

1 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

[MS-PATCH]: LZX DELTA Compression and

Decompression

Intellectual Property Rights Notice for Protocol Documentation

 Copyrights. This protocol documentation is covered by Microsoft copyrights. Regardless of any

other terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the protocols, and

may distribute portions of it in your implementations of the protocols or your documentation as

necessary to properly document the implementation. This permission also applies to any documents

that are referenced in the protocol documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the protocols. Neither this

notice nor Microsoft's delivery of the documentation grants any licenses under those or any other

Microsoft patents. However, the protocols may be covered by Microsoft‟s Open Specification

Promise (available here: http://www.microsoft.com/interop/osp). If you would prefer a written

license, or if the protocols are not covered by the OSP, patent licenses are available by contacting

protocol@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be

covered by trademarks or similar intellectual property rights. This notice does not grant any licenses

under those rights.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than

specifically described above, whether by implication, estoppel, or otherwise.

Tools. This protocol documentation is intended for use in conjunction with publicly available standard

specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it. A protocol specification does not require the use of

Microsoft programming tools or programming environments in order for you to develop an implementation. If

you have access to Microsoft programming tools and environments you are free to take advantage of them.

Revision Summary

Author Date Version Comments

Microsoft

Corporation

April 4,

2008

0.1 Initial Availability.

Microsoft

Corporation

June 27,

2008

1.0 Initial Release.

http://go.microsoft.com/fwlink/?LinkId=114384
mailto:protocol@microsoft.com

2 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Table of Contents

1 Introduction ... 3
1.1 Glossary ... 3

1.2 References ... 3
1.2.1 Normative References .. 3
1.2.2 Informative References .. 3

2 Description .. 3
2.1 LZ77 ... 3

2.2 LZX .. 4
2.3 LZXD ... 4
2.4 Bitstream .. 4
2.5 Window Size ... 4

2.6 Reference Data .. 4
2.7 Huffman Trees ... 5
2.8 Position Slot ... 6

2.9 Repeated Offsets ... 6
2.10 Match Lengths .. 7

2.11 E8 Call Translation ... 8
2.12 Chunk Size .. 9
2.13 Block Header ... 10

2.14 Block Type .. 10
2.15 Block Size ... 10

2.15.1 Uncompressed Block ... 11
2.15.2 Verbatim Block .. 11

2.15.3 Aligned Offset Block ... 12
2.15.4 Encoding the Trees and Pre-Trees ... 12

2.15.5 Compressed Token Sequence .. 13
2.15.6 Converting Match Offset into Formatted Offset Values 14
2.15.7 Converting Formatted Offset into Position Slot and Position Footer Values 15

2.15.8 Converting Position Footer into Verbatim Bits or Aligned Offset Bits 16
2.15.9 Converting Match Length into Length Header and Length Footer Values 17
2.15.10 Converting Length Header and Position Slot into Length/Position Header

Values 18
2.16 Extra Length .. 18

2.16.1 Encoding a Match ... 18
2.17 Encoding a Literal ... 18

2.17.1 Decoding Matches and Literals (Aligned and Verbatim Blocks) 19

3 Protocol Examples .. 20

4 Appendix A: Office/Exchange Behavior .. 21

Index ... 22

3 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

1 Introduction
LZX is an LZ77-based Microsoft compression engine described in the Microsoft Cabinet

SDK. LZXD (D for Delta) is a derivative of the Microsoft Cabinet LZX format with some

modifications to facilitate efficient delta compression. Delta compression is a technique in

which one set of data can be compressed within the context of a reference set of data that

is supplied both to the compressor and decompressor. Delta compression is commonly

used to encode updates to similar existing data sets so that the size of compressed data can

be significantly reduced relative to ordinary non-delta compression techniques. Expanding

a delta-compressed set of data requires that the exact same reference data be provided

during decompression.

1.1 Glossary

The following terms are defined in [MS-OXGLOS]:

little-endian

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used

as described in [RFC2119]. All statements of optional behavior use either MAY,

SHOULD, or SHOULD NOT.

1.2 References

1.2.1 Normative References

[MS-OXGLOS] Microsoft Corporation, "Office Exchange Protocols Master Glossary", April

2008.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP

14, RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.

1.2.2 Informative References

None.

