa54f6caba75de42731e00f][bookmark: _Toc174686165]Locating Message Object Nodes
The RowIndex (section 2.3.4.3) of the contents table TC provides an efficient mechanism to locate the Message object PC node of every Message object in the Folder object. The dwRowIndex field represents the 0-based Message object row in the Row Matrix, whereas the dwRowID value represents the NID of the Message object node that corresponds to the row specified by RowIndex. For example, if a TCROWID is "{ dwRowID=0x200024, dwRowIndex=3 }", the NID that corresponds to the fourth (first being 0th) Message object row in the Row Matrix is 0x200024.
[bookmark: section_080c4dcfd9424e22b616dde6effa51e2][bookmark: _Toc174686166]FAI Contents Table
The FAI contents table is a TC node identified with an NID_TYPE of NID_TYPE_ASSOC_CONTENTS_TABLE. Its function is to list the FAI Message objects in the Folder object.
[bookmark: section_b2e619a06a9c41019dcb340ac41cf308][bookmark: _Toc174686167]FAI Contents Table Template
Each PST MUST have one FAI contents table template, which is identified with an NID value of NID_ASSOC_CONTENTS_TABLE_TEMPLATE (0x60F). The FAI contents table template MUST have no data rows, and MUST contain the following property columns.
	Property identifier
	Property type
	Friendly name
	Description
	Copied?

	0x001A
	PtypString
	PidTagMessageClass
	Message class. And it has an alternate name PidTagMessageClass_W.
	Y

	0x0E07
	PtypInteger32
	PidTagMessageFlags
	Message flags.
	Y

	0x0E17
	PtypInteger32
	PidTagMessageStatus
	Message status.
	Y

	0x3001
	PtypString
	PidTagDisplayName
	Display name. And it has an alternate name PidTagDisplayName_W.
	Y

	0x67F2
	PtypInteger32
	PidTagLtpRowId
	LTP row ID.
	Y

	0x67F3
	PtypInteger32
	PidTagLtpRowVer
	LTP row version.
	Y

	0x6800
	PtypString
	PidTagOfflineAddressBookName
	OAB name. And it has an alternate name PidTagOfflineAddressBookName_W.
	Y

	0x6803
	PtypBoolean
	PidTagSendOutlookRecallReport
	Send recall report.
	Y

	0x6805
	PtypMultipleInteger32
	PidTagOfflineAddressBookTruncatedProperties
	OAB truncated properties.
	Y

	0x7003
	PtypInteger32
	PidTagViewDescriptorFlags
	View descriptor flags.
	Y

	0x7004
	PtypBinary
	PidTagViewDescriptorLinkTo
	View descriptor link.
	Y

	0x7005
	PtypBinary
	PidTagViewDescriptorViewFolder
	View descriptor Folder object.
	Y

	0x7006
	PtypString
	PidTagViewDescriptorName
	View descriptor name. And it has an alternate name PidTagViewDescriptorName_W.
	Y

	0x7007
	PtypInteger32
	PidTagViewDescriptorVersion
	View descriptor version.
	Y

[bookmark: section_412a79f35b1249b3848fda1738233db1][bookmark: _Toc174686168]Anatomy of a Folder Hierarchy
The following diagram links all the Folder object concepts together by illustrating how each element interrelates with each other.
[image: Anatomy of a Folder hierarchy]
Figure 10: Anatomy of a Folder hierarchy
The preceding example illustrates how the various elements of a Folder object work together to represent a Folder object hierarchy. The equivalent "tree view" of the hierarchy is indicated on the right.
At the top of the hierarchy is Folder object 1, which contains 3 Message objects and 2 sub-Folder objects. The PC contains all the properties associated with Folder object 1, where the hierarchy table (HT) contains information about the 2 sub-Folder objects: Folder object 2 and Folder object 3. The information about the 3 Message objects in the Folder object, however, is stored in the contents table (CT). While not shown, the FAI contents table contains FAI Message objects that pertain to Folder object 1. For more information about FAI Message objects, see [MS-OXCMSG] section 1.3.2. In addition, the RowIndex of Folder object 1's HT contains the necessary NID mappings that enable navigation from Folder object 1 to Folder objects 2 and 3. The relationship applies recursively to Folder object 2 and Folder object 3, and eventually, to Folder object 4, as shown in the preceding diagram.
Note the use of the nidParent field in the hierarchy table node to point back to the NID of the parent Folder object. Also note that all arrows eventually point to the Folder object PC node, whose NID can be replaced with different NID_TYPEs to access the other TCs.
[bookmark: section_55516aaad441433691fdba168ca9311c][bookmark: _Toc174686169]Implications of Modifying a Folder Template Table
Modifying the list of columns in a folder template table TC impacts the column list of the corresponding Folder object TC for Folder objects created subsequent to the modification. The modification SHOULD NOT impact Folder objects that were created prior to the modification. Implementations MUST NOT remove columns from a template Table that is part of its original template Table definition.
Implementations MUST NOT create data rows in a folder template table.
[bookmark: section_0bee3de86e12459aa659d211d0076e7d][bookmark: _Toc174686170]Implications of Modifying a Folder Object TC
In general, columns can be added to existing Folder object TCs. Any new columns added to a Folder object TC MUST also be copied from the child object, if the property exists in the child object, otherwise, the new column is marked as non-existent for that particular row. Implementations MUST also make sure that the information in the TC is kept in sync with the underlying child objects.
Implementations MUST NOT remove columns form a TC (that is, remove a TCOLDESC).
[bookmark: section_1042af37aaa44edcbffd90a1ede24188][bookmark: _Toc174686171]Message Objects
A Message object is a composite structure, but unlike a Folder object, all the data of a Message object is contained in a single top-level node (that is, accessed through a single top-level NID). Both the data block and subnode are used in a Message object node, where the data block contains a PC structure that contains the immediate properties of the Message object, and the subnode contains a number of composite structures that contain information such as the Recipient List and Attachment objects, if any.
[image: Components of a Message object]
Figure 11: Components of a Message object
The preceding diagram is an illustration of the various components of a Message object node. The data block contains the Message object PC, which contains the properties associated with this Message object. The subnode of the Message object can contain a number of objects, such as: a Recipient Table TC, an optional Attachment Table TC, optional Attachment object PCs, as well as variable-size data from the Message object PC that cannot fit directly into the Message object PC heap. The subnode BTree contains an array of subnodes that are identified using internal NIDs (that is, unique within the Message object node only). The contents of each subnode are identified primarily by the NID_TYPE. The following table lists the NID_TYPEs that can be found in the subnode of a Message object node.
	NID_TYPE
	Description
	Required?

	NID_TYPE_RECIPIENT_TABLE
	The subnode is a Message Recipient Table.
	Y

	NID_TYPE_ATTACHMENT_TABLE
	The subnode is an Attachment Table (optional).
	N

	NID_TYPE_ATTACHMENT
	The subnode is an Attachment object.
	N

	NID_TYPE_LTP
	The subnode contains raw LTP data for the Message PC.
	N

[bookmark: section_73697a9818b94a1e85475160d1a854de][bookmark: _Toc174686172]Message Object PC
The Message object PC is a standard Property Context structure that contains the properties associated with the Message object. Message object PC nodes are identified with an NID_TYPE of NID_TYPE_NORMAL_MESSAGE.
[bookmark: section_6a967f44cec3403d91007313656cc65c][bookmark: _Toc174686173]Property Schema of a Message Object PC
Message objects have a rather complicated set of schemas and are out of the scope of discussion of this document. However, the basic property schema of a general Message object is specified in [MS-OXCMSG], [MS-OXOMSG] and [MS-OXPROPS]. From the PST perspective, the following properties MUST be present in any valid Message object PC.
	Property identifier
	Property type
	Friendly name
	Description

	0x001A
	PtypString
	PidTagMessageClass
	Message class. And it has an alternate name PidTagMessageClassW.

	0x0E07
	PtypInteger32
	PidTagMessageFlags
	Message flags.

	0x0E08
	PtypInteger32
	PidTagMessageSize
	Message size.

	0x0E17
	PtypInteger32
	PidTagMessageStatus
	Message status.

	0x3007
	PtypTime
	PidTagCreationTime
	Creation time.

	0x3008
	PtypTime
	PidTagLastModificationTime
	Last modification time.

	0x300B
	PtypBinary
	PidTagSearchKey
	Message Search Key.

[bookmark: section_cf4c8e64c36b4a7996dc14e47c1d22af][bookmark: _Toc174686174]Locating the Parent Folder Object of a Message Object
Message objects are not stand-alone entities and therefore each Message object belongs to a parent Folder object. Similar to Folder objects, the nidParent member of the Message object node (see the diagram in section 2.4.6.3) contains the NID of the immediate parent Folder object PC of the Message object. This allows efficient moving of Message objects from one Folder object to another simply by updating the nidParent to point to the new parent.
[bookmark: section_0e6d7ebdc8504772ba9df5a642c9ff85][bookmark: _Toc174686175]Recipient Table
The Recipient Table is a standard Table Context structure that is identified with an NID_TYPE of NID_TYPE_RECIPIENT_TABLE. With the exception of the recipient table template a Recipient Table resides in the subnode of a Message object node. It contains the list of Recipients of the Message object (one row per Recipient). A Recipient Table MUST exist for any Message object.
[bookmark: section_bb069b2b80ad46d5b86f33487d16bf0c][bookmark: _Toc174686176]Recipient Table Template
Each PST MUST have one recipient table template, which is identified with an NID value of NID_RECIPIENT_TABLE (0x692). The recipient table template defines the set of columns for every new Recipient Table that is created. The recipient table template MUST have no data rows, and MUST contain the following property columns.
	Property identifier
	Property type
	Friendly name
	Description

	0x0c15
	PtypInteger32
	PidTagRecipientType
	Type of recipient.

	0x0E0F
	PtypBoolean
	PidTagResponsibility
	Handling Responsibility.

	0x0FF9
	PtypBinary
	PidTagRecordKey
	Record Key.

	0x0FFE
	PtypInteger32
	PidTagObjectType
	Recipient Object type.

	0x0FFF
	PtypBinary
	PidTagEntryId
	EntryID of the recipient.

	0x3001
	PtypString
	PidTagDisplayName
	Display name of the recipient. And it has an alternate name PidTagDisplayName_W.

	0x3002
	PtypString
	PidTagAddressType
	Type of recipient address.

	0x3003
	PtypString
	PidTagEmailAddress
	E-mail address of recipient.

	0x300B
	PtypBinary
	PidTagSearchKey
	Search Key.

	0x3900
	PtypInteger32
	PidTagDisplayType
	Display type.

	0x39FF
	PtypString
	PidTag7BitDisplayName
	7-bit Display name.

	0x3A40
	PtypBoolean
	PidTagSendRichInfo
	Send Rich info for recipient.

	0x67F2
	PtypInteger32
	PidTagLtpRowId
	LTP Row ID.

	0x67F3
	PtypInteger32
	PidTagLtpRowVer
	LTP Row Version.

[bookmark: section_7de50aecde1f40dd81ef5e5fb078f6ea][bookmark: _Toc174686177]Message Object Recipient Tables
Recipient Tables in actual Message objects contain all the columns in the recipient table template, plus a number of extra properties about its Recipients. Recipient properties are specified in [MS-OXPROPS].
[bookmark: section_46eb4828c6a5420da1379ee36df317c1][bookmark: _Toc174686178]Attachment Objects
An Attachment object is an arbitrary binary object that can be associated with (that is, attached to) a Message object. As illustrated in the diagram in section 2.4.6.3, Attachment objects are stored in the subnode of a Message object node, and are therefore only accessible through the Message object node.
A Message object keeps track of its Attachment objects using an optional Attachment Table in its subnode. The Attachment Table is said to be optional because it only exists if a Message object has at least one Attachment object. The presence of Attachment objects is indicated in PidTagMessageFlags property in the Message object. The presence of Attachment objects is indicated by the mfHasAttach bit set to "1" in PidTagMessageFlags(as specified in [MS-OXCMSG] section 2.2.1.6). If Attachment objects are present, then the Attachment Table can be accessed by scanning the subnode BTree of the Message object subnode to locate a subnode whose NID is NID_ATTACHMENT_TABLE. Each Message object MUST have at most one Attachment Table.
While the Attachment Table lists all the Attachment objects of a Message object, The actual Attachment objects are stored in separate subnodes in the Message object (see the diagram in section 2.4.6.3). Attachment object subnodes are easily identified by having an NID_TYPE of NID_TYPE_ATTACHMENT. Each Attachment object subnode contains a PC with all the properties of the Attachment object, including a property that contains the actual binary data of the Attachment object. The number of Attachment object subnodes MUST match the number of rows in the Attachment Table.
[bookmark: section_9770fee7a3534f5590464f9ef9e9d4a0][bookmark: _Toc174686179]Attachment Table
The Attachment Table is a standard TC structure where each of its rows maps to an Attachment object. Each row contains sufficient metadata to identify or display a representation of the Attachment object, but the full Attachment object data is stored in a separate subnode. The Attachment table is optional, and can be absent from Message objects that do not contain any Attachment objects.
[bookmark: section_47c336f72d9b4f2291c75bb422aaebbb][bookmark: _Toc174686180]Attachment Table Template
Each PST MUST have one attachment table template, which is identified with an NID value of NID_ATTACHMENT_TABLE (0x671). The attachment table template defines the set of columns for every new Attachment Table that is created. The attachment table template MUST have no data rows, and MUST contain the following property columns.
	Property identifier
	Property type
	Friendly name
	Description

	0x0E20
	PtypInteger32
	PidTagAttachSize
	Size of Attachment object.

	0x3704
	PtypString
	PidTagAttachFilenameW
	File name of Attachment object.

	0x3705
	PtypInteger32
	PidTagAttachMethod
	Attachment method.

	0x370B
	PtypInteger32
	PidTagRenderingPosition
	Rendering position of Attachment object.

	0x67F2
	PtypInteger32
	PidTagLtpRowId
	LTP Row ID.

	0x67F3
	PtypInteger32
	PidTagLtpRowVer
	LTP Row Version.

[bookmark: section_db45c8ae6d384ab7b444a5cca3010101][bookmark: _Toc174686181]Message Object Attachment Tables
Attachment Tables in actual Message objects contain all the columns in the attachment table template, plus a number of extra properties about its Attachment object. Attachment object properties are specified in [MS-OXCMSG] and [MS-OXPROPS].
[bookmark: section_fd3a33fe64254f5f8db2c432e09782cc][bookmark: _Toc174686182]Locating Attachment Object Nodes from the Attachment Table
Each row in the Attachment Table maps to an Attachment object subnode in the same way that a Folder object contents table maps its rows to Message object nodes (see section 2.4.4.5.2). The Attachment Table uses the RowIndex in the TC to map rows to Attachment object subnodes. In particular, each dwRowID value contains the subnode NID of the Attachment object subnode that corresponds to the row specified by dwRowIndex.
[bookmark: section_af7dcc38920d4f93ae9ea58e00d223b9][bookmark: _Toc174686183]Attachment Object PC
An Attachment object PC is a subnode with an NID_TYPE of NID_TYPE_ATTACHMENT, which contains all the information about an Attachment object. Because of the size of most Attachment objects being quite large, the binary data of the Attachment objects are stored in the subnode of the Attachment object node (which is itself a subnode of the Message object node), and often, a data tree is used to store the binary content. The number of Attachment object subnodes in a Message object MUST equal the number of rows in the Attachment Table.
[bookmark: section_37b3a8d1acde4759820d6febd7befba8][bookmark: _Toc174686184]Property Schema of an Attachment Object PC
The basic property schema of a general Message object is specified in [MS-OXCMSG] and [MS-OXPROPS]. From the PST perspective, the following properties MUST be present in any valid Attachment object PC.
	Property identifier
	Property type
	Friendly name
	Description

	0x0E20
	PtypInteger32
	PidTagAttachSize
	Size of Attachment object.

	0x3705
	PtypInteger32
	PidTagAttachMethod
	Attachment method.

	0x370B
	PtypInteger32
	PidTagRenderingPosition
	Rendering position of Attachment object.

[bookmark: section_1c0985fa83f549ba87dc3eafb4da4a6f][bookmark: _Toc174686185]Attachment Data
The actual binary content of an attachment (if any) is stored in PidTagAttachDataBinary. However, if the attachment is itself a message, the data is stored in PidTagAttachDataObject. In this case, the nid value of the PtypObject property structure defined in section 2.3.3.5 is a subnode which is a fully formed message as described in section 2.4.5 – with the exception that such attached messages are not located in the NBT and do not have a parent folder.
[bookmark: section_f3fcc68c53ee4c2a82d7113e44f1fb3f][bookmark: _Toc174686186]Relationship between Attachment Table and Attachment objects
[image: Relationship between Attachment table and Attachment objects]
Figure 12: Relationship between Attachment table and Attachment objects
The preceding diagram depicts the mapping between rows in the Attachment Table and the actual Attachment object subnodes using the RowIndex to obtain the subnode NID, and then using the subnode BTree records to locate the BIDs associated with each Attachment object PC.
[bookmark: section_e17e195d04544b9bb398c9127a26a678][bookmark: _Toc174686187]Named Property Lookup Map
The mapping between NPIDs and property names is done using a special Name-to-ID-Map in the PST, with a special NID of NID_NAME_TO_ID_MAP (0x61). There is one Name-to-ID-Map per PST. From an implementation point of view, the Name-to-ID-Map is a standard PC with some special properties. Specifically, the properties in the PC do not refer to real property identifiers, but instead point to specific data sections of the Name-to-ID-Map.
A named property is identified by a (GUID, identifier) value pair, otherwise known as the property name. The identifier can be a string or a 16-bit numerical value. The GUID value identifies the property set to which the property name is associated. Well-known property names and a list of property set GUIDs are specified in [MS-OXPROPS].
The Name-to-ID-Map (NPMAP) consists of several components: an Entry Stream, a GUID Stream, a String Stream, and a hash table to expedite searching. The following are the data structures used for the NPMAP.
[bookmark: section_0d6b478192c54d49b24bb783557098d1][bookmark: _Toc174686188]NAMEID
Each NAMEID record corresponds to a named property. The contents of the NAMEID record can be interpreted in two ways, depending on the value of the N bit.
Unicode / ANSI:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	dwPropertyID

	N
	wGuid
	wPropIdx

dwPropertyID (4 bytes): If the N field is 1, this value is the byte offset into the String stream in which the string name of the property is stored. If the N field is 0, this value contains the value of numerical name.
N (1 bit): Named property identifier type. If this value is 1, the named property identifier is a string. If this value is 0, the named property identifier is a 16-bit numerical value.
wGuid (15 bits): GUID index. If this value is 1 or 2, the named property's GUID is one of 2 well-known GUIDs. If this value is greater than 2, this value is the index plus 3 into the GUID Stream where the GUID associated with this named property is located. The following table explains how the wGuid value works.
	wGuid
	Friendly name
	Description

	0x0000
	NAMEID_GUID_NONE
	No GUID (N=1).

	0x0001
	NAMEID_GUID_MAPI
	The GUID is PS_MAPI ([MS-OXPROPS] section 1.3.2).

	0x0002
	NAMEID_GUID_PUBLIC_STRINGS
	The GUID is PS_PUBLIC_STRINGS ([MS-OXPROPS] section 1.3.2).

	0x0003
	N/A
	GUID is found at the (N-3) * 16 byte offset in the GUID Stream.

wPropIdx (2 bytes): Property index. This is the ordinal number of the named property, which is used to calculate the NPID of this named property. The NPID of this named property is calculated by adding 0x8000 to wPropIdx.
[bookmark: section_0f67b30c089144ef9a8024d43ba1b28c][bookmark: _Toc174686189]GUID Stream
The GUID Stream is a flat array of 16-byte GUID values that contains the GUIDs associated with all the property sets used in all the named properties in the PST. The Entry Stream is stored as a single property in the PC with the property tag PidTagNameidStreamGuid.
For each NAMEID record, the wGuid field is used to locate the GUID that is associated with the named property. Because each GUID represents a property set that can contain many related properties, it is therefore quite common to have multiple NAMEID records referring to the same GUID.
[bookmark: section_838e9da84e794bbdaee89af10cfc2a08][bookmark: _Toc174686190]Entry Stream
The Entry Stream is a flat array of NAMEID records that represent all the named properties in the PST. The Entry Stream is stored as a single property in the PC with the property tag PidTagNameidStreamEntry.
[bookmark: section_bbf3cbf674f448f0899d7d79650c021f][bookmark: _Toc174686191]The String Stream
The String Stream is a packed list of strings that is used for all the named properties in the PST. The String Stream is stored as a single property in the PC with the property tag PidTagNameidStreamString.
The String Stream contains a string Name for every NAMEID record whose N bit is set to 1. The corresponding value in dwPropertyID is the byte offset to the beginning of the corresponding Name string in the String Stream. The Name string is in Unicode format, even for ANSI PSTs. Each string is preceded by the a DWORD giving the length of the string, in bytes. NAMEID records given the offset of this length DWORD. Padding is also added to the end of each string, so each length/string pair ends on a 4 byte boundary. The strings are not null terminated.
[bookmark: section_6d390cac0a024a349a93e04e26f149ee][bookmark: _Toc174686192]Hash Table
The NPMAP has a hash table to expedite searches without having to scan the various streams. The hash table is mostly used in avoiding duplicates when attempting to add a new named property. The hash table consists of a number of properties in the PC, including a special property that contains the bucket count, and the hash buckets, each bucket being a separate property.
The bucket count is stored in the property PidTagNameidBucketCount. This property contains the number of hash buckets in the hash table. The value of this property SHOULD be 251 (0xFB). Implementations, however, MUST consult PidTagNameidBucketCount to obtain the actual bucket count.
Hash buckets start at the property identifier of PidTagNameidBucketBase, and are assigned sequentially. The hash bucket property identifiers range from 0x1000 to (0x1000 + (bucket count – 1)).
Given any NAMEID record, the bucket selection is determined using the following formula:
NAMEID nameid = { … };ULONG *pul = (ULONG *)&nameid;ULONG ulBucket = ((pul[0] ^ (pul[1] & 0xFFFF)) % BucketCount);
Each hash bucket contains a flat array of slightly modified NAMEID records. The fields are interpreted as specified in section 2.4.7.1, with the following exception. When the N field is set to "1", the dwPropertyID field contains the CRC32 value of the corresponding string in the String Stream. This is used to quickly identify potential name matches or collisions when searching and inserting named properties, respectively. Note that because of the many-to-one properties of the CRC32 hash, a matching CRC32 value merely indicates the potential of a Name match. An exact match is determined by checking the actual strings.
The individual records within the bucket are not sorted in any particular order so it is necessary to scan all the records in the bucket to determine if a match is present.
[bookmark: section_1ba98f4a2abf4b49a7cd26ae0e177443][bookmark: _Toc174686193]Data Organization of the Name-to-ID Map
The following diagram depicts how the various elements of the NPMAP relate to each other, and the two mapping scenarios.
[image: Data organization of the Name-to-ID map]
Figure 13: Data organization of the Name-to-ID map
The preceding diagram shows the Name-to-ID map (NPMAP) as a single Property Context, and all the streams and hash table entities as individual properties in the PC.
The top-right case shows the case where the property name is a (GUID, string) value pair. The property identifier 0x8009 is mapped to the name "x-ms-exchange-organization-authas", which is embedded in the String Stream. The wGuid field is set to 0, indicating that no GUID is associated with this property name.
The bottom-right case shows the second scenario, where property identifier 0x8014 associated with well-known property name PidLidAppointmentStartTime. 0x8014 is also associated with GUID {00062008-0000-0000-C000-000000000046}, which represents the PSETID_Common property set ([MS-OXPROPS]).
The left column depicts the hash table and how two buckets contain records that refer back to these two named properties. The CRC32 of the string property name is used in the dwPropertyID field in the NAMEID record in the hash table.
[bookmark: section_3991391e6cf64c978b9efc25bee7391b][bookmark: _Toc174686194]Search
A number of objects exist in the PST to support search-related features. This section provides high-level information about the various Search objects that can be found in a PST. The discussion of search-related objects in this document is strictly limited to the scope of providing a brief technical overview of each of the objects, and allowing implementers to perform the necessary update requirements to the search object when changing the contents of the PST.
The following are specific non-goals of this section:
· Provide technical information such that implementations can create search Folder objects and search criteria.
· Provide technical information such that implementations can perform search queue processing and content indexing.
The following diagram depicts the various search objects and their relationship.
[image: Search-related objects]
Figure 14: Search-related objects
[bookmark: section_feced5b5714b47e18ca0a8aae53c2fe4][bookmark: _Toc174686195]Search Update Descriptor (SUD)
The SUD represents a single unit of change that can have an effect on any of the search objects. When a change is made to the contents of a PST (add, modification, removal, and so on), the modifier is responsible to create a SUD that describes the change and queue it into the Search Management Queue (SMQ). In order to prevent wasted space in the PST, the following rules are applied:
1. If indexing is enabled for a desktop search, the following types are queued:
· SUDT_MSG_ADD
· SUDT_MSG_MOD
· SUDT_MSG_DEL
· SUDT_FLD_ADD
· SUDT_FLD_MOD
· SUDT_FLD_DEL
· SUDT_IDX_MSG_DEL
· SUDT_MSG_MOV
2. The following types are queued:
· SUDT_SRCH_ADD
· SUDT_SRCH_MOD
· SUDT_SRCH_DEL
3. If the NIDs of either old or new parent folders are contained in the SDO, the following types are queued:
· SUDT_MSG_MOV
· SUDT_FLD_MOV
· SUDT_MSG_ADD
· SUDT_MSG_MOD
· SUDT_MSG_ROW_MOD
· SUDT_MSG_DEL
· SUDT_MSG_SPAM
· SUDT_IDX_MSG_DEL
· SUDT_FLD_ADD
· SUDT_FLD_MOD
· SUDT_FLD_DEL
4. If none of the above conditions is satisfied, the SUD is not queued.
[bookmark: section_ea392b3c48ca442b98c6f38f5d66f93b][bookmark: _Toc174686196]SUD Structure
Each SUD is represented by SUD structure, which has the following format.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	wFlags
	wSUDType

	SUDData (16 bytes)

	...

	...

wFlags (2 bytes): SUD Flags. Applicable SUD Flags depend on the associated SUD Type. The following table summarizes the SUD Flags and the types to which they are applicable. In the event that wSUDType contains a type that is not listed below, this value is undefined and is assigned a value of 0.
	Value
	Friendly name
	Meaning
	Applies To

	0x0001
	SUDF_PRIORITY_LOW
	Change search Folder object priority to foreground.
	SUDT_SRCH_MOD

	0x0002
	SUDF_PRIORITY_HIGH
	Change search Folder object priority to background.
	SUDT_SRCH_MOD

	0x0004
	SUDF_SEARCH_RESTART
	Request full rebuild of search Folder object contents.
	SUDT_SRCH_MOD

	0x0008
	SUDF_NAME_CHANGED
	Display Name of Folder object changed.
	SUDT_FLD_MOD

	0x0010
	SUDF_MOVE_OUT_TO_IN
	Move from non-SDO domain to SDO domain.
	SUDT_FLD/MSG_MOV

	0x0020
	SUDF_MOVE_IN_TO_IN
	Move from SDO domain to SDO domain.
	SUDT_FLD/MSG_MOV

	0x0040
	SUDF_MOVE_IN_TO_OUT
	Move from SDO domain to non-SDO domain.
	SUDT_MSG_MOV

	0x0080
	SUDF_MOVE_OUT_TO_OUT
	Move between non-SDO domains.
	SUDT_MSG_MOV

	0x0100
	SUDF_SPAM_CHECK_SERVER
	Make sure spam Message object deleted on server.
	SUDT_MSG_SPAM

	0x0200
	SUDF_SET_DEL_NAME
	Delegate Root Name of Folder object changed.
	SUDT_FLD_MOD

	0x0400
	SUDF_SRCH_DONE
	Search is finished for associated object.
	SUDT_SRCH_MOD

	0x8000
	SUDF_DOMAIN_CHECKED
	Object is validated against the SDO.
	SUDT_FLD/MSG_*

wSUDType (2 bytes): SUD Type. This indicated the type of update that is described in this SUD and is used as the selector field into the structure to use for SUDData. The defined SUD types are described in the following table.
	Value
	Friendly name
	Meaning
	SUDData structure

	0x0000
	SUDT_NULL
	Invalid SUD Type.
	None

	0x0001
	SUDT_MSG_ADD
	Message added.
	SUD_MSG_ADD

	0x0002
	SUDT_MSG_MOD
	Message modified.
	SUD_MSG_MOD

	0x0003
	SUDT_MSG_DEL
	Message deleted.
	SUD_MSG_DEL

	0x0004
	SUDT_MSG_MOV
	Message moved.
	SUD_MSG_MOV

	0x0005
	SUDT_FLD_ADD
	Folder object added.
	SUD_FLD_ADD

	0x0006
	SUDT_FLD_MOD
	Folder object modified.
	SUD_FLD_MOD

	0x0007
	SUDT_FLD_DEL
	Folder object deleted.
	SUD_FLD_DEL

	0x0008
	SUDT_FLD_MOV
	Folder object moved.
	SUD_FLD_MOV

	0x0009
	SUDT_SRCH_ADD
	Search Folder object added.
	SUD_SRCH_ADD

	0x000A
	SUDT_SRCH_MOD
	Search Folder object modified.
	SUD_SRCH_MOD

	0x000B
	SUDT_SRCH_DEL
	Search Folder object deleted.
	SUD_SRCH_DEL

	0x000C
	SUDT_MSG_ROW_MOD
	Message modified, contents table affected.
	SUD_MSG_MOD

	0x000D
	SUDT_MSG_SPAM
	Message identified as spam.
	SUD_MSG_SPAM

	0x000E
	SUDT_IDX_MSG_DEL
	Content-indexed Message object deleted.
	SUD_IDX_MSG_DEL

	0x000F
	SUDT_MSG_IDX
	Message has been indexed.
	SUD_MSG_IDX

SUDData (16 bytes): This is the data associated with the SUD. The structure of this data depends on the SUD Type indicated in wSUDType. Details about each structure type are specified in section 2.4.8.2.
[bookmark: section_4d919e3b33b346fab2ff17fbc324b12b][bookmark: _Toc174686197]SUDData Structures
The following are the definitions of the various SUDData structures referenced in the preceding table.
[bookmark: section_c0a889d86a34431f830591f836620cdb][bookmark: _Toc174686198]SUD_MSG_ADD / SUD_MSG_MOD / SUD_MSG_DEL Structure
This structure is used to indicate that a Message object has been added, modified or deleted. This structure has the following format.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nidParent

	nidMsg

nidParent (4 bytes): NID of the parent Folder object into which the Message object is added, modified, or deleted.
nidMsg (4 bytes): NID of the Message object that was added, modified, or deleted.
[bookmark: section_ed48b4c0a03448189e288488c8c30681][bookmark: _Toc174686199]SUD_MSG_MOV Structure
This structure is used to indicate that a Message object has been moved. This structure has the following format.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nidParentNew

	nidMsg

	nidParentOld

nidParentNew (4 bytes): NID of the parent Folder object into which the Message object is moved.
nidMsg (4 bytes): NID of the Message object that was moved.
nidParentOld (4 bytes): NID of the parent Folder object from which the Message object is moved.
[bookmark: section_f8d4750e9721479dacf543c902919e0d][bookmark: _Toc174686200]SUD_FLD_ADD / SUD_FLD_MOV Structure
This structure is used to indicate that a Folder object has been added or moved. This structure has the following format.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nidParent

	nidMsg

	dwReserved1

	dwReserved2

nidParent (4 bytes): NID of the parent Folder object into which the Message object is added or moved.
nidMsg (4 bytes): NID of the Folder object that was added or moved.
dwReserved1 (4 bytes): Reserved; MUST be set to zero.
dwReserved2 (4 bytes): Reserved; MUST be set to zero.
[bookmark: section_249e61f9d19242e3b5bc9eecc7f2d5e3][bookmark: _Toc174686201]SUD_FLD_MOD / SUD_FLD_DEL Structure
This structure is used to indicate that a Folder object has been modified or deleted. This structure has the following format.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nidFld

	dwReserved

nidFld (4 bytes): NID of the Folder object that was modified or deleted.
dwReserved (4 bytes): Reserved. Readers MUST NOT modify this value. Creators of this structure MUST initialize this value to zero.
[bookmark: section_f795bd47d65847e1aa35f921fa0da8f9][bookmark: _Toc174686202]SUD_SRCH_ADD / SUD_SRCH_DEL Structure
This structure is used to indicate that a search Folder object has been added or deleted. This structure has the following format.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nidSrch

nidSrch (4 bytes): NID of the search Folder object that was added or deleted.
[bookmark: section_f540791db5b541fe8b3c43cdaf1ef12c][bookmark: _Toc174686203]SUD_SRCH_MOD Structure
This structure is used to indicate that a search Folder object has been modified. This structure has the following format.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nidSrch

	dwReserved

nidSrch (4 bytes): NID of the search Folder object that was modified.
dwReserved (4 bytes): Reserved. Readers MUST NOT modify this value. Creators of this structure MUST initialize this value to zero.
[bookmark: section_f3776950d0d443d39d13b4c4ae8fe16f][bookmark: _Toc174686204]SUD_MSG_SPAM Structure
This structure is used to indicate that an incoming Message object had been determined to be spam. This structure has the following format.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nidParent

	nidMsg

nidParent (4 bytes): NID of the parent Folder object that contains the spam Message object.
nidMsg (4 bytes): NID of the Message object being identified as spam.
[bookmark: section_637f8847da314b1d8f21a287e6220fbd][bookmark: _Toc174686205]SUD_IDX_MSG_DEL Structure
This structure is used to indicate that an indexed Message object has been deleted. This structure has the following format.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nidParent

	nidMsg

nidParent (4 bytes): NID of the parent Folder object that contains the deleted Message object.
nidMsg (4 bytes): NID of the deleted Message object.
[bookmark: section_cb466e7475e24e22a474197592fcb93f][bookmark: _Toc174686206]SUD_MSG_IDX Structure
This structure is used to indicate that a Message object was successfully indexed. This structure has the following format.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	nidMsg

nidMsg (4 bytes): NID of the Message object that was indexed.
[bookmark: section_e08cffe6faaf4b16af9be23ee96713c9][bookmark: _Toc174686207]Basic Queue Node
A number of objects that are referenced in the remainder of this section depend on a shared generic concept of a queue node. In the context of Search, a queue is implemented as a node that contains an array of fixed-size items. To maintain the FIFO properties of a queue, new items are appended to the end of the array, and items are removed from the front of the array.
However, the PST implementation of the queue object has a special feature to optimize for speed of access by minimizing the amount of data written. Specifically, when an item is removed from the queue, instead of removing the item from the array and shifting remaining items forward, the nidParent field of the queue node is overloaded to be used as a pointer to the "head" of the queue. The following diagram illustrates how this works.
[image: Basic queue structure]
Figure 15: Basic queue structure
Because a queue is a standalone entity and does not have the concept of a "parent", the nidParent field of the queue node is re-purposed to be used as a byte offset pointer to the "head" of the queue. Initially, nidParent points to 0 (that is, Item[0]), and new items, each of size k bytes, are appended to the end of the array as shown. When the first item is removed from the queue, the contents of Items[0] is returned to the caller, and then the value of nidParent is updated to point to the next item (that is, Items[1]). Note that nidParent stores the byte offset of the "head" of the queue instead of an item index. The number of items in the queue can be determined by dividing cbData by k (that is, the size of each item). Implementations MUST NOT process the contents of a queue if cbData is not an integer multiple of k.
As an implementation detail, when the last item of the queue is removed (that is, NBTENTRY.nidParent == BBTENTRY.cbData), the entire queue contents are deleted, and both nidParent and cbData are reset to zero.
The same generic queue node concept is used throughout this section, except that each type of queue has its own specific value for the size of each item (that is, k).
[bookmark: section_d1a6bd1211834b8fbe690f0946f1c7ee][bookmark: _Toc174686208]Search Management Object (SMO)
The Search Management object is responsible for tracking all pending search activity in the PST. It consists of three nodes: The Search Management queue (SMQ), Search Activity List (SAL), and Search Domain object (SDO).
[bookmark: section_db1945eade3f4e47996af56c4e8eb029][bookmark: _Toc174686209]Search Management Queue (SMQ)
The Search Management queue is where all the SUDs are queued when changes are made to the PST contents. There MUST be exactly one instance of the SMQ in each PST, and it is identified by a special NID value of NID_SEARCH_MANAGEMENT_QUEUE (0x1e1). Implementation-wise, it uses a basic queue node described in section 2.4.8.3, and each of the items in the SMQ is a SUD Structure described in section 2.4.8.1.1. The SMQ is the master FIFO queue of all pending search activity in the PST.
Any implementation that modifies the contents of the PST queues SUD entries that correspond to the sequence and nature of the modification into the SMQ, according to the rules specified in section 2.4.8.1. Failure to queue the SUD entries or queuing the SUD entries out-of-order results in search Folder objects going out of sync with the actual contents.
[bookmark: section_3131ac6b4243475da4a001db133d559f][bookmark: _Toc174686210]Search Activity List (SAL)
[bookmark: Appendix_A_Target_18]The Search Activity List is a node that is identified by a special NID value of NID_SEARCH_ACTIVITY_LIST (0x201), which contains a simple array of NIDs (not a queue). Each NID in the SAL corresponds to the NID of a Folder object that has an associated search Folder object. Implementations SHOULD NOT modify the SAL.<18>
[bookmark: section_5b20750ce8f0421db900197826863f20][bookmark: _Toc174686211]Search Domain Object (SDO)
The Search Domain Object is a node that is identified by a special NID value of NID_SEARCH_DOMAIN_OBJECT (0x261), which contains a simple array of NIDs that collectively represent the global search domain of the PST.
[bookmark: section_936f0e60fd2448848de08309f9551c74][bookmark: _Toc174686212]Search Gatherer Object (SGO)
The Search Gatherer Object controls all the Content Indexing functionality in the PST. However, because the implementation of Content Indexing is out of the scope of this document, this section only provides a high-level summary of the various objects that are associated with Content Indexing.
[bookmark: section_984f26d366034229974f4373e5a95c6a][bookmark: _Toc174686213]Search Gatherer Queue (SGQ)
The Search Gatherer Queue is a node that is identified by a special NID value of NID_SEARCH_GATHERER_QUEUE (0x281). It is implemented as a queue node where each of its items is a SUD Structure that contains specific changes that pertain to Content Indexing. Entries in the SGQ are moved from the SMQ to the SGQ during SMQ processing. All SUDs MUST be queued through the SMQ and implementations MUST NOT modify the SGQ in any way.
[bookmark: section_45ac5a7b66984dbd8a34e499b79199b9][bookmark: _Toc174686214]Search Gatherer Descriptor (SGD)
The Search Gatherer Descriptor is a node that is identified by a special NID value of NID_SEARCH_GATHERER_DESCRIPTOR (0x2A1). It contains an opaque, variable-size binary BLOB that provides context for Context Indexing. Implementations MUST NOT modify the SGD in any way.
[bookmark: section_5dd87c455f2d4945b7e32612bd1a94d3][bookmark: _Toc174686215]Search Gatherer Folder Queue (SGFQ)
The Search Gatherer Folder Queue is a node that is identified by a special NID value of NID_SEARCH_GATHERER_FOLDER_QUEUE (0x321), which contains a simple array of NIDs (not a queue). Each NID in the SGFQ corresponds to the NID of a Folder object that has related Content Indexing activity. Implementations MUST NOT modify the SGFQ in any way.
[bookmark: section_4431f207ef3e4ce1aa41d9ac4a44f69f][bookmark: _Toc174686216]Search Folder Objects
This section describes the various objects that are associated with search Folder objects. Because it is not the intention of this document to document the creation and maintenance of search Folder object, this section only provides high-level information about these objects so that they can be identified when reading existing PSTs.
[bookmark: section_2dfb3012b81c466b831c2d2f0c29e591][bookmark: _Toc174686217]Search Folder Object (SF)
The search Folder object is implemented as a PC that is identified by a special NID_TYPE of NID_TYPE_SEARCH_FOLDER (0x03). The basic schema requirements of the search Folder object PC are identical to the Folder object PC (section 2.4.4.1).
[bookmark: section_f7b58f702240497a90057771bcff9cb6][bookmark: _Toc174686218]Search Folder Object Contents Table (SFCT)
The Search Folder Object Contents table is a TC node identified with an NID_TYPE of NID_TYPE_SEARCH_CONTENTS_TABLE. Its function is to list the Search Message objects in the Folder object, which are Message objects that match the search Folder object's search criteria.
[bookmark: section_cdcf9571049f47f5b0758374057134ec][bookmark: _Toc174686219]Search Folder Contents Table Template
Each PST MUST have one search folder contents table template, which is identified with an NID value of NID_SEARCH_CONTENTS_TABLE_TEMPLATE (0x610). The search contents table template MUST have no data rows, and MUST contain the following property columns.
	Property identifier
	Property type
	Friendly name
	Description

	0x0017
	PtypInteger32
	PidTagImportance
	Importance

	0x001A
	PtypString
	PidTagMessageClassW
	Message class. This property has an alternate name of PidTagMessageClass_W.

	0x0036
	PtypInteger32
	PidTagSensitivity
	Sensitivity

	0x0E07
	PtypInteger32
	PidTagMessageFlags
	Message flags

	0x0E17
	PtypInteger32
	PidTagMessageStatus
	Message status

	0x0037
	PtypString
	PidTagSubjectW
	Subject. This property has an alternate name of PidTagSubject_W.

	0x0042
	PtypString
	PidTagSentRepresentingNameW
	Sender representative name. This property has an alternate name of PidTagSentRepresentingName_W.

