

1 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

[MS-OXPSVAL]: E-Mail Postmark Validation

Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for protocols, file

formats, languages, standards as well as overviews of the interaction among each of these

technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms

that are contained in the terms of use for the Microsoft website that hosts this documentation, you may

make copies of it in order to develop implementations of the technologies described in the Open

Specifications and may distribute portions of it in your implementations using these technologies or

your documentation as necessary to properly document the implementation. You may also distribute in

your implementation, with or without modification, any schema, IDL’s, or code samples that are

included in the documentation. This permission also applies to any documents that are referenced in

the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies described in

the Open Specifications. Neither this notice nor Microsoft's delivery of the documentation grants any

licenses under those or any other Microsoft patents. However, a given Open Specification may be

covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:

http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if the

technologies described in the Open Specifications are not covered by the Open Specifications Promise

or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be covered

by trademarks or similar intellectual property rights. This notice does not grant any licenses under

those rights.

 Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other

than specifically described above, whether by implication, estoppel, or otherwise.

 Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to

Microsoft programming tools and environments you are free to take advantage of them. Certain Open

Specifications are intended for use in conjunction with publicly available standard specifications and

network programming art, and assumes that the reader either is familiar with the aforementioned

material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx

2 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

Revision Summary

Author Date Version Comments

Microsoft

Corporation

April 4,

2008

0.1 Initial Availability.

Microsoft

Corporation

June 27,

2008

1.0 Initial Release.

Microsoft

Corporation

August 6,

2008

1.01 Updated references to reflect date of initial release.

Microsoft

Corporation

September

3, 2008

1.02 Revised and edited technical content.

Microsoft

Corporation

December

3, 2008

1.03 Revised and edited technical content.

Microsoft

Corporation

March 4,

2009

1.04 Revised and edited technical content.

Microsoft

Corporation

April 10,

2009

2.0 Updated technical content and applicable product releases.

3 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

Table of Contents

1 Introduction ... 5
1.1 Glossary ... 5

1.2 References ... 6
1.2.1 Normative References .. 6
1.2.2 Informative References .. 7

1.3 Protocol Overvew .. 7
1.4 Relationship to Other Protocols .. 7

1.5 Prerequisites/Preconditions ... 8
1.6 Applicability Statement... 8
1.7 Versioning and Capability Negotiation .. 8
1.8 Vendor-Extensible Fields ... 8

1.9 Standards Assignments ... 8

2 Messages .. 8
2.1 Transport .. 8

2.2 Message Syntax ... 8
2.2.1 Input Parameters for Generating the Puzzle .. 8

2.2.1.1 Number of Recipients.. 8
2.2.1.2 Message "To: " and "Cc: " Recipients .. 9
2.2.1.3 Algorithm type ... 9

2.2.1.4 Degree of Difficulty .. 9
2.2.1.5 Message Identifier ... 10

2.2.1.6 Message "From: "Address .. 10
2.2.1.7 Datetime ... 10

2.2.1.8 Subject Line ... 10
2.2.2 Pre-Solver Output values ... 10

2.2.2.1 "X-CR-PuzzleID" X-Header Property ... 10
2.2.2.2 "X-CR-HashedPuzzle" X-Header Property ... 10

3 Protocol Details ... 11
3.1 Protocol Client Details .. 11

3.1.1 Abstract Data Model .. 11
3.1.2 Timers ... 11

3.1.3 Initialization .. 11
3.1.4 Higher-Layer Triggered Events ... 11

3.1.4.1 Submit Message Event .. 11
3.1.4.1.1 Generating X-CR-HashedPuzzle ... 11

3.1.4.2 Son-Of-SHA-1 Hash Algorithm ... 13
3.1.5 Message Processing Events and Sequencing Rules ... 14

3.1.5.1 On Message Delivery .. 14

3.1.5.1.1 Determining When to Validate .. 14
3.1.5.1.2 Validating the Puzzle .. 15

3.1.6 Timer Events... 15
3.1.7 Other Local Events ... 15

4 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

3.2 Server Details .. 16

3.2.1 Abstract Data Model .. 16
3.2.2 Timers ... 16
3.2.3 Initialization .. 16

3.2.4 Higher-Layer Triggered Events ... 16
3.2.5 Message Processing Events and Sequencing Rules ... 16
3.2.6 Timer Events... 16
3.2.7 Other Local Events ... 16

4 Protocol Examples .. 16
4.1 Example 1 .. 16
4.2 Example 2 .. 17
4.3 Example 3 .. 18

5 Security .. 18
5.1 Security Considerations for Implementers ... 18
5.2 Index of Security Parameters .. 18

6 Appendix A: Office/Exchange Behavior ... 18

Index ... 20

5 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

1 Introduction

One of the advantages of e-mail is that it is easy and cheap to send. Unfortunately, this

also makes it useful to spammers, as it enables them to send huge amounts of bulk e-

mail.

