

1 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

[MS-PSOM]:
PSOM Shared Object Messaging Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain

Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com

2 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

Revision Summary

Date

Revision

History

Revision

Class Comments

03/31/2010 0.1 Major Initial Availability

04/30/2010 0.2 Editorial Revised and edited the technical content

06/07/2010 0.3 Editorial Revised and edited the technical content

06/29/2010 0.4 Editorial Changed language and formatting in the technical
content.

07/23/2010 0.4 No change No changes to the meaning, language, or formatting of
the technical content.

09/27/2010 1.0 Major Significantly changed the technical content.

11/15/2010 1.0 No change No changes to the meaning, language, or formatting of
the technical content.

12/17/2010 1.0 No change No changes to the meaning, language, or formatting of
the technical content.

03/18/2011 1.0 No change No changes to the meaning, language, or formatting of
the technical content.

06/10/2011 1.0 No change No changes to the meaning, language, or formatting of
the technical content.

01/20/2012 2.0 Major Significantly changed the technical content.

04/11/2012 2.0 No change No changes to the meaning, language, or formatting of
the technical content.

07/16/2012 2.0 No change No changes to the meaning, language, or formatting of
the technical content.

10/08/2012 3.0 Major Significantly changed the technical content.

3 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

Table of Contents

1 Introduction ... 8
1.1 Glossary ... 8
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 10

1.3 Overview .. 10
1.3.1 General Data Flow .. 12
1.3.2 Message Flow .. 14
1.3.3 Channels and Channel Distributed Object Roots ... 15

1.4 Relationship to Other Protocols .. 15
1.5 Prerequisites/Preconditions ... 15
1.6 Applicability Statement ... 15
1.7 Versioning and Capability Negotiation ... 15
1.8 Vendor-Extensible Fields ... 16
1.9 Standards Assignments .. 16

2 Messages.. 17
2.1 Transport .. 17
2.2 Message Syntax .. 17

2.2.1 Records... 17
2.2.1.1 Record Types ... 17

2.2.1.1.1 Close Message .. 17
2.2.1.1.2 SetChannel Message .. 17
2.2.1.1.3 Break Message.. 18
2.2.1.1.4 RpcMessage Message... 19
2.2.1.1.5 RPCOpen Message ... 19

2.2.2 PSOM Operation Channel Messages (RpcMessage) .. 20
2.2.2.1 Connect/Disconnect Child .. 21

2.2.2.1.1 Connect (OP_CONNECT) .. 21
2.2.2.1.2 Disconnect (OP_CLOSE) ... 22

2.2.2.2 RPC Message (Call Method) (OP_DATA) ... 22

3 Protocol Details .. 24
3.1 Common Details .. 24

3.1.1 Abstract Data Model ... 24
3.1.1.1 PSOM types ... 24

3.1.1.1.1 Arrays ... 24
3.1.1.1.2 Boolean ... 24
3.1.1.1.3 Byte .. 24
3.1.1.1.4 DistributedObject Reference ... 25
3.1.1.1.5 GenericInt .. 25
3.1.1.1.6 Int32 ... 25
3.1.1.1.7 Int64 ... 25
3.1.1.1.8 String .. 25
3.1.1.1.9 Double ... 25

3.1.2 Timers .. 25
3.1.3 Initialization .. 25

3.1.3.1 ConnMgr Distributed Object ... 25
3.1.4 Higher-Layer Triggered Events ... 26

3.1.4.1 Distributed Objects ... 26

4 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.1.4.1.1 Distributed Object Interface Definition ... 26
3.1.4.1.1.1 DOInterface Attributes ... 27
3.1.4.1.1.2 Server/Client Interface Attributes .. 27
3.1.4.1.1.3 Method Declarations .. 27
3.1.4.1.1.4 Children ... 27

3.1.4.1.2 Sample Distributed Object .. 27
3.1.4.1.2.1 Interface .. 27
3.1.4.1.2.2 Sample Server Method ... 28
3.1.4.1.2.3 Sample Client Method .. 28
3.1.4.1.2.4 Children ... 28

3.1.4.1.3 Versioning .. 28
3.1.4.1.4 ContentManager.. 29

3.1.4.1.4.1 Interface .. 29
3.1.4.1.4.2 Children ... 30

3.1.4.1.5 Content.. 31
3.1.4.1.5.1 Interface .. 31
3.1.4.1.5.2 Children ... 33

3.1.4.1.6 Meeting ... 33
3.1.4.1.6.1 Interface .. 33
3.1.4.1.6.2 Children ... 34

3.1.4.1.7 ContentUserManager ... 34
3.1.4.1.7.1 Interface .. 34

3.1.4.1.8 UploadManager ... 35
3.1.4.1.8.1 Interface .. 35
3.1.4.1.8.2 Children ... 36

3.1.4.1.8.2.1 UploadStreams .. 36
3.1.4.1.9 UploadStream ... 36

3.1.4.1.9.1 Interface .. 37
3.1.4.1.10 NativeFileOnlyContent .. 37

3.1.4.1.10.1 Interface .. 37
3.1.4.1.11 PptContent ... 38

3.1.4.1.11.1 Interface .. 39
3.1.4.1.11.2 Children.. 43

3.1.4.1.12 AnnotationContainer .. 43
3.1.4.1.12.1 Interface .. 44
3.1.4.1.12.2 Children.. 46

3.1.4.1.13 WhiteboardContent .. 46
3.1.4.1.13.1 Interface .. 46
3.1.4.1.13.2 Children.. 46

3.1.4.1.14 PollContent ... 46
3.1.4.1.14.1 Interface .. 47
3.1.4.1.14.2 Children.. 47

3.1.4.1.15 SharedNotesContent .. 47
3.1.4.1.15.1 Interface .. 48
3.1.4.1.15.2 Children.. 48

3.1.5 Message Processing Events and Sequencing Rules .. 48
3.1.6 Timer Events ... 48
3.1.7 Other Local Events ... 48

3.2 Client Details ... 49
3.2.1 Abstract Data Model ... 49
3.2.2 Timers .. 49
3.2.3 Initialization .. 49

3.2.3.1 Connections ... 49

5 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.2.3.1.1 Authentication .. 50
3.2.3.1.1.1 Obtain the Authentication Token .. 50
3.2.3.1.1.2 PSOM Connection Join .. 51

3.2.3.1.2 Interface Versioning .. 51
3.2.3.1.3 ConnMgr Distributed Object Interface Definition 52

3.2.3.1.3.1 ConnMgr Client Methods ... 52
3.2.3.1.3.1.1 version ... 52
3.2.3.1.3.1.2 addProtocol ... 52
3.2.3.1.3.1.3 doneProtocols .. 53
3.2.3.1.3.1.4 ping ... 53

3.2.3.1.4 Root Distributed Object Channel Negotiation .. 53
3.2.4 Higher-Layer Triggered Events ... 53

3.2.4.1 Distributed Objects ... 53
3.2.4.1.1 Meeting ... 53

3.2.4.1.1.1 Methods ... 53
3.2.4.1.2 ContentUserManager ... 54

3.2.4.1.2.1 Methods ... 54
3.2.4.1.3 ContentManager.. 54

3.2.4.1.3.1 Methods ... 54
3.2.4.1.4 UploadManager ... 56

3.2.4.1.4.1 Methods ... 57
3.2.4.1.4.2 Schema .. 58

3.2.4.1.5 UploadStream ... 65
3.2.4.1.5.1 Methods ... 65

3.2.4.1.6 Content.. 65
3.2.4.1.6.1 Methods ... 65

3.2.4.1.7 NativeFileOnlyContent ... 67
3.2.4.1.7.1 Methods ... 67

3.2.4.1.8 AnnotationContainer .. 67
3.2.4.1.8.1 Methods ... 67

3.2.4.1.9 WhiteboardContent ... 71
3.2.4.1.9.1 Methods ... 71

3.2.4.1.10 PptContent ... 71
3.2.4.1.10.1 Methods ... 71

3.2.4.1.11 PollContent ... 74
3.2.4.1.11.1 Methods ... 74

3.2.4.1.12 SharedNotesContent .. 75
3.2.4.1.12.1 Methods ... 75

3.2.5 Message Processing Events and Sequencing Rules .. 76
3.2.6 Timer Events ... 76
3.2.7 Other Local Events ... 76

3.3 Server Details ... 76
3.3.1 Abstract Data Model ... 76
3.3.2 Timers .. 76
3.3.3 Initialization .. 77

3.3.3.1 Connections ... 77
3.3.3.1.1 Authentication .. 77
3.3.3.1.2 Interface Versioning .. 77
3.3.3.1.3 ConnMgr Distributed Object Interface Definition 77

3.3.3.1.3.1 ConnMgr Server Methods.. 78
3.3.3.1.3.1.1 version ... 78
3.3.3.1.3.1.2 addProtocol ... 78
3.3.3.1.3.1.3 doneProtocols .. 78

6 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.3.3.1.3.1.4 log ... 78
3.3.3.1.3.1.5 Lookup ... 78
3.3.3.1.3.1.6 ping ... 79

3.3.4 Higher-Layer Triggered Events ... 79
3.3.4.1 Distributed Objects ... 79

3.3.4.1.1 Meeting ... 79
3.3.4.1.1.1 Methods ... 79

3.3.4.1.2 ContentUserManager ... 79
3.3.4.1.2.1 Methods ... 79

3.3.4.1.3 ContentManager.. 79
3.3.4.1.3.1 Methods ... 79

3.3.4.1.4 UploadManager ... 80
3.3.4.1.4.1 Methods ... 80

3.3.4.1.5 UploadStream ... 81
3.3.4.1.5.1 Methods ... 81

3.3.4.1.6 Content.. 82
3.3.4.1.6.1 Methods ... 82

3.3.4.1.7 NativeFileOnlyContent ... 82
3.3.4.1.7.1 Methods ... 82

3.3.4.1.8 AnnotationContainer .. 82
3.3.4.1.8.1 Methods ... 82

3.3.4.1.9 WhiteboardContent ... 85
3.3.4.1.9.1 Methods ... 85

3.3.4.1.10 PptContent ... 85
3.3.4.1.10.1 Methods ... 85

3.3.4.1.11 PollContent ... 86
3.3.4.1.11.1 Methods ... 86

3.3.4.1.12 SharedNotesContent .. 87
3.3.4.1.12.1 Methods ... 87

3.3.4.2 File Download .. 87
3.3.4.3 Decrypted File Download ... 87
3.3.4.4 Single File Upload using HTTPS request ... 87

3.3.5 Message Processing Events and Sequencing Rules .. 88
3.3.6 Timer Events ... 88
3.3.7 Other Local Events ... 88

3.4 Proxy Details ... 88
3.4.1 Abstract Data Model ... 88
3.4.2 Timers .. 88
3.4.3 Initialization .. 88
3.4.4 Higher-Layer Triggered Events ... 88
3.4.5 Message Processing Events and Sequencing Rules .. 88
3.4.6 Timer Events ... 89
3.4.7 Other Local Events ... 89

4 Protocol Examples .. 90
4.1 Connection of PSOM Channel Zero (Prior to Root Distributed Object) 90

4.1.1 Client to Server Authentication... 90
4.1.2 Server to Client Authentication Response .. 91
4.1.3 Client to Server Channel Creation ... 91
4.1.4 Client to Server Versioning .. 91

4.1.4.1 version (stubHash) ... 92
4.1.4.2 addProtocol (name, versions, hashes) ... 92
4.1.4.3 doneProtocols .. 93

7 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

4.1.5 Server to Client Versioning .. 94
4.2 PSOM Channel 2 Distributed Object Root Connection .. 94
4.3 Server to Client RPC Message Exchange ... 95

5 Security .. 99
5.1 Security Considerations for Implementers ... 99
5.2 Index of Security Parameters .. 99

6 Appendix A: Encoding Algorithms... 100
6.1 GenericInt ... 100

6.1.1 Pseudo-Code .. 100
6.2 String .. 101

7 Appendix B: Sample Upload Package.. 103

8 Appendix C: Product Behavior .. 104

9 Change Tracking... 106

10 Index ... 108

8 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

1 Introduction

This document specifies the PSOM Shared Object Messaging Protocol, used to exchange messages
between the client and server. A message typically represents a method invocation of a remote
object, with a sequence of understood parameters.

This protocol can be divided into three areas:

Connection: Establish and negotiate interfaces between a client and a server.

Distributed object primitives: Detail the format in which messages are sent and received.

Application-specific calls: Explain the sequence of messages required to perform an operation.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

ASCII
authentication
big-endian
certificate
Coordinated Universal Time (UTC)

decryption
encryption
fully qualified domain name (FQDN)
Hypertext Transfer Protocol (HTTP)
Hypertext Transfer Protocol over Secure Sockets Layer (HTTPS)
network byte order

remote procedure call (RPC)

server
Transmission Control Protocol (TCP)
UTF-8
X.509

The following terms are defined in [MS-OFCGLOS]:

Advanced Encryption Standard (AES)

cookie
Dynamic Hypertext Markup Language (DHTML)
hash
keepalive message
notification
proxy

SHA-1

TCP/IP
token
Transport Layer Security (TLS)
Uniform Resource Identifier (URI)
Uniform Resource Locator (URL)

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

9 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

web server
XML fragment

The following terms are specific to this document:

distributed object: A collection of interfaces that enable a protocol client and a protocol server

(2) to exchange messages with each other, and to use those messages to connect or
disconnect from distributed objects and to call remote methods that have a predefined set of
parameters. Each instance of a distributed object has a unique identifier, which ensures that
messages are routed to the correct object.

PSOM channel: A packet, datagram, octet stream connection, or sequence of logical
connections that exists between endpoints (5) that are not unique. The channel defines a
unique identity for each endpoint (5) and helps secure communications between them. It uses

a root distributed object to enable both logical connections between child distributed objects
and the exchange of messages between peers. A single PSOM connection can contain multiple
PSOM channels.

root distributed object: The top-level distributed object to which a protocol client or protocol
server (2) connects immediately after a channel is created. After a connection is established
with a root distributed object, all other distributed objects on the same channel are connected.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the technical documents, which are updated frequently. References

to other documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

[ECMA-376] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA-376, December
2006, http://www.ecma-international.org/publications/standards/Ecma-376.htm

[FIPS197] National Institute of Standards and Technology, "Federal Information Processing
Standards Publication 197: Advanced Encryption Standard (AES)", November 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[IEEE754] Institute of Electrical and Electronics Engineers, "Standard for Binary Floating-Point
Arithmetic", IEEE 754-1985, October 1985, http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[ISO/IEC29500:2011] ISO/IEC, "Information technology -- Document description and processing
languages -- Office Open XML File Formats -- Parts 1-4", ISO/IEC 29500-1:2011, 2011,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=59575

[MS-CONFBAS] Microsoft Corporation, "Centralized Conference Control Protocol: Basic Architecture
and Signaling Specification".

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=89903
http://go.microsoft.com/fwlink/?LinkId=252374
%5bMS-CONFBAS%5d.pdf
%5bMS-CONFBAS%5d.pdf

10 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.ietf.org/rfc/rfc2616.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary".

1.3 Overview

This protocol is designed to facilitate communications for data collaboration and Web conferencing

applications. The two roles understood by this protocol are client and server (2). This protocol
could be used symmetrically across both roles. However, a small number of messages and actions
are performed by a specific role, but need to be understood by both. A server (2) can be connected

to multiple clients at a time, but clients do not have a direct way to exchange messages, unless the
server (2) decides to communicate with them. A server (2) differentiates from different clients
based on their transport connection.

This protocol provides a set of strongly-typed interfaces to be defined for both a server (2) and
client. These interfaces can be called remotely, as this protocol takes care of all parameter
marshaling and method invocation. This protocol also provides a way to create an object hierarchy.
These interfaces are allowed to connect and disconnect a child object, known as a distributed
object. A distributed object is composed of the following parts:

The client-side distributed object peer.

Server-side distributed object peer components.

A concrete instantiation of a distributed object is allowed to send and receive messages to and from
its peer when it is connected. There can be multiple instances of a distributed object at any time; it

is analogous to a class definition and instance relationship. Each distributed object instance has a
unique identifier that allows PSOM operations, as described in section 2.2.2, to be routed to them.
This is known as a "proxy identifier".

A distributed object can exist without the distributed object that created it, and is allowed to

exchange messages with its peer. Components on each individual client are allowed to communicate
with each other, and all components on the server (2) can communicate amongst each other
directly. This allows the creation of an object model where clients and the server (2) can exchange
messages, and the server (2) can record the state of the conference and broadcast any changes to
other connected clients via the distributed objects.

When a client and server (2) connection is authenticated, distributed objects are logically connected
so that they can exchange messages. Some distributed objects are connected when a user creates

content; others always exist in a given conference and have specific responsibilities. The connected
distributed objects are allowed to exchange messages, which are defined by server (2) and client
interfaces for each distributed object. An example interface could be the existence of an

sBroadcast message on the server (2) and a cReceiveBroadcast on each client interface. When
multiple clients connect to the server (2) and logically connect the distributed object with this set of
messages, a client could send an sBroadcast message to the server’s distributed object peer. When

the server (2) receives this message with a payload of data to broadcast, it could then call
cReceiveBroadcast with that data on all clients’ distributed object for that given peer. This enables

http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

11 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

the construction of a distributed object model where clients and the server (2) can exchange
messages.

An interface is composed of a set of methods, which are also referred to as messages, and each
method is allowed to have any number of parameters. The supported parameter types include:

String.

16/32/64-bit integers.

Floating point values, byte.

References to other connected distributed objects.

Arrays of basic parameter types and arrays of arrays.

For the full list of supported parameters, see section 2.2.

On the network, all byte orders are big-endian, unless otherwise indicated.

At a high level, messages sent as part of this protocol can be split into two parts:

Kernel: Handles connection, versioning, keepalive messages, and preparation to connect the

application distributed objects.

Application distributed object: Allows Web conferencing components to exchange messages

to perform user-related activities, such as sharing a document.

This abstraction extends into the way channels are used. A channel extended by this abstraction is a
PSOM channel. PSOM channels are always created by the client and have unique integer
identifiers. PSOM channel zero, which is the initial PSOM channel, is created implicitly after
connection. A PSOM channel provides a way for distributed objects to route messages to each other.

Each PSOM channel has a root distributed object that provides a way to connect child distributed
objects and exchange messages between peers. The following types of messages help route
information:

Record messages: Deal with PSOM channel management and routing of inside messages to the

appropriate PSOM channel.

PSOM operation messages: Enclosed in a record message. Contain the proxy identifier to

route distributed object method invocation and connection operations.

The other PSOM channel used is PSOM channel 2, where all application distributed object messages
are exchanged, as shown in the following diagram.

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

12 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

Figure 1: Overview of kernel and application channels

The protocol does not specify any explicitly-defined acknowledgement components. If an
application-level distributed object chooses to add this functionality, it is outside the scope of the
kernel and message protocol. Generally, low-level failures are indicated by a server (2) or client
sending a special termination message and disconnecting. In some cases, either might disconnect in

response to a protocol violation.

As previously stated, there can be multiple instances of a distributed object. The following figure
shows a sample distributed object structure on PSOM channel 2. The root distributed object has only
one instance, and two child objects of the same type. Each child can only exchange messages with
the corresponding child peer.

Figure 2: Sample Application distributed object connection

1.3.1 General Data Flow

Connections are always initiated by a client. The transport, as long as it is agreed on by client and
server (2) components implicitly, can be any reliable transport. In general, Transport Layer
Security (TLS) is the required transport. Once the connection is initiated and encryption

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf

13 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

negotiated, the client sends authentication (2) information. If the server (2) determines that the
client is valid, it responds with an authentication (2) acknowledgement; otherwise it terminates the

connection.

When authentication (2) is completed, a capability and versioning sequence occurs. In this

sequence, the client sends hash codes and versions that are understood by both sides. These hash
codes are the sum of the client interface and the server (2) interface hash codes. When completed,
the server (2) does the same, except that it communicates with each distributed object. During
negotiation both sides choose the highest compatible version and setup the methods and events
corresponding to that. Any disconnects as a result of versioning conflicts occur when a connect
PSOM operation message is received. If the server (2) or client receives an unexpected hash code,
such as when a different value is received than was expected, it sends a break or close message

immediately and terminates the connection.

The definition of messages depends on the interface definition, which is summarized in a hash code
that changes if the interface changes. This allows the client and server (2) to ensure that they
understand the order of bytes in a PSOM operation message. Therefore, when versioning is
completed, the server (2) and client can assume that the corresponding role has the same interface

definitions.

The client then sends a record message to create PSOM channel 2 for the root distributed object. At
that point, the root distributed object is responsible for connecting child distributed objects and
sending any other messages that are needed for the conference session. When the connection is
completed, the server (2) and client distributed objects exchange messages based on the actions
users take in a Web conference. When a user disconnects, PSOM channel record messages are
exchanged to shut down the appropriate peers, and the client and server (2) terminate the
connection, as shown in the following diagram.

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

14 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

Figure 3: High-level protocol data flow

1.3.2 Message Flow

The understanding of a particular distributed object interface is critical in understanding both version

negotiation and application communications. For details about distributed object interfaces, see
section 3.1.4.1.2.

The message flow diagramed in this section has the following distributed objects defined:

ExampleDO

ChildDO

ChildDO is the child of ExampleDO. ExampleDO has a single method defined on the server (2)

interface, which is named HookUpChild. This method can be called by any client and takes no
parameters. ChildDO has two methods. The server (2) piece defines
ExampleServerMethod(string str) and the client interface defines

ExampleClientMethod(string str). Both interfaces accept an argument of type string.

The sequence of calls is as follows:

1. Client::ExampleDO calls Server::ExampleDO’s HookUpChild() method. This sample method

causes the server (2) to hook up a child distributed object of type ChildDO.

2. Server creates an object of type ChildDO to handle messages for that distributed object
instance.

3. Server sends a special protocol message asking the Client::ExampleDO parent to create and
allow the ChildDO instance to send and receive messages.

4. The client creates an instance of ChildDO.

5. When the ChildDO sample is initialized, it could call a server-side method on its peer,

Server::ChildDO. It does so, and passes a string to be marshaled to the server (2). This

protocol passes this message on.

6. When the server-side instance of ChildDO receives the ExampleServerMethod(string) call, it
could call back with another method call, if the implementer chooses to do so.

15 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

Figure 4: Example message flow between server and client distributed objects

1.3.3 Channels and Channel Distributed Object Roots

PSOM channels provide a way to divide kernel and application distributed objects easily. Every PSOM

channel has a single root distributed object that is implicitly connected as soon as the PSOM channel
is created. Messages exchanged by distributed object peers happen on the appropriate PSOM
channel, as the peer and proxy identifiers used to route messages are unique on a per PSOM
channel basis.

Only PSOM channels 0 and 2 are used by this protocol. Both are created by the client. PSOM channel
zero is used for all kernel communications. This PSOM channel is mainly used for exchanging
distributed object version information. PSOM channel 2 is used for all application-related messages.

These messages allow the Web conferencing application to define and carry out a Web conference.
Both PSOM channels can be connected at the same time, as they provide a way to multiplex
messages on a single connection.

1.4 Relationship to Other Protocols

A few values and details used during protocol initialization depend on the [MS-CONFBAS] protocol.

See sections 3.2.3 and 3.3.3 for details. However, there is no direct interaction with [MS-CONFBAS].

1.5 Prerequisites/Preconditions

This protocol is used on top of a reliable transport such as TCP/IP with TLS encryption, as the
protocol assumes that messages are not dropped and that the integrity of each message is
maintained. TLS is required to connect directly to the server (2).

A proxy server (2) can be used to balance loads to the server (2). The only difference between the

proxy and the server (2) is that an extra authentication (2) token is required upon connection. All
other interactions are identical.

1.6 Applicability Statement

This protocol is used in Web conferencing scenarios, where a strongly-typed messaging
infrastructure, with Web conferencing-related functionality, is required.

