

1 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

[MS-OXWSITEMID]:

Web Service Item ID Algorithm

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for protocols,
file formats, languages, standards as well as overviews of the interaction among each of these
technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your

implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL's, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the

documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be

covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming
environments in order for you to develop an implementation. If you have access to Microsoft
programming tools and environments you are free to take advantage of them. Certain Open
Specifications are intended for use in conjunction with publicly available standard specifications and
network programming art, and assumes that the reader either is familiar with the aforementioned

material or has immediate access to it.

Preliminary Documentation. This Open Specification provides documentation for past and current
releases and/or for the pre-release version of this technology. This Open Specification is final
documentation for past or current releases as specifically noted in the document, as applicable; it is
preliminary documentation for the pre-release versions. Microsoft will release final documentation in
connection with the commercial release of the updated or new version of this technology. As the
documentation may change between this preliminary version and the final version of this technology,

there are risks in relying on preliminary documentation. To the extent that you incur additional

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

development obligations or any other costs as a result of relying on this preliminary documentation,

you do so at your own risk.

3 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

Revision Summary

Date
Revision
History

Revision
Class Comments

3/30/2015 1.0 New Released new document.

5/26/2015 1.0 No Change No changes to the meaning, language, or formatting of the
technical content.

4 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 5

1.2.1 Normative References ... 5
1.2.2 Informative References ... 5

1.3 Overview .. 6
1.4 Relationship to Protocols and Other Algorithms .. 6
1.5 Applicability Statement ... 7
1.6 Standards Assignments ... 7

2 Algorithm Details... 8
2.1 Web Service ItemId Algorithm Details .. 8

2.1.1 Abstract Data Model .. 9
2.1.2 Initialization ... 9
2.1.3 Processing Rules ... 9

2.1.3.1 Compression Type (byte) ... 9
2.1.3.1.1 Id Compression Algorithm .. 9
2.1.3.1.2 Id Decompression Algorithm ... 11

2.1.3.2 Id Storage Type (byte) .. 12
2.1.3.2.1 MailboxItemSmtpAddressBased ... 13
2.1.3.2.2 MailboxItemMailboxGuidBased or ConversationIdMailboxGuidBased 14
2.1.3.2.3 PublicFolder or ActiveDirectoryObject ... 14
2.1.3.2.4 PublicFolderItem ... 15

2.1.3.3 Attachment Id .. 15

3 Algorithm Examples .. 16

4 Security ... 17
4.1 Security Considerations for Implementers ... 17
4.2 Index of Security Parameters .. 17

5 Appendix A: Product Behavior ... 18

6 Change Tracking .. 19

7 Index ... 21

5 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

1 Introduction

The Web Service Item Id Algorithm describes how to create and process an item identifier.

Section 2 of this specification is normative and can contain the terms MAY, SHOULD, MUST, MUST
NOT, and SHOULD NOT as defined in [RFC2119]. Section 1.6 is also normative but does not contain

those terms. All other sections and examples in this specification are informative.

1.1 Glossary

The following terms are specific to this document:

base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is
converted to a sequence of printable ASCII characters, as described in [RFC4648].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-OXWSCORE] Microsoft Corporation, "Core Items Web Service Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-OXPROTO] Microsoft Corporation, "Exchange Server Protocols System Overview".

[MS-OXWSATT] Microsoft Corporation, "Attachment Handling Web Service Protocol".

[MS-OXWSBTRF] Microsoft Corporation, "Bulk Transfer Web Service Protocol".

[MS-OXWSCDATA] Microsoft Corporation, "Common Web Service Data Types".

[MS-OXWSCONT] Microsoft Corporation, "Contacts Web Service Protocol".

[MS-OXWSCONV] Microsoft Corporation, "Conversations Web Service Protocol".

[MS-OXWSCOS] Microsoft Corporation, "Unified Contact Store Web Service Protocol".

[MS-OXWSDLIST] Microsoft Corporation, "Distribution List Creation and Usage Web Service Protocol".

