[bookmark: _GoBack][MS-PATCH]:
LZX DELTA Compression and Decompression

Intellectual Property Rights Notice for Open Specifications Documentation
· Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.
· Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.
· No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
· Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
· License Programs. To see all of the protocols in scope under a specific license program and the associated patents, visit the Patent Map.
· Trademarks. The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
· Fictitious Names. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.
Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.
Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.
Support. For questions and support, please contact dochelp@microsoft.com.
Revision Summary
	Date
	Revision History
	Revision Class
	Comments

	4/4/2008
	0.1
	New
	Initial Availability.

	6/27/2008
	1.0
	Major
	Initial Release.

	8/6/2008
	1.01
	Minor
	Revised and edited technical content.

	9/3/2008
	1.02
	Minor
	Revised and edited technical content.

	12/3/2008
	1.03
	Minor
	Updated IP notice.

	3/4/2009
	1.04
	Minor
	Revised and edited technical content.

	4/10/2009
	2.0
	Major
	Updated technical content and applicable product releases.

	7/15/2009
	3.0
	Major
	Revised and edited for technical content.

	11/4/2009
	3.0.1
	Editorial
	Revised and edited the technical content.

	2/10/2010
	3.1.0
	Minor
	Updated the technical content.

	5/5/2010
	3.1.1
	Editorial
	Revised and edited the technical content.

	8/4/2010
	4.0
	Major
	Significantly changed the technical content.

	11/3/2010
	4.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	3/18/2011
	4.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	8/5/2011
	4.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	10/7/2011
	4.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	1/20/2012
	5.0
	Major
	Significantly changed the technical content.

	4/27/2012
	5.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	7/16/2012
	5.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	10/8/2012
	5.1
	Minor
	Clarified the meaning of the technical content.

	2/11/2013
	5.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	7/26/2013
	6.0
	Major
	Significantly changed the technical content.

	11/18/2013
	6.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	2/10/2014
	6.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	4/30/2014
	6.1
	Minor
	Clarified the meaning of the technical content.

	7/31/2014
	6.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	10/30/2014
	6.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	3/16/2015
	7.0
	Major
	Significantly changed the technical content.

	5/26/2015
	7.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	9/14/2015
	7.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	6/13/2016
	7.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	9/14/2016
	7.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	9/19/2017
	7.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	7/24/2018
	8.0
	Major
	Significantly changed the technical content.

	10/1/2018
	9.0
	Major
	Significantly changed the technical content.

	8/18/2020
	10.0
	Major
	Significantly changed the technical content.

	11/17/2020
	10.1
	Minor
	Clarified the meaning of the technical content.

	2/16/2021
	10.2
	Minor
	Clarified the meaning of the technical content.

	4/22/2021
	11.0
	Major
	Significantly changed the technical content.

	8/17/2021
	12.0
	Major
	Significantly changed the technical content.

	8/20/2024
	13.0
	Major
	Significantly changed the technical content.

Table of Contents
1	Introduction	5
1.1	Glossary	5
1.2	References	5
1.2.1	Normative References	5
1.2.2	Informative References	6
1.3	Overview	6
1.4	Relationship to Protocols and Other Structures	6
1.5	Applicability Statement	6
1.6	Versioning and Localization	6
1.7	Vendor-Extensible Fields	7
2	Structures	8
2.1	Concepts	8
2.1.1	Bitstream	8
2.1.2	Window Size	8
2.1.3	Reference Data	8
2.1.4	Repeated Offsets	9
2.1.5	Match Lengths	10
2.1.6	Position Slot	10
2.2	Header	11
2.2.1	Chunk Size	11
2.2.2	E8 Call Translation	11
2.3	Block	12
2.3.1	Block Header	12
2.3.1.1	Block Type Field	13
2.3.1.2	Block Size Field	13
2.3.2	Block Data	13
2.3.2.1	Uncompressed Block	13
2.3.2.2	Verbatim Block	14
2.3.2.3	Aligned Offset Block	14
2.4	Huffman Trees	15
2.5	Encoding the Trees and Pretrees	15
2.6	Compressed Token Sequence	16
2.6.1	Converting Match Offset into Formatted Offset Values	17
2.6.2	Converting Formatted Offset into Position Slot and Position Footer Values	18
2.6.3	Converting Position Footer into Verbatim Bits or Aligned Offset Bits	19
2.6.4	Converting Match Length into Length Header and Length Footer Values	20
2.6.5	Converting Length Header and Position Slot into Length/Position Header Values	21
2.6.6	Extra Length Field	21
2.6.7	Encoding a Match	21
2.6.8	Encoding a Literal	22
2.7	Decoding Matches and Literals (Aligned and Verbatim Blocks)	22
3	Structure Examples	24
4	Security	25
4.1	Security Considerations for Implementers	25
4.2	Index of Security Parameters	25
5	Appendix A: Product Behavior	26
6	Change Tracking	27
7	Index	28

