

1 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

[MS-OXRTFCP]:

Rich Text Format (RTF) Compression Algorithm

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for protocols,
file formats, languages, standards as well as overviews of the interaction among each of these
technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your

implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL's, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the

documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be

covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming
environments in order for you to develop an implementation. If you have access to Microsoft
programming tools and environments you are free to take advantage of them. Certain Open
Specifications are intended for use in conjunction with publicly available standard specifications and
network programming art, and assumes that the reader either is familiar with the aforementioned

material or has immediate access to it.

Preliminary Documentation. This Open Specification provides documentation for past and current
releases and/or for the pre-release version of this technology. This Open Specification is final
documentation for past or current releases as specifically noted in the document, as applicable; it is
preliminary documentation for the pre-release versions. Microsoft will release final documentation in
connection with the commercial release of the updated or new version of this technology. As the
documentation may change between this preliminary version and the final version of this technology,

there are risks in relying on preliminary documentation. To the extent that you incur additional

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

development obligations or any other costs as a result of relying on this preliminary documentation,

you do so at your own risk.

3 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

Revision Summary

Date
Revision
History

Revision
Class Comments

4/4/2008 0.1 Initial Availability.

4/25/2008 0.2 Revised and updated property names and other technical
content.

6/27/2008 1.0 Initial Release.

8/6/2008 1.01 Updated references to reflect date of initial release.

9/3/2008 1.02 Revised and edited technical content.

12/3/2008 1.03 Updated IP notice.

3/4/2009 1.04 Revised and edited technical content.

4/10/2009 2.0 Updated applicable product releases.

7/15/2009 3.0 Major Revised and edited for technical content.

11/4/2009 3.1 Minor Updated the technical content.

2/10/2010 3.2 Minor Updated the technical content.

5/5/2010 3.3 Minor Updated the technical content.

8/4/2010 3.4 Minor Clarified the meaning of the technical content.

11/3/2010 3.4 No change No changes to the meaning, language, or formatting of the
technical content.

3/18/2011 3.4 No change No changes to the meaning, language, or formatting of the
technical content.

8/5/2011 4.0 Major Significantly changed the technical content.

10/7/2011 4.0 No Change No changes to the meaning, language, or formatting of the
technical content.

1/20/2012 5.0 Major Significantly changed the technical content.

4/27/2012 6.0 Major Significantly changed the technical content.

7/16/2012 7.0 Major Significantly changed the technical content.

10/8/2012 7.1 Minor Clarified the meaning of the technical content.

2/11/2013 7.2 Minor Clarified the meaning of the technical content.

7/26/2013 7.2 No Change No changes to the meaning, language, or formatting of the
technical content.

11/18/2013 7.2 No Change No changes to the meaning, language, or formatting of the
technical content.

2/10/2014 7.2 No Change No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 7.2 No Change No changes to the meaning, language, or formatting of the

4 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

Date
Revision
History

Revision
Class Comments

technical content.

7/31/2014 7.2 No Change No changes to the meaning, language, or formatting of the
technical content.

10/30/2014 7.2 No Change No changes to the meaning, language, or formatting of the
technical content.

3/16/2015 8.0 Major Significantly changed the technical content.

5/26/2015 8.1 Minor Clarified the meaning of the technical content.

5 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 7

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Protocols and Other Algorithms .. 8
1.5 Applicability Statement ... 8
1.6 Standards Assignments ... 9

2 Algorithm Details... 10
2.1 Common Algorithm Details .. 10

2.1.1 Abstract Data Model .. 10
2.1.2 Initialization ... 10

2.1.2.1 Dictionary .. 10
2.1.2.2 CRC .. 10

2.1.2.2.1 CRC Lookup Table ... 11
2.1.3 Processing Rules ... 12

2.1.3.1 RTF Compression Format ... 12
2.1.3.1.1 RTF Compression ABNF Grammar .. 12
2.1.3.1.2 Compressed RTF ... 12
2.1.3.1.3 Compressed Run ... 13
2.1.3.1.4 Dictionary ... 13
2.1.3.1.5 Dictionary Reference .. 14

2.1.3.2 Calculate a CRC from a Given Array of Bytes .. 14
2.2 Decompression Algorithm Details ... 14

2.2.1 Abstract Data Model .. 14
2.2.1.1 Input and Output .. 14

2.2.2 Initialization ... 15
2.2.2.1 Header .. 15
2.2.2.2 Output ... 15

2.2.3 Processing Rules ... 15
2.2.3.1 Decompressing Input of COMPTYPE UNCOMPRESSED 15
2.2.3.2 Decompressing Input of COMPTYPE COMPRESSED 15

2.3 Compression Algorithm Details .. 16
2.3.1 Abstract Data Model .. 16

2.3.1.1 Input and Output .. 16
2.3.1.2 Run Information ... 17

2.3.2 Initialization ... 17
2.3.2.1 Input and Output .. 17

2.3.3 Processing Rules ... 17
2.3.3.1 Compressing a Buffer of Uncompressed Contents with COMPTYPE

UNCOMPRESSED ... 17
2.3.3.1.1 Filling in the Header ... 17

2.3.3.2 Compressing a Buffer of Uncompressed Contents with COMPTYPE COMPRESSED

 .. 18
2.3.3.2.1 Finding the Longest Match to Input .. 18
2.3.3.2.2 Filling in the Header ... 20

3 Algorithm Examples .. 21
3.1 Decompressing Compressed RTF .. 21

3.1.1 Example 1: Simple Compressed RTF ... 21
3.1.1.1 Compressed RTF Data ... 21
3.1.1.2 Compressed RTF Header .. 21

6 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

3.1.1.3 Initialization ... 21
3.1.1.4 Run 1 .. 21
3.1.1.5 Run 2 .. 24
3.1.1.6 Run 3 .. 25

3.1.2 Example 2: Reading a Token from the Dictionary that Crosses WritePosition 26
3.1.2.1 Compressed RTF ... 26
3.1.2.2 Compressed RTF Header .. 26
3.1.2.3 Initialization ... 26
3.1.2.4 Run 1 .. 27
3.1.2.5 Run 2 .. 29

3.2 Generating Compressed RTF .. 29
3.2.1 Example 1: Simple RTF ... 29

3.2.1.1 Initialization ... 29
3.2.1.2 Run 1 .. 30
3.2.1.3 Run 2 .. 35
3.2.1.4 Run 3 .. 37

3.2.2 Example 2: Compressing with Tokens that Cross WritePosition 39
3.2.2.1 Initialization ... 39
3.2.2.2 Run 1 .. 39
3.2.2.3 Run 2 .. 41

3.3 Generating the CRC .. 42
3.3.1 Example of CRC Generation ... 42

3.3.1.1 Initialization ... 43
3.3.1.2 First Byte ... 43
3.3.1.3 Second Byte ... 43
3.3.1.4 Continuation ... 44

4 Security ... 45
4.1 Security Considerations for Implementers ... 45
4.2 Index of Security Parameters .. 45

5 Appendix A: Product Behavior ... 46

6 Change Tracking .. 47

7 Index ... 49

7 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

1 Introduction

The Rich Text Format (RTF) Compression Algorithm is used to compress and decompress RTF data, as
described in [MSFT-RTF], to or from one of the supported compression formats.

Section 2 of this specification is normative and can contain the terms MAY, SHOULD, MUST, MUST

NOT, and SHOULD NOT as defined in [RFC2119]. Section 1.6 is also normative but does not contain
those terms. All other sections and examples in this specification are informative.

1.1 Glossary

The following terms are specific to this document:

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit

ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

Augmented Backus-Naur Form (ABNF): A modified version of Backus-Naur Form (BNF),

commonly used by Internet specifications. ABNF notation balances compactness and simplicity
with reasonable representational power. ABNF differs from standard BNF in its definitions and
uses of naming rules, repetition, alternatives, order-independence, and value ranges. For more
information, see [RFC5234].

big-endian: Multiple-byte values that are byte-ordered with the most significant byte stored in the
memory location with the lowest address.

cyclic redundancy check (CRC): An algorithm used to produce a checksum (a small, fixed

number of bits) against a block of data, such as a packet of network traffic or a block of a
computer file. The CRC is used to detect errors after transmission or storage. A CRC is designed
to catch random errors, as opposed to intentional errors. If errors might be introduced by a
motivated and intelligent adversary, a cryptographic hash function should be used instead.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

Message object: A set of properties that represents an email message, appointment, contact, or
other type of personal-information-management object. In addition to its own properties, a
Message object contains recipient properties that represent the addressees to which it is
addressed, and an attachments table that represents any files and other Message objects that
are attached to it.

Rich Text Format (RTF): Text with formatting as described in [MSFT-RTF].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

http://go.microsoft.com/fwlink/?LinkId=120924
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=120924
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx

8 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-OXPROPS] Microsoft Corporation, "Exchange Server Protocols Master Property List".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD
68, RFC 5234, January 2008, http://www.rfc-editor.org/rfc/rfc5234.txt

1.2.2 Informative References

[MS-OXPROTO] Microsoft Corporation, "Exchange Server Protocols System Overview".