2 Description

2.1 LZ77

LZ77 refers to the well-known Lempel-Ziv 1977 sliding window data compression algorithm.

http://www.ietf.org/rfc/rfc2119.txt

4 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

2.2 LZX

LZX is an LZ77-based compressor that uses static Huffman encoding and a sliding window of

selectable size. LZX is most commonly known as part of the Microsoft Cabinet compression

format. Data symbols are encoded either as an uncompressed symbol, or as a logical (offset,

length) pair indicating that length symbols shall be copied from a displacement of offset

symbols from the current position in the output stream. The value of offset is constrained to be

less than the current position in the output stream, up to the size of the sliding window.

2.3 LZXD

LZXD is an LZX variant modified to facilitate efficient delta-compression. LZXD provides a

mechanism for both compressor and decompressor to refer to a common reference set of data,

and relaxes the constraint that match offset be constrained to less than the current position in

the output stream, allowing match offset to refer to the logically prepended reference data.

This effectively enables the compressed data stream to encode “matches” both from the

reference data and from the uncompressed data stream.

2.4 Bitstream

An LZXD Bitstream is encoded as a sequence of aligned 16-bit integers stored in the order

least-significant-byte most-significant-byte, also known as byte-swapped or little-endian

words. Given an input stream of bits named a, b, c, …, x, y, z, A, B, C, D, E, F, the output

byte stream (with byte boundaries highlighted) would be as shown below.

i j k L m n o p a b c d e f g h y Z A B C D E F q r S t u v w x

2.5 Window Size

The sliding window size MUST be a power of 2, from 2
17

 (128 KB) up to 2
25

 (32 MB). The

window size is not stored in the compressed data stream, and MUST be specified to the

decoder before decoding begins. The preferred window size is the smallest power of two

between 2
17

 and 2
25

 that is greater than or equal to the sum of the size of the reference data

rounded up to multiple of 32,768 and the size of the subject data.

2.6 Reference Data

For delta compression, the reference data is a sequence of bytes given to the compressor prior

to compressing the subject data. The exact same reference data sequence MUST be given to

the decompressor prior to decompression. The reference data sequence is treated as logically

prepended to the subject data sequence being compressed or decompressed. During

5 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

decompression, match offsets are negative displacements from the “current position” in the

output stream, up to the specified Window Size. When match offset values exceed the number

of bytes already emitted in the uncompressed output stream, they are simply pointing into the

reference data that is logically prepended to the subject data.

Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Value A B C D E F G H I J a b c D E F a b c e

 Reference Data Sequence Subject Data Sequence

In this example, the reference data is 10 bytes long and consists of the sequence

“ABCDEFGHIJ”. The data to be compressed, or the subject data, is also 10 bytes long

(although the data does not have to be the same length as the reference data) and consists of

“abcDEFabce”. A valid encoded sequence would consist of the following tokens:

„a‟, „b‟, „c‟, (match offset -10, length 3), (match offset -6, length 3), „e‟

The first match offset exceeds the amount of subject data already in the window, pointing

instead into the reference data portion. The second match offset does not exceed the amount of

subject data in the window and instead refers to a portion of the subject data previously

compressed or decompressed.

2.7 Huffman Trees

LZXD uses canonical Huffman tree structures to represent elements. Huffman trees are well

known in data compression and are not described here. Because an LZXD decoder uses only

the path lengths of the Huffman tree to reconstruct the identical tree, the following constraints

are made on the tree structure.

For any two elements with the same path length, the lower-numbered element MUST be

further left on the tree than the higher-numbered element. An alternative way of stating this

constraint is that lower-numbered elements MUST have lower path traversal values; for

example, 0010 (left-left-right-left) is lower than 0011 (left-left-right-right).

For each level, starting at the deepest level of the tree and then moving upward, leaf nodes

MUST start as far left as possible. An alternative way of stating this constraint is that if any

tree node has children, then all tree nodes to the left of it with the same path length MUST also

have children.

A non-empty Huffman tree MUST contain at least two elements. In the case where all but one

tree element has zero frequency, the resulting tree MUST minimally consist of two Huffman

codes, “0” and “1”.

