

1 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

[MS-PATCH]:
LZX DELTA Compression and Decompression

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

04/04/2008 0.1 Initial Availability.

06/27/2008 1.0 Initial Release.

08/06/2008 1.01 Revised and edited technical content.

09/03/2008 1.02 Revised and edited technical content.

12/03/2008 1.03 Updated IP notice.

03/04/2009 1.04 Revised and edited technical content.

04/10/2009 2.0 Updated technical content and applicable product
releases.

07/15/2009 3.0 Major Revised and edited for technical content.

11/04/2009 3.0.1 Editorial Revised and edited the technical content.

02/10/2010 3.1.0 Minor Updated the technical content.

05/05/2010 3.1.1 Editorial Revised and edited the technical content.

08/04/2010 4.0 Major Significantly changed the technical content.

11/03/2010 4.0 No change No changes to the meaning, language, or formatting of
the technical content.

03/18/2011 4.0 No change No changes to the meaning, language, or formatting of
the technical content.

08/05/2011 4.0 No change No changes to the meaning, language, or formatting of
the technical content.

10/07/2011 4.0 No change No changes to the meaning, language, or formatting of
the technical content.

01/20/2012 5.0 Major Significantly changed the technical content.

04/27/2012 5.0 No change No changes to the meaning, language, or formatting of
the technical content.

07/16/2012 5.0 No change No changes to the meaning, language, or formatting of
the technical content.

10/08/2012 5.1 Minor Clarified the meaning of the technical content.

02/11/2013 5.1 No change No changes to the meaning, language, or formatting of
the technical content.

07/26/2013 6.0 Major Significantly changed the technical content.

11/18/2013 6.0 No change No changes to the meaning, language, or formatting of

3 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

Date

Revision

History

Revision

Class Comments

the technical content.

4 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

Table of Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.4 Relationship to Protocols and Other Structures .. 7
1.5 Applicability Statement ... 7
1.6 Versioning and Localization ... 7
1.7 Vendor-Extensible Fields ... 7

2 Structures .. 8
2.1 Concepts .. 8

2.1.1 Bitstream .. 8
2.1.2 Window Size .. 8
2.1.3 Reference Data .. 8
2.1.4 Repeated Offsets .. 9
2.1.5 Match Lengths ... 10
2.1.6 Position Slot .. 10

2.2 Header ... 11
2.2.1 Chunk Size .. 11
2.2.2 E8 Call Translation ... 11

2.3 Block .. 13
2.3.1 Block Header ... 13

2.3.1.1 Block Type Field ... 13
2.3.1.2 Block Size Field .. 13

2.3.2 Block Data ... 13
2.3.2.1 Uncompressed Block ... 13
2.3.2.2 Verbatim Block ... 14
2.3.2.3 Aligned Offset Block .. 15

2.4 Huffman Trees .. 15
2.5 Encoding the Trees and Pretrees .. 15
2.6 Compressed Token Sequence .. 17

2.6.1 Converting Match Offset into Formatted Offset Values ... 18
2.6.2 Converting Formatted Offset into Position Slot and Position Footer Values 18
2.6.3 Converting Position Footer into Verbatim Bits or Aligned Offset Bits 20
2.6.4 Converting Match Length into Length Header and Length Footer Values 21
2.6.5 Converting Length Header and Position Slot into Length/Position Header Values 21
2.6.6 Extra Length Field .. 22
2.6.7 Encoding a Match ... 22
2.6.8 Encoding a Literal ... 22

2.7 Decoding Matches and Literals (Aligned and Verbatim Blocks) 22

3 Structure Examples .. 25

4 Security .. 26
4.1 Security Considerations for Implementers ... 26
4.2 Index of Security Parameters .. 26

5 Appendix A: Product Behavior .. 27

5 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

6 Change Tracking... 28

7 Index ... 29

6 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

1 Introduction

LZX DELTA Compression and Decompression enables one set of data to be compressed within the
context of a reference set of data that is supplied to both the compressor and the decompressor.

Sections 1.7 and 2 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. All other sections and examples in this
specification are informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

little-endian

The following terms are defined in [MS-OXGLOS]:

Lempel-Ziv Extended (LZX)
Lempel-Ziv Extended Delta (LZXD)
offline address book (OAB)
stream

The following terms are specific to this document:

path length: The number of edges in the canonical Huffman tree between the top of the tree
and the element.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[Cormen] Cormen, T., Leiserson, C., Rivest, R., and Stein, C., "Introduction to Algorithms", 3rd
edition, Massachusetts Institute of Technology, 2009, ISBN: 978-0-262-03384-8.

[IEEE1003.1] The Open Group, "IEEE Std 1003.1, 2004 Edition", 2004,

http://www.unix.org/version3/ieee_std.html

Note Registration is required to view or download this specification.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=120869
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89897
%5bMS-DTYP%5d.pdf

7 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[UASDC] Ziv, J. and Lempel, A., "A Universal Algorithm for Sequential Data Compression", May
1977, http://ieeexplore.ieee.org/iel5/18/22696/01055714.pdf

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-OXGLOS] Microsoft Corporation, "Exchange Server Protocols Master Glossary".

[MS-OXOAB] Microsoft Corporation, "Offline Address Book (OAB) File Format and Schema".

[MS-OXPROTO] Microsoft Corporation, "Exchange Server Protocols System Overview".