1.7 Versioning and Capability Negotiation

This protocol provides versioning and capability negotiation at the level of each distributed object.
Exchange of interface versions and hashes happens before the application distributed objects are
connected, so implementations can make decisions about what methods are supported for each
distributed object. During this exchange the Server (2)/Client must present all the versions of the
distributed objects it supports to the other side. On completion of the exchange both sides validate
and set the highest compatible versions as the prevalent ones for each distributed object. The Client

and Server (2) then must honor the version and call only methods which are compatible with the
negotiated version on a given distributed object.

This document covers versioning issues in the following areas:

Supported transports: This protocol can be implemented on top of Transmission Control

Protocol (TCP) with TLS encryption, as discussed in section 2.1.

Protocol versions

%5bMS-CONFBAS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

16 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

Security and authentication methods: This protocol is required to be used on top of TCP with

TLS encryption.

Localization: There is no localization-dependent protocol behavior. Break messages are to be

treated as error codes, rather than strings to be shown to a user.

Capability negotiation: See previous discussion in this section.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

17 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

2 Messages

2.1 Transport

This protocol MUST be used over a TLS channel. The port and address are configurable, and are
passed in from an external source, as described in section 3.2.3.1.

2.2 Message Syntax

2.2.1 Records

A record is designed to encapsulate a PSOM channel message, as defined in section 2.2.2. At a
high level, protocol messages always contain a record, and optionally contain a PSOM channel
message. Each record is encapsulated in a data structure that contains a message type and a body
and has the following format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Record message type Message body (variable)

...

Record message type (1 byte): The type of the record message.

Message body (variable): The message body length is determined both by type and embedded

lengths for some types.

2.2.1.1 Record Types

The body lengths for all record types are unsigned, 32-bit, big-endian encoded integers.

2.2.1.1.1 Close Message

The Close message is represented by "0x00".

No data is contained in this message other than its type. This message closes the PSOM channel.
This message MUST be sent during the disconnection phase, and results in all connected distributed
objects transitioning into the disconnected state without sending messages. All other PSOM channels
MUST be closed before the base PSOM channel, channel zero, is closed. This message has the
following format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Close

Close (1 byte): Header; defined as "0x00".

2.2.1.1.2 SetChannel Message

The SetChannel message is represented by "0x04".

18 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

SetChannel contains a 32-bit message body and indicates that all future records SHOULD be
directed to the set channel, which is communicated as the 32-bit message body. The body is

represented in network order, big-endian. For example, if the application channel is represented
with a channel identifier of 2, this is represented as "0x00000002". This message has the following

format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SetChannel ChannelId

...

SetChannel (1 byte): Header for message type; defined as "0x04".

ChannelId (4 bytes): The representation of the channel identifier to be set. This PSOM channel
is used for all following messages, with the exception of other SetChannel messages.

2.2.1.1.3 Break Message

The Break message is represented by "0x06".

A Break message results in the same actions as a Close message but indicates that an error
happened. A Break message contains a reason string that is not a PSOM-encoded string or a string
provided as an argument to a method. It is an ASCII encoding of an error reason code, which is
typically an English representation of a reason that can be used for debugging purposes. The length
of the string precedes the byte representation of the characters. This message has the following
format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

BreakChannel ReasonLength

... ReasonString (variable)

...

BreakChannel (1 byte): Header for the message type; defined as "0x06".

ReasonLength (4 bytes): The unsigned length of the following reason string.

ReasonString (variable): The ASCII byte representation of the reason code string. Each byte
represents a single character.

For example, a Break message with the reason string "bye" is represented as follows:

0x06; 0x00000003; 0x62; 0x79; 0x65;

%5bMS-GLOS%5d.pdf

19 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

2.2.1.1.4 RpcMessage Message

The RpcMessage message is represented by "0x16".

This message represents a message to a PSOM channel for a PSOM operation, as described in the

following section. The message body length varies, and depends on the contents of the message.
The first 4 bytes following the message type MUST be the big-endian encoding of the body length in
bytes. The body of the message is described in section 2.2.2. This message has the following
format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RpcMessage BodyLength

... Body (variable)

...

RpcMessage (1 byte): Header for the message type; defined as "0x16".

BodyLength (4 bytes): The unsigned length of the following body.

Body (variable): The payload of the PSOM operation message. This message is described in
section 2.2.2.

2.2.1.1.5 RPCOpen Message

The RPCOpen message is represented by "0x37".

This is a PSOM channel open message and instructs the implementation to begin accepting
messages for the specified PSOM channel. The record body MUST include the PSOM channel

identifier, which is an unsigned 32-bit integer, and a special ConnMgr distributed object.
RpcMessage MUST follow this identifier. For more information about the special RpcMessage, see
section 2.2.2.1. This message MUST only be used to create the root distributed object PSOM
channel, PSOM channel 2, and not the connection PSOM channel, PSOM channel zero. This message

has the following format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RpcOpen ChannelId

... RpcMsgBodyLen

... RpcMessageBody

...

RpcOpen header (1 byte): The header to denote the message type.

ChannelId (4 bytes): The unsigned integer value of the PSOM channel to open.

20 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

RpcMessageBodyLen (4 bytes): The unsigned integer value of the length of the message
body.

RpcMessageBody (variable): The contents of the message, intended to be treated as an
RpcMessage body for a distributed object proxy object on the previous PSOM channel.

2.2.2 PSOM Operation Channel Messages (RpcMessage)

PSOM channel messages represent a PSOM operation, which is an action to take or method to call
that involves a particular distributed object. PSOM channel messages are exchanged between the
two peers of a distributed object, client and server (2), and represent one of the following
operations:

Connect child.

Disconnect child.

Call a method.

These operations are described in additional detail in section 2.2.2.1 and section 2.2.2.2.

The term "RPC message" refers to a PSOM operation that requests a call of a given method on a
distributed object interface.

Each PSOM operation is sent on a given PSOM channel. Any PSOM message sent after a
SetChannel record is on that PSOM channel. The length of these messages on the network can be
determined by the length header in the record frame.

Each connected distributed object instance is assigned a proxy identifier, which is a signed 32-bit
integer, but represented as a GenericInt on the network. When a distributed object is first
connected, it MUST be assigned a unique identifier that is understood by the server (2) and client.

When a distributed object is connected, the peer that is connecting the distributed object MUST

assign any outgoing connect message a monotonically increasing integer, starting at 1, while the
receiving distributed object MUST assign it a monotonically decreasing value starting at -1. When a

server (2) sends a connect message for a particular distributed object, that peer MUST be assigned
a proxy identifier of +n, where n is any positive integer greater than zero. The receiving distributed
object MUST assign the value –n to the peer for its ProxyId. When a server (2) or client receives a
connect request, it MUST assign the negative value of the ProxyId. For example, the first child

distributed object of the Meeting distributed object, which is the PSOM channel root distributed
object, which is connected by the server (2), receives a ProxyId of -1 on the client side, and a
value of 1 on the server (2) side. Therefore, both the client and server (2) can uniquely refer to this
instance when sending PSOM operation messages.

PSOM operation messages are always routed to an existing distributed object peer with a valid
ProxyId. The receiving peer is the one whose ProxyId is the received value, negated. Therefore,
any time a ProxyId is read from the network, it MUST be immediately negated, causing a negative

to become positive and a positive to become negative, to determine which peer instance receives
the message.

The root distributed object always has a ProxyId of zero.

In general, a PSOM operation frame is formatted as follows.

21 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

OpenClose ProxyId (variable)

...

Payload (variable)

...

OpenClose (1 byte): Either "0x84" (open) or "0x86" (close).

ProxyId (variable): Signed integer encoded as a GenericInt.

Payload (variable): The body for an RPC message, as defined in section 2.2.2.2. The length

can be determined by the length of the current record body. Payload MUST be present if the

OpenClose byte header is present.

2.2.2.1 Connect/Disconnect Child

These operations are symmetric, and provide the ability for a parent distributed object to connect
and disconnect child distributed objects. Child objects are useful from a design perspective, and help
segment functionality within objects. The only distributed object connected implicitly is the root
distributed object of a PSOM channel, which is either the Meeting distributed object or the

ConnMgr distributed object, depending on the PSOM channel. Any other distributed objects MUST
be explicitly connected. Distributed object connect and disconnect messages can be sent by either
the client or server (2).

Note that proxy identifiers for connecting and identifying distributed objects are determined by
negating any incoming value. When any given distributed object is connected, it has the value "+n",

where n is greater than zero, on the initiating side, while the proxy has the value "–n" on the

receiver’s side. Therefore, to parse an incoming message, the incoming value MUST be negated and
the resulting negated value is looked up in a local table with proxyId to distributed object
mappings.

2.2.2.1.1 Connect (OP_CONNECT)

All connect requests include a PartName that is used to identify which child to connect. This part
name is understood explicitly by both the server (2) and client components. The part name can be

any string that is understood by both the client and server (2) distributed object peers. The string
communicates what object to connect that is eligible to receive messages. When an OP_CONNECT
message is sent, the peer MUST assume the corresponding peer is eligible to receive messages.
Failure does not have to be indicated but, if it is, it can be done through disconnection or an RPC
message to another distributed object by the application. This message is formatted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

OP_CONNECT ParentProxyId (variable)

%5bMS-GLOS%5d.pdf

22 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

...

PartName (variable)

...

Hash (variable)

...

OP_CONNECT (1 byte): The constant header for a Connect operation within the record frame.

ParentProxyId (variable): A 32-bit signed integer, encoded as a GenericInt. Represents the
parent of the child distributed object to be connected.

PartName (variable): A PSOM-encoded string that details the name of the child to connect.

Hash (variable): A 64-bit signed integer encoded as a GenericInt. This represents the hash of
the initiating peer’s child distributed object. For example, if the client is sending the

OP_CONNECT message, it includes the hash of the ClientInterface portion of the
distributed object. If the server (2) is initiating the connection, it includes the
ServerInterface hash for this parameter. The incoming hash MUST match the distributed
object that is to be connected.

2.2.2.1.2 Disconnect (OP_CLOSE)

Disconnecting a distributed object means that a distributed object peer can no longer receive PSOM

operation messages. A special header is sent, followed by the GenericInt encoding of the proxy
identifier to disconnect. Any child objects of a connected distributed object can still receive
messages, and are therefore still connected, unless they are disconnected through disconnect PSOM
operation messages sent to them. A disconnect message can be sent as a response to a received

disconnect for a given proxy as an acknowledgment. This message is formatted as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

OP_CLOSE ProxyId (variable)

...

OP_CLOSE (1 byte): The constant header for a Close operation within the record frame.

ProxyId (variable): A 32-bit signed integer, encoded as a GenericInt. Represents the

distributed object peer to be closed.

2.2.2.2 RPC Message (Call Method) (OP_DATA)

If the first byte is not "0x84" or "0x86", OP_CONNECT or OP_CLOSE, the PSOM operation refers
to an RPC message. Because of the structure of the GenericInt encoding algorithm, "0x84" or
"0x86" are never the first byte in a GenericInt, so this is a safe assumption.

23 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

The RPC message type indicates the message is meant to call a given interface method with a pre-
defined set of parameters. The structure of an RPC message is as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ProxyId (variable)

...

MethodIndex Payload (variable)

...

ProxyId (variable): The sending proxy’s identifier. Encoded as a GenericInt.

MethodIndex (1 byte): A signed byte indicating the method to call. See sections 3.1.4.1.1 and

3.1.4.1.2.1 for more details.

Payload (variable): The individual parameters required to call the method that corresponds to
MethodIndex. If no parameters are expected, this MUST be omitted.

The ordering of Payload MUST match the ordering of parameters in the distributed object
definition. For example, if a method is declared as follows:

Method(Int32 param1, String param2)

The encoded bytes in the parameters section are, in order:

param1 (variable): Encoded as a GenericInt.

param2 (variable): Encoded as a PSOM string type. This is a 2-byte length header followed
by a specially encoded payload of byte representations of characters.

RPC messages do not require any response. The receiver MUST invert the sign of ProxyId to

find the appropriate distributed object peer instance to handle the message.

24 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3 Protocol Details

3.1 Common Details

In general, the server (2) and client roles are symmetric. However, there are some actions that a
server (2) cannot take. For more information about these restricted actions, see section 3.3.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

This protocol is a highly symmetric protocol at the connection/channel/RPC layer. The differences
between the server (2) and client exist at a higher layer, where a set of message interfaces are

defined. At the RPC layer, there is a set of objects. Each object in the set is a distributed object.

Each distributed object has a server (2) and client component. Each component is able to exchange
messages, disconnect from the other, or connect to another distributed object.

Each RPC message is a method on each server (2) and client interface. This method never returns a
value, but it does take parameters. These parameters are listed in the following section.

3.1.1.1 PSOM types

This section contains a list of all of the supported PSOM types, which are used as part of the record

message RpcMessage and distributed object method parameters. When some types, such as
Int32, are listed in the following sections, those types only apply to the parameters in the interface
definitions.

3.1.1.1.1 Arrays

Arrays are not a type. They modify other primitive PSOM types to create collections. Each array is
encoded as the number of elements as a GenericInt, followed by each element in sequence.

Because all elements are of the same type, the length of the array can be determined based on the
length of each type. It is possible to create an array of arrays. This is represented by treating each
contained array as its own type. For example, an array of 2 arrays of type byte with 1 element each
would look as follows:

[GenericInt(2)] [GenericInt(1)] [value of byte in array 0] [GenericInt(1)] [value of byte in

array 1]

3.1.1.1.2 Boolean

Encoded as "0x01" for true; "0x00" for false.

3.1.1.1.3 Byte

An unsigned byte. This type is encoded exactly as represented over the network.

25 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.1.1.1.4 DistributedObject Reference

A distributed object reference is a reference to a distributed object peer. If the object is null, it is
encoded as a single byte, "0x8C". To refer to a non-null distributed object, this is encoded as a

GenericInt containing the value of a proxy identifier.

3.1.1.1.5 GenericInt

GenericInt is a specially formatted value used to represent any signed integer that is 64 bytes or
less. The encoding algorithm results in a variable size based on the original value. For algorithm
details, see section 6. Note that interface details can reference Int32 and Int64. These SHOULD be
encoded as GenericInt.

A GenericInt is never a directly referenced type; instead, it is an encoding for Int32, Int64,
UInt32, UInt64 types. They are all encoded the same way, but the given integer types determine
the appropriate bounds and sign for the number.

3.1.1.1.6 Int32

A 32-bit signed integer encoded as a GenericInt.

3.1.1.1.7 Int64

A 64-bit signed integer encoded as a GenericInt.

3.1.1.1.8 String

String represents a specially-encoded string of a UTF-8 string.

For algorithm details, see section 6.

3.1.1.1.9 Double

A double-precision (64-bit) floating point number, big-endian encoded with the bytes in the
sequence specified in [IEEE754] section 3.

3.1.2 Timers

There is a ping method called with no parameters used as a keepalive message sent every 30
seconds by both the client and the server (2) on the ConnMgr distributed object. For the ConnMgr

definitions, see section 3.1.3.1. When the timer expires, a new one is set at the same interval
period.

3.1.3 Initialization

When this protocol is initialized, it MUST begin connecting to a server (2) or client or wait for
incoming connections from a server (2). The protocol has no state at this point, and no distributed

objects are connected. At a high level, connection is established, and is followed by authentication

(2), versioning, and then the root distributed object connection. For more information about these
steps, see section 3.2 and section 3.3.

3.1.3.1 ConnMgr Distributed Object

The ConnMgr distributed object is defined in its corresponding client and server (2) sections. This
distributed object is responsible for exchanging versioning information about supported distributed

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89903

26 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

objects between the client and server (2). At this point, there are no additional versioning
requirements because there is only one version.

3.1.4 Higher-Layer Triggered Events

The higher-layer objects consist of a set of distributed objects that represent a conference. The root
distributed object is the Meeting distributed object. It is the first distributed object connected on
that PSOM channel. The following sections describe how distributed objects are connected, and all
possible methods on each interface. Unexpected calls, dictated by business logic, can result in other
distributed object calls in the reverse direction, or result in a Break or Close message being sent.

3.1.4.1 Distributed Objects

All interface parameters are encoded as PSOM arguments as specified in section 3.1.1.1.

3.1.4.1.1 Distributed Object Interface Definition

The understanding of particular distributed object interfaces is critical in understanding both version

negotiation and application communications. This section describes a way of representing client and
server (2) distributed object interfaces.

[Name="ProtocolName", Version=1]

DOInterface DOName

{

 [Hash=1234567890123456L]

 ServerInterface

 {

 SampleServerMethod1(Int64 parameter1, Int32 parameter2);

 }

 [Hash=-6543210987654321L]

 ClientInterface

 {

 SampleClientMethod1();

 }

 Children

 {

 (DOChildName1, DOChildType1)

 (DOChildName2, DOChildType2)

 }

}

Attributes are denoted by square brackets ([or]) and are intended to add information to the object

that follows them. Each DOInterface entry has a ServerInterface, ClientInterface, and
Children as sub-components. For detail about the PSOM operation methods that can be called by

the opposite peer, see section 3.2.4.1 and section 3.3.4.1. The ordering is important. The first
method in each interface type is assigned a method index of 1, and each subsequent method
declaration is given a monotonically increasing integer value. This value is used as a reference in

certain PSOM operation messages.

In some cases, the child objects might be represented differently. For example, the name might be
used to indicate alternative usage. If this is the case, DOChildNameN is referenced appropriately in
the text that describes the child elements. In general, DOChildNameN refers to a specific single

27 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

child that has the distributed object type DOChildType. DOChildNameN is the text of the string
sent as part of the OP_CONNECT message.

3.1.4.1.1.1 DOInterface Attributes

Name (string): The string representation of the protocol name. Used to identify which
DOInterface is referenced.

Version (integer): An integer value greater than zero. See section 3.1.4.1.3 for details.

3.1.4.1.1.2 Server/Client Interface Attributes

Hash (64-bit signed integer): A pre-defined value used to ensure interfaces are the same. This is
provided for future extensions to use in testing for conflicts.

3.1.4.1.1.3 Method Declarations

Each method declaration MUST be in the following format:

MethodName(ParameterType1, parameterName1, …);

Method ordering is important, as specified in section 3.1.4.1.1, because it reflects the byte identifier

used on the wire. The ParameterType MUST be a PSOM supported type, as defined in section
3.1.1.1. For example, "Int32" represents a signed, 32-bit integer that is encoded as a GenericInt
on the wire.

Note that because messages do not have return values, the previous method definitions do not
specify them.

3.1.4.1.1.4 Children

Children is not exclusive. Other names can be sent without declaring it. For example, to connect to

a specific instance of an object, a connection message can be sent with a custom string such as
"objectInstance123". This attribute details child objects for the reader. The previous interface
definition includes a distributed object with two well-defined child objects with a given name and
type. Because distributed object connection routines allow any string to be sent on the wire, the
Children section will detail any variants that can be sent as part of the OP_CONNECT message.

3.1.4.1.2 Sample Distributed Object

This section illustrates a sample distributed object to help the reader understand the format for
these distributed objects. Server (2) and client method descriptions can be found in section 3.3 and
section 3.2.

3.1.4.1.2.1 Interface

The following is a sample interface definition for a distributed object.

[Name="ProtocolName", Version=1]

DOInterface DOName

{

 [Hash=1234567890123456]

 ServerInterface

 {

28 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 sSampleServerMethod1(Int64 parameter1, Int32 parameter2);

 }

 [Hash=-6543210987654321]

 ClientInterface

 {

 cSampleClientMethod1();

 }

 Children

 {

 (DOChildName1, DOChildType1)

 (DOChildName2, DOChildType2)

 }

}

The bracketed fields indicate the names that are used as part of the name in the Connect

messages, and the hashes are exchanged during connection and versioning. The order of the

messages indicates their base MethodIndex, which is defined by the alphabetic order, compared
ordinally, relative to other methods on that interface.

Children is defined as the set of distributed objects that the DOName distributed object is able to
send RPC connect messages for. The directionality of those connect messages is typically limited to
one way, either server (2) to client or client to server (2), but that is defined further for each

distributed object.

3.1.4.1.2.2 Sample Server Method

<< The description of a method goes here. The server (2) is able to receive a message with this
name >>

parameter1 (Int64): << Description of parameter >>

parameter2 (Int32): << Description of parameter >>

3.1.4.1.2.3 Sample Client Method

See section 3.1.4.1.2.2. The only difference between a client and a server method is that the former
contains descriptions for a message that the client, rather than the server, can receive.

3.1.4.1.2.4 Children

Anything that comes in a Connect message is detailed under Children. Because the OP_CONNECT

message is sent with a string for the name of the distributed object or a string value to connect,
each server or client portion of the distributed object MUST be aware of the distributed objects it is
allowed to connect. The Children section will describe the direction for this OP_CONNECT message.
Either the client or the server can send an OP_DISCONNECT message to its peer at any time.

3.1.4.1.3 Versioning

Each distributed object has a version on the client and the server (2). Some implementations MAY

send multiple versions via the addProtocol message; only the version that matches the values in
the DOInterface attributes SHOULD be respected, and other values MUST be ignored.

29 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.1.4.1.4 ContentManager

ContentManager is a distributed object that maintains a collection of Content distributed objects
that are currently present in the Meeting. It provides methods for deleting Content distributed

objects. It notifies the client of Content distributed objects that have been added through
UploadManager or removed. It also provides support for reserving the title before adding it to
ensure uniqueness of all content titles within a Meeting. Additionally, it allows a user to become the
active presenter and to give up the active presenter baton, and gives notifications when the active
presenter changes.

The following table lists the TitleReservationStatus values. For more information, see section
3.3.4.1.3.1.

Value

Numeric

value Description

ReservedForCreation 1 The requested title was reserved successfully.

ReservedForUpgrade 2 The requested title was reserved for upgrade
successfully.

FailedReservedForCreation 3 The requested title could not be reserved because it is
already reserved by someone else for creation.

FailedReservedForUpgrade 4 The requested title could not be reserved because it is
already reserved by someone else for upgrade.

FailedExternalIdLockedForCreate 5 The requested external identifier could not be reserved
because it is already reserved by someone else for
creation.

FailedExternalIdLockedForUpgrade 6 The requested external identifier could not be reserved
because it is already reserved by someone else for
upgrade.

FailedReservationMaxExceeded 7 The user exceeded the maximum number of allowed
reservations.<1>

FailedCookieInUse 8 The supplied cookie is already in use for an existing
reservation.

FailedNotAuthorized 9 The user does not have the proper credentials to
complete the operation.

FailedInvalidExtension 10 The extension of the provided title is not allowed for
upload.

FailedInvalidTitle 11 The provided title was not in a valid format. Reasons
for this error include that the character length is longer
than a chosen value, or contains characters that are
not supported. This is used for the server (2) to enforce
well-named restrictions on the title if it is used as a file
name.

3.1.4.1.4.1 Interface

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.ContentManager", Version=2]

DOInterface ContentManager

{

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

30 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 [Hash=3800622354142801969]

 ServerInterface

 {

 void sDeleteContent(Int64 contentId);

 void sPresent();

 void sReleaseTitle(Int32 cookie);

 void sReserveTitle(String title, Int32 cookie);

 void sReserveTitle(String title, Int32 cookie, String externalId);

 void sStopPresenting();

 }

 [Hash=-8255121175073997388]

 ClientInterface

 {

 void cContentAdded(Int64 contentId, String type);

 void cContentCreated(Int64 contentId, Int32 cookie);

 void cContentCreationFailed(Int32 cookie, Int32 reason);

 void cContentRemoved(Int64 contentId);

 void cReserveTitleCompleted(Int32 /* TitleReservationStatus */ status, Int32 cookie,

Int64 contentId, Int64 owningUserId);

 void cSetActiveContent(Int64 activeContentId);

 void cSetActivePresenter(Int64 activePresenterId);

 void cTitleReleased(Int32 cookie);

 }

 Children

 {

 (UploadManager, Microsoft.Rtc.Server.DataMCU.Meeting.UploadManager)

 ("content.X", Microsoft.Rtc.Server.DataMCU.Meeting.Content)

 }

}

3.1.4.1.4.2 Children

The UploadManager distributed object is connected by the server (2) and is a required distributed
object.