LZXD uses several Huffman tree structures. The Main Tree comprises 256 elements that

correspond to all possible 8-bit characters, plus 8 * NUM_POSITION_SLOTS elements that

6 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

correspond to matches. The value of NUM_POSITION_SLOTS depends on the specified

window size as described in section 2.8. The Length Tree comprises 249 elements. Other

trees, such as the Aligned Offset Tree (comprising 8 elements), and the Pre-Trees (comprising

20 elements each), have a smaller role.

2.8 Position Slot

The window size determines the number of window subdivisions, or “position slots”, as

shown in the following table.

Table 1 Window Size/Position Slot

Window size Position slots required

128 KB 34

256 KB 36

512 KB 38

1 MB 42

2 MB 50

4 MB 66

8 MB 98

16 MB 162

32 MB 290

2.9 Repeated Offsets

LZXD extends the conventional LZ77 format in several ways, one of which is in the use of

repeated offset codes. Three match offset codes, named the repeated offset codes, are reserved

to indicate that the current match offset is the same as that of one of the three previous

matches, which is not itself a repeated offset.

The three special offset codes are encoded as offset values 0, 1, and 2 (for example, encoding

an offset of 0 means “use the most recent non-repeated match offset,” an offset of 1 means

“use the second most recent non-repeated match offset,”and so on). All remaining offset

values are displaced by +3, as is shown in Table2, which prevents matches at offsets

WINDOW_SIZE, WINDOW_SIZE-1, and WINDOW_SIZE-2.

Table 2 Correlation Between Encoded Offset and Real Offset

Encoded offset Real offset

0 Most recent real match offset

1 Second most recent match offset

2 Third most recent match offset

3 1 (closest allowable)

7 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Encoded offset Real offset

4 2

5 3

6 4

7 5

8 6

500 498

x+2 X

WINDOW_SIZE-1

(maximum possible)

WINDOW_SIZE-3

The three most recent real match offsets are kept in a list, the behavior of which is explained

as follows:

Let R0 be defined as the most recent real offset

Let R1 be defined as the second most recent offset

Let R2 be defined as the third most recent offset

The list is managed similarly to an LRU (least recently used) queue, with the exception of the

cases when R1 or R2 is output. In these cases, R1 or R2 is simply swapped with R0, which

requires fewer operations than would an LRU queue.

The initial state of R0, R1, R2 is (1, 1, 1).

Table 3 Management of the Repeated Offsets List

Match offset X where... Operation

X R0 and X R1 and X R2 R2 R1

R1 R0

R0 X

X = R0 None

X = R1 swap R0 R1

X = R2 swap R0 R2

2.10 Match Lengths

The minimum match length (number of bytes) encoded by LZXD is 2 bytes, and the

maximum match length is 32,768 bytes. However, no match of any length can span a modulo-

32 KB boundary in the uncompressed stream. Match length encoding is combined with match

position encoding as described in section 2.15.5.

8 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

2.11 E8 Call Translation

E8 Call Translation is an optional feature that is sometimes used when the data to compress

contains x86 instruction sequences. E8 Translation operates as a pre-processing stage prior to

compressing each chunk, and the compressed stream header contains a bit that indicates

whether the decoder shall reverse the translation as a post-processing step after decompressing

each chunk.

The x86 instruction beginning with a byte value of 0xE8 is followed by a 32-bit little-endian

relative displacement to the call target. When E8 Call Translation is enabled, the following

pre-processing step is performed on the uncompressed input prior to compression (assuming

little-endian byte ordering):

Let chunk_offset refer to the total number of uncompressed bytes preceding this chunk.

Let E8_file_size refer to the caller-specified value given to the compressor or decoded from

the header of the compressed stream during decompression.

For each 32 KB chunk of uncompressed data (or less than 32 KB if last chunk to compress):

if ((chunk_offset < 0x40000000) && (chunk_size > 10))

 for (i = 0; i < (chunk_size – 10); i++)

if (chunk_byte[i] == 0xE8)

 long current_pointer = chunk_offset + i;

long displacement = chunk_byte[i+1] |

chunk_byte[i+2] << 8 |

chunk_byte[i+3] << 16 |

chunk_byte[i+4] << 24;

long target = current_pointer + displacement;

if ((target >= 0) && (target <

E8_file_size+current_pointer))

if (target >= E8_file_size)

target = displacement – E8_file_size;

endif

chunk_byte[i+1] = (byte)(target);