1.3 Overview

Lempel-Ziv Extended Delta (LZXD) compression provides a mechanism for both the compressor
and the decompressor to refer to a common reference set of data. It relaxes the constraint that the
match offset be constrained to less than the current position in the output stream (2), allowing the
match offset to refer to the logically prepended reference data. This relaxed constraint effectively
enables the compressed data stream (2) to encode "matches" both from the reference data and

from the uncompressed data stream (2).

1.4 Relationship to Protocols and Other Structures

LZXD (D for Delta) is an LZX variant that is modified to facilitate efficient delta compression.

LZX is a compressor that is based on the Lempel-Ziv 1977 (LZ77) sliding window data compression
algorithm, as described in [UASDC], that uses static Huffman encoding and a sliding window of
selectable size. Data symbols are encoded either as an uncompressed symbol or as a logical (offset,

length) pair indicating that length symbols shall be copied from a displacement of offset symbols

from the current position in the output stream (2). The value of the offset is constrained to be less
than the current position in the output stream (2), up to the size of the sliding window.

The LZXD compression format is used by [MS-OXOAB] to compress data in the offline address
book (OAB).

For conceptual background information and overviews of the relationships and interactions between
this and other protocols, see [MS-OXPROTO].

1.5 Applicability Statement

LZXD compression is commonly used to encode updates to similar existing data sets so that the size
of compressed data can be significantly reduced relative to ordinary compression techniques that do
not use the delta between a common reference set of data. One use for this compression format is
the compression data in OAB version 4 Differential Patch or Compressed OAB Template files.

1.6 Versioning and Localization

None.

1.7 Vendor-Extensible Fields

None.

http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90549
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=120869
%5bMS-OXOAB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=254124
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=193325
%5bMS-OXOAB%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXPROTO%5d.pdf

8 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

2 Structures

LZXD compressed data consists of a header that indicates the file translation size, followed by a
sequence of compressed blocks. A stream (2) of uncompressed input can be output as multiple
compressed LZXD blocks to improve compression, because each compressed block contains its own
statistical tree structures.

Figure 1: The structure of LZXD compressed data

A block can be one of the following types:

Uncompressed block, as specified in section 2.3.2.1.

Verbatim block, as specified in section 2.3.2.2.

Aligned offset, as specified in section 2.3.2.3.

In this document, ranges are specified using interval notation. A range in parenthesis "()" does not

include the upper and lower endpoints. A range in brackets "[]" does include the upper and lower
endpoints.

2.1 Concepts

2.1.1 Bitstream

An LZXD bitstream is encoded as a sequence of aligned 16-bit integers stored in the least-

significant-byte to most-significant-byte order, also known as byte-swapped, or little-endian,
words. Given an input stream (2) of bits named a, b, c,..., x, y, z, A, B, C, D, E, F, the output byte
stream (2) MUST be as follows:

i j k l m n o p a b c d e f g h y z A B C D E F q r s t u v w x

2.1.2 Window Size

The sliding window size MUST be a power of 2, from 2^17 (128 kilobytes (KB)) up to 2^25 (32
megabytes (MB)). The window size is not stored in the compressed data stream (2) and MUST be
specified to the decoder before decoding begins. The window size SHOULD be the smallest power of
two between 2^17 and 2^25 that is greater than or equal to the sum of the size of the reference

data rounded up to a multiple of 32,768 and the size of the subject data.

2.1.3 Reference Data

For delta compression, the reference data is a sequence of bytes given to the compressor before
compressing the subject data. The exact same reference data sequence MUST be given to the

decompressor before decompression. The reference data sequence is treated as logically prepended
to the subject data sequence being compressed or decompressed. During decompression, match

offsets are negative displacements from the "current position" in the output stream (2), up to the
specified window size. When match offset values exceed the number of bytes already emitted in the
uncompressed output stream (2), they are pointing into the reference data that is logically
prepended to the subject data.

%5bMS-GLOS%5d.pdf

9 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

Figure 2: Example reference data and subject data

In this example, the reference data is 10 bytes long and consists of the sequence "ABCDEFGHIJ".
The data to be compressed, or the subject data, is also 10 bytes long (although the data does not

have to be the same length as the reference data) and consists of "abcDEFabce". A valid encoded
sequence would consist of the following tokens:

'a', 'b', 'c', (match offset -10, length 3), (match offset -6, length 3), 'e'

The first match offset exceeds the amount of subject data already in the window, pointing instead
into the reference data portion. The second match offset does not exceed the amount of subject

data in the window and instead refers to a portion of the subject data previously compressed or
decompressed.

2.1.4 Repeated Offsets

LZXD compression extends the conventional Lempel-Ziv 1977 sliding window data compression
algorithm format, as specified in [UASDC], in several ways, one of which is in the use of repeated
offset codes. Three match offset codes, named the repeated offset codes, are reserved to indicate
that the current match offset is the same as that of one of the three previous matches, which is not
itself a repeated offset.

The three special offset codes are encoded as offset values 0, 1, and 2 (for example, encoding an
offset of 0 means "use the most recent nonrepeated match offset"; an offset of 1 means "use the
second most recent nonrepeated match offset"; and so on). All remaining encoded offset values are
displaced by real offset +2, as is shown in the following table, which prevents matches at offsets
WINDOW_SIZE, WINDOW_SIZE-1, and WINDOW_SIZE-2.