[MSFT-RTF] Microsoft Corporation, "Rich Text Format (RTF) Specification", version 1.9.1, March 2008,
http://www.microsoft.com/en-us/download/details.aspx?id=10725

1.3 Overview

This algorithm enables an implementer to compress or decompress RTF-encoded text. During
compression, the RTF-encoded text is compared to a dictionary of RTF control words, as described in
[MSFT-RTF]. If any of the input text matches the control words in the dictionary, a dictionary
reference, as described in section 2.1.3.1.5, is written to the output buffer in place of the control word

to reduce the bytes sent over the wire. Any content that does not have a dictionary match is simply
written to the output buffer.

Conversely, during decompression, the compressed RTF-encoded text is compared against the

dictionary and dictionary references are replaced with RTF control words. This algorithm defines the
manner in which the RTF-encoded text is compared to the dictionary content and how the RTF-
encoded text is read from the input buffer or written to the output buffer.

1.4 Relationship to Protocols and Other Algorithms

The RTF text encoding format is described in [MSFT-RTF]. This algorithm requires no additional
protocols or algorithms to accomplish the compression format described in this specification. The
PidTagRtfCompressed property ([MS-OXPROPS] section 2.930) relies on this algorithm.

For conceptual background information and overviews of the relationships and interactions between
this and other protocols, see [MS-OXPROTO].

1.5 Applicability Statement

This algorithm is specifically used with information from the PidTagRtfCompressed property ([MS-

OXPROPS] section 2.930) of the Message object. Clients that do not implement this algorithm are
unable to interpret the data that is packed with this algorithm. This algorithm can be used to
compress and decompress any content (not just RTF). In addition, this algorithm supports the storing
of content in an uncompressed form.

mailto:dochelp@microsoft.com
%5bMS-DTYP%5d.pdf
%5bMS-OXPROPS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=123096
%5bMS-OXPROTO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=120924
http://go.microsoft.com/fwlink/?LinkId=120924
http://go.microsoft.com/fwlink/?LinkId=120924
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROTO%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf

9 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

1.6 Standards Assignments

None.

10 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

2 Algorithm Details

2.1 Common Algorithm Details

2.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this algorithm. The described organization is provided to facilitate the
explanation of how the algorithm behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The following elements are specific to this algorithm:

 Writer: Software that writes compressed RTF data.

 Reader: Software that is capable of reading compressed RTF data and decompressing it into RTF

encrypted text.

 Dictionary: A 4096-byte circular array of RTF control words. References to the dictionary are
used to compress or decompress RTF data.

 CRC Lookup Table: A pre-computed table used for CRC field generation, as specified in section
2.1.2.2.1.

2.1.2 Initialization

2.1.2.1 Dictionary

The writer MUST initialize the dictionary (starting at offset 0) with the following ASCII string:

 {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil<SP>\froman<SP>\fswiss<SP>\fmodern<SP>\fsc
ript<SP>\fdecor<SP>MS<SP>Sans<SP>SerifSymbolArialTimes<SP>New<SP>RomanCourier{\colortbl\red0\

green0\blue0<CR><LF>\par<SP>\pard\plain\f0\fs20\b\i\u\tab\tx

where:

<SP> designates a space (ASCII value 0x20)

<CR> designates a carriage return (ASCII value 0x0d)

<LF> designates a line feed (ASCII value 0x0a)

After the dictionary is initialized, the writer MUST set the write offset and the end offset of the
dictionary, as specified in section 2.1.3.1.4, to 207 (pointing to the byte that follows the pre-loaded
string).

Note The dictionary will not be used when the value of the COMPTYPE field is set to
UNCOMPRESSED, as specified in section 2.1.3.1.1.

2.1.2.2 CRC

The writer MUST initialize the value of the CRC field, as specified in section 2.1.3.1.1, which contains a
cyclic redundancy check (CRC), to zero.

11 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

2.1.2.2.1 CRC Lookup Table

The pre-computed table used for generating the value of the CRC field, as specified in section
2.1.3.1.1, MUST contain the following 256 DWORDs. The DWORD type is specified in [MS-DTYP].

 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba,
 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940,
 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116,
 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a,
 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818,
 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c,
 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086,
 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4,
 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe,
 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252,
 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60,
 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04,
 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a,
 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e,
 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0,
 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6,
 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,

%5bMS-DTYP%5d.pdf

12 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d

2.1.3 Processing Rules

2.1.3.1 RTF Compression Format

Unless otherwise specified, sizes in this section are expressed using the BYTE type, and multiple-byte
values are stored in little-endian format. The BYTE type is specified in [MS-DTYP].

2.1.3.1.1 RTF Compression ABNF Grammar

This section uses Augmented Backus-Naur Form (ABNF), as specified in [RFC5234], to define the
format of the contents stored in the PidTagRtfCompressed property ([MS-OXPROPS] section 2.930).

 RTFCOMPRESSED=Header CONTENTS

 Header=COMPSIZE RAWSIZE COMPTYPE CRC ; The size of the Header field is
 ; 16 (0x0010) bytes.

 COMPSIZE =DWORD ; Writers MUST set the COMPSIZE field to
 ; the length of the compressed data
 ; (the CONTENTS field) in bytes
 ; plus 12 (the count of the
 ; remaining bytes from the header).

 RAWSIZE =DWORD ; The size in bytes of the
 ; uncompressed content.

 COMPTYPE=COMPRESSED / UNCOMPRESSED ; The type of compression.
 COMPRESSED =%x4C.5A.46.75 ; Value of 0x75465A4C.
 UNCOMPRESSED=%x4D.45.4C.41 ; Value of 0x414C454D.

 CRC =DWORD ; If the COMPTYPE field is set to
 ; COMPRESSED, then the CRC field is
 ; computed from the CONTENTS field.
 ; If the COMPTYPE field is set to
 ; UNCOMPRESSED, then the CRC field

 ; MUST be set to %x00.00.00.00.

 CONTENTS=RAWDATA / COMPRESSEDDATA ; The CONTENTS field is set
 ; to RAWDATA if the COMPTYPE
 ; field is set to UNCOMPRESSED.
 ; The CONTENTS field is set
 ; to COMPRESSEDDATA if the COMPTYPE
 ; field is set to COMPRESSED.

 RAWDATA=*LITERAL
 COMPRESSEDDATA=[*RUN] ENDRUN [PADDING]
 RUN=CONTROL 8*8TOKEN
 ENDRUN=CONTROL 1*8TOKEN
 CONTROL= OCTET
 Token=REFERENCE / LITERAL
 REFERENCE=WORD ; Value is in big-endian format.
 LITERAL=OCTET
 PADDING=*OCTET

2.1.3.1.2 Compressed RTF

The content of the compressed RTF, as specified by the RTFCOMPRESSED field in section 2.1.3.1.1,
consists of a header and a series of runs. The number of runs varies based on the quantity of content

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=123096
%5bMS-OXPROPS%5d.pdf

13 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

that is compressed and sizes of the matches in the dictionary, as specified in section 2.1.2.1, and

illustrated in the following diagram.

Header RUN1 RUN2 RUN3 RUN4 ... ENDRUN PADDING

The ABNF grammar specified in section 2.1.3.1.1 contains necessary details that are supplementary to
the constructs defined in this section.

2.1.3.1.3 Compressed Run

A run is composed of a control byte and eight variable-sized tokens. A run is specified in section
2.1.3.1.1 as the RUN field, and the control byte is specified in section 2.1.3.1.1 as the CONTROL
field. The final run, as specified by the ENDRUN field in section 2.1.3.1.1, contains from one to eight
tokens.

CONTROL TOKEN1 TOKEN2 TOKEN3 TOKEN4 TOKEN5 TOKEN6 TOKEN7 TOKEN8

1 Byte Varies Varies Varies Varies Varies Varies Varies Varies

A token, as specified by the Token field in section 2.1.3.1.1, is either a dictionary reference or a
literal, depending on the value of the corresponding bit in the control byte, as follows:

 If the bit in the CONTROL field is zero, the corresponding token is a 1-byte literal that represents
the exact byte in the uncompressed content.

 If the bit in the CONTROL field is 1, the corresponding token is a 2-byte dictionary reference that
indicates the offset and length of a series of bytes in the dictionary that corresponds to the bytes
in the uncompressed content. For more details about dictionary references, see section 2.1.3.1.5.

Each control byte contains details about how to interpret the next eight tokens. The low bit (bitmask
%x1) in the CONTROL field corresponds to Token1, the second bit (bitmask %x2) corresponds to
Token2, and so on. In the ENDRUN field, the bits in the CONTROL field after the completion

dictionary reference are undefined and MUST be ignored.