[bookmark: section_2e1d3cb89cfb4e50995adfd00ab30ca7][bookmark: _Toc174601734]Introduction
LZX DELTA Compression and Decompression enables one set of data to be compressed within the context of a reference set of data that is supplied to both the compressor and the decompressor.
Sections 1.7 and 2 of this specification are normative. All other sections and examples in this specification are informative.
[bookmark: section_76d889fca2d442c5896290c863451ce0][bookmark: _Toc174601735]Glossary
This document uses the following terms:
[bookmark: gt_84791550-b1fe-4392-97fe-7533e3e8eda4]encoding: A process that specifies a Content-Transfer-Encoding for transforming character data from one form to another.
[bookmark: gt_32d18f6a-e4e7-4c48-b919-5dea39ebf301]Lempel-Ziv Extended (LZX): An LZ77-based compression engine, as described in [UASDC], that is a universal lossless data compression algorithm. It performs no analysis on the data.
[bookmark: gt_713bf82d-7765-4db1-bb8e-5bffff50e478]Lempel-Ziv Extended Delta (LZXD): A derivative of the Lempel-Ziv Extended (LZX) format with some modifications to facilitate efficient delta compression. Delta compression is a technique in which one set of data can be compressed within the context of a reference set of data that is supplied both to the compressor and decompressor. Delta compression is commonly used to encode updates to similar existing data sets so that the size of compressed data can be significantly reduced relative to ordinary non-delta compression techniques. Expanding a delta-compressed set of data requires that the exact same reference data be provided during decompression.
[bookmark: gt_079478cb-f4c5-4ce5-b72b-2144da5d2ce7]little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in the memory location with the lowest address.
[bookmark: gt_6b51bb3d-00aa-43d0-9b01-7634e5341183]offline address book (OAB): A collection of address lists that are stored in a format that a client can save and use locally.
[bookmark: gt_40c6d4a3-eadf-49d1-8241-c1cab3a0fdf4]padding: Bytes that are inserted in a data stream to maintain alignment of the protocol requests on natural boundaries.
[bookmark: gt_dfa0f2c4-524f-47e9-9b55-cceea09a8204]path length: The number of edges in the canonical Huffman tree between the top of the tree and the element.
[bookmark: gt_f3529cd8-50da-4f36-aa0b-66af455edbb6]stream: A flow of data from one host to another host, or the data that flows between two hosts.
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
[bookmark: section_696e3cfaae9748ef982ec6f4e43d4712][bookmark: _Toc174601736]References
Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.
[bookmark: section_23154cd55e75455bb411dc445572383b][bookmark: _Toc174601737]Normative References
We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.
[Cormen] Cormen, T., Leiserson, C., Rivest, R., and Stein, C., "Introduction to Algorithms", 3rd edition, Massachusetts Institute of Technology, 2009, ISBN: 978-0-262-03384-8.
[IEEE1003.1] The Open Group, "IEEE Std 1003.1, 2004 Edition", 2004, http://www.unix.org/version3/ieee_std.html
[MS-DTYP] Microsoft Corporation, "Windows Data Types".
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, https://www.rfc-editor.org/info/rfc2119
[UASDC] Ziv, J. and Lempel, A., "A Universal Algorithm for Sequential Data Compression", May 1977, http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1977_universal_algorithm.pdf
[bookmark: section_4d8c09f5bfcf40c78da7269cf8abbffa][bookmark: _Toc174601738]Informative References
[MS-OXOAB] Microsoft Corporation, "Offline Address Book (OAB) File Format and Schema".
[MS-OXPROTO] Microsoft Corporation, "Exchange Server Protocols System Overview".
[bookmark: section_7c04a7cede2c4eb48b40a3de6f3f7db8][bookmark: _Toc174601739]Overview
Lempel-Ziv Extended Delta (LZXD) compression provides a mechanism for both the compressor and the decompressor to refer to a common reference set of data. It relaxes the constraint that the match offset be constrained to less than the current position in the output stream, allowing the match offset to refer to the logically prepended reference data. This relaxed constraint effectively enables the compressed data stream to encode "matches" both from the reference data and from the uncompressed data stream.
[bookmark: section_1eee1ae1c6d54dedb713073d7a26fa17][bookmark: _Toc174601740]Relationship to Protocols and Other Structures
LZXD (D for Delta) is an LZX variant that is modified to facilitate efficient delta compression.
LZX is a compressor that is based on the Lempel-Ziv 1977 (LZ77) sliding window data compression algorithm, as described in [UASDC], that uses static Huffman encoding and a sliding window of selectable size. Data symbols are encoded either as an uncompressed symbol or as a logical (offset, length) pair indicating that length symbols shall be copied from a displacement of offset symbols from the current position in the output stream. The value of the offset is constrained to be less than the current position in the output stream, up to the size of the sliding window.
The LZXD compression format is used by [MS-OXOAB] to compress data in the offline address book (OAB).
For conceptual background information and overviews of the relationships and interactions between this and other protocols, see [MS-OXPROTO].
[bookmark: section_dc59f98baac944549fa283b94409f91c][bookmark: _Toc174601741]Applicability Statement
LZXD compression is commonly used to encode updates to similar existing data sets so that the size of compressed data can be significantly reduced relative to ordinary compression techniques that do not use the delta between a common reference set of data. One use for this compression format is the compression data in OAB version 4 Differential Patch or Compressed OAB Template files.
[bookmark: section_3a6c929c6f2b4e3e9eb67da6241d92f8][bookmark: _Toc174601742]Versioning and Localization
None.
[bookmark: section_bd4da702f5b242d38d60f4bdda26c302][bookmark: _Toc174601743]Vendor-Extensible Fields
None.
[bookmark: section_2c64cf7871a248d3b85f85ced4a8c36e][bookmark: _Toc174601744]Structures
LZXD compressed data consists of a header that indicates the file translation size, followed by a sequence of compressed blocks. A stream of uncompressed input can be output as multiple compressed LZXD blocks to improve compression, because each compressed block contains its own statistical tree structures.
[image: The structure of LZXD compressed data]
Figure 1: The structure of LZXD compressed data
A block can be one of the following types:
· Uncompressed block, as specified in section 2.3.2.1.
· Verbatim block, as specified in section 2.3.2.2.
· Aligned offset, as specified in section 2.3.2.3.
In this document, ranges are specified using interval notation. A range in parenthesis "()" does not include the upper and lower endpoints. A range in brackets "[]" does include the upper and lower endpoints.
[bookmark: section_0e77a862abce4e50ba8ced5d373cc7a5][bookmark: _Toc174601745]Concepts
[bookmark: section_26f7b352b9014cf882eff00d3659fc04][bookmark: _Toc174601746]Bitstream
An LZXD bitstream is encoded as a sequence of aligned 16-bit (or 2-byte) integers stored in the least-significant-byte to most-significant-byte order, also known as byte-swapped, or little-endian, words. Given an input byte stream in hex 1A, 2B, 3C, 4D, 5E, 6F, …, the output byte stream MUST be as follows:
	Lower address
	 Higher address