Encoded offset Real offset

0 Most recent real match offset

1 Second most recent match offset

2 Third most recent match offset

3 1 (closest allowable)

4 2

5 3

6 4

7 5

8 6

500 498

X+2 X

http://go.microsoft.com/fwlink/?LinkId=193325

10 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

Encoded offset Real offset

WINDOW_SIZE-1

(maximum possible)

WINDOW_SIZE-3

The three most recent real match offsets are kept in a list, the behavior of which is explained as
follows:

Let R0 be defined as the most recent real offset.

Let R1 be defined as the second most recent offset.

Let R2 be defined as the third most recent offset.

The list is managed similarly to a least recently used queue, with the exception of the cases when
R1 or R2 is output. In these cases, R1 or R2 is simply swapped with R0, which requires fewer
operations than a least recently used queue would.

The initial state of R0, R1, R2 is (1, 1, 1).

Match offset X where... Operation

X≠R0 and X≠R1 and X≠R2 R2←R1

R1←R0

R0←X

X = R0 None

X = R1 swap R0↔R1

X = R2 swap R0↔R2

2.1.5 Match Lengths

The minimum match length (number of bytes) encoded by LZXD is 2 bytes, and the maximum

match length is 32,768 bytes. However, no match of any length can span a modulo 32-KB boundary
in the uncompressed stream (2). Match-length encoding is combined with match-position encoding
as described in section 2.6.

2.1.6 Position Slot

The window size determines the number of window subdivisions, or position slots, as shown in the
following table.

Window size Position slots required

128 KB 34

256 KB 36

512 KB 38

1 MB 42

2 MB 50

11 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

Window size Position slots required

4 MB 66

8 MB 98

16 MB 162

32 MB 290

2.2 Header

2.2.1 Chunk Size

The LZXD compressor emits chunks of compressed data. A chunk represents exactly 32 KB of
uncompressed data until the last chunk in the stream (2), which can represent less than 32 KB. To
ensure that an exact number of input bytes represent an exact number of output bytes for each

chunk, after each 32 KB of uncompressed data is represented in the output compressed bitstream,
the output bitstream is padded with up to 15 bits of zeros to realign the bitstream on a 16-bit

boundary (even byte boundary) for the next 32 KB of data. This results in a compressed chunk of a
byte-aligned size. The compressed chunk could be smaller than 32 KB or larger than 32 KB if the
data is incompressible when the chunk is not the last one.

The LZXD engine encodes a compressed, chunk-size prefix field preceding each compressed chunk
in the compressed byte stream (2). The compressed, chunk-size prefix field is a byte aligned, little-
endian, 16-bit field. The chunk prefix chain could be followed in the compressed stream (2) without
decompressing any data. The next chunk prefix is at a location computed by the absolute byte offset

location of this chunk prefix plus 2 (for the size of the chunk-size prefix field) plus the current chunk
size.

2.2.2 E8 Call Translation

E8 call translation is an optional feature that can be used when the data to compress contains x86

instruction sequences. E8 translation operates as a preprocessing stage before compressing each
chunk, and the compressed stream (2) header contains a bit that indicates whether the decoder

shall reverse the translation as a postprocessing step after decompressing each chunk.

The x86 instruction beginning with a byte value of 0xE8 is followed by a 32-bit, little-endian relative
displacement to the call target. When E8 call translation is enabled, the following preprocessing
steps are performed on the uncompressed input before compression (assuming little-endian byte
ordering):

Let chunk_offset refer to the total number of uncompressed bytes preceding this chunk.

Let E8_file_size refer to the caller-specified value given to the compressor or decoded from the
header of the compressed stream (2) during decompression.

The following example shows how E8 translation is performed for each 32-KB chunk of
uncompressed data (or less than 32 KB if last chunk to compress).

if ((chunk_offset < 0x40000000) && (chunk_size > 10))

 for (i = 0; i < (chunk_size – 10); i++)

if (chunk_byte[i] == 0xE8)

 long current_pointer = chunk_offset + i;

long displacement = chunk_byte[i+1] |

chunk_byte[i+2] << 8 |

12 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

chunk_byte[i+3] << 16 |

chunk_byte[i+4] << 24;

long target = current_pointer + displacement;

if ((target >= 0) && (target < E8_file_size+current_pointer))

if (target >= E8_file_size)

target = displacement – E8_file_size;

endif

chunk_byte[i+1] = (byte)(target);

chunk_byte[i+2] = (byte)(target >> 8);

chunk_byte[i+3] = (byte)(target >> 16);

chunk_byte[i+4] = (byte)(target >> 24);

endif

 i += 4;

endif

endfor

endif

After decompression, the E8 scanning algorithm is the same. The following example shows how E8
translation reversal is performed.

long value = chunk_byte[i+1] |

chunk_byte[i+2] << 8 |

chunk_byte[i+3] << 16 |

chunk_byte[i+4] << 24;

if ((value >= -current_pointer) && (value < E8_file_size))

if (value >= 0)

displacement = value – current_pointer;

else

displacement = value + E8_file_size;

endif

chunk_byte[i+1] = (byte)(displacement);

chunk_byte[i+2] = (byte)(displacement >> 8);

chunk_byte[i+3] = (byte)(displacement >> 16);

chunk_byte[i+4] = (byte)(displacement >> 24);

endif

The first bit in the first chunk in the LZXD bitstream (following the 2-byte, chunk-size prefix

described in section 2.2.1) indicates the presence or absence of two 16-bit fields immediately
following the single bit. If the bit is set, E8 translation is enabled for all the following chunks in the
stream (2) using the 32-bit value derived from the two 16-bit fields as the E8_file_size provided to

the compressor when E8 translation was enabled. Note that E8_file_size is completely independent
of the length of the uncompressed data. E8 call translation is always disabled after the 32,768th
chunk (after 1 gigabyte (GB) of uncompressed data).