The length of a run can be computed from the control byte because each bit in the control byte that is
set to zero represents a literal that is 1 byte long, and each bit in the control byte that is set to 1
represents a dictionary reference that is 2 bytes long. Therefore, the length of a run (except the final
run) is as follows.

 run_length = 1 + (number of 0 bits) + (number of 1 bits) * 2

2.1.3.1.4 Dictionary

This algorithm uses a dictionary that behaves as a 4096-byte circular array. When advancing a read or
write position within the dictionary, a reference beyond the last index of the array wraps to a
reference to the first byte and then advances from there.

The dictionary conceptually has a write offset, a read offset, and an end offset, all of which are zero-

based unsigned values, as follows:

 Write offset: The index in the dictionary where the next byte is added.

 Read offset: The index in the dictionary from which the next byte is read.

 End offset: The number of bytes currently in the dictionary. It MUST be less than or equal to 4096.

The end offset is incremented until its value is 4096.

14 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

2.1.3.1.5 Dictionary Reference

A dictionary reference is a 16-bit packed structure stored in the value of the REFERENCE field, as
specified in section 2.1.3.1.1. The dictionary reference is stored in big-endian form on the wire. The
format of this reference is as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Offset Length

Offset (12 bits): This field contains an index from the beginning of the dictionary that indicates
where the matched content will start.

An offset that equals the write offset of the dictionary has the special meaning of completion of all

compressed data, as specified in section 2.3.3.2, step 8. In this case, the writer MUST set the
Length field to zero, and readers SHOULD ignore the Length field.

Length (4 bits): This value indicates the length of the matched content and is 2 bytes less than the
actual length of the matched content.

2.1.3.2 Calculate a CRC from a Given Array of Bytes

Given an initial value of the CRC field, as specified in section 2.1.3.1.1, or the value of the CRC field
returned from a prior call (referred to in the following example as the crcValue field, which is a
DWORD ([MS-DTYP])), the following is the algorithm for calculating the value of the CRC field for a
given array of bytes (in pseudo-code). tablePosition is used as the index to get the value of
crcTableValue from the CRC Lookup Table, as specified in section 2.1.2.2.1.

 FOR each byte in the input array
 SET tablePosition to (crcValue XOR byte) BITWISE-AND 0xff
 SET intermediateValue to crcValue RIGHTSHIFTED by 8 bits
 SET crcValue to (crcTableValue at position tablePosition)
 XOR intermediateValue
 ENDFOR
 RETURN crcValue

2.2 Decompression Algorithm Details

2.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this algorithm. The described organization is provided to facilitate the

explanation of how the algorithm behaves. This document does not mandate that implementations
adhere to this model, as long as their external behavior is consistent with that described in this
document.

The abstract data model specified in section 2.1.1 also applies to decompression.

2.2.1.1 Input and Output

In this section, the input (the compressed RTF data, including the header) and the output (the
decompressed data) are treated as streams.

%5bMS-DTYP%5d.pdf

15 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

2.2.2 Initialization

All initialization specified in section 2.1.2 is required by the decompression process, and therefore
MUST be done.

2.2.2.1 Header

Before beginning decompression, the reader MUST read the HEADER field, as specified in section
2.1.3.1.1. If the value of the COMPTYPE field, as specified in section 2.1.3.1.1, is any value other
than COMPRESSED or UNCOMPRESSED, then the reader MUST treat the input stream as corrupt.

If the value of the COMPTYPE field is COMPRESSED, then the reader MUST decompress the stream
by using the decompression algorithm specified in section 2.2.3.2. If the value of the COMPTYPE field
is UNCOMPRESSED, then the contents are uncompressed and the reader MUST copy the contents as-is
to the output stream, as specified in section 2.2.3.1.

2.2.2.2 Output

The output stream MUST initially have a length of zero.

2.2.3 Processing Rules

If the decompression process, as defined in section 2.2, terminates prior to the end of the input, then
the remainder of the input (the PADDING field, as specified in section 2.1.3.1.1,) MUST be included
in the value of the CRC field, as specified in section 2.1.3.1.1. After this is done, if the computed value
of the CRC field does not equal that which is specified in the CRC field of the header, then the reader

MUST treat the input as corrupt.

2.2.3.1 Decompressing Input of COMPTYPE UNCOMPRESSED

When the COMPTYPE field is set to UNCOMPRESSED, the reader SHOULD read all bytes until the end
of the stream is reached, regardless of the value of the RAWSIZE field. Or, the reader MAY read the

number of bytes specified by the RAWSIZE field from the input (the Header field) and write them to
the output. The COMPTYPE, RAWSIZE and Header fields are specified in section 2.1.3.1.1.

The reader MUST NOT validate the value of the CRC field.

2.2.3.2 Decompressing Input of COMPTYPE COMPRESSED

If at any point during the steps specified in this section, the end of the input is reached before the
termination of decompression, then the reader MUST treat the input as corrupt.

When the COMPTYPE field is set to COMPRESSED, the decompression process is a straightforward
loop, as follows:

 Read the CONTROL field, as specified in section 2.1.3.1.1, from the input.

 Starting with the lowest bit (the 0x01 bit) in the CONTROL field, test each bit and carry out the

actions as follows.

 After all bits in the CONTROL field have been tested, read another value of a CONTROL field
from the input and repeat the bit-testing process.

For each bit, the reader MUST evaluate its value and complete the corresponding steps as specified in
this section.

16 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

If the value of the bit is zero:

1. Read a 1-byte literal from the input and write it to the output.

2. Set the byte in the dictionary at the current write offset to the literal from step 1.

3. Increment the write offset and update the end offset, as appropriate, as specified in section
2.1.3.1.4.

If the value of the bit is 1:

1. Read a 16-bit dictionary reference from the input in big-endian byte-order.

2. Extract the offset from the dictionary reference, as specified in section 2.1.3.1.5.

3. Compare the offset to the dictionary's write offset. If they are equal, then the decompression is
complete; exit the decompression loop. If they are not equal, continue to the next step.

4. Set the dictionary's read offset to offset.

5. Extract the length from the dictionary reference and calculate the actual length by adding 2 to the
length that is extracted from the dictionary reference.

6. Read a byte from the current dictionary read offset and write it to the output.

7. Increment the read offset, wrapping as appropriate, as specified in section 2.1.3.1.4.

8. Write the byte to the dictionary at the write offset.

9. Increment the write offset and update the end offset, as appropriate, as specified in section
2.1.3.1.4.

10. Continue from step 6 until the number of bytes calculated in step 5 has been read from the
dictionary.

The input value of the CRC field, as specified in section 2.1.3.1.1, MUST be calculated from every byte

in the CONTENTS field, per the process specified in section 2.1.3.2. After the decompression process,

if the calculated value of the CRC field does not match the value of the CRC field in the header, then
the reader MUST treat the input as corrupt.

2.3 Compression Algorithm Details

2.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this algorithm. The described organization is provided to facilitate the
explanation of how the algorithm behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

The abstract data model specified in section 2.1.1 also applies to compression.

2.3.1.1 Input and Output

For the purpose of this section, the input (the uncompressed RTF data) and the output (the
compressed data) will be treated as in-memory buffers of appropriate sizes. The output has an output
cursor, which defines where the next byte of the output is written. The input has an input cursor,
which defines the position from which the next byte of input is read.

17 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

2.3.1.2 Run Information

Compressing data when the value of the COMPTYPE field, as specified in section 2.1.3.1.1, is
COMPRESSED is most easily understood and implemented if the writer does so one run at a time,
writing each run to the output as it is completed. Information stored for a run includes:

 The current control byte (the CONTROL field, as specified in section 2.1.3.1.1) for the run,
represented as a BYTE ([MS-DTYP]).

 A mask (called the control bit), represented as a BYTE. The writer uses the control bit to write to
the control byte, as specified in section 2.3.3.2.

 A token buffer, 16 bytes in length.

 The offset, in bytes, into the token buffer (the "token offset"), representing the next position in
the buffer to which a token will be written.

In the implementation specified in the remainder of section 2.3, a run is considered completed when

the value of the control bit is 0x80 after a token has been written.

2.3.2 Initialization

All initialization specified in section 2.1.2 is required by the compression process, and therefore MUST
be done.

2.3.2.1 Input and Output

The writer MUST set the input cursor to the first byte in the input buffer.

The writer MUST set the output cursor to the 17th byte (to make space for the compressed header).

2.3.3 Processing Rules

2.3.3.1 Compressing a Buffer of Uncompressed Contents with COMPTYPE

UNCOMPRESSED

When the COMPTYPE field, as specified in section 2.1.3.1.1, is set to UNCOMPRESSED, the writer
MUST copy the uncompressed contents from the input buffer to the output buffer starting at the
current output cursor. Compression MUST continue by filling in the header, as specified in section
2.3.3.1.1.

The writer SHOULD NOT compute the value of the CRC field and MUST set the value of the CRC field
in the header to 0x00000000. The CRC field is specified in section 2.1.3.1.1.