Postmarking is computational "postage" imposed when sending e-mail messages. This is

a small burden for an individual user, but a large burden for spammers. Spammers rely on

being able to send thousands of pieces of mail per hour. To send spam with postmarking

turned on, they would have to invest a large amount of money to expand their

computational power.

The E-Mail Postmark Validation protocol specifies the following:

 The process through which a protocol client can create a message that has the

postmark property.

 The process through which an application can validate the postmark property in the

message to help determine whether it is spam.

1.1 Glossary

The following terms are defined in [MS-OXGLOS]:

ASCII

binary large object (BLOB)

GUID

handle

messaging object

Multipurpose Internet Mail Extensions (MIME)

non-Unicode

property

Simple Mail Transfer Protocol (SMTP)

spam

spam confidence level (SCL)

spam filter

Unicode

The following data type is defined in [MS-DTYP]:

byte

The following terms are specific to this document:

6 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

Content Filter Agent: A message filter that checks certain conditions in a message to

determine a spam confidence level (SCL) rating.

postmark: A computational proof that is applied to outgoing messages to help recipient

messaging systems distinguish legitimate e-mail messages from junk e-mail

messages, reducing the chance of false positives.

presolution header: A string that contains the prepended solutions for the puzzle.

Pre-Solver: The component that, given specific inputs, generates a message postmark.

puzzle: The computational problem used in this protocol. The puzzle is solved by the sending

client demonstrating that the message postmark is valid.

x-header: An extended Simple Mail Transfer Protocol (SMTP) mail message header.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used

as described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD,

or SHOULD NOT.

1.2 References

1.2.1 Normative References

[FIP180-1] Federal Information Processing Standards Publication, "Secure Hash Standard",

FIPS PUB 180-1, April 1995, http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[MS-OXCNOTIF] Microsoft Corporation, "Core Notifications Protocol Specification", June

2008.

[MS-OXGLOS] Microsoft Corporation, "Exchange Server Protocols Master Glossary", June

2008.

[MS-OXOMSG] Microsoft Corporation, "E-Mail Object Protocol Specification", June 2008.

[MS-OXPROPS] Microsoft Corporation, "Exchange Server Protocols Master Property List

Specification", June 2008.

[RFC1123] Braden, R., "Requirements for Internet Hosts – Application and Support", RFC

1123, October 1989, http://www.ietf.org/rfc/rfc1123.txt.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP

14, RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.

[RFC2821] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821, April 2001,

http://www.ietf.org/rfc/rfc2821.txt.

[RFC2822] Resnick, P., Ed., "Internet Message Format", RFC 2822, April 2001,

http://www.ietf.org/rfc/rfc2822.txt.

http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.ietf.org/rfc/rfc1123.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2821.txt
http://www.ietf.org/rfc/rfc2822.txt

7 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

1.2.2 Informative References

[MSFT-CSRI] Microsoft Corporation, "The Coordinated Spam Reduction Initiative, A

Technology and Policy Proposal", February 2004,

http://go.microsoft.com/fwlink/?LinkId=112282.

1.3 Protocol Overvew

Postmark validation is a computational proof that a messaging client applies to outgoing

messages to help recipient messaging systems distinguish legitimate e-mail messages from

junk e-mail messages. This feature helps reduce the chance of the recipient messaging system

incorrectly identifying the message as spam. In the context of spam filtering, a false positive

exists when a spam filter incorrectly identifies a message from a legitimate sender as spam.

When E-mail Postmark validation is enabled, the Content Filter Agent parses the inbound

message for a computational postmark header. The presence of a valid, solved computational

postmark header in the message indicates that the client computer that is sending the message

has solved the computational postmark and has included the puzzle solution in the message

headers.

Computers do not require significant processing time to solve individual computational

postmarks. However, the processing time required to compute individual postmarks for large

numbers of messages is expected to be prohibitive, and therefore will discourage malicious e-

mail senders. Individual systems that send millions of spam messages are unlikely to invest

the processing power required to solve each computational postmark for each message. For

that reason, when a sender's e-mail message contains a valid, solved computational postmark,

it is unlikely that the sender is a malicious sender.

1.4 Relationship to Other Protocols

When the e-mail client and recipient server are communicating via the E-mail Object protocol,

as specified in [MS-OXOMSG], the E-Mail Postmark Validation protocol defines two

properties that the client attaches to an e-mail message. Therefore, the E-Mail Postmark

Validation protocol relies on the underlying message structures and the handling specified in

[MS-OXOMSG].

The Core Notifications protocol, as specified in [MS-OXCNOTIF], provides more

information about the properties that are used to send and receive messages.

The Exchange Server Protocols Master Property List Specification, as specified in [MS-

OXPROPS], provides more information about the data types that are used in this protocol.

http://go.microsoft.com/fwlink/?LinkId=112282

8 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

1.5 Prerequisites/Preconditions

The E-Mail Postmark Validation protocol assumes that the client has successfully logged on

to the server.