	2B
	1A
	4D
	3C
	6F
	5E

Figure 2: An example output byte stream
[bookmark: section_8b8282185ea745e383ecc5c775976fcc][bookmark: _Toc174601747]Window Size
The sliding window size MUST be a power of 2, from 2^17 (128 kilobytes (KB)) up to 2^25 (32 megabytes (MB)). The window size is not stored in the compressed data stream and MUST be specified to the decoder before decoding begins. The window size SHOULD be the smallest power of two between 2^17 and 2^25 that is greater than or equal to the sum of the size of the reference data rounded up to a multiple of 32,768 and the size of the subject data.
[bookmark: section_5dfc82a3f31b48a8ab4c7e9cbf8ece9b][bookmark: _Toc174601748]Reference Data
For delta compression, the reference data is a sequence of bytes given to the compressor before compressing the subject data. The exact same reference data sequence MUST be given to the decompressor before decompression. The reference data sequence is treated as logically prepended to the subject data sequence being compressed or decompressed. During decompression, match offsets are negative displacements from the "current position" in the output stream, up to the specified window size. When match offset values exceed the number of bytes already emitted in the uncompressed output stream, they are pointing into the reference data that is logically prepended to the subject data.
[image: Example reference data and subject data]
Figure 3: Example reference data and subject data
In this example, the reference data is 10 bytes long and consists of the sequence "ABCDEFGHIJ". The data to be compressed, or the subject data, is also 10 bytes long (although the data does not have to be the same length as the reference data) and consists of "abcDEFabce". A valid encoded sequence would consist of the following tokens:
'a', 'b', 'c', (match offset -10, length 3), (match offset -6, length 3), 'e'
The first match offset exceeds the amount of subject data already in the window, pointing instead into the reference data portion. The second match offset does not exceed the amount of subject data in the window and instead refers to a portion of the subject data previously compressed or decompressed.
[bookmark: section_842764f685b74822ae665051ba78e04e][bookmark: _Toc174601749]Repeated Offsets
LZXD compression extends the conventional Lempel-Ziv 1977 sliding window data compression algorithm format, as specified in [UASDC], in several ways, one of which is in the use of repeated offset codes. Three match offset codes, named the repeated offset codes, are reserved to indicate that the current match offset is the same as that of one of the three previous matches, which is not itself a repeated offset.
The three special offset codes are encoded as offset values 0, 1, and 2 (for example, encoding an offset of 0 means "use the most recent nonrepeated match offset"; an offset of 1 means "use the second most recent nonrepeated match offset"; and so on). All remaining encoded offset values are displaced by real offset +2, as is shown in the following table, which prevents matches at offsets WINDOW_SIZE, WINDOW_SIZE-1, and WINDOW_SIZE-2.
	Encoded offset
	Real offset

	0
	Most recent real match offset

	1
	Second most recent match offset

	2
	Third most recent match offset

	3
	1 (closest allowable)

	4
	2

	5
	3

	6
	4

	7
	5

	8
	6

	500
	498

	X+2
	X

	WINDOW_SIZE-1
(maximum possible)
	WINDOW_SIZE-3

The three most recent real match offsets are kept in a list, the behavior of which is explained as follows:
· Let R0 be defined as the most recent real offset.
· Let R1 be defined as the second most recent offset.
· Let R2 be defined as the third most recent offset.
The list is managed similarly to a least recently used queue, with the exception of the cases when R1 or R2 is output. In these cases, R1 or R2 is simply swapped with R0, which requires fewer operations than a least recently used queue would.
The initial state of R0, R1, R2 is (1, 1, 1).
	Match offset X where...
	Operation

	X≠R0 and X≠R1 and X≠R2
	R2←R1
R1←R0
R0←X

	X = R0
	None

	X = R1
	swap R0↔R1

	X = R2
	swap R0↔R2

[bookmark: section_0f3af09eda8a49c1a1bc5c5734edb0eb][bookmark: _Toc174601750]Match Lengths
The minimum match length (number of bytes) encoded by LZXD is 2 bytes, and the maximum match length is 32,768 bytes. However, no match of any length can span a modulo 32-KB boundary in the uncompressed stream. Match-length encoding is combined with match-position encoding as described in section 2.6. Match length can be larger than the repeated offset, which means the matched substrings can overlap.
[bookmark: section_cc2c0753a5ff454e9b350bf92c79b5ca][bookmark: _Toc174601751]Position Slot
The window size determines the number of window subdivisions, or position slots, as shown in the following table.
	Window size
	Position slots required

	128 KB
	34

	256 KB
	36

	512 KB
	38

	1 MB
	42

	2 MB
	50

	4 MB
	66

	8 MB
	98

	16 MB
	162

	32 MB
	290

[bookmark: section_961286e972a640e1a8956662de3251b6][bookmark: _Toc174601752]Header
[bookmark: section_ce9bcad132054d2aab6b8c8dd4b56588][bookmark: _Toc174601753]Chunk Size
The LZXD compressor emits chunks of compressed data. A chunk represents exactly 32 KB of uncompressed data until the last chunk in the stream, which can represent less than 32 KB. To ensure that an exact number of input bytes represent an exact number of output bytes for each chunk, after each 32 KB of uncompressed data is represented in the output compressed bitstream, the output bitstream is padded with up to 15 bits of zeros to realign the bitstream on a 16-bit boundary (even byte boundary) for the next 32 KB of data. This results in a compressed chunk of a byte-aligned size. The compressed chunk could be smaller than 32 KB or larger than 32 KB if the data is incompressible when the chunk is not the last one.
The LZXD engine encodes a compressed, chunk-size prefix field preceding each compressed chunk in the compressed byte stream. The compressed, chunk-size prefix field is a byte aligned, little-endian, 16-bit field. The chunk prefix chain could be followed in the compressed stream without decompressing any data. The next chunk prefix is at a location computed by the absolute byte offset location of this chunk prefix plus 2 (for the size of the chunk-size prefix field) plus the current chunk size.
[bookmark: section_e6c8366da8c34f34aa5d56f44f938a09][bookmark: _Toc174601754]E8 Call Translation
E8 call translation is an optional feature that can be used when the data to compress contains x86 instruction sequences. E8 translation operates as a preprocessing stage before compressing each chunk, and the compressed stream header contains a bit that indicates whether the decoder shall reverse the translation as a postprocessing step after decompressing each chunk.
The x86 instruction beginning with a byte value of 0xE8 is followed by a 32-bit, little-endian relative displacement to the call target. When E8 call translation is enabled, the following preprocessing steps are performed on the uncompressed input before compression (assuming little-endian byte ordering):
Let chunk_offset refer to the total number of uncompressed bytes preceding this chunk.
Let E8_file_size refer to the caller-specified value given to the compressor or decoded from the header of the compressed stream during decompression.
The following example shows how E8 translation is performed for each 32-KB chunk of uncompressed data (or less than 32 KB if last chunk to compress).
if ((chunk_offset < 0x40000000) && (chunk_size > 10))
 for (i = 0; i < (chunk_size – 10); i++)
if (chunk_byte[i] == 0xE8)
 long current_pointer = chunk_offset + i;
long displacement = chunk_byte[i+1] |
chunk_byte[i+2] << 8 |
chunk_byte[i+3] << 16 |
chunk_byte[i+4] << 24;
long target = current_pointer + displacement;
if ((target >= 0) && (target < E8_file_size+current_pointer))
if (target >= E8_file_size)
target = displacement – E8_file_size;
endif
chunk_byte[i+1] = (byte)(target);
chunk_byte[i+2] = (byte)(target >> 8);
chunk_byte[i+3] = (byte)(target >> 16);
chunk_byte[i+4] = (byte)(target >> 24);
endif
 i += 4;
endif
endfor
endif
After decompression, the E8 scanning algorithm is the same. The following example shows how E8 translation reversal is performed.
long value = chunk_byte[i+1] |
chunk_byte[i+2] << 8 |
chunk_byte[i+3] << 16 |
chunk_byte[i+4] << 24;