2.3.3.1.1 Filling in the Header

Using the fields defined in the RTF compression ABNF grammar, specified in section 2.1.3.1.1, the
writer MUST fill in the header by using the following process:

1. Set the COMPSIZE field of the header to the length of the CONTENTS field in the output buffer
plus 12.

2. Set the value of the RAWSIZE field of the header to the number of bytes read from the input.

3. Set the value of the COMPTYPE field of the header to UNCOMPRESSED.

4. Set the value of the CRC field of the header to zero.

%5bMS-DTYP%5d.pdf

18 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

2.3.3.2 Compressing a Buffer of Uncompressed Contents with COMPTYPE

COMPRESSED

When the COMPTYPE field is set to COMPRESSED, compression proceeds as a loop, as follows:

1. The writer MUST (re)initialize the run by setting its control byte to zero, its control bit to 0x01,
and its token offset to zero.

2. If there is no more input, then the writer MUST exit the compression loop (by advancing to step
8).

3. Locate the longest match in the dictionary for the current input cursor, as specified in section
2.3.3.2.1.

4. If the match is zero or 1 byte in length, then the writer MUST copy the literal at the input cursor to
the run's token buffer at token offset. The writer MUST increment the token offset and the input
cursor.

5. If the match is 2 bytes or longer, then the writer MUST create a dictionary reference, as specified

in section 2.1.3.1.5, from the offset of the match and the length. (Note: The value stored in the
Length field, as specified in section 2.1.3.1.5, is length minus 2). The writer MUST insert this
dictionary reference in the token buffer as a big-endian word at the current token offset. The
control bit MUST be bitwise ORed into the control byte, thus setting the bit that corresponds to the
current token to 1. The writer MUST advance the token offset by 2 bytes and MUST advance the
input cursor by the length of the match.

6. If the control bit is not 0x80, then the control bit MUST be left-shifted by one bit and compression

MUST continue building the run by returning to step 2.

7. If the control bit is equal to 0x80, then the writer MUST write the run to the output by writing the
BYTE control byte, and then copying the token offset number of bytes from the token buffer to the
output. The writer MUST advance the output cursor by the token offset plus 1 byte. Continue with
compression by returning to step 1.

8. A dictionary reference MUST be created from an offset equal to the current write offset of the
dictionary and a length of zero, and inserted in the token buffer as a big-endian word at the

current token offset. The writer MUST then advance the token offset by 2 bytes. The control bit
MUST be ORed into the control byte, thus setting the bit that corresponds to the current token to
1. When compressing zero bytes of data, the writer adds a null value during compression and the
compressed run will be "02 00 0D 00" instead of "01 0C F0".

9. The writer MUST write the current run to the output by writing the value of the CONTROL field, as
specified in section 2.1.3.1.1, and then copying the token offset number of bytes from the token

buffer to the output. The output cursor is advanced by the token offset plus 1 byte.

After the output has been completed by execution of step 9, the writer MUST complete the output by
filling the header, as specified in section 2.3.3.2.2.

The writer MUST calculate the value of the CRC field for every byte written to the CONTENTS field, as
specified in section 2.1.3.1.1, and set the value of the CRC field of the header.

2.3.3.2.1 Finding the Longest Match to Input

The purpose here is to scan over the dictionary to locate the longest string. It is important that, as the
code finds a new longest match, the newly matched character SHOULD be added to the dictionary at
that time (refer to the AddByteToDictionary procedure calls in the pseudo-code as follows).

In the case where the length of the match is zero, the literal that is being searched for MUST be added
to the dictionary.

19 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

The scan MUST begin at the dictionary write offset plus 1 when the dictionary end offset is equal to

4096 bytes. When the end offset is less than 4096 bytes, the scan MUST begin at index zero. The scan

SHOULD stop when 17 characters are matched but MUST stop after the finalOffset position is scanned,
where finalOffset is defined as the dictionary write offset modulo 4096.

Matches that start at or before finalOffset and match across finalOffset allow a repeating sequence of
characters, such as "XYZXYZXYZXYZ", to be represented as a series of appropriate initial literals ('X'
'Y' 'Z') and a single dictionary reference. (This example generates an offset of 210 and a length of 9,
assuming that the dictionary is initialized as specified in section 2.1.2.1.) For a more detailed example,

see section 3.2.2.

The algorithm computes the longest match in the dictionary of the current position within the input by
using one of multiple implementation-dependent mechanisms. The following pseudocode is provided
as one example; however, it is not necessary to follow this exactly, so long as the decompression
algorithm specified in section 2.2 generates the original input given the compressed output generated.

 PROCEDURE FindLongestMatch
 SET finalOffset to the Write Offset of the Dictionary modulo 4096
 IF the Dictionary's End Offset is not equal to the Dictionary buffer size THEN
 SET matchOffset to 0
 ELSE
 SET matchOffset to (the Dictionary's Write Offset + 1) modulo 4096

 ENDIF
 SET bestMatchLength to 0

 REPEAT
 CALL TryMatch with matchOffset and the Input Cursor
 SET matchOffset to (matchOffset + 1) modulo 4096
 UNTIL matchOffset equals finalOffset
 OR until bestMatchLength is 17 bytes long

 IF bestMatchLength is 0 THEN
 CALL AddByteToDictionary with the byte at Input Cursor
 ENDIF
 RETURN offset of bestMatchOffset and bestMatchLength
 ENDPROCEDURE

 PROCEDURE TryMatch
 SET maxLength to the minimum of 17 and remaining bytes of Input
 SET matchLength to 0
 SET inputOffset to the Input Cursor
 SET dictionaryOffset to matchOffset

 WHILE matchLength is less than maxLength AND
 the byte in the Dictionary at dictionaryOffset is equal to
 the byte in Input at the inputOffset

 INCREMENT matchLength
 IF matchLength is greater than bestMatchLength THEN
 CALL AddByteToDictionary with the byte
 in Input at the inputOffset
 ENDIF

 INCREMENT inputOffset
 SET dictionaryOffset to (dictionaryOffset + 1) modulo 4096
 ENDWHILE

 IF matchLength is greater than bestMatchLength THEN
 SET bestMatchOffset to matchOffset
 SET bestMatchLength to matchLength
 ENDIF
 ENDPROCEDURE

 PROCEDURE AddByteToDictionary

20 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 SET the byte at the Dictionary's current Write Offset to the provided byte
 IF the Dictionary's End Offset is less than the buffer size
 THEN INCREMENT the End Offset
 ENDIF
 SET the Dictionary's Write Offset to
 (the Dictionary's Write Offset + 1) modulo 4096
 ENDPROCEDURE

2.3.3.2.2 Filling in the Header

Using the fields defined in the RTF compression ABNF grammar, as specified in section 2.1.3.1.1, the
writer MUST fill in the header by using the following process:

1. Set the COMPSIZE field of the header to the number of CONTENTS bytes in the output buffer
plus 12.

2. Set the RAWSIZE field of the header to the number of bytes read from the input.

3. Set the COMPTYPE field of the header to COMPRESSED.

4. Set the CRC field of the header to the value of the CRC field generated from the CONTENTS field.
The value of the CRC field, as specified in section 2.1.3.1.1, MUST be calculated from every byte
in the CONTENTS field by using the process specified in section 2.1.3.2.

21 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

3 Algorithm Examples

3.1 Decompressing Compressed RTF

In the following examples, the compressed RTF is examined in terms of "runs" for ease of exposition,
where the term "run" refers to a control byte and the tokens that it represents. The length of a run
can be computed as specified in section 2.1.3.1.3.

3.1.1 Example 1: Simple Compressed RTF

3.1.1.1 Compressed RTF Data

 000000: 2d 00 00 00 2b 00 00 00-4c 5a 46 75 f1 c5 c7 a7
 000010: 03 00 0a 00 72 63 70 67-31 32 35 42 32 0a f3 20
 000020: 68 65 6c 09 00 20 62 77-05 b0 6c 64 7d 0a 80 0f
 000030: a0

3.1.1.2 Compressed RTF Header

The first 16 bytes comprise the compressed RTF header.

 000000: 2d 00 00 00 2b 00 00 00-4c 5a 46 75 f1 c5 c7 a7

 COMPSIZE : 0x2d
 RAWSIZE : 0x2b
 COMPTYPE : COMPRESSED ; 0x75465a4c
 CRC: 0xa7c7c5f1

3.1.1.3 Initialization

The dictionary is initialized with the data, as described in section 2.1.2.1. After the initialization, the
dictionary is as follows.

 WritePosition: 207

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

3.1.1.4 Run 1

The first run begins on byte 16. The value of the CONTROL field, as described in section 2.1.3.1.1, at
that location is 0x03. Represented as bits, the value of the CONTROL field would be %b00000011.

The CONTROL field determines a run length, based on the number of '1' and '0' (zero) bits. Run
length is equal to the number of '1' bits times 2 plus the number of '0' (zero) bits plus 1 for the
CONTROL field itself. With a value of 0x3 for the CONTROL field, the run length is 11 bytes.