The Content distributed objects are hooked up by the client by sending an rpcConnect. The part

name used for the rpcConnect is a string concatenation of the string "content." and the contentId
in base-10 format, with no leading zeros. As an example, if a client is attempting to hook up the
content with the contentId of "2", the string passed in rpcConnect is "content.2".

31 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.1.4.1.5 Content

Content is a distributed object that handles generic content methods, such as presenting a piece of
content, renaming a piece of content, setting content's visibility in the Meeting, or being told

properties about the content. The content-specific methods and properties, such as the number of
slides in a PowerPoint presentation, or which slide to navigate to, is handled by the
extendedContent child object.

The following table lists the SetTitleStatus values and descriptions.

Value Numeric value Description

Success 0 The operation completed successfully.

FailedTitleExists 1 Another piece of content has this title.

FailedReservedForCreation 2 The requested title is currently reserved.

UserNotAuthorized 3 The user is not allowed to modify the title.

FailedInvalidExtension 4 The extension is not on the approved list.

FailedInvalidTitle 5 The provided title was not in a valid format.

The following table lists the ContentVisibility values and descriptions.

Value Numeric value Description

MeetingOrganizer 0 Only the meeting organizer can see this content.

Presenters 1 Only presenters can see this content.

Everyone 2 Everyone can see this content.

3.1.4.1.5.1 Interface

 [Name="Microsoft.Rtc.Server.DataMCU.Meeting.Content", Version=1]

 DOInterface Content

 {

 [Hash=-6470662138903778586]

 ServerInterface

 {

 void sForceSync ();

 void sMakeHighestPresentationOrder ();

 void sPresent ();

 void sSetTitle (string title);

 void sSetVisibility (Int32 /* ContentVisibility */ visibility);

 void sStopPresenting ();

 }

 [Hash=1113513223610002283]

 ClientInterface

32 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 {

 void cConnectCompleted ();

 void cForceSync ();

 void cSetCreationTime (string creationTime);

 void cSetLastUsedTime (string lastUsedTime);

 void cSetNativeFileInfo (string fileName, byte[] key, byte[] iv, byte[] hash,

Int64 fileSize);

 void cSetOwnerId (Int64 id);

 void cSetPresentInfo (Boolean presented, Int64 presenterId);

 void cSetPresentationOrder (Int64 presentationOrder);

 void cSetTitle(string title);

 void cSetTitleComplete(Int32 /* SetTitleStatus */ status, string title);

 void cSetVisibility (Int32 /* ContentVisibility */ visibility);

 }

 Children

 {

 ("extendedContent", content-specific-DO)

 }

 }

The following is the interface definition of the Content distributed object for version 10<2>.

 [Name="Microsoft.Rtc.Server.DataMCU.Meeting.Content", Version=10]

 DOInterface Content

 {

 [Hash=-2530343413165516885]

 ServerInterface

 {

 void sForceSync ();

 void sMakeHighestPresentationOrder ();

 void sPresent ();

 void sSetTitle (string title);

 void sSetVisibility (Int32 /* ContentVisibility */ visibility);

 void sStopPresenting ();

 }

 [Hash=974079596268293062]

 ClientInterface

 {

 void cConnectCompleted ();

 void cForceSync ();

33 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 void cSetCreationTime (string creationTime);

 void cSetLastUsedTime (string lastUsedTime);

 void cSetNativeFileInfo (string fileName, byte[] key, byte[] iv, byte[] hash,

Int64 fileSize);

 void cSetOwnerId (Int64 id);

 void cSetPresentInfo (Boolean presented, Int64 presenterId);

 void cSetPresentationOrder (Int64 presentationOrder);

 void cSetTitle(string title);

 void cSetTitleComplete(Int32 /* SetTitleStatus */ status, string title);

 void cSetVisibility (Int32 /* ContentVisibility */ visibility);

 void cSetOriginalFileUrl (string originalFileUrl);

 void cSetViewingUrl (string viewingUrl);

 void cSetRecordingUrl (string recordingUrl);

 }

 Children

 {

 ("extendedContent", content-specific-DO)

 }

 }

3.1.4.1.5.2 Children

The Content distributed object has one client-hooked-up child distributed object, called the
extendedContent distributed object. This is the implementation of the content's specific features,
such as PowerPoint. To connect the extendedContent distributed object, the client sends an
rpcConnect with the string "extendedContent".

3.1.4.1.6 Meeting

Meeting is the root distributed object for all the application distributed objects. It consists of the
ContentManager, which keeps track of all content in the Meeting, and the
ContentUserManager, which keeps track of all relevant users in a Meeting. It also communicates
the Uniform Resource Locator (URL) base for the Meeting.

3.1.4.1.6.1 Interface

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.Meeting", Version=2]

DOInterface Meeting

{

 [Hash=7811924786664530844]

 ServerInterface

 {

%5bMS-OFCGLOS%5d.pdf

34 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 void sSetInfo(String info);

 }

 [Hash=2106930589629680263]

 ClientInterface

 {

 void cMeetingReady();

 void cSetInfo(String info);

 void cSetServerTime(String serverTime);

 void cSetUrlBase(String urlBase);

 }

 Children

 {

 (ContentManager, Microsoft.Rtc.Server.DataMCU.Meeting.ContentManager)

 (ContentUserManager, Microsoft.Rtc.Server.DataMCU.Meeting.ContentUserManager)

 }

}

3.1.4.1.6.2 Children

The ContentManager and ContentUserManager MUST be connected as child distributed objects
of the Meeting before cMeetingReady is called.

3.1.4.1.7 ContentUserManager

The ContentUserManager is a one-way notification mechanism to tell each client which Uniform

Resource Identifier (URI) and display name map to a given user identifier. This way, the URI and
display name can be sent once, and each content and annotation can just use an identifier to
indicate ownership or that an action happened.

3.1.4.1.7.1 Interface

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.ContentUserManager", Version=1]

DOInterface Meeting

{

 [Hash=5320330165687787020]

 ServerInterface

 {

 }

 [Hash=5320330165687787020]

 ClientInterface

 {

 void cUsersAdded(Int64[] ids, String[] uris, String[] displayNames);

 void cUsersRemoved(Int64[] ids);

 }

}

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

35 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.1.4.1.8 UploadManager

The UploadManager distributed object is responsible for uploading OC Package files to the server
(2). See section 3.2.4.1.4 for details related to the OC Package. The OC Package is a single file for

the purposes of uploading. The upload traffic is through the PSOM channel, rather than Hypertext
Transfer Protocol (HTTP), for the download.

3.1.4.1.8.1 Interface

The following is the interface definition of the UploadManager distributed object for version 1.

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.UploadManager", Version=1]

DOInterface UploadManager

{

 [Hash=4004400404121921234]

 ServerInterface

 {

 void sRequestUpload(Int64 fileLength, Int32 cookie, String manifestXml);

 void sRequestUpload(Int64 packedLength, Int64 unpackedLength, Int32 cookie);

void sUploadFinished(Int32 cookie, Boolean cancel);

 }

 [Hash=-8511879503649873756]

 ClientInterface

 {

 void cAcceptUpload(Int32 cookie, DistributedObject stream);

 void cRejectUpload(Int32 cookie, Int32 reason);

 void cSetAvailableSpace(Int64 size);

 void cUploadFinished(Int32 cookie, Int32 reason);

 }

 Children

{

 (UploadStreams, UploadStream)

 }

}

The following is the interface definition of the UploadManager distributed object for version 2<3>.

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.UploadManager", Version=2]

DOInterface UploadManager

{

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

36 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 [Hash=2601804729028999169]

 ServerInterface

 {

 void sRequestUpload(Int64 fileLength, Int32 cookie, String manifestXml);

 void sRequestUpload(Int64 packedLength, Int64 unpackedLength, Int32 cookie);

 void sUploadFinished(Int32 cookie, Boolean cancel);

 void sRequestWebUploadBlob(Int32 cookie, String manifestXml);

 void sRequestWebDownloadBlob(Int32 cookie, String obfuscatedName, Boolean

isAttachment);

 }

 [Hash=1079790469891676391]

 ClientInterface

 {

 void cAcceptUpload(Int32 cookie, DistributedObject stream);

 void cRejectUpload(Int32 cookie, Int32 reason);

 void cSetAvailableSpace(Int64 size);

 void cUploadFinished(Int32 cookie, Int32 reason);

 void cAcceptWebUpload(Int32 cookie, String uploadUrl);

 void cAcceptWebDownload(Int32 cookie, String downloadUrl);

 void cRejectWebDownload(Int32 cookie, Int32 reason);

 }

 Children

 {

 (UploadStreams, UploadStream)

 }

}

3.1.4.1.8.2 Children

UploadManager has one Child. The Child MUST be connected by the server (2) sending a
Connect message to the client that requested an upload to start.

3.1.4.1.8.2.1 UploadStreams

UploadStreams is the UploadStream distributed object that is currently uploading data to the
server (2).

3.1.4.1.9 UploadStream

The UploadStream distributed object is responsible for uploading content package files to the
server (2). Note that the names UploadStream and IRCStream are used interchangeably.

37 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.1.4.1.9.1 Interface

Name="Microsoft.Rtc.Server.DataMCU.Meeting.Parts.IRCStream", Version=1]

DOInterface UploadStream

{

 [Hash=-6716385024907738156]

 ServerInterface

 {

 void sDisconnect();

 void sWrite(byte[] data, Int32 packetNum);

 }

 [Hash=5963839780483567246]

 ClientInterface

 {

 void cDisconnect();

 void cWriteComplete(Int32 nBytes);

 }

}

3.1.4.1.10 NativeFileOnlyContent

The NativeFileOnlyContent distributed object is a content distributed object that is used to share

a file with meeting attendees. A presenter uploads a file and creates a NativeFileOnlyContent
distributed object, and the attendees can choose to download the file. The NativeFileOnlyContent
distributed object is a wrapper of a basic content type, and does not require other specific content
operations.

There is a one-to-one mapping between NativeFileOnlyContent and Content. If Content’s type is
NativeFileOnly, a NativeFileOnlyContent instance, or proxy, MUST be created.

3.1.4.1.10.1 Interface

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.NativeFileOnlyContent", Version=1]

DOInterface NativeFileOnlyContent

{

 [Hash=6421877628186475469]

 ServerInterface

 {

 /* No methods exist */

 }

 [Hash=5585496037459248534]

 ClientInterface

 {

 void cConnectCompleted();

 }

}

38 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.1.4.1.11 PptContent

The PptContent distributed object represents an instance of PowerPoint content shared in the
session. This distributed object allows the server (2) to signal content resource location, content

source encryption information, and changes to the navigation state of the content made by other
clients.

The ResourceFormat enumeration represents the different resources that can be associated with a
PptContent. The following table lists the values of the ResourceFormat enumeration.

Value Numeric value Description

None 0 No resource format

PartialPpt 1 Partial PowerPoint resource format

FullPpt 2 Full PowerPoint resource format

NativeFile 3 Native PowerPoint file resource format

PartialDhtml_Deprecated 4 Deprecated

FullDhtml_Deprecated 5 Deprecated

PartialJpeg 6 Partial Jpeg resource format

FullJpeg 7 Full Jpeg resource format

PreviewThumbnail 8 Preview Thumbnail resource format

SlideThumbnails 9 Slide Thumbnails resource format

Notes 10 Notes resource format

Dhtml 11 Dhtml resource format

The ResourceErrorCode enumeration enumerates the reasons that a resource is not available. The
following table lists the values of the ResourceErrorCode enumeration.

Value

Numeric

value Description

ClientConversionFailed 1 Failure during conversion on the client

ClientUploadFailed 2 Failure during upload on the client

ClientDependentResourceFailed 3 Failure for a dependent resource on the client

UploaderClientDisconnected 100 Uploading client was disconnected before
completing all the resource uploads

UploaderClientDemoted 101 Uploading client was demoted before completing all
the resource uploads

UnsupportedResourceFormat 102 Unsupported resource format was specified

PptLocation: The following Location schema is used as the location argument for the methods
sSetLocation and cSetLocation.

39 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

<xs:schema

 version="1.0"

 targetNamespace="http://schemas.microsoft.com/2008/08/datamcu-content"

 xmlns:tns="http://schemas.microsoft.com/2008/08/datamcu-content"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:ms="urn:microsoft-cpp-xml-serializer"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 >

 <xs:annotation>

 <xs:documentation>Schema for PowerPoint Content Location.</xs:documentation>

 </xs:annotation>

 <xs:element name="PptLocation" type="tns:pptloc_type"

ms:className="CXmlPptContentLocationRoot" />

 <!-- Complex type for PptLocation -->

 <xs:complexType name="pptloc_type" ms:className="CXmlPptContentLocation" >

 <xs:sequence>

 <xs:element name="SlideNumber" type="xs:nonNegativeInteger"

ms:PropertyName="SlideNumber"/>

 <xs:element name="Click" type="xs:nonNegativeInteger" ms:PropertyName="Click" />

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"></xs:any>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax"/>

 </xs:complexType>

</xs:schema>

SlideNumber: MUST be greater than or equal to zero and less than the slide count of the

PptContent.

Click: SHOULD be greater than or equal to zero and less than or equal to the number of clicks in the
slide referenced by SlideNumber.

3.1.4.1.11.1 Interface

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.PptContent", Version=2]

DOInterface PptContent

{

 [Hash=5075721282249770644]

 ServerInterface

 {

 void sSetLocation(String location);

 void sSetResourceErrorCode(

 Int32 beginSlide,

 Int32 endSlide,

 Int32 format,

 Int32 errorCode);

 }

 [Hash=-3775280164302319261]

 ClientInterface

40 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 {

 void cConnectCompleted();

 void cErrorAddingResource(

 Int32 resourceId,

 Int32 errorCode);

 void cSetFullPptFileInfo(

 String url,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

 void cSetLocation(String location);

 void cSetNotesInfo(

 String url,

 Int32[] slideNumbers,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

 void cSetPartialPptFileInfo(

 String url,

 Int32[] slideNumbers,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

 void cSetPreviewThumbnailFileInfo(

 String url,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

 void cSetResourceErrorCode(

 Int32 beginSlide,

 Int32 endSlide,

 Int32 format,

 Int32 errorCode);

 void cSetSlideCount(Int32 slideCount);

 void cSetSlideDhtmlMarkupInfo(

 Int32 slideNumber,

 Int32 clickCount,

 String markupUrl,

 String[] resourceOriginalFileNames,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

 void cSetSlideDhtmlResourceInfo(

 String resourceOriginalFileName,

 String url,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

41 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 void cSetSlideJpegInfo(

 Int32 slideNumber,

 String url,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

 void cSetThumbnailFileInfo(

 String[] files,

 String url,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

 }

 Children

 {

 (annotationContainer, AnnotationContainer)

 }

}

The following is the interface definition of the PptContent distributed object for version 11<4>.

Note that there are no method changes between version 2 and version 11. The only change is in the
version number.

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.PptContent", Version=11]

DOInterface PptContent

{

 [Hash=5075721282249770644]

 ServerInterface

 {

 void sSetLocation(String location);

 void sSetResourceErrorCode(

 Int32 beginSlide,

 Int32 endSlide,

 Int32 format,

 Int32 errorCode);

 }

 [Hash=-3775280164302319261]

 ClientInterface

 {

 void cConnectCompleted();

 void cErrorAddingResource(

 Int32 resourceId,

 Int32 errorCode);

 void cSetFullPptFileInfo(

 String url,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

42 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 void cSetLocation(String location);

 void cSetNotesInfo(

 String url,

 Int32[] slideNumbers,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

 void cSetPartialPptFileInfo(

 String url,

 Int32[] slideNumbers,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

 void cSetPreviewThumbnailFileInfo(

 String url,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

 void cSetResourceErrorCode(

 Int32 beginSlide,

 Int32 endSlide,

 Int32 format,

 Int32 errorCode);

 void cSetSlideCount(Int32 slideCount);

 void cSetSlideDhtmlMarkupInfo(

 Int32 slideNumber,

 Int32 clickCount,

 String markupUrl,

 String[] resourceOriginalFileNames,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

 void cSetSlideDhtmlResourceInfo(

 String resourceOriginalFileName,

 String url,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

 void cSetSlideJpegInfo(

 Int32 slideNumber,

 String url,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

 void cSetThumbnailFileInfo(

 String[] files,

 String url,

 Byte[] key,

 Byte[] iv,

 Byte[] hash);

43 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 }

 Children

 {

 (annotationContainer, AnnotationContainer)

 }

}

3.1.4.1.11.2 Children

The AnnotationContainer child distributed object is responsible for managing the annotations of
the PptContent. Connection to this child is initiated by the server (2).

3.1.4.1.12 AnnotationContainer

The AnnotationContainer distributed object is responsible for communicating operations involving
Annotations. These operations include adding and removing annotations, and changing annotation

properties. Any component that needs Annotation functionality SHOULD include this distributed
object as a child.

AnnotationConstraint: Used in some distributed object messages. These represent various
constraints on annotations referenced in server and client message sections. The following table lists
the values for AnnotationConstraint.

Value

Numeric

value Description

MaxNumDrawingAnnotations 1 The maximum number of drawing annotations that are
allowed by the server

MaxNumTextAnnotations 2 The maximum number of text annotations that are
allowed by the server

MaxNumImageAnnotations 3 The maximum number of image annotations that are
allowed by the server

MaxNumStampAnnotations 4 The maximum number of stamp annotations that are
allowed by the server

MaxDrawingPathDataLength 5 The maximum length of PathData property that is allowed
by the server

MaxDrawingStrokeThickness 6 The maximum value of StrokeThickness property that is
allowed by the server

MaxTextLength 7 The maximum length of Text property that is allowed by
the server

MaxTextFontSize 8 The maximum value of Font property that is allowed by
the server

MaxImageFileSize 9 The maximum file size of an image that is allowed by the
server

MaxImageWidth 10 The maximum width of an image that is allowed by the

44 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

Value

Numeric

value Description

server

MaxImageHeight 11 The maximum height of an image that is allowed by the
server

Annotation Properties: Used in some distributed object messages. These represent various
properties for annotations referenced in server and client message sections. The following table lists
the property names, and describes the property values.

Property name Property value (String)

"LOCALID" Annotation Id assigned on the client that requested the add operation

"ANCHOR" Annotation location

"EXTENT" Drawing/Image Annotation size

"DRAWINGTYPE" Drawing annotation type

"STROKE" Drawing annotation stroke color

"STROKETHICKNESS" Drawing annotation stroke thickness

"FILL" Drawing annotation fill color

"DATA" Drawing annotation path data

"IMAGETYPE" Image annotation type

"TEXT" Text annotation text

"WIDTH" Text annotation width

"FONTFACE" Text annotation font face

"FONTSIZE" Text annotation font size

"FONTCOLOR" Text annotation font color

"TEXTDIRECTION" Text annotation text direction

3.1.4.1.12.1 Interface

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.AnnotationContainer", Version=1]

DOInterface AnnotationContainer

{

 [Hash=-5714708003270970775]

 ServerInterface

 {

 void sAddAnnotation(Int32 type, String[][] properties);

 void sChangeProperties(Int32 id, Int32 gen, String[][] properties);

 void sChangePropertyForGroup(Int32[] ids, Int32[] gens, String property, String

value);

45 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 void sChangePropertyForGroup(Int32[] ids, Int32[] gens, String property, String[]

values);

 void sChangeText(Int32 id, Int32 gen, Int32 textVersion, Int32[] begins, Int32[]

ends, String[] characters);

 void sClearAnnotations();

 void sRemoveAnnotation(Int32 id);

 void sRemoveAnnotations(Int32[] ids, Int32 cookie);

 void sSetTelepointer(String anchor, Boolean visible);

 }

 [Hash=2571074477103256610]

 ClientInterface

 {

 void cAddAnnotationBatch(Int32[] ids, Int32[] gens, Int32[] types, Int64[] ownerIds,

Int64[] modifierIds, Int32[] propertyCounts, String[] properties, String[] values);

 void cChangePropertiesBatch(Int32[] ids, Int32[] gens, Int64[] modifierIds, Int32[]

propertyCounts, String[] properties, String[] values);

 void cChangeTextBatch(Int32[] ids, Int32[] gens, Int64[] modifierIds, Int32[]

textVersions, Int32[] deltaCounts, Int32[] begins, Int32[] ends, String[] characters);

 void cClearAnnotations(Int64 removerId);

 void cErrorAddAnnotation(Int32 type, String[][] properties, String errorCode);

 void cErrorChangeProperties(Int32 id, Int32 gen, Int64 modifierId, String[][]

properties, String errorCode);

 void cErrorChangePropertyForGroup(Int32[] ids, Int32[] gens, Int64[] modifierIds,

String property, String[] values, String errorCode);

 void cErrorChangeText(Int32 id, Int32 gen, Int64 modifierId, String errorCode);

 void cErrorClearAnnotations(String errorCode);

 void cErrorRemoveAnnotation(Int32 id, String errorCode);

 void cErrorRemoveAnnotations(Int32[] ids, String errorCode, Int32 cookie);

 void cErrorSetTelepointer(String errorCode);

 void cRemoveAnnotation(Int32 id, Int64 removerId);

 void cRemoveAnnotations(Int32[] ids, Int64 removerId, Int32 cookie);

 void cSetAnnotationConstraints(Int32[] constraints, Int32[] values);

 void cSetImageFileInfo(Int32 id, String url, Byte[] key, Byte[] iv, Byte[] hash);

 void cSetTelepointer(String anchor, Int64 ownerId, Boolean visible);

 }

 Children

46 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 {

 }

}

3.1.4.1.12.2 Children

This distributed object MUST NOT contain any child distributed objects.

3.1.4.1.13 WhiteboardContent

The WhiteboardContent distributed object is responsible for operations on whiteboard content. It
represents an instance of a Whiteboard shared in the content session. Currently, there is only one
operation. This distributed object is also a parent for the AnnotationContainer distributed object,
which is responsible for the annotation functionality on the Whiteboard.

3.1.4.1.13.1 Interface

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.WhiteboardContent", Version=1]

DOInterface WhiteboardContent

{

 [Hash=4720625287907297465]

 ServerInterface

 {

 }

 [Hash=5909677840878629841]

 ClientInterface

 {

 void cConnectCompleted();

 }

 Children

 {

 (annotationContainer, AnnotationContainer)

 }

}

3.1.4.1.13.2 Children

The WhiteboardContent distributed object has one child distributed object, the
AnnotationContainer distributed object. The AnnotationContainer distributed object
encapsulates the annotation functionality for whiteboard content. The server (2) MUST initiate the
connect operation for the child distributed object, supplying the distributed object name
"annotationContainer". Exactly one AnnotationContainer child distributed object MUST be

connected.

3.1.4.1.14 PollContent

The PollContent distributed object is responsible for operations on poll content. It represents an
instance of a real-time collaborative poll, or survey, with a single question and a list of up to 7
multiple choice answers. The creator includes initial poll information, both question and choices,
during the package upload. Clients are allowed to vote for any given choice, where the values zero

("0") to "6" represent a given choice. A value of "-1" corresponds to no vote. When a given client

47 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

votes, the sum of the votes for a given choice are tabulated and sent out to all clients that are
allowed to view poll results.

The open state represents whether or not users can vote. The results state allows the client to
show or hide results.

3.1.4.1.14.1 Interface

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.PollContent", Version=1]

DOInterface PollContent

{

 [Hash=7882912516919930871]

 ServerInterface

 {

 void sClearVotes();

 void sModify(String question, String[] choices, Boolean rememberPastUsers, String

customizationXml);

 void sSetOpenState(Boolean open);

 void sSetResultsState(Boolean visibleToAll);

 void sVote(Int32 choice);

 }

 [Hash=-1572291151947590318]

 ClientInterface

 {

 void cConnectCompleted();

 void cSetLocalVote(Int32 choice);

 void cSetOpenState(Boolean open);

 void cSetQuestion(String question, String[] choices, Boolean rememberPastUsers,

String customizationXml);

 void cSetResults(Int32[] results);

 void cSetResultsState(Boolean visibleToAll);

 }

 Children

 {

 }

}

3.1.4.1.14.2 Children

The PollContent distributed object MUST NOT contain any child distributed objects.