chunk_byte[i+2] = (byte)(target >> 8);

chunk_byte[i+3] = (byte)(target >> 16);

chunk_byte[i+4] = (byte)(target >> 24);

endif

 i += 4;

endif

endfor

endif

9 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

After decompression, the E8 scanning algorithm is the same, but the translation reversal is:

long value = chunk_byte[i+1] |

chunk_byte[i+2] << 8 |

chunk_byte[i+3] << 16 |

chunk_byte[i+4] << 24;

if ((value >= -current_pointer) && (value <

E8_file_size))

if ((value >= 0)

displacement = value – current_pointer;

else

displacement = value + E8_file_size;

endif

chunk_byte[i+1] = (byte)(displacement);

chunk_byte[i+2] = (byte)(displacement >> 8);

chunk_byte[i+3] = (byte)(displacement >> 16);

chunk_byte[i+4] = (byte)(displacement >> 24);

endif

The first bit in the first Chunk in the LZXD bitstream (following the 2-byte Chunk Size prefix

described below) indicates the presence or absence of two 16-bit fields immediately following

the single bit. If the bit is set, E8 translation is enabled using the 32-bit value derived from the

two 16-bit fields as the E8_file_size provided to the compressor when E8 translation was

enabled. Note that E8_file_size is completely independent of the length of the uncompressed

data. E8 call translation is always disabled after the 32,768
th
 chunk (after 1 GB of

uncompressed data).

Field Comments Size

E8 translation 0-disabled, 1-enabled 1 bit

Translation size high word Only present if enabled 0 or 16 bits

Translation size low word Only present if enabled 0 or 16 bits

2.12 Chunk Size

The LZXD compressor emits chunks of compressed data, each of which represents exactly 32

KB of uncompressed data until the last chunk in the stream, which can represent less than 32

KB. In order to ensure that an exact number of input bytes represent an exact number of

output bytes for each chunk, after each 32 KB of uncompressed data is represented in the

output compressed bitstream, the output bitstream is padded with up to 15 bits of zeros to re-

align the bitstream on a 16-bit boundary (even byte boundary) for the next 32 KB of data. This

results in a compressed chunk of a byte-aligned size. The compressed chunk could be

significantly smaller than 32 KB or possibly larger than 32 KB if the data is incompressible.

The LZXD engine encodes a byte-aligned little-endian 16-bit compressed chunk size prefix

field preceding each compressed chunk in the compressed byte stream. The chunk prefix

10 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

chain could be followed in the compressed stream without decompressing any data. The next

chunk prefix is at a location computed by absolute byte offset location of this chunk prefix

plus 2 (for the size of the chunk size prefix field) plus the current chunk size.

2.13 Block Header

An LZXD Block represents a sequence of compressed data that is encoded with the same set

of Huffman trees, or a sequence of uncompressed data. There can be one or more LZXD

Blocks in a compressed stream, each with its own set of Huffman trees. Blocks do not have to

start or end on a chunk boundary; blocks can span multiple chunks, or a single chunk can

contain multiple blocks. The Block Type field indicates which type of block follows, and the

Block Size field indicates the number of uncompressed bytes represented by the block.

Following the generic Block Header, there is a type-specific header that describes the

remainder of the block.

Field Comments Size

Block Type See valid values in section 2.14 3 bits

Block Size MSB Block size high 8 bits of 24 8 bits

Block Size byte 2 Block size middle 8 bits of 24 8 bits

Block Size LSB Block size low 8 bits of 24 8 bits

2.14 Block Type

Each block of compressed data begins with a 3-bit field indicating the block type, followed by

the Block Size and then type-specific Block Data. Of the eight possible values, only three are

valid types.

Bits Value Meaning

001 1 Verbatim block

010 2 Aligned offset block

011 3 Uncompressed block

other 0, 4-7 Invalid

2.15 Block Size

The Block Size field indicates the number of uncompressed bytes that are represented by the

block. The maximum Block Size is 2
24

-1 (16MB-1 or 0x00FFFFFF). The Block Size is

encoded in the bitstream as three 8-bit fields comprising a 24-bit value, most significant to

least significant, immediately following the Block Type encoding.