if ((value >= -current_pointer) && (value < E8_file_size))
if (value >= 0)
displacement = value – current_pointer;
else
displacement = value + E8_file_size;
endif
chunk_byte[i+1] = (byte)(displacement);
chunk_byte[i+2] = (byte)(displacement >> 8);
chunk_byte[i+3] = (byte)(displacement >> 16);
chunk_byte[i+4] = (byte)(displacement >> 24);
endif
The first bit in the first chunk in the LZXD bitstream (following the 2-byte, chunk-size prefix described in section 2.2.1) indicates the presence or absence of two 16-bit fields immediately following the single bit. If the bit is set, E8 translation is enabled for all the following chunks in the stream using the 32-bit value derived from the two 16-bit fields as the E8_file_size provided to the compressor when E8 translation was enabled. Note that E8_file_size is completely independent of the length of the uncompressed data. E8 call translation is disabled after the 32,768th chunk (after 1 gigabyte (GB) of uncompressed data).
	Field
	Comments
	Size

	E8 translation
	0-disabled, 1-enabled
	1 bit

	Translation size high word
	Only present if enabled
	0 or 16 bits

	Translation size low word
	Only present if enabled
	0 or 16 bits

[bookmark: section_b84b0925e1304462b90b39be030744f5][bookmark: _Toc174601755]Block
[bookmark: section_517e354ea5c54239ada525389cfe3170][bookmark: _Toc174601756]Block Header
An LZXD block represents a sequence of compressed data that is encoded with the same set of Huffman trees, or a sequence of uncompressed data. There can be one or more LZXD blocks in a compressed stream, each with its own set of Huffman trees. Blocks do not have to start or end on a chunk boundary; blocks can span multiple chunks, or a single chunk can contain multiple blocks. The number of chunks is related to the size of the data being compressed, while the number of blocks is related to how well the data is compressed. The Block Type field, as specified in section 2.3.1.1, indicates which type of block follows, and the Block Size field, as specified in section 2.3.1.2, indicates the number of uncompressed bytes represented by the block. Following the generic block header is a type-specific header that describes the remainder of the block.
	Field
	Comments
	Size

	Block Type
	See valid values in section 2.3.1.1
	3 bits

	Block Size most significant bit
	Block size is the high 8 bits of 24
	8 bits

	Block Size byte 2
	Block size is the middle 8 bits of 24
	8 bits

	Block Size least significant bit
	Block size is the low 8 bits of 24
	8 bits

[bookmark: section_579b1b808df143e7b32a2a5979062bf4][bookmark: _Toc174601757]Block Type Field
Each block of compressed data begins with a 3-bit Block Type field, followed by the Block Size field, as specified in section 2.3.1.2, and then type-specific block data, as specified in section 2.3.2. Of the eight possible values, only three are valid values for the Block Type field.
	Bits
	Value
	Meaning

	001
	1
	Verbatim block

	010
	2
	Aligned offset block

	011
	3
	Uncompressed block

	other
	0, 4-7
	Not valid

[bookmark: section_5179cf1105fa47f3af1e00dfbb768199][bookmark: _Toc174601758]Block Size Field
The Block Size field indicates the number of uncompressed bytes that are represented by the block. The maximum value for the Block Size field is 2^24-1 (16 MB-1, or 0x00FFFFFF). The Block Size field is encoded in the bitstream as three 8-bit fields comprising a 24-bit value, most significant to least significant, immediately following the value of the Block Type field.
[bookmark: section_1fd29d87c372450c88131a68b3734b54][bookmark: _Toc174601759]Block Data
[bookmark: section_755e7336aa484a41bcb565530323e879][bookmark: _Toc174601760]Uncompressed Block
Following the generic block header, an uncompressed block begins with 1 to 16 bits of zero padding to align the bit buffer on a 16-bit boundary. At this point, the bitstream ends and a byte stream begins. Following the zero padding, new 32-bit values for R0, R1, and R2 are output in little-endian form, followed by the uncompressed data bytes themselves. Finally, if the uncompressed data length is odd, one extra byte of zero padding is encoded to realign the following bitstream.
	Field
	Comments
	Size

	Padding to align following field on 16-bit boundary
	Bits have a value of zero
	Variable,
[1..16] bits

Then, the following fields are encoded directly in the byte stream, not in the bitstream of byte-swapped 16-bit words:
	Field
	Comments
	Size

	R0
	Least significant to most significant byte (little-endian DWORD ([MS-DTYP]))
	4 bytes

	R1
	Least significant to most significant byte (little-endian DWORD)
	4 bytes

	R2
	Least significant to most significant byte (little-endian DWORD)
	4 bytes

	Uncompressed raw data bytes
	Can use the direct memcpy function, as specified in [IEEE1003.1]
	[2^24 - 1] bytes

	Padding to realign bitstream
	Only if uncompressed size is odd
	0 or 1 byte

Then the bitstream of byte-swapped 16-bit integers resumes for the next Block Type field (if there are subsequent blocks).
The decoded R0, R1, and R2 values are used as initial repeated offset values to decode the subsequent compressed block if present.
[bookmark: section_37d8d8586d5643e8a9240dc44c4db535][bookmark: _Toc174601761]Verbatim Block
The fields of a verbatim block that follow the generic block header are listed in the following table.
	Entry
	Comments
	Size

