
1 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

[MS-OXPSVAL]:

Email Postmark Validation Algorithm

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

4/4/2008 0.1 New Initial Availability.

6/27/2008 1.0 Major Initial Release.

8/6/2008 1.01 Minor Updated references to reflect date of initial release.

9/3/2008 1.02 Minor Revised and edited technical content.

12/3/2008 1.03 Minor Revised and edited technical content.

3/4/2009 1.04 Minor Revised and edited technical content.

4/10/2009 2.0 Major Updated technical content and applicable product releases.

7/15/2009 3.0 Major Revised and edited technical content.

11/4/2009 3.1.0 Minor Updated the technical content.

2/10/2010 4.0.0 Major Updated and revised the technical content.

5/5/2010 5.0.0 Major Updated and revised the technical content.

8/4/2010 5.1 Minor Clarified the meaning of the technical content.

11/3/2010 5.2 Minor Clarified the meaning of the technical content.

3/18/2011 6.0 Major Significantly changed the technical content.

8/5/2011 7.0 Major Significantly changed the technical content.

10/7/2011 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/20/2012 8.0 Major Significantly changed the technical content.

4/27/2012 9.0 Major Significantly changed the technical content.

7/16/2012 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2012 10.0 Major Significantly changed the technical content.

2/11/2013 11.0 Major Significantly changed the technical content.

7/26/2013 12.0 Major Significantly changed the technical content.

11/18/2013 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/10/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/31/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/30/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Date
Revision
History

Revision
Class Comments

5/26/2015 13.0 Major Significantly changed the technical content.

9/14/2015 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/13/2016 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/14/2016 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/24/2018 14.0 Major Significantly changed the technical content.

10/1/2018 15.0 Major Significantly changed the technical content.

4/22/2021 16.0 Major Significantly changed the technical content.

8/17/2021 17.0 Major Significantly changed the technical content.

2/15/2022 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

4/16/2024 18.0 Major Significantly changed the technical content.

4 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 6

1.3 Overview .. 7
1.4 Relationship to Protocols and Other Algorithms .. 7
1.5 Applicability Statement ... 7
1.6 Standards Assignments ... 7

2 Algorithm Details... 8
2.1 Common Algorithm Details .. 8

2.1.1 Abstract Data Model .. 8
2.1.1.1 Input Parameters for Generating the Puzzle ... 8

2.1.1.1.1 Number of Recipients ... 8
2.1.1.1.2 Message "To: " and "Cc: " Recipients ... 8
2.1.1.1.3 Algorithm Type ... 8
2.1.1.1.4 Degree of Difficulty .. 9
2.1.1.1.5 Message Identifier ... 9
2.1.1.1.6 Message "From: "Address ... 9
2.1.1.1.7 DateTime ... 9
2.1.1.1.8 Subject Line.. 9

2.1.1.2 Pre-Solver Output Values ... 9
2.1.1.2.1 "X-CR-PuzzleID" X-Header Property ... 9
2.1.1.2.2 "X-CR-HashedPuzzle" X-Header Property .. 9

2.1.2 Initialization ... 10
2.1.3 Processing Rules ... 10

2.2 Submit Message Algorithm Details ... 10
2.2.1 Abstract Data Model .. 10
2.2.2 Initialization ... 10
2.2.3 Processing Rules ... 10

2.2.3.1 Generating X-CR-HashedPuzzle .. 10
2.3 Son-Of-SHA-1 Hash Algorithm Details .. 11

2.3.1 Abstract Data Model .. 11
2.3.2 Initialization ... 11
2.3.3 Processing Rules ... 11

2.4 Message Delivery Algorithm Details .. 13
2.4.1 Abstract Data Model .. 13
2.4.2 Initialization ... 13
2.4.3 Processing Rules ... 13

2.4.3.1 Determining When to Validate .. 13
2.4.3.2 Validating the Puzzle ... 13

3 Algorithm Examples .. 15
3.1 Postmark for a Message with One Recipient Using Son-of-SHA-1 Algorithm 15
3.2 Postmark for a Message with Two Recipients Using Son-of-SHA-1 Algorithm 15
3.3 Hash Values from Son-of-SHA-1 Algorithm .. 16

4 Security ... 17
4.1 Security Considerations for Implementers ... 17
4.2 Index of Security Parameters .. 17

5 Appendix A: Product Behavior ... 18

6 Change Tracking .. 19

7 Index ... 20

5 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

6 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

1 Introduction

The Email Postmark Validation Algorithm enables a client to create an e-mail message with a
postmark header. This algorithm also enables a client to validate the postmark property on an
incoming e-mail message to determine whether it is spam.