Field Comments Size

E8 translation 0-disabled, 1-enabled 1 bit

Translation size high word Only present if enabled 0 or 16 bits

Translation size low word Only present if enabled 0 or 16 bits

13 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

2.3 Block

2.3.1 Block Header

An LZXD block represents a sequence of compressed data that is encoded with the same set of
Huffman trees, or a sequence of uncompressed data. There can be one or more LZXD blocks in a
compressed stream (2), each with its own set of Huffman trees. Blocks do not have to start or end
on a chunk boundary; blocks can span multiple chunks, or a single chunk can contain multiple
blocks. The number of chunks is related to the size of the data being compressed, while the number
of blocks is related to how well the data is compressed. The Block Type field, as specified in section
2.3.1.1, indicates which type of block follows, and the Block Size field, as specified in section

2.3.1.2, indicates the number of uncompressed bytes represented by the block. Following the
generic block header is a type-specific header that describes the remainder of the block.

Field Comments Size

Block Type See valid values in section 2.3.1.1 3 bits

Block Size most significant bit Block size is the high 8 bits of 24 8 bits

Block Size byte 2 Block size is the middle 8 bits of 24 8 bits

Block Size least significant bit Block size is the low 8 bits of 24 8 bits

2.3.1.1 Block Type Field

Each block of compressed data begins with a 3-bit Block Type field, followed by the Block Size

field, as specified in section 2.3.1.2, and then type-specific block data, as specified in section 2.3.2.
Of the eight possible values, only three are valid values for the Block Type field.

Bits Value Meaning

001 1 Verbatim block

010 2 Aligned offset block

011 3 Uncompressed block

other 0, 4-7 Not valid

2.3.1.2 Block Size Field

The Block Size field indicates the number of uncompressed bytes that are represented by the

block. The maximum value for the Block Size field is 224-1 (16 MB-1, or 0x00FFFFFF). The Block
Size field is encoded in the bitstream as three 8-bit fields comprising a 24-bit value, most significant
to least significant, immediately following the value of the Block Type field.

2.3.2 Block Data

2.3.2.1 Uncompressed Block

Following the generic block header, an uncompressed block begins with 1 to 16 bits of zero padding
to align the bit buffer on a 16-bit boundary. At this point, the bitstream ends and a byte stream (2)
begins. Following the zero padding, new 32-bit values for R0, R1, and R2 are output in little-endian

14 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

form, followed by the uncompressed data bytes themselves. Finally, if the uncompressed data
length is odd, one extra byte of zero padding is encoded to realign the following bitstream.

Field Comments Size

Padding to align following field on 16-bit boundary Bits have a value of zero Variable,

[1..16] bits

Then, the following fields are encoded directly in the byte stream (2), not in the bitstream of byte-
swapped 16-bit words:

Field Comments Size

R0 Least significant to most significant byte (little-endian
DWORD ([MS-DTYP]))

4 bytes

R1 Least significant to most significant byte (little-endian
DWORD)

4 bytes

R2 Least significant to most significant byte (little-endian

DWORD)

4 bytes

Uncompressed raw data
bytes

Can use the direct memcpy function, as specified in
[IEEE1003.1]

[1..224-1]
bytes

Padding to realign
bitstream

Only if uncompressed size is odd 0 or 1 byte

Then the bitstream of byte-swapped 16-bit integers resumes for the next Block Type field (if there
are subsequent blocks).

The decoded R0, R1, and R2 values are used as initial repeated offset values to decode the
subsequent compressed block if present.

2.3.2.2 Verbatim Block

The fields of a verbatim block that follow the generic block header are listed in the following table.

Entry Comments Size

Pretree for first 256 elements of main tree 20 elements, 4 bits each 80 bits

Path lengths of first 256 elements of main tree Encoded using pretree Variable

Pretree for remainder of main tree 20 elements, 4 bits each 80 bits

Path lengths of remaining elements of main tree Encoded using pretree Variable

Pretree for length tree 20 elements, 4 bits each 80 bits

Path lengths of elements in length tree Encoded using pretree Variable

Token sequence (matches and literals) Specified in section 2.6 Variable

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89897

15 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

2.3.2.3 Aligned Offset Block

An aligned offset block is identical to the verbatim block except for the presence of the aligned offset
tree preceding the other trees.

Entry Comments Size

Aligned offset tree 8 elements, 3 bits each 24 bits

Pretree for first 256 elements of main tree 20 elements, 4 bits each 80 bits

Path lengths of first 256 elements of main tree Encoded using pretree Variable

Pretree for remainder of main tree 20 elements, 4 bits each 80 bits

Path lengths of remaining elements of main tree Encoded using pretree Variable

Pretree for length tree 20 elements, 4 bits each 80 bits

Path lengths of elements in length tree Encoded using pretree Variable

Token sequence (matches and literals) Specified in section 2.6 Variable

2.4 Huffman Trees

LZXD compression uses canonical Huffman tree structures to represent elements. Huffman trees, as
specified in [Cormen], are well known in data compression and are not described here. Because an
LZXD decoder uses only the path lengths of the Huffman tree to reconstruct the identical tree, the
following constraints are made on the tree structure.