[MS-OXWSEDISC] Microsoft Corporation, "Electronic Discovery (eDiscovery) Web Service Protocol".

http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90487
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
%5bMS-OXWSCORE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-OXPROTO%5d.pdf
%5bMS-OXWSATT%5d.pdf
%5bMS-OXWSBTRF%5d.pdf
%5bMS-OXWSCDATA%5d.pdf
%5bMS-OXWSCONT%5d.pdf
%5bMS-OXWSCONV%5d.pdf
%5bMS-OXWSCOS%5d.pdf
%5bMS-OXWSDLIST%5d.pdf
%5bMS-OXWSEDISC%5d.pdf

6 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

[MS-OXWSGNI] Microsoft Corporation, "Nonindexable Item Web Service Protocol".

[MS-OXWSMTGS] Microsoft Corporation, "Calendaring Web Service Protocol".

[MS-OXWSNTIF] Microsoft Corporation, "Notifications Web Service Protocol".

[MS-OXWSPERS] Microsoft Corporation, "Persona Web Service Protocol".

[MS-OXWSPOST] Microsoft Corporation, "Post Items Web Service Protocol".

[MS-OXWSRULES] Microsoft Corporation, "Inbox Rules Web Service Protocol".

[MS-OXWSSYNC] Microsoft Corporation, "Mailbox Contents Synchronization Web Service Protocol".

[MS-OXWSTASK] Microsoft Corporation, "Tasks Web Service Protocol".

[MS-OXWSUSRCFG] Microsoft Corporation, "User Configuration Web Service Protocol".

[MS-OXWUMS] Microsoft Corporation, "Voice Mail Settings Web Service Protocol".

1.3 Overview

An ItemId object, as specified in [MS-OXWSCORE] section 2.2.4.24, is made up of two base64-

encoded parts – the Id and the ChangeKey. This algorithm describes the format of the Id and how
to process it.

1.4 Relationship to Protocols and Other Algorithms

This algorithm can be used by protocols that use the ItemIdType complex type, as specified by [MS-

OXWSCORE] section 2.2.4.24. This includes the following protocols.

 Attachment Handling Web Service Protocol [MS-OXWSATT]

 Bulk Transfer Web Service Protocol [MS-OXWSBTRF]

 Common Web Service Data Types Protocol [MS-OXWSCDATA]

 Contacts Web Service Protocol [MS-OXWSCONT]

 Conversations Web Service Protocol [MS-OXWSCONV]

 Unified Contact Store Web Service Protocol [MS-OXWSCOS]

 Distribution List Creation and Usage Web Service Protocol [MS-OXWSDLIST]

 Electronic Discovery (eDiscovery) Web Service Protocol [MS-OXWSEDISC]

 Nonindexable Item Web Service Protocol [MS-OXWSGNI]

 Calendaring Web Service Protocol [MS-OXWSMTGS]

 Notifications Web Service Protocol [MS-OXWSNTIF]

 Persona Web Service Protocol [MS-OXWSPERS]

 Post Items Web Service Protocol [MS-OXWSPOST]

 Inbox Rules Web Service Protocol [MS-OXWSRULES]

%5bMS-OXWSGNI%5d.pdf
%5bMS-OXWSMTGS%5d.pdf
%5bMS-OXWSNTIF%5d.pdf
%5bMS-OXWSPERS%5d.pdf
%5bMS-OXWSPOST%5d.pdf
%5bMS-OXWSRULES%5d.pdf
%5bMS-OXWSSYNC%5d.pdf
%5bMS-OXWSTASK%5d.pdf
%5bMS-OXWSUSRCFG%5d.pdf
%5bMS-OXWUMS%5d.pdf
%5bMS-OXWSCORE%5d.pdf
%5bMS-OXWSCORE%5d.pdf
%5bMS-OXWSCORE%5d.pdf
%5bMS-OXWSATT%5d.pdf
%5bMS-OXWSBTRF%5d.pdf
%5bMS-OXWSCDATA%5d.pdf
%5bMS-OXWSCONT%5d.pdf
%5bMS-OXWSCONV%5d.pdf
%5bMS-OXWSCOS%5d.pdf
%5bMS-OXWSDLIST%5d.pdf
%5bMS-OXWSEDISC%5d.pdf
%5bMS-OXWSGNI%5d.pdf
%5bMS-OXWSMTGS%5d.pdf
%5bMS-OXWSNTIF%5d.pdf
%5bMS-OXWSPERS%5d.pdf
%5bMS-OXWSPOST%5d.pdf
%5bMS-OXWSRULES%5d.pdf

7 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 Mailbox Contents Synchronization Web Service Protocol [MS-OXWSSYNC]

 Tasks Web Service Protocol [MS-OXWSTASK]

 User Configuration Web Service Protocol [MS-OXWSUSRCFG]

 Voice Mail Settings Web Service Protocol [MS-OXWUMS]

For conceptual background information and overviews of the relationships and interactions between
this and other protocols, see [MS-OXPROTO].