Sections 1.6 and 2 of this specification are normative. All other sections and examples in this
specification are informative.

1.1 Glossary

This document uses the following terms:

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-

encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit

ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is
converted to a sequence of printable ASCII characters, as described in [RFC4648].

binary large object (BLOB): A discrete packet of data that is stored in a database and is treated

as a sequence of uninterpreted bytes.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

message transfer agent (MTA): An SMTP server that accepts mail from a client or another MTA
and delivers the mail or relays it to another MTA.

messaging object: An object that exists in a mailbox. It can be only a Folder object or a Message
object.

Multipurpose Internet Mail Extensions (MIME): A set of extensions that redefines and
expands support for various types of content in email messages, as described in [RFC2045],

[RFC2046], and [RFC2047].

non-Unicode: A character set that has a restricted set of glyphs, such as Shift_JIS or ISO-2022-
JP.

postmark: A computational proof that is applied to outgoing messages to help recipient messaging
systems distinguish legitimate email messages from junk email messages, which reduces the
chance of false positives.

presolution header: A string that contains the prepended solutions for the puzzle.

Pre-Solver: A component that, given specific inputs, generates a message postmark.

recipient: An entity that can receive email messages.

resource: Any component that a computer can access that can read, write, and process data. This
includes internal components (such as a disk drive), a service, or an application running on and
managed by the cluster on a network that is used to access a file.

https://go.microsoft.com/fwlink/?LinkId=90487
https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=90307
https://go.microsoft.com/fwlink/?LinkId=90308
https://go.microsoft.com/fwlink/?LinkId=90309

7 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Simple Mail Transfer Protocol (SMTP): A member of the TCP/IP suite of protocols that is used
to transport Internet messages, as described in [RFC5321].

spam: An unsolicited email message.

Unicode: A character encoding standard developed by the Unicode Consortium that represents

almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[FIPS180] FIPS PUBS, "Secure Hash Standard", FIPS PUB 180-1, April 1995,
https://www.niatec.iri.isu.edu/GetFile.aspx?pid=63

[MS-OXCMSG] Microsoft Corporation, "Message and Attachment Object Protocol".

[MS-OXCNOTIF] Microsoft Corporation, "Core Notifications Protocol".

[MS-OXOABK] Microsoft Corporation, "Address Book Object Protocol".

[MS-OXOMSG] Microsoft Corporation, "Email Object Protocol".

[MS-OXPROPS] Microsoft Corporation, "Exchange Server Protocols Master Property List".

[RFC1123] Braden, R., "Requirements for Internet Hosts - Application and Support", RFC 1123,
October 1989, https://www.rfc-editor.org/info/rfc1123

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[RFC2821] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821, April 2001, https://www.rfc-
editor.org/info/rfc2821

[RFC2822] Resnick, P., Ed., "Internet Message Format", RFC 2822, April 2001, https://www.rfc-
editor.org/info/rfc2822

1.2.2 Informative References

[MS-OXPROTO] Microsoft Corporation, "Exchange Server Protocols System Overview".

https://go.microsoft.com/fwlink/?LinkId=144740
https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89867
%5bMS-OXCMSG%5d.pdf#Section_7fd7ec40deec4c0694931bc06b349682
%5bMS-OXCNOTIF%5d.pdf#Section_7c7d16535dfb42f19410fc4e48e10731
%5bMS-OXOABK%5d.pdf#Section_f4cf9b4c923245069e712270de217614
%5bMS-OXOMSG%5d.pdf#Section_daa9120ff3254afba73828f91049ab3c
%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148
https://go.microsoft.com/fwlink/?LinkId=90268
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90384
https://go.microsoft.com/fwlink/?LinkId=90384
https://go.microsoft.com/fwlink/?LinkId=90385
https://go.microsoft.com/fwlink/?LinkId=90385
%5bMS-OXPROTO%5d.pdf#Section_734ab967e43e425babe1974af56c0283

8 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

1.3 Overview

Postmark validation is a computational proof that a client applies to outgoing e-mail messages.
Postmarks help recipients distinguish legitimate e-mail from spam. When a recipient has postmark

validation enabled, its spam filter parses each incoming e-mail message for a postmark header.