3.1.4.1.15 SharedNotesContent

This section follows the product behavior described in endnote<5>.

48 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

The SharedNotesContent distributed object represents an instance of a Notes page shared in the
session. A presenter shares a Notes page, and includes the Notes URLs and Notes titles during the

package upload. The attendees can choose to view the page using the URLs.

A SharedNotesContent package upload MUST NOT be attempted unless a SharedNotesContent

interface has been negotiated successfully between client and server.

3.1.4.1.15.1 Interface

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.SharedNotesContent", Version=3]

DOInterface SharedNotesContent

{

 [Hash=6726721969813329838]

 ServerInterface

 {

 void sSetErrorCode(Int32 code);

 }

 [Hash=8721147891391263529]

 ClientInterface

 {

 void cConnectCompleted();

 void cSetNotesId(String notesId);

 void cSetNotesTitles(String notebookTitle, String sectionTitle, String pageTitle);

 void cSetErrorCode(Int32 code);

 }

 Children

 {

 }

}

3.1.4.1.15.2 Children

The SharedNotesContent distributed object MUST NOT contain any child distributed objects.

3.1.5 Message Processing Events and Sequencing Rules

Each message MUST be processed in the order received. If an unrecognized message is ever
received, the connection MUST be terminated immediately.

3.1.6 Timer Events

When the ping timer expires, a ping message is sent with no data on PSOM channel zero. This
serves as a keepalive message on the transport.

3.1.7 Other Local Events

When a connection is lost, no recovery action is taken. To reconnect, a full connect sequence MUST
be repeated. All timers SHOULD be reset, and the state SHOULD mirror that of the starting state
prior to connection.

49 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.2 Client Details

The client and server (2) have the life-cycle stages shown in the following diagram.

Figure 5: Client and server life-cycle stages

Each state requires mutual operations by both the client and the server (2) to get to the next state.
If there is a critical failure, the connection MUST be terminated.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The abstract data model for the client is covered in section 3.1.1 because this protocol is a

symmetric protocol at the lower layer. At a higher layer, the client has a set of interfaces and
objects that are created. Generally, the server (2) sends RPC connect messages, except in the
case of the content-related distributed objects. These objects are generally connected by the client
sending the connect message.

3.2.2 Timers

There is a ping method called with no parameters used as a keepalive message sent every 30
seconds by the client on the ConnMgr distributed object. For the ConnMgr definition, see section
3.2.3.1.3. When the timer expires, a new one is set at the same interval period.

3.2.3 Initialization

When this protocol is initialized, it MUST begin connecting to a client or server (2) or wait for
incoming connections from a server (2). The protocol has no state at this point, and no distributed

objects are connected. At a high level, connection is established, and is followed by authentication
(2), versioning, and then the root distributed object connection.

3.2.3.1 Connections

This section describes the steps required for a client to connect and successfully negotiate a

connection with a server (2). Connection entails the following main components:

Authentication (2)

Interface versioning

Root distributed object PSOM channel negotiation

50 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.2.3.1.1 Authentication

Authentication (2) involves two steps:

1. Obtain the AuthenticationToken, a string used to identify users to the DataMCU. This step is

done via a different PSOM channel than the next step.

2. PSOM connection join.

3.2.3.1.1.1 Obtain the Authentication Token

For references to details such as sAuthId and pwrpc.modes, see [MS-CONFBAS] section 2.2.3.17
and [MS-CONFBAS] section 2.2.3.18. These references describe the AddUser request and response
mechanism where these values are obtained.

The client needs the sAuthId from the AddUser response from the server (2) to authenticate.
Additionally, if a proxy server (2) is used to allow for load balancing of the server (2), the client
needs the proxyHeader field from the AddUser response.

If the pwrpc.modes field is "tls", only sAuthId is needed. If it is "fwdtls", both sAuthId and
proxyHeader MUST be sent to the server (2) as follows.

To determine the fully qualified domain name (FQDN) (1) to connect to, if pwrpc.modes is

"tls", the client MUST establish a TLS connection to the server (2) and port given in
pwrpc.pwsURI. This MUST be in the form "[fqdn]:[port]", where [fqdn] is the appropriate FQDN
(1) of the server (2), and [port] is the open port that will accept connections. If pwrpc.modes is
"fwdtls", the client MUST attempt to establish a connection to a proxy with a given FQDN (1) and
port at proxy[i].FQDN and proxy[i].Port where i is an integer that starts from zero and goes to N.
The client MUST try to connect to a random value of i, and if that fails, attempt to connect to
another possible FQDN (1) and port.

In establishing a connection, if alternativeName is present in the AddUser and pwrpc.modes is
"tls", alternativeName MUST be used in place of the X.509 certificate (2) subject to the
validation of the FQDN (1) to complete the TLS negotiation. When the connection is established

through TLS, authentication (2) begins.

Authorization is only sent by the client and validated by the server (2). The server (2) MUST
immediately terminate any client connection that does not provide this information correctly.

Immediately after establishing a connection over the appropriate transport to the server (2), if

applicable, the client MUST send the length of proxyHeader in network byte order. It MUST
follow that with the value it has for proxyHeader.

Regardless of whether a proxy is present, the client MUST then send the following in network byte
order:

[0x70 77 32 00][0x 00 00 00 00] [length of sAuthId in bytes][sAuthId].

See section 3.2.3.1.1.2 for additional details.

To complete authentication (2) of a valid sAuthId and proxyHeader, the server (2) MUST respond
with [0x 70 77 32 00]. When this sequence is completed, the versioning stage begins.

%5bMS-CONFBAS%5d.pdf
%5bMS-CONFBAS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

51 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.2.3.1.1.2 PSOM Connection Join

When a transport connection is established, the client MUST place a special signature on the wire,
followed by the AuthenticationVersion. Then it MUST place an encoded version of the

AuthenticationToken, which was obtained in section 3.3.3.1.1, on the wire. At this point, the
client can continue to send data. The data that the client MUST place on the wire for the PSOM
Connection Join has the following format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Signature

AuthenticationVersion

AuthenticationTokenLen

AuthenticationToken (variable)

...

Signature (4 bytes): Defined as "0x70773200". This field is constant.

AuthenticationVersion (4 bytes): Defined as "0x00000000". This field is constant.

AuthenticationTokenLen (4 bytes): The length of the following AuthenticationToken, in
bytes.

AuthenticationToken (variable): The byte representation of each character in the
AuthenticationToken string.

3.2.3.1.2 Interface Versioning

After authentication (2) is complete, the client MUST exchange hashes of each supported distributed
object version with the server (2). Because the root PSOM channel, channel zero, is set up implicitly,
a special distributed object is used to exchange versioning information messages. This distributed
object is referred to as ConnMgr and handles exchanging the supported list of distributed objects,
which are to be connected on PSOM channel 2 at a later time. If at any time version hashes do not
match, the client MUST terminate the connection immediately. A break message can be sent prior

to closing the connection.

Prior to interface versioning, the client MUST send a setChannel record message to the server (2),
and set the channelId to "0x00000000". After that, it is free to send any RPC messages to its
ConnMgr peer on the server (2), as the root distributed object is implicitly connected.

At a high level, ConnMgr negotiation has the client send the following RPC messages to the server
(2):

A version message.

An addProtocol message for each supported protocol on the client.

A doneProtocols message.

52 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

The payload of version SHOULD be the distributed object hash for ConnMgr’s client interface. An
addProtocol call MUST be made for each supported distributed object on the client side. Each

addProtocol call MUST contain the DOInterface name attribute, the set of supported versions,
which is also declared in the DOInterface definition, and each version’s corresponding client hash

code. When doneProtocols is sent, version, addProtocol, and doneProtocols MUST NOT be
sent by the client again.

When the client receives doneProtocols from the server (2), and has sent doneProtocols to the
server (2) after exchanging the hashes, the versioning phase is complete. At this point, the
connection is established, and the client validates that it has compatible protocol versions with the
server (2).

The log method MUST NOT be called by the client.

3.2.3.1.3 ConnMgr Distributed Object Interface Definition

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.Pod.ConnMgr", Version=1]

DOInterface ConnMgr

{

 [Hash=8322047979521208965L]

 ClientInterface

 {

 void version(Int64 stubHash);

 void addProtocol(String name, Int32[] versions, Int64[] hashes);

 void doneProtocols();

 void ping();

 }

 Children

 {

 }

}

3.2.3.1.3.1 ConnMgr Client Methods

ConnMgr client methods MUST be used to complete connection.

3.2.3.1.3.1.1 version

Allows the server (2) to send its ConnMgr hash code to the client.

stubHash (Int64): The hash code of the ConnMgr ServerInterface.

3.2.3.1.3.1.2 addProtocol

Allows the server (2) to communicate the name, versions, and hashes for a given distributed object

interface. Some implementations MAY send multiple versions/hashes. Only the corresponding
versions/hashes from the DOInterface are required. It MUST never be called after doneProtocols

is sent.

name (String): The name of the DOInterface, acquired from the attribute Name.

versions (Int32[]): A list of versions.

53 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

hashes (Int64[]): A list of summed hashes for the corresponding client and server (2) interface
versions, or client interface hash value plus server (2) interface hash value.

3.2.3.1.3.1.3 doneProtocols

The doneProtocols method is called once all addProtocol calls are completed. This call signals
that the server (2) is done sending protocol versions with addProtocol.

3.2.3.1.3.1.4 ping

The ping method is used as a keepalive mechanism. It is a no-op. For more information about this
method, see section 3.2.2.

3.2.3.1.4 Root Distributed Object Channel Negotiation

After versioning is complete, the client MUST initiate creation of PSOM channel 2. This PSOM channel
is used to send all application messages, unlike PSOM channel zero that is exclusively used for
protocol level negotiations and messages. Any message sent on PSOM channel 2 has to do with

application logic.

To do this, the client MUST send an rpcOpenMessage with a 32-bit integer payload of
"0x00000002". Per rpcOpenMessage in section 2.2.1.1.5, this message MUST be followed by an

RPC message that references the ConnMgr proxy, because the current PSOM channel is still zero,
and SHOULD call the lookup method. The values of name and protocol are ignored, but MUST be
valid PSOM string payloads. The value of proxyHash is ignored, but MUST be a valid PSOM 64-bit
integer payload. At this point, the message MUST be sent.

When the lookup message is sent, it MUST be followed by a setChannel record. The payload of
this record is a 32-bit big-endian unsigned integer with the value "0x00000002". At this point, the

root distributed object PSOM channel was negotiated successfully. Any following messages are sent
on PSOM channel 2, unless another setChannel message is sent to modify this. For more
information about the root distributed object connection and connection of the subsequent
application distributed objects, see section 3.1.4.1.

3.2.4 Higher-Layer Triggered Events

This section details application PSOM channel events. Any application PSOM channel actions are

typically driven by user action.

3.2.4.1 Distributed Objects

This section details all Application distributed objects and their client-side methods. When the
connection and versioning phase is complete, the root distributed object, Meeting, is connected.
This contains all valid server (2) to client RPC calls.

3.2.4.1.1 Meeting

The client component of the Meeting distributed object is the root distributed object for the

application distributed objects. Its sole responsibility is to receive distributed object connect
messages and the messages in the following subsections.

3.2.4.1.1.1 Methods

The methods for the Meeting distributed object are as follows:

54 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

cSetInfo: This method can be called by the server (2). If a client receives this, it SHOULD ignore it.

info (String): Not defined.

cSetUrlBase: This method communicates information about the base URL for all downloadable files.

It MUST be called by the server (2) before cMeetingReady is called.

urlBase (String): The base URL used for all downloadable files. This MUST be a valid URL path.

cMeetingReady: This method signals that all Meeting distributed object states were
communicated. Logically, the Meeting distributed object has nothing else to do once this is called.

cSetServerTime: This method communicates the current time on the server (2) in Coordinated
Universal Time (UTC). The format MUST be: yyyy'-'MM'-'dd'T'HH':'mm':'ss. It MUST be called by
the server (2) before cMeetingReady is called.

serverTime (String): The current time in UTC on the server (2) when this message is sent.

3.2.4.1.2 ContentUserManager

3.2.4.1.2.1 Methods

cUsersAdded: This method is called to tell the user about new user mappings. An id, uri, and

displayName are grouped together. If the arrays each contain two elements, the first element of
each array is the first user entry, and the second element of each array is the second user entry.

ids (Int64[]): Array of server-generated user identifiers for this mapping.

uris (string []): Array of URIs.

displayNames (string[]): Array of displayNames.

cUsersRemoved: This method indicates that a user mapping is no longer valid.

ids (Int64[]): Array of server-generated user IDs that are no longer valid.

3.2.4.1.3 ContentManager

The server (2) MUST call cContentAdded or cContentRemoved to inform clients when a piece of
content is available or no longer available to that client. Additionally, when a client requests a new
piece of content and it is created, the server (2) MUST call cContentCreated to let the client know

that the content was created.

Prior to creating any content, the title MUST be reserved by the client. This enforces title uniqueness
among all content.

The active presenter for the meeting is managed through the Content Manager. This is managed via
sPresent and sStopPresenting and communicated to the clients via cSetActivePresenter.

3.2.4.1.3.1 Methods

The methods for the ContentManager distributed object are as follows:

cContentAdded: This method informs the client that a new piece of content is available.

contentId (Int64): A server-generated integer that uniquely identifies the content for this

meeting.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

55 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

type (String): The type of the content object. This MUST be one of the following: "Content.Ppt",

"Content.Whiteboard", "Content.NativeFileOnly", "Content.Poll", "Content.SharedNotes"<6> and

"Content.PptWac"<7>. These correspond to the content’s implementation distributed object.

cContentCreated: This method is called only on the client that originated the content creation
request. It indicates to the creating client that a new piece of content was successfully created. This
gives the new contentId and the cookie that was sent during the creation request so that the client
can map the request to the Content distributed object.

contentId (Int64): A server-generated integer that uniquely identifies the content for this

Meeting.

cookie (Int32): A client-generated integer that the client put in the content creation request via

the UploadManager.

cContentCreationFailed: This method was deprecated.

cookie (Int32): Deprecated.

reason (Int32): Deprecated.

cContentRemoved: This method informs a client that the content is no longer available to it.

contentId (Int64): A server-generated integer that uniquely identifies the content for this

meeting.

cReserveTitleCompleted: This method informs the client about the success or failure of an
attempt to reserve a title.

status (Int32 - TitleReservationStatus): Result of the attempt to reserve a title.

cookie (Int32): A client-generated integer that clients use to track the reservation request.

contentId (Int64): The contentId associated with the reservation request. For a creation

reservation, this is zero ("0"). For an upgrade reservation, this is the contentId of the content to

be upgraded (currently not supported). Otherwise, this contains the contentId of the content
that already owns the reservation.

owningUserId (Int64): The ContentUser identifier associated with the client that owns the

reservation.

cSetActiveContent: This method informs the client what the active content is for the Meeting.
This can be zero ("0") to indicate there is no active content.

activeContentId (Int64): A server-generated integer that represents the contentId of the

content that is the actively presented content.

cSetActivePresenter: This method informs the client who the current active presenter is for the

Meeting. This can be zero ("0") to indicate there is no active presenter.

activePresenterId (Int64): A server-generated integer that represents the ContentUser Id of

the user who is the active presenter.

cTitleReleased: This method informs the client that the reservation was released. This can be
because of a client request or other conditions, such as a demotion that prevents the client's use of
title reservations.

56 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

cookie (Int32): The client-generated integer that was sent as part of the sReserveTitle

request.

3.2.4.1.4 UploadManager

The file uploaded through UploadManager as part of the process of sending a file from the client to
the server (2) is designated as an "upload package." This package MUST be in the format of an
Open Packaging Convention (OPC) container file. See section 7 for a sample package.

OPC is defined in [ISO/IEC29500:2011] Part 2 and in [ECMA-376].

The upload package, known as an OC package, MUST contain a manifest file called
"OcpManifest.xml." The client can include additional files if they are referenced in the manifest file.

This manifest file contains instructions for the server (2) to use to create a content instance or an
image annotation, to upgrade a content instance by replacing it with newer data or files, or to
update a PptContent in data groups. Upgrading a content instance is currently not supported, and
is reserved for future use. A server (2) implementation MAY ignore this request. Any file referred to
in the manifest MUST be present in the root level of the OC package. See the schema in section

3.2.4.1.4.2 for details of the format of the manifest.

To upload an OC package, the client MUST initiate the upload by sending an sRequestUpload

message to the server (2).

The server (2) can accept or deny the upload. If the server (2) accepts the upload, the client can
proceed with the upload using the upload stream distributed object provided by the server (2).
When the upload is complete, the client MUST call the sUploadFinished method to notify the
server (2) that it sent all the data.

The following table lists the UploadFinishReason response codes.

Response code

Numeric

value Description

Ok 0 Success.

UserCancel 1 The user cancelled the upload.

MaxPackageSizeExceeded 2 The size of the package was too large as determined by the
server (2).

CapacityExceeded 3 There is not enough space on the server (2) to complete the
operation.

UnknownFailure 4 Unknown failure.

AlreadyUploading 5 The client is already uploading with that cookie.

VerifyFailed 6 There was an error verifying the package on the server (2).

VirusScanTimeout 7 The virus scanning engine took an excessive amount of time.

NotUploading 8 The cookie provided was invalid.

TooManyUploads 9 The client attempted to initiate too many uploads at
once.<8>

ArchiveFailed 10 There was a failure archiving important information.

http://go.microsoft.com/fwlink/?LinkId=252374
http://go.microsoft.com/fwlink/?LinkId=113493

57 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

Response code

Numeric

value Description

TooManyContents 11 There are more than a predefined number of Content
objects in the conference.<9>

TooManySlides 12 A given PowerPoint content upload contained more than a
predefined number of slides.<10>

3.2.4.1.4.1 Methods

cAcceptUpload: This method is called by the server (2) to notify the client that the server (2) is
ready, and the client can proceed with the upload for the content that corresponds to the specified
cookie. The client can proceed to upload the package when it receives the call.

cookie (Int32): The unique cookie value that corresponds to the content.

stream (DistributedObject): The UploadStream distributed object that the client uses to

upload the content package, where DistributedObject is defined in section 3.1.1.1.4.

cRejectUpload: This method is called by the server (2) to notify the client that the content upload
request with the specific cookie is rejected and any further calls with the given cookie MUST NOT be

made. After the client calls sRequestUpload, the server (2) MUST respond with cRejectUpload or
cAcceptUpload.

cookie(int32): The unique cookie value that corresponds to the content.

reason (Int32): A reason code for rejecting the upload. See the preceding table for the

response codes.

cUploadFinished: This method is called by the server (2) to notify the upload client that the server

(2) finished processing the content upload that corresponds to the specific cookie. The function is
called in both success and failure cases.

cookie (Int32): The unique cookie value that corresponds to the content.

reason (Int32): The reason that the upload finished. In failure cases, the parameter specifies

the reason of the failure.

cSetAvailableSpace: This method is called by the server (2) to notify the client that the storage

space is available on the server (2). It is currently deprecated.

size (Int64): Specifies the number of bytes available on the server (2).

cAcceptWebUpload<11>: This method is called by the server (2) to notify the client that the
server sRequestWebUploadBlob method has succeeded. The client should respond by starting to
upload a file using the provided uploadUrl value. It is guaranteed that at least one client attempt
will be allowed for uploading a file content using the browser POST form upload HTTPS request.

Cookie (Int32): The unique cookie value that corresponds to the original client request.

uploadUrl(String): A URL to use for uploading the file using the browser POST form HTTPS

request.

cAcceptWebDownload<12>: This method is called by the server (2) to notify the client that the
server sRequestDownloadBlobWeb method has succeeded. The client should respond by starting

%5bMS-GLOS%5d.pdf

58 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

to download a file using the provided downloadUrl value. It is guaranteed that at least one client
attempt will be allowed for downloading a file using the browser GET HTTPS request

Cookie (Int32): The unique cookie value that corresponds to the original client request.

downloadUrl(String): A Url to use for download an unencrypted file using GET HTTPS request.

cRejectWebDownload<13>: This method is called by the server (2) to notify the client that the
server sRequestDownloadBlobWeb method has failed.

Cookie (Int32): The unique cookie value that corresponds to the original client request.

reason (Int32): The reason why sRequestDownloadBlobWeb request has failed.

The following table lists the DownloadFinishReason<14> response codes.

Response

code

Numeric

value Description

Ok 0 Success (reserved and currently is never used).

NotAuthorized 1 The user was not authorized to download this file.

NotFound 2 The specified filename is not found.

NotSupported 3 This conference does not support decrypted files download using the
HTTPS GET request.

UnknownFailure 4 Unknown failure.