1.5 Applicability Statement

This algorithm is applicable to any operation that uses or processes the ItemId object.

1.6 Standards Assignments

None.

%5bMS-OXWSSYNC%5d.pdf
%5bMS-OXWSTASK%5d.pdf
%5bMS-OXWSUSRCFG%5d.pdf
%5bMS-OXWUMS%5d.pdf
%5bMS-OXPROTO%5d.pdf

8 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

2 Algorithm Details

2.1 Web Service ItemId Algorithm Details

The following pseudocode illustrates the format of the Id.

 [Byte] Compression Type
 [Byte] Id Storage Type
 Switch on Id Storage Type:
 For MailboxItemSmtpAddressBased, MailboxItemMailboxGuidBased, or
 ConversationIdMailboxGuidBased:
 [Short] Moniker Length
 [Variable] Moniker Bytes
 [Byte] Id Processing Instruction
 [Short] Store Id Bytes Length
 [Variable] Store Id Bytes
 For PublicFolder or ActiveDirectoryObject:
 [Short] Store Id Bytes Length
 [Variable] Store Id Bytes
 For PublicFolderItem:
 [Byte] Id Processing Instruction
 [Short] Store Id Bytes Length
 [Variable] Store Id Bytes
 [Short] Folder Id Bytes Length
 [Variable] Folder Id Bytes
 If there are any Attachment Ids:
 [Byte] Attachment Id Count
 For each Attachment Id:
 [Short] Attachment Id Bytes Length
 [Variable] Attachment Id Bytes

The following table lists the sections where these items are defined.

Item Section

Compression Type 2.1.3.1

Id Storage Type 2.1.3.2

MailboxItemSmtpAddressBased 2.1.3.2.1

MailboxItemMailboxGuidBased 2.1.3.2.2

ConversationIdMailboxGuidBased 2.1.3.2.2

PublicFolder 2.1.3.2.3

ActiveDirectoryObject 2.1.3.2.3

PublicFolderItem 2.1.3.2.4

Attachment Id 2.1.3.3

The following drawing illustrates this format.

9 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

Figure 1 Format of the Id

2.1.1 Abstract Data Model

None.

2.1.2 Initialization

None.

2.1.3 Processing Rules

The following sections describe the fields of the Id and processing rules for them.

2.1.3.1 Compression Type (byte)

This byte indicates whether Run Length Encoding (RLE) is used. Both RLE and no compression are
supported. If RLE compression is used, then for each Id generated the full Id is compressed (minus
the compression byte) and compared with the size of the uncompressed Id. If the compressed Id is
smaller than the uncompressed Id, the value of this byte is 1, indicating that RLE compression was
used. Otherwise, the value of this byte is 0, indicating that no compressions was used.

The following sections describe the logic for compressing and decompressing the entire Id.

2.1.3.1.1 Id Compression Algorithm

The following code describes the algorithm for compressing the Id.

 /// <summary>

10 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 /// Simple RLE compressor for item IDs. Bytes that do not repeat are written directly.
 /// Bytes that repeat more than once are written twice, followed by the number of
 /// additional times to write the byte (i.e., total run length minus two).
 /// </summary>
 internal class RleCompressor
 {
 /// <summary>
 /// Compresses the passed byte array using a simple RLE compression scheme.
 /// </summary>
 /// <param name="streamIn">input stream to compress</param>
 /// <param name="compressorId">id of the compressor</param>
 /// <param name="outBytesRequired">The number of bytes in the returned,
 /// compressed byte array.</param>
 /// <returns>compressed bytes</returns>
 ///
 public byte[] Compress(byte[] streamIn, byte compressorId, out int outBytesRequired)
 {
 byte[] streamOut = new byte[streamIn.Length];
 outBytesRequired = streamIn.Length;
 int index = 0;
 streamOut[index++] = compressorId;
 if (index == streamIn.Length)
 {
 return streamIn;
 }