An e-mail message with a postmark header is less likely to be spam than one without a postmark
header. This is because a computer does not require significant processing time to solve an individual
computational postmark, but the processing time required to do so for large numbers of messages is
expected to be prohibitive. This computational cost is expected to discourage spam senders. For
examples of postmarked e-mails, see sections 3.1 and 3.2.

1.4 Relationship to Protocols and Other Algorithms

When the e-mail client and recipient server are communicating via the Email Object Protocol, as
specified in [MS-OXOMSG], the Email Postmark Validation Algorithm uses two properties that the
client attaches to an e-mail message. Therefore, the Email Postmark Validation Algorithm relies on the

underlying message structures and the handling specified in [MS-OXOMSG].

The Core Notifications Protocol, as specified in [MS-OXCNOTIF], provides more information about the
properties that are used to send and receive messages.

The Exchange Server Protocols Master Property List, as specified in [MS-OXPROPS], provides more
information about the data types that are used by this algorithm.

For conceptual background information and overviews of the relationships and interactions between
this and other protocols, see [MS-OXPROTO].

1.5 Applicability Statement

This algorithm specification defines how e-mail messaging clients can generate and understand
computational postmarks. By using this algorithm, the client can reduce the number of false positives

detected by the recipient server when it tries to identify spam e-mail messages.

1.6 Standards Assignments

None.

%5bMS-OXOMSG%5d.pdf#Section_daa9120ff3254afba73828f91049ab3c
%5bMS-OXCNOTIF%5d.pdf#Section_7c7d16535dfb42f19410fc4e48e10731
%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148
%5bMS-OXPROTO%5d.pdf#Section_734ab967e43e425babe1974af56c0283

9 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2 Algorithm Details

2.1 Common Algorithm Details

The following sections specify the properties that are used by the Email Postmark Validation

Algorithm. Before sending these requests to the server, the messaging client MUST be logged on to
the server.<1> The client MUST open/acquire handles to all messaging objects and properties that
are set or retrieved by this algorithm.

2.1.1 Abstract Data Model

2.1.1.1 Input Parameters for Generating the Puzzle

The input parameters specified in the following sections are used to calculate the puzzle.

All string values, unless otherwise specified, MUST be in Unicode format UTF-16 or UCS-2. It is up to

the client implementation to choose which format to use; the algorithm treats both formats
identically.<2>

2.1.1.1.1 Number of Recipients

This parameter specifies the total count of SMTP message recipients on the "To:" and "Cc: " lines.

This parameter MUST be a decimal value formatted as type string.

Message recipients other than SMTP message recipients MUST NOT be counted.

2.1.1.1.2 Message "To: " and "Cc: " Recipients

This parameter is a string that contains a semicolon separated list of SMTP [RFC2821] addresses that
are found on the "To: " and "Cc: " lines.

This parameter MUST be formatted as type string and MUST be encoded with base64 encoding.
Addresses on the "Bcc:" lines MUST NOT be used. Accounts that are compatible with [MS-OXOMSG]

MUST reference the following properties:

 PidTagEmailAddress ([MS-OXOABK] section 2.2.3.14)

 PidTagAddressType ([MS-OXOABK] section 2.2.3.13)

The recipient string is calculated by means of the following pseudologic:

 For each of the recipients in the [Recipient List] {
 Get the PidTagAddressType and PidTagEmailAddress properties.
 if (PidTagAddressType == "SMTP") {
 Append PidTagEmailAddress value, followed by a semi-colon,
 to recipient string.
 }
 }
 Remove the last semi-colon at the end of the recipient string.

2.1.1.1.3 Algorithm Type

This parameter contains the algorithm type that is used to generate the puzzle.