3.2.4.1.4.2 Schema

The schema for Package is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

 version="1.0"

 targetNamespace="http://schemas.microsoft.com/2008/12/ocp"

 xmlns:tns="http://schemas.microsoft.com/2008/12/ocp"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:ms="urn:microsoft-cpp-xml-serializer"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 >

 <xs:annotation>

 <xs:documentation>Schema file for the OC Package manifest file between client and server

for Data MCU.</xs:documentation>

 </xs:annotation>

 <!-- Ocp root element definition -->

 <xs:element name="ocp" type="tns:ocp-type" ms:className="CXmlOcpDocument"/>

 <!-- ocp-type definition for root element -->

 <xs:complexType name="ocp-type" ms:className="CXmlOcp">

 <xs:sequence>

59 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="createContent" type="tns:create-content-type"

ms:propertyName="CreateContent"/>

 <xs:element name="createAnnotation" type="tns:create-annotation-type"

ms:propertyName="CreateAnnotation"/>

 <xs:element name="createPptContentResource" type="tns:create-ppt-content-resource-

type" ms:propertyName="CreatePptContentResource"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <!-- content-creation-type definition for contentCreation node -->

 <xs:complexType name="create-content-type" ms:className="CXmlCreateContent">

 <xs:sequence>

 <xs:element name="upgrade" type="tns:upgrade-type" ms:propertyName="Upgrade"

minOccurs="0" maxOccurs="1" />

 <xs:element name="common" type="tns:common-type" ms:propertyName="Common" />

 <xs:element name="contentDetail" type="tns:content-detail-type"

ms:propertyName="ContentDetail" />

 </xs:sequence>

 </xs:complexType>

 <!-- common-type definition for contentCreation node -->

 <xs:complexType name="common-type" ms:className="CXmlCommon">

 <xs:sequence>

 <xs:element name="title" type="xs:string" ms:propertyName="Title" />

 <xs:element name="nativeFile" type="xs:string" ms:propertyName="NativeFile"

minOccurs="0" />

 <xs:element name="visibility" type="tns:visibility-type" ms:propertyName="Visibility"

minOccurs="0" />

 <xs:element name="presented" type="xs:boolean" ms:propertyName="Presented"

minOccurs="0" />

 <xs:element name="originalFileUrl" type="xs:string" ms:propertyName="OriginalFileUrl"

minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="visibility-type" ms:className="CXmlVisibilityType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="MeetingOrganizer"/>

 <xs:enumeration value="Presenters"/>

 <xs:enumeration value="Everyone"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- upgrade-type definition for contentCreation node -->

 <xs:complexType name="upgrade-type" ms:className="CXmlUpgradeType">

 <xs:attribute name="contentId" type="xs:long" ms:propertyName="ContentId" />

 </xs:complexType>

 <!-- content-detail-type definition for contentCreation node -->

 <xs:complexType name="content-detail-type" ms:className="CXmlContentDetail">

 <xs:sequence>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"></xs:any>

 </xs:sequence>

 <xs:attribute name="type" type="tns:content-type-type" ms:propertyName="Type"/>

 </xs:complexType>

 <xs:simpleType name="content-type-type" ms:className="CXmlContentType">

 <xs:restriction base="xs:string">

60 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 <xs:enumeration value="Content.Ppt"/>

 <xs:enumeration value="Content.Whiteboard"/>

 <xs:enumeration value="Content.NativeFileOnly"/>

 <xs:enumeration value="Content.Poll"/>

 <xs:enumeration value="Content.SharedNotes"/>

 <xs:enumeration value="Content.PptWac"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- annotation-creation-type definition for createAnnotation node -->

 <xs:complexType name="create-annotation-type" ms:className="CXmlCreateAnnotation">

 <xs:sequence>

 <xs:element name="creationProperties" type="tns:creationProperties-type"

ms:propertyName="CreationProperties" />

 <xs:element name="annotationDetail" type="tns:annotation-detail-type"

ms:propertyName="AnnotationDetail" />

 </xs:sequence>

 </xs:complexType>

 <!-- creationProperties-type definition for createAnnotation node -->

 <xs:complexType name="creationProperties-type" ms:className="CXmlCreationProperties">

 <xs:sequence>

 <xs:element name="parentId" type="xs:string" ms:propertyName="ParentId" />

 </xs:sequence>

 </xs:complexType>

 <!-- annotation-detail-type definition for createAnnotation node -->

 <xs:complexType name="annotation-detail-type" ms:className="CXmlAnnotationDetail">

 <xs:sequence>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"></xs:any>

 </xs:sequence>

 </xs:complexType>

 <!-- create-ppt-content-resource-type definition -->

 <xs:complexType name="create-ppt-content-resource-type"

ms:className="CXmlCreatePptContentResource">

 <xs:sequence>

 <xs:element name="contentId" type="xs:long" ms:propertyName="ContentId" />

 <xs:element name="resourceDetail" type="tns:ppt-content-resource-detail-type"

ms:propertyName="ResourceDetail" />

 </xs:sequence>

 </xs:complexType>

 <!-- annotation-detail-type definition for createAnnotation node -->

 <xs:complexType name="ppt-content-resource-detail-type"

ms:className="CXmlPptContentResourceDetail">

 <xs:sequence>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"></xs:any>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

The schema for content-specific portions of the OC Package manifest is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

61 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 version="1.0"

 targetNamespace="http://schemas.microsoft.com/2008/12/ocp-content-detail"

 xmlns:tns="http://schemas.microsoft.com/2008/12/ocp-content-detail"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:ms="urn:microsoft-cpp-xml-serializer"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 >

 <xs:annotation>

 <xs:documentation>Schema for content-specific portions of the OC Package

manifest.</xs:documentation>

 </xs:annotation>

 <xs:element name="chunkedPptContent" type="tns:chunked-ppt-content-detail-type"

ms:className="CXmlChunkedPptContentDetailDocument" />

 <xs:complexType name="chunked-ppt-content-detail-type"

ms:className="CXmlChunkedPptContentDetail">

 <xs:sequence>

 <xs:element name="numSlides" type="xs:nonNegativeInteger" minOccurs="0" maxOccurs="1"

ms:propertyName="NumSlides" />

 <xs:element name="previewThumbnailFile" type="xs:string" minOccurs="0" maxOccurs="1"

ms:propertyName="PreviewThumbnailFile" />

 <!-- The initial set of resources that can be optionally sent during content creation

-->

 <xs:element name="pptContentResources" type="tns:ppt-content-resources-type"

minOccurs="0" maxOccurs="1" ms:className="CXmlPptContentResourcesDocument" />

 </xs:sequence>

 </xs:complexType>

 <xs:element name="pptContentResources" type="tns:ppt-content-resources-type"

ms:className="CXmlPptContentResourcesDocument" />

 <xs:complexType name="ppt-content-resources-type" ms:className="CXmlPptContentResources">

 <xs:sequence>

 <xs:element name="pptContentResource" type="tns:ppt-content-resource-type"

ms:propertyName="PptContentResourceList" minOccurs="1" maxOccurs="unbounded"

ms:className="CXmlPptContentResource">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ppt-content-resource-type" ms:className="CXmlPptContentResource">

 <xs:choice>

 <xs:element name="pptThumbnailPackage" type="tns:ppt-thumbnail-package-type"

ms:propertyName="PptThumbnailPackage" />

 <xs:element name="pptNotesPackage" type="tns:ppt-notes-package-type"

ms:propertyName="PptNotesPackage" />

 <xs:element name="pptDhtmlMarkupPackage" type="tns:ppt-dhtml-markup-package-type"

ms:propertyName="PptDhtmlMarkupPackage"/>

 <xs:element name="pptDhtmlResourcesPackage" type="tns:ppt-dhtml-resources-package-

type" ms:propertyName="PptDhtmlResourcesPackage" />

 <xs:element name="pptJpegPackage" type="tns:ppt-jpeg-package-type"

ms:propertyName="PptJpegPackage" />

 <xs:element name="partialPptFile" type="tns:ppt-partial-ppt-package-type"

ms:propertyName="PptPartialPptPackage" />

62 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 <xs:element name="fullPptFile" type="tns:ppt-full-ppt-package-type"

ms:propertyName="PptFullPptPackage" />

 <xs:element name="nativeFile" type="xs:string" ms:propertyName="NativeFile" />

 </xs:choice>

 <xs:attribute name="resourceId" type="xs:long" ms:propertyName="ResourceId" />

 </xs:complexType>

 <xs:complexType name="ppt-thumbnail-package-type" ms:className="CXmlPptThumbnailPackage">

 <xs:sequence>

 <xs:element name="thumbnailPackageFile" type="xs:string"

ms:propertyName="ThumbnailPackageFile" />

 <xs:element name="pptThumbnailSlides" type="tns:ppt-thumbnail-slide-type"

ms:propertyName="PptThumbnailSlideList" minOccurs="1" maxOccurs="unbounded"

ms:className="CXmlPptThumbnailSlide" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ppt-thumbnail-slide-type" ms:className="CXmlPptThumbnailSlide">

 <xs:attribute name="slideNumber" type="xs:nonNegativeInteger"

ms:propertyName="SlideNumber"/>

 <xs:attribute name="thumbnailFile" type="xs:string" ms:propertyName="ThumbnailFile"

/>

 </xs:complexType>

 <xs:complexType name="ppt-notes-package-type" ms:className="CXmlPptNotesPackage">

 <xs:sequence>

 <xs:element name="pptNotesSlides" type="tns:ppt-notes-slide-type"

ms:propertyName="PptNotesSlideList" minOccurs="1" maxOccurs="unbounded"

ms:className="CXmlPptNotesSlide"/>

 </xs:sequence>

 <xs:attribute name="notesPackageFile" type="xs:string"

ms:propertyName="NotesPackageFile" />

 </xs:complexType>

 <xs:complexType name="ppt-notes-slide-type" ms:className="CXmlPptNotesSlide">

 <xs:attribute name="slideNumber" type="xs:nonNegativeInteger"

ms:propertyName="SlideNumber"/>

 <xs:attribute name="notesFile" type="xs:string" ms:propertyName="NotesFile" />

 </xs:complexType>

 <xs:complexType name="ppt-dhtml-markup-package-type"

ms:className="CXmlPptDhtmlMarkupPackage">

 <xs:sequence>

 <xs:element name="pptSlideMarkup" type="tns:ppt-dhtml-slide-markup-type"

ms:propertyName="PptDhtmlMarkupList" minOccurs="1" maxOccurs="unbounded"

ms:className="CXmlPptDhtmlMarkup"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ppt-dhtml-slide-markup-type" ms:className= "CXmlPptDhtmlMarkup">

 <xs:sequence>

 <xs:element name="pptDhtmlResource" type="tns:ppt-dhtml-resource"

ms:propertyName="PptDhtmlResourceList" minOccurs="0" maxOccurs="unbounded"

ms:className="CXmlDhtmlResource"/>

 </xs:sequence>

 <xs:attribute name="slideNumber" type="xs:nonNegativeInteger"

ms:propertyName="SlideNumber" />

 <xs:attribute name="numClicks" type="xs:nonNegativeInteger" ms:propertyName="NumClicks"

/>

 <xs:attribute name="dhtmlMarkupPackageFile" type="xs:string"

ms:propertyName="DhtmlMarkupPackageFile" />

63 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 </xs:complexType>

 <xs:complexType name="ppt-dhtml-resource" ms:className="CXmlPptDhtmlResource">

 <xs:attribute name="resourceFileName" type="xs:string"

ms:propertyName="ResourceFileName" />

 </xs:complexType>

 <xs:complexType name="ppt-dhtml-resources-package-type"

ms:className="CXmlPptDhtmlResourcesPackage">

 <xs:sequence>

 <xs:element name="pptDhtmlResource" type="tns:ppt-dhtml-resource"

ms:propertyName="PptDhtmlResourceList" minOccurs="1" maxOccurs="unbounded"

ms:className="CXmlDhtmlResource"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ppt-jpeg-package-type" ms:className="CXmlPptJpegPackage">

 <xs:sequence>

 <xs:element name="pptJpegSlides" type="tns:ppt-jpeg-slide-type"

ms:propertyName="PptJpegSlideList" minOccurs="1" maxOccurs="unbounded"

ms:className="CXmlPptJpegSlide" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ppt-jpeg-slide-type" ms:className="CXmlPptJpegSlide">

 <xs:attribute name="slideNumber" type="xs:nonNegativeInteger"

ms:propertyName="SlideNumber"/>

 <xs:attribute name="jpegFile" type="xs:string" ms:propertyName="JpegFile" />

 </xs:complexType>

 <xs:complexType name="ppt-partial-ppt-package-type"

ms:className="CXmlPptPartialPptPackage">

 <xs:sequence>

 <xs:element name="slideNumber" type="xs:nonNegativeInteger"

ms:propertyName="SlideNumberList" minOccurs="1" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="partialPptFile" type="xs:string"

ms:propertyName="PartialPptFile" />

 </xs:complexType>

 <xs:complexType name="ppt-full-ppt-package-type" ms:className="CXmlPptFullPptPackage">

 <xs:attribute name="fullPptFile" type="xs:string" ms:propertyName="FullPptFile" />

 <xs:attribute name="useAsNativeFileAlso" type="xs:boolean"

ms:propertyName="UseAsNativeFileAlso" />

 </xs:complexType>

 <!-- WhiteboardContent-specific schema -->

 <xs:element name="whiteboardContent" type="tns:whiteboard-content-detail-type"

ms:className="CXmlWhiteboardContentDetailDocument" />

 <xs:complexType name="whiteboard-content-detail-type"

ms:className="CXmlWhiteboardContentDetail">

 <xs:sequence>

 <xs:element name="whiteboardType" type="tns:whiteboard-type"

ms:propertyName="WhiteboardType" />

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="whiteboard-type" ms:className="CXmlWhiteboardType">

 <xs:restriction base="xs:string">

64 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 <xs:enumeration value="empty"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- SharedNotesContent-specific schema -->

 <xs:element name="sharedNotesContent" type="tns:sharedNotes-content-detail-type"

ms:className="CXmlSharedNotesContentDetailDocument" />

 <xs:complexType name="sharedNotes-content-detail-type"

ms:className="CXmlSharedNotesContentDetail">

 <xs:sequence>

 <xs:element name="notesURL" type="xs:string" ms:propertyName="notesURL" minOccurs="0"

maxOccurs="1"/>

 <xs:element name="notesId" type="xs:string" ms:propertyName="notesId" minOccurs="0"

maxOccurs="1" />

 <xs:element name="notebookTitle" type="xs:string" ms:propertyName="notebookTitle"

minOccurs="0" maxOccurs="1"/>

 <xs:element name="sectionTitle" type="xs:string" ms:propertyName="sectionTitle"

minOccurs="0" maxOccurs="1"/>

 <xs:element name="pageTitle" type="xs:string" ms:propertyName="pageTitle" minOccurs="0"

maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <!-- NativeFileOnlyContent-specific schema -->

 <xs:element name="nativeFileOnlyContent" type="tns:nativeFileOnly-content-detail-type"

ms:className="CXmlNativeFileOnlyContentDetailDocument" />

 <xs:complexType name="nativeFileOnly-content-detail-type"

ms:className="CXmlNativeFileOnlyContentDetail">

 <xs:sequence>

 <xs:element name="nativeFileOnlyType" type="tns:nativeFileOnly-type"

ms:propertyName="NativeFileOnlyType" />

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="nativeFileOnly-type" ms:className="CXmlNativeFileOnlyType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="empty"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- PollContent-specific schema -->

 <xs:element name="pollContent" type="tns:poll-content-detail-type"

ms:className="CXmlPollContentDetailDocument" />

 <xs:complexType name="poll-content-detail-type" ms:className="CXmlPollContentDetail">

 <xs:sequence>

 <xs:element name="question" type="xs:string" ms:propertyName="Question" />

 <xs:element name="choices" type="tns:poll-content-choices-type"

ms:propertyName="Choices" />

 <xs:element name="rememberPastUsers" type="xs:boolean"

ms:propertyName="RememberPastUsers" />

 <xs:element name="customizationXml" type="xs:string" ms:propertyName="CustomizationXml"

/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="choices" type="tns:poll-content-choices-type"

ms:className="CXmlPollContentChoicesDocument" />

65 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 <xs:complexType name="poll-content-choices-type" ms:className="CXmlPollContentChoices">

 <xs:sequence>

 <xs:element name="choice" type="xs:string" ms:propertyName="PollContentChoiceList"

minOccurs="1" maxOccurs="unbounded" ms:className="CXmlPollContentChoices">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

3.2.4.1.5 UploadStream

The UploadStream distributed object client uploads an OC package to the server (2). The client
MUST call the sWrite method to send a data group of the OC package to the server (2). It MUST

provide the byte array data, and a sequence number that denotes the data sent this time. The
sequence number MUST be an incrementing number. The server (2) can disconnect the client by the
cDisconnect call.

3.2.4.1.5.1 Methods

cDisconnect: This method is called by the server (2) to disconnect the upload stream distributed
object.

cWriteComplete: This method is called by the server (2) to notify the client that a previously
uploaded data group is received.

nBytes (Int32): The number of bytes for the uploaded data group.

3.2.4.1.6 Content

3.2.4.1.6.1 Methods

The methods for the Content distributed object are as follows:

cConnectCompleted: This method is called when the server (2) finishes setting up the initial state
for the content. It does this by calling various other client-side calls to set initial properties.

cForceSync: This method is not used.

cSetCreationTime: This method tells the client what time the content was created on the server
(2).

creationTime (string): The time the content was created, in UTC time in string format.

cSetLastUsedTime: This method tells the client the time when the content was last used or
presented on the server (2).

lastUsedtime (string): The time the content was last used, in UTC time in string format.

cSetNativeFileInfo: If the content has a "native file", such as the original PowerPoint document,
attached to it, this method is used to communicate the file name, decryption keys, hash, and file

size.

fileName (string): Name of the native file.

key (byte[]): Byte array containing the decryption key.

%5bMS-GLOS%5d.pdf

66 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

iv (byte[]): Byte array containing the initialization vector for decryption.

hash (byte[]): Byte array containing the hash for this file.

fileSize (Int64): The size of the file.

cSetOwnerId: This method informs the client of the ContentUser identifier of the owner, or the
person who created and uploaded this content.

id (Int64): The server-generated integer of the ContentUser identifier.

cSetPresentInfo: This method informs the client who the current active presenter is for this
content, if any, and the current presented state. ContentManager’s cSetActiveContent MUST be
sent in addition to this because it is more accurate.

presented (Boolean): Whether or not this content is in a presented state.

presenterId (Int64): A server-generated integer that represents the ContentUser identifier of

the user who is the active presenter of this content.

cSetPresentationOrder: This method informs the client what the current order is for showing
content. The highest number is the most recently presented content.

presentationOrder (Int64): Presentation order. Zero ("0") if the content is not presented.

cSetTitle: This method informs the client what the title of the content is.

title (string): Title of the content.

cSetTitleComplete: This method informs the client about the success or failure of an sSetTitle
call.

status (Int32 - SetTitleStatus): Status, either success or failure, of the sSetTitle call.

title (string): Title that was requested for the content.

cSetVisibility: This method informs the client what the current visibility of this content is.

visibility (Int32 - ContentVisibility): Value representing the visibility.

cSetOriginalFileUrl<15>: This method informs the client what the original file URL of the content
is, if it is available. This MAY be used when the content file is on a shared location.

originalFileUrl (string): Original File URL of the content.

cSetViewingUrl<16>: This method informs the client what the viewing URL of the content is, if it is
available. This MAY be used when the content can be viewed via an URL.

viewingUrl (string): Viewing URL of the content.

cSetRecordingUrl<17>: This method informs the client what the recording URL of the content is, if
it is available. This MAY be used when the content can be viewed via an URL.

recordingUrl (string): Recording URL of the content.

67 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.2.4.1.7 NativeFileOnlyContent

NativeFileOnlyContent’s client interface is only called when the associated Content distributed
object is logically connected.

3.2.4.1.7.1 Methods

cConnectCompleted: This method allows the server (2) to communicate that the logical content
distributed object connection is completed and that cSetNativeFileInfo was called previously. This
method MUST be called once per client after all other Content distributed object calls are
completed.

3.2.4.1.8 AnnotationContainer

cSetAnnotationConstraints MUST be called on the client indicating all the constraints that are
going to be imposed on the server (2). After this, cAddAnnotationBatch MUST be called on the
client with all of the pre-existing annotations.

3.2.4.1.8.1 Methods

cAddAnnotationBatch: This method is used by the server (2) to send a batch of added

annotations to the client.

ids (Int32 []): Identifiers of the annotations added.

gens (Int32 []): Current generation numbers for the annotations.

types (Int32 []): Types of the annotations added.

ownerIds (Int64 []): Identifiers of the owners of the annotations.

modifierIds (Int64[]): Identifiers of the last modifiers of the annotations.

propertyCounts (Int32 []): Count of properties per annotation.

properties (String []): Property names for the annotations. These MUST be from the property

names specified in the Annotation Properties table in section 3.1.4.1.12. This array can be larger
than the other arrays. The propertyCounts MUST be used to figure out how many property

names belong to each annotation.

values (String []): Property values for the annotations. This array can be larger than the other

arrays. The propertyCounts MUST be used to figure out how many property values belong to
each annotation.

cChangePropertiesBatch: This method is used by the server (2) to send a batch of changed
properties to the client.

ids (Int32 []): Identifiers of the annotations changed.

gens (Int32 []): Current generation numbers for the annotations.

modifierIds (Int64 []): Identifiers of the modifiers of the annotations.

propertyCounts (Int32 []): Count of properties per annotation.

properties (String []): Property names for the annotations. These MUST be from the property

names specified in the Annotation Properties table in section 3.1.4.1.12. This array can be larger

68 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

than the other arrays. The propertyCounts MUST be used to figure out how many property
names belong to each annotation.

values (String []): Property values for the annotations. This array can be larger than the other

arrays. The propertyCounts MUST be used to figure out how many property values belong to
each annotation.

cChangeTextBatch: This method is used by the server (2) to send a batch of text changes to the
client. This method MUST only be called for text annotations.

ids (Int32 []): Identifiers of the text annotations that have changed.

gens (Int32 []): Current generation numbers for the annotations.

modifierIds (Int64 []): Identifiers of the modifiers of the annotations.

textVersions (Int32 []): Current text versions for the annotations.

deltaCounts (Int 32[]): Count of deltas per annotation.

begins (Int 32[]): Beginning positions of the text deltas. This array can be larger than the

other arrays. The deltaCounts MUST be used to figure out how many deltas belong to each

annotation.

ends (Int 32[]): Ending positions of the text deltas. This array can be larger than the other

arrays. The deltaCounts MUST be used to figure out how many deltas belong to each
annotation.

characters (String []): Characters in the text deltas. An empty string indicates that the delta is

for a deleted sequence in the text. This array can be larger than the other arrays. The
deltaCounts MUST be used to figure out how many deltas belong to each annotation.

cClearAnnotations: This method is used by the server (2) to indicate to the client that all the
annotations have been cleared.

removerId (Int64): Identifier of the remover.

cErrorAddAnnotation: This method is used by the server (2) to indicate an error in adding an
annotation. This method MUST only be called on the client that requested the add operation. The

server (2) MUST NOT send the "Telepointer" type or a non-supported type in the type parameter.

type (Int32): Type of annotation.

The following table lists the values of type.

Value Numeric value Description

Drawing "0" Drawing annotation type

Text "1" Text annotation type

Image "2" Image annotation type

Telepointer "3" Telepointer annotation type

properties (String [][]): Initial set of properties and values for the annotation that were sent

to the server (2). These MUST be from the property names specified in the Annotation Properties
table in section 3.1.4.1.12.

69 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

errorCode (String): Error code from the server (2).

cErrorChangeProperties: This method is used by the server (2) to indicate an error in changing

properties for an annotation. The current values on the server (2) MUST be sent back to the client.

This method MUST only be called on the client that requested the property changes.

id (Int32): Identifier of the annotation.

gen (Int32): Current generation number of the annotation.

modifierId (Int64): Identifier of the last modifier.

properties (String [][]): Current values of properties that were sent to the server (2). These

MUST be from the property names specified in the Annotation Properties table in section
3.1.4.1.12.

errorCode (String): Error code from the server (2).

cErrorChangePropertyForGroup: This method is used by the server (2) to indicate an error in

changing a property for a group of annotations. The current values on the server (2) for the
property MUST be sent back to the client. This method MUST only be called on the client that

requested the property changes.

ids (Int32 []): Identifiers of the annotations.

gens (Int32 []): Current generation numbers for the annotations.

modifierIds (Int64): Identifier of the last modifier.

property (String): The property that could not be changed. This MUST be from the property

names specified in the Annotation Properties table in section 3.1.4.1.12.

values (String []): Current values on the server (2) for the property for the group of

annotations.

errorCode (String): Error code from the server (2).

cErrorChangeText: This method is used by the server (2) to indicate an error in changing the text
property of a text annotation. This method MUST only be called on the client that requested the text

change.

id (Int32): Identifier of the text annotation.

gen (Int32): Current generation number of the annotation.

modifierId (Int64): Identifier of the last modifier.

errorCode (String): Error code from the server (2).

cErrorClearAnnotations: This method is used by the server (2) to indicate an error in clearing all
the annotations to the client. This method MUST only be called on the client that requested the
clear operation.

errorCode (String): Error code from the server (2).

cErrorRemoveAnnotation: This method is used by the server (2) to indicate an error in removing
the annotation to the client. This method MUST only be called on the client that requested the

remove operation.

70 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

id (Int32): Identifier of the annotation.

errorCode (String): Error code from the server (2).

cErrorRemoveAnnotations: This method is used by the server (2) to indicate an error in

removing a group of annotations to the client. This method MUST only be called on the client that
requested the remove operation.

ids (Int32 []): Identifiers of the annotations.

errorCode (String): Error code from the server (2).

cookie (Int32): Cookie that was passed to the server (2) with the remove operation. This

cookie is opaque to the server (2).

cErrorSetTelepointer: This method is used by the server (2) to indicate an error in updating a
Telepointer to the client. This method MUST only be called on the client that requested the
Telepointer update.

errorCode (String): Error code from the server (2).

cRemoveAnnotation: This method is used by the server (2) to indicate to the client that an

annotation was removed.

id (Int32): Identifier of the annotation that was removed.

removerId (Int64): Identifier of the remover.

cRemoveAnnotations: This method is used by the server (2) to indicate to the client that a group
of annotations were removed.

ids (Int32 []): Identifiers of the annotations that were removed.

removerId (Int64): Identifier of the remover.

cookie (Int32): Cookie that was passed to the server (2) with the remove operation. This

cookie is opaque to the server (2).

cSetAnnotationConstraints: This method is used by the server (2) to send the constraints that
are going to be imposed on the server (2).

constraints (Int32 []): The constraints defined in the enumeration AnnotationConstraint.

values (Int32 []): The values of the constraints.

cSetImageFileInfo: This method is used by the server (2) to set the image file information for an
image annotation. The image annotation MUST exist on the client. This method MUST be called
exactly once per client for each image annotation.

id (Int32): The identifier of the annotation.

url (String): URL of the image file resource. The image file pointed to by this URL MUST be

AES256 encrypted, and can be decrypted by the key and iv parameters.

key (Byte []): The AES256 key of the encrypted file pointed to by url.

iv (Byte []): The initialization vector for key.