For any two elements with the same path length, the lower-numbered element MUST be farther left
on the tree than the higher-numbered element. An alternative way of stating this constraint is that
lower-numbered elements MUST have lower path traversal values; for example, 0010 (left-left-

right-left) is lower than 0011 (left-left-right-right).

For each level, starting at the deepest level of the tree and then moving upward, leaf nodes MUST
start as far left as possible. An alternative way of stating this constraint is that if any tree node has
children, all tree nodes to the right of it with the same path length MUST also have children.

A non-empty Huffman tree MUST contain at least two elements. In the case where all but one tree
element has zero frequency, the resulting tree MUST minimally consist of two Huffman codes, "0"
and "1".

LZXD compression uses several Huffman tree structures. The main tree comprises 256 elements
that correspond to all possible 8-bit characters, plus 8 * NUM_POSITION_SLOTS elements that
correspond to matches. The NUM_POSITION_SLOTS elements refer to the position slots required,
as specified in section 2.1.6. The value of the NUM_POSITION_SLOTS elements depends on the
specified window size as described in section 2.1.6. The length tree comprises 249 elements. Other
trees, such as the aligned offset tree (comprising 8 elements), and the pretrees (comprising 20

elements each), have a smaller role.

2.5 Encoding the Trees and Pretrees

Because all trees used in LZXD compression are created in the form of a canonical Huffman tree, the
path length of each element in the tree is sufficient to reconstruct the original tree. The main tree
and the length tree are each encoded using the method described here. However, the main tree is
encoded in two components as if it were two separate trees, the first tree corresponding to the first

16 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

256 tree elements (uncompressed symbols), and the second tree corresponding to the remaining
elements (matches).

Because trees are output several times during compression of large amounts of data (multiple
blocks), LZXD optimizes compression by encoding only the delta path lengths between the current

and previous trees. In the case of the very first such tree, the delta is calculated against a tree in
which all elements have a zero path length.

Each tree element can have a path length of [0, 16], where a zero path length indicates that the
element has a zero frequency and is not present in the tree. Tree elements are output in sequential
order starting with the first element. Elements can be encoded in one of two ways: if several
consecutive elements have the same path length, run-length encoding is employed; otherwise, the
element is output by encoding the difference between the current path length and the previous path

length of the tree, mod 17. To represent a canonical Huffman tree, specify the path lengths of each
of the elements in the tree. The following table specifies how to interpret a code.

Code Operation

0 to 16 Len[x] = (prev_len[x] - code + 17) mod 17

17 Zeros = getbits(4)

Len[x] = 0 for next (4 + Zeros) elements

18 Zeros = getbits(5)

Len[x] = 0 for next (20 + Zeros) elements

19 Same = getbits(1)

Decode new code

Value = (prev_len[x] - code + 17) mod 17

Len[x] = Value for next (4 + Same) elements

Codes 17, 18, and 19 are used to represent consecutive elements that have the same path length.
Zeros, Same, and Value are variables created for the purpose of this sample code, and getbits(n)

is a function that fetches the next n bits from the bitstream. "Decode new code" is used to parse the
next code from the bitstream, which has a value range of [0, 16].

Each of the 17 possible values of (len[x] - prev_len[x]) mod 17, plus three additional codes used for
run-length encoding, are not output directly as 5-bit numbers but are instead encoded via a
Huffman tree called the pretree. The pretree is generated dynamically according to the frequencies
of the 20 allowable tree codes. The structure of the pretree is encoded in a total of 80 bits by using

4 bits to output the path length of each of the 20 pretree elements. Once again, a zero path length
indicates a zero-frequency element.

Code Operation

Length of tree code 0 4 bits

Length of tree code 1 4 bits

Length of tree code 2 4 bits

... ...

Length of tree code 18 4 bits

Length of tree code 19 4 bits

17 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

The "real" tree is then encoded using the pretree Huffman codes.

2.6 Compressed Token Sequence

The compressed token sequence (bitstream) contains the Huffman-encoded matches and literals

using the Huffman trees specified in the block header. Decompression continues until the number of
decompressed bytes corresponds exactly to the number of uncompressed bytes indicated in the
block header.

The representation of an unmatched literal character in the output is simply the appropriate element
index [0..255] from the main Huffman tree.

The representation of a match in the output involves several transformations, as shown in the
following diagram. At the top of the diagram are the match length [2..257] and the match offset

[0..WINDOW_SIZE-3]. The match offset and match length are split into subcomponents and
encoded separately. For matches of length [258..32768], the token indicates match length 257, and
then the additional value of the Extra Length field is encoded in the bitstream following the other
match subcomponent fields.

The match subcomponents are shown in the following figure.