This parameter MUST be a formatted as type string.

https://go.microsoft.com/fwlink/?LinkId=90384
%5bMS-OXOMSG%5d.pdf#Section_daa9120ff3254afba73828f91049ab3c
%5bMS-OXOABK%5d.pdf#Section_f4cf9b4c923245069e712270de217614

10 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

The puzzle-solving system MUST use "sosha1_v1", as it is currently the only valid algorithm type.

2.1.1.1.4 Degree of Difficulty

This parameter contains the degree of difficulty for which a puzzle solution is sought. A larger Degree

of Difficulty value indicates that the puzzle-generating application used more computing resources to
create the puzzle. Therefore, the receiving system typically assumes that a larger Degree of Difficulty
value corresponds to a lower likelihood that the message is spam. This is only a generally accepted
guideline, and is not a protocol requirement.

This parameter MUST be a positive integer value that is formatted as type string.<3>

2.1.1.1.5 Message Identifier

This parameter contains a unique identifier that is represented by a GUID.

This parameter MUST be formatted as type string and MUST be enclosed in brackets "{}".

2.1.1.1.6 Message "From: "Address

This parameter contains the sender's SMTP e-mail "From: " address.

This parameter MUST be formatted as type string and MUST be encoded with base64 encoding.

Accounts that are compatible with [MS-OXOMSG] MUST use the PidTagSenderEmailAddress

property ([MS-OXOMSG] section 2.2.1.49).

2.1.1.1.7 DateTime

This parameter contains the creation time of the puzzle.

This parameter MUST consist of ASCII characters, MUST be formatted as type string, and MUST be
formatted as specified in [RFC1123].

2.1.1.1.8 Subject Line

This parameter contains the subject of the message, as specified in [RFC2822].

This parameter MUST be formatted as type string and MUST be encoded with base64 encoding.

Accounts that are compatible with [MS-OXOMSG] MUST reference the PidTagSubject property ([MS-
OXCMSG] section 2.2.1.46).

2.1.1.2 Pre-Solver Output Values

The Pre-Solver will return two values, which are then stored in the message header as x-header
properties.

2.1.1.2.1 "X-CR-PuzzleID" X-Header Property

The value of the "X-CR-PuzzleID" x-header property MUST be the same value as the message
identifier specified in section 2.1.1.1.5.

The "X-CR-PuzzleID" x-header property MUST be formatted as type string.

2.1.1.2.2 "X-CR-HashedPuzzle" X-Header Property

The value of the "X-CR-HashedPuzzle" x-header property contains the puzzle solution as defined in
section 2.2.3.1.

%5bMS-OXOMSG%5d.pdf#Section_daa9120ff3254afba73828f91049ab3c
https://go.microsoft.com/fwlink/?LinkId=90268
https://go.microsoft.com/fwlink/?LinkId=90385
%5bMS-OXOMSG%5d.pdf#Section_daa9120ff3254afba73828f91049ab3c
%5bMS-OXCMSG%5d.pdf#Section_7fd7ec40deec4c0694931bc06b349682
%5bMS-OXCMSG%5d.pdf#Section_7fd7ec40deec4c0694931bc06b349682

11 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

The "X-CR-HashedPuzzle" x-header property MUST be formatted as type string.

2.1.2 Initialization

None.

2.1.3 Processing Rules

None.

2.2 Submit Message Algorithm Details

2.2.1 Abstract Data Model

None.

2.2.2 Initialization

None.

2.2.3 Processing Rules

2.2.3.1 Generating X-CR-HashedPuzzle

The puzzle P takes the following parameters as input (see section 2.1.1.1):

 Number of recipients r.

 E-mail addresses of the recipients t.

 Algorithm type a.

 A 'degree of difficulty' n.

 A message id m.

 An e-mail 'From: address' f.

 A datetime d.

 A subject line s.

From these parameters, a document D is formed by concatenating all the parameters together,

separating each field with ';'. The constructed document D is represented in a non-Unicode string.

Given the sequence of bytes comprising a document D, the computational task involved in the puzzle

is to find and exhibit a set of sixteen documents δ such that both of the following are true:

 When each δ is prepended to the hash under the Son-of-SHA-1 hash algorithm H (see section
2.3.3) of D with its whitespace removed and then hashed again to form H(δ o H(NWS(D))), the
result is zero in at least the first n bits (taken most significant bit first within each byte taken in
order). Here, NWS is the function that takes a sequence of bytes as input, removes all those that

are legal characters that could match the FWS production specified in [RFC2822], and produces
the remaining as output.