71 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

hash (Byte []): The SHA-1 hash of the file pointed to by url. The hash MUST be of the

unencrypted file.

cSetTelepointer: This method is used by the server (2) to indicate to the client that a Telepointer

was updated.

anchor (String): Anchor property that describes the location of the Telepointer.

ownerId (Int64): Identifier of the owner.

visible (Boolean): Visibility property that describes whether the Telepointer is visible.

3.2.4.1.9 WhiteboardContent

The cConnectCompleted method MUST be called exactly once per client.

3.2.4.1.9.1 Methods

cConnectCompleted: This method is used by the server (2) to indicate to the client that its child
distributed object is done connecting. This method has no parameters. The child distributed object
MUST be connected before this call. This method MUST be called once per client.

3.2.4.1.10 PptContent

The client-side PptContent distributed object receives slide count, location, and resource
information from the server (2).

3.2.4.1.10.1 Methods

The methods for the PptContent distributed object are as follows:

cConnectCompleted: This method allows the server (2) to communicate that the current location,
all slide info, and the thumbnail info have been sent. The cSetSlideCount and cSetLocation
methods SHOULD have been called previously. This method SHOULD be called once per client.

cSetSlideCount: This method allows the server (2) to communicate the number of slides in the
PptContent.

slideCount (Int32): The number of slides in the PptContent.

cSetLocation: This method allows the server (2) to communicate a new location value for the

PptContent. This method SHOULD be called on all clients in response to a successful sSetLocation
call from a client.

location (String): New location information to be set for PptContent. MUST conform to

PptLocation schema in section 3.1.4.1.11.

cSetPreviewThumbnailFileInfo: This method allows the server (2) to communicate to clients
resource information for the preview thumbnail of the PptContent. This method SHOULD be called

once per client.

url (String): URL of the preview thumbnail. The file that url points to MUST be AES256

encrypted and can be decrypted with key and iv.

key (Byte[]): The AES256 key of the file pointed to by url.

iv (Byte[]): The input vector of key.

%5bMS-OFCGLOS%5d.pdf

72 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

hash (Byte[]): The SHA-1 hash of the file pointed to by url. The hash MUST be of the file in its

unencrypted form.

cSetThumbnailFileInfo: This method allows the server (2) to communicate to clients the resource

information for the slide thumbnails of the PptContent. This method SHOULD be called once per
client, and only if there are thumbnail resources uploaded for the PptContent.

files (String[]): File names of the thumbnail files that are in the Open Package Convention file

pointed to by url. File names MUST be in the order of the slide that they refer to.

url (String): URL of the Open Package Convention file containing all slide thumbnails for the

PptContent. The file that url points to MUST be AES256 encrypted and can be decrypted with

key and iv.

key (Byte[]): The AES256 key of the file pointed to by url.

iv (Byte[]): The input vector of key.

hash (Byte[]): The SHA-1 hash of the file pointed to by url. The hash MUST be of the file in its

unencrypted form.

cSetPartialPptFileInfo: This method allows the server (2) to communicate to clients the resource
information for the partial PowerPoint file. A partial PowerPoint file is a PowerPoint 97-2003
Presentation file that includes some or all of the slides in the presentation.

url (String): URL of the Open Package Convention file containing the partial PowerPoint file. The

file that url points to MUST be AES256 encrypted and can be decrypted with key and iv.

slideNumbers (Int32[]): The slide numbers that are contained in the partial PowerPoint file.

key (Byte[]): The AES256 key of the file pointed to by url.

iv (Byte[]): The input vector of key.

hash (Byte[]): The SHA-1 hash of the file pointed to by url. The hash MUST be of the file in its

unencrypted form.

cSetNotesInfo: This method allows the server (2) to communicate to clients resource information

for the slide notes of the PptContent.

slideNumbers (Int32[]): The slide numbers that are contained in the Open Package

Convention file containing the notes.

url (String): URL of the Open Package Convention file that contains the slide notes. The file that

url points to MUST be AES256 encrypted and can be decrypted with key and iv.

key (Byte[]): The AES256 key of the file pointed to by url.

iv (Byte[]): The input vector of key.

hash (Byte[]): The SHA-1 hash of the file pointed to by url. The hash MUST be of the file in its

unencrypted form.

cSetSlideDhtmlResourceInfo: This method allows the server (2) to communicate to clients the
resource information for the Dynamic Hypertext Markup Language (DHTML) resource for a

slide. These resources can be shared between markup resources.

%5bMS-OFCGLOS%5d.pdf

73 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

resourceOriginalFileName (String): Unique name corresponding to a shared asset or

resource. This can be referred to by one or more cSetSlideDHtmlMarkupInfo calls.

url (String): URL for the Open Package Convention file that contains the DHTML resource for the

resource. The file that url points to MUST be AES256 encrypted and can be decrypted with key
and iv.

key (Byte[]): The AES256 key of the file pointed to by url.

iv (Byte[]): The input vector of key.

hash (Byte[]): The SHA-1 hash of the file pointed to by url. The hash MUST be of the file in its

unencrypted form.

cSetSlideDhtmlMarkupInfo: This method allows the server (2) to communicate to clients the
resource information for the DHTML resource for a slide.

slideNumber (Int32): Slide number that resources in url are for.

clickCount (Int32): The number of animations on the slide.

markupUrl (String): URL for the Open Package Convention file that contains the DHTML

resources for the slide. The file that url points to MUST be AES256 encrypted and can be
decrypted with key and iv.

resourceOriginalFileNames (String[]): Array of DhtmlResources that are associated with

this slide. Each entry MUST correspond to a corresponding call from the
cSetSlideDhtmlResourceInfo’s resourceOriginalFileName parameter.

key (Byte[]): The AES256 key of the file pointed to by url.

iv (Byte[]): The input vector of key.

hash (Byte[]): The SHA-1 hash of the file pointed to by url. The hash MUST be of the file in its

unencrypted form.

cSetFullPptFileInfo: This method allows the server (2) to communicate to clients the resource
information for the PowerPoint 97-2003 format file of the presentation containing all slides of the

PptContent. This method SHOULD be called once per client and only if the resource is available.

url (String): URL of the Open Package Convention file containing the PowerPoint 97-2003

format file that has all slides of the PptContent. The file that url points to MUST be AES256
encrypted and can be decrypted with key and iv.

key (Byte[]): The AES256 key of the file pointed to by url.

iv (Byte[]): The input vector of key.

hash (Byte[]): The SHA-1 hash of the file pointed to by url. The hash MUST be of the file in its

unencrypted form.

cSetSlideJpegInfo: This method allows the server (2) to communicate to clients the resource
information for the Jpeg resource for a slide.

slideNumber (Int32): Slide number that resources in url are for.

74 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

url (String): URL for the Open Package Convention file that contains the Jpeg resources for the

slide. The file that url points to MUST be AES256 encrypted and can be decrypted with key and

iv.

key (Byte[]): The AES256 key of the file pointed to by url.

iv (Byte[]): The input vector of key.

hash (Byte[]): The SHA-1 hash of the file pointed to by url. The hash MUST be of the file in its

unencrypted form.

cErrorAddingResource: This method allows the server (2) to communicate to the uploading client
that there was a server-side failure while adding a resource. This method SHOULD be called on the

client that attempted to upload the particular resource.

resourceId (Int32): Resource identifier of the resource for which the error occurred.

errorCode (Int32): Error code for the failure. MUST be one of the values specified in the

ResourceErrorCode type in section 3.1.4.1.11.

cSetResourceErrorCode: This method allows the server (2) to communicate to clients that there

was an error with adding a particular resource and that the resource is not available.

beginSlide (Int32): The beginning index, inclusive, of the slide range for the error. MUST be

greater than or equal to zero, less than the number of slides for the PptContent, and less than
or equal to endSlide.

endSlide (Int32): The ending index, inclusive, of the slide range for the error. MUST be greater

than or equal to zero, less than the number of slides for the PptContent, and greater than or

equal to beginSlide.

format (Int32): The format of the resource generating the error. MUST be one of the values

specified in the ResourceFormat enumeration in section 3.1.4.1.11.

errorCode (Int32): Error code for the failure. MUST be one of the values specified in the

ResourceErrorCode enumeration in section 3.1.4.1.11.

3.2.4.1.11 PollContent

The PollContent client distributed object is able to receive state, the local user’s vote, and the
aggregate sum of responses for the choices. Both the client and server (2) can choose to enforce
maximum length limits on any strings or arrays.

3.2.4.1.11.1 Methods

The methods for the PollContent distributed object are as follows:

cSetQuestion: This method allows the server (2) to communicate the poll's question and choices.

question (String): The text of the question.

choices (String[]): An array with length greater than 1 and less than or equal to 7. Each

element represents the text of a given choice. The ordinal positions of each array element are
held consistent across all other calls. For example, position zero corresponds to position zero in

the results array in cSetResults.

rememberPastUsers (Boolean): This is provided for future extensibility. MUST be "true".

75 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

customizationXml (String): This is provided for future extensibility. MUST be an empty string.

cSetResults: This method allows the server (2) to communicate the sum of the votes for a given

choice. If the results are not visible to the client, this MUST be an array of all zeros.

results (Int32[]): Array of integer vote sums. The length MUST be either the maximum allowed

number of choices, which is 7, or the number of choices used in cSetQuestion. If the results are
not visible to a given client, this MUST be an array of all zeros; otherwise it MUST be non-
negative sums of the number of users that voted for a given choice.

cSetOpenState: This method allows the server (2) to communicate whether or not clients can call
sVote.

open (Boolean): When "true", all clients can call sVote. When "false", clients SHOULD NOT call

sVote. If they do, the server (2) MUST respond with cSetLocalVote with the value of the
client’s vote that was set when cSetOpenState, which means that open equals "true".

cSetResultsState: This method allows the server (2) to communicate whether or not results are
shown to a certain subset of attendees.

visibleToAll (Boolean): When "true", all clients can view the results. If "false", only presenters

can view the results.

cSetLocalVote: This method communicates the client’s local vote. This MUST be persisted by the
server (2) if the client, as the same user, ever connects to this distributed object and had a past
vote.

choice (Int32): The value of the user’s vote. A value of "-1" represents the absence of a vote.

cConnectComplete: This method allows the server (2) to communicate that the current location,

all slide information, and the thumbnail info have been sent. The cSetQuestion, cSetOpenState,
cSetResultsState, and cSetLocalVote methods SHOULD have been called previously. This method
SHOULD be called once per client.

3.2.4.1.12 SharedNotesContent

This section follows the product behavior described in endnote<18>.

The client-side SharedNotesContent distributed object receives notes identifier and title

information from the server (2).

Note that the notes URLs are received from the server (2) through the Content distributed object
methods cSetOriginalFileUrl and cSetViewingUrl.

3.2.4.1.12.1 Methods

The methods for the SharedNotesContent distributed object are as follows:

cConnectCompleted: This method allows the server (2) to communicate that the notes Id and title

information have been sent. The cSetNotesId and cSetNotesTitles methods SHOULD have been

called previously. This method SHOULD be called once per client.

cSetNotesId: This method allows the server (2) to communicate the notes Id.

notesId (String): The notes Id.

cSetNotesTitles: This method allows the server (2) to communicate the notes title information.

76 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

notebookTitle (String): The title of the notebook.

sectionTitle (String): The title of the section.

pageTitle (String): The title of the page.

cSetErrorCode: This method allows the server (2) to communicate notes related errors.

code (Int32): The error code. The only allowed value is 1 denoting an unknown error.

3.2.5 Message Processing Events and Sequencing Rules

This protocol’s lower layer protocol description does not require a particular ordering of messages.
However, a higher layer application can require this, but it is dependent on the particular message

received. This is highlighted for each component. The client MUST process any incoming message in
the order that it is received. Sometimes user input is required prior to sending a response message,
if required. In other cases, an immediate response is required.

3.2.6 Timer Events

Because this protocol requires a lossless transport, there are no time-outs. No higher-layer timers
exist that are specific to the client. See section 3.1.6 for timers that are common between the client

and the server (2).

3.2.7 Other Local Events

In the event that a connection is terminated by the server (2), the client can choose to re-establish
the connection by starting the connection process from the beginning.

3.3 Server Details

The life-cycle stages of the server (2) are specified in section 3.2. The server (2) is responsible for
some conference states and authorizing clients. At the messaging layer, there are minimal
differences. See section 3.3.4 for details on specific server (2) functionality.

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The server (2) is composed of a set of higher-layer messages built on the PSOM messaging layer.
Logically, the server (2) holds all conference states and allows clients to interact with those states,
notifying other clients of any changes that take place.

3.3.2 Timers

There is a ping method called, with no parameters, that is used as a keepalive message that is sent
every 30 seconds by the server (2) on the ConnMgr distributed object. For the ConnMgr
definitions, see section 3.3.3.1.3. When the timer expires, a new one is set at the same interval
period.

77 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.3.3 Initialization

When this protocol is initialized, it MUST begin connecting to a server (2) or a client, or wait for
incoming connections from a server (2). The protocol has no state at this point, and no distributed

objects are connected. At a higher layer, connection is established. This is followed by
authentication (2), versioning, and root distributed object connection.

3.3.3.1 Connections

This section describes the steps required for a server (2) to successfully negotiate a connection with
a client. Connection entails three main components:

Authentication (2).

Interface versioning.

Root distributed object PSOM channel negotiation.

See sections 3.2.3.1.1 and 3.2.3.1.2 for additional details about authentication (2) and interface
versioning because there are required responses or actions for each message.

3.3.3.1.1 Authentication

The server (2) MUST generate the appropriate AddUser response fields to an authorized user, as
defined in [MS-CONFBAS] section 2.2.3.18. Using these details, the client establishes a connection
to the server (2). The server (2) MUST ensure that the sAuthId (as defined in [MS-CONFBAS]
section 2.2.3.18) and any other token presented during this phase match the one presented to the
user via AddUser. If the client does not do this within 120 seconds or does it with an invalid value,
the server (2) MUST immediately terminate the incoming connection.

3.3.3.1.2 Interface Versioning

After authentication (2) is completed, the server (2) MUST exchange with the client hashes of each
distributed object version that it supports. Because the root PSOM channel, channel zero, is set up

implicitly, a special distributed object is used to exchange versioning information messages. This
distributed object is referred to as ConnMgr and handles exchanging the supported list of
distributed objects that are to be connected on PSOM channel 2 at a later time. If at any time the

version hashes do not match, the server (2) MUST terminate the connection immediately. A break
message can be sent prior to closing the connection.

As the server (2) receives the addProtocol messages from the client, it MUST validate that the
hashes match its own definitions. If the server (2) determines that the hashes are not equal, it
MUST terminate the connection with a close or break message. If the server (2) determines that
the hashes are equal, it MUST repeat the same sequence of RPC messages to the client, including its

own hash information instead. When the server (2) sends doneProtocols to the client, and has
received doneProtocols from the client after exchanging the hashes, the versioning phase is
complete. At this point, the connection is established, and the server (2) validates that it has
protocol versions compatible with the client.

3.3.3.1.3 ConnMgr Distributed Object Interface Definition

[Name="Microsoft.Rtc.Server.DataMCU.Meeting.Pod.ConnMgr", Version=1]

DOInterface ConnMgr

{

 [Hash=-8221414758688209204L]

 ServerInterface

%5bMS-CONFBAS%5d.pdf
%5bMS-CONFBAS%5d.pdf

78 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 {

 void version(Int64 stubHash);

 void addProtocol(String name, Int32[] versions, Int64[] hashes);

 void doneProtocols();

 void log(String msg);

 void lookup(String name, String protocol, Int64 proxyHash);

 void ping();

 }

3.3.3.1.3.1 ConnMgr Server Methods

3.3.3.1.3.1.1 version

The first distributed object method call. This is used to communicate the overall client interface
ConnMgr hash to the server (2).

stubHash (Int64): The hash code of the ConnMgr ClientInterface.

3.3.3.1.3.1.2 addProtocol

Allows the client to communicate the name, versions, and hashes for a given distributed object
interface. Some implementations MAY send multiple versions. Only the versions/hashes specified in
the DOInterface attributes SHOULD be sent, other values MUST be ignored. This method MUST
NOT be called after doneProtocols is sent.

name (String): The name of the DOInterface, acquired from the attribute Name.

versions (Int32[]): A list of versions.

hashes (Int64[]): A list of summed hashes for the corresponding client and server (2) interface
versions, or client interface hash value plus server (2) interface hash value.

3.3.3.1.3.1.3 doneProtocols

The doneProtocols method is received when all addProtocol calls are completed. This signals that

the client is done sending protocol versions with addProtocol.

3.3.3.1.3.1.4 log

Deprecated. The log method does nothing.

msg (String): No meaning.

3.3.3.1.3.1.5 Lookup

Lookup is a special method call. It is used as part of the rpcOpen record message to indicate that
a new PSOM channel is to be created.

name (String): Deprecated. Value is ignored.

79 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

protocol (String): Deprecated. Value is ignored.

proxyHash (Int64): Deprecated. Value is ignored.

3.3.3.1.3.1.6 ping

This is used as a keep-alive mechanism. It is a no-op.

3.3.4 Higher-Layer Triggered Events

This section details application PSOM channel events.

3.3.4.1 Distributed Objects

The following sections specify higher-layer triggered events for distributed objects.

3.3.4.1.1 Meeting

The server (2) piece of the Meeting distributed object MUST send distributed object connect
messages for its child objects, ContentUserManager and ContentManager, immediately after
connection. It MUST also call cSetUrlBase followed by cMeetingReady to complete the logical
connection sequence.

3.3.4.1.1.1 Methods

sSetInfo: MUST NOT be called. This method is not currently supported.

info (String): Not defined.

3.3.4.1.2 ContentUserManager

No methods exist on the server (2) interface.

3.3.4.1.2.1 Methods

None.

3.3.4.1.3 ContentManager

The server (2) MUST respond to sReserveTitle with cReserveTitleCompleted.

For active presenter calls such as sPresent, which allows the client to become the active presenter,

or sStopPresenting, which gives up the active presenter role, the server (2) only needs to indicate
a change via cSetActivePresenter. If there is no change, such as when the request is not honored
because of permissions or because it would have no effect, no response is required.

3.3.4.1.3.1 Methods

sDeleteContent: This method requests that the server (2) delete the content.

contentId (Int64): The server-generated integer that uniquely identifies the content to be

deleted.

sPresent: Claims the active presenter role. If a piece of content is currently being presented, that
content is no longer presented.

80 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

sReleaseTitle: This method is called by clients to release a title reservation.

cookie (Int32): The client-generated integer that was sent as part of a previous sReserveTitle

request.

sReserveTitle (1): This method is called by clients to reserve a content title.

title (String): The title to reserve.

cookie (Int32): A client-generated integer that the clients can use to track the completion of

this request.

sReserveTitle (2): This method is deprecated.

title (String): Deprecated.

cookie (Int32): Deprecated.

externalId (String): Deprecated.

sStopPresenting: If the requesting client is the current active presenter, relinquishes the stage.

3.3.4.1.4 UploadManager

When the server (2) receives a request from the client, it MUST respond with cRejectUpload or
cAcceptUpload. In the cRejectUpload method, the server (2) MUST provide the rejection reason.
If the server (2) accepts the upload, it MUST call the client’s cAcceptUpload method, and it MUST
provide the upload cookie and the distributed object UploadStream. The client can then use the
UploadStream to send bytes that represent the package to the server (2).

When the server (2) receives sUploadFinished, it can parse the contents of the uploaded file and
act appropriately.

The client can, at any time during the upload, cancel the upload. To do this, the client MUST call
sUploadFinished with the cancel flag set to "true". If the client did not upload all of the file’s

bytes, the server (2) MUST call the client’s cUploadFinished method, with the appropriate upload
finished reason.

3.3.4.1.4.1 Methods

sRequestUpload: This method is used for server (2) to server (2) interactions as an alternate

method for upload initiation, and SHOULD NOT be called by a client.

fileLength (Int64): The size of the content file to be uploaded.

cookie (Int32): The unique cookie value that corresponds to the content to be created.

manifestXml (String): The XML typically placed in OcpManifest.xml.

sRequestUpload: This method is called by a client to initiate the upload of an OC package. The

client MUST pass the packed and unpacked size of the package file to be uploaded, and the cookie

associated with the content to be created. This cookie is used to identify various uploads. After this
call, the client MUST wait for a response from the server (2), as described in section 3.2.4.1.4.1.

packedLength (Int64): The packed size of the content package file to be uploaded.

unpackedLength (Int64): The unpacked size of the content package file to be uploaded.

81 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

cookie (Int32): The unique cookie value that corresponds to the content to be created.

sUploadFinished: This method MUST be called by the client upon completion of the upload and

provide the same cookie as provided in sRequestUpload. This covers the cases where the client

uploaded all the data and where the client cancels the upload.

cookie (Int32): The unique cookie value that corresponds to the content.

cancel (Boolean): When "false", the user uploaded all the data. When "true", the server (2)

MUST cancel the upload.

sRequestWebUploadBlob<19>: This method is called by a client to initiate the upload of a single
file using HTTPS Form POST request. The client MUST pass the OC package manifest content and

the cookie associated with the content to be created. This cookie is used to identify various uploads.
After this call, the client MUST wait for a response from the server (2), as described in section
3.2.4.1.4.1.

cookie (Int32): The unique cookie value that corresponds to the content to be created.

manifestXml (String): The XML typically placed in OcpManifest.xml file of OC package.

sRequestWebDownloadBlob<20>: This method is primarily for web clients to download a single

file over HTTPS with decrypted content. Used whenever the client does not support decryption. After
this call, the client MUST wait for a response from the server (2), as described in section 3.2.4.1.4.1

cookie (Int32): The unique cookie value that corresponds to the content.

obfuscatedName(String): The original encrypted file name sent from the server (2), to the

client using the cSetNativeFileInfo method, as described in section 3.2.4.1.6.1

isAttachment (Boolean): True if the server should put the following HTTP response headers

when delivering the file to the client:

ContentType: application/x-download

Content-Disposition: attachment; filename="filename"

3.3.4.1.5 UploadStream

When the server (2) receives a group of data that was sent by the client, it acknowledges the client

by calling the cWriteComplete method. The server (2) MUST provide the received data size of the
sWrite call it received.

3.3.4.1.5.1 Methods

sDisconnect: This method is called by the client to disconnect the UploadStream distributed
object from the server (2).

sWrite: This method is called by the client to write a group of data to the server (2). The client

MUST provide the data group as a byte array and a sequence number for the write, which MUST be
an incrementing number.

Data (byte[]): The byte array is the data group to be uploaded.

packetNum (Int32): The sequence number of the data group to be uploaded.

82 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.3.4.1.6 Content

The server (2) MUST call cSetTitleComplete to inform clients when an attempt to rename the
content via sSetTitle either succeeded or failed.

For active presenter calls such as sPresent, to become the active presenter, or sStopPresenting,
to give up the active presenter role, the server (2) only needs to indicate a change via
cSetPresentInfo or ContentManager’s cSetActiveContent. If there is no change, such as when
the request is not honored because of permissions or because it would have no effect, no response
is required.

3.3.4.1.6.1 Methods

sForceSync: This method is not used.

sMakeHighestPresentationOrder: This method makes an already-presented content become the
highest presentation order.

sPresent: This method claims the active presenter role for this piece of content. If it was not
already presented, it becomes presented.

sSetTitle: This method requests the title be changed.

title (string): The title to use to rename the content.

sSetVisibility: This method sets the visibility for this content.

visibility (Int32 - ContentVisibility): The visibility to set the content.

sStopPresenting: If the requesting client is the active presenter for this content, this method stops
presenting the content and removes the client from the active presenter role.

3.3.4.1.7 NativeFileOnlyContent

NativeFileOnlyContent’s server interface has no messages defined. Messages MUST NOT be sent.

3.3.4.1.7.1 Methods

There are no methods defined.

3.3.4.1.8 AnnotationContainer

The server (2) MUST respond to client requests for adding, removing and modifying annotations. It
MUST respond by broadcasting the add or remove or modify to all the clients, and in the case of
errors, it MUST respond with an error response to the originating client.