Figure 3: Match encoding subcomponents

18 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

2.6.1 Converting Match Offset into Formatted Offset Values

The match offset, range [1..WINDOW_SIZE-3], is converted into a formatted offset by determining
whether the offset can be encoded as a repeated offset, as shown in the following pseudocode. It is

acceptable not to encode a match as a repeated offset even if it is possible to do so.

if offset == R0 then

 formatted offset ← 0

else if offset == R1 then

 formatted offset ← 1

else if offset == R2 then

 formatted offset ← 2

else

 formatted offset ← offset + 2

endif

2.6.2 Converting Formatted Offset into Position Slot and Position Footer Values

The formatted offset is subdivided into a position slot and a position footer. The position slot defines

the most significant bits of the formatted offset in the form of a base position as shown in the
following table. The position footer defines the remaining least significant bits of the formatted
offset. As the following table shows, the number of bits dedicated to the position footer grows as the
formatted offset becomes larger, meaning that each position slot addresses a larger and larger
range.

The number of position slots available depends on the window size. The number of bits of position
footer for each position slot is fixed and is shown in the following table.

Position slot

number

Base

position

Footer

bits

Range of base position and position footer

(formatted offset)

0 (R0) 0 0 0

1 (R1) 1 0 1

2 (R2) 2 0 2

3 (offset 1) 3 0 3

4 (offset 2..3) 4 1 4-5

5 (offset 4..5) 6 1 6-7

6 (offset 6..9) 8 2 8-11

7 (..etc..) 12 2 12-15

8 16 3 16-23

9 24 3 24-31

10 32 4 32-47

11 48 4 48-63

12 64 5 64-95

19 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

Position slot

number

Base

position

Footer

bits

Range of base position and position footer

(formatted offset)

13 96 5 96-127

14 128 6 128-191

15 192 6 192-255

16 256 7 256-383

17 384 7 384-511

18 512 8 512-767

19 768 8 768-1023

20 1024 9 1024-1535

21 1536 9 1536-2047

22 2048 10 2048-3071

23 3072 10 3072-4095

24 4096 11 4096-6143

25 6144 11 6144-8191

26 8192 12 8192-12287

27 12288 12 12288-16383

28 16384 13 16384-24575

29 24576 13 24576-32767

30 32768 14 32768-49151

31 49152 14 49152-65535

32 65536 15 65536-98303

33 98304 15 98304-131071

34 131072 16 131072-196607

35 196608 16 196608-262143

36 262144 17 262144-393215

37 393216 17 393216-524287

38 524288 17 524288-655359

39 655360 17 655360-786431

40 786432 17 786432-917503

41 917504 17 917504-1048575

20 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

Position slot

number

Base

position

Footer

bits

Range of base position and position footer

(formatted offset)

42 1048576 17 1048576-1179647

..etc.. ..etc.. 17 (all) ..etc..

288 33292288 17 33292288-33423359

289 33423360 17 33423360-33554431

The following pseudocode demonstrates how to determine the position slot and the position footer.

position_slot ← calculate_the position_slot from the formatted_offset

position_footer_bits ← determine the number of footer bits from the position slot value

if position_footer_bits > 0

 position_footer ← formatted_offset & ((2^position_footer_bits)-1)

else

 position_footer ← null

2.6.3 Converting Position Footer into Verbatim Bits or Aligned Offset Bits

The position footer can be further subdivided into verbatim bits and aligned offset bits if the current
value of the Block Type field is 010 (aligned offset), as specified in section 2.3.1.1. If the current
block is not an aligned offset block, there are no aligned offset bits, and the verbatim bits are the
position footer.

If aligned offsets are used, the lower 3 bits of the position footer are the aligned offset bits, while

the remaining portion of the position footer is the verbatim bits. In the case where fewer than 3 bits
are in the position footer (for example, formatted offset is <= 15), it is not possible to take the
"lower 3 bits of the position footer", and therefore, there are no aligned offset bits and the verbatim
bits and the position footer are the same.

In situations where it is determined that there is a relatively larger number of position footers with
identical lower 3 bits, the aligned offset block could be used to reduce the number of bits required to
represent the position footer component in the match encoding.

The verbatim block could be used when the lower 3 bits of the position footer are relatively evenly
distributed.

The following is a pseudocode example of splitting the position footer into verbatim bits and aligned
offset.

if block_type is aligned_offset_block then

 if formatted_offset <= 15 then

 verbatim_bits ← position_footer

 aligned_offset ← null

 else

 aligned_offset ← position_footer

 verbatim_bits ← position_footer >> 3

 endif

else

 verbatim_bits ← position_footer

 aligned_offset ← null

endif

21 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

2.6.4 Converting Match Length into Length Header and Length Footer Values

The match length is converted into a length header and a length footer. The length header can have
one of eight possible values, with a range of [0, 7], indicating a match of length 2, 3, 4, 5, 6, 7, 8,

or a length greater than 8. If the match length is 8 or less, there is no length footer. Otherwise, the
value of the length footer is equal to the match length minus 9. The following is a pseudocode
example of obtaining the length header and footer.

if match_length <= 8

 length_header ← match_length-2

 length_footer ← null

else

 length_header ← 7

 length_footer ← match_length-9

endif

Match length Length header Length footer value

2 0 None

3 1 None

4 2 None

5 3 None

6 4 None

7 5 None

8 6 None

9 7 0

10 7 1

… … …

256 7 247

257 or larger 7 248

2.6.5 Converting Length Header and Position Slot into Length/Position Header

Values

The length/position header is the stage that correlates the match position with the match length
(using only the most significant bits) and is created by combining the length header and the position
slot, as follows:

len_pos_header ←(position_slot << 3) + length_header

This operation creates a unique value for every combination of match length 2, 3, 4, 5, 6, 7, 8 with

every possible position slot. The remaining match lengths greater than 8 are all lumped together
and, as a group, are correlated with every possible position slot.