 The last 12 bits of each H(δ o H(NWS(D)) are the same (the particular 12-bit suffix value shared
by these documents does not matter).

https://go.microsoft.com/fwlink/?LinkId=90385

12 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Note In the previous two computations, the o operator denotes string concatenation.

That is, the answer to the puzzle P(t, n, m, f, d, s) is a set of 16 documents δ each with these
characteristics. The hash H(NWS(D)) is used as the suffix to which each δ is prepended rather than
simply D in order to minimize the effect of variation in the length of D on the length of time required

to solve the puzzle. Whitespace is stripped from D before being input to the hash in order to minimize
sensitivity to the encoding of D in header fields where it can be subjected to folding.

No means other than brute force is known to locate satisfactory δ; however, that a given set of δ
indeed answers the puzzle can be quickly verified. The particular brute force approach of first trying all
one-byte solutions, then trying all two-byte solutions, then all three-byte solutions, and so on, is as
good a solution algorithm as any other, but has the additional benefit that the solutions found will be
as small as possible. Furthermore, for puzzles that have reasonable degrees of difficulty, solutions

with four or fewer bytes will be typical.

Specifically, the following pseudocode describes the brute force algorithm:

 Solution = 0;
 While(true){
 Hash = H(concatenate(Solution, H(NWS(D))))
 If Verify(Solution, Puzzle) succeeds {
 Remember this solution and Hash
 If we have 16 solutions whose last 12 bits of their
 corresponding Hash are the same {
 Return these 16 solutions
 }
 }
 Solution ++
 }

After the solutions for puzzle P are found, a presolution header is generated. The presolution header
MUST be the concatenation of the solutions string and the document D separated by a semicolon. The
solutions string MUST be a string formed by base64 encoding each of the 16 puzzle solutions and

concatenating them together, with a ''" (space) delimiter.

The value of X-CR-HashedPuzzle MUST be set to the presolution header. See section 3 for
examples.

2.3 Son-Of-SHA-1 Hash Algorithm Details

2.3.1 Abstract Data Model

None.

2.3.2 Initialization

None.

2.3.3 Processing Rules

The Son-of-SHA-1 algorithm is defined as a constrained perturbation of the [FIPS180] algorithm. The
intent of defining a new hash algorithm that is unique to the proposed use of computational puzzles
for spam reduction is to reduce the ease with which hardware accelerators can be applied to reduce
the cost and duration of puzzle solving. In conformant systems, the Son-of-SHA-1 algorithm MUST
NOT be implemented in hardware.

https://go.microsoft.com/fwlink/?LinkId=89867

13 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

In "§5 Functions Used", as specified in [FIPS180], a set of eighty functions are defined that are
subsequently used in the core of the algorithm specified in §7 and §8. Each ft, 0 <= t <= 79, operates

on three 32-bit words B, C, D and produces a 32-bit word as output.

The Son-Of-SHA-1 algorithm differs from [FIPS180] only in the specification of these functions.

Specifically, where [FIPS180] specifies the eighty functions as follows:

ft(B,C,D) = (B AND C) OR ((NOT B) AND D) (0 <= t <= 19)

ft(B,C,D) = B XOR C XOR D (20 <= t <= 39)

ft(B,C,D) = (B AND C) OR (B AND D) OR (C AND D) (40 <= t <= 59)

ft(B,C,D) = B XOR C XOR D (60 <= t <= 79)

The Son-of-SHA-1 algorithm instead specifies the first of these functions as involving an additional
XOR operation:

ft(B,C,D) = g(B,C,D) XOR ((B AND C) OR ((NOT B) AND D)) (0 <= t <= 19)

ft(B,C,D) = B XOR C XOR D (20 <= t <= 39)

ft(B,C,D) = (B AND C) OR (B AND D) OR (C AND D) (40 <= t <= 59)

ft(B,C,D) = B XOR C XOR D (60 <= t <= 79)

The supporting function g(B,C,D) is defined as follows:

gt(B,C,D) = n(r(m(B,C), m(C,D)))