	0x0057
	PtypBoolean
	PidTagMessageToMe
	Whether recipient is in the To: line

	0x0E03
	PtypString
	PidTagDisplayCcW
	Cc: line. This property has an alternate name of PidTagDisplayCc_W.

	0x0E04
	PtypString
	PidTagDisplayToW
	To: line. This property has an alternate name of PidTagDisplayTo_W.

	0x0E05
	PtypString
	PidTagParentDisplayW
	Parent Display name. This property has an alternate name of PidTagParentDisplay_W.

	0x0E06
	PtypTime
	PidTagMessageDeliveryTime
	Message delivery timestamp

	0x0E07
	PtypInteger32
	PidTagMessageFlags
	Message flags

	0x0E08
	PtypInteger32
	PidTagMessageSize
	Message size

	0x0E17
	PtypInteger32
	PidTagMessageStatus
	Message status

	0x0E2A
	PtypBoolean
	PidTagExchangeRemoteHeader
	Has Exchange Remote Header

	0x3008
	PtypTime
	PidTagLastModificationTime
	Last modification time of Message object

	0x67F1
	PtypInteger32
	PidTagLtpParentNid
	LTP Parent NID

	0x67F2
	PtypInteger32
	PidTagLtpRowId
	LTP Row ID

	0x67F3
	PtypInteger32
	PidTagLtpRowVer
	LTP Row Version

[bookmark: section_a313072bf7424b85bb9eb861b842ced3][bookmark: _Toc174686220]Search Update Queue (SUQ)
The Search Update queue is a node that is identified by a special NID_TYPE of NID_TYPE_SEARCH_UPDATE_QUEUE (0x06). It is implemented as a queue node where each of its items is a SUD Structure that contain specific changes that pertain to Search activity of this particular search Folder object. Entries in the SUQ are moved from the SMQ to the Folder object's SUQ during SMQ processing. All SUDs MUST be queued through the SMQ and implementations MUST NOT modify the SUQ in any way.
[bookmark: section_af3410cc62a24bd99e778854d535cc22][bookmark: _Toc174686221]Search Criteria Object (SCO)
The Search Criteria object is a PC that is identified by a special NID_TYPE of NID_TYPE_SEARCH_CRITERIA_OBJECT (0x07). The properties in the PC collectively represent the specific Search Criteria for the search Folder object. The specific properties used by the SCO are out of the scope of this document. Implementations MUST NOT modify the SCO in any way.
[bookmark: section_86dd69f78bef48f3abab671b54e00976][bookmark: _Toc174686222]Calculated Properties
Calculated properties are properties that are not physically stored in the PST as individual properties. Instead, these properties are derived or calculated in one way or another. This section defines the list of calculated properties and the mechanisms through which the values of these properties are evaluated, discovered, modified and otherwise manipulated.
The following is a comprehensive list of calculated properties defined for the PST. The properties are grouped by Object Type. Note that for an ANSI PST, all string properties are stored in ANSI encoding, whereas a Unicode PST stores all string properties in Unicode encoding. Implementations MUST support retrieving string properties in either PtypString8 or PtypString formats.
[bookmark: section_42926f74bbad4bf3bd15f939af5bdc3b][bookmark: _Toc174686223]Attributes of a Calculated Property
A calculated property has six attributes, which are represented by the six columns in each of the calculated property tables. These Attributes collectively determine how the property value is calculated and the behavior characteristics on Get / Set / Delete and List operations. The following table lists these Attributes and their description.
	Attribute
	Description

	Property Tag
	The property tag used to access the property at the Messaging layer.

	Base Tag
	The internal property tag of the corresponding property, if applicable. If specified, this is the property tag that is used to store the related property value in the PC or TC. In most cases, the value stored in the base property is further manipulated to calculate the actual property value.

	Get Behavior
	This describes how the property value is calculated. In most cases, the get operations refers to an SPGET_* operation, which describes how to calculate the property value. All the SPGET codes are defined later in this section.
In some cases, the property value is retrieved directly from the PC.

	Set Behavior
	Whether the property can be modified, and if so, whether there are special remarks or side effects. Set behavior is discussed in further detail after the Get Behavior.

	Delete Behavior
	Whether the property can be deleted. There are a few special cases that have some side effects.

	List Behavior
	This column describes the visibility of the calculated property in the event of an "Enumerate All Properties" query.

Implementations MUST follow the documented Get / Set / Delete and List behaviors while accessing these properties.
In the event where the ANSI and Unicode versions support different sets of special properties, they are defined separately. Rows that are different between the ANSI and Unicode versions are shaded in gray.
[bookmark: section_4bd9935542f64ff7841f7ed04e6fd6da][bookmark: _Toc174686224]Calculated Properties by Object Type
The following are the list of Messaging objects and the corresponding list of calculated properties for that object type.
[bookmark: section_f2aa97c7ad3c4b2c8e67b132eb3d04de][bookmark: _Toc174686225]Message Store
The following are the calculated properties defined under the message store. Note that "nid" and "nidParent" in the "Base Tag" column refers to the nid and the nidParent fields of the current object node.
ANSI / Unicode:
	Property tag
	Base tag
	Get behavior
	Set
	Delete
	List

	PidTagReplFlags
	
	PC
	PC
	PC
	ALLOW

	PidTagAssociatedSharingProvider
	
	PC
	PC
	PC
	ALLOW

	PidTagMappingSignature
	
	SPGET_MAPSIG
	N
	N
	ALWAYS

	PidTagRecordKey
	
	SPGET_UIDRESOURCE
	N
	N
	ALLOW

	PidTagStoreRecordKey
	
	SPGET_UIDRESOURCE
	N
	N
	ALWAYS

	PidTagStoreEntryId
	
	SPGET_STOREEID
	N
	N
	ALWAYS

	PidTagObjectType
	nid
	SPGET_OBJECTTYPE
	N
	N
	ALWAYS

	PidTagEntryId
	
	SPGET_STOREEID
	N
	N
	ALWAYS

	PidTagDisplayName
	
	PC
	PC
	N
	ALLOW

	PidTagStoreState
	
	SPGET_STORESTATE
	N
	N
	ALWAYS

	PidTagStoreProvider
	
	SPGET_UIDPROVIDER
	N
	N
	ALWAYS

	PidTagReceiveFolderSettings
	
	SPGET_TRUE
	N
	N
	ALWAYS

[bookmark: section_c4169b51ea4941029e8a8bc86ce6ff51][bookmark: _Toc174686226]Folder Objects
The following are the calculated properties defined under the Folder object.
ANSI / Unicode:
	Property tag
	Base tag
	Get behavior
	Set
	Delete
	List

	PidTagParentEntryId
	nidParent
	SPGET_PARENTEID
	N
	N
	ALWAYS

	PidTagReplItemid
	
	SPGET_TABLE_ONLY
	N
	N
	NEVER

	PidTagReplFolderid
	nidParent
	SPGET_FOLDERID
	SPSET_FOLDERID
	N
	NEVER

	PidTagReplChangenum
	nid
	SPGET_TABLE_ONLY
	N
	N
	NEVER

	PidTagReplVersionhistory
	
	SPGET_TABLE_ONLY
	N
	N
	NEVER

	PidTagReplFlags
	
	SPGET_TABLE_ONLY
	N
	N
	NEVER

	PidTagReplCopiedfromVersionhistory
	
	SPGET_TABLE_ONLY
	N
	N
	NEVER

	PidTagReplCopiedfromItemid
	
	SPGET_TABLE_ONLY
	N
	N
	NEVER

	PidTagProviderItemid
	nid
	SPGET_PROV_ITEMID
	N
	N
	NEVER

	PidTagMappingSignature
	
	SPGET_MAPSIG
	N
	N
	ALWAYS

	PidTagRecordKey
	nid
	SPGET_RECORDKEY
	N
	N
	ALWAYS

	PidTagStoreRecordKey
	
	SPGET_UIDRESOURCE
	N
	N
	ALWAYS

	PidTagStoreEntryId
	
	SPGET_STOREEID
	N
	N
	ALWAYS

	PidTagObjectType
	nid
	SPGET_OBJECTTYPE
	N
	N
	ALWAYS

	PidTagEntryId
	nid
	SPGET_EID
	N
	N
	ALWAYS

	PidTagAttributeHidden
	
	PC
	PC
	PC
	ALLOW

	PidTagDisplayName
	
	PC
	PC
	N
	ALLOW

	PidTagStoreProvider
	
	SPGET_UIDPROVIDER
	N
	N
	ALWAYS

	PidTagFolderType
	nid
	SPGET_FOLDERTYPE
	N
	N
	ALWAYS

	PidTagContentCount
	PR_CONTENT_COUNT
	SPGET_CONTENT_COUNT
	N
	N
	ALLOW

	PidTagContentUnreadCount
	PR_CONTENT_UNREAD
	SPGET_UNREAD_COUNT
	N
	N
	ALLOW

	PidTagSubfolders
	
	PC
	N
	N
	ALLOW

	PidTagContainerHierarchy
	
	SPGET_TRUE
	N
	N
	ALWAYS

	PidTagContainerContents
	
	SPGET_TRUE
	N
	N
	ALWAYS

	PidTagFolderAssociatedContents
	
	SPGET_TRUE
	N
	N
	ALWAYS

	PidTagExtendedFolderFlags
	
	PC
	PC
	PC
	ALLOW

	PidTagShortTermParentEntryIdFromObject
	nidParent
	SPGET_PARENTEID
	N
	N
	NEVER

	PidTagShortTermEntryIdFromObject
	nid
	SPGET_EID
	N
	N
	NEVER

	PidTagPstIpmsubTreeDescendant
	nid
	SPGET_IPMSUBTREE_DESC
	N
	N
	NEVER

[bookmark: section_3b890c8d0276491ebe58ea766c888ab0][bookmark: _Toc174686227]Message Objects
The following are the calculated properties defined under the Message object.
ANSI / Unicode:
	Property tag
	Base tag
	Get behavior
	Set
	Delete
	List

	PidTagMessageClass
	
	PC
	SPSET_MC
	N
	ALLOW

	PidTagSubject
	PidTagSubject
	SPGET_SUBJECT
	SPSET_SP
	DEL_1
	ALLOW

	PidTagSubjectPrefix
	PidTagSubject
	SPGET_SUBJECTPREFIX
	SPSET_SUB
	DEL_1
	BASED

	PidTagConversationTopic
	
	PC
	SPSET_CID
	DEL_5
	ALLOW

	PidTagConversationIndex
	
	PC
	SPSET_CID
	DEL_5
	ALLOW

	PidTagDisplayBcc
	PidTagDisplayBcc
	SPGET_DISPLAY
	N
	N
	ALWAYS

	PidTagDisplayCc
	PidTagDisplayCc
	SPGET_DISPLAY
	PC
	N
	ALWAYS

	PidTagDisplayTo
	PidTagDisplayTo
	SPGET_DISPLAY
	PC
	N
	ALWAYS

	PidTagMessageFlags
	
	PC
	SPSET_MF
	N
	ALLOW

	PidTagMessageSize
	
	PC
	PC
	N
	ALLOW

	PidTagParentEntryId
	nidParent
	SPGET_PARENTEID
	N
	N
	ALWAYS

	PidTagMessageRecipients
	
	SPGET_TRUE
	N
	N
	ALWAYS

	PidTagMessageAttachments
	
	SPGET_TRUE
	N
	N
	ALWAYS

	PidTagMessageStatus
	
	SPGET_MSGSTATUS
	N
	N
	ALLOW

	PidTagHasAttachments
	PidTagMessageFlags
	SPGET_HASATTACH
	N
	N
	ALWAYS

	PidTagNormalizedSubject
	PidTagSubject
	SPGET_NORMALIZESUBJECT
	N
	N
	BASED

	PidTagRtfInSync
	
	SPGET_RTF_IN_SYNC
	SPSET_RIS
	SPDEL_4
	ALWAYS

	PidTagReplItemid
	
	SPGET_TABLE_ONLY
	N
	N
	NEVER

	PidTagReplFolderid
	nidParent
	SPGET_FOLDERID
	SPSET_FOLDERID
	N
	NEVER

	PidTagReplChangenum
	nid
	SPGET_TABLE_ONLY
	N
	N
	NEVER

	PidTagReplVersionhistory
	
	SPGET_TABLE_ONLY
	N
	N
	NEVER

	PidTagReplFlags
	
	SPGET_TABLE_ONLY
	N
	N
	NEVER

	PidTagReplCopiedfromVersionhistory
	
	SPGET_TABLE_ONLY
	N
	N
	NEVER

	PidTagReplCopiedfromItemid
	
	SPGET_TABLE_ONLY
	N
	N
	NEVER

	PidTagProviderItemid
	nid
	SPGET_PROV_ITEMID
	N
	N
	NEVER

	PidTagProviderParentItemid
	nidParent
	SPGET_PROV_ITEMID
	N
	N
	NEVER

	PidTagMappingSignature
	
	SPGET_MAPSIG
	N
	N
	ALWAYS

	PidTagRecordKey
	
	SPGET_RECORDKEY
	N
	N
	ALWAYS

	PidTagStoreRecordKey
	
	SPGET_UIDRESOURCE
	N
	N
	ALWAYS

	PidTagStoreEntryId
	
	SPGET_STOREEID
	N
	N
	ALWAYS

	PidTagObjectType
	nid
	SPGET_OBJECTTYPE
	N
	N
	ALWAYS

	PidTagEntryId
	nid
	SPGET_EID
	N
	N
	ALWAYS

	PidTagBody
	
	SPGET_BB_BODY
	SPSET_BBB
	DEL_2
	BODY

	PidTagRtfSyncBodyCrc
	
	SPGET_RTF_AUX
	SPSET_RA
	DEL_3
	NEVER

	PidTagRtfSyncBodyCount
	
	SPGET_RTF_AUX
	SPSET_RA
	DEL_3
	NEVER

	PidTagRtfSyncBodyTag
	
	SPGET_RTF_AUX
	SPSET_RA
	DEL_3
	NEVER

	PidTagRtfCompressed
	
	SPGET_BB_BODY
	SPSET_BBB
	DEL_2
	BODY

	PidTagRtfSyncPrefixCount
	
	SPGET_RTF_AUX
	SPSET_RA
	DEL_3
	NEVER

	PidTagRtfSyncTrailingCount
	
	SPGET_RTF_AUX
	SPSET_RA
	DEL_3
	NEVER

	PidTagBodyHtml (ANSI ONLY)
	PidTagHtml
	SPGET_BODYHTMLA
	SPSET_BBB
	DEL_2
	

	PidTagHtml
	
	SPGET_BB_BODY
	SPSET_BBB
	DEL_2
	BODY

	PidTagCreationTime
	
	PC
	PC
	N
	ALLOW

	PidTagLastModificationTime
	
	PC
	PC
	N
	ALLOW

	PidTagSearchKey
	
	PC
	PC
	N
	ALLOW

	PidTagConversationId
	
	SPGET_CONVERSATION_ID
	N
	DEL_5
	ALLOW

	PidTagConversationIndexTracking
	
	PC
	SPSET_CID
	DEL_5
	ALLOW

	PidTagStoreProvider
	
	SPGET_UIDPROVIDER
	N
	N
	ALWAYS

	PidTagContentFilterSpamConfidenceLevel
	
	SPGET_CONTENT_FILTER_SCL
	N
	PC
	NEVER

	PidTagSecureSubmitFlags
	
	SPGET_SECURE_SUBMIT_FLAGS
	N
	PC
	NEVER

	PidTagPstBestBodyProptag
	
	SPGET_BB_PROPTAG
	N
	N
	NEVER

	PidTagShortTermParentEntryIdFromObject
	nidParent
	SPGET_PARENTEID
	N
	N
	NEVER

	PidTagShortTermEntryIdFromObject
	nid
	SPGET_EID
	N
	N
	NEVER

	PidTagPstSubTreeContainer
	
	SPGET_SUBTREE_CONTAINER
	N
	N
	NEVER

[bookmark: section_395a455a8cac48d5903b94464e6d7c98][bookmark: _Toc174686228]Embedded Message Objects
The following are the calculated properties defined under the embedded Message object.
ANSI / Unicode:
	Property tag
	Base tag
	Get behavior
	Set
	Delete
	List

	PidTagMessageClass
	
	PC
	SPSET_MC
	N
	ALLOW

	PidTagSubject
	PidTagSubject
	SPGET_SUBJECT
	SPSET_SUB
	DEL_1
	ALLOW

	PidTagSubjectPrefix
	PidTagSubject
	SPGET_SUBJECTPREFIX
	SPSET_SP
	DEL_1
	BASED

	PidTagConversationTopic
	
	PC
	SPSET_CID
	DEL_5
	ALLOW

	PidTagConversationIndex
	
	PC
	SPSET_CID
	DEL_5
	ALLOW

	PidTagDisplayBcc
	PidTagDisplayBcc
	SPGET_DISPLAY
	N
	N
	ALWAYS

	PidTagDisplayCc
	PidTagDisplayCc
	SPGET_DISPLAY
	PC
	N
	ALWAYS

	PidTagDisplayTo
	PidTagDisplayTo
	SPGET_DISPLAY
	PC
	N
	ALWAYS

	PidTagMessageFlags
	
	PC
	SPSET_MF
	N
	ALLOW

	PidTagMessageSize
	
	PC
	PC
	N
	ALLOW

	PidTagParentEntryId
	nidParent
	SPGET_PARENTEID
	N
	N
	ALWAYS

	PidTagMessageRecipients
	
	SPGET_TRUE
	N
	N
	ALWAYS

	PidTagMessageAttachments
	
	SPGET_TRUE
	N
	N
	ALWAYS

	PidTagHasAttachments
	PidTagMessageFlags
	SPGET_HASATTACH
	N
	N
	ALWAYS

	PidTagNormalizedSubject
	PidTagSubject
	SPGET_NORMALIZESUBJECT
	N
	N
	BASED

	PidTagMappingSignature
	
	SPGET_MAPSIG
	N
	N
	ALWAYS

	PidTagRecordKey
	
	SPGET_RECORDKEY
	N
	N
	ALWAYS

	PidTagStoreRecordKey
	
	SPGET_UIDRESOURCE
	N
	N
	ALWAYS

	PidTagStoreEntryId
	
	SPGET_STOREEID
	N
	N
	ALWAYS

	PidTagObjectType
	nid
	SPGET_OBJECTTYPE
	N
	N
	ALWAYS

	PidTagEntryId
	nid
	SPGET_EID
	N
	N
	ALWAYS

	PidTagBody
	
	SPGET_BB_BODY
	SPSET_BBB
	DEL_2
	BODY

	PidTagRtfSyncBodyCrc
	
	SPGET_RTF_AUX
	SPSET_RA
	DEL_3
	NEVER

	PidTagRtfSyncBodyCount
	
	SPGET_RTF_AUX
	SPSET_RA
	DEL_3
	NEVER

	PidTagRtfSyncBodyTag
	
	SPGET_RTF_AUX
	SPSET_RA
	DEL_3
	NEVER

	PidTagRtfCompressed
	
	SPGET_BB_BODY
	SPSET_BBB
	DEL_2
	BODY

	PidTagRtfSyncPrefixCount
	
	SPGET_RTF_AUX
	SPSET_RA
	DEL_3
	NEVER

	PidTagRtfSyncTrailingCount
	
	SPGET_RTF_AUX
	SPSET_RA
	DEL_3
	NEVER

	PidTagBodyHtml (ANSI ONLY)
	PidTagHtml
	SPGET_BODYHTMLA
	SPSET_BBB
	DEL_2
	BODY

	PidTagHtml
	
	SPGET_BB_BODY
	SPSET_BBB
	DEL_2
	BODY

	PidTagCreationTime
	
	PC
	PC
	N
	ALLOW

	PidTagLastModificationTime
	
	PC
	PC
	N
	ALLOW

	PidTagSearchKey
	
	PC
	PC
	N
	ALLOW

	PidTagConversationId
	
	SPGET_CONVERSATION_ID
	N
	DEL_5
	ALLOW

	PidTagConversationIndexTracking
	
	PC
	SPSET_CID
	DEL_5
	ALLOW

	PidTagStoreProvider
	
	SPGET_UIDPROVIDER
	N
	N
	ALWAYS

	PidTagContentFilterSpamConfidenceLevel
	
	SPGET_CONTENT_FILTER_SCL
	N
	PC
	NEVER

	PidTagSecureSubmitFlags
	
	SPGET_SECURE_SUBMIT_FLAGS
	N
	PC
	NEVER

	PidTagPstBestBodyProptag
	
	SPGET_BB_PROPTAG
	N
	N
	NEVER

[bookmark: section_457927079db443e597fca54bd56146b1][bookmark: _Toc174686229]Attachment Objects
The following are the calculated properties defined under the Attachment object.
ANSI / Unicode:
	Property tag
	Base tag
	Get behavior
	Set
	Delete
	List

	PidTagAttachSize
	
	PC
	N
	N
	ALLOW

	PidTagAttachNumber
	nid
	SPGET_LONGNID
	N
	N
	ALWAYS

	PidTagMappingSignature
	
	SPGET_MAPSIG
	N
	N
	ALWAYS

	PidTagRecordKey
	nid
	SPGET_RECORDKEY
	N
	N
	ALWAYS

	PidTagStoreRecordKey
	
	SPGET_UIDRESOURCE
	N
	N
	ALWAYS

	PidTagStoreEntryId
	
	SPGET_STOREEID
	N
	N
	ALWAYS

	PidTagObjectType
	nid
	SPGET_OBJECTTYPE
	N
	N
	ALWAYS

	PidTagAttachMethod
	
	PC
	PC
	N
	ALLOW

	PidTagRenderingPosition
	
	PC
	PC
	N
	ALLOW

	PidTagSecureSubmitFlags
	
	SPGET_SECURE_SUBMIT_FLAGS
	N
	PC
	NEVER

[bookmark: section_65d31278eb814f81bc4202475236c0af][bookmark: _Toc174686230]Calculated Property Behaviors
The following are the definitions of the Get / Set / Delete / List behavior descriptors used in the preceding tables.
[bookmark: section_f37c529b0cd04ffd83eec286636de41a][bookmark: _Toc174686231]Behavior Descriptors for Get Operations
The following is a list of Behavior Descriptors that relate to Get operations used in the preceding tables, which explain how each specific calculated property is evaluated. In the evaluation column, the use of angle braces (< >) around a property tag is used to denote the value of that property.
	Mnemonic
	Evaluation
	Input data for evaluation

	PC
	The property value is loaded directly from the PC (that is, no special calculations are required). However the property has special instructions for Set, Delete, and List operations.
	See the Base Tag column for the underlying PC property.

	SPGET_EID
	Returns the PST-specific EntryID of the object in question. See section 2.4.3.2 for details regarding the conversion between an EntryID and its corresponding NID.
	Node.nid

	SPGET_STOREEID
	Returns the EntryID for the current PST message store. The EntryID of the message store is stored in the PidTagEntryId property of the message store PC.
	PidTagEntryId
(message store PC only)

	SPGET_LONGNID
	Returns Node.nid.
	Node.nid

	SPGET_RECORDKEY
	Returns Node.nid.
	Node.nid

	SPGET_UIDRESOURCE
	Returns identical value as SPGET_STOREEID.
	PidTagEntryId
(message store PC only)

	SPGET_TRUE
	Returns true.
	None

	SPGET_OBJECTTYPE
	Returns the object type of the current object. Implementations MUST return one of the pre-defined values:
· MAPI_STORE
· MAPI_FOLDER
· MAPI_MESSAGE
· MAPI_ATTACH
	None

	SPGET_FOLDERTYPE
	Returns the type of the current Folder object. Implementations MUST return one of the possible values:
· FOLDER_ROOT
· FOLDER_GENERIC
· FOLDER_SEARCH
	None

	SPGET_UIDPROVIDER
	Returns the Provider UID for the current PST. This value is stored in the PidTagRecordKey property of the message store PC.
	PidTagEntryId
(message store PC only)

	SPGET_NORMALIZESUBJECT
	Returns the Unicode/ANSI version of PidTagNormalizedSubject according to the PST version based on the requested string type. See section 2.5.3.1.1 for extracting the normalized subject of a Message object.
	PidTagNormalizedSubject

	SPGET_PARENTEID
	Returns the EntryID representation (see section 2.4.3.2) of the NID of the parent of the current object.
	Node.nidParent

	SPGET_HASATTACH
	Returns 1 if PidTagMessageFlags contains mfHasAttach; zero otherwise.
	PidTagMessageFlags

	SPGET_STORESTATE
	Returns STORE_HAS_SEARCHES (as specified in [MS-OXCSTOR] section 2.2.1.5.2) if a node with NID NID_SEARCH_ACTIVITY_LIST is found; zero otherwise.
	None

	SPGET_SUBJECTPREFIX
	Returns the Unicode/ANSI version of PidTagSubjectPrefix based on the requested string type. See section 2.5.3.1.1 for extracting the subject prefix of a Message object.
	PidTagSubjectPrefix

	SPGET_SUBJECT
	Returns the Unicode/ANSI version of PidTagSubject based on the requested string type. See section 2.5.3.1.1 for extracting the subject of a Message object.
	PidTagSubject

	SPGET_DISPLAY
	If the Base Tag property exists, then its value is returned, otherwise, an empty string in the correct encoding (Unicode/ANSI) is returned based on the requested string type.
	See Base Tag column

	SPGET_ZERO
	Returns zero.
	None

	SPGET_MAPSIG
	Returns the Mapping Signature UID. This is identical to SPGET_UIDPROVIDER.
	See SPGET_UIDPROVIDER

	SPGET_BB_BODY
	Returns the most Message object body format based on the requested property tag.
	Any of PidTagBody, PidTagHtml, or PidTagRtfCompressed

	SPGET_RTF_IN_SYNC
	Returns true if the RTF version of the Message object body exists and is synchronized with the order versions of the Message object body (if any), or false otherwise.
	PidTagRtfCompressed and PidTagRtfInSync

	SPGET_MSGSTATUS
	Returns PidTagMessageStatus retrieved from the Contents TC from the parent Folder object of the Message object. Implementations MUST follow this method when retrieving this property.
	PidTagMessageStatus
(from Contents TC of parent Folder object)

	SPGET_RTF_AUX
	Returns the synchronized values of the requested RTF auxiliary property. If the RTF content is not in sync, the RTF MUST first be synchronized before the property value is retrieved and returned.
	Any of PidTagRtfSyncBodyCrc, PidTagRtfSyncBodyCount, PidTagRtfSyncBodyTag, PidTagRtfSyncPrefixCount, or PidTagRtfSyncTrailingCount

	SPGET_BODYHTMLA
	Returns the HTML rendering of the Message object body. If PidTagHtml is found in the PC, its value MUST be returned. Otherwise, the HTML rendering of the Message object body SHOULD be generated from the other Message object body formats and returned. This property only exists in ANSI versions of the PST and the HTML rendering MUST be returned in ANSI encoding.
	PidTagHtml

	SPGET_FOLDERID
	Returns PidTagReplItemid of the containing Folder object for a Message object or Folder object.
	PidTagReplItemid
(from parent Folder object PC)

	SPGET_TABLE_ONLY
	Retrieves and returns the requested property from the parent Folder object TC (Hierarchy, Contents, or Assoc Contents, based on the requesting object type).
	Any of PidTagReplItemid, PidTagReplChangenum, PidTagReplVersionhistory, PidTagReplFlags, PidTagReplCopiedfromVersionhistory, or PidTagReplCopiedfromItemid
(from parent Folder object TC)

	SPGET_HST_FOLDERREPL
	Returns true if PidTagContainerClass exists and is set to "IPF.Note", "IPF.Contact", "IPF.Appointment" or an empty string. Returns false otherwise.
	PidTagContainerClass

	SPGET_IPMSUBTREE_DESC
	Returns true if the current object is a descendant object of the IPM SuBTree, false otherwise.
	Node.nid

	SPGET_BB_PROPTAG
	Returns the property tag of the best Message object body format. The typical order of preference for best Message object body is as follows:
PidTagRtfCompressed (only if PidTagRtfInSync=TRUE)
PidTagHtml
PidTagBody
Note that the best Message object body format can be explicitly set to override the default preference.
	PidTagRtfCompressed
PidTagRtfInSync
PidTagHtml
PidTagBody

	SPGET_SUBTREE_CONTAINER
	Returns the SuBTree container of the current object. For a PST, the valid return values are SUBTREECONTAINER_NONE which means no SuBTree container, or SUBTREECONTAINER_IPM_SUBTREE which means an IPM SuBTree.
	Node.nid

	SPGET_PROV_ITEMID
	Returns the endian-swapped value of the requested property.
	PidTagProviderItemid or PidTagProviderParentItemid

	SPGET_UNREAD_COUNT
	If PidTagPstHiddenUnread exists, return (PidTagContentUnreadCount minus PidTagPstHiddenUnread); otherwise, return PidTagContentUnreadCount.
	PidTagContentUnreadCount and
PidTagPstHiddenUnread

	SPGET_CONTENT_COUNT
	If PidTagPstHiddenCount exists, return
(PidTagContentCount minus PidTagPstHiddenCount); otherwise, return PidTagContentCount.
	PidTagContentCount and PidTagPstHiddenCount

	SPGET_SECURE_SUBMIT_FLAGS
	Returns zero.
	None

	SPGET_CONTENT_FILTER_SCL
	Returns zero.
	None

	SPGET_CONVERSATION_ID
	Returns the computed conversation ID from PidTagConversationIndex, PidTagConversationTopic, and PidTagConversationIndexTracking. Refer to section 5.4 for the algorithm used to compute the Conversation ID value using these properties.
	PidTagConversationIndex, PidTagConversationTopic and PidTagConversationIndexTracking

[bookmark: section_fbba2423500645dd8ea45e0a8eba1f76][bookmark: _Toc174686232]Message Subject Handling Considerations
A message subject consists of two distinct parts: a Subject Prefix (which can be an empty string), and the Normalized Subject. The Message Subject is physically stored in a Message object PC as the PidTagSubject property, which includes the entire message subject line, plus some metadata that allows the reader to parse out the Subject Prefix and Normalized Subject.
The following explains the data layout of the binary data stored in PidTagSubject, and how to extract the Subject Prefix (PidTagSubjectPrefix) and Normalized Subject (PidTagNormalizedSubject) fields from PidTagSubject.
[bookmark: section_5959edb33fb04e35a0dcc043cd888fdd][bookmark: _Toc174686233]Obtaining the Prefix and Normalized Subject from PidTagSubject
The first character of PidTagSubject indicates whether metadata exists to tell the reader how to parse the prefix and normalized subject. Note that a character is a 1-byte CHAR for an ANSI PST file, and a 2-byte WCHAR for a Unicode PST file.
If the first character contains the value of 1 (the actual value 1, not the ASCII code for the character 1), the next character indicates the length of the Subject Prefix, including the separator between the prefix and the normalized subject (a space character in most cases). The Normalized Subject immediately follows the Subject Prefix. When the subject is encoded in the database, the length of the prefix is one longer than the prefix string. The following example shows what layout in memory looks like for an ANSI subject:
	Index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	Value
	0x01
	0x05
	0x52 (R)
	0x45 (E)
	0x3A (:)
	0x32
	0x53 (S)
	0x55 (U)
	0x42 (B)
	0x00

The length of the encoded prefix is 5, corresponding to the actual length of the string, which is 4. In order to increment the pointer to the normalized subject, which starts at index 6, 1 needs to be subtracted from this value. When writing a subject, the reverse operation MUST be performed as well, adding 1 to the length of the prefix string.
However, if the first character is not 1, then the string contains the entire message subject, with no additional metadata. In this case, the message subject MUST be parsed to extract the prefix and normalized subject.
[bookmark: section_ba6398a382ba46aabbe93eb28917c271][bookmark: _Toc174686234]Rules for Parsing the Subject Prefix
The subject prefix is defined as a series of one to three non-space, non-numerical characters that is followed by a colon (:). Zero or more space characters (that is, " "; other whitespace characters are not allowed) can exist after the colon and before the start of the normalized subject.
[bookmark: section_ac077c32d0ed475591cbb971e385f76e][bookmark: _Toc174686235]Behavior Descriptors for Set Operations
Modifying the value of a calculated property is more complicated than retrieving its value in that a reverse calculation needs to be performed to calculate the new underlying value, and in some cases, more than one underlying property has to be updated as a result.
The following is a list of Behavior Descriptors that relate to Set operations, which describes the actions required to update the pertinent information, as well as any PC properties that are affected as a result of the Set operation.
	Mnemonic
	Action
	Affected PC properties

	N
	Property MUST NOT be modified.
	None

	PC
	The property value is written directly to the PC (that is, no special calculations are required). However the property has special instructions for Get, Delete, and List operations.
	Only the modified property itself.

	SPSET_MF
	Refreshes PidTagMessageFlags based on the current state of the Message object. This involves checking many properties, including the various versions of the Message object body, the recipient and attachment tables, and so on.
	PidTagMessageFlags

	SPSET_SP
	Sets the subject prefix for the Message object, which MAY affect other Subject-related properties.
	PidTagSubjectPrefix, PidTagSubject, and PidTagNormalizedSubject

	SPSET_SUB
	Sets the subject of the Message object. This MAY have cascading effects to the other Subject-related fields.
	PidTagSubjectPrefix, PidTagSubject, and PidTagNormalizedSubject

	SPSET_MC
	Sets the message class for the Message object. Implementations MUST check the new message class and reject invalid message classes.
	PidTagMessageClass

	SPSET_RA
	Sets the specified Auxiliary RTF. Modifying one Auxiliary property MAY have cascading effects to other properties. Implementations MUST ensure all the Auxiliary RTF properties stay synchronized.
	PidTagRtfSyncBodyCrc, PidTagRtfSyncBodyCount, PidTagRtfSyncBodyTag, PidTagRtfSyncPrefixCount, and PidTagRtfSyncTrailingCount

	SPSET_RIS
	Writes through to the PidTagRtfInSync, with potential side effects to any of the Best Body properties.
	PidTagRtfCompressed, PidTagHtml, PidTagBody, or
PidTagBodyHtml (ANSI PST only)

	SPSET_BBB
	Sets the Message object body for the specified body property. This also establishes the specified Message object body type as the best Message object body.
	PidTagRtfCompressed, PidTagHtml, PidTagBody, or
PidTagBodyHtml (ANSI PST only)

	SPSET_CID
	Sets the specified property and causes the PidTagConversationId to be recalculated. Refer to section 5.4 for the algorithm used to compute the Conversation ID value using these properties.
	PidTagConversationId

	SPSET_FOLDERID
	Sets PidTagReplItemid of the containing Folder object for a Message object or Folder object.
	PidTagReplItemid

[bookmark: section_7d761438aaf8494ca882e0cfd236eb77][bookmark: _Toc174686236]Behavior Descriptors for Delete Operations
The following is a list of Behavior Descriptors that relate to Delete operations (that is, deleting the property value altogether).
	Mnemonic
	Action
	Side effects

	N
	Property MUST NOT be deleted.
	None

	PC
	Deletes the property from the PC.
	None

	SPDEL_1
	Delete from PC, with side effects.
	MUST update PidTagSubject and PidTagNormalizedSubject

	SPDEL_2
	Delete from PC, with side effects.
	MUST update PidTagBody, PidTagRtfCompressed, PidTagRtfInSync, PidTagHtml, and PidTagBodyHtml (ANSI PST only)

	SPDEL_3
	Delete from PC, with side effects.
	MAY need to also update PidTagRtfSyncBodyCrc, PidTagRtfSyncBodyCount, PidTagRtfSyncBodyTag, PidTagRtfSyncPrefixCount, and PidTagRtfSyncTrailingCount

	SPDEL_4
	Succeeds, but does not actually delete the property.
	None

	SPDEL_5
	Delete, with side effects.
	PidTagConversationId

[bookmark: section_4337a2cc714c4fdaac212e2f99e89e6d][bookmark: _Toc174686237]Interpreting the List Behavior Column
The last column in the calculated property table indicates that visibility of each property when various operations to retrieve or otherwise list the property are invoked. There are three possible List behaviors for each property, which are explained in the following table.
	Behavior
	Description

	ALWAYS
	The property is included in an enumerate properties call.

	ALLOW
	This property is only included in an enumerate properties call if the property already exists in the underlying PC.

	BASED
	This property is included only if the property indicated in the Base Tag column exists in the PC.

	BODY
	This property is included only if at least one of the Message object body properties (PidTagRtfCompressed, PidTagBody, PidTagBodyHtml or PidTagHtml) exists in the PC.

	NEVER
	This property is never included in an enumerate properties call.

The List behavior only dictates the visibility of a calculated property during a call to enumerate all the properties of an object. A property with a List Behavior of NEVER can still be retrieved and even modified (according to its Get, Set, and Delete rules).
[bookmark: section_5e1a4d6bebbf46589aa7824929233044][bookmark: _Toc174686238]Maintaining Data Integrity
The following section outlines a series of considerations for implementations that intend to modify the contents of a PST.
This section specifies a set of implementation considerations to maintain PST file integrity while modifying its contents and to ensure the modified PST continues to be recognized and accessible by other implementations of this file format specification. Specific algorithms are not discussed in this section.
[bookmark: section_9d2083cffd374a0db61ad2ef10a89a04][bookmark: _Toc174686239]NDB Layer
The NDB layer, for the purpose of discussion in this section, consists of two portions: an infrastructure portion, and the NDB portion, as shown in the following diagram.
[image: NDB layer]
Figure 16: NDB layer
The infrastructure portion contains the various elements in the PST that maintain the lowest-level information, which includes: the PST header and the allocation metadata pages (that is, AMaps, PMaps, FMaps, FPMaps, and the DList). Together these entities form the underlying infrastructure that represent the metadata and state on which the proper functioning of the PST relies. The header and the allocation metadata pages are the only entities in the PST that are ever modified in-place.
The NDB portion is the node database that includes the NBT and BBT, and all its associated operations. This section covers the various implementation considerations associated with the NDB Layer. To start, the following table illustrates the various entities that exist in the NDB layer.
	Entity
	Required?
	Instances
	Remarks

	PST HEADER
	Y
	1
	The PST header MUST be maintained and up-to-date at all times.

	AMap
	Y
	Many, Periodic
	Authoritative source of all free/allocated space in the PST, MUST be maintained at all times.

	PMap
	Y
	Many, Periodic
	[bookmark: Appendix_A_Target_19]MUST exist in correct intervals for backward client compatibility. Implementations SHOULD NOT modify PMaps after they are created.<19>

	FMap
	Y
	Many, Periodic
	[bookmark: Appendix_A_Target_20]MUST exist in correct intervals for backward client compatibility. Implementations SHOULD NOT modify FMaps after they are created.<20>

	FPMap
	Y
	Many, Periodic
	[bookmark: Appendix_A_Target_21]MUST exist in correct intervals for backward client compatibility. Implementations SHOULD NOT modify FPMaps after they are created.<21>

[bookmark: section_177684ec31024c27a3cb5357475d96e6][bookmark: _Toc174686240]Basic Operations
The following sections describe the most common operations performed at the NDB layer, and specific implementation considerations.
[bookmark: section_d715d1ca20e94966b9b29cd36bd5f657][bookmark: _Toc174686241]Allocating Space from the PST
Allocating space directly from the PST file for higher-level operations.
	Requirement level
	Actions

	Required
	MUST check the fAMapValid value in the ROOT structure before proceeding (section 2.6.1.3.7).
Each allocation MUST NOT exceed 8 kilobytes (8192 bytes) in size.
The corresponding AMap MUST be updated to reflect the allocation (section 2.2.2.7.2).
The cbAMapFree and cbPMapFree fields in the HEADER.ROOT structure MUST be updated to reflect the allocation.

	Recommended
	Use the DList, PMap, FMap, FPMap as optimizations.

	Optional
	Update the DList.
Update the PMap, FMap, FPMap.

Possible side effects:
	Scenario
	Impact

	Free slot of required size not found
	The PST File needs to grow. See section 2.6.1.1.2 for additional considerations.

[bookmark: section_cbea68b6e93e4477a8ae7e71c6b7908e][bookmark: _Toc174686242]Growing the PST File
Increasing the size of the PST file to create more space for allocation.
	Requirement level
	Actions

	Required
	The PST file MUST grow at integer multiples of the number of bytes mapped by an AMap (that is, multiples of approximately 250 kilobytes).
All new AMaps created MUST be properly initialized.
If needed, PMaps, FMaps, and FPMaps MUST be created at the required intervals and properly initialized (section 2.2.2.7).
The ibFileEof, ibAMapLast, cbAMapFree and cbPMapFree fields in the HEADER.ROOT structure MUST be updated to reflect the growth.

	Recommended
	None.

	Optional
	Update the DList.

Possible side effects: None
[bookmark: section_f6d29a6c5e1e4b09a28dd6f87f334f8e][bookmark: _Toc174686243]Freeing Space Back to the PST
Freeing allocated space to the PST.
	Requirement level
	Actions

	Required
	The corresponding AMap MUST be updated to reflect the freed page (section 2.2.2.7.2).
The cbAMapFree and cbPMapFree fields in the HEADER.ROOT structure MUST be updated accordingly.

	Recommended
	None.

	Optional
	Update the DList.
Update the PMap, FMap, FPMap.

Possible side effects: None.
[bookmark: section_40703178c913468cad44e50e61e6db94][bookmark: _Toc174686244]Creating a Page
Allocating a new page and assigning an BID.
	Requirement level
	Actions

	Required
	MUST check the fAMapValid value in the ROOT structure before proceeding (see section 2.6.1.3.7).
Page allocations MUST be 512 bytes in size and aligned on a 512-byte boundary.
Allocate space for the page (section 2.6.1.1.1).
The PAGETRAILER MUST be initialized (section 2.2.2.7.1).
The BBT Reference Count for each data block MUST be initialized.
The BBT MUST be updated to reflect the new data block(s).
The bidNextB field in the HEADER.ROOT structure MUST be incremented.
The bidNextP field in HEADER MUST also be incremented.