22 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 000010: 03 00 0a 00 72 63 70 67 31 32 35

Because the low-order bit in the CONTROL is a 1, the first token in the run is a dictionary reference
and consists of the two bytes 00 and 0a. Reading these into a WORD data type ([MS-DTYP]) in big-
endian order, the dictionary reference is 0x000a. As described in section 2.1.3.1.5, the offset into the
dictionary is the upper 12 bits (for example, 0), and the length is the lower 4 bits (for example, 0xa).
The length is stored as 2 less than the actual length, so 2 is added to the length, making the actual

length 0x0C (12). Reading 12 bytes from the dictionary at offset zero returns the content
"{\rtf1\ansi\".

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi

This content is copied to the output buffer and written to the write location for the dictionary. The new

dictionary is as follows.

 WritePosition: 219

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The output stream is now as follows.

"{\rtf1\ansi\"

The next control bit is 1 (%b00000011), specifying another dictionary reference for the bytes for
which are 00 and 72. Converting to a WORD data type results in 0x0072, and extracting the offset

and length results in offset equal to 0x0007, and a length of 0x4 (0x2+2).

Looking up the dictionary position 7 for 4 bytes results in: "ansi".

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi

This extracted content is appended to the output buffer and to the dictionary. The new dictionary is as

follows.

 WritePosition: 223

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansi

%5bMS-DTYP%5d.pdf

23 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The output stream is now as follows.

"{\rtf1\ansi\ansi"

The next control bit is 0 (%b00000011), specifying a literal byte token. That token value is 0x63.
Because it is a literal, no dictionary lookup happens. The byte is appended to the dictionary and to the
output stream.

The new dictionary is as follows.

 WritePosition: 224

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansic

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The output stream is now as follows.

"{\rtf1\ansi\ansic"

The next control bit is 0 (%b00000011), specifying another literal byte token. That token value is
0x70. Because it is a literal, no dictionary lookup happens. The byte is appended to the dictionary and

the output stream.

The new dictionary is as follows.

 WritePosition: 225

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansicp

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The output stream is now as follows.

"{\rtf1\ansi\ansicp"

Repeating for the remaining tokens in the run, the following bytes are added to the dictionary and the

output stream (67 31 32 35).

The new dictionary is as follows.

24 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 WritePosition: 229

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansicpg125

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The output stream is now as follows.

"{\rtf1\ansi\ansicpg125"

The entire CONTROL field is now processed and the first run is now evaluated.

3.1.1.5 Run 2

The next run is now loaded and the same logic as described in Run 1 is executed.

RunSize: 11 bytes

 00001b: 42 32 0a f3 20 68 65 6c 09 00 20

Bytes Description

42 Control byte: 0x42

Bits: %b01000010

32 '2'

0a f3 Dictionary reference: 0af3

Offset: 0x0af (175)

Length: [0x3+2] (5)

Content: "\pard"

20 ' '

68 'h'

65 'e'

6c 'l'

09 00 Dictionary reference: 0900

Offset: 0x090 (144)

Length: [0x0+2] (2)

Content: "lo"

20 ' '

Dictionary:

 WritePosition: 242

25 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansicpg1252\pard hello

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

OutputStream:

"{\rtf1\ansi\ansicpg1252\pard hello "

3.1.1.6 Run 3

The final run is 11 bytes, as follows.

 000026: 62 77 05 b0 6c 64 7d 0a 80 0f a0

Bytes Description

62 Control byte: 0x62

Bits: %b01100010

77 'w'

05 b0 Dictionary reference: 05b0

Offset: 0x05b (91)

Length: [0x0+2] (2)

Content: "or"

6c 'l'

64 'd'

7d '}'

0a 80 Dictionary reference: 0a80

Offset: 0x0a8 (168)

Length: [0x0+2] (2)

Content: 0x0d 0x0a

0f a0 Dictionary reference: 0fa0

Offset: 0x0fa (250)

Length: [0x0+2] (2)

Content: <END>

The final dictionary reference is unique. The offset of 250 exactly matches the value of the
WritePosition field at the time that the dictionary reference is encountered. This is an indicator that
the end of the compressed content has been reached and decompression has to stop.

The final dictionary is as follows.

 WritePosition: 250

26 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansicpg1252\pard hello world}__

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a
 Position:0248 Byte:0x0d
 Position:0249 Byte:0x0a

The final decompressed output is as follows.

"{\rtf1\ansi\ansicpg1252\pard hello world}<CR><LF>"

3.1.2 Example 2: Reading a Token from the Dictionary that Crosses WritePosition

The following example illustrates that the requirement that bytes be added to the dictionary as they

are copied to the output is necessary to allow longer matches than would otherwise be possible.

3.1.2.1 Compressed RTF

 000000: 1a 00 00 00 1c 00 00 00-4c 5a 46 75 e2 d4 4b 51
 000010: 41 00 04 20 57 58 59 5a-0d 6e 7d 01 0e b0

3.1.2.2 Compressed RTF Header

 000000: 1a 00 00 00 1c 00 00 00-4c 5a 46 75 e2 d4 4b 51

 COMPSIZE : 0x1a
 RAWSIZE : 0x1c
 COMPTYPE : COMPRESSED ; 0x75465a4c
 CRC: 0x514bd4e2

3.1.2.3 Initialization

The dictionary is initialized with the data, as described in section 2.1.2.1. After the initialization, the
dictionary is as follows.

 WritePosition: 207

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

27 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

3.1.2.4 Run 1

The first run is 11 bytes long.

 000010: 41 00 04 20 57 58 59 5a 0d 6e 7d

Bytes Description

41 Control byte: 0x41

Bits: %b01000001

00 04 Dictionary reference: 0004

Offset: 0x000 (0)

Length: [0x4+2](6)

Content: "{\rtf1"

20 ' '

57 'W'

58 'X'

59 'Y'

5a 'Z'

0d 6e Dictionary reference: 0d6e

Offset: 0x0d6 (214)

Length: [0xe+2](16)

Content: "WXYZWXYZWXYZWXYZ"

7d '}'

After the first dictionary reference and the first five literal tokens are processed, the dictionary is as

follows.

 WritePosition: 218

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1 WXYZ

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The output is now as follows.

"{\rtf1 WXYZ"

 000018:0d 6e 7d

The next token in the input is a dictionary reference at offset 214 and length 16. There are only 4
bytes in the dictionary following that offset. As each byte of the dictionary reference is copied to the

28 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

output, it is also added to the dictionary. Therefore, after the first four bytes of the dictionary

reference are copied, the dictionary is as follows.

 WritePosition: 222

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195b\i\u\tab\tx{\ref1 WXYZWXYZ

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The offset from which the dictionary reference is being copied has now been advanced from 214 to
218, which points to the newly written bytes, so the expansion continues with those bytes. The full

expansion of the dictionary reference leads to a dictionary of the following.

 WritePosition: 234

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195b\i\u\tab\tx{\ref1 WXYZWXYZWXYZWXYZWXYZ

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The output is as follows.

"{\ref1 WXYZWXYZWXYZWXYZWXYZ"

There is one more literal token in this run, as follows.

 00001a: 7d

When decoded, this token leads to a dictionary of the following.

 WritePosition: 235

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\ref1 WXYZWXYZWXYZWXYZWXYZ}

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The output is as follows.

29 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

"{\ref1 WXYZWXYZWXYZWXYZWXYZ}"

3.1.2.5 Run 2

This run is only 3 bytes, as follows.

 00001b: 01 0e b0

Bytes Description

01 Control byte: 0x01

Bits: %b00000001

0e b0 Dictionary reference: 0004

Offset: 0x0eb(235)

Length: [0x0+2](2)

Content: <END>

Because the offset of the dictionary reference is equal to the current value of the WritePosition field,
this indicates that the decompression is complete.

3.2 Generating Compressed RTF

3.2.1 Example 1: Simple RTF

This example compresses the following RTF data.

"{\rtf1\ansi\ansicpg1252\pard hello world}<CR><LF>"

3.2.1.1 Initialization

The dictionary is initialized with the data, as described in section 2.3.2.1. After the initialization, the
dictionary is as follows.

 WritePosition: 207

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx
 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

CRC: 0

COMPSIZE: 0x000C

COMPTYPE: 0x75465a4c

The output is as follows.

30 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 Output cursor: 0x10

 000000: 00 00 00 00 00 00 00 00-4c 5a 46 75 00 00 00 00
 000010: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
 000020: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
 000030: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

InputCursor is: 0 (zero)

3.2.1.2 Run 1

Start by initializing the following run information.

 Control byte: 0x00
 Control bit: 0x01
 Token offset: 0x00
 Token buffer: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Input data is "{\rtf1\ansi\ansicpg1252\pard hello world}<CR><LF>".

The dictionary is now scanned starting at index zero, looping until through index 207, in an attempt to
find the largest match of the input data.

The first match starts at position zero. As each new byte is matched, the byte is copied to the
dictionary write index and the write index is incremented. This match stops at byte 12. The maximum
length match is stored as 12 before moving to the next character. No larger match is found. Because
the match is greater than one character, a dictionary reference has to be written to the output (length
is encoded as match length minus 2). The dictionary reference written to the output is offset = 0,
length = 10, 0x000A.