The binary function m() takes two 32-bit words as input and produces a non-negative 64-bit integer
as output by concatenating the two 32-bits words together with the first word, forming the high-order
bits of the following result:

m(B,C) = (B << 32) OR C

The unary function n() takes a single 64-bit integer as input and returns the word consisting of the
following lower 32 bits:

n(x) = x AND FFFFFFFF

Finally, the binary function r() takes two 64-bit integers as input and computes the 64-bit integer that
is the remainder of the first when divided by the second (unless the latter is zero). Specifically, r(x, y)
is defined by the following relations:

If y ≠ 0: x = k y + r(x, y) for some non-negative integer k, where 0 <= r(x, y) < y

If y = 0: x = r(x, y)

Other than the introduction of function g(), another difference between Son-Of-SHA-1 and [FIPS180]
is that in [FIPS180], the following are the constants that are used:

K = 5A827999 (0 <= t <= 19)

Kt = 6ED9EBA1 (20 <= t <= 39)

Kt = 8F1BBCDC (40 <= t <= 59)

Kt = CA62C1D6 (60 <= t <= 79).

In Son-Of-SHA-1, the constants are instead the following:

14 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

K = 041D0411 (0 <= t <= 19)

Kt = 416C6578 (20 <= t <= 39)

Kt = A116F5B6 (40 <= t <= 59)

Kt = 404B2429 (60 <= t <= 79).

In all other ways, the Son-of-SHA-1 algorithm is identical to [FIPS180].

2.4 Message Delivery Algorithm Details

2.4.1 Abstract Data Model

None.

2.4.2 Initialization

None.

2.4.3 Processing Rules

2.4.3.1 Determining When to Validate

The presence of the custom SMTP header X-CR-HashedPuzzle indicates that the message is a
presolved message.

The receiving client SHOULD verify that the parameters, as expressed in the puzzle, match the fields

of the e-mail message as specified in section 2, in order to prevent spammers from reusing the same
presolved message binary large object (BLOB) for multiple recipients, thereby allowing them to
get away with doing less computation.

The actual difficulty of computing a presolution can be expressed as the difficulty indicated by n,
multiplied by the number of To: and Cc: recipients in the presolved message indicated by r (in other
words, the number of Recipient tags in the presolution data).

2.4.3.2 Validating the Puzzle

The process of validating the puzzle is performed on the receiving end of the communication. The
server-side message transfer agent (MTA) SHOULD validate the puzzle. Also, e-mail clients
SHOULD validate the puzzle.

The validating process is divided into the following steps:

1. Validate the puzzle part inside the presolution, making sure that the puzzle is generated for the
received e-mail message. An e-mail message passes this validation if all the following tests pass:

1. Extract recipient part information from the puzzle string (r & t).

 The recipient part SHOULD be a subset of the MIME recipients extracted from the MIME
header of the e-mail message.

 The recipient part SHOULD contain the recipient's SMTP address.

 If the algorithm is being run on an e-mail client, the client will have a list of e-mail
accounts, recipient catalog. At least one e-mail address from the recipient catalog
MUST be in recipient part.

15 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 If the algorithm is being run on an e-mail server, the protocol server will have a list of
e-mail addresses, and received recipients from the RCPT TO command as part of the

SMTP [RFC2821] process. The received recipients MUST be a subset of recipient part.

2. Extract the message identifier from the puzzle string m. The identifier MUST match the puzzle

ID extracted from the X-CR-PuzzleID header.

3. Extract the sender part from the puzzle string f. The sender's e-mail address MUST match the
FROM address in the MIME header of the e-mail message.

4. Extract the subject line from the puzzle string s. The subject line MUST match the subject
extracted from the MIME header of the e-mail message.

2. Validate the solution part inside the presolution. The solution for the puzzle MUST meet the
difficulty level n.

16 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

3 Algorithm Examples

3.1 Postmark for a Message with One Recipient Using Son-of-SHA-1 Algorithm

The following table describes a message with one recipient that is postmarked using the Son-of-SHA-

1 algorithm on the indicated input values. For information about the Son-of-SHA-1 algorithm, see
section 2.3.