 // Ignore the first byte, because it is a placeholder for the compression tag.
 // Keep a placeholder so that, if the caller ends up not doing any compression
 // at all, they can simply put the compression tag for "NoCompression" in the
 // first byte and everything works.
 //
 byte[] input = streamIn;

 for (int runStart = 1; runStart < (int)streamIn.Length; /* runStart incremented
below */)

 {
 // Always write the start character.
 //
 streamOut[index++] = input[runStart];
 if (index == streamIn.Length)
 {
 return streamIn;
 }

 // Now look for a run of more than one character. The maximum run to be
 // handled at once is the maximum value that can be written out in an
 // (unsigned) byte _or_ the maximum remaining input, whichever is smaller.
 // One caveat is that only the run length _minus two_ is written,
 // because the two characters that indicate a run are not written. So
 // Byte.MaxValue + 2 can be handled.
 //
 int maxRun = Math.Min(Byte.MaxValue + 2, (int)streamIn.Length - runStart);
 int runLength = 1;
 for (runLength = 1;
 runLength < maxRun && input[runStart] == input[runStart + runLength];
 ++runLength)
 {
 // Nothing.
 }

 // Is this a run of more than one byte?
 //
 if (runLength > 1)
 {
 // Yes, write the byte again, followed by the number of additional
 // times to write the byte (which is the total run length minus 2,
 // because the byte has already been written twice).
 //

11 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 streamOut[index++] = input[runStart];
 if (index == streamIn.Length)
 {
 return streamIn;
 }

 ExAssert.Assert(runLength <= Byte.MaxValue + 2, "total run length
exceeds.");

 streamOut[index++] = (byte)(runLength - 2);
 if (index == streamIn.Length)
 {
 return streamIn;
 }
 }

 // Move to the first byte following the run.
 //
 runStart += runLength;
 }

 outBytesRequired = index;
 return streamOut;
 }

2.1.3.1.2 Id Decompression Algorithm

The following code describes the algorithm for decompressing the Id.

 /// <summary>
 /// Decompresses the passed byte array using RLE scheme.
 /// </summary>
 /// <param name="input">Bytes to decompress</param>
 /// <param name="maxLength">Max allowed length for the byte array</param>
 /// <returns>decompressed bytes</returns>
 ///
 public MemoryStream Decompress(byte[] input, int maxLength)
 {
 // It can't be assumed that the compressed data size must be less than maxLength.
 // If the compressed data consists of a series of double characters
 // followed by a 0 character count, compressed data will be larger than
 // decompressed. (i.e. xx0 decompresses to xx.)
 //
 int initialStreamSize = Math.Min(input.Length, maxLength);

 MemoryStream stream = new MemoryStream(initialStreamSize);
 BinaryWriter writer = new BinaryWriter(stream);

 // Ignore the first byte, which the caller used to identify the compression
 // scheme.
 //
 for (int i = 1; i < input.Length; ++i)
 {
 // If this byte differs from the following one (or it's at the end of the
 // array), then just output the byte.
 if (i == input.Length - 1 ||
 input[i] != input[i + 1])
 {
 writer.Write(input[i]);
 }
 else // input[i] == input[i+1]
 {
 // Because repeat characters are always followed by a character count,
 // if i == input.Length - 2, the character count is missing & the id is
 // invalid.
 //
 if (i == input.Length - 2)

12 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 {
 throw new InvalidIdMalformedException();
 }

 // The bytes are the same. Read the third byte to see how many additional
 // times to write the byte (over and above the two that are already
 // there).
 //
 byte runLength = input[i + 2];
 for (int j = 0; j < runLength + 2; ++j)
 {
 writer.Write(input[i]);
 }

 // Skip the duplicate byte and the run length.
 //
 i += 2;

 }

 if (stream.Length > maxLength)
 {
 throw new InvalidIdMalformedException();
 }
 }

 writer.Flush();
 stream.Position = 0L;
 return stream;
 }
 }

2.1.3.2 Id Storage Type (byte)

The Id storage type byte indicates the type of the Id. Its value maps to one of the following
enumeration values.