	Recommended
	Use the DList, PMap, FMap, FPMap as optimizations.

	Optional
	Update the DList.
Update the PMap, FMap, FPMap.

Possible side effects:
	Scenario
	Impact

	Free slot of required size not found.
	The PST File needs to grow. Refer to section 2.6.1.1.2 for additional considerations.

	BBT page too full.
	The BBT might need more levels or need to be balanced.

[bookmark: section_fbb1cdf81660489cbfca125d05121bf8][bookmark: _Toc174686245]Creating a Block
Allocating a new data block and assigning an BID.
	Requirement level
	Actions

	Required
	MUST check the fAMapValid value in the ROOT structure before proceeding (section 2.6.1.3.7).
Block allocations MUST be integer multiples of 64 bytes in size and aligned on a 64-byte boundary. The allocation size MUST factor in the size of the extra BLOCKTRAILER.
Allocate space for the block (section 2.6.1.1.1).
Non-internal data blocks MUST be encoded according to HEADER.bCryptMethod.
The BBT Reference Count for each data block MUST be initialized.
The BBT MUST be updated to reflect the new data block(s).
The BLOCKTRAILER MUST be initialized, including the data CRC (section 2.2.2.8.1).
The bidNextB field in the HEADER.ROOT structure MUST be incremented.

	Recommended
	Use the DList, PMap, FMap, FPMap as optimizations.

	Optional
	Update the DList.
Update the PMap, FMap, FPMap.

Possible side effects:
	Scenario
	Impact

	Free slot of required size not found.
	The PST File needs to grow. Refer to section 2.6.1.1.2 for additional considerations.

	BBT page too full.
	The BBT might need more levels or need to be balanced.

[bookmark: section_7e1477b0af4441f8b6d68ca31951333f][bookmark: _Toc174686246]Freeing a Page in the PST
Freeing an allocated page back to the PST file.
	Requirement level
	Actions

	Required
	Drop the reference count of the BID that corresponds to the page.
In the reference count drops to less than 2, then free the BID (section 2.6.1.1.3).

	Recommended
	Validate the PAGETRAILER to make sure the page is valid (section 2.2.2.7.1).

	Optional
	None.

Possible side effects: None.
[bookmark: section_44f19aba6ea748358f86c378b90594fd][bookmark: _Toc174686247]Dropping the Reference Count of a Block
Dropping the reference count of an allocated block, and freeing back to the PST if the reference count drops to one or less.
	Requirement level
	Actions

	Required
	Drop the reference count of the BID associated with the data block.
If the reference count drops to less than 2, then free the BID (section 2.6.1.1.3).

	Recommended
	Validate the BLOCKTRAILER to make sure the block is valid (section 2.2.2.8.1).

	Optional
	None.

Possible side effects: None.
[bookmark: section_e287bee3dd1a49aa86cfd0f5e4f49efe][bookmark: _Toc174686248]Modifying a Page
Modifying the contents of a page.
	Requirement level
	Actions

	Required
	MUST check the fAMapValid value in the ROOT structure before proceeding (see section 2.6.1.3.7).
Create a new page for the modifications (section 2.6.1.1.4).
Replace references to the old page BID with the new page BID.
Free the old page (section 2.6.1.1.6).

	Recommended
	None.

	Optional
	None.

Possible side effects:
	Scenario
	Impact

	Free slot of required size not found.
	The PST File needs to grow. Refer to section 2.6.1.1.2 for additional considerations.

	Higher-level pages reference this page.
	Higher-level pages MUST be recursively modified using the same mechanism.

[bookmark: section_93faa1bce7be4a158ff7ed81ab7336a0][bookmark: _Toc174686249]Modifying a Block
Modifying the contents of a block.
	Requirement level
	Actions

	Required
	MUST check the fAMapValid value in the ROOT structure before proceeding (see section 2.6.1.3.7).
Create a new block for the modified data (section 2.6.1.1.5).
Replace references to the old BID with the new BID, this requires cascading modifications to other referencing pages (section 2.6.1.1.8).
Drop the reference count of the old block (section 2.6.1.1.7).

	Recommended
	None.

	Optional
	None.

Possible side effects:
	Scenario
	Impact

	Free slot of required size not found.
	The PST File needs to grow. Refer to section 2.6.1.1.2 for additional considerations.

	The block is referenced by a data tree.
	The XBLOCK and the data tree blocks that reference the XBLOCK MUST be recursively modified using the same mechanism.

[bookmark: section_e6749bee6b524ede9097069a5a9137d9][bookmark: _Toc174686250]NDB Operations
[bookmark: section_b0dca92d4b154880bf45c1e786260d02][bookmark: _Toc174686251]Creating a New Node
Creating a new node with a data BLOB (see next section for adding a subnode).
	Requirement level
	Actions

	Required
	New data block(s) MUST be allocated to store the data (section 2.6.1.1.5).
The NBT MUST be updated to reflect the new node and associated BIDs (section 2.2.2.7.7.4).
The corresponding rgnid[nidType] field in the HEADER.ROOT structure MUST be incremented accordingly.

	Recommended
	BTree pages SHOULD be maintained at under 90 percent capacity.

	Optional
	None.

Possible side effects:
	Scenario
	Impact

	Not enough free space.
	The PST File needs to grow.

	BBT page too full.
	The BBT might need more levels or need to be balanced.

	NBT page too full.
	The NBT might need more levels or need to be balanced.

	Data BLOB larger than 8 kilobytes.
	A data tree needs to be constructed to store the data BLOB.

[bookmark: section_4ff272a25e5447778eb68019e6f63d15][bookmark: _Toc174686252]Creating or Adding a Subnode Entry
Creating a subnode entry with a data BLOB and associating it with an existing node.
	Requirement level
	Actions

	Required
	Create a new data block (section 2.6.1.1.5).
Allocate an SLBLOCK, if one does not exist (section 2.6.1.1.5).
Associate the SLBLOCK with NID of the containing node (NBT page needs to be modified).
Create a new SLENTRY in the SLBLOCK and associate it with the data block.

	Recommended
	None.

	Optional
	None.

Possible side effects:
	Scenario
	Impact

	Not enough free space.
	The PST File needs to grow.

	BBT page too full.
	The BBT might need more levels or need to be balanced.

	SLBLOCK is full.
	The subnode BTree needs to grow in depth to accommodate new subnode entry.

	Data BLOB larger than 8 kilobytes.
	A data tree needs to be constructed to store the data BLOB.

NIDs for subnodes are internal and therefore NOT allocated from the rgnid[nidType] counter in the HEADER.
[bookmark: section_dc322b875d914e008123c4a155dfe6dd][bookmark: _Toc174686253]Modifying Node Data
Modifying the contents of the data BLOB of an existing node.
	Requirement level
	Actions

	Required
	Create a new data block(s) for the modified data (section 2.6.1.1.5).
The NBT node entry MUST be updated with the new BID(s) (section 2.6.1.1.8).

	Recommended
	If the data is stored in a data tree, implementations are encouraged to add optimizations to only replace the specific blocks that have actually been modified.

	Optional
	None.

Possible side effects:
	Scenario
	Impact

	Not enough free space to store the new data BLOB.
	The PST File needs to grow.

	BBT page too full.
	The BBT might need more levels or need to be balanced.

	New data BLOB larger than 8 kilobytes.
	A data tree needs to be constructed to store the data BLOB.

A new data block MUST be allocated even if the new content is smaller than or equal to the old content in size. See section 2.6.1.3.1 for further explanation.
[bookmark: section_9daacaf819b244caba66a6ce17cebbf4][bookmark: _Toc174686254]Duplicating the Contents of One Node to Another
Copying all the contents of an existing node to a new node, where the new node can be a top-level node or a subnode (for example, when a Message object is added to another Message object as an Attachment object). Both nodes end up referencing the same instance of the data block, and subnodes (that is, single-instancing).
	Requirement level
	Actions

	Required
	The BBT Reference Count for bidData and bidSub of the existing node MUST be incremented.
The NBT or SLBLOCK MUST be updated, depending on whether the target is a node or subnode, to reflect the new node, using the same bidData and bidSub values as the existing node.
The corresponding rgnid[nidType] field in the HEADER.ROOT structure MUST be incremented.

	Recommended
	None.

	Optional
	None.

Possible side effects:
	Scenario
	Impact

	NBT page too full.
	The NBT might need more levels or need to be balanced.

	The target is a subnode and the SLBLOCK is full.
	The subnode BTree needs to grow in depth to accommodate new subnode entry.

If bidData points to a data tree, there is no need to recursively increment the reference count of its child data blocks.
If the node contains a subnode, there is no need to recursively increment the reference count of its child data blocks.
In many cases the existing node and new node have a different nidParent.
[bookmark: section_0ef8834412364d5d9969e421e501737c][bookmark: _Toc174686255]Modifying Subnode Entry Data
Modifying the data associated with a subnode entry. This is identical to modifying node data in section 2.6.1.2.3, except that the subnode entry is located using the subnode BTree of the containing node instead of looking up the NBT.
	Requirement level
	Actions

	Required
	Create new data block(s) for the modified data (section 2.6.1.1.5).
The corresponding SLBLOCK subnode entry MUST be updated with the new BID(s) (section 2.6.1.1.5).
Modify NBT pages that reference the subnode BTree (section 2.6.1.1.8).

	Recommended
	If the data is stored in a data tree, implementations are encouraged to add optimizations to only replace the specific blocks that have actually been modified.

	Optional
	None.

Possible side effects:
	Scenario
	Impact

	Not enough free space to store the new data BLOB.
	The PST file needs to grow.

	BBT page too full.
	The BBT might need more levels or need to be balanced.

	New data BLOB larger than 8 kilobytes.
	A data tree needs to be constructed to store the data BLOB.

	The SLBLOCK is full and a new subnode entry is added.
	The subnode BTree needs to grow in depth to accommodate new subnode entry.

See section 2.6.1.2.3.
[bookmark: section_30652aac85b64da0aa69d88191f30a87][bookmark: _Toc174686256]Deleting a Subnode
Deleting an existing subnode.
	Requirement level
	Actions

	Required
	The reference count for bidData and bidSub of each subnode entry MUST be dropped (section 2.6.1.1.7).
The corresponding subnode entry MUST be removed from the SLBLOCK of the containing node (section 2.6.1.1.9).
The reference count of the SLBLOCK MUST be dropped (section 2.6.1.1.7).

	Recommended
	None.

	Optional
	None.

Possible side effects:
	Scenario
	Impact

	Subnode contains subnodes.
	The reference counts of the bidData and bidSub for each of the Sub-subnodes MUST be dropped, which ensures the blocks are freed.

[bookmark: section_5c665105ea034c4ea89b2a8619b40280][bookmark: _Toc174686257]Deleting a Node
Deleting an existing node and its contents from the PST.
	Requirement level
	Actions

	Required
	The reference count for bidData MUST be dropped (section 2.6.1.1.7).
Reference count of bidSub, if exists, MUST be dropped (section 2.6.1.1.7).
The node MUST be removed from the NBT (section 2.6.1.1.8).

	Recommended
	None.

	Optional
	None.

Possible side effects:
	Scenario
	Impact

	The key of the deleted entry is also a key value used in the parent index block.
	If the leaf block is not empty after the delete, then the index row in the parent index block MUST be updated to use the next key value in the leaf block. However, if the leaf black is empty, then the parent index row MUST be removed. In some cases (for example, the index block becomes empty as well) this can have cascading effects up the index path.

[bookmark: section_bee941c3387c4cd3b284ac821c2e1bed][bookmark: _Toc174686258]Special Considerations
The following is a list of special considerations while implementing a PST client.
[bookmark: section_a6b9c7054036421b84932fb2bbb9f3a1][bookmark: _Toc174686259]Immutability
This file format specification treats the NDB as an immutable store. What this means is that, with the exception of the header and allocation metadata pages, the data in the NDB MUST NOT be modified in-place. Instead, a new copy of the data needs to be written at a new location, and then, when all references of the pre-existing data have been removed, the old data can be purged.
[bookmark: section_a5960791199f4eaf99a39e7dc4cb6bab][bookmark: _Toc174686260]Single-Instance Storage
As seen in section 2.6.1.2.4, the NDB Layer supports single-instance storage by having reference counts associated with each data block. Additional references to the same BID can be held as multiple nodes hold references to the same BID. This, combined with the immutability of the NDB store, allows new versions of a particular modified copy to be persisted in a new BID while all the other un-modified copies continue to refer to the old data.
[bookmark: section_bc5a92df7fc14dc29c7c5677237dd73a][bookmark: _Toc174686261]Transactional Semantics
Higher-level messaging applications often require transactional semantics that allow independent views of the underlying data. For example, if two Message objects are opened and then one of them is modified, the other does not see the changes unless and until it is closed and re-opened.
Such semantics can be modeled over the NDB, because each Message object is represented by a node, which only contains a BID for the data block and optionally a subnode. Because the NDB is immutable, which means any modification to the underlying Message object MUST cause the BID to increase, by caching the BIDs when opening a Message object, an implementation can determine whether the underlying Message object had been modified since the Message object was opened.
By architecting the sequence of modifications to ensure that BIDs are only updated after all the underlying data is successfully written, an implementation can design a system that leaves little or no chance for a Message object to end up in an inconsistent state.
In addition, the fAMapValid flag in the ROOT structure can also be used to implement transactional semantics for a group of related operations that requires several allocations from the PST (that is, AMaps). See section 2.6.1.3.7 for further details.
[bookmark: section_92fa61937876408285c7026aae80500b][bookmark: _Toc174686262]Backfilling
Backfilling is an allocation strategy designed to reclaim some of the free space in the PST methodically walking through the file from end to start, filling in empty spaces along the way as allocation requests come in. The backfilling process is initiated when the overall file utilization (that is, free space to file size ratio) drops below a threshold. The threshold is not specified in the PST file and is up to the implementation of the PST client.
When a backfill is initiated, the DFL_BACKFILL_COMPLETE flag is cleared from the DList and the ulCurrentPage field in the DLISTPAGE is set to the index of the last AMap page of the PST. For subsequent allocations, the implementation SHOULD scan for free space backwards (that is, towards the beginning of the file). If space is found, then space is allocated from the AMap page indicated by ulCurrentPage. However, if that AMap page cannot service the allocation, then ulCurrentPage is updated with the index of the AMap page before the current page. The process repeats itself until the ulCurrentPage reaches the first AMap page, in which case the backfill has finished and the DFL_BACKFILL_COMPLETE flag is set in bFlags.
[bookmark: Appendix_A_Target_22]Note that backfilling is an optional optimization feature and is not required.<22>
[bookmark: section_f6376d813ecb4965bb61776ee6b21ed2][bookmark: _Toc174686263]Internal Fragmentation and Locality of Reference
The immutable nature of the NDB means that any data that is modified from time to time is constantly being moved around in the file, because each modification requires a new allocation in the file. This also means that, as data is edited, small pockets of free space are created throughout the file when the original copy of the data is removed.
The allocation algorithm used by the NDB is very efficient in repurposing the small pockets of free space created when a block is edited. However this algorithm makes no attempt to keep related data together because the overall goal is to use space within the file as efficiently as possible.
The end result of this is that any NDB which is not completely static is very prone to internal fragmentation as edits are made. This is especially true of larger streams of data because they are comprised of many blocks, some of which are touched by edits and others of which are not. Those blocks touched by an edit move and those that aren't remain where they are, leading to more and more fragmentation as the different parts of the stream are edited at different times.
This tendency of a PST to fragment internally naturally lends to low locality of reference which means highly scattered read/write patterns. It is recommended that implementations design an access mechanism that minimizes the performance impact of fragmented data access.
[bookmark: section_35847d3642ec422eac074c2c6cbb48ff][bookmark: _Toc174686264]Caching
Modifications to NDB objects often require updates in several different areas of the PST file. For example, creating a new node requires, at a minimum, modifications to the HEADER, AMap, BBT, NBT and also writing data block(s). These modifications become more frequent and compound quickly as higher-level operations are involved (such as moving a Folder object with sub-Folder objects). Often, the same object is modified several times within a single high-level operation.
Caching is a very efficient way to reduce the cost of disk I/O by eliminating unnecessary write-through for objects that are constantly being updated, such as the HEADER, AMaps, NBT / BBT pages, and so on). Performance enhancements can be achieved by implementing page or data block caching mechanisms.
[bookmark: section_d9bcc1fdc66a41b3b6d7ed09d2a25ced][bookmark: _Toc174686265]Crash Recovery and AMap Rebuilding
The fAMapValid flag in the ROOT structure is used to indicate whether the AMaps in the PST file are in a known-valid state. In general, this flag is set to one of the two valid states described in section 2.2.2.5.
At the beginning of any operation that either allocates or frees space in the PST file, implementations set the fAMapValid value to INVALID_AMAP, which signifies that the AMaps (and also PMaps, FMaps, and FPMaps, for that matter) cannot be trusted. When the operation is complete, this value is set back to the valid state. In the event where the PST file is abnormally closed before the operation is finished, it is likely that fAMapValid was never restored back to the valid state. In that case, the PST file MUST go through a very expensive recovery operation the next time an attempt to allocate file space is made.
[bookmark: Appendix_A_Target_23]This recovery operation uses a process called an "AMap rebuild", which involves first marking all the AMaps as "free" and then walking the NBT and BBT to mark pages and blocks as "allocated" in the map pages as they appear.<23> The rebuild process also ensures that all space occupied by the AMaps, PMaps, FMaps and FPMaps are properly marked as allocated.
Implementations are NOT required to implement AMap Rebuild algorithms, but MUST first check the fAMapValid value before manipulating the AMaps in any way. If the fAMapValid value is set to invalid, implementations that do not implement AMap Rebuild algorithms MUST NOT modify the PST file in any way. Read-only implementations, however, MAY ignore the fAMapValid value.
[bookmark: section_4fff5d0a0c5c433088d5e659d1e544d1][bookmark: _Toc174686266]LTP Layer
The LTP layer provides higher-level semantics that abstract the primitive node-based operations. The following diagram graphically illustrates the various structures provided by the LTP layer.
[image: LTP layer]
Figure 17: LTP layer
The following sections describe the most common operations performed at the LTP layer, and specific implementation considerations.
[bookmark: section_a5f0bc87f5db49fa9a6b549d8b7d862d][bookmark: _Toc174686267]HN Operations
[bookmark: section_a29ef0f71a424483a14cc245d066e23a][bookmark: _Toc174686268]Creating an HN
Creating a heap node. This is identical to creating a node in section 2.6.1.2.1, with a data BLOB that contains properly-formatted HNHDR and HNPAGEMAP structures.
	Requirement level
	Actions

	Required
	See requirements for section 2.6.1.2.1.
The HNHDR and HNPAGEMAP structures MUST be properly initialized (section 2.3.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.1.2.1.
[bookmark: section_5b30032e8cbc4f03a6bdc21a7f1c54ea][bookmark: _Toc174686269]Allocating from the HN
Allocates space out of the heap node. This is an extended case of modifying node data in section 2.6.1.2.3.
	Requirement level
	Actions

	Required
	See requirements for section 2.6.1.2.3.
A heap allocation MUST fit within a single block.
Maximum size of a heap allocation is 3580 bytes.
HNPAGEMAP for any modified heap block MUST be maintained (section 2.3.1.5).
The Fill Level Map that corresponds to the modified block (HNs with a data tree) is updated.

	Recommended
	Update the Fill Level Map that corresponds to the modified block (HNs with a data tree).

	Optional
	None.

Possible side effects: See section 2.6.1.2.3.
When an HN no longer fits within a single data block, a data tree is created to span multiple data blocks. When adding new data blocks, implementers MUST use the correct block header format (that is, HNHDR, HNPAGEHDR or HNBITMAPHDR). Refer to section 2.3.1.6 for details.
[bookmark: section_f774eb0af6d74240b5153213bd9c5c40][bookmark: _Toc174686270]Freeing an Allocation
Freeing an allocated slot in the heap node. This is an extended case of modifying node data in section 2.6.1.2.3.
	Requirement level
	Actions

	Required
	An existing HN (section 2.6.2.1.1).
See requirements for section 2.6.1.2.3.
If the freed allocation leaves a gap between allocations, the latter entries MUST be moved up to fill in the gap.
The rgibAlloc field of HNPAGEMAP MUST also be updated to reflect the new allocation offsets.
Update the Fill Level Map that corresponds to the freed space (HNs with a data tree) (section 2.3.1.2 through section 2.3.1.4).

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.1.2.3.
Because the HNPAGEMAP uses the starting offset of the next allocation (or the end of the allocations) to determine the size of the current allocation, any gaps in the allocated heap MUST be moved up to keep the data tightly packed. The rgibAlloc array also needs to be adjusted for the relocation of any subsequent entries.
[bookmark: section_6252617b26db4faca7f750e7dc1c1467][bookmark: _Toc174686271]Deleting an HN
Deleting a heap node. This is identical to deleting a node. See section 2.6.1.2.7.
	Requirement level
	Actions

	Required
	See requirements for section 2.6.1.2.7.

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.1.2.7.
[bookmark: section_03a32db06dbc43a2afd8654f51470880][bookmark: _Toc174686272]BTH Operations
[bookmark: section_bfb05b53209149bea9e11d2434f997ed][bookmark: _Toc174686273]Creating a BTH
Creating a new BTree-on-Heap. This is analogous to making a few allocations from the HN for the BTH-related structures.
	Requirement level
	Actions

	Required
	An existing HN (section 2.6.2.1.1).
The BTHHEADER MUST be allocated from the HN (section 2.6.2.1.2), and properly initialized (section 2.3.2.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.2.1.1 and 2.6.2.1.2.
[bookmark: section_8d33406c1796442e9114af478ef1341f][bookmark: _Toc174686274]Inserting into the BTH
Inserting a new entry into the BTH. This consists of modifying contents of the existing HN allocations, and possibly making new allocations to grow the BTH.
	Requirement level
	Actions

	Required
	An existing BTH (section 2.6.2.2.1).
A new HN allocation is made for the new data (section 2.6.2.1.2).
A new BTH record is created for the new item and inserted into the corresponding BTH structure (section 2.6.2.2.3) .

	Recommended
	BTH index and leaf blocks SHOULD be maintained at under 90 percent capacity.

	Optional
	None.

Possible side effects:
	Scenario
	Impact

	BTH index or leaf block Full
	The index or leaf block needs to be split and a new index level created. Portions of the BTree MUST be re-balanced.

To clarify the terminology, the word "block" referenced in "index / leaf block" actually refers to an HN allocation instead of an actual data block in the BBT.
The size of an index or leaf block for a BTH is 3580 bytes. The number of index or leaf entries that can fit into each block depends on the size of the index and data items.
[bookmark: section_55245797279e4c2d94bc547bc26be59c][bookmark: _Toc174686275]Modifying Contents of a BTH Entry
Modifying contents of a BTH entry. This refers to modifying the data value of an existing BTH entry. In essence, this is a particular case of modifying node data in section 2.6.1.2.3.
	Requirement level
	Actions

	Required
	An existing BTH (section 2.6.2.2.1).
See requirements for section 2.6.1.2.3.

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.1.2.3.
[bookmark: section_21d4903538184a4cbc540e271cb9ce81][bookmark: _Toc174686276]Deleting a BTH Entry
Deleting an entry from a BTH is a particular case of modifying node data in section 2.6.1.2.3.
	Requirement level
	Actions

	Required
	See requirements for section 2.6.1.2.3.
The BTH entry MUST be deleted from the corresponding BTH structure (section 2.3.2.3).

	Recommended
	None.

	Optional
	None.

Possible side effects:
	Scenario
	Impact

	The key of the deleted entry is also a key value used in the parent index block.
	If the leaf block is not empty after the delete, then the index row in the parent index block MUST be updated to use the next key value in the leaf block. However, if the leaf block is empty, then the parent index row MUST be removed. In some cases (for example, the index block becomes empty as well) this can have cascading effects up the index path.

Also see section 2.6.1.2.3.
[bookmark: section_b4ecc60735f7404a802ce812d73210cb][bookmark: _Toc174686277]Deleting a BTH
Deleting a BTH. This is identical to deleting a series of HN allocations in section 2.6.2.1.3.
	Requirement level
	Actions

	Required
	Starting from the HID of the BTH header, walk down all the BTH entry records (recursively if needed) and free all the HN allocations associated with the BTH (section 2.6.2.1.3).
Once all the BTH entries are freed, free the BTH header (section 2.6.2.1.3).

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.2.1.3.
[bookmark: section_db6fbe8e4e5b487cb49288d4b53d5853][bookmark: _Toc174686278]PC Operations
[bookmark: section_1e645de02291457d8e3b3ae415a481ce][bookmark: _Toc174686279]Creating a PC
Creating a Property Context. This is a special case of creating a BTH in section 2.6.2.2.1.
	Requirement level
	Actions

	Required
	See requirements for section 2.6.2.2.1.
Set the hidUserRoot to the HID of the BTH header (section 2.3.2.1).
The key size of the underlying BTH MUST be 2 bytes (section 2.3.3.3).
The data size of the underlying BTH MUST be 6 bytes (section 2.3.3.3).

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.2.2.1.
[bookmark: section_060962849b6a41ea8bf26615bee0752e][bookmark: _Toc174686280]Inserting into the PC
Inserting properties into the Property Context. This is very similar to inserting into the BTH in section 2.6.2.2.2, except that data that is larger than 4 bytes in size is stored in a separate HN allocation or in the subnode instead.
	Requirement level
	Actions

	Required
	An existing PC (section 2.6.2.3.1).
See requirements for section 2.6.2.2.2.

	Recommended
	None.

	Optional
	None.

Possible side effects: See section and 2.6.2.2.2 and 2.6.2.3.1 (if applicable).
If the data is variable-size but less than or equal to 3580 bytes, then the data is stored in a separate HN allocation. The HID of the allocation is stored in the dwValueHnid field for the PC BTH record (section 2.3.3.3).
If the data is variable-size and more than 3580 bytes, then the data is stored in a separate subnode entry. The subnode NID is stored in the dwValueHnid field of the PC BTH record (section 2.3.3.3).
Because an HID is a special NID with NID_TYPE of NID_TYPE_HID, HIDs and subnode NIDs values never collide, implementations can easily determine if dwValueHnid points to an HID or a subnode (section 2.2.2.1).
[bookmark: section_b0848da7e670499d8f26ac82b3e83835][bookmark: _Toc174686281]Modifying the Value of a Property
Modifying the value of an existing property in the Property Context. This is similar to modifying contents of a BTH entry in section 2.6.2.2.3, except when the data is stored in a separate HN allocation (section 2.6.1.2.3) or in the subnode (section 2.6.1.2.5).
	Requirement level
	Actions

	Required
	An existing PC (section 2.6.2.3.1).
See section 2.6.2.2.3, 2.6.1.2.3, and 2.6.1.2.5 (if applicable).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.2.3.1, 2.6.2.2.3, 2.6.1.2.3, and 2.6.1.2.5, where applicable.
[bookmark: section_c30a75c2b2d047459e5bb883f83e12f1][bookmark: _Toc174686282]Deleting a Property
Deleting an existing property from a Property Context. This is similar to Deleting a BTH entry in section 2.6.2.2.4, except when the data is stored in a separate HN allocation (section 2.6.2.1.3) or in the subnode (section 2.6.1.2.6).
	Requirement level
	Actions

	Required
	An existing PC (section 2.6.2.3.1).
See section 2.6.2.2.4, 2.6.2.1.3 and 2.6.1.2.6 (if applicable).

	Recommended
	None.

	Optional
	None.

Possible Side Effects: See sections 2.6.2.3.1, 2.6.2.2.4, 2.6.2.1.3, and 2.6.1.2.6, where applicable.
[bookmark: section_3e05614a2a404b4d8d92dc88293b24ac][bookmark: _Toc174686283]Deleting a PC
Deletes an existing Property Context altogether. This is identical to deleting a node. See section 2.6.1.2.7.
	Requirement level
	Actions

	Required
	See requirements for section 2.6.1.2.7.

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.1.2.7.
[bookmark: section_c1dc2917b81944b1b3eb84966df8b1a4][bookmark: _Toc174686284]TC Operations
[bookmark: section_a3cafcd6454a46b4a122ebbda9ae56fb][bookmark: _Toc174686285]Creating a TC
Creating a Table Context. This involves creating a heap node with specialized contents (section 2.6.2.1.1), and an embedded BTH within the HN (section 2.6.2.2.1).
	Requirement level
	Actions

	Required
	See section 2.6.2.1.1 and 2.6.2.2.1.
The TCINFO (section 2.3.4.1) and TCOLDESC (section 2.3.4.2) structures MUST be properly initialized.
The embedded BTH key and data fields MUST be set up according to the TCROWID structure (see section 2.3.4.3.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.2.1.1 and 2.6.2.2.1.
When setting up the TCOLDESC structures, special care MUST be given when assigning the iBit fields to ensure the proper ordering of the columns based on the column data size (section 2.3.4.2).
Also see section 2.3.4.2 for the rules regarding setting the cbData field of TCOLDESC, noting the use of HNIDs for variable-size data or fixed-size data that exceeds 8 bytes.
[bookmark: section_1a94f596d8404f66824eaf1024fb6944][bookmark: _Toc174686286]Inserting into the TC
Inserting a row into the Table Context. This is analogous to inserting an entry into the embedded BTH (section 2.6.2.2.2). If the data is variable-size or exceeds 8 bytes, then the data is either stored in a separate HN allocation (section 2.6.2.1.2), or in the subnode (2.6.1.2.2).
	Requirement level
	Actions

	Required
	An existing TC (section 2.6.2.4.1).
See requirements for section 2.6.2.2.2, 2.6.2.1.2, and 2.6.1.2.2 (if applicable).
The row data record (section 2.3.4.4.1) MUST be properly formatted and appended to the end of the existing Row Matrix.
A properly-formatted TCROWID structure (see section 2.3.4.3.1) that corresponds to the row data record MUST be inserted into the embedded BTH.

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.2.4.1, 2.6.2.2.2, 2.6.2.1.2, and 2.6.1.2.2, where applicable.
If the data is variable-size but less than or equal to 3580 bytes, then the data is stored in a separate HN allocation. The HID of the allocation is stored in the corresponding 4-byte data slot for the TC row data record (section 2.3.4.4.1).
If the data is variable-size and more than 3580 bytes, then the data is stored in a separate subnode entry. The subnode NID is stored in the corresponding 4-byte data slot in the TC row data record (section 2.3.4.4.1).
If the data is fixed-size and more than 8 bytes in size, then the data is stored in a separate HN allocation.
Because an HID is a special NID with NID_TYPE of NID_TYPE_HID, HIDs and subnode NIDs values never collide, implementations can easily determine if a data slot points to an HID or a subnode (section 2.2.2.1).
Also see sections 2.6.2.4.1, 2.6.2.2.2, 2.6.2.1.2, and 2.6.1.2.2, where applicable.
[bookmark: section_c3de6cd58bf4415db8542c1bc6c36488][bookmark: _Toc174686287]Modifying Contents of a Table Row
Modifying the contents of a Table Row. This refers to changing the value of a column in a particular Table Row. This involves re-allocating form the HN, or modifying subnode entry data.
	Requirement level
	Actions

	Required
	An existing TC (section 2.6.2.4.1).
If the Row Matrix is in an HN, then see requirements for sections 2.6.2.1.2 and 2.6.2.1.3.
If the Row Matrix is in a subnode entry, then see requirements for section 2.6.1.2.5.

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.2.4.1, 2.6.2.1.2, 2.6.2.1.3, and 2.6.1.2.5, where applicable..
[bookmark: section_07483b5cbdaa4b48a68ab24c0c720a85][bookmark: _Toc174686288]Adding a Column
Adding a column to a TC. This involves modifying the TCINFO, adding a new column definition to the TCOLDESC array, as well as widening every row of the Row Matrix to add a new data slot (and also widen the CEB array, if it runs out of unused bits). This involves allocating and freeing HN entries, and modifying subnode data, if the Row Matrix is stored in a subnode.
	Requirement level
	Actions

	Required
	An existing TC (section 2.6.2.4.1).
See requirements for sections 2.6.2.1.2, 2.6.2.1.3, and 2.6.1.2.5 (if applicable).
The TCINFO (section 2.3.4.1) MUST be updated to account for the new column.
A new TCOLDESC structure (section 2.3.4.2) MUST be added for the new column.
Each row in the Row Matrix needs to be widened to add an data slot for the new column.
It the CEB runs out of unused bits, then the CEB for each row MUST grow to accommodate the new column.
The CEB for each row MUST also be updated to indicate that the new column is "non-existent".

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.2.4.1, 2.6.2.1.2, 2.6.2.1.3, and 2.6.1.2.5, where applicable.
When setting up the new TCOLDESC structure, special care MUST be given when assigning the iBit fields to ensure the proper ordering of the columns based on the column data size (section 2.3.4.2). It is also important to re-assign the iBit fields of any other TCOLDESC structure that is shifted as a result of inserting the new column.
Also refer to section 2.3.4.2 for the rules regarding setting the cbData field of TCOLDESC, noting the use of HNIDs for variable-size data or fixed-size data that exceeds 8 bytes.
[bookmark: section_332d98629d0c413e9222e3c553c81833][bookmark: _Toc174686289]Deleting the Value of a Column
Deleting the value of a column refers to setting the value of a column in a particular Table Row as "non-existent". This is done by setting the Cell Existence bit (CEB) that corresponds to that column in the row data to "0". This is a particular case of modifying contents of a Table Row.
	Requirement level
	Actions

	Required
	An existing TC (section 2.6.2.4.1).
See section 2.6.2.4.3.

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.2.4.1 and 2.6.2.4.3.
[bookmark: section_33f1015f8055408d9d1cfda96d9fbe14][bookmark: _Toc174686290]Deleting a Column
Deleting an existing column in a Table Context.
Implementations SHOULD NOT delete existing columns in a Table Context.
[bookmark: section_5a0450b561c34bb09837fd14a00040d2][bookmark: _Toc174686291]Deleting a Row
Deleting an existing Row from a Table Context. This involves deleting an entry from the embedded BTH (section 2.6.2.2.4) and modifying other BTH entry values (section 2.6.2.2.3), and re-allocating HN entries (sections 2.6.2.1.2, 2.6.2.1.3) or modifying subnode entry data (section 2.6.1.2.5), depending where the Row Matrix is stored.
	Requirement level
	Actions

	Required
	An existing TC (section 2.6.2.4.1).
See requirements for sections 2.6.2.2.4, 2.6.2.2.3, 2.6.2.1.2, 2.6.2.1.3, and 2.6.1.2.5 (if applicable).
Subsequent rows in the Row Matrix MUST be moved up to replace the gap caused by the deleted row.
Some TCROWID entries in the embedded BTH MUST also be updated (specifically the RowIndex field) to account for the shifting of their row index (section 2.3.4.3.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.2.2.4, 2.6.2.2.3, 2.6.2.1.2, 2.6.2.1.3, and 2.6.1.2.5, where applicable.
[bookmark: section_9d0c7a2f8cfd46e988aab9e8615c500c][bookmark: _Toc174686292]Deleting a TC
Deleting an existing Table Context altogether. This is identical to Deleting a node in section 2.6.1.2.7.
	Requirement level
	Actions

	Required
	See requirements for section 2.6.1.2.7.

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.1.2.7.
Because Table Contexts are rarely used in a stand-alone manner, special care MUST be taken to ensure that removing a TC does not cause higher-level entities to malfunction.
[bookmark: section_4fd478e312fa4fb1a6be6a61cf3c47dc][bookmark: _Toc174686293]Messaging Layer
The Messaging layer provides a Messaging-oriented interface that consists of concepts and objects that are consistent with structured storage models such as Folder objects, Message objects, and Attachment objects. The following diagram shows the various structures exposed at the Messaging layer.
[image: Messaging layer]
Figure 18: Messaging layer
The following sections describe the most common operations performed at the Messaging layer, and specific implementation considerations.
[bookmark: section_bb59db5878e846659c989dd4fad0d44e][bookmark: _Toc174686294]Message Store Operations
[bookmark: section_f6b54f0c57ff4c9781d3fa545dfe2d10][bookmark: _Toc174686295]Creating the Message Store
Creating the message store. This is identical to creating a PC (section 2.6.2.3.1) with a special NID, and setting a minimal set of properties (section 2.6.2.3.2).
	Requirement level
	Actions

	Required
	Identical to section 2.6.2.3.1 and 2.6.2.3.2.
NID MUST be NID_MESSAGE_STORE.
See minimal set of required properties in section 2.4.3.1.

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.2.3.1 and 2.6.2.3.2.
Exactly one message store MUST exist in a PST file.
[bookmark: section_4b1434763feb45f18cdda79ff991cc17][bookmark: _Toc174686296]Modifying Properties of the Message Store
Modifying properties of the message store. This refers to the adding, changing and deleting of properties to or from the message store PC, which map directly to sections 2.6.2.3.2, 2.6.2.3.3 and 2.6.2.3.4.
	Requirement level
	Actions

	Required
	An existing message store (section 2.6.3.1.1).
See sections 2.6.2.3.2, 2.6.2.3.3 and 2.6.2.3.4, where applicable.