The CONTROL field, as described in section 2.1.3.1.1, sets the value at the control bit set to 1 and

advances the control bit to the next token.

The run information is now as follows.

 Control byte: 0x01
 Control bit: 0x02
 Token offset: 0x02
 Token buffer: 00 0a 00 00 00 00 00 00-00 00 00 00 00 00 00 00

The dictionary is now as follows.

 WritePosition: 219

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The input data is now: "ansicpg1252\pard hello world}<CR><LF>".

31 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

Scanning the dictionary from index zero to index 219, new matches are calculated.

The first match is located at index 7. As each character is matched, it is moved to the dictionary write

index. The match length is 4. No other larger match is located, and because the length is greater than
one character, a dictionary reference is written to the output buffer (length is encoded as match
length minus 2). The dictionary reference written to the output is offset = 7, length = 2, 0x0072.

The control bit location in the CONTROL field is set to 1, and the control bit is advanced.

The run information is now as follows.

 Control byte: 0x03
 Control bit: 0x04
 Token offset: 0x04
 Token buffer: 00 0a 00 72 00 00 00 00-00 00 00 00 00 00 00 00

The dictionary is now as follows.

 WritePosition: 223

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansi

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The input data is now: "cpg1252\pard hello world}<CR><LF>".

Scanning the dictionary from index zero to index 223, new matches are located.

The first match is located at index 14. The 'c' character is matched, and is moved to the dictionary
write index. The largest match is now 1 character. Continuing scanning, matches are located at
positions 80 and 142, but because the match is not any larger, no additional characters are copied to

the dictionary. Because the match is less than 2, a literal is written to the output stream.

The control bit location in the CONTROL field is set to zero and the control bit is advanced. The value
of the CONTROL field is still 0x3 (%b00000011).

The run information is now as follows.

 Control byte: 0x03
 Control bit: 0x08
 Token offset: 0x05
 Token buffer: 00 0a 00 72 63 00 00 00-00 00 00 00 00 00 00 00

The dictionary is now as follows.

 WritePosition: 224

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro

32 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansic

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The input data is now: "pg1252\pard hello world}<CR><LF>".

Scanning the dictionary from index zero to index 224, new matches are located.

The first match is located at index 83. The 'p' character is matched, and is moved to the dictionary
write index. The largest match is now 1 character. Continuing scanning, matches are located at
positions 171, 176, and 181, but because the match is not any larger, no additional characters are
copied to the dictionary. Because the match is less than 2, a literal is written to the output stream.

The control bit location in the CONTROL field is set to zero and the control bit is advanced.

The run information is now as follows.

 Control byte: 0x03
 Control bit: 0x10
 Token offset: 0x06
 Token buffer: 00 0a 00 72 63 70 00 00-00 00 00 00 00 00 00 00

The dictionary is now as follows.

 WritePosition: 225

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansicp

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The input data is now: "g1252\pard hello world}<CR><LF>".

Scanning the dictionary from index zero to index 225, new matches are located.

The first match is located at index 156. The 'g' character is matched, and is moved to the dictionary

write index. The largest match is now 1 character. Continuing scanning, matches are not found at any
other locations. Because the match length is less than 2, a literal is written to the output stream.

The control bit location in the CONTROL field is set to zero and the control bit is advanced.

The run information is now as follows.

 Control byte: 0x03
 Control bit: 0x20
 Token offset: 0x07
 Token buffer: 00 0a 00 72 63 70 67 00-00 00 00 00 00 00 00 00

33 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

The dictionary is now as follows.

 WritePosition: 226

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansicpg

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The input data is now: "1252\pard hello world}<CR><LF>".

Scanning the dictionary from index zero to index 226, new matches are located.

The first match is located at index 5. The '1' character is matched, and is moved to the dictionary
write index. The largest match is now 1 character. Continuing scanning, '1' also matches at 211, but
the match length is still 1 character. Because the match length is less than 2, a literal is written to the
output stream.

The control bit location in the CONTROL field is set to zero and the control bit is advanced.

The run information is now as follows.

 Control byte: 0x03
 Control bit: 0x40
 Token offset: 0x08
 Token buffer: 00 0a 00 72 63 70 67 31-00 00 00 00 00 00 00 00

The dictionary is now as follows.

 WritePosition: 227

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansicpg1

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The input data is now: "252\pard hello world}<CR><LF>".

Scanning the dictionary from index zero to index 227, new matches are located.

The first match is located at index 29. The '2' character is matched, and is moved to the dictionary
write index. The largest match is now 1 character. Continuing scanning, '2' also matches at 192, but
the match length is still 1 character. Because the match length is less than 2, a literal is written to the
output stream.

The control bit location in the CONTROL field is set to zero and the control bit is advanced.

34 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

The run information is now as follows.

 Control byte: 0x03
 Control bit: 0x80
 Token offset: 0x09
 Token buffer: 00 0a 00 72 63 70 67 31-32 00 00 00 00 00 00 00

The dictionary is now as follows.

 WritePosition: 228

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansicpg12

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The input data is now: "52\pard hello world}<CR><LF>".

Scanning the dictionary from index zero to index 228 for the character '5' results in zero matches.

Because the character is unmatched, it has to be moved to the dictionary write index. Because the
match length is less than 2, a literal is also written to the output stream.

The control bit location in the CONTROL field is set to zero and the control bit is advanced.

In addition, because the control bit is now 0x80, it is not advanced; rather, the run is now written to
the output.

The run information is now as follows.

 Control byte: 0x03
 Control bit: 0x80
 Token offset: 0x0a
 Token buffer: 00 0a 00 72 63 70 67 31-32 35 00 00 00 00 00 00

This is written to the output by writing the CONTROL field followed by token offset (0x0a) bytes from
the token buffer. The output cursor is advanced by the number of bytes (0x0b) written to the output.

The output is now as follows.

 Output cursor: 0x1b

 000000: 00 00 00 00 00 00 00 00-4c 5a 46 75 00 00 00 00
 000010: 03 00 0a 00 72 63 70 67-31 32 35 00 00 00 00 00
 000020: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
 000030: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

This run is now complete.

35 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

3.2.1.3 Run 2

Prepare the next run by resetting the run information. The run information is now as follows.

 Control byte: 0x00
 Control bit: 0x01
 Token offset: 0x00
 Token buffer: 00 0a 00 72 63 70 67 31-32 00 00 00 00 00 00 00

Note that there is no need to overwrite data in the token buffer; that will be done as tokens are
added.

 Current Dictionary (WritePosition=229):
 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansicpg125

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

Input data is "2\pard hello world}<CR><LF>".

Add literal '2'; run information is as follows.

 Control byte: 0x00
 Control bit: 0x02
 Token offset: 0x01
 Token buffer: 32 0a 00 72 63 70 67 31-32 00 00 00 00 00 00 00

Input data is now "\pard hello world}<CR><LF>".

Add a dictionary reference (0x0af3) for the match of length 5 at offset 175 (matching "\pard"); the

run information is as follows.

 Control byte: 0x02
 Control bit: 0x04
 Token offset: 0x03
 Token buffer: 32 0a f3 72 63 70 67 31-32 00 00 00 00 00 00 00

Input data is now " hello world}<CR><LF>".

Add literal ' '; the run information is as follows.

 Control byte: 0x02
 Control bit: 0x08
 Token offset: 0x04
 Token buffer: 32 0a f3 20 63 70 67 31-32 00 00 00 00 00 00 00

Input data is now "hello world}<CR><LF>".

Add a literal 'h'; the run information is as follows.

36 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 Control byte: 0x02
 Control bit: 0x10
 Token offset: 0x05
 Token buffer: 32 0a f3 20 68 70 67 31-32 00 00 00 00 00 00 00

Input data is now "ello world}<CR><LF>".

Add a literal 'e'; the run information is as follows.

 Control byte: 0x02
 Control bit: 0x20
 Token offset: 0x06
 Token buffer: 32 0a f3 20 68 65 67 31-32 00 00 00 00 00 00 00

Input data is now "llo world}<CR><LF>".

Add literal 'l'; the run information is as follows.

 Control byte: 0x02
 Control bit: 0x40
 Token offset: 0x07
 Token buffer: 32 0a f3 20 68 65 6c 31-32 00 00 00 00 00 00 00

Input data is "lo world}<CR><LF>".

Add dictionary reference (0x0900) for a match of length 2 at offset 144 (matching "lo"); the run
information is as follows.

 Control byte: 0x42
 Control bit: 0x80
 Token offset: 0x09
 Token buffer: 32 0a f3 20 68 65 6c 09-00 00 00 00 00 00 00 00

Input data is now " world}<CR><LF>".

Add literal ' '. Because the control bit is 0x80, the run is now complete. The run information is as
follows.

 Control byte: 0x42
 Control bit: 0x80
 Token offset: 0x0a
 Token buffer: 32 0a f3 20 68 65 6c 09-00 20 00 00 00 00 00 00

Write the run to the output, which is now as follows.