	Pretree for first 256 elements of main tree
	20 elements, 4 bits each
	80 bits

	Path lengths of first 256 elements of main tree
	Encoded using pretree
	Variable

	Pretree for remainder of main tree
	20 elements, 4 bits each
	80 bits

	Path lengths of remaining elements of main tree
	Encoded using pretree
	Variable

	Pretree for length tree
	20 elements, 4 bits each
	80 bits

	Path lengths of elements in length tree
	Encoded using pretree
	Variable

	Token sequence (matches and literals)
	Specified in section 2.6
	Variable

[bookmark: section_d40b8fb3ccb743dd87714732b6696389][bookmark: _Toc174601762]Aligned Offset Block
An aligned offset block is identical to the verbatim block except for the presence of the aligned offset tree preceding the other trees.
	Entry
	Comments
	Size

	Aligned offset tree
	8 elements, 3 bits each
	24 bits

	Pretree for first 256 elements of main tree
	20 elements, 4 bits each
	80 bits

	Path lengths of first 256 elements of main tree
	Encoded using pretree
	Variable

	Pretree for remainder of main tree
	20 elements, 4 bits each
	80 bits

	Path lengths of remaining elements of main tree
	Encoded using pretree
	Variable

	Pretree for length tree
	20 elements, 4 bits each
	80 bits

	Path lengths of elements in length tree
	Encoded using pretree
	Variable

	Token sequence (matches and literals)
	Specified in section 2.6
	Variable

[bookmark: section_eec537d5ba764a32b1026fbb45881946][bookmark: _Toc174601763]Huffman Trees
LZXD compression uses canonical Huffman tree structures to represent elements. Huffman trees, as specified in [Cormen], are well known in data compression and are not described here. Because an LZXD decoder uses only the path lengths of the Huffman tree to reconstruct the identical tree, the following constraints are made on the tree structure.
For any two elements with the same path length, the lower-numbered element MUST be farther left on the tree than the higher-numbered element. An alternative way of stating this constraint is that lower-numbered elements MUST have lower path traversal values; for example, 0010 (left-left-right-left) is lower than 0011 (left-left-right-right).
For each level, starting at the deepest level of the tree and then moving upward, leaf nodes MUST start as far left as possible. An alternative way of stating this constraint is that if any tree node has children, all tree nodes to the right of it with the same path length MUST also have children.
A non-empty Huffman tree MUST contain at least two elements. In the case where all but one tree element has zero frequency, the resulting tree MUST minimally consist of two Huffman codes, "0" and "1".
LZXD compression uses several Huffman tree structures. The main tree comprises 256 elements that correspond to all possible 8-bit characters, plus 8 * NUM_POSITION_SLOTS elements that correspond to matches. The NUM_POSITION_SLOTS elements refer to the position slots required, as specified in section 2.1.6. The value of the NUM_POSITION_SLOTS elements depends on the specified window size as described in section 2.1.6. The length tree comprises 249 elements. Other trees, such as the aligned offset tree (comprising 8 elements), and the pretrees (comprising 20 elements each), have a smaller role.
[bookmark: section_8b31ee786d50428a95209191238971f4][bookmark: _Toc174601764]Encoding the Trees and Pretrees
Because all trees used in LZXD compression are created in the form of a canonical Huffman tree, the path length of each element in the tree is sufficient to reconstruct the original tree. The main tree and the length tree are each encoded using the method described here. However, the main tree is encoded in two components as if it were two separate trees, the first tree corresponding to the first 256 tree elements (uncompressed symbols), and the second tree corresponding to the remaining elements (matches).
Because trees are output several times during compression of large amounts of data (multiple blocks), LZXD optimizes compression by encoding only the delta path lengths between the current and previous trees. In the case of the very first such tree, the delta is calculated against a tree in which all elements have a zero path length.
Each tree element can have a path length of [0, 16], where a zero path length indicates that the element has a zero frequency and is not present in the tree. Tree elements are output in sequential order starting with the first element. Elements can be encoded in one of two ways: if several consecutive elements have the same path length, run-length encoding is employed; otherwise, the element is output by encoding the difference between the current path length and the previous path length of the tree, mod 17. To represent a canonical Huffman tree, specify the path lengths of each of the elements in the tree. The following table specifies how to interpret a code.
	Code
	Operation

	0 to 16
	Len[x] = (prev_len[x] - code + 17) mod 17

	17
	Zeros = getbits(4)
Len[x] = 0 for next (4 + Zeros) elements

	18
	Zeros = getbits(5)
Len[x] = 0 for next (20 + Zeros) elements

	19
	Same = getbits(1)
Decode new code
Value = (prev_len[x] - code + 17) mod 17
Len[x] = Value for next (4 + Same) elements

Codes 17, 18, and 19 are used to represent consecutive elements that have the same path length. Zeros, Same, and Value are variables created for the purpose of this sample code, and getbits(n) is a function that fetches the next n bits from the bitstream. "Decode new code" is used to parse the next code from the bitstream, which has a value range of [0, 16].
Each of the 17 possible values of (len[x] - prev_len[x]) mod 17, plus three additional codes used for run-length encoding, are not output directly as 5-bit numbers but are instead encoded via a Huffman tree called the pretree. The pretree is generated dynamically according to the frequencies of the 20 allowable tree codes. The structure of the pretree is encoded in a total of 80 bits by using 4 bits to output the path length of each of the 20 pretree elements. Once again, a zero path length indicates a zero-frequency element.
	Code
	Operation

	Length of tree code 0
	4 bits

	Length of tree code 1
	4 bits

	Length of tree code 2
	4 bits

	...
	...