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.2.3.2, 2.6.2.3.3 and 2.6.2.3.4, where applicable.
[bookmark: section_3960219b89d74f85b0f3aa1dd6f69488][bookmark: _Toc174686297]Folder Object Operations
[bookmark: section_a5c8bcf8706d4db2afc41f5cb239dc63][bookmark: _Toc174686298]Creating a Folder Object
Creating a Folder object. This is equivalent to creating one PC with a minimal set of properties, and three TCs.
	Requirement level
	Actions

	Required
	See sections 2.6.2.3.1, 2.6.2.4.1, 2.6.2.3.2.
All 4 entities (1 PC, 3 TCs) MUST exist to function properly.
All 4 entities MUST have the same nidIndex.
The PC MUST have NID_TYPE of NID_TYPE_NORMAL_FOLDER.
The 3 TCs MUST have nidType of NID_TYPE_ASSOC_CONTENTS_TABLE, NID_TYPE_CONTENTS_TABLE and NID_TYPE_HIERARCHY_TABLE.
See minimal set of required Folder object PC properties in section 2.4.4.1.1.
See minimal set of required columns for the Hierarchy TC in section 2.4.4.4.1.
See minimal set of required columns for the Contents TC in section 2.4.4.5.1.
See minimal set of required columns for the FAI contents table TC in section 2.4.4.6.1.
MUST queue a properly-formatted SUD of type SUDT_FLD_ADD to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.2.3.1, 2.6.2.4.1, and 2.6.2.3.2.
[bookmark: section_d17234d14de9436ea412186b42dd1a8b][bookmark: _Toc174686299]Modifying Properties of a Folder Object
Modifying properties of the Folder object. This refers to the adding, changing and deleting of properties to/from the Folder object PC, which map directly to section 2.6.2.3.2 2.6.2.3.3 and 2.6.2.3.4.
	Requirement level
	Actions

	Required
	An existing Folder object (section 2.5.2.2).
See sections 2.6.2.3.2, 2.6.2.3.3 and 2.6.2.3.4, where applicable.
MUST queue a properly-formatted SUD of type SUDT_FLD_MOD to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.2.3.2, 2.6.2.3.3 and 2.6.2.3.4, where applicable.
Some Folder object properties are also duplicated in the hierarchy TC of the parent Folder object (See section 2.4.4.4.1). Implementations MUST pay special attention to any properties that are duplicated elsewhere to make sure all instances of the properties are properly updated.
Special calculated properties exist that do not map directly to externally-published properties and therefore MUST be converted, calculated or otherwise translated before persisting to or retrieving from the PST. A list of such special properties is found in section 2.5.
[bookmark: section_3860193e6079442bab3d875ec6eb805a][bookmark: _Toc174686300]Adding a Sub-Folder Object
Adding a sub-Folder object to an existing Folder object. This involves creating a new Folder object, and then adding the new Folder object to the existing parent Folder object's hierarchy. Creating a Folder object is identical to section 2.6.3.2.1, and adding the new Folder object to the parent means adding a new row (section 2.6.2.4.2) to the Hierarchy TC of the parent Folder object. Also, some of the properties in the parent Folder object (for example, folder count) need to be updated (section 2.6.3.2.2).
	Requirement level
	Actions

	Required
	An existing parent Folder object (section 2.6.3.2.1).
See sections 2.6.3.2.1, 2.6.2.4.2.
nidParent of the new Folder object's NBT entry MUST be set to the NID of the parent Folder object (section 2.2.2.7.7.4).
Parent properties MUST be updated to reflect new child Folder object (section 2.6.3.2.2).
MUST queue a properly-formatted SUD of type SUDT_FLD_ADD for the sub-Folder object to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.3.2.1, 2.6.2.4.2 and 2.6.3.2.2.
[bookmark: section_f2c7a242547e4a2a9008c305e0cb3ee9][bookmark: _Toc174686301]Moving a Folder Object
Moving a Folder object refers to moving a child Folder object from its parent Folder object to another Folder object. This involves deleting the child Folder object row from the old parent's Hierarchy TC (section 2.6.2.4.7), and adding it to the new parent's Hierarchy TC (section 2.6.2.4.2). Also, some properties of both Folder object PCs (for example, folder count) need to be updated (section 2.6.3.2.2.).
	Requirement level
	Actions

	Required
	An existing Folder object (section 2.6.3.2.1).
An existing new parent Folder object (section 2.6.3.2.1).
See sections 2.6.2.4.7, 2.6.2.4.2.
nidParent of the moved Folder object's NBT entry MUST be set to the NID of the new parent Folder object (section 2.2.2.7.7.4).
Old and new parent Folder object properties MUST be updated accordingly (section 2.6.3.2.2).
MUST queue a properly-formatted SUD of type SUDT_FLD_MOV to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.3.2.1, 2.6.2.4.7, 2.6.2.4.2 and 2.6.3.2.2.
[bookmark: section_833a7f7b163f4309a3123efb6cdfee27][bookmark: _Toc174686302]Copying a Folder Object
Copying an existing Folder object to a new parent Folder object. This involves creating a new Folder object PC for the new Folder object and populating some properties (section 2.6.2.3.1 and 2.6.2.3.2), followed by duplicating each of the 3 Folder object TC nodes of the original Folder object to new top-level nodes for the new Folder object (section 2.6.1.2.4). Also the new Folder object needs to be added to the existing target Folder object hierarchy, which requires adding a new row (section 2.6.2.4.2) to the Hierarchy TC of the target Folder object. Also, some of the properties in the target Folder object (for example folder count) need to be updated (section 2.6.3.2.2).
	Requirement level
	Actions

	Required
	An existing Folder object (section 2.6.3.2.1).
An existing target Folder object (section 2.6.3.2.1).
See sections 2.6.2.3.1, 2.6.2.3.2, 2.6.1.2.4 and 2.6.2.4.2.
See minimal set of required Folder object PC properties in 2.4.4.1.1.
nidParent of the new Folder object PC's NBT entry MUST be set to the NID of the target Folder object (section 2.2.2.7.7.4).
Target Folder object properties MUST be updated accordingly (section 2.6.3.2.2).
MUST queue a properly-formatted SUD of type SUDT_FLD_ADD for the copied Folder object to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.3.2.1, 2.6.2.3.1, 2.6.2.3.2 2.6.1.2.4, 2.6.2.4.2, and 2.6.3.2.2.
The 3 TCs of the copied Folder object are single-instanced to the original Folder object, which allows the Folder object copying process to be efficient.
[bookmark: section_eaab935353fe448fa32fd45afd3c4b5d][bookmark: _Toc174686303]Adding a Message Object
Adding a Message object to an existing Folder object. This involves creating a new Message object and adding it as a new row to the Contents TC of the parent Folder object (section 2.6.2.4.2). Updating the Message object count of the parent Folder object (section 2.6.2.3.3), which can have cascading effects to the parent-parent Hierarchy TC as well. Creating a Message object involves creating a new Message object PC (section 2.6.2.3.1), populating it with a minimal set of required properties (section 2.6.2.3.2), and creating a Recipient TC (section 2.6.2.4.1) in a subnode entry (section 2.6.1.2.2).
	Requirement level
	Actions

	Required
	An existing Folder object (section 2.6.3.2.1).
See sections 2.6.1.2.2, 2.6.2.3.1, 2.6.2.3.2, 2.6.2.3.3, 2.6.2.4.1 and 2.6.2.4.2.
See minimal set of required properties in section 2.4.5.1.1.
See minimal set of required columns for the Contents TC in 2.4.4.5.1.
See minimal set of required columns for the Recipients TC in section 2.4.5.3.1.
Parent Folder object properties MUST be updated accordingly.
MUST queue a properly-formatted SUD of type SUDT_MSG_ADD to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.3.2.1, 2.6.1.2.2, 2.6.2.3.1, 2.6.2.3.2, 2.6.2.3.3, 2.6.2.4.1 and 2.6.2.4.2.
[bookmark: section_f4d3acbb413d49b2a58bfe152fe0062b][bookmark: _Toc174686304]Copying a Message Object
Copying a Message object from its parent Folder object to another Folder object. To use single-instancing, this involves duplicating the Message object PC node (section 2.6.1.2.4), and adding a row to the Contents TC of the new parent Folder object (section 2.6.2.4.2). Some properties of the parent Folder object (for example, message count) also need to be updated (section 2.6.2.3.2).
	Requirement level
	Actions

	Required
	An existing Message object (section 2.6.3.2.6).
An existing target Folder object (section 2.6.3.2.1).
See sections 2.6.1.2.4, 2.6.2.3.2, and 2.6.2.4.2.
See minimal set of required columns for the Contents TC in section 2.4.4.5.1.
nidParent of the copied Message object's NBT entry MUST be set to the NID of the target Folder object (section 2.2.2.7.7.4).
Destination Folder object properties MUST be updated accordingly.
MUST queue a properly-formatted SUD of type SUDT_MSG_ADD for the copied Message object to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.3.2.6, 2.6.3.2.1, 2.6.1.2.4, 2.6.2.3.2, and 2.6.2.4.2.
[bookmark: section_883276c828934fa7a83c02917b2b00a3][bookmark: _Toc174686305]Moving a Message Object
Moving a Message object from its parent Folder object to another Folder object. This involves deleting the Message object row from the old parent's Contents TC (section 2.6.2.4.7), and adding it to the new parent's Content TC (section 2.6.2.4.2). Also, some properties of both Folder object PCs (for example, message count) need to be updated (section 2.6.3.2.2).
	Requirement level
	Actions

	Required
	An existing Message object (section 2.6.3.2.6).
An existing new parent Folder object (section 2.6.3.2.1).
See sections 2.6.2.4.7, 2.6.2.4.2, and 2.6.3.2.2.
See minimal set of required columns for the Contents TC in section 2.4.4.5.1.
nidParent of the moved Message object's NBT entry MUST be set to the NID of the new parent Folder object (section 2.2.2.7.7.4).
Old and new parent Folder object properties MUST be updated accordingly.
MUST queue a properly-formatted SUD of type SUDT_MSG_MOV to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.3.2.6, 2.6.3.2.1, 2.6.2.4.2, 2.6.2.4.7 and 2.6.3.2.2.
[bookmark: section_0464e2c7f9e343b585381989b5a29c6b][bookmark: _Toc174686306]Deleting a Sub-Folder Object
Deleting a sub-Folder object from its parent Folder object. This involves deleting the sub-Folder object row from the Hierarchy TC of the parent Folder object (section 2.6.2.4.7), updating some properties (for example, folder count) of the parent Folder object (section 2.6.3.2.2), and deleting the sub-Folder object. Deleting the sub-Folder object means deleting the PC and three TCs associated with the sub-Folder object (sections 2.6.2.3.5 and 2.6.2.4.8).
	Requirement level
	Actions

	Required
	An existing Folder object (section 2.6.3.2.1).
See sections 2.6.3.2.2, 2.6.2.3.5, 2.6.2.4.8 and 2.6.2.4.7.
Parent Folder object properties MUST be updated accordingly.
MUST queue a properly-formatted SUD of type SUDT_FLD_DEL to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.3.2.1, 2.6.3.2.2, 2.6.2.3.5, 2.6.2.4.8 and 2.6.2.4.7.
Any Folder object can be deleted by first looking up its parent, and then deleting the Folder object as a sub-Folder object of its parent. There is a ROOT Folder object in the PST that cannot be deleted; therefore, a parent Folder object MUST exist for any Folder object that can be deleted.
If the sub-Folder object contains Message objects or has a sub-hierarchy, then its child Folder objects and Message objects MUST be recursively deleted before the sub-Folder object itself can be deleted.
[bookmark: section_73da054bfea043a3be12ed8e6e024b4d][bookmark: _Toc174686307]Deleting a Message Object
Deleting an existing Message object from its parent Folder object. This involves deleting the Message object row from the Contents TC of the parent Folder object (section 2.6.2.4.7), updating some properties (for example, message count) of the parent Folder object (section 2.6.3.2.2), and deleting the Message object PC node (section 2.6.2.3.5).
	Requirement level
	Actions

	Required
	An existing Message object (section 2.6.3.2.6).
See sections 2.6.3.2.2, 2.6.2.3.5, and 2.6.2.4.7.
Parent Folder object properties MUST be updated accordingly.
MUST queue a properly-formatted SUD of type SUDT_MSG_DEL to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See section 2.6.3.2.6, 2.6.3.2.2, 2.6.2.3.5 and 2.6.2.4.7.
[bookmark: section_240b922529074605a975ff93337f8cb8][bookmark: _Toc174686308]Message Object Operations
[bookmark: section_987c27c1bf5b42aab864c152f918fa3c][bookmark: _Toc174686309]Creating a Message Object
Creating a Message object in an existing Folder object. This is identical to section 2.6.3.2.6.
[bookmark: section_bd155f0d2dd74f97960467a12fe39090][bookmark: _Toc174686310]Modifying Properties of a Message Object
Modifying properties of a Message object. This refers to the adding, changing and deleting of properties to/from the Message object PC, which map directly to sections 2.6.2.3.2, 2.6.2.3.3 and 2.6.2.3.4.
	Requirement level
	Actions

	Required
	An existing Message object (section 2.6.3.2.6).
See requirements for sections 2.6.2.3.2, 2.6.2.3.3 and 2.6.2.3.4, where applicable.
MUST queue a properly-formatted SUD of type SUDT_MSG_MOD to the SMQ (section 2.4.8.1).
If any of the modified properties also affect the cached properties in the Contents TC of the parent Folder object, a properly-formatted SUD of type SUDT_MSG_ROW_MOD MUST also be queued.

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.3.2.6, 2.6.2.3.2, 2.6.2.3.3 and 2.6.2.3.4, where applicable.
Some Message object properties are also duplicated in the Contents TC of the parent Folder object (section 2.4.4.5.1). Implementations MUST pay special attention to any properties that are duplicated elsewhere to make sure all instances of the properties are properly updated.
Special calculated properties exist that do not map directly to externally-published properties and therefore MUST be converted, calculated or otherwise translated before persisting to or retrieving from the PST. A list of such special properties is found in section 2.5.
[bookmark: section_44f87949bf5f4aa9b0ec569029a0d286][bookmark: _Toc174686311]Adding a Recipient
Adding a recipient to an existing Message object. This involves adding a row to the Recipient TC of the Message object (section 2.6.2.4.2), and updating some properties (for example, recipient count) in the Message object PC (section 2.6.3.3.2).
	Requirement level
	Actions

	Required
	An existing Message object (section 2.6.3.2.6).
See sections 2.6.3.3.2 and 2.6.2.4.2.
See minimal set of required columns for the Recipients TC in section 2.4.5.3.1.
The Message object properties MUST be updated.
MUST queue a properly-formatted SUD of type SUDT_MSG_MOD to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.3.2.6, 2.6.3.3.2 and 2.6.2.4.2.
[bookmark: section_cbcf0844740f4fd083b6aac03f539135][bookmark: _Toc174686312]Modifying Recipient Properties
Modifying the properties of an existing recipient. This is identical to modifying Content of a Table Row (section 2.6.2.4.3) or Deleting the value of a Column (section 2.6.2.4.5).
	Requirement level
	Actions

	Required
	An existing Message object (section 2.6.3.2.6).
See section 2.6.2.4.3 and 2.6.2.4.5.
MUST queue a properly-formatted SUD of type SUDT_MSG_MOD to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.3.2.6, 2.6.2.4.3 and 2.6.2.4.5.
[bookmark: section_14d77d83bd424da8b9ce22b41c951c9d][bookmark: _Toc174686313]Adding an Attachment Object
Adding an Attachment object to a Message object. This involves creating an Attachments TC in a subnode entry if it does not already exist (sections 2.6.1.2.2 and 2.6.2.4.1), creating an Attachment object PC (section 2.6.2.3.1) and adding it as a new row to the Attachments TC (section 2.6.2.4.2), and updating some properties (for example, attachment count) in the Message object PC (section 2.6.3.3.2).
	Requirement level
	Actions

	Required
	An existing Message object (section 2.6.3.2.6).
See sections 2.6.1.2.2, 2.6.2.3.1, 2.6.3.3.2, 2.6.2.4.1 and 2.6.2.4.2.
See minimal set of required columns for the Attachments TC in section 2.4.6.1.1.
See minimal set of required properties for the Attachment object PC in section 2.4.6.2.1.
The Message object properties MUST be updated.
MUST queue a properly-formatted SUD of type SUDT_MSG_MOD to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.3.2.6, 2.6.1.2.2, 2.6.2.3.1, 2.6.3.3.2, 2.6.2.4.1 and 2.6.2.4.2.
Attachment objects are optional and the Attachments TC is not created until the first Attachment object is added to a Message object.
[bookmark: section_40075070ace44d248720d089b6859d64][bookmark: _Toc174686314]Modifying Properties of an Attachment Object
Modifying properties of an Attachment object. This refers to the adding, changing and deleting of properties to/from the Attachment object PC, which map directly to sections 2.6.2.3.2, 2.6.2.3.3, and 2.6.2.3.4.
	Requirement level
	Actions

	Required
	An existing Attachment object (section 2.6.3.3.5).
See sections 2.6.2.3.2, 2.6.2.3.3, and 2.6.2.3.4, where applicable.
MUST queue a properly-formatted SUD of type SUDT_MSG_MOD to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.3.3.5, 2.6.2.3.2, 2.6.2.3.3, and 2.6.2.3.4, where applicable.
Some Attachment object properties are also duplicated in the Attachments TC (section 2.4.6.1.1). Implementations MUST pay special attention to any properties that are duplicated elsewhere to make sure all instances of the properties are properly updated.
[bookmark: section_d1aaa28c181b4074ab834ca3b12fe831][bookmark: _Toc174686315]Deleting a Recipient
Deleting an existing recipient from a Message object. This involves deleting the corresponding row in the Recipients TC (section 2.6.2.4.7) and updating some properties (for example, recipient count) in the Message object PC (section 2.6.3.3.2).
	Requirement level
	Actions

	Required
	An existing Recipient (section 2.6.3.3.3).
See sections 2.6.2.4.7 and 2.6.3.3.2.
The Message object properties MUST be updated.
MUST queue a properly-formatted SUD of type SUDT_MSG_MOD to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.3.3.3, 2.6.3.3.2 and 2.6.2.4.7.
[bookmark: section_84ad2025ddae43fc8cc7d9b43dc498fd][bookmark: _Toc174686316]Deleting an Attachment Object
Deleting an existing Attachment object from a Message object. This involves deleting the Attachment object PC (section 2.6.2.3.5) and its corresponding row in the Attachments TC (section 2.6.2.4.7) and updating some properties (for example, attachment count) in the Message object PC (section 2.6.3.3.2).
	Requirement level
	Actions

	Required
	An existing Attachment object (section 2.6.3.3.5).
See sections 2.6.3.3.2 and 2.6.2.4.7.
The Message object properties MUST be updated.
MUST queue a properly-formatted SUD of type SUDT_MSG_MOD to the SMQ (section 2.4.8.1).

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.3.3.5, 2.6.3.3.2 and 2.6.2.4.7.
[bookmark: section_b880497c764742b8a2bc873aae640229][bookmark: _Toc174686317]Name-to-ID Map Operations
[bookmark: section_b38d17ec27fa44e5a62b8ef6049abdbc][bookmark: _Toc174686318]Creating the Name-to-ID Map
Creating the Name-to-ID Map. This involves creating a PC with a special NID (section 2.6.2.3.1), with one special property (section 2.6.2.3.2).
	Requirement level
	Actions

	Required
	See sections 2.6.2.3.1 and 2.6.2.3.2.
PidTagNameidBucketCount MUST be added to the PC with a value of 251 (0xFB)

	Recommended
	None

	Optional
	None

Possible side effects: See sections 2.6.2.3.1 and 2.6.2.3.2.
The Name-to-ID Map MUST exist.
[bookmark: section_bc5fc0cf43a54146b2663d137ac35158][bookmark: _Toc174686319]Adding a Named Property
Adding a named property to the Name-to-ID Map. This involves adding or modifying the PidTagNameidStreamEntry property, adding or modifying the PidTagNameidStreamString or PidTagNameidStreamGuid properties depending on named property type, and finally adding or modifying the corresponding hash bucket properties (sections 2.6.2.3.2, 2.6.2.3.3).
	Requirement level
	Actions

	Required
	An existing Name-to-ID Map (section 2.6.3.4.1).
See sections 2.6.2.3.2 and 2.6.2.3.3.

	Recommended
	None.

	Optional
	None.

Possible side effects: See sections 2.6.3.4.1, 2.6.2.3.2 and 2.6.2.3.3.
[bookmark: section_612f3172b46d409f8b91792ebb1a171a][bookmark: _Toc174686320]Deleting a Named Property
Deleting a named property from the Name-to-ID Map.
Implementations SHOULD NOT remove named properties from the Name-to-ID Map.
[bookmark: section_2b64b7687a6540cc862f5109aa81c5c5][bookmark: _Toc174686321]Minimum PST Requirements
This section covers the specific requirement for a PST. While the previous sections have provided detailed technical requirements of how to create and maintain a structurally-correct PST file, the following sections cover the additional requirements on the actual contents of the PST.
The essential elements of a minimal working PST file are visually represented in the following diagram. [image: Minimal PST]
Figure 19: Minimal PST
[bookmark: section_661f992154ff4768b98c91954312af52][bookmark: _Toc174686322]Mandatory Nodes
The following table lists the absolute minimum list of nodes that MUST be present in a PST. Implementations SHOULD consider the PST invalid if any of the nodes are missing or are incorrectly formed. The NIDs in bold are fixed NID values, where the others are sample NIDs that can be any valid NID value for its respective NID_TYPE.
	NID
	NID_TYPE
	Special NID (if applicable)
	Object
	Minimal state

	0x0021
	NID_TYPE_INTERNAL
	NID_MESSAGE_STORE
	PC
	Schema Props

	0x0061
	NID_TYPE_INTERNAL
	NID_NAME_TO_ID_MAP
	PC
	Empty

	0x0122
	NID_TYPE_NORMAL_FOLDER
	NID_ROOT_FOLDER
	PC
	Schema Props

	0x012D
	NID_TYPE_HIERARCHY_TABLE
	<Root Folder object>
	TC
	2 Rows

	0x012E
	NID_TYPE_CONTENTS_TABLE
	<Root Folder object>
	TC
	Columns Only

	0x012F
	NID_TYPE_ASSOC_CONTENTS_TABLE
	<Root Folder object>
	TC
	Columns Only

	0x01E1
	NID_TYPE_INTERNAL
	NID_SEARCH_MANAGEMENT_QUEUE
	node
	

	0x0201
	NID_TYPE_INTERNAL
	NID_SEARCH_ACTIVITY_LIST
	node
	Empty

	0x060D
	NID_TYPE_HIERRCHY_TABLE
	NID_HIERARCHY_TABLE_TEMPLATE
	TC
	Columns Only

	0x060E
	NID_TYPE_CONTENTS_TABLE
	NID_CONTENTS_TABLE_TEMPLATE
	TC
	Columns Only

	0x060F
	NID_TYPE_ASSOC_CONTENTS_TABLE
	NID_ASSOC_CONTENTS_TABLE_TEMPLATE
	TC
	Columns Only

	0x0610
	NID_TYPE_SEARCH_CONTENTS_TABLE
	NID_SEARCH_CONTENTS_TABLE_TEMPLATE
	TC
	Columns Only

	0x0692
	NID_TYPE_RECIPIENT_TABLE
	NID_RECIPIENT_TABLE
	TC
	Columns Only

	0x0671
	NID_TYPE_ATTACHMENT_TABLE
	NID_ATTACHMENT_TABLE
	TC
	Columns Only

	0x2223
	NID_TYPE_SEARCH_FOLDER
	<Spam search Folder object>
	PC
	Columns Only

	0x8022
	NID_TYPE_NORMAL_FOLDER
	<IPM SuBTree>
	PC
	Schema Props

	0x802D
	NID_TYPE_HIERARCHY_TABLE
	<IPM SuBTree>
	TC
	2 Rows

	0x802E
	NID_TYPE_CONTENTS_TABLE
	<IPM SuBTree>
	TC
	Columns Only

	0x802F
	NID_TYPE_ASSOC_CONTENTS_TABLE
	<IPM SuBTree>
	TC
	Columns Only

	0x8042
	NID_TYPE_NORMAL_FOLDER
	<Search Folder objects>
	PC
	Schema Props

	0x804D
	NID_TYPE_HIERARCHY_TABLE
	<Search Folder objects>
	TC
	Columns Only

	0x804E
	NID_TYPE_CONTENTS_TABLE
	<Search Folder objects>
	TC
	Columns Only

	0x804F
	NID_TYPE_ASSOC_CONTENTS_TABLE
	<Search Folder objects>
	TC
	Columns Only

	0x8062
	NID_TYPE_NORMAL_FOLDER
	<Deleted Items>
	PC
	Schema Props

	0x806D
	NID_TYPE_HIERARCHY_TABLE
	<Deleted Items>
	TC
	Columns Only

	0x806E
	NID_TYPE_CONTENTS_TABLE
	<Deleted Items>
	TC
	Columns Only

	0x806F
	NID_TYPE_ASSOC_CONTENTS_TABLE
	<Deleted Items>
	TC
	Columns Only

[bookmark: section_cbaeebd58277475bb2dfb98db8d0e300][bookmark: _Toc174686323]Minimum Folder Hierarchy
The following is the minimum folder hierarchy required for a PST:
· Root Folder (section 2.7.3.4.1)
· Top of Personal Folders (IPM SuBTree) (section 2.7.3.4.2)
· Deleted Items (section 2.7.3.4.5)
· Search Root (section 2.7.3.4.3)
· Spam search Folder (section 2.7.3.4.4)
[bookmark: section_7af5417651084ac7973f8252ad223acb][bookmark: _Toc174686324]Minimum Object Requirements
This section presents the minimum requirements for a PST, which include the mandatory nodes as well as the minimum set of properties that is required for each type of PST Object.
[bookmark: section_c19b0bdeeb254efa830a9f60f3a918ef][bookmark: _Toc174686325]Message Store
See section 2.4.3.1 for the minimum requirements of the message store.
[bookmark: section_5161fee742b147908337411892b0032c][bookmark: _Toc174686326]Name-to-ID Map
The minimum requirement for the Name-to-ID Map is a PC node with a single property PidTagNameidBucketCount set to a value of 251 (0xFB). Refer to section 2.4.7 for details.
[bookmark: section_c1af6316b8a44b17883e3a60189f361c][bookmark: _Toc174686327]Template Objects
The following template Objects MUST be present in the PST. Each template object is a TC with a pre-defined set of columns, but no data rows.
· NID_HIERARCHY_TABLE_TEMPLATE: See section 2.4.4.4.1 for column list.
· NID_CONTENTS_TABLE_TEMPLATE: See section 2.4.4.5.1 for column list.
· NID_ASSOC_CONTENTS_TABLE_TEMPLATE: See section 2.4.4.6.1 for column list.
· NID_SEARCH_CONTENTS_TABLE_TEMPLATE: See section 2.4.8.6.2.1 for column list.
· NID_RECIPIENT_TABLE: See section 2.4.5.3.1 for column list.
· NID_ATTACHMENT_TABLE: See section 2.4.6.1.1 for column list.
[bookmark: section_566da784691f44d7b423a6e5781cc816][bookmark: _Toc174686328]Folders
[bookmark: section_ad0979750d954dceb9190c9e55717b9a][bookmark: _Toc174686329]Root Folder
Folder object PC – nidParent = self; Schema properties initialized as follows.
	Property identifier
	Property type
	Friendly name
	Value

	0x3001
	PtypString
	PidTagDisplayName
	"" (empty string)

	0x3602
	PtypInteger32
	PidTagContentCount
	3

	0x3603
	PtypInteger32
	PidTagContentUnreadCount
	0

	0x360A
	PtypBoolean
	PidTagSubfolders
	1 (true)

Hierarchy TC: Columns from section 2.4.4.4.1; 3 rows: "IPM SuBTree", "Search Root" and "Spam Search Folder"
Contents TC: Columns from section 2.4.4.5.1; no rows.
FAI contents table TC: Columns from section 2.4.4.6.1; no rows.
[bookmark: section_ea4d8b8a6062493094ee555527a274d1][bookmark: _Toc174686330]Top of Personal Folders (IPM SuBTree)
Folder object PC – nidParent = Root Folder; Schema properties initialized as follows.
	Property identifier
	Property type
	Friendly name
	Value

	0x3001
	PtypString
	PidTagDisplayName
	Top of Personal Folders

	0x3602
	PtypInteger32
	PidTagContentCount
	1

	0x3603
	PtypInteger32
	PidTagContentUnreadCount
	0

	0x360A
	PtypBoolean
	PidTagSubfolders
	1 (true)

Hierarchy TC: Columns from section 2.4.4.4.1; 1 row: "Deleted Items"
Contents TC: Columns from section 2.4.4.5.1; no rows.
FAI contents table TC: Columns from section 2.4.4.6.1; no rows.
[bookmark: section_8c67cbb0ce1a4243877bc3214b43ad8b][bookmark: _Toc174686331]Search Root
Folder object PC – nidParent = Root Folder; Schema properties initialized as follows.
	Property identifier
	Property type
	Friendly name
	Value

	0x3001
	PtypString
	PidTagDisplayName
	Search Root

	0x3602
	PtypInteger32
	PidTagContentCount
	0

	0x3603
	PtypInteger32
	PidTagContentUnreadCount
	0

	0x360A
	PtypBoolean
	PidTagSubfolders
	0 (FALSE)

Hierarchy TC: Columns from section 2.4.4.4.1; no rows.
Contents TC: Columns from section 2.4.4.5.1; no rows.
FAI contents table TC: Columns from section 2.4.4.6.1; no rows.
[bookmark: section_5c99e623d7414046b2beba7904668af8][bookmark: _Toc174686332]Spam Search Folder
Folder object PC – nidParent = Root Folder; Schema properties initialized as follows.
	Property identifier
	Property type
	Friendly name
	Value

	0x3001
	PtypString
	PidTagDisplayName
	SPAM Search Folder 2

	0x3602
	PtypInteger32
	PidTagContentCount
	0

	0x3603
	PtypInteger32
	PidTagContentUnreadCount
	0

	0x360A
	PtypBoolean
	PidTagSubfolders
	0 (false)

Hierarchy TC: Columns from section 2.4.4.4.1; no rows.
Contents TC: Columns from section 2.4.4.5.1; no rows.
FAI contents table TC: Columns from section 2.4.4.6.1; no rows.
[bookmark: section_eecee387d9154af8a0acaaf3726aeeb3][bookmark: _Toc174686333]Deleted Items
Folder object PC – nidParent = IPM SuBTree; Schema properties initialized as follows:
	Property identifier
	Property type
	Friendly name
	Value

	0x3001
	PtypString
	PidTagDisplayName
	Deleted Items

	0x3602
	PtypInteger32
	PidTagContentCount
	0

	0x3603
	PtypInteger32
	PidTagContentUnreadCount
	0

	0x360A
	PtypBoolean
	PidTagSubfolders
	0 (false)

Hierarchy TC: Columns from section 2.4.4.4.1; no rows.
Contents TC: Columns from section 2.4.4.5.1; no rows.
FAI contents table TC: Columns from section 2.4.4.6.1; no rows.
[bookmark: section_e70c072ddbb148999ec71dcdc651f3a6][bookmark: _Toc174686334]Search-Related Objects
Search Management Queue: see section 2.4.8.4.1 for details. An empty queue node MUST be created for the minimal PST.
Search Activity List: See section 2.4.8.4.2 for details. An empty SAL node MUST be created for the minimal PST.
[bookmark: section_835d084950eb48bea7674078a637cd8f][bookmark: _Toc174686335]Structure Examples
[bookmark: section_903241a78e4d4ff693e478a3d74bd8dc][bookmark: _Toc174686336]Sample Node Database (NDB)
The following is a sample illustration of how various pages and blocks are used to represent various entities of the NDB Layer.
[image: Application of pages and blocks]
Figure 20: Application of pages and blocks
The first and second columns of the diagram represent the NBT, which is accessed through the BREFNBT structure in the ROOT structure. In this example, the NBT consists of a 2-level BTree that contains a number of top-level nodes. In the second column, the node on the top contains both a data BID (bidData) and a subnode BID (bidSub), whereas the node on the bottom only contains a data BID but no subnode.
In the Legend, that there are two types of arrow notations. The single arrowhead indicates data that can be directly accessed by means of a BREF structure (which contains the absolute file offset of the target); and the double-arrowhead with "BBT" indicates data that needs to be accessed indirectly using a BBT search to lookup the data block that is associated with the BID.
The top node's bidData points directly to a data block, which contains the external, end-user data associated with this node.
In addition, the top node also contains a subnode, which points to a 2-level subnode BTree. The Level 1 SIBLOCK fans out to a number of different Level 0 SLBLOCKs (only one is shown in the diagram for simplicity). Each SLBLOCK further contains a number of internal subnodes (4th column). In this example, the internal subnode points to a single data block (5th column). The subnode can recursively contain any number of levels of subnodes to create a hierarchical tree of subnodes.
The second top-level node (bottom node in 2nd column) is an example of a data tree with one XBLOCK, which contains an array of BIDs that point to several data blocks that contains the end-user data.
[bookmark: section_7fa4900ecd6646ca8d98ee11f6a668ac][bookmark: _Toc174686337]Sample Header
The following is a sample binary dump of a Unicode PST File header (section 2.2.2.6), followed by the corresponding annotated, parsed contents.

 0000000000000000 21 42 44 4E 0E A9 9A 37-53 4D 17 00 13 00 01 01 *!BDN...7SM......*
 0000000000000010 5C 07 00 00 D0 7B 99 0B-04 00 00 00 01 00 00 00 *\....{..........*
 0000000000000020 54 02 00 00 00 00 00 00-45 00 00 00 00 04 00 00 *T.......E.......*
 0000000000000030 00 04 00 00 04 04 00 00-00 40 00 00 02 00 01 00 *.........@......*
 0000000000000040 04 04 00 00 00 04 00 00-00 04 00 00 00 80 00 00 *................*
 0000000000000050 00 04 00 00 00 04 00 00-00 04 00 00 00 04 00 00 *................*
 0000000000000060 04 04 00 00 04 04 00 00-04 04 00 00 00 04 00 00 *................*
 0000000000000070 00 04 00 00 00 04 00 00-00 04 00 00 00 04 00 00 *................*
 0000000000000080 00 04 00 00 00 04 00 00-00 04 00 00 00 04 00 00 *................*
 0000000000000090 00 04 00 00 00 04 00 00-00 04 00 00 00 04 00 00 *................*
 00000000000000A0 00 04 00 00 00 04 00 00-0F 04 00 00 00 00 00 00 *................*
 00000000000000B0 00 00 00 00 00 00 00 00-00 24 9F 00 00 00 00 00 *.........$......*
 00000000000000C0 00 44 9B 00 00 00 00 00-40 F2 12 00 00 00 00 00 *.D......@.......*
 00000000000000D0 00 00 00 00 00 00 00 00-4B 02 00 00 00 00 00 00 *........K.......*
 00000000000000E0 00 52 90 00 00 00 00 00-53 02 00 00 00 00 00 00 *.R......S.......*
 00000000000000F0 00 0A 90 00 00 00 00 00-02 00 00 00 00 00 00 00 *................*
 0000000000000100 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 0000000000000110 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 0000000000000120 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 0000000000000130 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 0000000000000140 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 0000000000000150 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 0000000000000160 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 0000000000000170 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 0000000000000180 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 0000000000000190 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 00000000000001A0 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 00000000000001B0 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 00000000000001C0 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 00000000000001D0 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 00000000000001E0 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 00000000000001F0 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF *................*
 0000000000000200 80 01 00 00 34 14 00 00-00 00 00 00 D6 83 D2 1F *....4...........*

Structure Header:
 dwMagic DWORD 0x4e444221 (1313096225)
 dwCRCPartial DWORD 0x379aa90e (932882702)
 wMagicClient WORD 0x4d53 (19795)
 wVer WORD 0x0017 (23)
 wVerClient WORD 0x0013 (19)
 bPlatformCreate byte 0x01 (1)
 bPlatformAccess byte 0x01 (1)
 dwReserved1 DWORD 0x0000075c (1884)
 dwReserved2 DWORD 0x0b997bd0 (194608080)
 bidUnused BID 0x0000000100000004 (4294967300)
 bidNextP BID 0x0000000000000254 (596)
 dwUnique DWORD 0x00000045 (69)
 rgnid[] PtypMultipleInteger32 32 Element(s)
 rgnid[0] 0x00000400 (1024)
 rgnid[1] 0x00000400 (1024)
 rgnid[2] 0x00000404 (1028)
 rgnid[3] 0x00004000 (16384)
 rgnid[4] 0x00010002 (65538)
 rgnid[5] 0x00000404 (1028)
 rgnid[6] 0x00000400 (1024)
 rgnid[7] 0x00000400 (1024)
 rgnid[8] 0x00008000 (32768)
 rgnid[9] 0x00000400 (1024)
 rgnid[10] 0x00000400 (1024)
 rgnid[11] 0x00000400 (1024)
 rgnid[12] 0x00000400 (1024)
 rgnid[13] 0x00000404 (1028)
 rgnid[14] 0x00000404 (1028)
 rgnid[15] 0x00000404 (1028)
 rgnid[16] 0x00000400 (1024)
 rgnid[17] 0x00000400 (1024)
 rgnid[18] 0x00000400 (1024)
 rgnid[19] 0x00000400 (1024)
 rgnid[20] 0x00000400 (1024)
 rgnid[21] 0x00000400 (1024)
 rgnid[22] 0x00000400 (1024)
 rgnid[23] 0x00000400 (1024)
 rgnid[24] 0x00000400 (1024)
 rgnid[25] 0x00000400 (1024)
 rgnid[26] 0x00000400 (1024)
 rgnid[27] 0x00000400 (1024)
 rgnid[28] 0x00000400 (1024)
 rgnid[29] 0x00000400 (1024)
 rgnid[30] 0x00000400 (1024)
 rgnid[31] 0x0000040f (1039)
 qwUnused QWORD 0x0000000000000000 (0)
 Structure root:
 dwReserved ULONG 0x00000000 (0)
 ibFileEof IB 0x00000000009f2400 (10429440)
 ibAMapLast IB 0x00000000009b4400 (10175488)
 cbAMapFree CB 0x000000000012f240 (1241664)
 cbPMapFree CB 0x0000000000000000 (0)
 Structure BREFNBT:
 bid BID 0x000000000000024b (587)
 ib IB 0x0000000000905200 (9458176)
 Structure BREFBBT:
 bid BID 0x0000000000000253 (595)
 ib IB 0x0000000000900a00 (9439744)
 fAMapValid byte 0x02 (2)
 bReserved byte 0x00 (0)
 wReserved WORD 0x0000 (0)
 rgbFM byte 128 Byte(s)
 0000: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0010: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0020: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0030: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0040: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0060: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0070: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -

 rgbFP byte 128 Byte(s)
 0000: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0010: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0020: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0030: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0040: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0060: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -
 0070: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF -

 bSentinel byte 0x80 (128)
 bCryptMethod byte 0x01 (1)
 rgbReserved byte 0x0000 (0)
 bidNextB BID 0x0000000000001434 (5172)
 dwCRCFull DWORD 0x1fd283d6 (533890006)

[bookmark: section_ef7837e022be4da59c5f1c79db6532f4][bookmark: _Toc174686338]Sample Intermediate BT Page
The following is a binary dump of a sample intermediate BT page (both intermediate NBT and BBT pages share this format). The page itself is 512 bytes in size, including the PAGETRAILER structure (section 2.2.2.7.1), which is indicated by 16 bytes at the end of the page. The page contains BTENTRY structures (section 2.2.2.7.2), which start from the very beginning of the page, and the 4 bytes before the PAGETRAILER are the 4 byte values of the BTPAGE structure (section 2.2.2.7.7.1).
In this particular example, this is an intermediate BT page (cLevel=1), with 3 BTENTRY items (cEnt=3), each of size 0x18 bytes (cbEnt=0x18), and the maximum capacity of the page is 0x14 BTENTRY structures (cEntMax=0x14). Note the unused space in this example is zero-filled. However, in practice, the unused space can contain any value, as long as the dwCRC in the PAGETRAILER match its contents.

0000000000008200 21 00 00 00 00 00 00 00-05 02 00 00 00 00 00 00 *!...............*
0000000000008210 00 7E 00 00 00 00 00 00-0F 06 00 00 00 00 00 00 *.~..............*
0000000000008220 41 01 00 00 00 00 00 00-00 70 00 00 00 00 00 00 *A........p......*
0000000000008230 22 80 00 00 00 00 00 00-FD 00 00 00 00 00 00 00 *"...............*
0000000000008240 00 84 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008250 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008260 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008270 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008280 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008290 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000000082A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000000082B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000000082C0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000000082D0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000000082E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000000082F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008300 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008310 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008320 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008330 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008340 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008350 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008360 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008370 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008380 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000008390 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000000083A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000000083B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000000083C0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000000083D0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000000083E0 00 00 00 00 00 00 00 00-03 14 18 01 00 00 00 00 *................*
00000000000083F0 81 81 06 80 64 B1 E8 02-06 02 00 00 00 00 00 00 *....d...........*
The following 16 bytes of the preceding binary dump of a sample intermediate BT page indicate the PAGETRAILER structure (section 2.2.2.7.1).
00000000000083F0 81 81 06 80 64 B1 E8 02-06 02 00 00 00 00 00 00 *....d...........*
The 4 bytes (03 14 18 01) of the preceding binary dump of a sample intermediate BT page indicate the BTPAGE structure (section 2.2.2.7.7.1).
00000000000083E0 00 00 00 00 00 00 00 00-03 14 18 01 00 00 00 00 *................*

[bookmark: section_d829f62fe1fa45e3918aad9d95b2660f][bookmark: _Toc174686339]Sample Leaf NBT Page
The following is a binary dump of a sample leaf NBT page (section 2.2.2.7.7.4). The page itself is 512 bytes in size, including the PAGETRAILER structure (section 2.2.2.7.1), which is indicated by the 16 bytes at the end of the page. The NBTENTRY structures start from the very beginning of the page, and the 4 bytes before the PAGETRAILER are the 4 byte values of the BTPAGE structure (section 2.2.2.7.7.1).
In this particular example, this is a leaf NBT page (cLevel=0), with 0x0E NBTENTRY items (cEnt=0x0E), each of size 0x20 bytes (cbEnt=0x20), and the maximum capacity of the page is 0x0F NBTENTRY structures (cEntMax=0x0F).
Note that the actual size of the NBTENTRY is only 0x1C bytes, but the cbEnt field in the BTPAGE is 0x20 instead. Implementations will use the length specified in the cbEnt field, regardless of the native size of the actual data records. Also note that the unused bytes can contain any value as long as the dwCRC in the PAGETRAILER match its contents.

0000000000007000 0F 06 00 00 00 00 00 00-0C 00 00 00 00 00 00 00 *................*
0000000000007010 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 *................*
0000000000007020 10 06 00 00 00 00 00 00-10 00 00 00 00 00 00 00 *................*
0000000000007030 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 *................*
0000000000007040 2B 06 00 00 00 00 00 00-30 00 00 00 00 00 00 00 *+.......0.......*
0000000000007050 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 *................*
0000000000007060 4C 06 00 00 00 00 00 00-1C 00 00 00 00 00 00 00 *L...............*
0000000000007070 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 *................*
0000000000007080 71 06 00 00 00 00 00 00-18 00 00 00 00 00 00 00 *q...............*
0000000000007090 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 *................*
00000000000070A0 92 06 00 00 00 00 00 00-14 00 00 00 00 00 00 00 *................*
00000000000070B0 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 *................*
00000000000070C0 B6 06 00 00 00 00 00 00-24 00 00 00 00 00 00 00 *........$.......*
00000000000070D0 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 *................*
00000000000070E0 D7 06 00 00 00 00 00 00-28 00 00 00 00 00 00 00 *........(.......*
00000000000070F0 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 *................*
0000000000007100 F8 06 00 00 00 00 00 00-2C 00 00 00 00 00 00 00 *........,.......*
0000000000007110 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 *................*
0000000000007120 01 0C 00 00 00 00 00 00-48 00 00 00 00 00 00 00 *........H.......*
0000000000007130 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 *................*
0000000000007140 22 80 00 00 00 00 00 00-54 00 00 00 00 00 00 00 *".......T.......*
0000000000007150 00 00 00 00 00 00 00 00-22 01 00 00 02 00 00 00 *........".......*
0000000000007160 2D 80 00 00 00 00 00 00-04 00 00 00 00 00 00 00 *-...............*
0000000000007170 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 *................*
0000000000007180 2E 80 00 00 00 00 00 00-08 00 00 00 00 00 00 00 *................*
0000000000007190 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 *................*
00000000000071A0 2F 80 00 00 00 00 00 00-0C 00 00 00 00 00 00 00 */...............*
00000000000071B0 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 *................*
00000000000071C0 42 80 00 00 00 00 00 00-64 00 00 00 00 00 00 00 *B.......d.......*
00000000000071D0 00 00 00 00 00 00 00 00-22 01 00 00 02 00 00 00 *........".......*
00000000000071E0 00 00 00 00 00 00 00 00-0E 0F 20 00 00 00 00 00 *..........*
00000000000071F0 81 81 6B 70 49 19 C2 39-6B 00 00 00 00 00 00 00 *..kpI..9k.......*
The following 16 bytes of the preceding binary dump of a sample leaf NBT entry indicate the PAGETRAILER structure (section 2.2.2.7.1).
00000000000071F0 81 81 6B 70 49 19 C2 39-6B 00 00 00 00 00 00 00 *..kpI..9k.......*
The 4 bytes (0E 0F 20 00) of the preceding binary dump of a sample leaf NBT entry indicate the BTPAGE structure (section 2.2.2.7.7.1).
00000000000071E0 00 00 00 00 00 00 00 00-0E 0F 20 00 00 00 00 00 *..........*

[bookmark: section_17939c1c325e4bb18e0320b0fbc8bf0c][bookmark: _Toc174686340]Sample Leaf BBT Page
The following is a binary dump of a sample leaf BBT page (section 2.2.2.7.7.3). The page itself is 512 bytes in size, including the PAGETRAILER structure (section 2.2.2.7.1), which is indicated by 16 bytes at the end of the page. The BBTENTRY structures start from the very beginning of the page, and the 4 bytes before the PAGETRAILER are the 4 byte values of the BTPAGE structure (section 2.2.2.7.7.1).
In this particular example, this is a leaf BBT page (cLevel=0), with 8 NBTENTRY items (cEnt=8), each of size 0x18 bytes (cbEnt=0x18), and the maximum capacity of the page is 0x14 NBTENTRY structures (cEntMax=0x14). Note the unused space in this example is zero-filled. However, in practice, the unused space can contain any value, as long as the dwCRC in the PAGETRAILER match its contents.