22 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

2.6.6 Extra Length Field

If the match length is 257 or larger, the encoded match length token (or match length, as specified
in section 2.6) value is 257, and an encoded Extra Length field follows the other match encoding

components, as specified in section 2.6.7, in the bitstream.

Prefix (in binary) Number of bits to decode Base value to add to decoded value

0 8 257

10 10 257 + 256

110 12 257 + 256 + 1024

111 15 257

If the encoded match length token is equal to 257, it indicates the length of the match is >= 257. If
this is the case, the Extra Length field is after the other match encoding components in the

bitstream. If the prefix of the Extra Length field is 0, the match length is the decoded value of the
next 8 bits plus 257. If the prefix is 10, the match length is the decoded value of the next 10 bits

plus 257 plus 256. If the prefix is 110, the match length is the decoded value of the next 12 bits
plus 257 plus 256 plus 1024. If the prefix is 111, the match length is the decoded value of the next
15 bits plus 257.

2.6.7 Encoding a Match

The match is finally output as part of the compressed bitstream in up to five components, in the
following order:

1. Main tree element at index (len_pos_header + 256).

2. If length_footer != null, the output length tree element is length_footer.

3. If verbatim_bits != null, the output is verbatim_bits.

4. If aligned_offset_bits != null, the output element is aligned_offset from the aligned offset tree.

5. If the match length is 257 or larger, the output is the appropriate prefix and value of the Extra
Length field.

2.6.8 Encoding a Literal

A literal byte that is not part of a match is encoded simply as a main tree element index with a
range of [0, 255] corresponding to the value of the literal byte.

2.7 Decoding Matches and Literals (Aligned and Verbatim Blocks)

Decoding is performed by first decoding an element from the main tree and then, if the item is a

match, determining which additional components are required to decode to reconstruct the match.

The following is a pseudocode example of decoding a match or an uncompressed character.

main_element = main_tree.decode_element()

/* Check if it is a literal character. */

if (main_element < 256)

/* It is a literal, so copy the literal to output. */

window[curpos] ← (byte) main_element

23 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

curpos ← curpos + 1

/* Decode the match. For a match, there are two components, offset and length. */

else

length_header ← (main_element – 256) & 7

if (length_header == 7)

/* Length of the footer. */

match_length ← length_tree.decode_element() + 7 + 2

else

match_length ← length_header + 2 /* no length footer */

/* Decoding a match length (if a match length < 257). */

endif

position_slot ← (main_element – 256) >> 3

/* Check for repeated offsets (positions 0,1,2). */

if (position_slot == 0)

match_offset ← R0

else if (position_slot == 1)

match_offset ← R1

swap(R0 ↔ R1)

else if (position_slot == 2)

match_offset ← R2

swap(R0 ↔ R2)

/* Not a repeated offset. */

else

offset_bits ← footer_bits[position_slot]

if (block_type == aligned_offset_block)

/* This means there are some aligned bits. */

if (offset_bits >= 3)

verbatim_bits ← (readbits(offset_bits-3)) << 3

aligned_bits ← aligned_offset_tree.decode_element();

else /* 0, 1, or 2 verbatim bits */

verbatim_bits ← readbits(offset_bits)

aligned_bits ← 0

endif

formatted_offset ← base_position[position_slot]

+ verbatim_bits + aligned_bits

/* Block_type is a verbatim_block. */

else

verbatim_bits ← readbits(offset_bits)

formatted_offset ← base_position[position_slot] + verbatim_bits

endif

/* Decoding a match offset. */

match_offset ← formatted_offset – 2

/* Update repeated offset least recently used queue. */

R2 ← R1

R1 ← R0

R0 ← match_offset

24 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

endif

/* Check for extra length. */

if (match_length == 257)

if (readbits(1) != 0)

if (readbits(1) != 0)

if (readbits(1) != 0)

extra_len = readbits(15)

else

extra_len = readbits(12) + 1024 + 256

endif

else

extra_len = readbits(10) + 256

endif

else

extra_len = readbits(8)

/* Decode the extra length. */

endif

/* Get the match length (if match length >= 257). */

match_length ← 257 + extra_len

endif

/* Get match length and offset. Perform copy and paste work. */

for (i = 0; i < match_length; i++)

window[curpos + i] ← window[curpos + i – match_offset]

curpos ← curpos + match_length

endif

25 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

3 Structure Examples

The LZXD bitstream is to be interpreted as a sequence of aligned 16-bit integers stored in the order
least significant byte to most significant byte (little-endian words).

The only exception is the uncompressed data bytes stored in the uncompressed block interpreted as

a sequence of bytes. The following example is a sample encoding sequence of a simple 3-byte text
input "abc" encoded with a Block Type field value of 3 (uncompressed block).