Input Parameter Value Encoded With Base64 Encoding

Input Number of
recipients

1

recipient list "user1@contoso.com" dQBzAGUAcgAxAEAAZQB4AG
EAbQBwAGwAZQAuAGMAbwBtAA==

Algorithm
type

"sosha1_v1"

Degree of
difficulty

7

message
IDentifier

"{d04b23f4-b443-
453a-abc6-
3d08b5a9a334}"

From
address

"sender@contoso.com" cwBlAG4AZABlAHIAQABlAH
gAYQBtAHAAbABlAC4AYwBvAG0A

DateTime "Tue, 01 Jan 2008
08:00:00 GMT"

Subject "Hello" SABlAGwAbABvAA==

Result "X-CR-HashedPuzzle: BjHi CbbP CsE4 DoWO EhAv FJE7 FMx3 FOJO FjsQ HDPJ IFAE IRyJ I5E3 I+BV
KBb7 L+gd;1;dQBzAGUAcgAxAEAAZQB4AGEAbQBwAGwAZQAuAGMAbwBtAA==;
Sosha1_v1;7;{d04b23f4-b443-453a-abc6-3d08b5a9a334};
cwBlAG4AZABlAHIAQABlAHgAYQBtAHAAbABlAC4AYwBvAG0A;
Tue, 01 Jan 2008 08:00:00 GMT;SABlAGwAbABvAA==X-CR-PuzzleID:

{d04b23f4-b443-453a-abc6-3d08b5a9a334}"

3.2 Postmark for a Message with Two Recipients Using Son-of-SHA-1 Algorithm

The following table describes a message with two recipients that is postmarked using the Son-of-
SHA-1 algorithm on the indicated input values. For information about the Son-of-SHA-1 algorithm, see
section 2.3.

Input Parameter Value Encoded With Base64 Encoding

Input Number of
recipients

2

recipient list "user1@contoso.com;
user2@contoso.com"

dQBzAGUAcgAxAEAAZQB4AGEAbQBwAGwAZQAuAGMAbwBtAD
sAdQBzAGUAcgAyAEAAZQB4AGEAbQBwAGwAZQAuAGMAbwBt
AA==

Algorithm
type

"sosha1_v1"

17 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Input Parameter Value Encoded With Base64 Encoding

Degree of
difficulty

7

message
IDentifier

"{d04b23f4-b443-
453a-abc6-
3d08b5a9a334}"

From
address

"sender@contoso.com" cwBlAG4AZABlAHIAQABlAHgAYQBtAHAAbABlAC4AYwBvAG0A

DateTime "Tue, 01 Jan 2008
08:00:00 GMT"

Subject "Hello" SABlAGwAbABvAA==

Result "X-CR-HashedPuzzle: AejA Arsz Bwjf DuSf Een1 Et0s FrxA GmCG HaiQ It8u Jpqj QdZB R6vS SDZh SrAv

UANK;2;dQBzAGUAcgAxAEAAZQB4AGEAbQBwAGwAZQAuAGMAbwBtADsAdQ
BzAGUAcgAyAEAAZQB4AGEAbQBwAGwAZQAuAGMAbwBtAA==;Sosha1_v1;7;
{d04b23f4-b443-453a-abc6-3d08b5a9a334};
cwBlAG4AZABlAHIAQABlAHgAYQBtAHAAbABlAC4AYwBvAG0A;
Tue, 01 Jan 2008 08:00:00 GMT;SABlAGwAbABvAA==X-CR-PuzzleID: {d04b23f4-b443-453a-abc6-
3d08b5a9a334}"

3.3 Hash Values from Son-of-SHA-1 Algorithm

The following table provides four examples of hash values that result from using the Son-of-SHA-1
algorithm on the indicated input values. For information about the Son-of-SHA-1 algorithm, see
section 2.3.

Input Son-of-SHA-1 hash value

The string "abc" FA12E295 9DB79C97 25338C0F
D4DE3E01 78C286BD

The string
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"

48F6CE9F DCF53F40 89200091
ED9739E1 7D73D975

A string consisting of 1,000,000 "a" characters 57338A4C C33E70D4 3A3D3AD7
E93C85ED E6996CCD

An empty string 7A790886 F5044A7B DA812BA8
BFC286C4 F51E7B34

18 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

4 Security

4.1 Security Considerations for Implementers

There are no special security considerations specific to the Email Postmark Validation Algorithm.