0000000000900200 68 11 00 00 00 00 00 00-0B 02 00 00 00 00 00 00 *h...............*
0000000000900210 00 28 7C 00 00 00 00 00-B0 11 00 00 00 00 00 00 *.(|.............*
0000000000900220 0C 02 00 00 00 00 00 00-00 08 80 00 00 00 00 00 *................*
0000000000900230 F8 11 00 00 00 00 00 00-0D 02 00 00 00 00 00 00 *................*
0000000000900240 00 0A 80 00 00 00 00 00-40 12 00 00 00 00 00 00 *........@.......*
0000000000900250 0F 02 00 00 00 00 00 00-00 E6 83 00 00 00 00 00 *................*
0000000000900260 88 12 00 00 00 00 00 00-10 02 00 00 00 00 00 00 *................*
0000000000900270 00 C6 87 00 00 00 00 00-D0 12 00 00 00 00 00 00 *................*
0000000000900280 11 02 00 00 00 00 00 00-00 C8 87 00 00 00 00 00 *................*
0000000000900290 18 13 00 00 00 00 00 00-12 02 00 00 00 00 00 00 *................*
00000000009002A0 00 A6 8B 00 00 00 00 00-86 13 00 00 00 00 00 00 *................*
00000000009002B0 44 02 00 00 00 00 00 00-00 FC 8F 00 00 00 00 00 *D...............*
00000000009002C0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000009002D0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000009002E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000009002F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000900300 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000900310 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000900320 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000900330 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000900340 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000900350 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000900360 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000900370 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000900380 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000900390 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000009003A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000009003B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000009003C0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000009003D0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
00000000009003E0 00 00 00 00 00 00 00 00-08 14 18 01 00 00 00 00 *................*
00000000009003F0 80 80 D6 00 2F A0 F6 A1-46 02 00 00 00 00 00 00 *..../...F.......*
The following 16 bytes of the preceding binary dump of a sample leaf BBT entry indicate the PAGETRAILER structure (section 2.2.2.7.1).
00000000009003F0 80 80 D6 00 2F A0 F6 A1-46 02 00 00 00 00 00 00 *..../...F.......*
The 4 bytes (08 14 18 01) of the preceding binary dump of a sample leaf NBT entry indicate the BTPAGE structure (section 2.2.2.7.7.1).
00000000009003E0 00 00 00 00 00 00 00 00-08 14 18 01 00 00 00 00 *................*

[bookmark: section_c65f11006dde4a418eafdb907c9dbb8a][bookmark: _Toc174686341]Sample Data Tree
The following is a binary dump of a data tree (section 2.2.2.8.3.2), which is identified by a data block (that is, bidData) that has the i bit set. In this example, the data tree consists of a single XBLOCK. The first 8 bytes of the XBLOCK (01 01 35 00 49 9C 06 00) contain metadata about the XBLOCK, and the rest of the data contains an array of BIDs that refer to the data blocks that contain the actual end-user data.
The size of an XBLOCK varies anywhere from 64 to 8192 bytes, including the BLOCKTRAILER structure (section 2.2.2.8.1). The last 16 bytes at the end of this example (B0 01 38 67 51 CD EE 3F-62 01 00 00 00 00 00 00) represent the BLOCKTRAILER.
In this specific example, the XBLOCK contains 0x35 BIDs (cEnt=0x35), which contains 0x69C49 bytes of actual data (lcbTotal=0x00069C49).

 00000000005A6600 01 01 35 00 49 9C 06 00-5C 01 00 00 00 00 00 00 *..5.I...\.......*
 00000000005A6610 64 01 00 00 00 00 00 00-68 01 00 00 00 00 00 00 *d.......h.......*
 00000000005A6620 6C 01 00 00 00 00 00 00-70 01 00 00 00 00 00 00 *l.......p.......*
 00000000005A6630 74 01 00 00 00 00 00 00-78 01 00 00 00 00 00 00 *t.......x.......*
 00000000005A6640 7C 01 00 00 00 00 00 00-80 01 00 00 00 00 00 00 *|...............*
 00000000005A6650 84 01 00 00 00 00 00 00-88 01 00 00 00 00 00 00 *................*
 00000000005A6660 8C 01 00 00 00 00 00 00-90 01 00 00 00 00 00 00 *................*
 00000000005A6670 94 01 00 00 00 00 00 00-98 01 00 00 00 00 00 00 *................*
 00000000005A6680 9C 01 00 00 00 00 00 00-A0 01 00 00 00 00 00 00 *................*
 00000000005A6690 A4 01 00 00 00 00 00 00-A8 01 00 00 00 00 00 00 *................*
 00000000005A66A0 AC 01 00 00 00 00 00 00-B0 01 00 00 00 00 00 00 *................*
 00000000005A66B0 B4 01 00 00 00 00 00 00-B8 01 00 00 00 00 00 00 *................*
 00000000005A66C0 BC 01 00 00 00 00 00 00-C0 01 00 00 00 00 00 00 *................*
 00000000005A66D0 C4 01 00 00 00 00 00 00-C8 01 00 00 00 00 00 00 *................*
 00000000005A66E0 CC 01 00 00 00 00 00 00-D0 01 00 00 00 00 00 00 *................*
 00000000005A66F0 D4 01 00 00 00 00 00 00-D8 01 00 00 00 00 00 00 *................*
 00000000005A6700 DC 01 00 00 00 00 00 00-E0 01 00 00 00 00 00 00 *................*
 00000000005A6710 E4 01 00 00 00 00 00 00-E8 01 00 00 00 00 00 00 *................*
 00000000005A6720 EC 01 00 00 00 00 00 00-F0 01 00 00 00 00 00 00 *................*
 00000000005A6730 F4 01 00 00 00 00 00 00-F8 01 00 00 00 00 00 00 *................*
 00000000005A6740 FC 01 00 00 00 00 00 00-00 02 00 00 00 00 00 00 *................*
 00000000005A6750 04 02 00 00 00 00 00 00-08 02 00 00 00 00 00 00 *................*
 00000000005A6760 0C 02 00 00 00 00 00 00-10 02 00 00 00 00 00 00 *................*
 00000000005A6770 14 02 00 00 00 00 00 00-18 02 00 00 00 00 00 00 *................*
 00000000005A6780 1C 02 00 00 00 00 00 00-20 02 00 00 00 00 00 00 *........*
 00000000005A6790 24 02 00 00 00 00 00 00-28 02 00 00 00 00 00 00 *$.......(.......*
 00000000005A67A0 2C 02 00 00 00 00 00 00-30 02 00 00 00 00 00 00 *,.......0.......*
 00000000005A67B0 B0 01 38 67 51 CD EE 3F-62 01 00 00 00 00 00 00 *..8gQ..?b.......*
[bookmark: section_fa684e53de034e7186b3b99277200c88][bookmark: _Toc174686342]Sample SLBLOCK
The following is a binary dump of a SLBLOCK structure (section 2.2.2.8.3.3.1), which is used to represent a subnode. The first 8 (02 00 01 00 00 00 00 00) bytes contain the metadata about the SLBLOCK, which are followed by an SLENTRY structure (section 2.2.2.8.3.3.1.1). SIBLOCK structures, which are not shown in this example, have the same general format, but contain SIENTRY structures (section 2.2.2.8.3.3.2.1) instead.
The size of an SLBLOCK varies anywhere from 64 to 8192 bytes, including the BLOCKTRAILER structure (section 2.2.2.8.1). The last 16 bytes at the end of this example (20 00 5F 5E 50 5E D4 D9-86 13 00 00 00 00 00 00) represent the BLOCKTRAILER.
In this particular example, this is an SLBLOCK (cLevel=0) with only 1 SLENTRY (cEnt=1). This example also illustrates the smallest possible SLBLOCK (64 bytes).

0000000000594D80 02 00 01 00 00 00 00 00-7F 81 00 00 00 00 00 00 *................*
0000000000594D90 80 13 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000594DA0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000594DB0 20 00 5F 5E 50 5E D4 D9-86 13 00 00 00 00 00 00 * ._^P^..........*
[bookmark: section_8773374f849544fe96146c4f60418489][bookmark: _Toc174686343]Sample Heap-on-Node (HN)
The following is the binary dump of an HN (section 2.3.1). The first 12 bytes (EC 00 EC BC 20 00 00 00-00 00 00 00) indicate the HNHDR structure (section 2.3.1.2), which contain information about the HN. The last 22 bytes (shown following) represent the HNPAGEMAP structure (section 2.3.1.5), which contains the information about each allocated heap block.
 08 00 00 00 *.....}.pb.......*
00000000000048F0 0C 00 14 00 6C 00 7C 00-8C 00 A4 00 BC 00 D4 00 *....l.|.........*
0000000000004900 EC 00 *
In this particular example, the signature indicates an HN (bSig=0xEC) which ultimately contains a PC (bClientSig=0xBC (bTypePC)). The metadata of the next-level client is stored in HID 0x20 (hidUserRoot=0x00000020). The HNPAGEMAP structure can be found at offset 0xEC with respect to the beginning of the HN (ibHnpm=0x00EC).
The HNPAGEMAP indicate that the HN has 8 allocations (cAlloc=8), and the starting offsets of the allocations (with respect to the beginning of the HN) are: 0x0C, 0x14, 0x6C, 0x7C, 0x8C, 0xA4, 0xBC, 0xD4, respectively. And finally, the next allocation starts at offset 0xEC.

0000000000004800 EC 00 EC BC 20 00 00 00-00 00 00 00 B5 02 06 00
0000000000004810 40 00 00 00 34 0E 02 01-A0 00 00 00 38 0E 03 00 *@...4.......8...*
0000000000004820 00 00 00 00 F9 0F 02 01-60 00 00 00 01 30 1F 00 *........`....0..*
0000000000004830 80 00 00 00 DF 35 03 00-89 00 00 00 E0 35 02 01 *.....5.......5..*
0000000000004840 C0 00 00 00 E3 35 02 01-00 01 00 00 E7 35 02 01 *.....5.......5..*
0000000000004850 E0 00 00 00 33 66 0B 00-01 00 00 00 FA 66 03 00 *....3f.......f..*
0000000000004860 0D 00 0E 00 FF 67 03 00-00 00 00 00 22 9D B5 0A *.....g......"...*
0000000000004870 DC D9 94 43 85 DE 90 AE-B0 7D 12 70 55 00 4E 00 *...C.....}.pU.N.*
0000000000004880 49 00 43 00 4F 00 44 00-45 00 31 00 01 00 00 00 *I.C.O.D.E.1.....*
0000000000004890 F5 5E F6 66 95 69 CC 4C-83 D1 D8 73 98 99 02 85 *.^.f.i.L...s....*
00000000000048A0 01 00 00 00 00 00 00 00-22 9D B5 0A DC D9 94 43 *........"......C*
00000000000048B0 85 DE 90 AE B0 7D 12 70-22 80 00 00 00 00 00 00 *.....}.p".......*
00000000000048C0 22 9D B5 0A DC D9 94 43-85 DE 90 AE B0 7D 12 70 *"......C.....}.p*
00000000000048D0 42 80 00 00 00 00 00 00-22 9D B5 0A DC D9 94 43 *B......."......C*
00000000000048E0 85 DE 90 AE B0 7D 12 70-62 80 00 00 08 00 00 00 *.....}.pb.......*
00000000000048F0 0C 00 14 00 6C 00 7C 00-8C 00 A4 00 BC 00 D4 00 *....l.|.........*
0000000000004900 EC 00 *
[bookmark: section_f706a5a714ff4fb0bc3c2ed7955de13d][bookmark: _Toc174686344]Sample BTH
Because the binary dump in the preceding example contains a PC, by definition it follows that the HN contains a BTH. This example uses the same binary dump form the last example to further examine the inner BTH structure (section 2.3.2). Because hidUserRoot is 0x20, this maps to the first HN allocation (section 2.3.1.1), which starts at offset 0x0C. Because the next allocation starts at offset 0x14, its size is 8 bytes.
These 8 bytes (B5 02 06 00 40 00 00 00) actually maps to the BTHHEADER structure (section 2.3.2.1) of this BTH. According to the information in the BTHHEADER, each record in this BTH has a 2-byte key (cbKey=2) and 6 bytes of data (cbEnt=6). It also indicates that the BTH entry table is located in HID 0x40 (hidRoot=0x00000040), and it contains leaf BTH Records (bIdxLevels=0, see section 2.3.2.3).
HID 0x40 maps to the second allocation, which spans 0x58 bytes from offset 0x14 to 0x6C (shown following). Because each record is 8 bytes (2+6), the BTH contains 11 records.
 34 0E 02 01-A0 00 00 00 38 0E 03 00 *@...4.......8...*
0000000000004820 00 00 00 00 F9 0F 02 01-60 00 00 00 01 30 1F 00 *........`....0..*
0000000000004830 80 00 00 00 DF 35 03 00-89 00 00 00 E0 35 02 01 *.....5.......5..*
0000000000004840 C0 00 00 00 E3 35 02 01-00 01 00 00 E7 35 02 01 *.....5.......5..*
0000000000004850 E0 00 00 00 33 66 0B 00-01 00 00 00 FA 66 03 00 *....3f.......f..*
0000000000004860 0D 00 0E 00 FF 67 03 00-00 00 00 00
Recall that the HN has 8 allocations, but so far the BTH only used accounted for 2 of them. The remaining 6 allocations are being used by the higher-level client (that is, the PC).

0000000000004800 EC 00 EC BC 20 00 00 00-00 00 00 00 B5 02 06 00 *....*
0000000000004810 40 00 00 00 34 0E 02 01-A0 00 00 00 38 0E 03 00 *@...4.......8...*
0000000000004820 00 00 00 00 F9 0F 02 01-60 00 00 00 01 30 1F 00 *........`....0..*
0000000000004830 80 00 00 00 DF 35 03 00-89 00 00 00 E0 35 02 01 *.....5.......5..*
0000000000004840 C0 00 00 00 E3 35 02 01-00 01 00 00 E7 35 02 01 *.....5.......5..*
0000000000004850 E0 00 00 00 33 66 0B 00-01 00 00 00 FA 66 03 00 *....3f.......f..*
0000000000004860 0D 00 0E 00 FF 67 03 00-00 00 00 00 22 9D B5 0A *.....g......"...*
0000000000004870 DC D9 94 43 85 DE 90 AE-B0 7D 12 70 55 00 4E 00 *...C.....}.pU.N.*
0000000000004880 49 00 43 00 4F 00 44 00-45 00 31 00 01 00 00 00 *I.C.O.D.E.1.....*
0000000000004890 F5 5E F6 66 95 69 CC 4C-83 D1 D8 73 98 99 02 85 *.^.f.i.L...s....*
00000000000048A0 01 00 00 00 00 00 00 00-22 9D B5 0A DC D9 94 43 *........"......C*
00000000000048B0 85 DE 90 AE B0 7D 12 70-22 80 00 00 00 00 00 00 *.....}.p".......*
00000000000048C0 22 9D B5 0A DC D9 94 43-85 DE 90 AE B0 7D 12 70 *"......C.....}.p*
00000000000048D0 42 80 00 00 00 00 00 00-22 9D B5 0A DC D9 94 43 *B......."......C*
00000000000048E0 85 DE 90 AE B0 7D 12 70-62 80 00 00 08 00 00 00 *.....}.pb.......*
00000000000048F0 0C 00 14 00 6C 00 7C 00-8C 00 A4 00 BC 00 D4 00 *....l.|.........*
0000000000004900 EC 00 *.. *
[bookmark: section_8fa17657df23466db09b29742a745246][bookmark: _Toc174686345]Sample Message Store
The binary data used in the last two examples (HN, BTH) is actually that of the message store PC of a PST. The following is the decoded content of the PC in the preceding example, which contains all the properties of the message store.
NID: 33 (0x00000021) < NID_TYPE_INTERNAL > < NID_MESSAGE_STORE >

 Parent NID: 0x00000000
 Data BID: 168 (0xa8)
 Subnode BID: 0 (0x0)

 Block: IB=18432 (0x4800), 258 (0x102) bytes
 Block Signature: 0xec < HEAP_SIGNATURE >
 Client Signature: 0xbc < bTypePC >
 Fill Level: 0x00 0x00 0x00 0x00
 User Root HID: 32 (0x00000020)

 Property Context (9 Items)

 0x0e340102 PidTagReplVersionhistory PtypBinary 24 Byte(s)
 0000: 01 00 00 00 F5 5E F6 66 95 69 CC 4C 83 D1 D8 73 -^.f.i.L...s
 0010: 98 99 02 85 01 00 00 00 -

 0x0e380003 PidTagReplFlags PtypInteger32 0x00000000 (0)
 0x0ff90102 PidTagRecordKey PtypBinary 16 Byte(s)
 0000: 22 9D B5 0A DC D9 94 43 85 DE 90 AE B0 7D 12 70 - "......C.....}.p

 0x3001001f PidTagDisplayName PtypString 16 Byte(s)
 0000: 55 00 4E 00 49 00 43 00 4F 00 44 00 45 00 31 00 - U.N.I.C.O.D.E.1.

 0x35df0003 PidTagValidFolderMask PtypInteger32 0x00000089 (137)
 0x35e00102 PidTagIpmSubTreeEntryId PtypBinary 24 Byte(s)
 0000: 00 00 00 00 22 9D B5 0A DC D9 94 43 85 DE 90 AE -"......C....
 0010: B0 7D 12 70 22 80 00 00 - .}.p"...

 0x35e30102 PidTagIpmWastebasketEntryId PtypBinary 24 Byte(s)
 0000: 00 00 00 00 22 9D B5 0A DC D9 94 43 85 DE 90 AE -"......C....
 0010: B0 7D 12 70 62 80 00 00 - .}.pb...

 0x35e70102 PidTagFinderEntryId PtypBinary 24 Byte(s)
 0000: 00 00 00 00 22 9D B5 0A DC D9 94 43 85 DE 90 AE -"......C....
 0010: B0 7D 12 70 42 80 00 00 - .}.pB...

 0x67ff0003 PidTagPstPassword PtypInteger32 0x00000000 (0)
[bookmark: section_d0126306abac4515bca0fe6392f3ccb8][bookmark: _Toc174686346]Sample TC
The following is a binary dump of a TC (section 2.3.4), which is small enough to be self-contained in a data block (that is, not subnode) to keep things simple. Because of the complexity of the TC, a number of decorations are used to represent the different constructs in the binary data.
A TC is constructed on top of an HN structure, which is shown following by the 32 bytes from the beginning and end of the data.
0000000000004A00 BC 01 EC 7C 40 00 00 00-00 00 00 00
…
…
 07 00 00 00 *.d.e.r. .2......*
0000000000004BC0 0C 00 14 00 92 00 AA 00-4F 01 7D 01 93 01 BB 01 *........O.}.....*
The hidUserRoot of the HN points to the TCINFO structure (section 2.3.4.1), which is at HID 0x40 and indicated by the underlined bytes. In this example, the TC contains 0x0D columns (cCols=0x0D), and contains an embedded BTH (RowIndex, section 2.3.4.3) at HID 0x20. The Row Matrix (actual row data, section 2.3.4.4) is found at HID 0x80. The items that are shown following represent the TCOLDESC structures that describe each of the columns in the TC (section 2.3.4.2).
 02 01 30 0E 14 00 *............0...*
0000000000004A30 04 06 14 00 33 0E 18 00-08 07 02 01 34 0E 20 00 *....3.......4. .*
0000000000004A40 04 08 03 00 38 0E 24 00-04 09 1F 00 01 30 08 00 *....8.$......0..*
0000000000004A50 04 02 03 00 02 36 0C 00-04 03 03 00 03 36 10 00 *.....6.......6..*
0000000000004A60 04 04 0B 00 0A 36 34 00-01 05 1F 00 13 36 28 00 *.....64......6(.*
0000000000004A70 04 0A 03 00 35 66 2C 00-04 0B 03 00 36 66 30 00 *....5f,.....6f0.*
0000000000004A80 04 0C 03 00 F2 67 00 00-04 00 03 00 F3 67 04 00 *.....g.......g..*
0000000000004A90 04 01
The two following pieces of data collectively make up the RowIndex, which associate each row in the TC with the corresponding NID of the item it refers to.
 B5 04 04 00 *...|@...........*
0000000000004A10 60 00 00 00
…
…
 23 22 00 00 02 00-00 00 22 80 00 00 00 00 *..#"......".....*
0000000000004AA0 00 00 42 80 00 00 01 00-00 00
Finally, the following data constitutes the Row Matrix. The remaining, undecorated data near the end are additional allocations off the HN to store variable-size property data in the Row Matrix.
 22 80 00 00 0E 00 *..B.......".....*
0000000000004AB0 00 00 A0 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000004AC0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000004AD0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 01 FC *................*
0000000000004AE0 00 42 80 00 00 06 00 00-00 C0 00 00 00 00 00 00 *.B..............*
0000000000004AF0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000004B00 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000004B10 00 00 00 00 00 00 FC 00-23 22 00 00 0B 00 00 00 *........#"......*
0000000000004B20 E0 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000004B30 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000004B40 00 00 00 00 00 00 00 00-00 00 00 00 00 FC 00 54 *...............T*

For those interested in deciphering the data contained in this TC, refer to the Hierarchy TC in the next example to view the parsed content.

0000000000004A00 BC 01 EC 7C 40 00 00 00-00 00 00 00 B5 04 04 00 *...|@...........*
0000000000004A10 60 00 00 00 7C 0D 34 00-34 00 35 00 37 00 20 00 *`...|.4.4.5.7. .*
0000000000004A20 00 00 80 00 00 00 00 00-00 00 02 01 30 0E 14 00 *............0...*
0000000000004A30 04 06 14 00 33 0E 18 00-08 07 02 01 34 0E 20 00 *....3.......4. .*
0000000000004A40 04 08 03 00 38 0E 24 00-04 09 1F 00 01 30 08 00 *....8.$......0..*
0000000000004A50 04 02 03 00 02 36 0C 00-04 03 03 00 03 36 10 00 *.....6.......6..*
0000000000004A60 04 04 0B 00 0A 36 34 00-01 05 1F 00 13 36 28 00 *.....64......6(.*
0000000000004A70 04 0A 03 00 35 66 2C 00-04 0B 03 00 36 66 30 00 *....5f,.....6f0.*
0000000000004A80 04 0C 03 00 F2 67 00 00-04 00 03 00 F3 67 04 00 *.....g.......g..*
0000000000004A90 04 01 23 22 00 00 02 00-00 00 22 80 00 00 00 00 *..#"......".....*
0000000000004AA0 00 00 42 80 00 00 01 00-00 00 22 80 00 00 0E 00 *..B.......".....*
0000000000004AB0 00 00 A0 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000004AC0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000004AD0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 01 FC *................*
0000000000004AE0 00 42 80 00 00 06 00 00-00 C0 00 00 00 00 00 00 *.B..............*
0000000000004AF0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000004B00 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000004B10 00 00 00 00 00 00 FC 00-23 22 00 00 0B 00 00 00 *........#"......*
0000000000004B20 E0 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000004B30 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
0000000000004B40 00 00 00 00 00 00 00 00-00 00 00 00 00 FC 00 54 *...............T*
0000000000004B50 00 6F 00 70 00 20 00 6F-00 66 00 20 00 50 00 65 *.o.p. .o.f. .P.e*
0000000000004B60 00 72 00 73 00 6F 00 6E-00 61 00 6C 00 20 00 46 *.r.s.o.n.a.l. .F*
0000000000004B70 00 6F 00 6C 00 64 00 65-00 72 00 73 00 53 00 65 *.o.l.d.e.r.s.S.e*
0000000000004B80 00 61 00 72 00 63 00 68-00 20 00 52 00 6F 00 6F *.a.r.c.h. .R.o.o*
0000000000004B90 00 74 00 53 00 50 00 41-00 4D 00 20 00 53 00 65 *.t.S.P.A.M. .S.e*
0000000000004BA0 00 61 00 72 00 63 00 68-00 20 00 46 00 6F 00 6C *.a.r.c.h. .F.o.l*
0000000000004BB0 00 64 00 65 00 72 00 20-00 32 00 00 07 00 00 00 *.d.e.r. .2......*
0000000000004BC0 0C 00 14 00 92 00 AA 00-4F 01 7D 01 93 01 BB 01 *........O.}.....*
[bookmark: section_59235d49bd764759b26c9769e97c4106][bookmark: _Toc174686347]Sample Folder Object
The following is a full content dump of the Root Folder. Note the 4 constituents that collectively make up a Folder object. The Hierarchy TC indicates that the Root Folder has 3 sub-Folder objects: "Top of Personal Folders", "Search Root" and "SPAM Search Folder 2". The Contents TC and FAI contents table TC indicate that the Root Folder has no Message objects or FAI Message objects. Also note that the parent NID of the Root Folder points to itself.

NID: 290 (0x00000122) < NID_TYPE_NORMAL_FOLDER > < NID_ROOT_FOLDER >

 Parent NID: 0x00000122
 Data BID: 96 (0x60)
 Subnode BID: 0 (0x0)

 Block Signature: 0xec < HEAP_SIGNATURE >
 Client Signature: 0xbc < bTypePC >
 Fill Level: 0x00 0x00 0x00 0x00
 User Root HID: 32 (0x00000020)

 Property Context (4 Items)

 0x3001001f PidTagDisplayName PtypString
 0x36020003 PidTagContentCount PtypInteger32 0x00000000 (0)
 0x36030003 PidTagContentUnreadCount PtypInteger32 0x00000000 (0)
 0x360a000b PidTagSubfolders PtypBoolean 0x01 (1)

===

NID: 301 (0x0000012d) < NID_TYPE_HIERARCHY_TABLE > < none >

 Parent NID: 0x00000000
 Data BID: 164 (0xa4)
 Subnode BID: 0 (0x0)

 Block Signature: 0xec < HEAP_SIGNATURE >
 Client Signature: 0x7c < bTypeTC >
 Fill Level: 0x00 0x00 0x00 0x00
 User Root HID: 64 (0x00000040)

 Table Context (13 Sparse Columns)

 Columns:
 0x0e300003 PidTagReplItemid (IB: 20, CB: 4, iBit: 6)
 0x0e330014 PidTagReplChangenum (IB: 24, CB: 8, iBit: 7)
 0x0e340102 PidTagReplVersionhistory (IB: 32, CB: 4, iBit: 8)
 0x0e380003 PidTagReplFlags (IB: 36, CB: 4, iBit: 9)
 0x3001001f PidTagDisplayName_W (IB: 8, CB: 4, iBit: 2)
 0x36020003 PidTagContentCount (IB: 12, CB: 4, iBit: 3)
 0x36030003 PidTagContentUnreadCount (IB: 16, CB: 4, iBit: 4)
 0x360a000b PidTagSubfolders (IB: 52, CB: 1, iBit: 5)
 0x3613001f PidTagContainerClass_W (IB: 40, CB: 4, iBit: 10)
 0x66350003 PidTagProfileOabCountAttemptedFulldn OR
 PidTagPstHiddenCount (IB: 44, CB: 4, iBit: 11)
 0x66360003 PidTagProfileOabCountAttemptedIncrdn OR
 PidTagPstHiddenUnread (IB: 48, CB: 4, iBit: 12)
 0x67f20003 PidTagLtpRowId (IB: 0, CB: 4, iBit: 0)
 0x67f30003 PidTagLtpRowVer (IB: 4, CB: 4, iBit: 1)

 Row Matrix Data (3 Rows) [HID: 0x00000080]

 Row 0:
 0x0e330014 PidTagReplChangenum 0x0000000000000000 (0)
 0x3001001f PidTagDisplayName_W 46 Byte(s)
 0000: 54 00 6F 00 70 00 20 00 6F 00 66 00 20 00 50 00 - T.o.p. .o.f. .P.
 0010: 65 00 72 00 73 00 6F 00 6E 00 61 00 6C 00 20 00 - e.r.s.o.n.a.l. .
 0020: 46 00 6F 00 6C 00 64 00 65 00 72 00 73 00 - F.o.l.d.e.r.s.

 0x36020003 PidTagContentCount 0x00000000 (0)
 0x36030003 PidTagContentUnreadCount 0x00000000 (0)
 0x360a000b PidTagSubfolders 0x01 (1)

 Row 1:
 0x0e330014 PidTagReplChangenum 0x0000000000000000 (0)
 0x3001001f PidTagDisplayName_W 22 Byte(s)
 0000: 53 00 65 00 61 00 72 00 63 00 68 00 20 00 52 00 - S.e.a.r.c.h. .R.
 0010: 6F 00 6F 00 74 00 - o.o.t.

 0x36020003 PidTagContentCount 0x00000000 (0)
 0x36030003 PidTagContentUnreadCount 0x00000000 (0)
 0x360a000b PidTagSubfolders 0x00 (0)

 Row 2:
 0x0e330014 PidTagReplChangenum 0x0000000000000000 (0)
 0x3001001f PidTagDisplayName_W 40 Byte(s)
 0000: 53 00 50 00 41 00 4D 00 20 00 53 00 65 00 61 00 - S.P.A.M. .S.e.a.
 0010: 72 00 63 00 68 00 20 00 46 00 6F 00 6C 00 64 00 - r.c.h. .F.o.l.d.
 0020: 65 00 72 00 20 00 32 00 - e.r. .2.

 0x36020003 PidTagContentCount 0x00000000 (0)
 0x36030003 PidTagContentUnreadCount 0x00000000 (0)
 0x360a000b PidTagSubfolders 0x00 (0)

 RowIndex [HID: 0x00000020]

 Property Context (3 Items)

 0x00002223, 2
 0x00008022, 0
 0x00008042, 1

===

NID: 302 (0x0000012e) < NID_TYPE_CONTENTS_TABLE > < none >

 Parent NID: 0x00000000
 Data BID: 8 (0x8)
 Subnode BID: 0 (0x0)

 Block Signature: 0xec < HEAP_SIGNATURE >
 Client Signature: 0x7c < bTypeTC >
 Fill Level: 0x00 0x00 0x00 0x00
 User Root HID: 64 (0x00000040)

 Table Context (27 Sparse Columns)

 Columns:
 0x00170003 PidTagImportance (IB: 20, CB: 4, iBit: 5)
 0x001a001f PidTagMessageClass_W (IB: 12, CB: 4, iBit: 3)
 0x00360003 PidTagSensitivity (IB: 60, CB: 4, iBit: 15)
 0x0037001f PidTagSubject_W (IB: 28, CB: 4, iBit: 7)
 0x00390040 PidTagClientSubmitTime (IB: 40, CB: 8, iBit: 9)
 0x0042001f PidTagSentRepresentingName_W (IB: 24, CB: 4, iBit: 6)
 0x0057000b PidTagMessageToMe (IB: 116, CB: 1, iBit: 13)
 0x0058000b PidTagMessageCcMe (IB: 117, CB: 1, iBit: 14)
 0x0070001f PidTagConversationTopic_W (IB: 68, CB: 4, iBit: 17)
 0x00710102 PidTagConversationIndex (IB: 72, CB: 4, iBit: 18)
 0x0e03001f PidTagDisplayCc_W (IB: 56, CB: 4, iBit: 12)
 0x0e04001f PidTagDisplayTo_W (IB: 52, CB: 4, iBit: 11)
 0x0e060040 PidTagMessageDeliveryTime (IB: 32, CB: 8, iBit: 8)
 0x0e070003 PidTagMessageFlags (IB: 16, CB: 4, iBit: 4)
 0x0e080003 PidTagMessageSize (IB: 48, CB: 4, iBit: 10)
 0x0e170003 PidTagMessageStatus (IB: 8, CB: 4, iBit: 2)
 0x0e300003 PidTagReplItemId (IB: 88, CB: 4, iBit: 21)
 0x0e330014 PidTagReplChangenum (IB: 92, CB: 8, iBit: 22)
 0x0e340102 PidTagReplVersionhistory (IB: 100, CB: 4, iBit: 23)
 0x0e380003 PidTagReplFlags (IB: 112, CB: 4, iBit: 26)
 0x0e3c0102 PidTagReplCopiedfromVersionhistory (IB: 108, CB: 4, iBit: 25)
 0x0e3d0102 PidTagReplCopiedfromItemid (IB: 104, CB: 4, iBit: 24)
 0x10970003 PidTagItemTemporaryFlags (IB: 64, CB: 4, iBit: 16)
 0x30080040 PidTagLastModificationTime (IB: 80, CB: 8, iBit: 20)
 0x65c60003 PidTagSecureSubmitFlags (IB: 76, CB: 4, iBit: 19)
 0x67f20003 PidTagLtpRowId (IB: 0, CB: 4, iBit: 0)
 0x67f30003 PidTagLtpRowVer (IB: 4, CB: 4, iBit: 1)

 Row Matrix Data Not Present (0 Rows)

 RowIndex [HID: 0x00000020]

===

NID: 303 (0x0000012f) < NID_TYPE_ASSOC_CONTENTS_TABLE > < none >

 Parent NID: 0x00000000
 Data BID: 284 (0x11c)
 Subnode BID: 0 (0x0)

 Block Signature: 0xec < HEAP_SIGNATURE >
 Client Signature: 0x7c < bTypeTC >
 Fill Level: 0x00 0x00 0x00 0x00
 User Root HID: 64 (0x00000040)

 Table Context (17 Sparse Columns)

 Columns:
 0x001a001f PidTagMessageClass_W (IB: 12, CB: 4, iBit: 3)
 0x003a001f PidTagReportName_W (IB: 60, CB: 4, iBit: 16)
 0x0070001f PidTagConversationTopic_W (IB: 56, CB: 4, iBit: 15)
 0x0e070003 PidTagMessageFlags (IB: 16, CB: 4, iBit: 4)
 0x0e170003 PidTagMessageStatus (IB: 8, CB: 4, iBit: 2)
 0x3001001f PidTagDisplayName_W (IB: 20, CB: 4, iBit: 5)
 0x67f20003 PidTagLtpRowId (IB: 0, CB: 4, iBit: 0)
 0x67f30003 PidTagLtpRowVer (IB: 4, CB: 4, iBit: 1)
 0x6800001f PidTagMapiformMessageclass_W OR
 PidTagIabRemoteServer_W OR
 PidTagOfflineAddressBookName_W (IB: 44, CB: 4, iBit: 11)
 0x6803000b PidTagFormMultCategorized OR
 PidTagSendOutlookRecallReport (IB: 64, CB: 1, iBit: 12)
 0x68051003 PidTagOfflineAddressBookTruncatedProperties (IB: 48, CB: 4, iBit: 13)
 0x682f001f PidTagReplItemid (IB: 52, CB: 4, iBit: 14)
 0x70030003 PidTagViewDescriptorFlags (IB: 24, CB: 4, iBit: 6)
 0x70040102 PidTagViewDescriptorLinkTo (IB: 28, CB: 4, iBit: 7)
 0x70050102 PidTagViewDescriptorViewFolder (IB: 32, CB: 4, iBit: 8)
 0x7006001f PidTagViewDescriptorName OR
 PidTagViewDescriptorName_W (IB: 36, CB: 4, iBit: 9)
 0x70070003 PidTagViewDescriptorVersion (IB: 40, CB: 4, iBit: 10)

 Row Matrix Data Not Present (0 Rows)

 RowIndex [HID: 0x00000020]

[bookmark: section_5ee9a00a858b47db95b3f91518640ea7][bookmark: _Toc174686348]Sample Message Object
The following is the parsed content of a sample Message object that is sent from an imaginary user account to itself. The intention of this is to provide a SAMPLE of what types of properties can be found in a typical Message object and is by no means a definitive reference. Note the presence of a Recipient TC in addition to the Message object PC.

NID: 2097252 (0x00200064) < NID_TYPE_NORMAL_MESSAGE > < none >

 Parent NID: 0x00008082
 Data BID: 5400 (0x1518)
 Subnode BID: 5394 (0x1512)

 Block: IB=9472512 (0x908a00), 4092 (0xffc) bytes
 Block Signature: 0xec < HEAP_SIGNATURE >
 Client Signature: 0xbc < bTypePC >
 Fill Level: 0x00 0x00 0x00 0x00
 User Root HID: 32 (0x00000020)

 Property Context (100 Items)

 0x0002000b PidTagAlternateRecipientAllowed PtypBoolean 0x01 (1)
 0x00170003 PidTagImportance PtypInteger32 0x00000001 (1)
 0x001a001f PidTagMessageClass_W PtypString 16 Byte(s)
 0000: 49 00 50 00 4D 00 2E 00 4E 00 6F 00 74 00 65 00 - I.P.M...N.o.t.e.

 0x0023000b PidTagOriginatorDeliveryReportRequested
 PtypBoolean 0x00 (0)
 0x00260003 PidTagPriority PtypInteger32 0x00000000 (0)
 0x0029000b PidTagReadReceiptRequested PtypBoolean 0x00 (0)
 0x00360003 PidTagSensitivity PtypInteger32 0x00000000 (0)
 0x0037001f PidTagSubject_W PtypBinary 28 Byte(s)
 0000: 53 00 61 00 6D 00 70 00 6C 00 65 00 20 00 4D 00 - S.a.m.p.l.e. .M.
 0010: 65 00 73 00 73 00 61 00 67 00 65 00 - e.s.s.a.g.e.

 0x00390040 PidTagClientSubmitTime PtypTime 2009/10/22 16:32:03.000
 0x003b0102 PidTagSentRepresentingSearchKey PtypBinary 93 Byte(s)
 0000: 45 58 3A 2F 4F 3D 4D 49 43 52 4F 53 4F 46 54 2F - EX:/O=MICROSOFT/
 0010: 4F 55 3D 45 58 43 48 41 4E 47 45 20 41 44 4D 49 - OU=EXCHANGE ADMI
 0020: 4E 49 53 54 52 41 54 49 56 45 20 47 52 4F 55 50 - NISTRATIVE GROUP
 0030: 20 28 46 59 44 49 42 4F 48 46 32 33 53 50 44 4C - (FYDIBOHF23SPDL
 0040: 54 29 2F 43 4E 3D 52 45 43 49 50 49 45 4E 54 53 - T)/CN=RECIPIENTS
 0050: 2F 43 4E 3D 4A 4F 48 4E 2E 44 4F 45 00 - /CN=JOHN.DOE.

 0x003f0102 PidTagReceivedByEntryId PtypBinary 118 Byte(s)
 0000: 00 00 00 00 DC A7 40 C8 C0 42 10 1A B4 B9 08 00 -@..B......
 0010: 2B 2F E1 82 01 00 00 00 00 00 00 00 2F 4F 3D 4D - +/........../O=M
 0020: 49 43 52 4F 53 4F 46 54 2F 4F 55 3D 45 58 43 48 - ICROSOFT/OU=EXCH
 0030: 41 4E 47 45 20 41 44 4D 49 4E 49 53 54 52 41 54 - ANGE ADMINISTRAT
 0040: 49 56 45 20 47 52 4F 55 50 20 28 46 59 44 49 42 - IVE GROUP (FYDIB
 0050: 4F 48 46 32 33 53 50 44 4C 54 29 2F 43 4E 3D 52 - OHF23SPDLT)/CN=R
 0060: 45 43 49 50 49 45 4E 54 53 2F 43 4E 3D 4A 4F 48 - ECIPIENTS/CN=JOH
 0070: 4E 2E 44 4F 45 00 - N.DOE.

 0x0040001f PidTagReceivedByName_W PtypBinary 58 Byte(s)
 0000: 4A 00 6F 00 68 00 6E 00 20 00 44 00 6F 00 65 00 - J.o.h.n. .D.o.e.
 0010: 20 00 28 00 6E 00 6F 00 74 00 20 00 61 00 20 00 - .(.n.o.t. .a. .
 0020: 72 00 65 00 61 00 6C 00 20 00 61 00 64 00 64 00 - r.e.a.l. .a.d.d.
 0030: 72 00 65 00 73 00 73 00 29 00 - r.e.s.s.).

 0x00410102 PidTagSentRepresentingEntryId PtypBinary 118 Byte(s)
 0000: 00 00 00 00 DC A7 40 C8 C0 42 10 1A B4 B9 08 00 -@..B......
 0010: 2B 2F E1 82 01 00 00 00 00 00 00 00 2F 4F 3D 4D - +/........../O=M
 0020: 49 43 52 4F 53 4F 46 54 2F 4F 55 3D 45 58 43 48 - ICROSOFT/OU=EXCH
 0030: 41 4E 47 45 20 41 44 4D 49 4E 49 53 54 52 41 54 - ANGE ADMINISTRAT
 0040: 49 56 45 20 47 52 4F 55 50 20 28 46 59 44 49 42 - IVE GROUP (FYDIB
 0050: 4F 48 46 32 33 53 50 44 4C 54 29 2F 43 4E 3D 52 - OHF23SPDLT)/CN=R
 0060: 45 43 49 50 49 45 4E 54 53 2F 43 4E 3D 4A 4F 48 - ECIPIENTS/CN=JOH
 0070: 4E 2E 44 4F 45 00 - N.DOE.