 /// <summary>
 /// Indicates which type of storage is used for the item/folder represented by this Id.
 /// </summary>
 internal enum IdStorageType : byte
 {
 /// <summary>
 /// The Id represents an item or folder in a mailbox and
 /// it contains a primary SMTP address.
 /// </summary>
 MailboxItemSmtpAddressBased = 0,

 /// <summary>
 /// The Id represents a folder in a PublicFolder store.
 /// </summary>
 PublicFolder = 1,

 /// <summary>
 /// The Id represents an item in a PublicFolder store.
 /// </summary>
 PublicFolderItem = 2,

 /// <summary>
 /// The Id represents an item or folder in a mailbox and contains a mailbox GUID.
 /// </summary>
 MailboxItemMailboxGuidBased = 3,

 /// <summary>

13 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 /// The Id represents a conversation in a mailbox and contains a mailbox GUID.
 /// </summary>
 ConversationIdMailboxGuidBased = 4,

 /// <summary>
 /// The Id represents (by objectGuid) an object in the Active Directory.
 /// </summary>
 ActiveDirectoryObject = 5,
 }

The format and values of the remaining bytes depend on the value of the Id storage type byte. The
following sections describe the remaining bytes of the Id storage type and how to process them.

The Id processing uses the values of the following enumeration.

 /// <summary>
 /// Indicates any special processing to perform on an Id when deserializing it.
 /// </summary>
 internal enum IdProcessingInstruction : byte
 {
 /// <summary>
 /// No special processing. The Id represents a PR_ENTRY_ID
 /// </summary>
 Normal = 0,

 /// <summary>
 /// The Id represents an OccurenceStoreObjectId and therefore
 /// must be deserialized as a StoreObjectId.
 /// </summary>
 Recurrence = 1,

 /// <summary>
 /// The Id represents a series.
 /// </summary>
 Series = 2,
 }

2.1.3.2.1 MailboxItemSmtpAddressBased

If the Id storage type is MailboxItemSmtpAddressBased<1>, the format of the remaining bytes
is:

 [Short] Moniker Length
 [Variable] Moniker Bytes
 [Byte] Id Processing Instruction (Normal = 0, Recurrence = 1)
 [Short] Store Id Bytes Length
 [Variable] Store Id Bytes

To read these values, perform the following steps.

1. Read the email address by doing the following.

1. Read Int16 from stream for the length

2. Read 'length' number of bytes from the stream as byte[].

3. Return Encoding.UTF8.GetString(moniker, 0, moniker.Length)

2. Read the Id processing instruction by doing the following.

14 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

1. Read byte from stream.

2. Cast value as IdProcessingInstruction enum value and return.

3. Read store Id bytes (for item id) by doing the following.

1. Read Int16 from stream for length.

2. Read 'length' number of bytes from stream.

3. Return as byte[].

2.1.3.2.2 MailboxItemMailboxGuidBased or ConversationIdMailboxGuidBased

If the Id storage type is ConversationIdMailboxGuidBased or
MailboxItemMailboxGuidBased<2>, the format of the remaining bytes is

 [Short] Moniker Length
 [Variable] Moniker Bytes
 [Byte] Id Processing Instruction (Normal = 0, Recurrence = 1)
 [Short] Store Id Bytes Length
 [Variable] Store Id Bytes

To read these values, perform the following steps.

1. Read the mailbox guid by doing the following.

1. Read Int16 from stream for the length.

2. Read 'length' number of bytes from the stream as byte[].

3. Return new Guid(Encoding.UTF8.GetString(moniker, 0, moniker.Length));

2. Read the Id processing instruction by doing the following.

1. Read byte from stream.

2. Cast value as IdProcessingInstruction enum value and return.

3. Read store Id bytes (for conversationId or item id) by doing the following.

1. Read Int16 from stream for length.

2. Read 'length' number of bytes from stream.

3. Return as byte[].

2.1.3.2.3 PublicFolder or ActiveDirectoryObject

If the Id storage type is PublicFolder or ActiveDirectoryObject, the format of the remaining bytes
is

 [Short] Store Id Bytes Length
 [Variable] Store Id Bytes

To read these values, perform the following steps:

15 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

1. Read the store Id bytes for public folder id, or active directory id by doing the following:

1. Read Int16 from stream for length.

2. Read 'length' number of bytes from stream.

3. Return as byte[].

2.1.3.2.4 PublicFolderItem

If the Id storage type is PublicFolderItem the format of the remaining bytes is:

 [Byte] Id Processing Instruction
 [Short] Store Id Bytes Length
 [Variable] Store Id Bytes
 [Short] Folder Id Bytes Length
 [Variable] Folder Id Bytes

To read these values perform the following steps.