11 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

2.15.1 Uncompressed Block

Following the generic Block Header, an uncompressed block begins with 1 to 16 bits of zero

padding to align the bit buffer on a 16-bit boundary. At this point, the bitstream ends, and a

byte stream begins. Following the zero padding, new 32-bit values for R0, R1, and R2 are

output in little-endian form, followed by the uncompressed data bytes themselves. Finally, if

the uncompressed data length is odd, one extra byte of zero padding is encoded to re-align the

following bitstream.

Field Comments Size

Padding to align following field on 16-bit

boundary

Bits have value of zero Variable,

1..16 bits

Then, the following fields are encoded directly in the byte stream, NOT the bitstream of byte-

swapped 16-bit words:

R0 LSB to MSB (little endian dword) 4 bytes

R1 LSB to MSB (little endian dword) 4 bytes

R2 LSB to MSB (little endian dword) 4 bytes

Uncompressed raw data bytes Can use direct memcpy 1...2
24

-1 bytes

Padding to re-align bitstream Only if uncompressed size is odd 0 or 1 byte

Then the bitstream of byte-swapped 16 bit integers resumes for the next Block Type field (if

there are subsequent blocks).

The decoded R0, R1, and R2 values are used as initial Repeated Offset values to decode the

subsequent compressed block if present.

2.15.2 Verbatim Block

A verbatim block consists of the following fields following the generic Block Header:

Entry Comments Size

Pre-tree for first 256 elements of main tree 20 elements, 4 bits each 80 bits

Path lengths of first 256 elements of main tree Encoded using pre-tree Variable

Pre-tree for remainder of main tree 20 elements, 4 bits each 80 bits

Path lengths of remaining elements of main tree Encoded using pre-tree Variable

Pre-tree for length tree 20 elements, 4 bits each 80 bits

Path lengths of elements in length tree Encoded using pre-tree Variable

Token sequence (matches and literals) Described later Variable

12 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

2.15.3 Aligned Offset Block

An aligned offset block consists of the following, the only difference from Verbatim header

being the existence of the Aligned Offset Tree preceding the other trees.

Entry Comments Size

Aligned offset tree 8 elements, 3 bits each 24 bits

Pre-tree for first 256 elements of main tree 20 elements, 4 bits each 80 bits

Path lengths of first 256 elements of main tree Encoded using pre-tree Variable

Pre-tree for remainder of main tree 20 elements, 4 bits each 80 bits

Path lengths of remaining elements of main tree Encoded using pre-tree Variable

Pre-tree for length tree 20 elements, 4 bits each 80 bits

Path lengths of elements in length tree Encoded using pre-tree Variable

Token sequence (matches and literals) Described later Variable

2.15.4 Encoding the Trees and Pre-Trees

Because all trees used in LZXD are created in the form of a canonical Huffman tree, the path

length of each element in the tree is sufficient to reconstruct the original tree. The main tree

and the length tree are each encoded using the method described here. However, the main tree

is encoded in two components as if it were two separate trees, the first tree corresponding to

the first 256 tree elements (uncompressed symbols), and the second tree corresponding to the

remaining elements (matches).

Because trees are output several times during compression of large amounts of data (multiple

blocks), LZX optimizes compression by encoding only the delta path lengths between the

current and previous trees. In the case of the very first such tree, the delta is calculated against

a tree in which all elements have a zero path length.

Each tree element can have a path length from 0 to 16 (inclusive) where a zero path length

indicates that the element has a zero frequency and is not present in the tree. Tree elements are

output in sequential order starting with the first element. Elements can be encoded in one of

two ways: If several consecutive elements have the same path length, then run length

encoding is employed; otherwise the element is output by encoding the difference between the

current path length and the previous path length of the tree, mod 17. These output methods are

described in the following table.

13 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Code Operation

0-16 Len[x] = (prev_len[x] + code) mod 17

17 Zeroes = getbits(4)

Len[x] = 0 for next (4 + Zeroes) elements

18 Zeroes = getbits(5)

Len[x] = 0 for next (20 + Zeroes) elements

19 Same = getbits(1)

Decode new Code

Value = (prev_len[x] + Code) mod 17

Len[x] = Value for next (4 + Same) elements

Each of the 17 possible values of (len[x] - prev_len[x]) mod 17, plus three additional codes

used for run-length encoding, are not output directly as 5-bit numbers, but are instead encoded

via a Huffman tree called the pre-tree. The pre-tree is generated dynamically according to the

frequencies of the 20 allowable tree codes. The structure of the pre-tree is encoded in a total of

80 bits by using 4 bits to output the path length of each of the 20 pre-tree elements. Once

again, a zero path length indicates a zero frequency element.