 0x0042001f PidTagSentRepresentingName_W PtypBinary 58 Byte(s)
 0000: 4A 00 6F 00 68 00 6E 00 20 00 44 00 6F 00 65 00 - J.o.h.n. .D.o.e.
 0010: 20 00 28 00 6E 00 6F 00 74 00 20 00 61 00 20 00 - .(.n.o.t. .a. .
 0020: 72 00 65 00 61 00 6C 00 20 00 61 00 64 00 64 00 - r.e.a.l. .a.d.d.
 0030: 72 00 65 00 73 00 73 00 29 00 - r.e.s.s.).

 0x00430102 PidTagReceivedRepresentingEntryId PtypBinary 118 Byte(s)
 0000: 00 00 00 00 DC A7 40 C8 C0 42 10 1A B4 B9 08 00 -@..B......
 0010: 2B 2F E1 82 01 00 00 00 00 00 00 00 2F 4F 3D 4D - +/........../O=M
 0020: 49 43 52 4F 53 4F 46 54 2F 4F 55 3D 45 58 43 48 - ICROSOFT/OU=EXCH
 0030: 41 4E 47 45 20 41 44 4D 49 4E 49 53 54 52 41 54 - ANGE ADMINISTRAT
 0040: 49 56 45 20 47 52 4F 55 50 20 28 46 59 44 49 42 - IVE GROUP (FYDIB
 0050: 4F 48 46 32 33 53 50 44 4C 54 29 2F 43 4E 3D 52 - OHF23SPDLT)/CN=R
 0060: 45 43 49 50 49 45 4E 54 53 2F 43 4E 3D 4A 4F 48 - ECIPIENTS/CN=JOH
 0070: 4E 2E 44 4F 45 00 - N.DOE.

 0x0044001f PidTagReceivedRepresentingName_W PtypBinary 58 Byte(s)
 0000: 4A 00 6F 00 68 00 6E 00 20 00 44 00 6F 00 65 00 - J.o.h.n. .D.o.e.
 0010: 20 00 28 00 6E 00 6F 00 74 00 20 00 61 00 20 00 - .(.n.o.t. .a. .
 0020: 72 00 65 00 61 00 6C 00 20 00 61 00 64 00 64 00 - r.e.a.l. .a.d.d.
 0030: 72 00 65 00 73 00 73 00 29 00 - r.e.s.s.).

 0x00470102 PidTagMessageSubmissionId PtypBinary 53 Byte(s)
 0000: 63 3D 55 53 3B 61 3D 4D 43 49 3B 70 3D 6D 73 66 - c=US;a=MCI;p=msf
 0010: 74 3B 6C 3D 54 4B 35 45 58 31 34 4D 42 58 43 31 - t;l=TK5EX14MBXC1
 0020: 2D 30 39 31 30 32 32 31 36 33 32 30 34 5A 2D 35 - -091022163204Z-5
 0030: 36 34 38 30 00 - 6480.

 0x00510102 PidTagReceivedBySearchKey PtypBinary 93 Byte(s)
 0000: 45 58 3A 2F 4F 3D 4D 49 43 52 4F 53 4F 46 54 2F - EX:/O=MICROSOFT/
 0010: 4F 55 3D 45 58 43 48 41 4E 47 45 20 41 44 4D 49 - OU=EXCHANGE ADMI
 0020: 4E 49 53 54 52 41 54 49 56 45 20 47 52 4F 55 50 - NISTRATIVE GROUP
 0030: 20 28 46 59 44 49 42 4F 48 46 32 33 53 50 44 4C - (FYDIBOHF23SPDL
 0040: 54 29 2F 43 4E 3D 52 45 43 49 50 49 45 4E 54 53 - T)/CN=RECIPIENTS
 0050: 2F 43 4E 3D 4A 4F 48 4E 2E 44 4F 45 00 - /CN=JOHN.DOE.

 0x00520102 PidTagReceivedRepresentingSearchKey PtypBinary 93 Byte(s)
 0000: 45 58 3A 2F 4F 3D 4D 49 43 52 4F 53 4F 46 54 2F - EX:/O=MICROSOFT/
 0010: 4F 55 3D 45 58 43 48 41 4E 47 45 20 41 44 4D 49 - OU=EXCHANGE ADMI
 0020: 4E 49 53 54 52 41 54 49 56 45 20 47 52 4F 55 50 - NISTRATIVE GROUP
 0030: 20 28 46 59 44 49 42 4F 48 46 32 33 53 50 44 4C - (FYDIBOHF23SPDL
 0040: 54 29 2F 43 4E 3D 52 45 43 49 50 49 45 4E 54 53 - T)/CN=RECIPIENTS
 0050: 2F 43 4E 3D 4A 4F 48 4E 2E 44 4F 45 00 - /CN=JOHN.DOE.

 0x0057000b PidTagMessageToMe PtypBoolean 0x01 (1)
 0x0058000b PidTagMessageCcMe PtypBoolean 0x00 (0)
 0x0064001f PidTagSentRepresentingAddressType_W PtypBinary 4 Byte(s)
 0000: 45 00 58 00 - E.X.

 0x0065001f PidTagSentRepresentingEmailAddress_W PtypBinary 178 Byte(s)
 0000: 2F 00 4F 00 3D 00 4D 00 49 00 43 00 52 00 4F 00 - /.O.=.M.I.C.R.O.
 0010: 53 00 4F 00 46 00 54 00 2F 00 4F 00 55 00 3D 00 - S.O.F.T./.O.U.=.
 0020: 45 00 58 00 43 00 48 00 41 00 4E 00 47 00 45 00 - E.X.C.H.A.N.G.E.
 0030: 20 00 41 00 44 00 4D 00 49 00 4E 00 49 00 53 00 - .A.D.M.I.N.I.S.
 0040: 54 00 52 00 41 00 54 00 49 00 56 00 45 00 20 00 - T.R.A.T.I.V.E. .
 0050: 47 00 52 00 4F 00 55 00 50 00 20 00 28 00 46 00 - G.R.O.U.P. .(.F.
 0060: 59 00 44 00 49 00 42 00 4F 00 48 00 46 00 32 00 - Y.D.I.B.O.H.F.2.
 0070: 33 00 53 00 50 00 44 00 4C 00 54 00 29 00 2F 00 - 3.S.P.D.L.T.)./.
 0080: 43 00 4E 00 3D 00 52 00 45 00 43 00 49 00 50 00 - C.N.=.R.E.C.I.P.
 0090: 49 00 45 00 4E 00 54 00 53 00 2F 00 43 00 4E 00 - I.E.N.T.S./.C.N.
 00a0: 3D 00 4A 00 4F 00 48 00 4E 00 2E 00 44 00 4F 00 - =.J.O.H.N...D.O.
 00b0: 45 00 - E.

 0x0070001f PidTagConversationTopic_W PtypBinary 28 Byte(s)
 0000: 53 00 61 00 6D 00 70 00 6C 00 65 00 20 00 4D 00 - S.a.m.p.l.e. .M.
 0010: 65 00 73 00 73 00 61 00 67 00 65 00 - e.s.s.a.g.e.

 0x00710102 PidTagConversationIndex PtypBinary 22 Byte(s)
 0000: 01 CA 53 35 2F 90 75 0B 59 C7 AD 04 40 69 8F 29 - ..S5/.u.Y...@i.)
 0010: 73 86 73 6D 29 E1 - s.sm).

 0x0075001f PidTagReceivedByAddressType_W PtypBinary 4 Byte(s)
 0000: 45 00 58 00 - E.X.

 0x0076001f PidTagReceivedByEmailAddress_W PtypBinary 178 Byte(s)
 0000: 2F 00 4F 00 3D 00 4D 00 49 00 43 00 52 00 4F 00 - /.O.=.M.I.C.R.O.
 0010: 53 00 4F 00 46 00 54 00 2F 00 4F 00 55 00 3D 00 - S.O.F.T./.O.U.=.
 0020: 45 00 58 00 43 00 48 00 41 00 4E 00 47 00 45 00 - E.X.C.H.A.N.G.E.
 0030: 20 00 41 00 44 00 4D 00 49 00 4E 00 49 00 53 00 - .A.D.M.I.N.I.S.
 0040: 54 00 52 00 41 00 54 00 49 00 56 00 45 00 20 00 - T.R.A.T.I.V.E. .
 0050: 47 00 52 00 4F 00 55 00 50 00 20 00 28 00 46 00 - G.R.O.U.P. .(.F.
 0060: 59 00 44 00 49 00 42 00 4F 00 48 00 46 00 32 00 - Y.D.I.B.O.H.F.2.
 0070: 33 00 53 00 50 00 44 00 4C 00 54 00 29 00 2F 00 - 3.S.P.D.L.T.)./.
 0080: 43 00 4E 00 3D 00 52 00 45 00 43 00 49 00 50 00 - C.N.=.R.E.C.I.P.
 0090: 49 00 45 00 4E 00 54 00 53 00 2F 00 43 00 4E 00 - I.E.N.T.S./.C.N.
 00a0: 3D 00 4A 00 4F 00 48 00 4E 00 2E 00 44 00 4F 00 - =.J.O.H.N...D.O.
 00b0: 45 00 - E.

 0x0077001f PidTagReceivedRepresentingAddressType_W PtypBinary 4 Byte(s)
 0000: 45 00 58 00 - E.X.

 0x0078001f PidTagReceivedRepresentingEmailAddress_W PtypBinary 178 Byte(s)
 0000: 2F 00 4F 00 3D 00 4D 00 49 00 43 00 52 00 4F 00 - /.O.=.M.I.C.R.O.
 0010: 53 00 4F 00 46 00 54 00 2F 00 4F 00 55 00 3D 00 - S.O.F.T./.O.U.=.
 0020: 45 00 58 00 43 00 48 00 41 00 4E 00 47 00 45 00 - E.X.C.H.A.N.G.E.
 0030: 20 00 41 00 44 00 4D 00 49 00 4E 00 49 00 53 00 - .A.D.M.I.N.I.S.
 0040: 54 00 52 00 41 00 54 00 49 00 56 00 45 00 20 00 - T.R.A.T.I.V.E. .
 0050: 47 00 52 00 4F 00 55 00 50 00 20 00 28 00 46 00 - G.R.O.U.P. .(.F.
 0060: 59 00 44 00 49 00 42 00 4F 00 48 00 46 00 32 00 - Y.D.I.B.O.H.F.2.
 0070: 33 00 53 00 50 00 44 00 4C 00 54 00 29 00 2F 00 - 3.S.P.D.L.T.)./.
 0080: 43 00 4E 00 3D 00 52 00 45 00 43 00 49 00 50 00 - C.N.=.R.E.C.I.P.
 0090: 49 00 45 00 4E 00 54 00 53 00 2F 00 43 00 4E 00 - I.E.N.T.S./.C.N.
 00a0: 3D 00 4A 00 4F 00 48 00 4E 00 2E 00 44 00 4F 00 - =.J.O.H.N...D.O.
 00b0: 45 00 - E.

 0x007f0102 PidTagTnefCorrelationKey PtypBinary 83 Byte(s)
 0000: 3C 36 43 35 37 46 41 35 30 30 34 36 37 39 42 34 - <6C57FA5004679B4
 0010: 31 38 31 37 46 44 46 39 30 32 45 45 42 42 38 39 - 1817FDF902EEBB89
 0020: 36 35 44 37 44 33 33 40 54 4B 35 45 58 31 34 4D - 65D7D33@TK5EX14M
 0030: 42 58 43 31 31 31 2E 72 65 64 6D 6F 6E 64 2E 63 - BXC111.redmond.c
 0040: 6F 72 70 2E 6D 69 63 72 6F 73 6F 66 74 2E 63 6F - orp.microsoft.co
 0050: 6D 3E 00 - m>.

 0x0c190102 PidTagSenderEntryId PtypBinary 118 Byte(s)
 0000: 00 00 00 00 DC A7 40 C8 C0 42 10 1A B4 B9 08 00 -@..B......
 0010: 2B 2F E1 82 01 00 00 00 00 00 00 00 2F 4F 3D 4D - +/........../O=M
 0020: 49 43 52 4F 53 4F 46 54 2F 4F 55 3D 45 58 43 48 - ICROSOFT/OU=EXCH
 0030: 41 4E 47 45 20 41 44 4D 49 4E 49 53 54 52 41 54 - ANGE ADMINISTRAT
 0040: 49 56 45 20 47 52 4F 55 50 20 28 46 59 44 49 42 - IVE GROUP (FYDIB
 0050: 4F 48 46 32 33 53 50 44 4C 54 29 2F 43 4E 3D 52 - OHF23SPDLT)/CN=R
 0060: 45 43 49 50 49 45 4E 54 53 2F 43 4E 3D 4A 4F 48 - ECIPIENTS/CN=JOH
 0070: 4E 2E 44 4F 45 00 - N.DOE.

 0x0c1a001f PidTagSenderName_W PtypBinary 58 Byte(s)
 0000: 4A 00 6F 00 68 00 6E 00 20 00 44 00 6F 00 65 00 - J.o.h.n. .D.o.e.
 0010: 20 00 28 00 6E 00 6F 00 74 00 20 00 61 00 20 00 - .(.n.o.t. .a. .
 0020: 72 00 65 00 61 00 6C 00 20 00 61 00 64 00 64 00 - r.e.a.l. .a.d.d.
 0030: 72 00 65 00 73 00 73 00 29 00 - r.e.s.s.).

 0x0c1d0102 PidTagSenderSearchKey PtypBinary 93 Byte(s)
 0000: 45 58 3A 2F 4F 3D 4D 49 43 52 4F 53 4F 46 54 2F - EX:/O=MICROSOFT/
 0010: 4F 55 3D 45 58 43 48 41 4E 47 45 20 41 44 4D 49 - OU=EXCHANGE ADMI
 0020: 4E 49 53 54 52 41 54 49 56 45 20 47 52 4F 55 50 - NISTRATIVE GROUP
 0030: 20 28 46 59 44 49 42 4F 48 46 32 33 53 50 44 4C - (FYDIBOHF23SPDL
 0040: 54 29 2F 43 4E 3D 52 45 43 49 50 49 45 4E 54 53 - T)/CN=RECIPIENTS
 0050: 2F 43 4E 3D 4A 4F 48 4E 2E 44 4F 45 00 - /CN=JOHN.DOE.

 0x0c1e001f PidTagSenderAddressType_W PtypBinary 4 Byte(s)
 0000: 45 00 58 00 - E.X.

 0x0c1f001f PidTagSenderEmailAddress_W PtypBinary 178 Byte(s)
 0000: 2F 00 4F 00 3D 00 4D 00 49 00 43 00 52 00 4F 00 - /.O.=.M.I.C.R.O.
 0010: 53 00 4F 00 46 00 54 00 2F 00 4F 00 55 00 3D 00 - S.O.F.T./.O.U.=.
 0020: 45 00 58 00 43 00 48 00 41 00 4E 00 47 00 45 00 - E.X.C.H.A.N.G.E.
 0030: 20 00 41 00 44 00 4D 00 49 00 4E 00 49 00 53 00 - .A.D.M.I.N.I.S.
 0040: 54 00 52 00 41 00 54 00 49 00 56 00 45 00 20 00 - T.R.A.T.I.V.E. .
 0050: 47 00 52 00 4F 00 55 00 50 00 20 00 28 00 46 00 - G.R.O.U.P. .(.F.
 0060: 59 00 44 00 49 00 42 00 4F 00 48 00 46 00 32 00 - Y.D.I.B.O.H.F.2.
 0070: 33 00 53 00 50 00 44 00 4C 00 54 00 29 00 2F 00 - 3.S.P.D.L.T.)./.
 0080: 43 00 4E 00 3D 00 52 00 45 00 43 00 49 00 50 00 - C.N.=.R.E.C.I.P.
 0090: 49 00 45 00 4E 00 54 00 53 00 2F 00 43 00 4E 00 - I.E.N.T.S./.C.N.
 00a0: 3D 00 4A 00 4F 00 48 00 4E 00 2E 00 44 00 4F 00 - =.J.O.H.N...D.O.
 00b0: 45 00 - E.

 0x0e04001f PidTagDisplayTo_W PtypBinary 58 Byte(s)
 0000: 4A 00 6F 00 68 00 6E 00 20 00 44 00 6F 00 65 00 - J.o.h.n. .D.o.e.
 0010: 20 00 28 00 6E 00 6F 00 74 00 20 00 61 00 20 00 - .(.n.o.t. .a. .
 0020: 72 00 65 00 61 00 6C 00 20 00 61 00 64 00 64 00 - r.e.a.l. .a.d.d.
 0030: 72 00 65 00 73 00 73 00 29 00 - r.e.s.s.).

 0x0e060040 PidTagMessageDeliveryTime PtypTime 2009/10/22 16:32:05.902
 0x0e070003 PidTagMessageFlags PtypInteger32 0x00000021 (33)
 0x0e080003 PidTagMessageSize PtypInteger32 0x00002418 (9240)
 0x0e230003 PidTagInternetArticleNumber PtypInteger32 0x0000135f (4959)
 0x0e2f0003 *[ptagIMAPId] PtypInteger32 0x0000135f (4959)
 0x0e790003 PidTagTrustSender PtypInteger32 0x00000001 (1)
 0x1000001f PidTagBody_W PtypBinary 58 Byte(s)
 0000: 54 00 68 00 69 00 73 00 20 00 69 00 73 00 20 00 - T.h.i.s. .i.s. .
 0010: 61 00 20 00 73 00 61 00 6D 00 70 00 6C 00 65 00 - a. .s.a.m.p.l.e.
 0020: 20 00 6D 00 65 00 73 00 73 00 61 00 67 00 65 00 - .m.e.s.s.a.g.e.
 0030: 2E 00 0D 00 0A 00 0D 00 0A 00 -

 0x10130102 PidTagHtml PtypBinary 1638 Byte(s)
 0000: 3C 68 74 6D 6C 20 78 6D 6C 6E 73 3A 76 3D 22 75 - <html xmlns:v="u
 0010: 72 6E 3A 73 63 68 65 6D 61 73 2D 6D 69 63 72 6F - rn:schemas-micro
 0020: 73 6F 66 74 2D 63 6F 6D 3A 76 6D 6C 22 20 78 6D - soft-com:vml" xm
 0030: 6C 6E 73 3A 6F 3D 22 75 72 6E 3A 73 63 68 65 6D - lns:o="urn:schem
 0040: 61 73 2D 6D 69 63 72 6F 73 6F 66 74 2D 63 6F 6D - as-microsoft-com
 0050: 3A 6F 66 66 69 63 65 3A 6F 66 66 69 63 65 22 20 - :office:office"
 0060: 78 6D 6C 6E 73 3A 77 3D 22 75 72 6E 3A 73 63 68 - xmlns:w="urn:sch
 0070: 65 6D 61 73 2D 6D 69 63 72 6F 73 6F 66 74 2D 63 - emas-microsoft-c
 0080: 6F 6D 3A 6F 66 66 69 63 65 3A 77 6F 72 64 22 20 - om:office:word"
 0090: 78 6D 6C 6E 73 3A 6D 3D 22 68 74 74 70 3A 2F 2F - xmlns:m="http://
 00a0: 73 63 68 65 6D 61 73 2E 6D 69 63 72 6F 73 6F 66 - schemas.microsof
 00b0: 74 2E 63 6F 6D 2F 6F 66 66 69 63 65 2F 32 30 30 - t.com/office/200
 00c0: 34 2F 31 32 2F 6F 6D 6D 6C 22 20 78 6D 6C 6E 73 - 4/12/omml" xmlns
 00d0: 3D 22 68 74 74 70 3A 2F 2F 77 77 77 2E 77 33 2E - ="http://www.w3.
 00e0: 6F 72 67 2F 54 52 2F 52 45 43 2D 68 74 6D 6C 34 - org/TR/REC-html4
 00f0: 30 22 3E 0D 0A 0D 0A 3C 68 65 61 64 3E 0D 0A 3C - 0">....<head>..<
 ... (Only 256 of 1638 bytes dumped)

 0x1035001f PidTagInternetMessageId_W PtypBinary 164 Byte(s)
 0000: 3C 00 36 00 43 00 35 00 37 00 46 00 41 00 35 00 - <.6.C.5.7.F.A.5.
 0010: 30 00 30 00 34 00 36 00 37 00 39 00 42 00 34 00 - 0.0.4.6.7.9.B.4.
 0020: 31 00 38 00 31 00 37 00 46 00 44 00 46 00 39 00 - 1.8.1.7.F.D.F.9.
 0030: 30 00 32 00 45 00 45 00 42 00 42 00 38 00 39 00 - 0.2.E.E.B.B.8.9.
 0040: 36 00 35 00 44 00 37 00 44 00 33 00 33 00 40 00 - 6.5.D.7.D.3.3.@.
 0050: 54 00 4B 00 35 00 45 00 58 00 31 00 34 00 4D 00 - T.K.5.E.X.1.4.M.
 0060: 42 00 58 00 43 00 31 00 31 00 31 00 2E 00 72 00 - B.X.C.1.1.1...r.
 0070: 65 00 64 00 6D 00 6F 00 6E 00 64 00 2E 00 63 00 - e.d.m.o.n.d...c.
 0080: 6F 00 72 00 70 00 2E 00 6D 00 69 00 63 00 72 00 - o.r.p...m.i.c.r.
 0090: 6F 00 73 00 6F 00 66 00 74 00 2E 00 63 00 6F 00 - o.s.o.f.t...c.o.
 00a0: 6D 00 3E 00 - m.>.

 0x10800003 PidTagIconIndex PtypInteger32 0xffffffff (4294967295)
 0x30070040 PidTagCreationTime PtypTime 2009/10/22 16:32:05.886
 0x30080040 PidTagLastModificationTime PtypTime 2009/10/22 16:38:03.559
 0x300b0102 PidTagSearchKey PtypBinary 16 Byte(s)
 0000: 2E 5C D2 C6 51 3E 4F 41 80 78 06 4C 55 9D 39 4B - .\..Q>OA.x.LU.9K

 0x30100102 PidTagTargetEntryId PtypBinary 70 Byte(s)
 0000: 00 00 00 00 9E 5F D9 7C 9F E1 4E 4B BE B2 87 E6 -_.|..NK....
 0010: 47 60 74 EC 07 00 40 B3 02 86 AD 76 0A 43 8A 86 - G`t...@....v.C..
 0020: B8 3D 48 81 5C DD 00 20 22 81 3D DB 00 00 FE 25 - .=H.\.. ".=....%%
 0030: 4C B6 2C B6 BD 48 9B 92 DF 3F 31 6E 58 AD 00 22 - L.,..H...?1nX.."
 0040: F9 49 6D D4 00 00 - .Im...

 0x30140102 PidTagBody PtypBinary 12 Byte(s)
 0000: 05 00 00 00 13 75 8B ED F2 4E 2B 8C -u...N+.

 0x30150014 PidTagConversationIndexTrackingObsolete
 PtypInteger64 0x0000000000000000 (0)
 0x3016000b PidTagConversationIndexTracking PtypBoolean 0x01 (1)
 0x3a40000b PidTagSendRichInfo PtypBoolean 0x01 (1)
 0x3fde0003 PidTagInternetCodepage PtypInteger32 0x00004e9f (20127)
 0x3ff10003 PidTagMessageLocaleId PtypInteger32 0x00000409 (1033)
 0x3ffa001f PidTagLastModifierName_W PtypBinary 58 Byte(s)
 0000: 4A 00 6F 00 68 00 6E 00 20 00 44 00 6F 00 65 00 - J.o.h.n. .D.o.e.
 0010: 20 00 28 00 6E 00 6F 00 74 00 20 00 61 00 20 00 - .(.n.o.t. .a. .
 0020: 72 00 65 00 61 00 6C 00 20 00 61 00 64 00 64 00 - r.e.a.l. .a.d.d.
 0030: 72 00 65 00 73 00 73 00 29 00 - r.e.s.s.).

 0x3ffd0003 PidTagMessageCodepage PtypInteger32 0x000004e4 (1252)
 0x40190003 PidTagSenderFlags PtypInteger32 0x00000000 (0)
 0x401a0003 PidTagSentRepresentingFlags PtypInteger32 0x00000000 (0)
 0x401b0003 PidTagReceivedByFlags PtypInteger32 0x00000000 (0)
 0x401c0003 PidTagReceivedRepresentingFlags PtypInteger32 0x00000000 (0)
 0x59020003 PidTagInternetMailOverrideFormat PtypInteger32 0x00160000 (1441792)
 0x59090003 PidTagMessageEditorFormat PtypInteger32 0x00000002 (2)
 0x5d01001f PidTagRecipientSenderSMTPAddress_W PtypBinary 44 Byte(s)
 0000: 6A 00 6F 00 68 00 6E 00 2E 00 64 00 6F 00 65 00 - j.o.h.n...d.o.e.
 0010: 40 00 6D 00 69 00 63 00 72 00 6F 00 73 00 6F 00 - @.m.i.c.r.o.s.o.
 0020: 66 00 74 00 2E 00 63 00 6F 00 6D 00 - f.t...c.o.m.

 0x5d02001f *[ptagRecipientSentRepresentingSMTPAddress_W] PtypBinary 44 Byte(s)
 0000: 6A 00 6F 00 68 00 6E 00 2E 00 64 00 6F 00 65 00 - j.o.h.n...d.o.e.
 0010: 40 00 6D 00 69 00 63 00 72 00 6F 00 73 00 6F 00 - @.m.i.c.r.o.s.o.
 0020: 66 00 74 00 2E 00 63 00 6F 00 6D 00 - f.t...c.o.m.

 0x65e20102 PidTagChangeKey PtypBinary 22 Byte(s)
 0000: 6C 57 FA 50 04 67 9B 41 81 7F DF 90 2E EB B8 96 - lW.P.g.A........
 0010: 00 00 00 5D 7D 4C - ...]}L

 0x65e30102 PidTagPredecessorChangeList PtypBinary 23 Byte(s)
 0000: 16 6C 57 FA 50 04 67 9B 41 81 7F DF 90 2E EB B8 - .lW.P.g.A.......
 0010: 96 00 00 00 5D 7D 4C -]}L

 0x80100003 <PSETID_Common> PidLidSideEffects PtypInteger32 0x00000000 (0)
 0x8016000b <PSETID_Common> PidLidReminderSet PtypBoolean 0x00 (0)
 0x801b000b <PSETID_Task> PidLidTaskComplete PtypBoolean 0x00 (0)
 0x801d0003 <PSETID_Task> PidLidTaskStatus PtypInteger32 0x00000000 (0)
 0x8020000b <PSETID_Common> PidLidPrivate PtypBoolean 0x00 (0)
 0x8021000b <PSETID_Common> PidLidAgingDontAgeMe PtypBoolean 0x00 (0)
 0x80220003 <PSETID_Common> PidLidReminderDelta PtypInteger32 0x00000000 (0)
 0x80230003 <PSETID_Common> PidLidTaskMode PtypInteger32 0x00000000 (0)
 0x8024000b <PSETID_Common> PidLidSendRichInfo PtypBoolean 0x00 (0)
 0x8027001f acceptlanguage PtypBinary 10 Byte(s)
 0000: 65 00 6E 00 2D 00 55 00 53 00 - e.n.-.U.S.

 0x8028001f x-ms-exchange-organization-authas PtypBinary 16 Byte(s)
 0000: 49 00 6E 00 74 00 65 00 72 00 6E 00 61 00 6C 00 - I.n.t.e.r.n.a.l.

 0x8029001f x-ms-exchange-organization-authmechanism PtypBinary 4 Byte(s)
 0000: 30 00 34 00 - 0.4.

 0x802a001f x-ms-exchange-organization-authsource PtypBinary 82 Byte(s)
 0000: 54 00 4B 00 35 00 45 00 58 00 31 00 34 00 4D 00 - T.K.5.E.X.1.4.M.
 0010: 4C 00 54 00 43 00 31 00 30 00 32 00 2E 00 72 00 - L.T.C.1.0.2...r.
 0020: 65 00 64 00 6D 00 6F 00 6E 00 64 00 2E 00 63 00 - e.d.m.o.n.d...c.
 0030: 6F 00 72 00 70 00 2E 00 6D 00 69 00 63 00 72 00 - o.r.p...m.i.c.r.
 0040: 6F 00 73 00 6F 00 66 00 74 00 2E 00 63 00 6F 00 - o.s.o.f.t...c.o.
 0050: 6D 00 - m.

 0x802b0005 <PSETID_Task> PidLidPercentComplete PT_DOUBLE 0
 0x802c0003 <PSETID_Task> PidLidTaskActualEffort PtypInteger32 0x00000000 (0)
 0x802d0003 <PSETID_Task> PidLidTaskEstimatedEffort PtypInteger32 0x00000000 (0)
 0x8035000b <PSETID_Task> PidLidTaskNoCompute PtypBoolean 0x00 (0)
 0x8036000b <PSETID_Task> PidLidTaskFFixOffline PtypBoolean 0x00 (0)
 0x80370003 <PSETID_Task> PidLidTaskOwnership PtypInteger32 0x00000000 (0)
 0x80380003 <PSETID_Task> PidLidTaskAcceptanceState PtypInteger32 0x00000000 (0)
 0x803d001f <PSETID_Task> PidLidTaskRole PtypString
 0x80450003 <PSETID_Task> PidLidTaskVersion PtypInteger32 0x00000001 (1)
 0x80460003 <PSETID_Task> PidLidTaskState PtypInteger32 0x00000001 (1)
 0x804a001f <PSETID_Task> PidLidTaskAssigner PtypString
 0x804d000b <PSETID_Task> PidLidTeamTask PtypBoolean 0x00 (0)
 0x804e0003 <PSETID_Task> PidLidTaskOrdinal PtypInteger32 0x7fffffff (2147483647)
 0x804f000b <PSETID_Task> PidLidTaskFRecurring PtypBoolean 0x00 (0)
 0x809c001f ConversationIndexTrackingEx PtypBinary 220 Byte(s)
 0000: 42 00 54 00 3D 00 30 00 3B 00 49 00 49 00 3D 00 - B.T.=.0.;.I.I.=.
 0010: 30 00 31 00 43 00 41 00 35 00 33 00 33 00 35 00 - 0.1.C.A.5.3.3.5.
 0020: 32 00 46 00 39 00 30 00 37 00 35 00 30 00 42 00 - 2.F.9.0.7.5.0.B.
 0030: 35 00 39 00 43 00 37 00 41 00 44 00 30 00 34 00 - 5.9.C.7.A.D.0.4.
 0040: 34 00 30 00 36 00 39 00 38 00 46 00 32 00 39 00 - 4.0.6.9.8.F.2.9.
 0050: 37 00 33 00 38 00 36 00 37 00 33 00 36 00 44 00 - 7.3.8.6.7.3.6.D.
 0060: 32 00 39 00 45 00 31 00 3B 00 46 00 49 00 58 00 - 2.9.E.1.;.F.I.X.
 0070: 55 00 50 00 3D 00 30 00 2E 00 35 00 31 00 35 00 - U.P.=.0...5.1.5.
 0080: 31 00 3B 00 56 00 65 00 72 00 73 00 69 00 6F 00 - 1.;.V.e.r.s.i.o.
 0090: 6E 00 3D 00 56 00 65 00 72 00 73 00 69 00 6F 00 - n.=.V.e.r.s.i.o.
 00a0: 6E 00 20 00 31 00 34 00 2E 00 30 00 20 00 28 00 - n. .1.4...0. .(.
 00b0: 42 00 75 00 69 00 6C 00 64 00 20 00 36 00 33 00 - B.u.i.l.d. .6.3.
 00c0: 39 00 2E 00 30 00 29 00 2C 00 20 00 53 00 74 00 - 9...0.).,. .S.t.
 00d0: 61 00 67 00 65 00 3D 00 48 00 34 00 - a.g.e.=.H.4.

 0x809d000b IsSigned PtypBoolean 0x00 (0)
 0x809e000b IsReadReceipt PtypBoolean 0x00 (0)

 Message Recipient Table:

 Block: IB=9476672 (0x909a40), 1272 (0x4f8) bytes
 Block Signature: 0xec < HEAP_SIGNATURE >
 Client Signature: 0x7c < bTypeTC >
 Fill Level: 0x00 0x00 0x00 0x00
 User Root HID: 64 (0x00000040)

 Table Context (29 Sparse Columns)

 Columns:
 0x0c150003 PidTagRecipientType (IB: 24, CB: 4, iBit: 7)
 0x0e0f000b PidTagResponsibility (IB: 108, CB: 1, iBit: 2)
 0x0ff90102 PidTagRecordKey (IB: 32, CB: 4, iBit: 9)
 0x0ffe0003 PidTagObjectType (IB: 36, CB: 4, iBit: 10)
 0x0fff0102 PidTagEntryId (IB: 16, CB: 4, iBit: 5)
 0x3001001f PidTagDisplayName_W (IB: 20, CB: 4, iBit: 6)
 0x3002001f PidTagAddressType_W (IB: 8, CB: 4, iBit: 3)
 0x3003001f PidTagEmailAddress_W (IB: 12, CB: 4, iBit: 4)
 0x300b0102 PidTagSearchKey (IB: 28, CB: 4, iBit: 8)
 0x39000003 PidTagDisplayType (IB: 40, CB: 4, iBit: 11)
 0x39050003 PidTagDisplayTypeEx (IB: 48, CB: 4, iBit: 14)
 0x39fe001f PidTagPrimarySmtpAddress_W OR
 PidTagSmtpAddress_W (IB: 52, CB: 4, iBit: 15)
 0x39ff001f PidTag7BitDisplayName_W (IB: 44, CB: 4, iBit: 13)
 0x3a00001f PidTagAccount_W (IB: 56, CB: 4, iBit: 16)
 0x3a20001f PidTagTransmittableDisplayName_W (IB: 60, CB: 4, iBit: 17)
 0x3a40000b PidTagSendRichInfo (IB: 109, CB: 1, iBit: 12)
 0x5fde0003 PidTagRecipientResourceState (IB: 64, CB: 4, iBit: 18)
 0x5fdf0003 PidTagRecipientOrder (IB: 68, CB: 4, iBit: 19)
 0x5feb0003 PidTagRecipientTrackStatusRecall (IB: 76, CB: 4, iBit: 21)
 0x5fef0003 PidTagRecipientTrackStatusResponse (IB: 80, CB: 4, iBit: 22)
 0x5ff20003 PidTagRecipientTrackStatusRead (IB: 84, CB: 4, iBit: 23)
 0x5ff50003 PidTagRecipientTrackStatusDelivery (IB: 88, CB: 4, iBit: 24)
 0x5ff6001f PidTagRecipientDisplayName_W (IB: 92, CB: 4, iBit: 25)
 0x5ff70102 PidTagRecipientEntryId (IB: 96, CB: 4, iBit: 26)
 0x5ffd0003 PidTagRecipientFlags (IB: 100, CB: 4, iBit: 27)
 0x5fff0003 PidTagRecipientTrackStatus (IB: 104, CB: 4, iBit: 28)
 0x67f20003 PidTagLtpRowId (IB: 0, CB: 4, iBit: 0)
 0x67f30003 PidTagLtpRowVer (IB: 4, CB: 4, iBit: 1)

 Row Matrix Data (1 Rows) [HID: 0x00000080]

 Row 0:
 0x0c150003 PidTagRecipientType 0x00000001 (1)
 0x0e0f000b PidTagResponsibility 0x01 (1)
 0x0ff90102 PidTagRecordKey 0x8004010f (ecNotFound)
 0x0fff0102 PidTagEntryId 118 Byte(s)
 0000: 00 00 00 00 DC A7 40 C8 C0 42 10 1A B4 B9 08 00 -@..B......
 0010: 2B 2F E1 82 01 00 00 00 00 00 00 00 2F 4F 3D 4D - +/........../O=M
 0020: 49 43 52 4F 53 4F 46 54 2F 4F 55 3D 45 58 43 48 - ICROSOFT/OU=EXCH
 0030: 41 4E 47 45 20 41 44 4D 49 4E 49 53 54 52 41 54 - ANGE ADMINISTRAT
 0040: 49 56 45 20 47 52 4F 55 50 20 28 46 59 44 49 42 - IVE GROUP (FYDIB
 0050: 4F 48 46 32 33 53 50 44 4C 54 29 2F 43 4E 3D 52 - OHF23SPDLT)/CN=R
 0060: 45 43 49 50 49 45 4E 54 53 2F 43 4E 3D 4A 4F 48 - ECIPIENTS/CN=JOH
 0070: 4E 2E 44 4F 45 00 - N.DOE.

 0x3001001f PidTagDisplayName_W 58 Byte(s)
 0000: 4A 00 6F 00 68 00 6E 00 20 00 44 00 6F 00 65 00 - J.o.h.n. .D.o.e.
 0010: 20 00 28 00 6E 00 6F 00 74 00 20 00 61 00 20 00 - .(.n.o.t. .a. .
 0020: 72 00 65 00 61 00 6C 00 20 00 61 00 64 00 64 00 - r.e.a.l. .a.d.d.
 0030: 72 00 65 00 73 00 73 00 29 00 - r.e.s.s.).

 0x3002001f PidTagAddressType_W 4 Byte(s)
 0000: 45 00 58 00 - E.X.

 0x3003001f PidTagEmailAddress_W 178 Byte(s)
 0000: 2F 00 4F 00 3D 00 4D 00 49 00 43 00 52 00 4F 00 - /.O.=.M.I.C.R.O.
 0010: 53 00 4F 00 46 00 54 00 2F 00 4F 00 55 00 3D 00 - S.O.F.T./.O.U.=.
 0020: 45 00 58 00 43 00 48 00 41 00 4E 00 47 00 45 00 - E.X.C.H.A.N.G.E.
 0030: 20 00 41 00 44 00 4D 00 49 00 4E 00 49 00 53 00 - .A.D.M.I.N.I.S.
 0040: 54 00 52 00 41 00 54 00 49 00 56 00 45 00 20 00 - T.R.A.T.I.V.E. .
 0050: 47 00 52 00 4F 00 55 00 50 00 20 00 28 00 46 00 - G.R.O.U.P. .(.F.
 0060: 59 00 44 00 49 00 42 00 4F 00 48 00 46 00 32 00 - Y.D.I.B.O.H.F.2.
 0070: 33 00 53 00 50 00 44 00 4C 00 54 00 29 00 2F 00 - 3.S.P.D.L.T.)./.
 0080: 43 00 4E 00 3D 00 52 00 45 00 43 00 49 00 50 00 - C.N.=.R.E.C.I.P.
 0090: 49 00 45 00 4E 00 54 00 53 00 2F 00 43 00 4E 00 - I.E.N.T.S./.C.N.
 00a0: 3D 00 4A 00 4F 00 48 00 4E 00 2E 00 44 00 4F 00 - =.J.O.H.N...D.O.
 00b0: 45 00 - E.

 0x300b0102 PidTagSearchKey 93 Byte(s)
 0000: 45 58 3A 2F 4F 3D 4D 49 43 52 4F 53 4F 46 54 2F - EX:/O=MICROSOFT/
 0010: 4F 55 3D 45 58 43 48 41 4E 47 45 20 41 44 4D 49 - OU=EXCHANGE ADMI
 0020: 4E 49 53 54 52 41 54 49 56 45 20 47 52 4F 55 50 - NISTRATIVE GROUP
 0030: 20 28 46 59 44 49 42 4F 48 46 32 33 53 50 44 4C - (FYDIBOHF23SPDL
 0040: 54 29 2F 43 4E 3D 52 45 43 49 50 49 45 4E 54 53 - T)/CN=RECIPIENTS
 0050: 2F 43 4E 3D 4A 4F 48 4E 2E 44 4F 45 00 - /CN=JOHN.DOE.

 0x39000003 PidTagDisplayType 0x00000000 (0)
 0x39fe001f PidTagSmtpAddress_W 44 Byte(s)
 0000: 6A 00 6F 00 68 00 6E 00 2E 00 64 00 6F 00 65 00 - j.o.h.n...d.o.e.
 0010: 40 00 6D 00 69 00 63 00 72 00 6F 00 73 00 6F 00 - @.m.i.c.r.o.s.o.
 0020: 66 00 74 00 2E 00 63 00 6F 00 6D 00 - f.t...c.o.m.

 0x3a20001f PidTagTransmittableDisplayName_W 58 Byte(s)
 0000: 4A 00 6F 00 68 00 6E 00 20 00 44 00 6F 00 65 00 - J.o.h.n. .D.o.e.
 0010: 20 00 28 00 6E 00 6F 00 74 00 20 00 61 00 20 00 - .(.n.o.t. .a. .
 0020: 72 00 65 00 61 00 6C 00 20 00 61 00 64 00 64 00 - r.e.a.l. .a.d.d.
 0030: 72 00 65 00 73 00 73 00 29 00 - r.e.s.s.).