 Output cursor: 0x26

 000000: 00 00 00 00 00 00 00 00-4c 5a 46 75 00 00 00 00
 000010: 03 00 0a 00 72 63 70 67-31 32 35 42 32 0a f3 20
 000020: 68 65 6c 09 00 20 00 00-00 00 00 00 00 00 00 00
 000030: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

37 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

3.2.1.4 Run 3

Prepare the next run by resetting the run information. The run information is now as follows.

 Control byte: 0x00
 Control bit: 0x01
 Token offset: 0x00
 Token buffer: 32 0a f3 20 68 65 6c 09-00 20 00 00 00 00 00 00

 Current Dictionary (WritePosition=242):
 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1\ansi\ansicpg1252\pard hello

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

Input:"world}<CR><LF>"

Add literal 'w'; run information is as follows.

 Control byte: 0x00
 Control bit: 0x02
 Token offset: 0x01
 Token buffer: 77 0a f3 20 68 65 6c 09-00 20 00 00 00 00 00 00

Input:"orld}<CR><LF>"

Add dictionary reference (0x05b0) or match of length 2 at offset 91 (matching "or"); run information
is as follows.

 Control byte: 0x02
 Control bit: 0x04
 Token offset: 0x03
 Token buffer: 77 05 b0 20 68 65 6c 09-00 20 00 00 00 00 00 00

Input: "ld}<CR><LF>"

Add literal 'l'; run information is as follows.

 Control byte: 0x02
 Control bit: 0x08
 Token offset: 0x04
 Token buffer: 77 05 b0 6c 68 65 6c 09-00 20 00 00 00 00 00 00

Input: "d}<CR><LF>"

Add literal 'd'; run information is as follows.

 Control byte: 0x02
 Control bit: 0x10
 Token offset: 0x05

38 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 Token buffer: 77 05 b0 6c 64 65 6c 09-00 20 00 00 00 00 00 00

Input: "}<CR><LF>"

Add literal '}'; run information is as follows.

 Control byte: 0x02
 Control bit: 0x20
 Token offset: 0x06
 Token buffer: 77 05 b0 6c 64 7d 6c 09-00 20 00 00 00 00 00 00

Input: "<CR><LF>"

Add dictionary reference (0x0a80) for match of length 2 at offset 168 (matching "<CR><LF>"; run

information is as follows.

 Control byte: 0x22
 Control bit: 0x40
 Token offset: 0x08
 Token buffer: 77 05 b0 6c 64 7d 0a 80-00 20 00 00 00 00 00 00

Input: <EMPTY>

Add a dictionary reference for termination. Because the dictionary's write cursor is 250, the reference
is 0x0fa0. Run information is as follows.

 Control byte: 0x62
 Control bit: 0x80
 Token offset: 0x0a
 Token buffer: 77 05 b0 6c 64 7d 0a 80-0f a0 00 00 00 00 00 00

The run is now complete and is written to the output, as follows.

 Output cursor: 0x31

 000000: 00 00 00 00 00 00 00 00-4c 5a 46 75 00 00 00 00
 000010: 03 00 0a 00 72 63 70 67-31 32 35 42 32 0a f3 20
 000020: 68 65 6c 09 00 20 62 77-05 b0 6c 64 7d 0a 80 0f
 000030: a0 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Having read through the input and written to the output, the header can now be filled in with the
following:

RAWSIZE: 43

COMPSIZE: 45

CRC: 0xa7c7c5f1 (generated from bytes 0x0010 through 0x0030)

This results in the final output, as follows.

 Output cursor: 0x31

 000000: 2d 00 00 00 2b 00 00 00-4c 5a 46 75 f1 c5 c7 a7
 000010: 03 00 0a 00 72 63 70 67-31 32 35 42 32 0a f3 20

39 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 000020: 68 65 6c 09 00 20 62 77-05 b0 6c 64 7d 0a 80 0f
 000030: a0 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

The output is 0x031 bytes long.

3.2.2 Example 2: Compressing with Tokens that Cross WritePosition

This example compresses the following RTF data.

"{\rtf1 WXYZWXYZWXYZWXYZWXYZ}"

3.2.2.1 Initialization

The dictionary is initialized with the data, as described in section 2.3.2.1. After the initialization, the
dictionary is as follows.

 WritePosition: 207

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

CRC: 0 (zero)

COMPSIZE: 0x000C

COMPTYPE: 0x75465a4c

Output is as follows.

 Output cursor: 0x10

 000000: 00 00 00 00 00 00 00 00-4c 5a 46 75 00 00 00 00
 000010: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
 000020: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
 000030: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

InputCursor is: 0 (zero)

3.2.2.2 Run 1

Start by initializing the run information, as follows.

 Control byte: 0x00
 Control bit: 0x01
 Token offset: 0x00
 Token buffer: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

40 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

Input data is "{\rtf1 WXYZWXYZWXYZWXYZWXYZ}".

Add a dictionary reference (0x0004) for a match of length 6 at offset zero (matching "{\rtf1"); run

information is as follows.

 Control byte: 0x01
 Control bit: 0x02
 Token offset: 0x02
 Token buffer: 00 04 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Input data is now "WXYZWXYZWXYZWXYZWXYZ}".

Add literals ' ', 'W', 'X', 'Y', 'Z'; run information is as follows.

 Control byte: 0x01
 Control bit: 0x40
 Token offset: 0x07
 Token buffer: 00 04 20 57 58 59 5a 00-00 00 00 00 00 00 00 00

Input data is now "WXYZWXYZWXYZWXYZ}".

The dictionary is now as follows.

 WritePosition: 218

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1 WXYZ

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

A match is found for the "WXYZ" at offset 214 in the dictionary, but because each character is added
to the dictionary as it is matched, following the match of the initial 4 characters of the input, the
dictionary is as follows.

 WritePosition: 222

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1 WXYZWXYZ

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

The match cursor of the input is now pointing at a 'W', as is the match cursor (at offset 218) of the

dictionary. Therefore, matching continues, adding characters to the dictionary that can be matched
later in the match. This terminates when a match of length 16 is found at offset 214 and the
dictionary is as follows.

41 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 WritePosition: 234

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234
 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1 WXYZWXYZWXYZWXYZWXYZ

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

As a result, a dictionary reference (0x0d6e) is added for a length of 16 at offset 214 (matching "
WXYZWXYZWXYZWXYZWXYZ"); run information is as follows.

 Control byte: 0x41
 Control bit: 0x80
 Token offset: 0x09
 Token buffer: 00 04 20 57 58 59 5a 0d-6e 00 00 00 00 00 00 00

Input data is now "}".

Add literal '}'; run information is as follows.

 Control byte: 0x41
 Control bit: 0x80
 Token offset: 0x0a
 Token buffer: 00 04 20 57 58 59 5a 0d-6e 7d 00 00 00 00 00 00

Because the control bit was 0x80, the run is written to the output, as follows.

 Output cursor: 0x1b

 000000: 00 00 00 00 00 00 00 00-4c 5a 46 75 00 00 00 00
 000010: 41 00 04 20 57 58 59 5a-0d 6e 7d 00 00 00 00 00
 000020: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
 000030: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

3.2.2.3 Run 2

Start by initializing the run information, as follows.

 Control byte: 0x00
 Control bit: 0x01
 Token offset: 0x00
 Token buffer: 00 04 20 57 58 59 5a 0d-6e 7d 00 00 00 00 00 00

The dictionary is as follows.

 WritePosition: 235

 0 1 2 3 4 5 6
 01234567890123456789012345678901234567890123456789012345678901234

42 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 0000: {\rtf1\ansi\mac\deff0\deftab720{\fonttbl;}{\f0\fnil \froman \fswi
 0065: ss \fmodern \fscript \fdecor MS Sans SerifSymbolArialTimes New Ro
 0130: manCourier{\colortbl\red0\green0\blue0__\par \pard\plain\f0\fs20\
 0195: b\i\u\tab\tx{\rtf1 WXYZWXYZWXYZWXYZWXYZ}

 Nonprintable characters:
 Position:0168 Byte:0x0d
 Position:0169 Byte:0x0a

Input data is <EMPTY>.

Because the input data is empty, a dictionary reference (0x0eb0) of length zero is added for the
WritePosition; the run is as follows.

 Control byte: 0x01
 Control bit: 0x02
 Token offset: 0x02
 Token buffer: 0e b0 20 57 58 59 5a 0d-6e 7d 00 00 00 00 00 00

This is written to the output, as follows.

 Output cursor: 0x1e

 000000: 00 00 00 00 00 00 00 00-4c 5a 46 75 00 00 00 00
 000010: 41 00 04 20 57 58 59 5a-0d 6e 7d 01 0e b0 00 00
 000020: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
 000030: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Finish by writing the header information:

RAWSIZE: 0x1a

COMPSIZE: 0x1c

CRC: 0x514bd4e2 (generated from bytes 0x0010 through 0x001d)

This results in the final output, as follows.