General security considerations that pertain to the underlying Email Object Protocol, as specified in
[MS-OXOMSG], apply.

4.2 Index of Security Parameters

None.

%5bMS-OXOMSG%5d.pdf#Section_daa9120ff3254afba73828f91049ab3c

19 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Microsoft Exchange Server 2003

 Microsoft Exchange Server 2007

 Microsoft Exchange Server 2010

 Microsoft Exchange Server 2013

 Microsoft Exchange Server 2016

 Microsoft Office Outlook 2007

 Microsoft Outlook 2010

 Microsoft Exchange Server 2019

 Microsoft Outlook 2021

 Microsoft Outlook 2024 Preview

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.1: Outlook 2010 never stamps a postmark for outgoing mail.

<2> Section 2.1.1.1: Office Outlook 2007 always formats parameters as UTF-16.

<3> Section 2.1.1.1.4: Office Outlook 2007 always uses "7" as the Degree of Difficulty value.

20 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

6 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

5 Appendix A: Product Behavior Updated list of supported products. Major

mailto:dochelp@microsoft.com

21 / 21

[MS-OXPSVAL] - v20240416
Email Postmark Validation Algorithm
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

7 Index

A

Applicability 7

C

Change tracking 19
Common
 overview 8

E

Examples
 Hash Values from Son-of-SHA-1 Algorithm 16
 Postmark for a Message with One Recipient Using

Son-of-SHA-1 Algorithm 15
 Postmark for a Message with Two Recipients Using

Son-of-SHA-1 Algorithm 15

G

Glossary 5

H

Hash Values from Son-of-SHA-1 Algorithm example

16

I

Implementer - security considerations 17
Index of security parameters 17
Informative references 6
Introduction 5

N

Normative references 6

O

Overview (synopsis) 7

P

Parameters - security index 17
Postmark for a Message with One Recipient Using

Son-of-SHA-1 Algorithm example 15
Postmark for a Message with Two Recipients Using

Son-of-SHA-1 Algorithm example 15
Product behavior 18

R

References
 informative 6
 normative 6

S

Security
 implementer considerations 17
 parameter index 17
Standards assignments 7

T

Tracking changes 19

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Algorithms
	1.5 Applicability Statement
	1.6 Standards Assignments

	2 Algorithm Details
	2.1 Common Algorithm Details
	2.1.1 Abstract Data Model
	2.1.1.1 Input Parameters for Generating the Puzzle
	2.1.1.1.1 Number of Recipients
	2.1.1.1.2 Message "To: " and "Cc: " Recipients
	2.1.1.1.3 Algorithm Type
	2.1.1.1.4 Degree of Difficulty
	2.1.1.1.5 Message Identifier
	2.1.1.1.6 Message "From: "Address
	2.1.1.1.7 DateTime
	2.1.1.1.8 Subject Line

	2.1.1.2 Pre-Solver Output Values
	2.1.1.2.1 "X-CR-PuzzleID" X-Header Property
	2.1.1.2.2 "X-CR-HashedPuzzle" X-Header Property

	2.1.2 Initialization
	2.1.3 Processing Rules

	2.2 Submit Message Algorithm Details
	2.2.1 Abstract Data Model
	2.2.2 Initialization
	2.2.3 Processing Rules
	2.2.3.1 Generating X-CR-HashedPuzzle

	2.3 Son-Of-SHA-1 Hash Algorithm Details
	2.3.1 Abstract Data Model
	2.3.2 Initialization
	2.3.3 Processing Rules

	2.4 Message Delivery Algorithm Details
	2.4.1 Abstract Data Model
	2.4.2 Initialization
	2.4.3 Processing Rules
	2.4.3.1 Determining When to Validate
	2.4.3.2 Validating the Puzzle

	3 Algorithm Examples
	3.1 Postmark for a Message with One Recipient Using Son-of-SHA-1 Algorithm
	3.2 Postmark for a Message with Two Recipients Using Son-of-SHA-1 Algorithm
	3.3 Hash Values from Son-of-SHA-1 Algorithm

	4 Security
	4.1 Security Considerations for Implementers
	4.2 Index of Security Parameters

	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