 0x3a40000b PidTagSendRichInfo 0x01 (1)
 0x5fde0003 PidTagRecipientResourceState 0x00000000 (0)
 0x5fdf0003 PidTagRecipientOrder 0x00000000 (0)
 0x5feb0003 PidTagRecipientTrackStatusRecall 0x00000000 (0)
 0x5fef0003 PidTagRecipientTrackStatusResponse 0x00000000 (0)
 0x5ff20003 PidTagRecipientTrackStatusRead 0x00000000 (0)
 0x5ffd0003 PidTagRecipientFlags 0x00000001 (1)
 0x5fff0003 PidTagRecipientTrackStatus 0x00000000 (0)
 0x67f20003 PidTagLtpRowId 0x00000063 (99)
 0x67f30003 PidTagLtpRowVer 0x00000065 (101)

 RowIndex [HID: 0x00000020]

 Property Context (1 Items)

 0x00000063, 0

 Message Attachment Table:

 <No Attachments>
[bookmark: section_fe200f43bb3d41d19e590a7f94064ba4][bookmark: _Toc174686349]Security Considerations
[bookmark: section_798f15fa2e4f45979059ffe7895cd7b8][bookmark: _Toc174686350]Strength of Encoded PST Data Blocks
This file format specification uses two keyless cipher algorithms to encode the data blocks in the PST. These algorithms only provide data obfuscation and can be conveniently decoded once the exact encoding algorithm is understood.
Moreover, only end-user data blocks are encoded in the PST. All the other infrastructure information, including the header, allocation metadata pages and BTree pages are stored without obfuscation.
In summary, the strength of the encoded PST data blocks provides no additional security beyond data obfuscation.
[bookmark: section_a1b4b061398d425285931e42c0908ac6][bookmark: _Toc174686351]Strength of PST Password
The PST Password, which is stored as a property value in the message store, is a superficial mechanism that requires the client implementation to enforce the stored password. Because the password itself is not used as a key to the encoding and decoding cipher algorithms, it does not provide any security benefit to preventing the PST data to be read by unauthorized parties.
Moreover, the password is stored as a CRC-32 hash of the original password string, which is prone to collisions and is relatively weak against a brute-force approach.
[bookmark: section_0347b9db19db437f987d4bc8841fbe50][bookmark: _Toc174686352]Appendix A: PST Data Algorithms
This section contains source code listings for the various algorithms that have been referenced in this document. While every effort has been made to ensure the correctness of the source code, please note that the source code is presented here as a reference, and is not intended for direct adoption for production use. All source code in the following sections is in C++.
[bookmark: section_5faf4800645d49d194572ac40eb467bd][bookmark: _Toc174686353]Permutative Encoding
The following algorithm is used for NDB_CRYPT_PERMUTE. While pv and cb represent the buffer and size for the data to encode/decode, the value for fEncrypt specifies whether the input data is encoded (TRUE) or decoded (FALSE). Note that the data is encoded or decoded in place.

byte mpbbCrypt[] =
{
 65, 54, 19, 98, 168, 33, 110, 187,
 244, 22, 204, 4, 127, 100, 232, 93,
 30, 242, 203, 42, 116, 197, 94, 53,
 210, 149, 71, 158, 150, 45, 154, 136,
 76, 125, 132, 63, 219, 172, 49, 182,
 72, 95, 246, 196, 216, 57, 139, 231,
 35, 59, 56, 142, 200, 193, 223, 37,
 177, 32, 165, 70, 96, 78, 156, 251,
 170, 211, 86, 81, 69, 124, 85, 0,
 7, 201, 43, 157, 133, 155, 9, 160,
 143, 173, 179, 15, 99, 171, 137, 75,
 215, 167, 21, 90, 113, 102, 66, 191,
 38, 74, 107, 152, 250, 234, 119, 83,
 178, 112, 5, 44, 253, 89, 58, 134,
 126, 206, 6, 235, 130, 120, 87, 199,
 141, 67, 175, 180, 28, 212, 91, 205,
 226, 233, 39, 79, 195, 8, 114, 128,
 207, 176, 239, 245, 40, 109, 190, 48,
 77, 52, 146, 213, 14, 60, 34, 50,
 229, 228, 249, 159, 194, 209, 10, 129,
 18, 225, 238, 145, 131, 118, 227, 151,
 230, 97, 138, 23, 121, 164, 183, 220,
 144, 122, 92, 140, 2, 166, 202, 105,
 222, 80, 26, 17, 147, 185, 82, 135,
 88, 252, 237, 29, 55, 73, 27, 106,
 224, 41, 51, 153, 189, 108, 217, 148,
 243, 64, 84, 111, 240, 198, 115, 184,
 214, 62, 101, 24, 68, 31, 221, 103,
 16, 241, 12, 25, 236, 174, 3, 161,
 20, 123, 169, 11, 255, 248, 163, 192,
 162, 1, 247, 46, 188, 36, 104, 117,
 13, 254, 186, 47, 181, 208, 218, 61,
 20, 83, 15, 86, 179, 200, 122, 156,
 235, 101, 72, 23, 22, 21, 159, 2,
 204, 84, 124, 131, 0, 13, 12, 11,
 162, 98, 168, 118, 219, 217, 237, 199,
 197, 164, 220, 172, 133, 116, 214, 208,
 167, 155, 174, 154, 150, 113, 102, 195,
 99, 153, 184, 221, 115, 146, 142, 132,
 125, 165, 94, 209, 93, 147, 177, 87,
 81, 80, 128, 137, 82, 148, 79, 78,
 10, 107, 188, 141, 127, 110, 71, 70,
 65, 64, 68, 1, 17, 203, 3, 63,
 247, 244, 225, 169, 143, 60, 58, 249,
 251, 240, 25, 48, 130, 9, 46, 201,
 157, 160, 134, 73, 238, 111, 77, 109,
 196, 45, 129, 52, 37, 135, 27, 136,
 170, 252, 6, 161, 18, 56, 253, 76,
 66, 114, 100, 19, 55, 36, 106, 117,
 119, 67, 255, 230, 180, 75, 54, 92,
 228, 216, 53, 61, 69, 185, 44, 236,
 183, 49, 43, 41, 7, 104, 163, 14,
 105, 123, 24, 158, 33, 57, 190, 40,
 26, 91, 120, 245, 35, 202, 42, 176,
 175, 62, 254, 4, 140, 231, 229, 152,
 50, 149, 211, 246, 74, 232, 166, 234,
 233, 243, 213, 47, 112, 32, 242, 31,
 5, 103, 173, 85, 16, 206, 205, 227,
 39, 59, 218, 186, 215, 194, 38, 212,
 145, 29, 210, 28, 34, 51, 248, 250,
 241, 90, 239, 207, 144, 182, 139, 181,
 189, 192, 191, 8, 151, 30, 108, 226,
 97, 224, 198, 193, 89, 171, 187, 88,
 222, 95, 223, 96, 121, 126, 178, 138,
 71, 241, 180, 230, 11, 106, 114, 72,
 133, 78, 158, 235, 226, 248, 148, 83,
 224, 187, 160, 2, 232, 90, 9, 171,
 219, 227, 186, 198, 124, 195, 16, 221,
 57, 5, 150, 48, 245, 55, 96, 130,
 140, 201, 19, 74, 107, 29, 243, 251,
 143, 38, 151, 202, 145, 23, 1, 196,
 50, 45, 110, 49, 149, 255, 217, 35,
 209, 0, 94, 121, 220, 68, 59, 26,
 40, 197, 97, 87, 32, 144, 61, 131,
 185, 67, 190, 103, 210, 70, 66, 118,
 192, 109, 91, 126, 178, 15, 22, 41,
 60, 169, 3, 84, 13, 218, 93, 223,
 246, 183, 199, 98, 205, 141, 6, 211,
 105, 92, 134, 214, 20, 247, 165, 102,
 117, 172, 177, 233, 69, 33, 112, 12,
 135, 159, 116, 164, 34, 76, 111, 191,
 31, 86, 170, 46, 179, 120, 51, 80,
 176, 163, 146, 188, 207, 25, 28, 167,
 99, 203, 30, 77, 62, 75, 27, 155,
 79, 231, 240, 238, 173, 58, 181, 89,
 4, 234, 64, 85, 37, 81, 229, 122,
 137, 56, 104, 82, 123, 252, 39, 174,
 215, 189, 250, 7, 244, 204, 142, 95,
 239, 53, 156, 132, 43, 21, 213, 119,
 52, 73, 182, 18, 10, 127, 113, 136,
 253, 157, 24, 65, 125, 147, 216, 88,
 44, 206, 254, 36, 175, 222, 184, 54,
 200, 161, 128, 166, 153, 152, 168, 47,
 14, 129, 101, 115, 228, 194, 162, 138,
 212, 225, 17, 208, 8, 139, 42, 242,
 237, 154, 100, 63, 193, 108, 249, 236
};

#define mpbbR (mpbbCrypt)
#define mpbbS (mpbbCrypt + 256)
#define mpbbI (mpbbCrypt + 512)

void CryptPermute(PVOID pv, int cb, BOOL fEncrypt)
{
 byte * pb = (byte *)pv;
 byte * pbTable = fEncrypt ? mpbbR : mpbbI;
 const DWORD * pdw = (const DWORD *) pv;
 DWORD dwCurr;
 byte b;

 if (cb >= sizeof(DWORD))
 {
 while (0 != (((DWORD_PTR) pb) % sizeof(DWORD)))
 {
 *pb = pbTable[*pb];
 pb++;
 cb--;
 }

 pdw = (const DWORD *) pb;
 for (; cb >= 4; cb -= 4)
 {
 dwCurr = *pdw;

 b = (byte) (dwCurr & 0xFF);
 *pb = pbTable[b];
 pb++;

 dwCurr = dwCurr >> 8;
 b = (byte) (dwCurr & 0xFF);
 *pb = pbTable[b];
 pb++;

 dwCurr = dwCurr >> 8;
 b = (byte) (dwCurr & 0xFF);
 *pb = pbTable[b];
 pb++;

 dwCurr = dwCurr >> 8;
 b = (byte) (dwCurr & 0xFF);
 *pb = pbTable[b];
 pb++;

 pdw++;
 }

 pb = (byte *) pdw;
 }

 for (; --cb >= 0; ++pb)
 *pb = pbTable[*pb];
}
[bookmark: section_9979fc010a3e496f900fa6a867951f23][bookmark: _Toc174686354]Cyclic Encoding

The following algorithm is used for NDB_CRYPT_CYCLIC. Note that this is a symmetric cipher that is used to both encode and decode. While pv and cb represent the buffer and size for the data to encode or decode, the value to use for dwKey is the lower DWORD of the BID associated with this data block. Note that the data is encoded or decoded in place

void CryptCyclic(PVOID pv, int cb, DWORD dwKey)
{
 byte * pb = (byte *)pv;
 byte b;
 WORD w;

 w = (WORD)(dwKey ^ (dwKey >> 16));

 while (--cb >= 0) {
 b = *pb;
 b = (byte)(b + (byte)w);
 b = mpbbR[b];
 b = (byte)(b + (byte)(w >> 8));
 b = mpbbS[b];
 b = (byte)(b - (byte)(w >> 8));
 b = mpbbI[b];
 b = (byte)(b - (byte)w);
 *pb++ = b;

 w = (WORD)(w + 1);
 }
}
[bookmark: section_39c35207130f4d8396f82b311a285a8f][bookmark: _Toc174686355]CRC Calculation
The following is the algorithm used to calculate the all the CRCs mentioned in this document. dwCRC is an optional seed value to be used to initialize the CRC calculation, which MUST be zero in the context of this document. The arguments pv and cbLength represent the data for which the CRC is to be calculated. This function returns the calculated CRC of the input arguments.

const DWORD CrcTableOffset32[256] =
{
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
};

const DWORD CrcTableOffset40[256] =
{
0x00000000, 0x191B3141, 0x32366282, 0x2B2D53C3, 0x646CC504, 0x7D77F445, 0x565AA786, 0x4F4196C7,
0xC8D98A08, 0xD1C2BB49, 0xFAEFE88A, 0xE3F4D9CB, 0xACB54F0C, 0xB5AE7E4D, 0x9E832D8E, 0x87981CCF,
0x4AC21251, 0x53D92310, 0x78F470D3, 0x61EF4192, 0x2EAED755, 0x37B5E614, 0x1C98B5D7, 0x05838496,
0x821B9859, 0x9B00A918, 0xB02DFADB, 0xA936CB9A, 0xE6775D5D, 0xFF6C6C1C, 0xD4413FDF, 0xCD5A0E9E,
0x958424A2, 0x8C9F15E3, 0xA7B24620, 0xBEA97761, 0xF1E8E1A6, 0xE8F3D0E7, 0xC3DE8324, 0xDAC5B265,
0x5D5DAEAA, 0x44469FEB, 0x6F6BCC28, 0x7670FD69, 0x39316BAE, 0x202A5AEF, 0x0B07092C, 0x121C386D,
0xDF4636F3, 0xC65D07B2, 0xED705471, 0xF46B6530, 0xBB2AF3F7, 0xA231C2B6, 0x891C9175, 0x9007A034,
0x179FBCFB, 0x0E848DBA, 0x25A9DE79, 0x3CB2EF38, 0x73F379FF, 0x6AE848BE, 0x41C51B7D, 0x58DE2A3C,
0xF0794F05, 0xE9627E44, 0xC24F2D87, 0xDB541CC6, 0x94158A01, 0x8D0EBB40, 0xA623E883, 0xBF38D9C2,
0x38A0C50D, 0x21BBF44C, 0x0A96A78F, 0x138D96CE, 0x5CCC0009, 0x45D73148, 0x6EFA628B, 0x77E153CA,
0xBABB5D54, 0xA3A06C15, 0x888D3FD6, 0x91960E97, 0xDED79850, 0xC7CCA911, 0xECE1FAD2, 0xF5FACB93,
0x7262D75C, 0x6B79E61D, 0x4054B5DE, 0x594F849F, 0x160E1258, 0x0F152319, 0x243870DA, 0x3D23419B,
0x65FD6BA7, 0x7CE65AE6, 0x57CB0925, 0x4ED03864, 0x0191AEA3, 0x188A9FE2, 0x33A7CC21, 0x2ABCFD60,
0xAD24E1AF, 0xB43FD0EE, 0x9F12832D, 0x8609B26C, 0xC94824AB, 0xD05315EA, 0xFB7E4629, 0xE2657768,
0x2F3F79F6, 0x362448B7, 0x1D091B74, 0x04122A35, 0x4B53BCF2, 0x52488DB3, 0x7965DE70, 0x607EEF31,
0xE7E6F3FE, 0xFEFDC2BF, 0xD5D0917C, 0xCCCBA03D, 0x838A36FA, 0x9A9107BB, 0xB1BC5478, 0xA8A76539,
0x3B83984B, 0x2298A90A, 0x09B5FAC9, 0x10AECB88, 0x5FEF5D4F, 0x46F46C0E, 0x6DD93FCD, 0x74C20E8C,
0xF35A1243, 0xEA412302, 0xC16C70C1, 0xD8774180, 0x9736D747, 0x8E2DE606, 0xA500B5C5, 0xBC1B8484,
0x71418A1A, 0x685ABB5B, 0x4377E898, 0x5A6CD9D9, 0x152D4F1E, 0x0C367E5F, 0x271B2D9C, 0x3E001CDD,
0xB9980012, 0xA0833153, 0x8BAE6290, 0x92B553D1, 0xDDF4C516, 0xC4EFF457, 0xEFC2A794, 0xF6D996D5,
0xAE07BCE9, 0xB71C8DA8, 0x9C31DE6B, 0x852AEF2A, 0xCA6B79ED, 0xD37048AC, 0xF85D1B6F, 0xE1462A2E,
0x66DE36E1, 0x7FC507A0, 0x54E85463, 0x4DF36522, 0x02B2F3E5, 0x1BA9C2A4, 0x30849167, 0x299FA026,
0xE4C5AEB8, 0xFDDE9FF9, 0xD6F3CC3A, 0xCFE8FD7B, 0x80A96BBC, 0x99B25AFD, 0xB29F093E, 0xAB84387F,
0x2C1C24B0, 0x350715F1, 0x1E2A4632, 0x07317773, 0x4870E1B4, 0x516BD0F5, 0x7A468336, 0x635DB277,
0xCBFAD74E, 0xD2E1E60F, 0xF9CCB5CC, 0xE0D7848D, 0xAF96124A, 0xB68D230B, 0x9DA070C8, 0x84BB4189,
0x03235D46, 0x1A386C07, 0x31153FC4, 0x280E0E85, 0x674F9842, 0x7E54A903, 0x5579FAC0, 0x4C62CB81,
0x8138C51F, 0x9823F45E, 0xB30EA79D, 0xAA1596DC, 0xE554001B, 0xFC4F315A, 0xD7626299, 0xCE7953D8,
0x49E14F17, 0x50FA7E56, 0x7BD72D95, 0x62CC1CD4, 0x2D8D8A13, 0x3496BB52, 0x1FBBE891, 0x06A0D9D0,
0x5E7EF3EC, 0x4765C2AD, 0x6C48916E, 0x7553A02F, 0x3A1236E8, 0x230907A9, 0x0824546A, 0x113F652B,
0x96A779E4, 0x8FBC48A5, 0xA4911B66, 0xBD8A2A27, 0xF2CBBCE0, 0xEBD08DA1, 0xC0FDDE62, 0xD9E6EF23,
0x14BCE1BD, 0x0DA7D0FC, 0x268A833F, 0x3F91B27E, 0x70D024B9, 0x69CB15F8, 0x42E6463B, 0x5BFD777A,
0xDC656BB5, 0xC57E5AF4, 0xEE530937, 0xF7483876, 0xB809AEB1, 0xA1129FF0, 0x8A3FCC33, 0x9324FD72
};

const DWORD CrcTableOffset48[256] =
{
0x00000000, 0x01C26A37, 0x0384D46E, 0x0246BE59, 0x0709A8DC, 0x06CBC2EB, 0x048D7CB2, 0x054F1685,
0x0E1351B8, 0x0FD13B8F, 0x0D9785D6, 0x0C55EFE1, 0x091AF964, 0x08D89353, 0x0A9E2D0A, 0x0B5C473D,
0x1C26A370, 0x1DE4C947, 0x1FA2771E, 0x1E601D29, 0x1B2F0BAC, 0x1AED619B, 0x18ABDFC2, 0x1969B5F5,
0x1235F2C8, 0x13F798FF, 0x11B126A6, 0x10734C91, 0x153C5A14, 0x14FE3023, 0x16B88E7A, 0x177AE44D,
0x384D46E0, 0x398F2CD7, 0x3BC9928E, 0x3A0BF8B9, 0x3F44EE3C, 0x3E86840B, 0x3CC03A52, 0x3D025065,
0x365E1758, 0x379C7D6F, 0x35DAC336, 0x3418A901, 0x3157BF84, 0x3095D5B3, 0x32D36BEA, 0x331101DD,
0x246BE590, 0x25A98FA7, 0x27EF31FE, 0x262D5BC9, 0x23624D4C, 0x22A0277B, 0x20E69922, 0x2124F315,
0x2A78B428, 0x2BBADE1F, 0x29FC6046, 0x283E0A71, 0x2D711CF4, 0x2CB376C3, 0x2EF5C89A, 0x2F37A2AD,
0x709A8DC0, 0x7158E7F7, 0x731E59AE, 0x72DC3399, 0x7793251C, 0x76514F2B, 0x7417F172, 0x75D59B45,
0x7E89DC78, 0x7F4BB64F, 0x7D0D0816, 0x7CCF6221, 0x798074A4, 0x78421E93, 0x7A04A0CA, 0x7BC6CAFD,
0x6CBC2EB0, 0x6D7E4487, 0x6F38FADE, 0x6EFA90E9, 0x6BB5866C, 0x6A77EC5B, 0x68315202, 0x69F33835,
0x62AF7F08, 0x636D153F, 0x612BAB66, 0x60E9C151, 0x65A6D7D4, 0x6464BDE3, 0x662203BA, 0x67E0698D,
0x48D7CB20, 0x4915A117, 0x4B531F4E, 0x4A917579, 0x4FDE63FC, 0x4E1C09CB, 0x4C5AB792, 0x4D98DDA5,
0x46C49A98, 0x4706F0AF, 0x45404EF6, 0x448224C1, 0x41CD3244, 0x400F5873, 0x4249E62A, 0x438B8C1D,
0x54F16850, 0x55330267, 0x5775BC3E, 0x56B7D609, 0x53F8C08C, 0x523AAABB, 0x507C14E2, 0x51BE7ED5,
0x5AE239E8, 0x5B2053DF, 0x5966ED86, 0x58A487B1, 0x5DEB9134, 0x5C29FB03, 0x5E6F455A, 0x5FAD2F6D,
0xE1351B80, 0xE0F771B7, 0xE2B1CFEE, 0xE373A5D9, 0xE63CB35C, 0xE7FED96B, 0xE5B86732, 0xE47A0D05,
0xEF264A38, 0xEEE4200F, 0xECA29E56, 0xED60F461, 0xE82FE2E4, 0xE9ED88D3, 0xEBAB368A, 0xEA695CBD,
0xFD13B8F0, 0xFCD1D2C7, 0xFE976C9E, 0xFF5506A9, 0xFA1A102C, 0xFBD87A1B, 0xF99EC442, 0xF85CAE75,
0xF300E948, 0xF2C2837F, 0xF0843D26, 0xF1465711, 0xF4094194, 0xF5CB2BA3, 0xF78D95FA, 0xF64FFFCD,
0xD9785D60, 0xD8BA3757, 0xDAFC890E, 0xDB3EE339, 0xDE71F5BC, 0xDFB39F8B, 0xDDF521D2, 0xDC374BE5,
0xD76B0CD8, 0xD6A966EF, 0xD4EFD8B6, 0xD52DB281, 0xD062A404, 0xD1A0CE33, 0xD3E6706A, 0xD2241A5D,
0xC55EFE10, 0xC49C9427, 0xC6DA2A7E, 0xC7184049, 0xC25756CC, 0xC3953CFB, 0xC1D382A2, 0xC011E895,
0xCB4DAFA8, 0xCA8FC59F, 0xC8C97BC6, 0xC90B11F1, 0xCC440774, 0xCD866D43, 0xCFC0D31A, 0xCE02B92D,
0x91AF9640, 0x906DFC77, 0x922B422E, 0x93E92819, 0x96A63E9C, 0x976454AB, 0x9522EAF2, 0x94E080C5,
0x9FBCC7F8, 0x9E7EADCF, 0x9C381396, 0x9DFA79A1, 0x98B56F24, 0x99770513, 0x9B31BB4A, 0x9AF3D17D,
0x8D893530, 0x8C4B5F07, 0x8E0DE15E, 0x8FCF8B69, 0x8A809DEC, 0x8B42F7DB, 0x89044982, 0x88C623B5,
0x839A6488, 0x82580EBF, 0x801EB0E6, 0x81DCDAD1, 0x8493CC54, 0x8551A663, 0x8717183A, 0x86D5720D,
0xA9E2D0A0, 0xA820BA97, 0xAA6604CE, 0xABA46EF9, 0xAEEB787C, 0xAF29124B, 0xAD6FAC12, 0xACADC625,
0xA7F18118, 0xA633EB2F, 0xA4755576, 0xA5B73F41, 0xA0F829C4, 0xA13A43F3, 0xA37CFDAA, 0xA2BE979D,
0xB5C473D0, 0xB40619E7, 0xB640A7BE, 0xB782CD89, 0xB2CDDB0C, 0xB30FB13B, 0xB1490F62, 0xB08B6555,
0xBBD72268, 0xBA15485F, 0xB853F606, 0xB9919C31, 0xBCDE8AB4, 0xBD1CE083, 0xBF5A5EDA, 0xBE9834ED
};

const DWORD CrcTableOffset56[256] =
{
0x00000000, 0xB8BC6765, 0xAA09C88B, 0x12B5AFEE, 0x8F629757, 0x37DEF032, 0x256B5FDC, 0x9DD738B9,
0xC5B428EF, 0x7D084F8A, 0x6FBDE064, 0xD7018701, 0x4AD6BFB8, 0xF26AD8DD, 0xE0DF7733, 0x58631056,
0x5019579F, 0xE8A530FA, 0xFA109F14, 0x42ACF871, 0xDF7BC0C8, 0x67C7A7AD, 0x75720843, 0xCDCE6F26,
0x95AD7F70, 0x2D111815, 0x3FA4B7FB, 0x8718D09E, 0x1ACFE827, 0xA2738F42, 0xB0C620AC, 0x087A47C9,
0xA032AF3E, 0x188EC85B, 0x0A3B67B5, 0xB28700D0, 0x2F503869, 0x97EC5F0C, 0x8559F0E2, 0x3DE59787,
0x658687D1, 0xDD3AE0B4, 0xCF8F4F5A, 0x7733283F, 0xEAE41086, 0x525877E3, 0x40EDD80D, 0xF851BF68,
0xF02BF8A1, 0x48979FC4, 0x5A22302A, 0xE29E574F, 0x7F496FF6, 0xC7F50893, 0xD540A77D, 0x6DFCC018,
0x359FD04E, 0x8D23B72B, 0x9F9618C5, 0x272A7FA0, 0xBAFD4719, 0x0241207C, 0x10F48F92, 0xA848E8F7,
0x9B14583D, 0x23A83F58, 0x311D90B6, 0x89A1F7D3, 0x1476CF6A, 0xACCAA80F, 0xBE7F07E1, 0x06C36084,
0x5EA070D2, 0xE61C17B7, 0xF4A9B859, 0x4C15DF3C, 0xD1C2E785, 0x697E80E0, 0x7BCB2F0E, 0xC377486B,
0xCB0D0FA2, 0x73B168C7, 0x6104C729, 0xD9B8A04C, 0x446F98F5, 0xFCD3FF90, 0xEE66507E, 0x56DA371B,
0x0EB9274D, 0xB6054028, 0xA4B0EFC6, 0x1C0C88A3, 0x81DBB01A, 0x3967D77F, 0x2BD27891, 0x936E1FF4,
0x3B26F703, 0x839A9066, 0x912F3F88, 0x299358ED, 0xB4446054, 0x0CF80731, 0x1E4DA8DF, 0xA6F1CFBA,
0xFE92DFEC, 0x462EB889, 0x549B1767, 0xEC277002, 0x71F048BB, 0xC94C2FDE, 0xDBF98030, 0x6345E755,
0x6B3FA09C, 0xD383C7F9, 0xC1366817, 0x798A0F72, 0xE45D37CB, 0x5CE150AE, 0x4E54FF40, 0xF6E89825,
0xAE8B8873, 0x1637EF16, 0x048240F8, 0xBC3E279D, 0x21E91F24, 0x99557841, 0x8BE0D7AF, 0x335CB0CA,
0xED59B63B, 0x55E5D15E, 0x47507EB0, 0xFFEC19D5, 0x623B216C, 0xDA874609, 0xC832E9E7, 0x708E8E82,
0x28ED9ED4, 0x9051F9B1, 0x82E4565F, 0x3A58313A, 0xA78F0983, 0x1F336EE6, 0x0D86C108, 0xB53AA66D,
0xBD40E1A4, 0x05FC86C1, 0x1749292F, 0xAFF54E4A, 0x322276F3, 0x8A9E1196, 0x982BBE78, 0x2097D91D,
0x78F4C94B, 0xC048AE2E, 0xD2FD01C0, 0x6A4166A5, 0xF7965E1C, 0x4F2A3979, 0x5D9F9697, 0xE523F1F2,
0x4D6B1905, 0xF5D77E60, 0xE762D18E, 0x5FDEB6EB, 0xC2098E52, 0x7AB5E937, 0x680046D9, 0xD0BC21BC,
0x88DF31EA, 0x3063568F, 0x22D6F961, 0x9A6A9E04, 0x07BDA6BD, 0xBF01C1D8, 0xADB46E36, 0x15080953,
0x1D724E9A, 0xA5CE29FF, 0xB77B8611, 0x0FC7E174, 0x9210D9CD, 0x2AACBEA8, 0x38191146, 0x80A57623,
0xD8C66675, 0x607A0110, 0x72CFAEFE, 0xCA73C99B, 0x57A4F122, 0xEF189647, 0xFDAD39A9, 0x45115ECC,
0x764DEE06, 0xCEF18963, 0xDC44268D, 0x64F841E8, 0xF92F7951, 0x41931E34, 0x5326B1DA, 0xEB9AD6BF,
0xB3F9C6E9, 0x0B45A18C, 0x19F00E62, 0xA14C6907, 0x3C9B51BE, 0x842736DB, 0x96929935, 0x2E2EFE50,
0x2654B999, 0x9EE8DEFC, 0x8C5D7112, 0x34E11677, 0xA9362ECE, 0x118A49AB, 0x033FE645, 0xBB838120,
0xE3E09176, 0x5B5CF613, 0x49E959FD, 0xF1553E98, 0x6C820621, 0xD43E6144, 0xC68BCEAA, 0x7E37A9CF,
0xD67F4138, 0x6EC3265D, 0x7C7689B3, 0xC4CAEED6, 0x591DD66F, 0xE1A1B10A, 0xF3141EE4, 0x4BA87981,
0x13CB69D7, 0xAB770EB2, 0xB9C2A15C, 0x017EC639, 0x9CA9FE80, 0x241599E5, 0x36A0360B, 0x8E1C516E,
0x866616A7, 0x3EDA71C2, 0x2C6FDE2C, 0x94D3B949, 0x090481F0, 0xB1B8E695, 0xA30D497B, 0x1BB12E1E,
0x43D23E48, 0xFB6E592D, 0xE9DBF6C3, 0x516791A6, 0xCCB0A91F, 0x740CCE7A, 0x66B96194, 0xDE0506F1
};

const DWORD CrcTableOffset64[256] =
{
0x00000000, 0x3D6029B0, 0x7AC05360, 0x47A07AD0, 0xF580A6C0, 0xC8E08F70, 0x8F40F5A0, 0xB220DC10,
0x30704BC1, 0x0D106271, 0x4AB018A1, 0x77D03111, 0xC5F0ED01, 0xF890C4B1, 0xBF30BE61, 0x825097D1,
0x60E09782, 0x5D80BE32, 0x1A20C4E2, 0x2740ED52, 0x95603142, 0xA80018F2, 0xEFA06222, 0xD2C04B92,
0x5090DC43, 0x6DF0F5F3, 0x2A508F23, 0x1730A693, 0xA5107A83, 0x98705333, 0xDFD029E3, 0xE2B00053,
0xC1C12F04, 0xFCA106B4, 0xBB017C64, 0x866155D4, 0x344189C4, 0x0921A074, 0x4E81DAA4, 0x73E1F314,
0xF1B164C5, 0xCCD14D75, 0x8B7137A5, 0xB6111E15, 0x0431C205, 0x3951EBB5, 0x7EF19165, 0x4391B8D5,
0xA121B886, 0x9C419136, 0xDBE1EBE6, 0xE681C256, 0x54A11E46, 0x69C137F6, 0x2E614D26, 0x13016496,
0x9151F347, 0xAC31DAF7, 0xEB91A027, 0xD6F18997, 0x64D15587, 0x59B17C37, 0x1E1106E7, 0x23712F57,
0x58F35849, 0x659371F9, 0x22330B29, 0x1F532299, 0xAD73FE89, 0x9013D739, 0xD7B3ADE9, 0xEAD38459,
0x68831388, 0x55E33A38, 0x124340E8, 0x2F236958, 0x9D03B548, 0xA0639CF8, 0xE7C3E628, 0xDAA3CF98,
0x3813CFCB, 0x0573E67B, 0x42D39CAB, 0x7FB3B51B, 0xCD93690B, 0xF0F340BB, 0xB7533A6B, 0x8A3313DB,
0x0863840A, 0x3503ADBA, 0x72A3D76A, 0x4FC3FEDA, 0xFDE322CA, 0xC0830B7A, 0x872371AA, 0xBA43581A,
0x9932774D, 0xA4525EFD, 0xE3F2242D, 0xDE920D9D, 0x6CB2D18D, 0x51D2F83D, 0x167282ED, 0x2B12AB5D,
0xA9423C8C, 0x9422153C, 0xD3826FEC, 0xEEE2465C, 0x5CC29A4C, 0x61A2B3FC, 0x2602C92C, 0x1B62E09C,
0xF9D2E0CF, 0xC4B2C97F, 0x8312B3AF, 0xBE729A1F, 0x0C52460F, 0x31326FBF, 0x7692156F, 0x4BF23CDF,
0xC9A2AB0E, 0xF4C282BE, 0xB362F86E, 0x8E02D1DE, 0x3C220DCE, 0x0142247E, 0x46E25EAE, 0x7B82771E,
0xB1E6B092, 0x8C869922, 0xCB26E3F2, 0xF646CA42, 0x44661652, 0x79063FE2, 0x3EA64532, 0x03C66C82,
0x8196FB53, 0xBCF6D2E3, 0xFB56A833, 0xC6368183, 0x74165D93, 0x49767423, 0x0ED60EF3, 0x33B62743,
0xD1062710, 0xEC660EA0, 0xABC67470, 0x96A65DC0, 0x248681D0, 0x19E6A860, 0x5E46D2B0, 0x6326FB00,
0xE1766CD1, 0xDC164561, 0x9BB63FB1, 0xA6D61601, 0x14F6CA11, 0x2996E3A1, 0x6E369971, 0x5356B0C1,
0x70279F96, 0x4D47B626, 0x0AE7CCF6, 0x3787E546, 0x85A73956, 0xB8C710E6, 0xFF676A36, 0xC2074386,
0x4057D457, 0x7D37FDE7, 0x3A978737, 0x07F7AE87, 0xB5D77297, 0x88B75B27, 0xCF1721F7, 0xF2770847,
0x10C70814, 0x2DA721A4, 0x6A075B74, 0x576772C4, 0xE547AED4, 0xD8278764, 0x9F87FDB4, 0xA2E7D404,
0x20B743D5, 0x1DD76A65, 0x5A7710B5, 0x67173905, 0xD537E515, 0xE857CCA5, 0xAFF7B675, 0x92979FC5,
0xE915E8DB, 0xD475C16B, 0x93D5BBBB, 0xAEB5920B, 0x1C954E1B, 0x21F567AB, 0x66551D7B, 0x5B3534CB,
0xD965A31A, 0xE4058AAA, 0xA3A5F07A, 0x9EC5D9CA, 0x2CE505DA, 0x11852C6A, 0x562556BA, 0x6B457F0A,
0x89F57F59, 0xB49556E9, 0xF3352C39, 0xCE550589, 0x7C75D999, 0x4115F029, 0x06B58AF9, 0x3BD5A349,
0xB9853498, 0x84E51D28, 0xC34567F8, 0xFE254E48, 0x4C059258, 0x7165BBE8, 0x36C5C138, 0x0BA5E888,
0x28D4C7DF, 0x15B4EE6F, 0x521494BF, 0x6F74BD0F, 0xDD54611F, 0xE03448AF, 0xA794327F, 0x9AF41BCF,
0x18A48C1E, 0x25C4A5AE, 0x6264DF7E, 0x5F04F6CE, 0xED242ADE, 0xD044036E, 0x97E479BE, 0xAA84500E,
0x4834505D, 0x755479ED, 0x32F4033D, 0x0F942A8D, 0xBDB4F69D, 0x80D4DF2D, 0xC774A5FD, 0xFA148C4D,
0x78441B9C, 0x4524322C, 0x028448FC, 0x3FE4614C, 0x8DC4BD5C, 0xB0A494EC, 0xF704EE3C, 0xCA64C78C
};

const DWORD CrcTableOffset72[256] =
{
0x00000000, 0xCB5CD3A5, 0x4DC8A10B, 0x869472AE, 0x9B914216, 0x50CD91B3, 0xD659E31D, 0x1D0530B8,
0xEC53826D, 0x270F51C8, 0xA19B2366, 0x6AC7F0C3, 0x77C2C07B, 0xBC9E13DE, 0x3A0A6170, 0xF156B2D5,
0x03D6029B, 0xC88AD13E, 0x4E1EA390, 0x85427035, 0x9847408D, 0x531B9328, 0xD58FE186, 0x1ED33223,
0xEF8580F6, 0x24D95353, 0xA24D21FD, 0x6911F258, 0x7414C2E0, 0xBF481145, 0x39DC63EB, 0xF280B04E,
0x07AC0536, 0xCCF0D693, 0x4A64A43D, 0x81387798, 0x9C3D4720, 0x57619485, 0xD1F5E62B, 0x1AA9358E,
0xEBFF875B, 0x20A354FE, 0xA6372650, 0x6D6BF5F5, 0x706EC54D, 0xBB3216E8, 0x3DA66446, 0xF6FAB7E3,
0x047A07AD, 0xCF26D408, 0x49B2A6A6, 0x82EE7503, 0x9FEB45BB, 0x54B7961E, 0xD223E4B0, 0x197F3715,
0xE82985C0, 0x23755665, 0xA5E124CB, 0x6EBDF76E, 0x73B8C7D6, 0xB8E41473, 0x3E7066DD, 0xF52CB578,
0x0F580A6C, 0xC404D9C9, 0x4290AB67, 0x89CC78C2, 0x94C9487A, 0x5F959BDF, 0xD901E971, 0x125D3AD4,
0xE30B8801, 0x28575BA4, 0xAEC3290A, 0x659FFAAF, 0x789ACA17, 0xB3C619B2, 0x35526B1C, 0xFE0EB8B9,
0x0C8E08F7, 0xC7D2DB52, 0x4146A9FC, 0x8A1A7A59, 0x971F4AE1, 0x5C439944, 0xDAD7EBEA, 0x118B384F,
0xE0DD8A9A, 0x2B81593F, 0xAD152B91, 0x6649F834, 0x7B4CC88C, 0xB0101B29, 0x36846987, 0xFDD8BA22,
0x08F40F5A, 0xC3A8DCFF, 0x453CAE51, 0x8E607DF4, 0x93654D4C, 0x58399EE9, 0xDEADEC47, 0x15F13FE2,
0xE4A78D37, 0x2FFB5E92, 0xA96F2C3C, 0x6233FF99, 0x7F36CF21, 0xB46A1C84, 0x32FE6E2A, 0xF9A2BD8F,
0x0B220DC1, 0xC07EDE64, 0x46EAACCA, 0x8DB67F6F, 0x90B34FD7, 0x5BEF9C72, 0xDD7BEEDC, 0x16273D79,
0xE7718FAC, 0x2C2D5C09, 0xAAB92EA7, 0x61E5FD02, 0x7CE0CDBA, 0xB7BC1E1F, 0x31286CB1, 0xFA74BF14,
0x1EB014D8, 0xD5ECC77D, 0x5378B5D3, 0x98246676, 0x852156CE, 0x4E7D856B, 0xC8E9F7C5, 0x03B52460,
0xF2E396B5, 0x39BF4510, 0xBF2B37BE, 0x7477E41B, 0x6972D4A3, 0xA22E0706, 0x24BA75A8, 0xEFE6A60D,
0x1D661643, 0xD63AC5E6, 0x50AEB748, 0x9BF264ED, 0x86F75455, 0x4DAB87F0, 0xCB3FF55E, 0x006326FB,
0xF135942E, 0x3A69478B, 0xBCFD3525, 0x77A1E680, 0x6AA4D638, 0xA1F8059D, 0x276C7733, 0xEC30A496,
0x191C11EE, 0xD240C24B, 0x54D4B0E5, 0x9F886340, 0x828D53F8, 0x49D1805D, 0xCF45F2F3, 0x04192156,
0xF54F9383, 0x3E134026, 0xB8873288, 0x73DBE12D, 0x6EDED195, 0xA5820230, 0x2316709E, 0xE84AA33B,
0x1ACA1375, 0xD196C0D0, 0x5702B27E, 0x9C5E61DB, 0x815B5163, 0x4A0782C6, 0xCC93F068, 0x07CF23CD,
0xF6999118, 0x3DC542BD, 0xBB513013, 0x700DE3B6, 0x6D08D30E, 0xA65400AB, 0x20C07205, 0xEB9CA1A0,
0x11E81EB4, 0xDAB4CD11, 0x5C20BFBF, 0x977C6C1A, 0x8A795CA2, 0x41258F07, 0xC7B1FDA9, 0x0CED2E0C,
0xFDBB9CD9, 0x36E74F7C, 0xB0733DD2, 0x7B2FEE77, 0x662ADECF, 0xAD760D6A, 0x2BE27FC4, 0xE0BEAC61,
0x123E1C2F, 0xD962CF8A, 0x5FF6BD24, 0x94AA6E81, 0x89AF5E39, 0x42F38D9C, 0xC467FF32, 0x0F3B2C97,
0xFE6D9E42, 0x35314DE7, 0xB3A53F49, 0x78F9ECEC, 0x65FCDC54, 0xAEA00FF1, 0x28347D5F, 0xE368AEFA,
0x16441B82, 0xDD18C827, 0x5B8CBA89, 0x90D0692C, 0x8DD55994, 0x46898A31, 0xC01DF89F, 0x0B412B3A,
0xFA1799EF, 0x314B4A4A, 0xB7DF38E4, 0x7C83EB41, 0x6186DBF9, 0xAADA085C, 0x2C4E7AF2, 0xE712A957,
0x15921919, 0xDECECABC, 0x585AB812, 0x93066BB7, 0x8E035B0F, 0x455F88AA, 0xC3CBFA04, 0x089729A1,
0xF9C19B74, 0x329D48D1, 0xB4093A7F, 0x7F55E9DA, 0x6250D962, 0xA90C0AC7, 0x2F987869, 0xE4C4ABCC
};