 Output cursor: 0x1e

 000000: 1a 00 00 00 1c 00 00 00-4c 5a 46 75 e2 d4 4b 51
 000010: 41 00 04 20 57 58 59 5a-0d 6e 7d 01 0e b0 00 00
 000020: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
 000030: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

The output is 0x1e bytes long.

3.3 Generating the CRC

3.3.1 Example of CRC Generation

This example computes the value of the CRC field, as described in section 2.1.3.1.1, of the following
bytes (the compressed input from section 3.1.1, with the header removed).

 03 00 0a 00 72 63 70 67-31 32 35 42 32 0a f3 20

43 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 68 65 6c 09 00 20 62 77-05 b0 6c 64 7d 0a 80 0f
 a0

The computation uses the procedure described in section 2.1.3.2.

3.3.1.1 Initialization

The CRC field, as described in section 2.1.3.1.1, is initially set to 0x00000000. The values in
crcTableValue are also initialized, as described in section 2.1.2.2.1.

3.3.1.2 First Byte

The first byte is 0x03, and the current value of the CRC field, as described in section 2.1.3.1.1, is
0x00000000, so the tablePosition field is computed as follows.

 tablePosition= (0x00000000 XOR 0x03) BITWISE-AND 0xff
 = 0x00000003

This is used to index into the crcTableValue field, getting a table value of the following.

 tableValue= 0x990951ba

The intermediateValue field is computed as follows.

 intermediateValue= 0x00000000 RIGHTSHIFTED by 8 bits
 = 0x00000000

The CRC field that incorporates this initial byte is now as follows.

 CRC= 0x990951ba XOR 0x00000000
 = 0x990951ba

3.3.1.3 Second Byte

The next byte is 0x00, and the current value for the CRC field, as described in section 2.1.3.1.1, is
0x990951ba, so the tablePosition field is computed as follows.

 tablePosition= (0x990951ba XOR 0x00) BITWISE-AND 0xff
 = 0xba

From which the tableValue field is as follows.

 tableValue= 0x2bb45a92

The intermediateValue field is now as follows.

 intermediateValue= 0x990951ba RIGHTSHIFTED by 8 bits

44 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

 = 0x00990951

The updated CRC field is as follows.

 CRC= 0x2bb45a92 XOR 0x00990951
 = 0x2b2d53c3

3.3.1.4 Continuation

The computation proceeds as described, incorporating each byte into the value of the CRC field, as
described in section 2.1.3.1.1.

The final value of the CRC field of this set of input bytes is 0xA7C7C5F1.

45 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

4 Security

4.1 Security Considerations for Implementers

Because the compressed content could originate from a malicious source, an implementer needs to be
aware that certain sizes, such as COMPSIZE and RAWSIZE, might have been tampered with. Care
needs to be taken to ensure that the client does not attempt to read or access data that is larger than
the input during decompression. Few security risks exist during compression, as the algorithm can
compress any content (not just RTF), and operates on the byte level.

4.2 Index of Security Parameters

None.

46 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Microsoft Exchange Server 2003

 Microsoft Exchange Server 2007

 Microsoft Exchange Server 2010

 Microsoft Exchange Server 2013

 Microsoft Exchange Server 2016 Preview

 Microsoft Office Outlook 2003

 Microsoft Office Outlook 2007

 Microsoft Outlook 2010

 Microsoft Outlook 2013

 Microsoft Outlook 2016 Preview

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

47 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

6 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as New, Major, Minor, Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements or functionality.

 The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to

clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed. Editorial
changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor editorial
and formatting changes may have been made, but the technical content of the document is identical
to the last released version.

Major and minor changes can be described further using the following change types:

 New content added.

 Content updated.

 Content removed.

 New product behavior note added.

 Product behavior note updated.

 Product behavior note removed.

 New protocol syntax added.

 Protocol syntax updated.

 Protocol syntax removed.

 New content added due to protocol revision.

 Content updated due to protocol revision.

 Content removed due to protocol revision.

 New protocol syntax added due to protocol revision.

 Protocol syntax updated due to protocol revision.

 Protocol syntax removed due to protocol revision.

 Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

48 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

Some important terms used in the change type descriptions are defined as follows:

 Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

 Protocol revision refers to changes made to a protocol that affect the bits that are sent over the
wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section
Tracking number (if applicable) and
description

Major change
(Y or N)

Change
type

2.1.3.2 Calculate a CRC from
a Given Array of Bytes

Added clarification and reference to CRC
Lookup Table.

N
Content
update.

5 Appendix A: Product
Behavior

Added Exchange 2016 and Outlook 2016
to the list of applicable products.

Y
Content
update.

mailto:dochelp@microsoft.com

49 / 49

[MS-OXRTFCP] - v20150526
Rich Text Format (RTF) Compression Algorithm
Copyright © 2015 Microsoft Corporation
Release: May 26, 2015

7 Index

A

Abstract data model
 common 10
 compression 16
 decompression 14
Applicability 8

C

Change tracking 47
Common
 abstract data model 10
Compressing with tokens that cross WritePosition

example 39
Compression
 abstract data model 16
CRC generation example 42

D

Data model – abstract
 common 10
 decompression 14
 dompression 16
Decompressing Compressed RTF example 21
Decompression
 abstract data model 14

E

Examples
 compressing with tokens that cross WritePosition

39
 CRC generation 42
 Decompressing Compressed RTF 21
 reading a token from the dictionary that crosses

WritePosition 26
 simple RTF 29

G

Glossary 7

I

Implementer - security considerations 45
Index of security parameters 45
Informative references 8
Introduction 7

N

Normative references 8

O

Overview (synopsis) 8

P

Parameters - security index 45
Product behavior 46

R

Reading a token from the dictionary that crosses

WritePosition example 26
References
 informative 8
 normative 8

S

Security
 implementer considerations 45
 parameter index 45
Simple RTF example 29
Standards assignments 9

T

Tracking changes 47

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Algorithms
	1.5 Applicability Statement
	1.6 Standards Assignments

	2 Algorithm Details
	2.1 Common Algorithm Details
	2.1.1 Abstract Data Model
	2.1.2 Initialization
	2.1.2.1 Dictionary
	2.1.2.2 CRC
	2.1.2.2.1 CRC Lookup Table

	2.1.3 Processing Rules
	2.1.3.1 RTF Compression Format
	2.1.3.1.1 RTF Compression ABNF Grammar
	2.1.3.1.2 Compressed RTF
	2.1.3.1.3 Compressed Run
	2.1.3.1.4 Dictionary
	2.1.3.1.5 Dictionary Reference

	2.1.3.2 Calculate a CRC from a Given Array of Bytes

	2.2 Decompression Algorithm Details
	2.2.1 Abstract Data Model
	2.2.1.1 Input and Output

	2.2.2 Initialization
	2.2.2.1 Header
	2.2.2.2 Output

	2.2.3 Processing Rules
	2.2.3.1 Decompressing Input of COMPTYPE UNCOMPRESSED
	2.2.3.2 Decompressing Input of COMPTYPE COMPRESSED

	2.3 Compression Algorithm Details
	2.3.1 Abstract Data Model
	2.3.1.1 Input and Output
	2.3.1.2 Run Information

	2.3.2 Initialization
	2.3.2.1 Input and Output

	2.3.3 Processing Rules
	2.3.3.1 Compressing a Buffer of Uncompressed Contents with COMPTYPE UNCOMPRESSED
	2.3.3.1.1 Filling in the Header

	2.3.3.2 Compressing a Buffer of Uncompressed Contents with COMPTYPE COMPRESSED
	2.3.3.2.1 Finding the Longest Match to Input
	2.3.3.2.2 Filling in the Header

	3 Algorithm Examples
	3.1 Decompressing Compressed RTF
	3.1.1 Example 1: Simple Compressed RTF
	3.1.1.1 Compressed RTF Data
	3.1.1.2 Compressed RTF Header
	3.1.1.3 Initialization
	3.1.1.4 Run 1
	3.1.1.5 Run 2
	3.1.1.6 Run 3

	3.1.2 Example 2: Reading a Token from the Dictionary that Crosses WritePosition
	3.1.2.1 Compressed RTF
	3.1.2.2 Compressed RTF Header
	3.1.2.3 Initialization
	3.1.2.4 Run 1
	3.1.2.5 Run 2

	3.2 Generating Compressed RTF
	3.2.1 Example 1: Simple RTF
	3.2.1.1 Initialization
	3.2.1.2 Run 1
	3.2.1.3 Run 2
	3.2.1.4 Run 3

	3.2.2 Example 2: Compressing with Tokens that Cross WritePosition
	3.2.2.1 Initialization
	3.2.2.2 Run 1
	3.2.2.3 Run 2

	3.3 Generating the CRC
	3.3.1 Example of CRC Generation
	3.3.1.1 Initialization
	3.3.1.2 First Byte
	3.3.1.3 Second Byte
	3.3.1.4 Continuation

	4 Security
	4.1 Security Considerations for Implementers
	4.2 Index of Security Parameters

	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