	Length of tree code 18
	4 bits

	Length of tree code 19
	4 bits

The "real" tree is then encoded using the pretree Huffman codes.
[bookmark: section_687e0350b2364b808b432c85c5bf078d][bookmark: _Toc174601765]Compressed Token Sequence
The compressed token sequence (bitstream) contains the Huffman-encoded matches and literals using the Huffman trees specified in the block header. Decompression continues until the number of decompressed bytes corresponds exactly to the number of uncompressed bytes indicated in the block header.
The representation of an unmatched literal character in the output is simply the appropriate element index [0..255] from the main Huffman tree.
The representation of a match in the output involves several transformations, as shown in the following diagram. At the top of the diagram are the match length [2..257] and the match offset [0..WINDOW_SIZE-3]. The match offset and match length are split into subcomponents and encoded separately. For matches of length [258..32768], the token indicates match length 257, and then the additional value of the Extra Length field is encoded in the bitstream following the other match subcomponent fields.
The match subcomponents are shown in the following figure.
[image: Match encoding subcomponents]
Figure 4: Match encoding subcomponents
[bookmark: section_1a48f9479fdd4a0ba3e63afa763d8f1e][bookmark: _Toc174601766]Converting Match Offset into Formatted Offset Values
The match offset, range [1..WINDOW_SIZE-3], is converted into a formatted offset by determining whether the offset can be encoded as a repeated offset, as shown in the following pseudocode. It is acceptable not to encode a match as a repeated offset even if it is possible to do so.
if offset == R0 then
 formatted offset ← 0
else if offset == R1 then
 formatted offset ← 1
else if offset == R2 then
 formatted offset ← 2
else
 formatted offset ← offset + 2
endif
[bookmark: section_4edae6e72cae4180b3e7611a5090a222][bookmark: _Toc174601767]Converting Formatted Offset into Position Slot and Position Footer Values
The formatted offset is subdivided into a position slot and a position footer. The position slot defines the most significant bits of the formatted offset in the form of a base position as shown in the following table. The position footer defines the remaining least significant bits of the formatted offset. As the following table shows, the number of bits dedicated to the position footer grows as the formatted offset becomes larger, meaning that each position slot addresses a larger and larger range.
The number of position slots available depends on the window size. The number of bits of position footer for each position slot is fixed and is shown in the following table.
	Position slot number
	Base position
	Footer bits
	Range of base position and position footer (formatted offset)

	0 (R0)
	0
	0
	0

	1 (R1)
	1
	0
	1

	2 (R2)
	2
	0
	2

	3 (offset 1)
	3
	0
	3

	4 (offset 2..3)
	4
	1
	4-5

	5 (offset 4..5)
	6
	1
	6-7

	6 (offset 6..9)
	8
	2
	8-11

	7 (..etc..)
	12
	2
	12-15

	8
	16
	3
	16-23

	9
	24
	3
	24-31

	10
	32
	4
	32-47

	11
	48
	4
	48-63

	12
	64
	5
	64-95

	13
	96
	5
	96-127

	14
	128
	6
	128-191

	15
	192
	6
	192-255

	16
	256
	7
	256-383

	17
	384
	7
	384-511

	18
	512
	8
	512-767

	19
	768
	8
	768-1023

	20
	1024
	9
	1024-1535

	21
	1536
	9
	1536-2047

	22
	2048
	10
	2048-3071

	23
	3072
	10
	3072-4095

	24
	4096
	11
	4096-6143

	25
	6144
	11
	6144-8191

	26
	8192
	12
	8192-12287

	27
	12288
	12
	12288-16383

	28
	16384
	13
	16384-24575

	29
	24576
	13
	24576-32767

	30
	32768
	14
	32768-49151

	31
	49152
	14
	49152-65535

	32
	65536
	15
	65536-98303

	33
	98304
	15
	98304-131071

	34
	131072
	16
	131072-196607

	35
	196608
	16
	196608-262143

	36
	262144
	17
	262144-393215

	37
	393216
	17
	393216-524287

	38
	524288
	17
	524288-655359

	39
	655360
	17
	655360-786431

	40
	786432
	17
	786432-917503

	41
	917504
	17
	917504-1048575

	42
	1048576
	17
	1048576-1179647

	..etc..
	..etc..
	17 (all)
	..etc..

	288
	33292288
	17
	33292288-33423359

	289
	33423360
	17
	33423360-33554431

The following pseudocode demonstrates how to determine the position slot and the position footer.
position_slot ← calculate_the position_slot from the formatted_offset
position_footer_bits ← determine the number of footer bits from the position slot value
if position_footer_bits > 0
 position_footer ← formatted_offset & ((2^position_footer_bits)-1)
else
 position_footer ← null
endif
[bookmark: section_76e3e43b278648baab34942f013d0125][bookmark: _Toc174601768]Converting Position Footer into Verbatim Bits or Aligned Offset Bits
The position footer can be further subdivided into verbatim bits and aligned offset bits if the current value of the Block Type field is 010 (aligned offset), as specified in section 2.3.1.1. If the current block is not an aligned offset block, there are no aligned offset bits, and the verbatim bits are the position footer.
If aligned offsets are used, the lower 3 bits of the position footer are the aligned offset bits, while the remaining portion of the position footer is the verbatim bits. In the case where fewer than 3 bits are in the position footer (for example, formatted offset is <= 15), it is not possible to take the "lower 3 bits of the position footer", and therefore, there are no aligned offset bits and the verbatim bits and the position footer are the same.
In situations where it is determined that there is a relatively larger number of position footers with identical lower 3 bits, the aligned offset block could be used to reduce the number of bits required to represent the position footer component in the match encoding.
The verbatim block could be used when the lower 3 bits of the position footer are relatively evenly distributed.
The following is a pseudocode example of splitting the position footer into verbatim bits and aligned offset.
if block_type is aligned_offset_block then
 if formatted_offset <= 15 then
 verbatim_bits ← position_footer
 aligned_offset ← null
 else
 aligned_offset ← position_footer
 verbatim_bits ← position_footer >> 3
 endif
else
 verbatim_bits ← position_footer
 aligned_offset ← null
endif
[bookmark: section_ee9f0b76d9ed4cf99367ba95cf7e05a8][bookmark: _Toc174601769]Converting Match Length into Length Header and Length Footer Values
The match length is converted into a length header and a length footer. The length header can have one of eight possible values, with a range of [0, 7], indicating a match of length 2, 3, 4, 5, 6, 7, 8, or a length greater than 8. If the match length is 8 or less, there is no length footer. Otherwise, the value of the length footer is equal to the match length minus 9. The following is a pseudocode example of obtaining the length header and footer.
if match_length <= 8
 length_header ← match_length-2
 length_footer ← null
else
 length_header ← 7
 length_footer ← match_length-9
endif
	Match length
	Length header
	Length footer value

	2
	0
	None

	3
	1
	None

	4
	2
	None

	5
	3
	None

	6
	4
	None

	7
	5
	None

	8
	6
	None

	9
	7
	0

	10
	7
	1

	…
	7
	…

	n
	7
	n-9

[bookmark: section_722055aef0ae4840a1d4eb04ace1a900][bookmark: _Toc174601770]Converting Length Header and Position Slot into Length/Position Header Values
The length/position header is the stage that correlates the match position with the match length (using only the most significant bits) and is created by combining the length header and the position slot, as follows:
len_pos_header ←(position_slot << 3) + length_header
This operation creates a unique value for every combination of match length 2, 3, 4, 5, 6, 7, 8 with every possible position slot. The remaining match lengths greater than 8 are all lumped together and, as a group, are correlated with every possible position slot.
[bookmark: section_a81659d1ae584dba943362eb31bf310e][bookmark: _Toc174601771]Extra Length Field
If the match length is 257 or larger, the encoded match length token (or match length, as specified in section 2.6) value is 257, and an encoded Extra Length field follows the other match encoding components, as specified in section 2.6.7, in the bitstream.
	Prefix (in binary)
	Number of bits to decode
	Base value to add to decoded value