Bits to decode Value of decoded bits Interpretation

16 0x0014 Chunk size: 20 bytes

1 0 E8 translation:disabled

3 3 (binary 011) Block Type: uncompressed

24 0x000003 Block Size: 3 bytes

4 binary 0000 Padding to word-align following

4 bytes 0x00000001 (little-endian DWORD ([MS-DTYP])) R0: 1

4 bytes 0x00000001 (little-endian DWORD) R1: 1

4 bytes 0x00000001 (little-endian DWORD) R2: 1

3 bytes 0x61, 0x62, 0x63 Uncompressed bytes: "abc"

1 byte 0x00 Padding to restore word alignment

This is the raw hexadecimal compressed byte sequence of the encoded fields:

14 00 00 30 30 00 01 00 00 00 01 00 00 00 01 00 00 00 61 62 63 00

%5bMS-DTYP%5d.pdf

26 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

4 Security

4.1 Security Considerations for Implementers

None.

4.2 Index of Security Parameters

None.

27 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft Exchange Server 2003

Microsoft Exchange Server 2007

Microsoft Exchange Server 2010

Microsoft Exchange Server 2013

Microsoft Office Outlook 2003

Microsoft Office Outlook 2007

Microsoft Outlook 2010

Microsoft Outlook 2013

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

28 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

6 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

29 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

7 Index

A

Applicability 7

B

Bitstream concept 8
Block

block header 13
Block header block 13

C

Change tracking 28
Chunk size header 11
Common data types and fields 8
Compressed token sequence 17

converting formatted offset into position slot and
position footer values 18

converting length header and position slot into
length/position header values 21

converting match length into length header and
length footer values 21

converting match offset into formatted offset
values 18

converting position footer into verbatim bits or
offset bits 20

encoding a literal 22
encoding a match 22
extra length 22

Concepts
bitstream 8

match length 10
position slot 10
reference data 8
repeated offsets 9
window size 8

Converting formatted offset into position slot and
position footer values compressed token
sequence 18

Converting length header and position slot into
length/position header values compressed token
sequence 21

Converting match length into length header and
length footer values compressed token sequence
21

Converting match offset into formatted offset
values compressed token sequence 18

Converting position footer into verbatim bits or
aligned offset bits compressed token sequence 20

D

Data types and fields - common 8
decoding matches and literals (aligned and

verbatim blocks) 22
Details

bitstream concept 8
block header block 13

chunk size header 11
common data types and fields 8
compressed token sequence 17
converting formatted offset into position slot and

position footer values 18
converting length header and position slot into

length/position header values 21
converting match length into length header and

length footer values 21
converting match offset into formatted offset

values 18
converting position footer into verbatim bits or

aligned offset bits 20
decoding matches and literals (aligned and

verbatim blocks) 22
E8 call translation header 11
encoding a literal 22
encoding a match 22
encoding the trees and pretrees 15
extra lenth 22
Huffman trees 15
match length concept 10
position slot concept 10
reference data concept 8
repeated offsets concept 9
window size concept 8

E

E8 call translation header 11
Encoding a literal compressed token sequence 22
Encoding a match compressed token sequence 22
Encoding the trees and pretrees 15
Examples 25
Extra length compressed token sequence 22

F

Fields - vendor-extensible 7

G

Glossary 6

H

Header
chunk size 11
E8 call translation 11

Huffman trees 15

I

Implementer - security considerations 26
Index of security parameters 26
Informative references 7
Introduction 6

L

30 / 30

[MS-PATCH] — v20131118
 LZX DELTA Compression and Decompression

 Copyright © 2013 Microsoft Corporation.

 Release: November 18, 2013

Localization 7

M

Match length concept 10

N

Normative references 6

O

Overview (synopsis) 7

P

Parameters - security index 26
Position slot concept 10
Product behavior 27

R

Reference data concept 8
References 6

informative 7
normative 6

Relationship to protocols and other structures 7
Repeated offsets concept 9

S

Security
implementer considerations 26
parameter index 26

Structures
compressed token sequence 17
decoding matches and literals (aligned and

verbatim blocks) 22
encoding the trees and pretrees 15
Huffman trees 15
overview 8

T

Tracking changes 28

V

Vendor-extensible fields 7
Versioning 7

W

Window size concept 8

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 Concepts
	2.1.1 Bitstream
	2.1.2 Window Size
	2.1.3 Reference Data
	2.1.4 Repeated Offsets
	2.1.5 Match Lengths
	2.1.6 Position Slot

	2.2 Header
	2.2.1 Chunk Size
	2.2.2 E8 Call Translation

	2.3 Block
	2.3.1 Block Header
	2.3.1.1 Block Type Field
	2.3.1.2 Block Size Field

	2.3.2 Block Data
	2.3.2.1 Uncompressed Block
	2.3.2.2 Verbatim Block
	2.3.2.3 Aligned Offset Block

	2.4 Huffman Trees
	2.5 Encoding the Trees and Pretrees
	2.6 Compressed Token Sequence
	2.6.1 Converting Match Offset into Formatted Offset Values
	2.6.2 Converting Formatted Offset into Position Slot and Position Footer Values
	2.6.3 Converting Position Footer into Verbatim Bits or Aligned Offset Bits
	2.6.4 Converting Match Length into Length Header and Length Footer Values
	2.6.5 Converting Length Header and Position Slot into Length/Position Header Values
	2.6.6 Extra Length Field
	2.6.7 Encoding a Match
	2.6.8 Encoding a Literal

	2.7 Decoding Matches and Literals (Aligned and Verbatim Blocks)

	3 Structure Examples
	4 Security
	4.1 Security Considerations for Implementers
	4.2 Index of Security Parameters

	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