1. Read the Id processing instruction by doing the following:

1. Read byte from stream.

2. Cast value as IdProcessingInstruction enum value.

2. Read the store Id bytes for the item Id by doing the following steps.

1. Read Int16 from stream for length.

2. Read 'length' number of bytes from stream as byte[].

3. Read the store Id bytes for parent folder Id by doing the following.

1. Read Int16 from stream for length.

2. Read 'length' number of bytes from stream as byte[].

2.1.3.3 Attachment Id

If there are bytes remaining in the stream, then this Id refers to an attachment hierarchy. Each Id
refers ultimately to a single attachment, but attachments can contain other attachments, so the full
path is used to get to the inner attachment. The nesting is limited to byte.MaxValue.

To get the attachments perform the following steps.

1. Read byte which indicates how many attachments are in the hierarchy.

2. For each attachment:

1. Read Int16 to get the attachment Id length.

2. Read 'length' bytes from the stream.

3. Return collection of attachment Ids.

16 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

3 Algorithm Examples

None.

17 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

4 Security

4.1 Security Considerations for Implementers

None.

4.2 Index of Security Parameters

None.

18 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Microsoft Exchange Server 2007

 Microsoft Exchange Server 2010

 Microsoft Exchange Server 2013

 Microsoft Outlook 2013

 Microsoft Exchange Server 2016 Preview

 Microsoft Outlook 2016 Preview

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears

with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2.1.3.2.1: Only the initial release of Exchange 2007 supports the
MailboxItemSmtpAddressBased value.

<2> Section 2.1.3.2.2: The initial release of Exchange 2007 does not support the
MailboxItemMailboxGuidBased value. This value was introduced in Microsoft Exchange Server
2007 Service Pack 1 (SP1).

19 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

6 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as New, Major, Minor, Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements or functionality.

 The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to

clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed. Editorial
changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor editorial
and formatting changes may have been made, but the technical content of the document is identical
to the last released version.

Major and minor changes can be described further using the following change types:

 New content added.

 Content updated.

 Content removed.

 New product behavior note added.

 Product behavior note updated.

 Product behavior note removed.

 New protocol syntax added.

 Protocol syntax updated.

 Protocol syntax removed.

 New content added due to protocol revision.

 Content updated due to protocol revision.

 Content removed due to protocol revision.

 New protocol syntax added due to protocol revision.

 Protocol syntax updated due to protocol revision.

 Protocol syntax removed due to protocol revision.

 Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

20 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

Some important terms used in the change type descriptions are defined as follows:

 Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

 Protocol revision refers to changes made to a protocol that affect the bits that are sent over the
wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section
Tracking number (if applicable) and
description

Major change
(Y or N)

Change
type

5 Appendix A: Product
Behavior

Added Exchange 2016 and Outlook 2016 to list
of applicable products.

Y
Content
update.

mailto:dochelp@microsoft.com

21 / 21

[MS-OXWSITEMID] - v20150526
Web Service Item ID Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

7 Index

A

Applicability 7

C

Change tracking 19

E

Examples
 overview 16

G

Glossary 5

I

Implementer - security considerations 17
Index of security parameters 17
Informative references 5
Introduction 5

N

Normative references 5

O

Overview (synopsis) 6

P

Parameters - security index 17
Product behavior 18

R

References
 informative 5
 normative 5

S

Security
 implementer considerations 17

 parameter index 17
Standards assignments 7

T

Tracking changes 19

W

Web Service ItemId
 overview 8

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Algorithms
	1.5 Applicability Statement
	1.6 Standards Assignments

	2 Algorithm Details
	2.1 Web Service ItemId Algorithm Details
	2.1.1 Abstract Data Model
	2.1.2 Initialization
	2.1.3 Processing Rules
	2.1.3.1 Compression Type (byte)
	2.1.3.1.1 Id Compression Algorithm
	2.1.3.1.2 Id Decompression Algorithm

	2.1.3.2 Id Storage Type (byte)
	2.1.3.2.1 MailboxItemSmtpAddressBased
	2.1.3.2.2 MailboxItemMailboxGuidBased or ConversationIdMailboxGuidBased
	2.1.3.2.3 PublicFolder or ActiveDirectoryObject
	2.1.3.2.4 PublicFolderItem

	2.1.3.3 Attachment Id

	3 Algorithm Examples
	4 Security
	4.1 Security Considerations for Implementers
	4.2 Index of Security Parameters

	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