	0
	8
	257

	10
	10
	257 + 256

	110
	12
	257 + 256 + 1024

	111
	15
	257

If the encoded match length token is equal to 257, it indicates the length of the match is >= 257. If this is the case, the Extra Length field is after the other match encoding components in the bitstream. If the prefix of the Extra Length field is 0, the match length is the decoded value of the next 8 bits plus 257. If the prefix is 10, the match length is the decoded value of the next 10 bits plus 257 plus 256. If the prefix is 110, the match length is the decoded value of the next 12 bits plus 257 plus 256 plus 1024. If the prefix is 111, the match length is the decoded value of the next 15 bits plus 257.
[bookmark: section_9387a3c177ea4f9490241ca36de95e52][bookmark: _Toc174601772]Encoding a Match
The match is finally output as part of the compressed bitstream in up to five components, in the following order:
1. Main tree element at index (len_pos_header + 256).
2. If length_footer != null, the output length tree element is length_footer.
3. If verbatim_bits != null, the output is verbatim_bits.
4. If aligned_offset_bits != null, the output element is aligned_offset from the aligned offset tree.
5. If the match length is 257 or larger, the output consists of the prefix and value of the Extra Length field (section 2.6.6).
[bookmark: section_d7a47bbeeebd49b88f98a7c9b53772d2][bookmark: _Toc174601773]Encoding a Literal
A literal byte that is not part of a match is encoded simply as a main tree element index with a range of [0, 255] corresponding to the value of the literal byte.
[bookmark: section_06ee7ce0730a4907be3cf1f5673b0300][bookmark: _Toc174601774]Decoding Matches and Literals (Aligned and Verbatim Blocks)
Decoding is performed by first decoding an element from the main tree and then, if the item is a match, determining which additional components are required to decode to reconstruct the match. The following is a pseudocode example of decoding a match or an uncompressed character.
 main_element = main_tree.decode_element()
	
 /* Check if it is a literal character. */
 if (main_element < 256)
	
 /* It is a literal, so copy the literal to output. */
 window[curpos] ← (byte) main_element
 curpos ← curpos + 1
	
 /* Decode the match. For a match, there are two components, offset and length. */
 else
	
 length_header ← (main_element – 256) & 7
	
 /* Length of the footer. */
 if (length_header == 7)
 match_length ← length_tree.decode_element() + 7 + 2
 else
 /* no length footer */
 match_length ← length_header + 2
 endif

 /* Decoding a match length (if a match length < 257). */
 position_slot ← (main_element – 256) >> 3
	
 /* Check for repeated offsets (positions 0,1,2). */
 if (position_slot == 0)
 match_offset ← R0
 else if (position_slot == 1)
 match_offset ← R1
 swap(R0 ↔ R1)
 else if (position_slot == 2)
 match_offset ← R2
 swap(R0 ↔ R2)
 /* Not a repeated offset. */
 else
 offset_bits ← footer_bits[position_slot]
	
 if (block_type == aligned_offset_block)
 /* This means there are some aligned bits. */
 if (offset_bits > 3)
 verbatim_bits ← (readbits(offset_bits-3)) << 3
 aligned_bits ← aligned_offset_tree.decode_element();
 else
 /* 0, 1, or 2 verbatim bits */
 verbatim_bits ← readbits(offset_bits)
 aligned_bits ← 0
 endif

 formatted_offset ← base_position[position_slot]
 + verbatim_bits + aligned_bits

 else
 /* Block_type is a verbatim_block. */
 verbatim_bits ← readbits(offset_bits)
 formatted_offset ← base_position[position_slot] + verbatim_bits
 endif
	
 /* Decoding a match offset. */
 match_offset ← formatted_offset – 2
	
 /* Update repeated offset least recently used queue. */
 R2 ← R1
 R1 ← R0
 R0 ← match_offset
	
 endif
	
 /* Check for extra length. */
	
 if (match_length == 257)
 if (readbits(1) != 0)
 if (readbits(1) != 0)
 if (readbits(1) != 0)
 extra_len = readbits(15)
 else
 extra_len = readbits(12) + 1024 + 256
 endif
 else
 extra_len = readbits(10) + 256
 endif
 else
 extra_len = readbits(8)
 endif
	
 /* Get the match length (if match length >= 257). */
 match_length ← 257 + extra_len
	
 endif
	
 /* Get match length and offset. Perform copy and paste work. */
 for (i = 0; i < match_length; i++)
 window[curpos + i] ← window[curpos + i – match_offset]
 endfor
	
 curpos ← curpos + match_length

 endif
[bookmark: section_905c3a56778e4c5e9eb945c272adfda2][bookmark: _Toc174601775]Structure Examples
The LZXD bitstream is to be interpreted as a sequence of aligned 16-bit integers stored in the order least significant byte to most significant byte (little-endian words).
The only exception is the uncompressed data bytes stored in the uncompressed block interpreted as a sequence of bytes. The following example is a sample encoding sequence of a simple 3-byte text input "abc" encoded with a Block Type field value of 3 (uncompressed block).
	Bits to decode
	Value of decoded bits
	Interpretation

	16
	0x0014
	Chunk size: 20 bytes

	1
	0
	E8 translation:disabled

	3
	3 (binary 011)
	Block Type: uncompressed

	24
	0x000003
	Block Size: 3 bytes

	4
	binary 0000
	Padding to word-align following

	4 bytes
	0x00000001 (little-endian DWORD ([MS-DTYP]))
	R0: 1

	4 bytes
	0x00000001 (little-endian DWORD)
	R1: 1

	4 bytes
	0x00000001 (little-endian DWORD)
	R2: 1

	3 bytes
	0x61, 0x62, 0x63
	Uncompressed bytes: "abc"