3.3.4.1.8.1 Methods

sAddAnnotation: This method is a request to the server (2) to add an annotation of the specified
type, using the specified properties. The server (2) MUST validate the type and properties, and if

valid, it MUST add this information to a collection for tracking purposes, because other operations
involving this annotation can be sent to the server (2). At this point, a unique identifier MUST be
assigned to the annotation that clients can use to refer to the annotation.

If there is an error while processing this operation, an error response MUST be sent to the client
using the cErrorAddAnnotation method. If the annotation was successfully added, a notification

83 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

response MUST be sent to all the clients using the cAddAnnotationBatch method. The server (2)
can batch all such notifications and send them in batches from time to time.

Only "Drawing", "Text", and "Image" type annotations can be added to the container. The client
MUST NOT send an add operation for a "Telepointer" annotation, or any non-supported type.

type (Int32): Type of annotation to add.

Value Meaning

0 Drawing

1 Text

2 Image

3 Telepointer

properties (String [][]): Initial set of properties and values for the annotation. These MUST be

from the property names specified in the Annotation Properties table in section 3.1.4.1.12.

sChangeProperties: This method is a request to the server (2) to change an existing annotation’s

properties. If the annotation with the specified id is not found, the server (2) MUST send an error
response to the client using the cErrorChangeProperties method. If an invalid generation number
or properties are sent, the server (2) SHOULD disconnect the client. If valid parameters are
received, the generation number MUST be incremented, and the changed properties MUST be sent
to all the clients using the cChangePropertiesBatch method.

id (Int32): Identifier of the annotation to change.

gen (Int32): Current generation number.

properties (String [][]): Properties to change. This is a two-dimensional array of property

names and property values. These MUST be from the property names specified in the Annotation
Properties table in section 3.1.4.1.12.

sChangePropertyForGroup (1): This method is a request to the server (2) to change a property
for a group of existing annotations. The specified property has the same value for all the

annotations in the group. If any of the parameters are invalid, the server (2) SHOULD disconnect
the client. If none of the annotations are found, the server (2) MUST send an error response to the
client using the cErrorChangePropertyForGroup method. If individual annotations are not found,
the server (2) MUST send an error response to the client using the cErrorChangeProperties
method. If valid parameters are received and the annotations are found, the generation numbers
MUST be incremented, and the changed property MUST be sent to all the clients using the

cChangePropertiesBatch method.

ids (Int32 []): Identifiers of the annotations to change.

gens (Int32 []): Current generation numbers for the annotations.

property (String): The property that needs to be changed. This MUST be from the property

names specified in the Annotation Properties table in section 3.1.4.1.12.

value (String): The new value of the property.

sChangePropertyForGroup (2): This method is a request to the server (2) to change a property
for a group of existing annotations. The specified property can have a different value for each of the

84 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

annotations in the group. If any of the parameters are invalid, the server (2) SHOULD disconnect
the client. If none of the annotations are found, the server (2) MUST send an error response to the

client using the cErrorChangePropertyForGroup method. If individual annotations are not found,
the server (2) MUST send an error response to the client using the cErrorChangeProperties

method. If valid parameters are received and the annotations are found, the generation numbers
MUST be incremented, and the changed property MUST be sent to all the clients using the
cChangePropertiesBatch method.

ids (Int32 []): Identifiers of the annotations to change.

gens (Int32 []): Current generation numbers for the annotations.

property (String): The property that needs to be changed. This MUST be from the property

names specified in the Annotation Properties table in section 3.1.4.1.12.

values (String []): The new values of the property.

sChangeText: This method is a request to the server (2) to change the text property of a text
annotation. This method MUST only be called for text annotations. The changes MUST be sent in the

form of text deltas. If the annotation is not found, the server (2) MUST send an error response to

the client using the cErrorChangeText method. If the text version is stale, the server (2) MUST
reject the change but, because this is not an error, an error response MUST NOT be sent back to the
client. If the text deltas are invalid, the server (2) SHOULD disconnect the client. If valid deltas are
received and the annotation is found and the text version is not stale, the generation number MUST
be incremented, and the deltas MUST be sent to all the clients using the cChangeTextBatch
method.

id (Int32): Identifier of the text annotation to change.

gen (Int32): Current generation number.

textVersion (Int32): Text version that the change is based on.

begins (Int32 []): Beginning positions of the text deltas.

ends (Int32 []): Ending positions of the text deltas.

characters (String []): Characters in the text deltas. An empty string indicates that the delta is

for a deleted sequence in the text.

sClearAnnotations: This method is a request to the server (2) to remove all the annotations. If
there are no annotations to clear, an error response MUST be sent to the client using the
cErrorClearAnnotations method. If the annotations are successfully cleared, the server (2) MUST
send the clear operation to all the clients using the cClearAnnotations method. This method has

no parameters.

sRemoveAnnotation: This method is a request to the server (2) to remove an annotation. If the
annotation is not found, an error response MUST be sent to the client using the
cErrorRemoveAnnotation method. If the operation is successful, the server (2) MUST send the
remove operation to all the clients using the cRemoveAnnotation method.

id (Int32): Identifier of the annotation to remove.

sRemoveAnnotations: This method is a request to the server (2) to remove a group of
annotations. If there are no annotations to remove, an error response MUST be sent to the client
using the cErrorRemoveAnnotations method. If any annotations are removed successfully, the

85 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

server (2) MUST send a remove operation with the identifiers of the annotations that were actually
removed to all the clients, using the cRemoveAnnotations method.

ids (Int32 []): Identifiers of the annotations to remove.

cookie (Int32): Cookie sent by the client. This cookie is opaque to the server (2).

sSetTelepointer: This method is a request to the server (2) to set the Telepointer’s properties. If
the Telepointer is visible, and if it was previously added to the server’s collection, it MUST be
updated. Otherwise, a new Telepointer MUST be created and added to the server’s collection for
tracking purposes. This Telepointer’s information MUST be sent to all the clients using the
cSetTelepointer method.

If the Telepointer is not visible, it MUST be removed from the server’s collection, and the

information MUST be sent to all clients using the cSetTelepointer method.

anchor (String): Anchor property that describes the location of the Telepointer.

visible (Boolean): Visibility property that describes whether the Telepointer is visible.

3.3.4.1.9 WhiteboardContent

No methods exist on the server (2) interface.

3.3.4.1.9.1 Methods

None.

3.3.4.1.10 PptContent

The server-side PptContent distributed object is responsible for receiving and fanning out changes

to the PptLocation, and alerting clients of resource availability and errors. Resources that are
uploaded through UploadManager for this particular content have availability and status
communicated out to clients via client-side methods such as cSetFullPptFileInfo or

cSetResourceErrorCode.

3.3.4.1.10.1 Methods

sSetLocation: This method allows a client to attempt to change the location of the PptContent.

location (String): New location information to be set for PptContent. MUST conform to the

PptLocation schema in section 3.1.4.1.11 or be the value "INITIAL_LOCATION". When the
PptContent's location is successfully changed, the server (2) SHOULD call cSetLocation with
the new location on all clients.

sSetResourceErrorCode: This method allows the client to communicate to the server (2) that
there was an error while adding a particular resource, and that the resource is not available. The

server (2) SHOULD call cSetResourceErrorCode for each client with the same information, in
response to sSetResourceErrorCode.

beginSlide (Int32): The beginning index, inclusive, of the slide range for the error. MUST be

greater than or equal to zero, less than the number of slides for the PptContent, and less than
or equal to endSlide.

86 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

endSlide (Int32): The ending index, inclusive, of the slide range for the error. MUST be greater

than or equal to zero, less than the number of slides for the PptContent, and greater than or

equal to beginSlide.

format (Int32): The resource format that the error is for. MUST be one of the values specified

in the ResourceFormat enumeration in section 3.1.4.1.11.

errorCode (Int32): Error code for the failure. MUST be one of the values specified in the

ResourceErrorCode enumeration in section 3.1.4.1.11.

3.3.4.1.11 PollContent

The server-side PollContent distributed object is responsible for receiving votes, state updates,
question changes, and choice changes and fanning out changes to selected clients that are allowed
to see that information. The server (2) SHOULD persist votes and result counts across conferences.
The server (2) SHOULD enforce certain limits on vote counts and question length. For example, the
server (2) can either ignore calls or send back a distributed object call that reflects the state the
server (2) determines all clients ought to have.

Methods such as cSetQuestion and cSetOpenState are shared objects that certain clients can

modify. They are used to share the value of a given distributed property.

3.3.4.1.11.1 Methods

The methods for the PollContent distributed object are as follows:

sClearVotes: This method instructs the server (2) to clear all existing votes for the poll. When the
server (2) receives this call, the server (2) MUST send updated results to all users that can receive
them, using cSetResults.

sModify: This method allows clients with permission to change the existing question and choices.
When this is called and the server (2) determines that the client can make changes and that the
values are within appropriate ranges, it MUST send cSetQuestion messages to all clients.

question (String): The text of the poll’s question.

choices (String[]): The choices for the poll. Each position corresponds to the choice value

specified in sVote.

rememberPastUsers (Boolean): MUST be "true". Provided for future extensibility.

customizationXml (String): MUST be an empty string. Provided for future extensibility.

sSetOpenState: This method allows clients with sufficient permission to modify whether or not the
poll is open. cSetOpenState MUST be sent to all clients if the value changes.

open (Boolean): "True" if all users are able to vote by calling sVote. "False" otherwise.

sSetResultsState: This method allows clients with sufficient permission to modify whether or not
attendees can view results.

visibleToAll (Boolean): When "true", all attendees can view results. cSetResults MUST be

sent to clients with updated results. When "false", only presenters can view results. cSetResults
MUST be sent to clients that are no longer able to view results and the accompanying results
array MUST contain zeros for all values.

sVote: This method allows clients to vote for a given choice.

87 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

choice (Int32): A valid vote is a value from zero ("0") up to the length of the choices array in

cSetQuestion, inclusive. A value of "-1" indicates a lack of a vote. When a user votes for choice

zero, the value communicated in the cSetResults array position zero SHOULD increase by 1. If

the poll is closed, this SHOULD NOT change result values. The server (2) MUST acknowledge
client votes by sending cSetLocalVote back to the client with the recorded vote value. If the poll
is closed, it SHOULD send the value stored before sVote was called by that given client.

3.3.4.1.12 SharedNotesContent

This section follows the product behavior described in endnote<21>.

The server-side SharedNotesContent distributed object is responsible for storing notes Id, Title

and URL information.

3.3.4.1.12.1 Methods

The methods for the SharedNotesContent distributed object are as follows:

sSetErrorCode: This method allows clients to communicate an error to the server (2).

code (Int32): The error code. The only allowed value is 1 denoting an unknown error.

3.3.4.2 File Download

Files MUST be made available to clients through a file Web server over HTTP or Hypertext Transfer
Protocol over Secure Sockets Layer (HTTPS), as specified in [RFC2616].

The message cSetUrlBase MUST indicate the root of this Web server. When any other message
contains a file name as a parameter, the specified fileName MUST be appended to download the
referenced file. The files MUST be encrypted with the Advanced Encryption Standard (AES), as

defined in [FIPS197], when they are made available on the file Web server. The decryption keys are
distributed to clients through various messages where terms such as key and iv, or initialization
vector, are used.

3.3.4.3 Decrypted File Download

For a client that cannot process encrypted downloaded files, UploadManager distributed object has
added the sRequestWebDownloadBlob method (see section 3.3.4.1.4.1).

3.3.4.4 Single File Upload using HTTPS request

For a client that cannot compose an OC package and that can only upload single files using the
HTTPS Form POST request, UploadManager distributed object has added the
sRequestWebUploadBlob method (see section 3.3.4.1.4.1). The sequence of steps is as follows:

1. Client sends a sRequestWebUploadBlob message to server (2) over the PSOM protocol.

2. The server sends back to the client either the cAcceptWebUpload or the cRejectUpload

message.

3. If the client has received the cAcceptWebUpload message, it SHOULD use the provided
uploadUrl to send the file content using the HTTPS Form POST request implemented by most
browsers.

4. When the upload is finished the server sends back the HTTP 200 response with the body of the
following format "<html>200</html>". If the file upload request has failed, the server sends

%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89870

88 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

back to the client a non-200 HTTP response and the body MAY contain additional information
such as "<html>404</html>" if the file upload permission has expired.

5. After step 4 client MUST call the sUploadFinished method and provide the same cookie as in
the sRequestWebUploadBlob request as well as set the cancel parameter to true if the

operation has failed.

6. After step 5 the client MAY use the sRequestWebUploadBlob message to request a new file
upload over HTTPS or retry the failed operation for the same file.

3.3.5 Message Processing Events and Sequencing Rules

All messages MUST be processed in the order that they are received. The server (2) MUST respond
to any messages that require a response before reading any additional messages from other clients.

3.3.6 Timer Events

The server (2) has the timer mentioned in section 3.1.2 through the ping message. Additionally,

any sAuthId that is not redeemed within 120 seconds SHOULD expire so that the client can no
longer connect with that token.

3.3.7 Other Local Events

None.

3.4 Proxy Details

Any non-PSOM proxies that exist MUST relay the data as it is and SHOULD NOT modify the traffic in
any way.

The only supported proxy is silent. It MUST make no changes to traffic. The only difference between

the proxy and the server (2) is that an extra authentication (2) token is required upon connection to
the proxy. All other interactions are identical. See section 3.3.3.1 for details.

3.4.1 Abstract Data Model

None.

3.4.2 Timers

None.

3.4.3 Initialization

None.

3.4.4 Higher-Layer Triggered Events

None.

3.4.5 Message Processing Events and Sequencing Rules

None.

89 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

3.4.6 Timer Events

None.

3.4.7 Other Local Events

None.

90 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

4 Protocol Examples

This section details a sample session and divides it into three segments:

Connection until the root distributed object is about to be connected.

Root distributed object and child object connection.

Client and server (2) exchange an RPC message.

The examples are all sequential; however, the server (2) authentication (2) response could come at

any time after the client sends the authentication (2) token, but before any other data from the
server (2).

4.1 Connection of PSOM Channel Zero (Prior to Root Distributed Object)

In the following example, a client with an authorization token of
"3000000000000000E36032154C544908" is used to authenticate the connection. The following

protocols are defined:

ConnMgr as defined in section 3.1.3.1.

Meeting as defined in section 3.1.4.1.6, but no child objects are connected in this example.

4.1.1 Client to Server Authentication

The client sending data to the server (2) through AuthenticationToken has the following format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Signature

AuthenticationVersion

AuthenticationTokenLen

AuthenticationToken (variable)

0x45333630;0x33323135;0x34433534;0x34393038

...

Signature (4 bytes): Set to "0x70773200".

AuthenticationVersion (4 bytes): Set to "0x00000000".

AuthenticationTokenLen (4 bytes): Set to "0x00000020".

AuthenticationToken (variable): Set to the following:

0x33303030;

0x30303030;

0x30303030;

91 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

0x30303030

4.1.2 Server to Client Authentication Response

The server (2) sending data in response to the action in the previous section for a successful token
submission has the following format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Signature

Signature (4 bytes): Set to "0x70773200".

4.1.3 Client to Server Channel Creation

The client sending data to the server (2) in response to successful authentication (2) confirmation to
create channel zero has the following format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SetChannel ChannelId

...

SetChannel (1 byte): Header for message type; defined as "0x04".

ChannelId (4 bytes): The representation of the channel identifier to be set. This PSOM channel

is used for all messages that follow this one, with the exception of other SetChannel

messages.

4.1.4 Client to Server Versioning

The client to server (2) versioning sequence represents some of the messages sent by the client to
the server (2) during the connection negotiation phase. This illustrates the 3 key messages:

version

addProtocol

doneProtocols

The addProtocol message is sent multiple times with different parameters for each registered
distributed object.

In the non-block sequence diagrams, there is a number in parentheses. This number is the byte

count of the payload.

92 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

4.1.4.1 version (stubHash)

This version represents the client notifying the server (2) of its ConnMgr client interface hash
version, which is "8322047979521208965". This has the following format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RpcMessage MessageLength

... ProxyId MethodIndex Parameter 1

...

RpcMessage (1 byte): Set to "0x16".

MessageLength (4 bytes): Set to "0x0000000b".

ProxyId (1 byte): Set to "0x00".

MethodIndex (1 byte): Set to "0x01".

Parameter 1 (9 bytes): Int64 stubHash 0x (87,73,7d,da,8b,97,1e,72,85)

4.1.4.2 addProtocol (name, versions, hashes)

The addProtocol message sends the following over PSOM channel zero, which is the connection
PSOM channel:

name: Microsoft.Rtc.Server.DataMCU.Meeting.Pod.ConnMgr

Versions: "1"

Hashes: "100633220832999761". This is the sum of the server (2) and client interface hashes:

-8221414758688209204 + 8322047979521208965 == 100633220832999761

Data flow:

RpcMessage (1)

"0x16"

Message Length (4)

"0x00000040"

ProxyId (1)

"0x00"

MethodIndex (1)

"0x02"

Parameter 1: name

93 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

Length of string (2)

"0x0030"

Payload (48)

0x 9d,88,91,71,7b,56,59,21,2c,47,

0x 28,ff,ff,83,ed,aa,92,87,67,61,

0x 0a,71,27,23,09,34,c9,ce,82,f0,

0x ab,ba,84,68,7c,44,1a,15,39,03,

0x 56,ca,f5,c5,d2,80,b9,9d,

Parameter 2: versions

Length of array ("1")

"0x01"

Value of only entry in array encoded as Int32 (1)

"0x01"

Parameter 3: hashes

Length of array (1)

"0x01"

Value of only entry in array encoded as Int64 (9)

0x 87,01,65,85,61,94,5a,b9,51

4.1.4.3 doneProtocols

The doneProtocols is represented as follows.

Data flow:

RpcMessage (1)

"0x16"

Message Length (4)

"0x00000002"

ProxyId (1)

"0x00"

MethodIndex (1)

"0x03"

Because there are no arguments, this is the only data sent.

94 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

4.1.5 Server to Client Versioning

Server (2) to client versioning is very similar to client to server (2) versioning messages.

The following is a version RPC call (16 bytes).

0x 16,00,00,00,0b,00,01,8f,72,18,55,2a,02,c3,b9,34

The following is an addProtocol message in a ConnMgr RPC call (69 bytes).

0x16,00,00,00,40,00,02,00,30,9d,88,91,71,7b,56,59,21,2c,47,28,ff,ff,83,ed,aa,92,87,67,61,0a,7

1,27,23,09,34,c9,ce,82,f0,ab,ba,84,68,7c,44,1a,15,39,03,56,ca,f5,c5,d2,80,b9,9d,01,01,01,87,0

1,65,85,61,94,5a,b9,51

The following is an addProtocol message in a Meeting RPC Call (65 bytes).

0x16,00,00,00,3c,00,02,00,2c,59,4c,55,35,37,1a,15,ed,e8,83,ec,bb,83,df,51,76,56,43,23,25,46,3

d,eb,ef,cd,f0,8d,8a,de,4c,77,46,40,2c,38,00,56,c4,ff,ce,c8,a4,b0,88,01,01,01,8f,1b,db,fa,2d,b

c,55,32,5a

The following is a doneProtocols message in an RPC Call (6 bytes).

0x 16,00,00,00,02,00,03

4.2 PSOM Channel 2 Distributed Object Root Connection

The Lookup message is sent from the client to the server (2) when versioning is complete. This is a

special message that creates a new logical PSOM channel, with id="2", for the application
distributed objects to communicate. The total length of this sequence is 49 bytes.

rpcOpenMessage (1 byte)

"0x37"

Channel Id = 2 (u32Arg) (4 bytes)

"0x00 00 00 02"

Open Message Length (value == 40 decimal) (4 bytes)

"0x00 00 00 28"

ProxyId (1 byte)

"0x00"

MethodIndex (for lookup) (1 byte)

"0x05"

Parameter 1 – Name (string) – Unused (20 bytes)

0x 00,12,9a,90,b4,4e,3f,51,4d,24,38,01,19,a4,e8,ce,d1,a2,a8,8a

95 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

Parameter 2 – Protocol (string) – Unused (9 bytes)

0x 00,07,c7,f5,df,e9,be,bb,8b,

Parameter 3 – proxyHash (Int64) - Unused (9 bytes)

0x 8f,6e,14,7b,cb,cb,37,8e,f7

4.3 Server to Client RPC Message Exchange

This example demonstrates the server (2) to client flow for setting up the root distributed object,
which is Meeting. The sequence is as follows:

SetChannel

cSetUrlBase

Connect ContentUserManager

Note that other Connect messages would be sent here. They are omitted for brevity.

cMeetingReady

SetChannel: Represents a PSOM channel-level request to set the current PSOM channel for all
following messages.

SetChannel (1 byte)

"0x04"

ChannelId u32Arg (4 bytes)

"0x 00 00 00 02"

cSetUrlBase Message: Represents a server (2) to client message with a string payload of

"http://example.com/conference/1015".

RpcMessage (1 byte)

"0x16"

Length (4 bytes)

"0x 00 00 00 26"

ProxyId (1 byte)

"0x00"

MethodIndex (1 byte)

"0x04"

Parameter 1 – string (34 bytes)

String Length

"0x 00 22"

96 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

String payload

0xd6,bb,94,81,38,3c,0b,50,3e,36

0x05,09,e6,fe,82,de,a1,b2,df,62

0x7d,4d,52,20,24,02,16,ea,ff,84

0x8d,fd,ef,da

Connect ContentUserManager

RpcMessage (1 byte)

"0x16"

Length (4 bytes)

"0x 00 00 00 1f"

RPC message type (Connect) (1 byte)

"0x84"

Destination ProxyId (1 byte)

"0x00"

Connection String

Length

"0x 00 12"

Payload ("ContentUserManager")

0x ad,b0,9e,75,77,4d,40,10,25,02,

0x 0a,c4,fb,c5,dd,aa,bb,9d,

Server (2) hash code for distributed object to connect (Int64)

0x 87,49,d5,9c,18,ed,9d,9e,0c

cMeetingReady Message: Signals the distributed object connection routine is complete for the
Meeting distributed object.

RpcMessage (1 byte)

"0x16"

Length (4 bytes)

"0x 00 00 00 02"

ProxyId (1 byte)

"0x00"

MethodIndex (1 byte) – corresponds to cMeetingReady (no parameters)

97 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

"0x01"

sReserveTitle Message: This is a sample client to server (2) message requesting a title

reservation. This message follows a ping message that was sent by the server (2), which is not

included. The client sets the PSOM channel to 2, because pings are received on PSOM channel zero.
The title to be reserved is "Hello World".

SetChannel (1 byte)

"0x04"

ChannelId (4 bytes)

"0x 00 00 00 02"

RpcMessage (1 byte)

"0x16"

Length (4 bytes)

"0x 00 00 00 10"

ProxyId (1 byte) – recall this is encoded as a PSOM Int32 (and value "-2")

"0x fe"

MethodIndex (1 byte)

"0x 04"

Parameter 1 – Title (string) (13 bytes)

0x 00,0b,0d,33,0b,14,e6,ba,fc,d3,bf,b2,8b

Parameter 2 – Cookie (1 byte)

"0x 01"

Possible messages from the server: This is a set of messages that can be received following a

title reservation request. This is sent from the server (2) to the client.

The following is a cContentUserAdded message.

RpcMessage

"0x 16"

Length

"0x 00 00 00 3b"

ProxyId

"0x 01"

MethodIndex

"0x 01"

98 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

Parameter 1 – Array with Id

0x 01,01

Parameter 2 – Array with Uris

0x01,00,26,09,e2,ec,97,cc,b6,81,9f,64,23,64,47,32,34,0c,1c,fc,b5,c2,c9,ba,ba,83,75,3c,4e,5
d,26,24,08,0b,e6,fc,df,92,ae,b1,82

Parameter 3 – Array with Name

0x 01,00,0b,17,2f,06,16,b9,ba,ed,dd,bf,b3,df

The following is a cTitleReservationCompleted message.