const DWORD CrcTableOffset80[256] =
{
0x00000000, 0xA6770BB4, 0x979F1129, 0x31E81A9D, 0xF44F2413, 0x52382FA7, 0x63D0353A, 0xC5A73E8E,
0x33EF4E67, 0x959845D3, 0xA4705F4E, 0x020754FA, 0xC7A06A74, 0x61D761C0, 0x503F7B5D, 0xF64870E9,
0x67DE9CCE, 0xC1A9977A, 0xF0418DE7, 0x56368653, 0x9391B8DD, 0x35E6B369, 0x040EA9F4, 0xA279A240,
0x5431D2A9, 0xF246D91D, 0xC3AEC380, 0x65D9C834, 0xA07EF6BA, 0x0609FD0E, 0x37E1E793, 0x9196EC27,
0xCFBD399C, 0x69CA3228, 0x582228B5, 0xFE552301, 0x3BF21D8F, 0x9D85163B, 0xAC6D0CA6, 0x0A1A0712,
0xFC5277FB, 0x5A257C4F, 0x6BCD66D2, 0xCDBA6D66, 0x081D53E8, 0xAE6A585C, 0x9F8242C1, 0x39F54975,
0xA863A552, 0x0E14AEE6, 0x3FFCB47B, 0x998BBFCF, 0x5C2C8141, 0xFA5B8AF5, 0xCBB39068, 0x6DC49BDC,
0x9B8CEB35, 0x3DFBE081, 0x0C13FA1C, 0xAA64F1A8, 0x6FC3CF26, 0xC9B4C492, 0xF85CDE0F, 0x5E2BD5BB,
0x440B7579, 0xE27C7ECD, 0xD3946450, 0x75E36FE4, 0xB044516A, 0x16335ADE, 0x27DB4043, 0x81AC4BF7,
0x77E43B1E, 0xD19330AA, 0xE07B2A37, 0x460C2183, 0x83AB1F0D, 0x25DC14B9, 0x14340E24, 0xB2430590,
0x23D5E9B7, 0x85A2E203, 0xB44AF89E, 0x123DF32A, 0xD79ACDA4, 0x71EDC610, 0x4005DC8D, 0xE672D739,
0x103AA7D0, 0xB64DAC64, 0x87A5B6F9, 0x21D2BD4D, 0xE47583C3, 0x42028877, 0x73EA92EA, 0xD59D995E,
0x8BB64CE5, 0x2DC14751, 0x1C295DCC, 0xBA5E5678, 0x7FF968F6, 0xD98E6342, 0xE86679DF, 0x4E11726B,
0xB8590282, 0x1E2E0936, 0x2FC613AB, 0x89B1181F, 0x4C162691, 0xEA612D25, 0xDB8937B8, 0x7DFE3C0C,
0xEC68D02B, 0x4A1FDB9F, 0x7BF7C102, 0xDD80CAB6, 0x1827F438, 0xBE50FF8C, 0x8FB8E511, 0x29CFEEA5,
0xDF879E4C, 0x79F095F8, 0x48188F65, 0xEE6F84D1, 0x2BC8BA5F, 0x8DBFB1EB, 0xBC57AB76, 0x1A20A0C2,
0x8816EAF2, 0x2E61E146, 0x1F89FBDB, 0xB9FEF06F, 0x7C59CEE1, 0xDA2EC555, 0xEBC6DFC8, 0x4DB1D47C,
0xBBF9A495, 0x1D8EAF21, 0x2C66B5BC, 0x8A11BE08, 0x4FB68086, 0xE9C18B32, 0xD82991AF, 0x7E5E9A1B,
0xEFC8763C, 0x49BF7D88, 0x78576715, 0xDE206CA1, 0x1B87522F, 0xBDF0599B, 0x8C184306, 0x2A6F48B2,
0xDC27385B, 0x7A5033EF, 0x4BB82972, 0xEDCF22C6, 0x28681C48, 0x8E1F17FC, 0xBFF70D61, 0x198006D5,
0x47ABD36E, 0xE1DCD8DA, 0xD034C247, 0x7643C9F3, 0xB3E4F77D, 0x1593FCC9, 0x247BE654, 0x820CEDE0,
0x74449D09, 0xD23396BD, 0xE3DB8C20, 0x45AC8794, 0x800BB91A, 0x267CB2AE, 0x1794A833, 0xB1E3A387,
0x20754FA0, 0x86024414, 0xB7EA5E89, 0x119D553D, 0xD43A6BB3, 0x724D6007, 0x43A57A9A, 0xE5D2712E,
0x139A01C7, 0xB5ED0A73, 0x840510EE, 0x22721B5A, 0xE7D525D4, 0x41A22E60, 0x704A34FD, 0xD63D3F49,
0xCC1D9F8B, 0x6A6A943F, 0x5B828EA2, 0xFDF58516, 0x3852BB98, 0x9E25B02C, 0xAFCDAAB1, 0x09BAA105,
0xFFF2D1EC, 0x5985DA58, 0x686DC0C5, 0xCE1ACB71, 0x0BBDF5FF, 0xADCAFE4B, 0x9C22E4D6, 0x3A55EF62,
0xABC30345, 0x0DB408F1, 0x3C5C126C, 0x9A2B19D8, 0x5F8C2756, 0xF9FB2CE2, 0xC813367F, 0x6E643DCB,
0x982C4D22, 0x3E5B4696, 0x0FB35C0B, 0xA9C457BF, 0x6C636931, 0xCA146285, 0xFBFC7818, 0x5D8B73AC,
0x03A0A617, 0xA5D7ADA3, 0x943FB73E, 0x3248BC8A, 0xF7EF8204, 0x519889B0, 0x6070932D, 0xC6079899,
0x304FE870, 0x9638E3C4, 0xA7D0F959, 0x01A7F2ED, 0xC400CC63, 0x6277C7D7, 0x539FDD4A, 0xF5E8D6FE,
0x647E3AD9, 0xC209316D, 0xF3E12BF0, 0x55962044, 0x90311ECA, 0x3646157E, 0x07AE0FE3, 0xA1D90457,
0x579174BE, 0xF1E67F0A, 0xC00E6597, 0x66796E23, 0xA3DE50AD, 0x05A95B19, 0x34414184, 0x92364A30
};

const DWORD CrcTableOffset88[256] =
{
0x00000000, 0xCCAA009E, 0x4225077D, 0x8E8F07E3, 0x844A0EFA, 0x48E00E64, 0xC66F0987, 0x0AC50919,
0xD3E51BB5, 0x1F4F1B2B, 0x91C01CC8, 0x5D6A1C56, 0x57AF154F, 0x9B0515D1, 0x158A1232, 0xD92012AC,
0x7CBB312B, 0xB01131B5, 0x3E9E3656, 0xF23436C8, 0xF8F13FD1, 0x345B3F4F, 0xBAD438AC, 0x767E3832,
0xAF5E2A9E, 0x63F42A00, 0xED7B2DE3, 0x21D12D7D, 0x2B142464, 0xE7BE24FA, 0x69312319, 0xA59B2387,
0xF9766256, 0x35DC62C8, 0xBB53652B, 0x77F965B5, 0x7D3C6CAC, 0xB1966C32, 0x3F196BD1, 0xF3B36B4F,
0x2A9379E3, 0xE639797D, 0x68B67E9E, 0xA41C7E00, 0xAED97719, 0x62737787, 0xECFC7064, 0x205670FA,
0x85CD537D, 0x496753E3, 0xC7E85400, 0x0B42549E, 0x01875D87, 0xCD2D5D19, 0x43A25AFA, 0x8F085A64,
0x562848C8, 0x9A824856, 0x140D4FB5, 0xD8A74F2B, 0xD2624632, 0x1EC846AC, 0x9047414F, 0x5CED41D1,
0x299DC2ED, 0xE537C273, 0x6BB8C590, 0xA712C50E, 0xADD7CC17, 0x617DCC89, 0xEFF2CB6A, 0x2358CBF4,
0xFA78D958, 0x36D2D9C6, 0xB85DDE25, 0x74F7DEBB, 0x7E32D7A2, 0xB298D73C, 0x3C17D0DF, 0xF0BDD041,
0x5526F3C6, 0x998CF358, 0x1703F4BB, 0xDBA9F425, 0xD16CFD3C, 0x1DC6FDA2, 0x9349FA41, 0x5FE3FADF,
0x86C3E873, 0x4A69E8ED, 0xC4E6EF0E, 0x084CEF90, 0x0289E689, 0xCE23E617, 0x40ACE1F4, 0x8C06E16A,
0xD0EBA0BB, 0x1C41A025, 0x92CEA7C6, 0x5E64A758, 0x54A1AE41, 0x980BAEDF, 0x1684A93C, 0xDA2EA9A2,
0x030EBB0E, 0xCFA4BB90, 0x412BBC73, 0x8D81BCED, 0x8744B5F4, 0x4BEEB56A, 0xC561B289, 0x09CBB217,
0xAC509190, 0x60FA910E, 0xEE7596ED, 0x22DF9673, 0x281A9F6A, 0xE4B09FF4, 0x6A3F9817, 0xA6959889,
0x7FB58A25, 0xB31F8ABB, 0x3D908D58, 0xF13A8DC6, 0xFBFF84DF, 0x37558441, 0xB9DA83A2, 0x7570833C,
0x533B85DA, 0x9F918544, 0x111E82A7, 0xDDB48239, 0xD7718B20, 0x1BDB8BBE, 0x95548C5D, 0x59FE8CC3,
0x80DE9E6F, 0x4C749EF1, 0xC2FB9912, 0x0E51998C, 0x04949095, 0xC83E900B, 0x46B197E8, 0x8A1B9776,
0x2F80B4F1, 0xE32AB46F, 0x6DA5B38C, 0xA10FB312, 0xABCABA0B, 0x6760BA95, 0xE9EFBD76, 0x2545BDE8,
0xFC65AF44, 0x30CFAFDA, 0xBE40A839, 0x72EAA8A7, 0x782FA1BE, 0xB485A120, 0x3A0AA6C3, 0xF6A0A65D,
0xAA4DE78C, 0x66E7E712, 0xE868E0F1, 0x24C2E06F, 0x2E07E976, 0xE2ADE9E8, 0x6C22EE0B, 0xA088EE95,
0x79A8FC39, 0xB502FCA7, 0x3B8DFB44, 0xF727FBDA, 0xFDE2F2C3, 0x3148F25D, 0xBFC7F5BE, 0x736DF520,
0xD6F6D6A7, 0x1A5CD639, 0x94D3D1DA, 0x5879D144, 0x52BCD85D, 0x9E16D8C3, 0x1099DF20, 0xDC33DFBE,
0x0513CD12, 0xC9B9CD8C, 0x4736CA6F, 0x8B9CCAF1, 0x8159C3E8, 0x4DF3C376, 0xC37CC495, 0x0FD6C40B,
0x7AA64737, 0xB60C47A9, 0x3883404A, 0xF42940D4, 0xFEEC49CD, 0x32464953, 0xBCC94EB0, 0x70634E2E,
0xA9435C82, 0x65E95C1C, 0xEB665BFF, 0x27CC5B61, 0x2D095278, 0xE1A352E6, 0x6F2C5505, 0xA386559B,
0x061D761C, 0xCAB77682, 0x44387161, 0x889271FF, 0x825778E6, 0x4EFD7878, 0xC0727F9B, 0x0CD87F05,
0xD5F86DA9, 0x19526D37, 0x97DD6AD4, 0x5B776A4A, 0x51B26353, 0x9D1863CD, 0x1397642E, 0xDF3D64B0,
0x83D02561, 0x4F7A25FF, 0xC1F5221C, 0x0D5F2282, 0x079A2B9B, 0xCB302B05, 0x45BF2CE6, 0x89152C78,
0x50353ED4, 0x9C9F3E4A, 0x121039A9, 0xDEBA3937, 0xD47F302E, 0x18D530B0, 0x965A3753, 0x5AF037CD,
0xFF6B144A, 0x33C114D4, 0xBD4E1337, 0x71E413A9, 0x7B211AB0, 0xB78B1A2E, 0x39041DCD, 0xF5AE1D53,
0x2C8E0FFF, 0xE0240F61, 0x6EAB0882, 0xA201081C, 0xA8C40105, 0x646E019B, 0xEAE10678, 0x264B06E6
};

DWORD ComputeCRC(DWORD dwCRC, LPCVOID pv, UINT cbLength)
{
 UINT i;
 DWORD dw2nd32;
 const byte *pbBuffer = (const byte *) pv;

 const UINT cbAlignedOffset =
((cbLength < sizeof(DWORD)) ? 0 : (UINT)((DWORD_PTR)pv % sizeof(DWORD)));
 const UINT cbInitialUnalignedBytes =
((cbAlignedOffset == 0) ? 0 : (sizeof(DWORD) - cbAlignedOffset));
 const UINT cbRunningLength =
((cbLength < sizeof(DWORD)) ? 0 : ((cbLength - cbInitialUnalignedBytes) / 8) * 8);
 const UINT cbEndUnalignedBytes = cbLength - cbInitialUnalignedBytes - cbRunningLength;

 for(i=0; i < cbInitialUnalignedBytes; ++i)
 dwCRC = CrcTableOffset32[(dwCRC ^ *pbBuffer++) & 0x000000FF] ^ (dwCRC >> 8);

 for(i=0; i < cbRunningLength/8; ++i)
 {
 dwCRC ^= *(DWORD *)pbBuffer;
 dwCRC = CrcTableOffset88[dwCRC & 0x000000FF] ^
 CrcTableOffset80[(dwCRC >> 8) & 0x000000FF] ^
 CrcTableOffset72[(dwCRC >> 16) & 0x000000FF] ^
 CrcTableOffset64[(dwCRC >> 24) & 0x000000FF];
 pbBuffer += 4;

 dw2nd32 = (*(DWORD *)pbBuffer);
 dwCRC = dwCRC ^
 CrcTableOffset56[dw2nd32 & 0x000000FF] ^
 CrcTableOffset48[(dw2nd32 >> 8) & 0x000000FF] ^
 CrcTableOffset40[(dw2nd32 >> 16) & 0x000000FF] ^
 CrcTableOffset32[(dw2nd32 >> 24) & 0x000000FF];
 pbBuffer += 4;
 }

 for(i=0; i < cbEndUnalignedBytes; ++i)
 dwCRC = CrcTableOffset32[(dwCRC ^ *pbBuffer++) & 0x000000FF] ^ (dwCRC >> 8);

 return dwCRC;
}
[bookmark: section_a19c8e83bb3b4061b027aa2e82061283][bookmark: _Toc174686356]Conversation ID
The following is the algorithm used to calculate the Conversation ID (PidTagConversationId) for a given Message object based on the values of the PidTagConversationIndex (PtypBinary), PidTagConversationTopic (PtypString), and PidTagConversationTracking (PtypBoolean) properties in the Message object. This algorithm is referenced in sections 2.5.3.1 and 2.5.3.1.1), and the main entry point is HrComputeConvID.
The arguments for HrComputeConvID are as follows: pbConvIndex and cbConvIndex represents the binary value of the PidTagConversationIndex property (NULL if the property is not present); pwzConvTopic is the Unicode string value of the PidTagConversationTopic property (NULL if property not present); and fConvTracking is the Boolean value of the PidTagConversationTracking property (default is FALSE if property not present). On success, guidConvID receives the GUID value for the computed Conversation ID. On failure, the function returns E_INVALIDARG.
The helper function ComputeMD5Guid is provided here as a placeholder. It computes an MD5 hash of the contents of the buffer passed to the function, as described in [RFC1321].

#define c_ulConvIndexIDOffset 6
#define c_ulConvIndexIDLength 16
#define cchMax 256

typedef struct {
 ULONG i[2];
 ULONG buf[4];
 unsigned char in[64];
 unsigned char digest[16];
} MD5_CTX;

void ComputeMD5Guid(byte *pbBuffer, ULONG cbBuffer, GUID *pguid)
{
 // Compute the MD5 hash of the contents of pbBuffer and return
 // in the pguid parameter.
}

HRESULT HrComputeConvID(
 byte *pbConvIndex,
 ULONG cbConvIndex,
 LPCWSTR pwzConvTopic,
 BOOL fConvTracking,
 GUID *pguidConvID
)
{
 HRESULT hr = S_OK;
 BOOL fUseTopic = TRUE;

 if (fConvTracking
 && NULL != pbConvIndex
 && cbConvIndex >= c_ulConvIndexIDOffset + c_ulConvIndexIDLength
 && 0x01 == pbConvIndex[0])
 {
 memcpy(pguidConvID, pbConvIndex + c_ulConvIndexIDOffset, c_ulConvIndexIDLength);
 fUseTopic = FALSE;
 }

 if (fUseTopic)
 {
 if (NULL != pwzConvTopic)
 {
 size_t cchHash;
 WCHAR wzBuffer[cchMax];
 size_t cbHash = 0;

 cchHash = wcslen(pwzConvTopic);
 if (cchHash < cchMax)
 {
 size_t ich;
 for (ich = 0; ich <= cchHash; ich++)
 wzBuffer[ich] = towupper(pwzConvTopic[ich]);
 cbHash = cchHash * sizeof(WCHAR);
 ComputeMD5Guid((byte *)wzBuffer, cbHash, pguidConvID);
 }
 else
 hr = E_INVALIDARG;
 }
 else
 hr = E_INVALIDARG;
 }

 return (hr);
}
[bookmark: section_e700a9139db546a4ac7637cabea823e1][bookmark: _Toc174686357]Block Signature
The following is the algorithm to calculate the signature of a block. The signature is calculated by first obtaining the DWORD XOR result between the absolute file offset of the block and its BID. The WORD signature is then obtained by obtaining the XOR result between the higher and lower 16 bits of the DWORD obtained previously.
WORD ComputeSig(IB ib, BID bid)
{
 ib ^= bid;
 return(WORD(WORD(ib >> 16) ^ WORD(ib)));
}
[bookmark: section_f040f8b2f0234ed994fdde487da83ed5][bookmark: _Toc174686358]Appendix B: Product Behavior
The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include updates to those products.
· Microsoft Office Outlook 2003
· Microsoft Office Outlook 2007
· Microsoft Outlook 2010
· Microsoft Outlook 2013
· Microsoft Outlook 2016
· Microsoft Outlook 2019
· Microsoft Outlook 2021
· Microsoft Outlook LTSC 2024
Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base (KB) number appears with a product name, the behavior changed in that update. The new behavior also applies to subsequent updates unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.
Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the product does not follow the prescription.
<1> Section 1.3.2.1.3: Office Outlook 2007 with Service Pack 2, Outlook 2010 and Outlook 2013 do not use Free Maps and Free Page Maps.
<2> Section 1.3.2.3: Office Outlook 2003 and Office Outlook 2007 without Service Pack 2 do not use or create Density Lists.
<3> Section 2.2.1.2: Office Outlook 2003, Office Outlook 2007, Outlook 2010 and Outlook 2013 can read, write, and create both ANSI and Unicode PST files. The default format is Unicode.
<4> Section 2.2.2.2: Office Outlook 2003, Office Outlook 2007, Outlook 2010 and Outlook 2013 use this value for implementation-specific data. Modification of this value can result in failure to read the PST file by Outlook.
<5> Section 2.2.2.5: Office Outlook 2003, Office Outlook 2007, Outlook 2010 and Outlook 2013 use this value for implementation-specific data. Modification of this value can result in failure to read the PST file by Outlook.
<6> Section 2.2.2.5: Office Outlook 2003 uses VALID_AMAP1 to indicate that the AMaps are valid.
<7> Section 2.2.2.5: Office Outlook 2003, Office Outlook 2007, Outlook 2010 and Outlook 2013 use this value for implementation-specific data. Modification of this value can result in failure to read the PST file by Outlook.
<8> Section 2.2.2.5: Office Outlook 2003, Office Outlook 2007, Outlook 2010 and Outlook 2013 use this value for implementation-specific data. Modification of this value can result in failure to read the PST file by Outlook.
<9> Section 2.2.2.6: Office Outlook 2003, Office Outlook 2007, Outlook 2010 and Outlook 2013 use this value for implementation-specific data. Modification of this value can result in failure to read the PST file by Outlook.
<10> Section 2.2.2.6: Office Outlook 2003, Office Outlook 2007, Outlook 2010 and Outlook 2013 use this value for implementation-specific data. Modification of this value can result in failure to read the PST file by Outlook.
<11> Section 2.2.2.6: Office Outlook 2003, Office Outlook 2007, Outlook 2010 and Outlook 2013 use this value for implementation-specific data. Modification of this value can result in failure to read the PST file by Outlook.
<12> Section 2.2.2.6: Office Outlook 2003, Office Outlook 2007, Outlook 2010 and Outlook 2013 use this value for implementation-specific data. Modification of this value can result in failure to read the PST file by Outlook.
<13> Section 2.2.2.6: Office Outlook 2003, Office Outlook 2007, Outlook 2010 and Outlook 2013 use this value for implementation-specific data. Modification of this value can result in failure to read the PST file by Outlook.
<14> Section 2.2.2.7.3: Office Outlook 2003 and Office Outlook 2007 without Service Pack 2 do not use the Density List, and use the PMap to locate free Pages.
<15> Section 2.2.2.7.4: Office Outlook 2003 and Office Outlook 2007 without Service Pack 2 do not create or use the Density List, and use the PMap, FMap, and FPMap to locate free Pages.
<16> Section 2.2.2.7.5: Office Outlook 2003 and Office Outlook 2007 without Service Pack 2 do not create or use the Density List, and use the FMap to locate free Pages.
<17> Section 2.2.2.7.6: Office Outlook 2003 and Office Outlook 2007 without Service Pack 2 do not create or use the Density List, and use the FPMap to locate free Pages.
<18> Section 2.4.8.4.2: Office Outlook 2003, Office Outlook 2007, Outlook 2010 and Outlook 2013 modify the Search Activity List.
<19> Section 2.6.1: Office Outlook 2003 and Office Outlook 2007 without Service Pack 2 update and maintain PMaps.
<20> Section 2.6.1: Office Outlook 2003 and Office Outlook 2007 without Service Pack 2 update and maintain FMaps.
<21> Section 2.6.1: Office Outlook 2003 and Office Outlook 2007 without Service Pack 2 update and maintain FPMaps.
<22> Section 2.6.1.3.4: Office Outlook 2007 with Service Pack 2, Outlook 2010 and Outlook 2013 implement backfilling.
<23> Section 2.6.1.3.7: Outlook 2013 uses an internal algorithm instead of the AMap rebuild and does not set the fAMapValid flag. Outlook 2013 ignores the fAMapValid flag.
[bookmark: section_5ef06572093846528f56753c0e74b9ba][bookmark: _Toc174686359]Change Tracking
This section identifies changes that were made to this document since the last release. Changes are classified as Major, Minor, or None.
The revision class Major means that the technical content in the document was significantly revised. Major changes affect protocol interoperability or implementation. Examples of major changes are:
· A document revision that incorporates changes to interoperability requirements.
· A document revision that captures changes to protocol functionality.
The revision class Minor means that the meaning of the technical content was clarified. Minor changes do not affect protocol interoperability or implementation. Examples of minor changes are updates to clarify ambiguity at the sentence, paragraph, or table level.
The revision class None means that no new technical changes were introduced. Minor editorial and formatting changes may have been made, but the relevant technical content is identical to the last released version.
The changes made to this document are listed in the following table. For more information, please contact dochelp@microsoft.com.
	Section
	Description
	Revision class

	6 Appendix B: Product Behavior
	Updated list of supported products.
	Major

[bookmark: section_33a38370d25f4ffa8e5ab267592d8364][bookmark: _Toc174686360]Index
189 / 193
[MS-PST] - v20240820
Outlook Personal Folders (.pst) File Format
Copyright © 2024 Microsoft Corporation
Release: August 20, 2024
A

Accessing the PC BTHHEADER – LTP Layer 60
Allocation Map (AMap) – PST file format overview 15
Anatomy of a folder hierarchy – Messaging Layer 79
Anatomy of a PC – LTP Layer 62
Anatomy of HN data blocks – LTP layer 57
ANSI versus Unicode – NDB Layer 19
Applicability 16
Attachment object PC – Messaging Layer 84
Attachment objects
 calculated properties 106
 Messaging Layer 83
Attachment Table – Messaging Layer 84
Attributes of a calculated property – calculated properties 99

B

Basic operations – maintaining data integrity 114
Basic queue node – Messaging Layer 95
Behavior Descriptors
 Delete operations – calculated properties 112
 Get operations – calculated properties 107
 Set operations – calculated properties 111
BID (Block ID) – NDB Layer 20
Block signature data algorithm 185
Blocks – NDB layer 41
BREF – NDB Layer 21
BTH record, PC – LTP Layer 60
BTHHEADER – LTP Layer 58
BTHHEADER, PC accessing – LTP Layer 60
BTree-on-Heap (BTH) – LTP Layer 58

C

Calculated properties
 attributes of a calculated property 99
 by object type – calculated properties 99
 calculated properties by object type 99
 calculated properties by object type – Attachment objects 106
 calculated properties by object type – embedded Message objects 104
 calculated properties by object type – Folder objects 100
 calculated properties by object type – Message objects 101
 calculated properties by object type – Message store 99
 calculated property behaviors 107
 calculated property behaviors – Behavior Descriptors for Delete operations 112
 calculated property behaviors – Behavior Descriptors for Get operations 107
 calculated property behaviors – Behavior Descriptors for Set operations 111
 calculated property behaviors – interpreting the List behavior column 113
 Messaging Layer 72
 structure 98
Calculated property behaviors – calculated properties 107
Calculated property, attributes – calculated properties 99
Change tracking 188
Common data types and fields 17
Contents table – Messaging Layer 76
Conversation ID data algorithm 183
CRC calculation data algorithm 175
Cyclic encoding data algorithm 174

D

Data algorithms - PST 172
Data blocks, anatomy of HN – LTP layer 57
Data duplication and coherency maintenance – Messaging Layer 75
Data integrity, maintaining
 LTP layer 124
 Messaging layer 133
 NDB layer 113
 NDB Layer – basic operations 114
 NDB Layer – special considerations 122
Data organization of the Name-to-ID map – Messaging Layer 88
Data section – PST file format overview 15
Data types – property and data type definitions 17
Data types and fields - common 17
Delete operations, Behavior Descriptors for – calculated properties 112
Density List (DList) – PST file format overview 15
Details
 accessing the PC BTHHEADER – LTP Layer 60
 anatomy of a folder hierarchy – Messaging Layer 79
 anatomy of a PC – LTP Layer 62
 anatomy of HN data blocks – LTP layer 57
 ANSI versus Unicode – NDB Layer 19
 Attachment object PC – Messaging Layer 84
 Attachment objects – calculated properties 106
 Attachment objects – Messaging Layer 83
 Attachment Table – Messaging Layer 84
 attributes of a calculated property – calculated properties 99
 basic operations – maintaining data integrity 114
 basic queue node – Messaging Layer 95
 Behavior Descriptors for Delete operations – calculated properties 112
 Behavior Descriptors for Get operations – calculated properties 107
 Behavior Descriptors for Set operations – calculated properties 111
 BID (Block ID) – NDB Layer 20
 blocks – NDB layer 41
 BREF – NDB Layer 21
 BTHHEADER – LTP Layer 58
 BTree-on-Heap (BTH) – LTP Layer 58
 calculated properties 98
 calculated properties – Messaging Layer 72
 calculated properties by object type – calculated properties 99
 calculated property behaviors – calculated properties 107
 common data types and fields 17
 contents table – Messaging Layer 76
 data duplication and coherency maintenance – Messaging Layer 75
 data organization of the Name-to-ID map – Messaging Layer 88
 data types – property and data type definitions 17
 embedded Message objects – calculated properties 104
 Entry Stream – Messaging Layer 87
 FAI contents table – Messaging Layer 78
 Folder object PC – Messaging layer 74
 Folder objects – calculated properties 100
 folder template tables – Messaging Layer 75
 Folders – Messaging layer 74
 fundamental concepts – NDB Layer 18
 GUID Stream – Messaging Layer 86
 hash table – Messaging Layer 87
 HEADER – NDB Layer 24
 HID – LTP layer 53
 hierarchy table – Messaging Layer 75
 HN (Heap-on-Node) – LTP layer 53
 HNBITMAPHDR – LTP Layer 55
 HNHDR – LTP Layer 53
 HNID – LTP Layer 60
 HNPAGEHDR – LTP Layer 55
 HNPAGEMAP – LTP Layer 55
 IB (Byte Index) – NDB Layer 21
 implications of modifying a folder object TC – Messaging Layer 80
 implications of modifying a folder template table – Messaging Layer 80
 intermediate BTH (index) records – LTP Layer 59
 interpreting the List behavior column – calculated properties 113
 leaf BTH (data) records – LTP Layer 59
 locating the parent Folder object of a Message object – Messaging Layer 82
 LTP layer - maintaining data integrity 124
 LTP layer structure 52
 maintaining data integrity 113
 mandatory nodes – minimum PST requirements 144
 mapping between EntryID and NID – Messaging layer 73
 Message object PC – Messaging Layer 82
 Message objects – calculated properties 101
 Message objects – Messaging Layer 81
 Message store – calculated properties 99
 Message store – Messaging layer 72
 Message store – minimum PST requirements 146
 Messaging layer – maintaining data integrity 133
 Messaging Layer structure 70
 minimum folder hierarchy – minimum PST requirements 145
 minimum object requirements – minimum PST requirements 145
 minimum PST requirements 143
 minimum set of required properties – Messaging layer 72
 multi-valued properties – LTP Layer 61
 named properties – Messaging layer 72
 named property lookup map – Messaging Layer 85
 NAMEID – Messaging Layer 86
 Name-to-ID Map – minimum PST requirements 146
 NDB layer – maintaining data integrity 113
 NDB Layer structure 18
 NID (Node ID) – NDB layer 19
 nodes – NDB Layer 18
 pages – NDB Layer 28
 PC BTH record – LTP Layer 60
 properties – Messaging layer 71
 properties – property and data type definitions 18
 Property Context (PC) – LTP Layer 60
 PST password security – Messaging Layer 73
 PtypObject properties 62
 Recipient Table – Messaging Layer 82
 relationship between Attachment Table and Attachment objects – Messaging Layer 85
 ROOT – NDB Layer 22
 Row Matrix – LTP Layer 67
 RowIndex – LTP Layer 66
 search – Messaging Layer 89
 search Folder objects – Messaging Layer 97
 Search Gatherer Object (SGO) – Messaging Layer 96
 Search Management object (SMO) – Messaging layer 96
 Search Update Descriptor (SUD) – Messaging Layer 89
 search-related Objects – minimum PST requirements 148
 special considerations – maintaining data integrity 122
 special internal NIDs – Messaging layer 71
 standard properties – Messaging layer 71
 String Stream – Messaging Layer 87
 SUDData structures – Messaging Layer 92
 Table Context (TC) – LTP Layer 63
 TCINFO – LTP Layer 65
 TCOLDESC – LTP Layer 66
 template Objects – minimum PST requirements 146

E

Embedded Message objects – calculated properties 104
Entry Stream – Messaging Layer 87
Examples
 Sample BTH 156
 Sample Data Tree 155
 Sample Folder Object 159
 Sample Header 150
 Sample Heap-on-Node (HN) 156
 Sample Intermediate BT Page 152
 Sample Leaf BBT Page 154
 Sample Leaf NBT Page 153
 Sample Message Object 162
 Sample Message Store 157
 Sample Node Database (NDB) 149
 Sample SLBLOCK 155
 Sample TC 158

F

FAI contents table – Messaging Layer 78
Fields - vendor-extensible 16
Folder hierarchy, anatomy – Messaging Layer 79
Folder hierarchy, minimum – minimum PST requirements 145
Folder object PC – Messaging layer 74
Folder object TC, implications of modifying – Messaging Layer 80
Folder objects – calculated properties 100
Folder template table, implications of modifying – Messaging Layer 80
Folder template tables – Messaging Layer 75
Folders – Messaging layer 74
Free Map (FMap) – PST file format overview 15
Free Page Maps (FPMap) – PST file format overview 16
Fundamental concepts – NDB Layer 18

G

Get operations, Behavior Descriptors for – calculated properties 107
Glossary 10
GUID Stream – Messaging Layer 86

H

Hash table – Messaging Layer 87
HEADER – NDB Layer 24
Header – PST file format overview 14
HID – LTP layer 53
Hierarchy table – Messaging Layer 75
HN (Heap-on-Node) – LTP layer 53
HN data blocks, anatomy – LTP layer 57
HNBITMAPHDR – LTP Layer 55
HNHDR – LTP Layer 53
HNID – LTP Layer 60
HNPAGEHDR – LTP Layer 55
HNPAGEMAP – LTP Layer 55

I

IB (Byte Index) – NDB Layer 21
Implications of modifying a folder object TC – Messaging Layer 80
Implications of modifying a folder template table – Messaging Layer 80
Informative references 11
Intermediate BTH (index) records – LTP Layer 59
Interpreting the List behavior column – calculated properties 113
Introduction 10

L

Leaf BTH (data) records – LTP Layer 59
List behavior column, interpreting – calculated properties 113
Lists, Tables, and Properties layer overview 13
Localization 16
Locating the parent Folder object of a Message object – Messaging Layer 82
Logical architecture of a PST file
 overview 12
LTP layer
 BTree-on-Heap (BTH) 58
 BTree-on-Heap (BTH) - BTHHEADER 58
 BTree-on-Heap (BTH) - intermediate BTH (index) records 59
 BTree-on-Heap (BTH) - leaf BTH (data) records 59
 HN (Heap-on-Node) 53
 HN (Heap-on-Node) - anatomy of HN data blocks 57
 HN (Heap-on-Node) - HID 53
 HN (Heap-on-Node) - HNBITMAPHDR 55
 HN (Heap-on-Node) - HNHDR 53
 HN (Heap-on-Node) - HNPAGEHDR 55
 HN (Heap-on-Node) - HNPAGEMAP 55
 maintaining data integrity 124
 operations 124
 overview 13
 Property Context (PC) 60
 Property Context (PC) - accessing the PC BTHHEADER 60
 Property Context (PC) - anatomy of a PC 62
 Property Context (PC) - HNID 60
 Property Context (PC) - multi-valued properties 61
 Property Context (PC) - PC BTH record 60
 structure 52
 Table Context (TC) 63
 Table Context (TC) – Row Matrix 67
 Table Context (TC) - RowIndex 66
 Table Context (TC) - TCINFO 65
 Table Context (TC) - TCOLDESC 66

M

Maintaining data integrity
 LTP layer 124
 Messaging layer 133
 NDB layer 113
 NDB Layer – basic operations 114
 NDB Layer – special considerations 122
Maintaining data integrity structure 113
Mandatory nodes – minimum PST requirements 144
Mapping between EntryID and NID – Messaging layer 73
Message object PC – Messaging Layer 82
Message objects
 calculated properties 101
 Messaging Layer 81
Message store
 calculated properties 99
 Messaging layer 72
 minimum PST requirements 146
Messaging layer
 Attachment objects 83
 Attachment objects – Attachment object PC 84
 Attachment objects – Attachment Table 84
 Attachment objects – relationship between Attachment Table and Attachment objects 85
 Folders 74
 Folders – anatomy of a folder hierarchy 79
 Folders – contents table 76
 Folders – data duplication and coherency maintenance 75
 Folders – FAI contents table 78
 folders – Folder object PC 74
 Folders – folder template tables 75
 Folders – hierarchy table 75
 Folders – implications of modifying a folder object TC 80
 Folders – implications of modifying a folder template table 80
 maintaining data integrity 133
 Message objects 81
 Message objects – locating the parent Folder object of a Message object 82
 Message objects – Message object PC 82
 Message objects – Recipient Table 82
 message store 72
 message store – mapping between EntryID and NID 73
 message store – minimum set of required properties 72
 Message store – PST password security 73
 named property lookup map 85
 named property lookup map – data organization of the Name-to-ID map 88
 named property lookup map – Entry Stream 87
 named property lookup map – GUID Stream 86
 named property lookup map – hash table 87
 named property lookup map – NAMEID 86
 named property lookup map – String Stream 87
 operations 133
 overview 13
 properties 71
 properties – calculated properties 72
 properties – named properties 72
 properties – standard properties 71
 search 89
 search – basic queue node 95
 search – search Folder objects 97
 search – Search Gatherer Object (SGO) 96
 search – Search Management object (SMO) 96
 search – Search Update Descriptor (SUD) 89
 search – SUDData structures 92
 special internal NIDs 71
 structure 70
Messaging layer overview 13
Minimum folder hierarchy – minimum PST requirements 145
Minimum object requirements – minimum PST requirements 145
Minimum PST requirements
 mandatory nodes 144
 minimum folder hierarchy 145
 minimum object requirements 145
 minimum object requirements – Message store 146
 minimum object requirements – Name-to-ID Map 146
 minimum object requirements – search-related Objects 148
 minimum object requirements – template Objects 146
 structure 143
Minimum set of required properties – Messaging layer 72
Multi-valued properties – LTP Layer 61

N

Named properties – Messaging layer 72
Named property lookup map – Messaging Layer 85
NAMEID – Messaging Layer 86
Name-to-ID Map – minimum PST requirements 146
Name-to-ID map, data organization – Messaging Layer 88
NDB layer
 data structures - BID (Block ID) 20
 data structures - blocks 41
 data structures - BREF 21
 data structures - HEADER 24
 data structures - IB (Byte Index) 21
 data structures - NID (Node ID) 19
 data structures - pages 28
 data structures - ROOT 22
 fundamental concepts 18
 fundamental concepts - ANSI versus Unicode 19
 fundamental concepts - nodes 18
 maintaining data integrity 113
 operations and special considerations 113
 overview 12
 structure 18
NID (Node ID) – NDB layer 19
Node Database layer overview 12
Nodes
 mandatory – minimum PST requirements 144
 NDB Layer 18
Normative references 11

O

Object requirements, minimum – minimum PST requirements 145
Operations, basic – maintaining data integrity 114
Overview
 Allocation Map (AMap) – PST file format 15
 data section – PST file format 15
 Density List (DList) – PST file format 15
 Free Map (FMap) – PST file format 15
 Free Page Maps (FPMap) – PST file format 16
 header – PST file format 14
 logical architecture of a PST file 12
 LTP layer 13
 Messaging layer 13
 NDB layer 12
 Page Map (PMap) – PST file format 15
 physical organization of the PST file format 14
 reserved data – PST file format 15
Overview (synopsis) 11

P

Page Map (PMap) – PST file format overview 15
Pages – NDB Layer 28
PC BTH record – LTP Layer 60
PC, anatomy of a – LTP Layer 62
Permutative encoding data algorithm 172
Physical organization of the PST file format
 overview 14
Product behavior 186
Properties
 Messaging layer 71
 property and data type definitions 18
Property and data type definitions
 data types 17
 properties 18
Property Context (PC) – LTP Layer 60
PST data algorithms
 block signature 185
 Conversation ID 183
 CRC calculation 175
 cyclic encoding 174
 overview 172
 permutative encoding 172
PST file
 Allocation Map (AMap) 15
 data section 15
 Density List (DList) 15
 Free Map (FMap) 15
 Free Page Map (FPMap) 16
 header 14
 logical architecture 12
 LTP layer 13
 Messaging layer 13
 NDB layer 12
 Page Map (PMap) 15
 physical organization of the PST file format 14
 reserved data 15
PST password security – Messaging Layer 73
PST requirements, minimum
 mandatory nodes 144
 minimum folder hierarchy 145
 minimum object requirements 145
 minimum object requirements – Message store 146
 minimum object requirements – Name-to-ID Map 146
 minimum object requirements – search-related Objects 148
 minimum object requirements – template Objects 146
PtypObject properties 62

R

Recipient Table – Messaging Layer 82
References 11
 informative 11
 normative 11
Relationship between Attachment Table and Attachment objects – Messaging Layer 85
Relationship to protocols and other structures 16
Reserved data – PST file format overview 15
ROOT – NDB Layer 22
Row Matrix – LTP Layer 67
RowIndex – LTP Layer 66

S

Sample BTH example 156
Sample Data Tree example 155
Sample Folder Object example 159
Sample Header example 150
Sample Heap-on-Node (HN) example 156
Sample Intermediate BT Page example 152
Sample Leaf BBT Page example 154
Sample Leaf NBT Page example 153
Sample Message Object example 162
Sample Message Store example 157
Sample Node Database (NDB) example 149
Sample SLBLOCK example 155
Sample TC example 158
Search – Messaging Layer 89
Search Folder objects – Messaging Layer 97
Search Gatherer Object (SGO) – Messaging Layer 96
Search Management object (SMO) – Messaging layer 96
Search Update Descriptor (SUD) – Messaging Layer 89
Search-related Objects – minimum PST requirements 148
Security
 strength of encoded pst data blocks 171
 strength of pst password 171
Set operations, Behavior Descriptors for – calculated properties 111
Special considerations – maintaining data integrity 122
Special internal NIDs – Messaging layer 71
Standard properties – Messaging layer 71
String Stream – Messaging Layer 87
Structure overview
 Allocation Map (AMap) – PST file format 15
 data section – PST file format 15
 Density List (DList) – PST file format 15
 Free Map (FMap) – PST file format 15
 Free Page Maps (FPMap) – PST file format 16
 header – PST file format 14
 LTP layer 13
 Messaging layer 13
 NDB layer 12
 Page Map (PMap) – PST file format 15
 PST file – logical architecture 12
 PST file – physical organization of the PST file format 14
 reserved data – PST file format 15
Structures
 calculated properties 98
 LTP layer 52
 maintaining data integrity 113
 Messaging Layer 70
 minimum PST requirements 143
 NDB Layer 18
 overview 17
SUDData structures – Messaging Layer 92

T

Table Context (TC) – LTP Layer 63
TCINFO – LTP Layer 65
TCOLDESC – LTP Layer 66
Template Objects – minimum PST requirements 146
Tracking changes 188

U

Unicode versus ANSI – NDB Layer 19

V

Vendor-extensible fields 16
Versioning 16
[bookmark: EndOfDocument_ST]
193 / 193
[MS-PST] - v20240820
Outlook Personal Folders (.pst) File Format
Copyright © 2024 Microsoft Corporation
Release: August 20, 2024
image1.bin

image2.bin

image3.bin

image4.bin

image5.bin

image6.bin

image7.bin

image8.bin

image9.bin

image10.bin

image11.bin

image12.bin

image13.bin

image14.bin

image15.bin

image16.bin

image17.bin

image18.bin

image19.bin

image20.bin