	1 byte
	0x00
	Padding to restore word alignment

This is the raw hexadecimal compressed byte sequence of the encoded fields:
14 00 00 30 30 00 01 00 00 00 01 00 00 00 01 00 00 00 61 62 63 00
[bookmark: section_a62fe38d23794f938378e37269f036ec][bookmark: _Toc174601776]Security
[bookmark: section_d257baa9b65a47b7b12b982f067cbbcc][bookmark: _Toc174601777]Security Considerations for Implementers
None.
[bookmark: section_c2be36931cb5450b93beb57af7b01b81][bookmark: _Toc174601778]Index of Security Parameters
None.
[bookmark: section_099c1c9751f24a09a3cf347173fc8e72][bookmark: _Toc174601779]Appendix A: Product Behavior
The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include updates to those products.
· Microsoft Exchange Server 2003
· Microsoft Exchange Server 2007
· Microsoft Exchange Server 2010
· Microsoft Exchange Server 2013
· Microsoft Exchange Server 2016
· Microsoft Office Outlook 2003
· Microsoft Office Outlook 2007
· Microsoft Outlook 2010
· Microsoft Outlook 2013
· Microsoft Outlook 2016
· Microsoft Exchange Server 2019
· Microsoft Outlook 2019
· Microsoft Outlook 2021
· Microsoft Outlook LTSC 2024
Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base (KB) number appears with a product name, the behavior changed in that update. The new behavior also applies to subsequent updates unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.
Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the product does not follow the prescription.
[bookmark: section_dd11eaa3adf74e4b8578f14800a51f19][bookmark: _Toc174601780]Change Tracking
This section identifies changes that were made to this document since the last release. Changes are classified as Major, Minor, or None.
The revision class Major means that the technical content in the document was significantly revised. Major changes affect protocol interoperability or implementation. Examples of major changes are:
· A document revision that incorporates changes to interoperability requirements.
· A document revision that captures changes to protocol functionality.
The revision class Minor means that the meaning of the technical content was clarified. Minor changes do not affect protocol interoperability or implementation. Examples of minor changes are updates to clarify ambiguity at the sentence, paragraph, or table level.
The revision class None means that no new technical changes were introduced. Minor editorial and formatting changes may have been made, but the relevant technical content is identical to the last released version.
The changes made to this document are listed in the following table. For more information, please contact dochelp@microsoft.com.
	Section
	Description
	Revision class

	5 Appendix A: Product Behavior
	Updated list of supported products.
	Major

[bookmark: section_84525d541f13490d8001f45494657ca0][bookmark: _Toc174601781]Index
28 / 29
[MS-PATCH] - v20240820
LZX DELTA Compression and Decompression
Copyright © 2024 Microsoft Corporation
Release: August 20, 2024
A

Applicability 6

B

Bitstream concept 8
Block
 block header 12
Block header block 12

C

Change tracking 27
Chunk size header 11
Common data types and fields 8
Compressed token sequence 16
 converting formatted offset into position slot and position footer values 18
 converting length header and position slot into length/position header values 21
 converting match length into length header and length footer values 20
 converting match offset into formatted offset values 17
 converting position footer into verbatim bits or offset bits 19
 encoding a literal 22
 encoding a match 21
 extra length 21
Concepts
 bitstream 8
 match length 10
 position slot 10
 reference data 8
 repeated offsets 9
 window size 8
Converting formatted offset into position slot and position footer values compressed token sequence 18
Converting length header and position slot into length/position header values compressed token sequence 21
Converting match length into length header and length footer values compressed token sequence 20
Converting match offset into formatted offset values compressed token sequence 17
Converting position footer into verbatim bits or aligned offset bits compressed token sequence 19

D

Data types and fields - common 8
decoding matches and literals (aligned and verbatim blocks) 22
Details
 bitstream concept 8
 block header block 12
 chunk size header 11
 common data types and fields 8
 compressed token sequence 16
 converting formatted offset into position slot and position footer values 18
 converting length header and position slot into length/position header values 21
 converting match length into length header and length footer values 20
 converting match offset into formatted offset values 17
 converting position footer into verbatim bits or aligned offset bits 19
 decoding matches and literals (aligned and verbatim blocks) 22
 E8 call translation header 11
 encoding a literal 22
 encoding a match 21
 encoding the trees and pretrees 15
 extra lenth 21
 Huffman trees 15
 match length concept 10
 position slot concept 10
 reference data concept 8
 repeated offsets concept 9
 window size concept 8

E

E8 call translation header 11
Encoding a literal compressed token sequence 22
Encoding a match compressed token sequence 21
Encoding the trees and pretrees 15
Examples 24
Extra length compressed token sequence 21

F

Fields - vendor-extensible 7

G

Glossary 5

H

Header
 chunk size 11
 E8 call translation 11
Huffman trees 15

I

Implementer - security considerations 25
Index of security parameters 25
Informative references 6
Introduction 5

L

Localization 6

M

Match length concept 10

N

Normative references 5

O

Overview (synopsis) 6

P

Parameters - security index 25
Position slot concept 10
Product behavior 26

R

Reference data concept 8
References 5
 informative 6
 normative 5
Relationship to protocols and other structures 6
Repeated offsets concept 9

S

Security
 implementer considerations 25
 parameter index 25
Structures
 compressed token sequence 16
 decoding matches and literals (aligned and verbatim blocks) 22
 encoding the trees and pretrees 15
 Huffman trees 15
 overview 8

T

Tracking changes 27

V

Vendor-extensible fields 7
Versioning 6

W

Window size concept 8
[bookmark: EndOfDocument_ST]
29 / 29
[MS-PATCH] - v20240820
LZX DELTA Compression and Decompression
Copyright © 2024 Microsoft Corporation
Release: August 20, 2024
image1.bin
Header

Block

Block

Block

image2.bin
Offset

1

2

3

4

5

6

7

8

10

12

13

14

15

16

17

18

Value

B

C

D

E

F

G

H

I

C

D

E

F

a

b

Reference data sequence

Subject data sequence

image3.bin
Match length

Match offset

v

[2..257]
Formatted offset
Length header Position slot Position footer
Length footer Lenggzglz%iltlon Verbatllr)?t;)osmon Aligned offset bits
T T T
| | i |
v v ! | A
Length tree Main tree / Aligned offset
! tree
< i
~ ~ \ i s
~ - \ | Vd 7
o~ ~ \\ / 7 g
~ / 7
RN < / s
~o \ |
A 4 14
OUTPUT