RpcMessage

"0x 16"

Length

"0x 00 00 00 06"

ProxyId

"0x 02"

MethodIndex

"0x 05"

Parameter 1 – Status (value corresponds to "ReservedForCreation")

"0x 01"

Parameter 2 – Cookie

"0x 01"

Parameter 3 – contentId

"0x 00"

Parameter 4 – owningUserId

"0x 01"

99 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

5 Security

5.1 Security Considerations for Implementers

SHA-1 is used as a file hash to optimize for downloads, but is not used for security purposes.

AES is used to encrypt and decrypt files stored on the file Web server.

5.2 Index of Security Parameters

Because this protocol requires a secure transport, the only unique piece is the authorization token.

Security parameter Section

Authorization token (AuthId) Sections 3.2.3.1.1.1 and 3.3.3.1.1

100 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

6 Appendix A: Encoding Algorithms

This appendix covers the specialized encoding algorithms used by this protocol to represent several
primitive types.

6.1 GenericInt

This algorithm optimizes on length for smaller, meaning closer to zero, numbers. The following rules
apply:

Numbers in the range -112 to 127 are represented by one byte, which is their value.

Numbers outside of that range are represented in variable length unsigned big-endian notation.

The lead byte indicates their length and sign.

The lead byte is 0x80 plus (8 if negative or plus 0 otherwise) plus (nbytes minus 1), where

nbytes is the number of data bytes following, and includes the numbers 1, 2, 3, 4, 6, and 8.

The following table lists some examples:

Number Representation

0 0x00

255 0x80 0xFF

-255 0x88 0xFF

256 0x81 0x01 0x00

The two numbers in the following table are encoded irregularly because of twos-complement
arithmetic:

Number Representation

-(2^31) 0x88 0x00

-(2^63) 0x8d 0x00 0x00 0x00 0x00 0x00 0x00

6.1.1 Pseudo-Code

The following code sample demonstrates how to encode a GenericInt into a variable length byte
array.

byte[] EncodeGenericInt(int x)

{

 if (-112 <= x && x <= 127)

 {

 return x as byte;

 }

 Int64 absX = AbsoluteValue(x);

 Int32 size = (absX <= 0xFF ? 0

 : (absX <= 0xFFFF ? 1

101 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

 : (absX <= 0xFFFFFF ? 2

 : (absX <= 0xFFFFFFFF ? 3

 : (absX <= 0xFFFFFFFFFFFF ? 5

 : 7)))));

 byte[] baseBytes = new byte[9];

 Int32 basePosition = 0;

 baseBytes[basePosition++] = ((x >= 0 ? 0x80 : 0x88) + size) as byte;

 if (size >= 7) baseBytes[basePosition++] = ((absX >> 0x38) & 0xFF) as byte;

 if (size >= 6) baseBytes[basePosition++] = ((absX >> 0x30) & 0xFF) as byte;

 if (size >= 5) baseBytes[basePosition++] = ((absX >> 0x28) & 0xFF) as byte;

 if (size >= 4) baseBytes[basePosition++] = ((absX >> 0x20) & 0xFF) as byte;

 if (size >= 3) baseBytes[basePosition++] = ((absX >> 0x18) & 0xFF) as byte;

 if (size >= 2) baseBytes[basePosition++] = ((absX >> 0x10) & 0xFF) as byte;

 if (size >= 1) baseBytes[basePosition++] = ((absX >> 0x08) & 0xFF) as byte;

 if (size >= 0) baseBytes[basePosition++] = ((absX >> 0x00) & 0xFF) as byte;

 byte[] toReturn = SubsetOf(baseBytes from 0 to (size + 1));

 return toReturn;

}

6.2 String

This section describes the encoding algorithm for generating PSOM strings as parameters, given a
UTF-8 string as input. The first two bytes are reserved for an encoded version of the length, which is
not greater than 0xFFFF.

Define varIncrement equals "-17".

Define Int32 (signed) varvalue equals zero ("0").

For each byte in the UTF-8 encoded string starting at the last position and moving towards

position 0 in the UTF-8 encoded string:

Increment varValue by varIncrement.

Execute an XOR operation on the byte in the string and varValue.

Place the resultant byte in the same position as the byte that was just included in the XOR

operation.

UTF-8 encoding for wide characters:

Characters in the range 0x0001 to 0x007F:

Encoded as 1 byte, which matches the character’s byte value.

Characters in the range 0x0080 to 0x07FF:

The wide character is divided into two parts, x and y, as shown in binary 0000 0xxx xxyy

yyyy.

The first byte is represented as binary 110x xxxx.

This is the equivalent of OR’ing bits 6 and 10 with 0xC0.

102 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

The second byte is represented as 10yy yyyy.

This is the equivalent of OR’ing bits 0 and 5 with 0x80.

Characters in the range 0x0800 to 0xFFFF:

The wide character is divided into three parts, which can be represented as xxxx yyyy yyzz

zzzz.

The first byte is 1110 xxxx.

This is the equivalent of OR’ing bits 12 and 15 with 0xE0.

The second byte is 10yy yyyy.

This is the equivalent of OR’ing bits 6 and 11 with 0x80.

The third byte is 10zz zzzz.

This is the equivalent of OR’ing bits 0 and 5 with 0x80.

Because the maximum size of the string is 0xFFFF, the first two bytes of the string segment are

the unsigned integer big-endian representation of the length.

Example: A string "pptdemo2.pptx" with a length of 13 becomes "0x00 0x0D" in the length

header.

Following is an example of a generated PSOM string:

A string "pptdemo2.pptx" becomes, in hexadecimal:

00,0d,53,44,31,32,02,15,e6,a8,85,cc,bd,aa,97

103 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

7 Appendix B: Sample Upload Package

An OC Package is composed of a manifest, with the name "OcpManifest.xml", and any other files
that are referenced by the manifest. In the case of creating content with a single file attached to it,
the upload package contains two parts. Note that this is an OPC file, so there might be additional
metadata files per the specification. This example includes a jpeg-encoded image named "Ryan’s
Fun Day.jpg". Note that the contents and type of this file is irrelevant to the example.

OcpManifest.xml:

<ocp xmlns="http://schemas.microsoft.com/2008/12/ocp">

 <createContent>

 <common>

 <title>Ryan’s Fun Day.jpg</title>

 <nativeFile>native.file</nativeFile>

 </common>

 <contentDetail type="Content.NativeFileOnly">

 <nativeFileOnlyContent xmlns="http://schemas.microsoft.com/2008/12/ocp-content-

detail">

 <nativeFileOnlyType>empty</nativeFileOnlyType>

 </nativeFileOnlyContent>

 </contentDetail>

 </createContent>

</ocp>

native.file: Binary payload of any file to share. In this case, the file is a jpeg-encoded image.

Before this is uploaded, the client sends an sReserveTitle message and receives a cTitleReserved
response from the server (2) with a positive confirmation of the title reservation, with a title that
matches the title specified in the preceding XML fragment.

%5bMS-OFCGLOS%5d.pdf

104 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

8 Appendix C: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft® Lync® Server 2010

Microsoft® Lync® 2010

Microsoft® Lync® Server 2013

Microsoft® Lync® 2013

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 3.1.4.1.4: Lync Server 2010, Lync 2010, Lync Server 2013, Lync 2013: The maximum
number of allowed reservations is 20.

<2> Section 3.1.4.1.5.1: Lync Server 2010, Lync 2010: This behavior is not supported.

<3> Section 3.1.4.1.8.1: Lync Server 2010, Lync 2010: This behavior is not supported.

<4> Section 3.1.4.1.11.1: Lync Server 2010, Lync 2010: This behavior is not supported.

<5> Section 3.1.4.1.15: Lync Server 2010, Lync 2010: This behavior is not supported.

<6> Section 3.2.4.1.3.1: Lync Server 2010, Lync 2010: This behavior is not supported.

<7> Section 3.2.4.1.3.1: Lync Server 2010, Lync 2010: This behavior is not supported.

<8> Section 3.2.4.1.4: Lync Server 2010, Lync 2010, Lync Server 2013, Lync 2013: The maximum
number of concurrent upload streams is 5.

<9> Section 3.2.4.1.4: Lync Server 2010, Lync 2010, Lync Server 2013, Lync 2013: The maximum

number of Content objects is 50.

<10> Section 3.2.4.1.4: Lync Server 2010, Lync 2010, Lync Server 2013, Lync 2013: The
maximum number of slides is 1000.

<11> Section 3.2.4.1.4.1: Lync Server 2010, Lync 2010: This behavior is not supported.

<12> Section 3.2.4.1.4.1: Lync Server 2010, Lync 2010: This behavior is not supported.

<13> Section 3.2.4.1.4.1: Lync Server 2010, Lync 2010: This behavior is not supported.

<14> Section 3.2.4.1.4.1: Lync Server 2010, Lync 2010: This behavior is not supported.

<15> Section 3.2.4.1.6.1: Lync Server 2010, Lync 2010: This behavior is not supported.

<16> Section 3.2.4.1.6.1: Lync Server 2010, Lync 2010: This behavior is not supported.

105 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

<17> Section 3.2.4.1.6.1: Lync Server 2010, Lync 2010: This behavior is not supported.

<18> Section 3.2.4.1.12: Lync Server 2010, Lync 2010: This behavior is not supported.

<19> Section 3.3.4.1.4.1: Lync Server 2010, Lync 2010: This behavior is not supported.

<20> Section 3.3.4.1.4.1: Lync Server 2010, Lync 2010: This behavior is not supported.

<21> Section 3.3.4.1.12: Lync Server 2010, Lync 2010: This behavior is not supported.

106 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

9 Change Tracking

This section identifies changes that were made to the [MS-PSOM] protocol document between the
July 2012 and October 2012 releases. Changes are classified as New, Major, Minor, Editorial, or No
change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

107 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N) Change type

1.3
Overview

Changed the name from 'Protocol Overview
(Synopsis)' to 'Overview'.

N Content updated for
template compliance.

3.1.4.1.10.1
Interface

Removed unused/unsupported methods in the
NativeFileOnlyContent distributed object.

Y Content removed.

3.2.4.1.4
UploadManager

Updated the list of products to which the behavior
note for TooManyUploads applies, and clarified the
description.

N Product behavior
note updated.

3.2.4.1.4
UploadManager

Updated the list of products to which the behavior
note for TooManyContents applies, and clarified the
description.

N Product behavior
note updated.

3.2.4.1.4
UploadManager

Updated the list of products to which the behavior
note for TooManySlides applies.

N Product behavior
note updated.

3.2.4.1.4.1
Methods

Added product behavior note for the
cAcceptWebUpload method.

N New product
behavior note added.

3.2.4.1.7.1
Methods

Removed description for cSetContext method. N Content removed.

3.3.4.1.7.1
Methods

Removed description for sSetContext method. N Content removed.

mailto:protocol@microsoft.com

108 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

10 Index

A

Abstract data model
client (section 3.1.1 24, section 3.2.1 49)

PSOM types 24
proxy 88

PSOM types 24
server (section 3.1.1 24, section 3.3.1 76)

PSOM types 24
Algorithms 100

GenericInt 100
pseudo-code 100

String 101
Applicability 15

C

Capability negotiation 15
Change tracking 106
Channel distributed object roots

overview 15
Channels

overview 15
Client

abstract data model (section 3.1.1 24, section
3.2.1 49)
PSOM types 24

higher-layer triggered events (section 3.1.4 26,
section 3.2.4 53)
distributed objects (section 3.1.4.1 26, section

3.2.4.1 53)
initialization (section 3.1.3 25, section 3.2.3 49)

connections 49
ConnMgr distributed object 25

message processing (section 3.1.5 48, section
3.2.5 76)

other local events (section 3.1.7 48, section 3.2.7
76)

overview (section 3.1 24, section 3.2 49)
sequencing rules (section 3.1.5 48, section 3.2.5

76)
timer events (section 3.1.6 48, section 3.2.6 76)
timers (section 3.1.2 25, section 3.2.2 49)

Common
overview 24

Connection of PSOM channel zero
example 90

client authentication response 91
client versioning 94
client/server authentication 90
server channel creation 91
server versioning 91

addProtocol(name
versions

hashes) 92
doneProtocols 93
version(stubHash) 92

ConnMgr distributed object 25

D

Data model - abstract
client (section 3.1.1 24, section 3.2.1 49)

PSOM types 24
proxy 88

PSOM types 24
server (section 3.1.1 24, section 3.3.1 76)

PSOM types 24

E

Encoding algorithms 100
GenericInt 100

pseudo-code 100
String 101

Examples
connection of PSOM channel zero 90

client authentication response 91
client versioning 94
client/server authentication 90
server channel creation 91
server versioning 91

addProtocol(name
versions

hashed) 92
doneProtocols 93
version(stubHash) 92

PSOM channel 2 connection 94
server to client RPC message exchange 95

F

Fields - vendor-extensible 16

G

Glossary 8

H

Higher-layer triggered events
client (section 3.1.4 26, section 3.2.4 53)

distributed objects (section 3.1.4.1 26, section
3.2.4.1 53)

proxy 88
server (section 3.1.4 26, section 3.3.4 79)

distributed objects (section 3.1.4.1 26, section
3.3.4.1 79)

file download 87
upload packaging 56

I

Implementer - security considerations 99
Index of security parameters 99
Informative references 10

109 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

Initialization
client (section 3.1.3 25, section 3.2.3 49)

connections 49
ConnMgr distributed object 25

proxy 88
server (section 3.1.3 25, section 3.3.3 77)

connections 77
ConnMgr distributed object 25

Introduction 8

M

Message processing
client (section 3.1.5 48, section 3.2.5 76)
proxy 88
server (section 3.1.5 48, section 3.3.5 88)

Messages
PSOM Operation Channel Messages (RpcMessage)

20

call 22
connect child 21
disconnect child 21

Records 17
record types 17

transport 17

N

Normative references 9

O

Other local events
client (section 3.1.7 48, section 3.2.7 76)
proxy 89
server (section 3.1.7 48, section 3.3.7 88)

Overview (synopsis) 10
channel distributed object roots 15
channels 15
general data flow 12

P

Parameters - security index 99
Preconditions 15
Prerequisites 15
Product behavior 104
Proxy

abstract data model 88
PSOM types 24

higher-layer triggered events 88
initialization 88
message processing 88

other local events 89
overview (section 3.1 24, section 3.4 88)
sequencing rules 88
timer events 89
timers 88

PSOM channel 2 connection
example 94

PSOM Operation Channel Messages (RpcMessage)
message 20

call 22
connect child 21
disconnect child 21

R

Records message 17
record types 17

References 9
informative 10
normative 9

Relationship to other protocols 15

S

Sample upload package 103

Security
implementer considerations 99
parameter index 99

Sequencing rules
client (section 3.1.5 48, section 3.2.5 76)
proxy 88
server (section 3.1.5 48, section 3.3.5 88)

Server
abstract data model (section 3.1.1 24, section

3.3.1 76)
PSOM types 24

higher-layer triggered events (section 3.1.4 26,
section 3.3.4 79)
distributed objects (section 3.1.4.1 26, section

3.3.4.1 79)
file download 87
upload packaging 56

initialization (section 3.1.3 25, section 3.3.3 77)
connections 77
ConnMgr distributed object 25

message processing (section 3.1.5 48, section
3.3.5 88)

other local events (section 3.1.7 48, section 3.3.7
88)

overview (section 3.1 24, section 3.3 76)
sequencing rules (section 3.1.5 48, section 3.3.5

88)
timer events (section 3.1.6 48, section 3.3.6 88)
timers (section 3.1.2 25, section 3.3.2 76)

Server to client RPC message exchange
example 95

Standards assignments 16

T

Timer events
client (section 3.1.6 48, section 3.2.6 76)
proxy 89
server (section 3.1.6 48, section 3.3.6 88)

Timers
client (section 3.1.2 25, section 3.2.2 49)

proxy 88
server (section 3.1.2 25, section 3.3.2 76)

Tracking changes 106
Transport 17
Triggered events

110 / 110

[MS-PSOM] — v20121003
 PSOM Shared Object Messaging Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: October 8, 2012

client 26
distributed objects 26

server 26
distributed objects 26

Triggered events - higher-layer
client 53

distributed objects 53
proxy 88
server 79

distributed objects 79
file download 87
upload packaging 56

U

Upload package
sample 103

V

Vendor-extensible fields 16
Versioning 15

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 General Data Flow
	1.3.2 Message Flow
	1.3.3 Channels and Channel Distributed Object Roots

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Records
	2.2.1.1 Record Types
	2.2.1.1.1 Close Message
	2.2.1.1.2 SetChannel Message
	2.2.1.1.3 Break Message
	2.2.1.1.4 RpcMessage Message
	2.2.1.1.5 RPCOpen Message

	2.2.2 PSOM Operation Channel Messages (RpcMessage)
	2.2.2.1 Connect/Disconnect Child
	2.2.2.1.1 Connect (OP_CONNECT)
	2.2.2.1.2 Disconnect (OP_CLOSE)

	2.2.2.2 RPC Message (Call Method) (OP_DATA)

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 PSOM types
	3.1.1.1.1 Arrays
	3.1.1.1.2 Boolean
	3.1.1.1.3 Byte
	3.1.1.1.4 DistributedObject Reference
	3.1.1.1.5 GenericInt
	3.1.1.1.6 Int32
	3.1.1.1.7 Int64
	3.1.1.1.8 String
	3.1.1.1.9 Double

	3.1.2 Timers
	3.1.3 Initialization
	3.1.3.1 ConnMgr Distributed Object

	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Distributed Objects
	3.1.4.1.1 Distributed Object Interface Definition
	3.1.4.1.1.1 DOInterface Attributes
	3.1.4.1.1.2 Server/Client Interface Attributes
	3.1.4.1.1.3 Method Declarations
	3.1.4.1.1.4 Children

	3.1.4.1.2 Sample Distributed Object
	3.1.4.1.2.1 Interface
	3.1.4.1.2.2 Sample Server Method
	3.1.4.1.2.3 Sample Client Method
	3.1.4.1.2.4 Children

	3.1.4.1.3 Versioning
	3.1.4.1.4 ContentManager
	3.1.4.1.4.1 Interface
	3.1.4.1.4.2 Children

	3.1.4.1.5 Content
	3.1.4.1.5.1 Interface
	3.1.4.1.5.2 Children

	3.1.4.1.6 Meeting
	3.1.4.1.6.1 Interface
	3.1.4.1.6.2 Children

	3.1.4.1.7 ContentUserManager
	3.1.4.1.7.1 Interface

	3.1.4.1.8 UploadManager
	3.1.4.1.8.1 Interface
	3.1.4.1.8.2 Children
	3.1.4.1.8.2.1 UploadStreams

	3.1.4.1.9 UploadStream
	3.1.4.1.9.1 Interface

	3.1.4.1.10 NativeFileOnlyContent
	3.1.4.1.10.1 Interface

	3.1.4.1.11 PptContent
	3.1.4.1.11.1 Interface
	3.1.4.1.11.2 Children

	3.1.4.1.12 AnnotationContainer
	3.1.4.1.12.1 Interface
	3.1.4.1.12.2 Children

	3.1.4.1.13 WhiteboardContent
	3.1.4.1.13.1 Interface
	3.1.4.1.13.2 Children

	3.1.4.1.14 PollContent
	3.1.4.1.14.1 Interface
	3.1.4.1.14.2 Children

	3.1.4.1.15 SharedNotesContent
	3.1.4.1.15.1 Interface
	3.1.4.1.15.2 Children

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.3.1 Connections
	3.2.3.1.1 Authentication
	3.2.3.1.1.1 Obtain the Authentication Token
	3.2.3.1.1.2 PSOM Connection Join

	3.2.3.1.2 Interface Versioning
	3.2.3.1.3 ConnMgr Distributed Object Interface Definition
	3.2.3.1.3.1 ConnMgr Client Methods
	3.2.3.1.3.1.1 version
	3.2.3.1.3.1.2 addProtocol
	3.2.3.1.3.1.3 doneProtocols
	3.2.3.1.3.1.4 ping

	3.2.3.1.4 Root Distributed Object Channel Negotiation

	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Distributed Objects
	3.2.4.1.1 Meeting
	3.2.4.1.1.1 Methods

	3.2.4.1.2 ContentUserManager
	3.2.4.1.2.1 Methods

	3.2.4.1.3 ContentManager
	3.2.4.1.3.1 Methods

	3.2.4.1.4 UploadManager
	3.2.4.1.4.1 Methods
	3.2.4.1.4.2 Schema

	3.2.4.1.5 UploadStream
	3.2.4.1.5.1 Methods

	3.2.4.1.6 Content
	3.2.4.1.6.1 Methods

	3.2.4.1.7 NativeFileOnlyContent
	3.2.4.1.7.1 Methods

	3.2.4.1.8 AnnotationContainer
	3.2.4.1.8.1 Methods

	3.2.4.1.9 WhiteboardContent
	3.2.4.1.9.1 Methods

	3.2.4.1.10 PptContent
	3.2.4.1.10.1 Methods

	3.2.4.1.11 PollContent
	3.2.4.1.11.1 Methods

	3.2.4.1.12 SharedNotesContent
	3.2.4.1.12.1 Methods

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.3.1 Connections
	3.3.3.1.1 Authentication
	3.3.3.1.2 Interface Versioning
	3.3.3.1.3 ConnMgr Distributed Object Interface Definition
	3.3.3.1.3.1 ConnMgr Server Methods
	3.3.3.1.3.1.1 version
	3.3.3.1.3.1.2 addProtocol
	3.3.3.1.3.1.3 doneProtocols
	3.3.3.1.3.1.4 log
	3.3.3.1.3.1.5 Lookup
	3.3.3.1.3.1.6 ping

	3.3.4 Higher-Layer Triggered Events
	3.3.4.1 Distributed Objects
	3.3.4.1.1 Meeting
	3.3.4.1.1.1 Methods

	3.3.4.1.2 ContentUserManager
	3.3.4.1.2.1 Methods

	3.3.4.1.3 ContentManager
	3.3.4.1.3.1 Methods

	3.3.4.1.4 UploadManager
	3.3.4.1.4.1 Methods

	3.3.4.1.5 UploadStream
	3.3.4.1.5.1 Methods

	3.3.4.1.6 Content
	3.3.4.1.6.1 Methods

	3.3.4.1.7 NativeFileOnlyContent
	3.3.4.1.7.1 Methods

	3.3.4.1.8 AnnotationContainer
	3.3.4.1.8.1 Methods

	3.3.4.1.9 WhiteboardContent
	3.3.4.1.9.1 Methods

	3.3.4.1.10 PptContent
	3.3.4.1.10.1 Methods

	3.3.4.1.11 PollContent
	3.3.4.1.11.1 Methods

	3.3.4.1.12 SharedNotesContent
	3.3.4.1.12.1 Methods

	3.3.4.2 File Download
	3.3.4.3 Decrypted File Download
	3.3.4.4 Single File Upload using HTTPS request

	3.3.5 Message Processing Events and Sequencing Rules
	3.3.6 Timer Events
	3.3.7 Other Local Events

	3.4 Proxy Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Higher-Layer Triggered Events
	3.4.5 Message Processing Events and Sequencing Rules
	3.4.6 Timer Events
	3.4.7 Other Local Events

	4 Protocol Examples
	4.1 Connection of PSOM Channel Zero (Prior to Root Distributed Object)
	4.1.1 Client to Server Authentication
	4.1.2 Server to Client Authentication Response
	4.1.3 Client to Server Channel Creation
	4.1.4 Client to Server Versioning
	4.1.4.1 version (stubHash)
	4.1.4.2 addProtocol (name, versions, hashes)
	4.1.4.3 doneProtocols

	4.1.5 Server to Client Versioning

	4.2 PSOM Channel 2 Distributed Object Root Connection
	4.3 Server to Client RPC Message Exchange

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Encoding Algorithms
	6.1 GenericInt
	6.1.1 Pseudo-Code

	6.2 String

	7 Appendix B: Sample Upload Package
	8 Appendix C: Product Behavior
	9 Change Tracking
	10 Index