Length of tree code 0 4 bits

Length of tree code 1 4 bits

Length of tree code 2 4 bits

… …

Length of tree code 18 4 bits

Length of tree code 19 4 bits

The “real” tree is then encoded using the pre-tree Huffman codes.

2.15.5 Compressed Token Sequence

The compressed token sequence (bitstream) contains the Huffman-encoded matches and

literals using the Huffman trees specified in the Block Header. Decompression continues until

the number of decompressed bytes corresponds exactly to the number of uncompressed bytes

indicated in the Block Header.

The representation of an unmatched literal character in the output is simply the appropriate

element index 0…255 from the Main Huffman Tree.

The representation of a match in the output involves several transformations, as shown in the

following diagram. At the top of the diagram are the match length (2..257) and the match

offset (0…WINDOW_SIZE-4). The match offset and match length are split into sub-

components and encoded separately. For matches of length 257..32768, the token indicates

match length 257 and then there is an additional Extra Length value encoded in the bitstream

following the other Match subcomponent fields. Figure 1 shows the match subcomponents.

14 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Figure 1: Diagram of match encoding subcomponents

2.15.6 Converting Match Offset into Formatted Offset Values

The match offset, range 1…(WINDOW_SIZE-4), is converted into a formatted offset by

determining whether the offset can be encoded as a repeated offset, as shown in the following

pseudocode. It is acceptable to not encode a match as a repeated offset even if it is possible to

do so.

if offset == R0 then

 formatted offset 0

else if offset == R1 then

 formatted offset 1

else if offset == R2 then

 formatted offset 2

else

 formatted offset offset + 2

endif

Match length

(2..257)
Match offset

Length/Position

header
Length footer

Position footer

Aligned offset bits Verbatim position

bits

Formatted offset

Length header Position slot

Main tree Length tree

OUTPUT

Aligned offset tree

15 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

2.15.7 Converting Formatted Offset into Position Slot and Position Footer Values

The formatted offset is subdivided into a position slot and position footer. The position slot

defines the most significant bits of the formatted offset in the form of a base position as shown

in the table on the following page. The position footer defines the remaining least significant

bits of the formatted offset. As the following table shows, the number of bits dedicated to the

position footer grows as the formatted offset becomes larger, meaning that each position slot

addresses a larger and larger range.

The number of position slots available depends on the window size. The number of bits of

position footer for each position slot is fixed and also shown in the following table.

Table 4 Position Slot Table (Formatted Offset = Base Position of Slot + Footer

Bits Value)

Position slot

number

Base

position

Footer

bits

Base plus position

footer range

0 (R0) 0 0 0

1 (R1) 1 0 1

2 (R2) 2 0 2

3 (offset 1) 3 0 3

4 (offset 2..3) 4 1 4-5

5 (offset 4..5) 6 1 6-7

6 (offset 6..9) 8 2 8-11

7 (..etc..) 12 2 12-15

8 16 3 16-23

9 24 3 24-31

10 32 4 32-47

11 48 4 48-63

12 64 5 64-95

13 96 5 96-127

14 128 6 128-191

15 192 6 192-255

16 256 7 256-383

17 384 7 384-511

18 512 8 512-767

19 768 8 768-1023

20 1024 9 1024-1535

21 1536 9 1536-2047

22 2048 10 2048-3071

23 3072 10 3072-4095

24 4096 11 4096-6143

25 6144 11 6144-8191

16 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Position slot

number

Base

position

Footer

bits

Base plus position

footer range

26 8192 12 8192-12287

27 12288 12 12288-16383

28 16384 13 16384-24575

29 24576 13 24576-32767

30 32768 14 32768-49151

31 49152 14 49152-65535

32 65536 15 65536-98303

33 98304 15 98304-131071

34 131072 16 131072-196607

35 196608 16 196608-262143

36 262144 17 262144-393215

37 393216 17 393216-524287

38 524288 17 524288-655359

39 655360 17 655360-786431

40 786432 17 786432-917503

41 917504 17 917504-1048575

42 1048576 17 1048576-1179647

..etc.. ..etc.. 17 (all) ..etc..

288 33292288 17 33292288-33423359

289 33423360 17 33423360-33554431

2.15.8 Converting Position Footer into Verbatim Bits or Aligned Offset Bits

The position footer can be further subdivided into verbatim bits and aligned offset bits if the

current block type is “aligned offset”. If the current block is not an aligned offset block, there

are no aligned offset bits, and the verbatim bits are the position footer.

If aligned offsets are used, then the lower 3 bits of the position footer are the aligned offset

bits, while the remaining portion of the position footer are the verbatim bits. In the case where

there are less than 3 bits in the position footer (for example, formatted offset is <= 15), it is not

possible to take the “lower 3 bits of the position footer” and therefore there are no aligned

offset bits, and the verbatim bits and the position footer are the same. The following is

pseudocode for splitting the position footer into verbatim bits and aligned offset.

if block_type is aligned_offset_block then

 if formatted_offset <= 15 then

 verbatim_bits position_footer

 aligned_offset null

 else

 aligned_offset position_footer

 verbatim_bits position_footer >> 3

17 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

 endif

else

 verbatim_bits position_footer

 aligned_offset null

endif

2.15.9 Converting Match Length into Length Header and Length Footer Values

The match length is converted into a length header and a length footer. The length header can

have one of eight possible values, from 0...7 (inclusive), indicating a match of length 2, 3, 4, 5,

6, 7, 8, or a length greater than 8. If the match length is 8 or less, there is no length footer.

Otherwise, the value of the length footer is equal to the match length minus 9. The following

is pseudocode for obtaining the length header and footer.

if match_length <= 8

 length_header match_length-2

 length_footer null

else

 length_header 7

 length_footer match_length-9

endif

The following table shows some examples of conversions of some match lengths to

header and footer values.

Table 5 Conversion Examples

Match length Length header Length footer value

2 0 None

3 1 None

4 2 None

5 3 None

6 4 None

7 5 None

8 6 None

9 7 0

10 7 1

50 7 41

256 7 247

257 or larger 7 248

18 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

2.15.10 Converting Length Header and Position Slot into Length/Position Header Values

The Length/Position header is the stage that correlates the match position with the match

length (using only the most significant bits), and is created by combining the length header

and the position slot, as follows:

len_pos_header (position_slot << 3) + length_header

This operation creates a unique value for every combination of match length 2, 3, 4, 5, 6, 7, 8

with every possible position slot. The remaining match lengths greater than 8 are all lumped

together, and as a group are correlated with every possible position slot.

2.16 Extra Length

If the match length is 257 or larger, the encoded match length token value is 257, and an

encoded Extra Length field follows the other match encoding components in the bitstream.

Table 6 Extra Length Encoding

Prefix Number of Bits to Decode Base Value to Add to Decoded Value

0 8 257

10 10 257 + 256

110 12 257 + 256 + 1024

111 15 257

2.16.1 Encoding a Match

The match is finally output in up to five components, in the following order:

1. Main Tree element at index (len_pos_header + 256).

2. If length_footer != null, then Length Tree element length_footer.

3. If verbatim_bits != null, then output verbatim_bits.

4. If aligned_offset_bits != null, then output element aligned_offset from the aligned

offset tree.

5. If match length 257 or larger, output appropriate Extra Length prefix and value.

2.17 Encoding a Literal

A literal byte that is not part of a match is encoded simply as a Main Tree element index

0..256 corresponding to the value of the literal byte.

19 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

2.17.1 Decoding Matches and Literals (Aligned and Verbatim Blocks)

Decoding is performed by first decoding an element from the Main Tree and then, if the item

is a match, determining which additional components are required to decode to reconstruct the

match. The following is pseudocode for decoding a match or an uncompressed character.

main_element = main_tree.decode_element()

if (main_element < 256) /* is a literal character */

window[curpos] (byte) main_element

curpos curpos + 1

else /* is a match */

length_header (main_element – 256) & 7

if (length_header == 7)

match_length length_tree.decode_element() + 7 + 2

else

match_length length_header + 2 /* no length footer */

endif

position_slot (main_element – 256) >> 3

/* check for repeated offsets (positions 0,1,2) */

if (position_slot == 0)

match_offset R0

else if (position_slot == 1)

match_offset R1

swap(R0 R1)

else if (position_slot == 2)

match_offset R2

swap(R0 R2)

else /* not a repeated offset */

offset_bits footer_bits[position_slot]

if (block_type == aligned_offset_block)

if (offset_bits >= 3) /* this means there are some aligned

bits */

verbatim_bits (readbits(offset_bits-3)) << 3

aligned_bits aligned_offset_tree.decode_element();

else /* 0, 1, or 2 verbatim bits */

verbatim_bits readbits(offset_bits)

aligned_bits 0

endif

formatted_offset base_position[position_slot]

+ verbatim_bits + aligned_bits

20 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

else /* block_type == verbatim_block */

verbatim_bits readbits(offset_bits)

formatted_offset base_position[position_slot] +

verbatim_bits

endif

match_offset formatted_offset – 2

/* update repeated offset LRU queue */

R2 R1

R1 R0

R0 match_offset

endif

/* check for extra length */

if (match_length == 257)

if (readbits(1) != 0)

if (readbits(1) != 0)

if (readbits(1) != 0)

extra_len = readbits(15)

else

extra_len = readbits(12) + 1024 + 256

endif

else

extra_len = readbits(10) + 256

endif

else

extra_len = readbits(8)

endif

match_length 257 + extra_len

endif

/* copy match data */

for (i = 0; i < match_length; i++)

window[curpos + i] window[curpos + i – match_offset]

curpos curpos + match_length

endif

3 Protocol Examples
The following is an example of a sample encoding sequence of a simple 3-byte text input

“abc” encoded as uncompressed block type.

Bits to

Decode

Value of Decoded Bits Interpretation

21 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Bits to

Decode

Value of Decoded Bits Interpretation

16 0x0014 Chunk Size: 20 bytes

1 0 E8 Translation:disabled

3 3 (binary 011) Block Type: uncompressed

24 0x000003 Block Size: 3 bytes

4 binary 0000 Padding to word-align following

4 bytes 0x00000001 (little-endian dword) R0: 1

4 bytes 0x00000001 (little-endian dword) R1: 1

4 bytes 0x00000001 (little-endian dword) R2: 1

4 bytes 0x61, 0x62, 0x63 Uncompressed bytes: “abc”

1 byte 0x00 Padding to restore word-alignment

This is the raw hexadecimal compressed byte sequence of the above encoded fields:

14 00 00 30 30 00 01 00 00 00 01 00 00 00 01 00 00 00 61 62 63 00

4 Appendix A: Office/Exchange Behavior
The information in this specification is applicable to the following versions of

Office/Exchange:

 Office 2003 with Service Pack 3 applied

 Exchange 2003 with Service Pack 2 applied

 Office 2007 with Service Pack 1 applied

 Exchange 2007 with Service Pack 1 applied

Exceptions, if any, are noted below. Unless otherwise specified, any statement of optional

behavior in this specification prescribed using the terms SHOULD or SHOULD NOT

implies Office/Exchange behavior in accordance with the SHOULD or SHOULD NOT

prescription. Unless otherwise specified, the term MAY implies Office/Exchange does

not follow the prescription.

22 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Index
Bitstream, 4

Block header, 10

Block size, 10

Block type, 10

Chunk size, 9

Description, 3

Bitstream, 4

Block header, 10

Block size, 10

Block type, 10

Chunk size, 9

E8 call translation, 8

Encoding a literal, 18

Extra length, 18

Huffman trees, 5

LZ77, 3

LZX, 4

LZXD, 4

Match lengths, 7

Position slot, 6

Reference data, 4

Repeated offsets, 6

Window size, 4

E8 call translation, 8

Encoding a literal, 18

Extra length, 18

Glossary, 3

Huffman trees, 5

Informative references, 3

LZ77, 3

LZX, 4

LZXD, 4

Match lengths, 7

Normative references, 3

Office/Exchange behavior, 21

Position slot, 6

Protocol examples, 20

Reference data, 4

References, 3

Informative references, 3

23 of 23

[MS-PATCH] - v1.0
LZX DELTA Compression and Decompression

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Normative references, 3

Repeated offsets, 6

Window size, 4