1.6 Applicability Statement

This protocol specification defines how e-mail messaging clients can generate and understand

computational postmarks. By using this protocol, the client can reduce the number of false

positives detected by the recipient server when it tries to identify spam e-mail messages.

1.7 Versioning and Capability Negotiation

None.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

2 Messages

2.1 Transport

The transport protocols used by this specification are defined in [MS-OXOMSG].

2.2 Message Syntax

The following sections specify the properties that are specific to the E-Mail Postmark

Validation protocol. Before sending these requests to the server, the messaging client MUST

be logged on to the server. The protocol client MUST open/acquire handles to all messaging

objects and properties that are set or retrieved.

2.2.1 Input Parameters for Generating the Puzzle

The input parameters specified in the following sections are used to calculate the puzzle.

Note: All "String" values, unless otherwise specified, MUST be in Unicode format UTF-16

or UCS-2<1>.

2.2.1.1 Number of Recipients

This parameter specifies the total count of SMTP message recipients on the "To:" and "Cc: "

lines.

This parameter MUST be a decimal value formatted as type "String".

9 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

Note: Non-SMTP message recipients MUST NOT be counted.

2.2.1.2 Message "To: " and "Cc: " Recipients

This parameter is a string that contains a semicolon separated list of SMTP [RFC2821]

addresses that are found on the "To: " and "Cc: " lines.

This parameter MUST be formatted as type "String" and MUST be base-64 encoded.

Note: Addresses on the "Bcc:" lines MUST NOT be used.

Note: Accounts that are compatible with [MS-OXOMSG] MUST reference the following

properties:

 PidTagEmailAddress

 PidTagAddressType

The recipient string is calculated by means of the following pseudo-logic:

For each of the recipients in the [Recipient List] {

 Get the PidTagAddressType and PidTagEmailAddress properties.

 if (PidTagAddressType == “SMTP”) {

 Append PidTagEmailAddress value, followed by a semi-colon,

 to recipient string.

 }

}

Remove the last semi-colon at the end of the recipient string.

2.2.1.3 Algorithm type

This parameter contains the algorithm type that is used to generate the puzzle.

This parameter MUST be a formatted as type "String".

Note: The puzzle-solving system SHOULD use "sosha1_v1", as it is currently the only valid

algorithm type.

2.2.1.4 Degree of Difficulty

This parameter contains the degree of difficulty for which a puzzle solution is sought. A larger

Degree of Difficulty value indicates that the puzzle-generating application used more

computing resources to create the puzzle. Therefore, the receiving system typically assumes

that a larger Degree of Difficulty value corresponds to a lower likelihood that the message is

spam. This is only a generally accepted guideline, and is not a protocol requirement.

10 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

This parameter MUST be a positive integer value that is formatted as type "String".<2>

2.2.1.5 Message Identifier

This parameter contains a unique ID that is represented by a GUID.

This parameter MUST be formatted as type "String" and MUST be enclosed in brackets "{}".

2.2.1.6 Message "From: "Address

This parameter contains the sender's SMTP e-mail "From: " address.

This parameter MUST be formatted as type "String" and MUST be base-64 encoded.

Note: Accounts that are compatible with [MS-OXOMSG] MUST use the

PidTagSenderEmailAddress property.

2.2.1.7 Datetime

This parameter contains the creation time of the puzzle.

This parameter MUST consist of ASCII characters and MUST be formatted as specified in

[RFC1123].

2.2.1.8 Subject Line

This parameter contains the subject of the message, as specified in [RFC2822].

This parameter MUST be formatted as type "String" and MUST be base-64 encoded.

Note: Accounts that are compatible with [MS-OXOMSG] MUST reference the

PidTagSubject property.

2.2.2 Pre-Solver Output values

The Pre-Solver will return two values, which are then stored in the message header as x-

header properties.

2.2.2.1 "X-CR-PuzzleID" X-Header Property

The value of the "X-CR-PuzzleID" x-header property MUST be the same value as the

message identifier specified in section 2.2.1.5.

The "X-CR-PuzzleID" x-header property MUST be formatted as type "String".

2.2.2.2 "X-CR-HashedPuzzle" X-Header Property

The value of the "X-CR-HashedPuzzle" x-header property contains the puzzle solution as

defined by section 3.1.4.1.1.

11 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

The "X-CR-PuzzleID" x-header property MUST be formatted as type "String".

3 Protocol Details

3.1 Protocol Client Details

3.1.1 Abstract Data Model

None.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Submit Message Event

3.1.4.1.1 Generating X-CR-HashedPuzzle

The puzzle P takes the following parameters as input (see section 2.2.12.2.1):

 Number of recipients r.

 E-mail addresses of the recipients t.

 Algorithm type a.

 A 'degree of difficulty' n.

 A message identifier m.

 An e-mail 'From: address' f.

 A datetime d.

 A subject line s.

From these parameters, a document D is formed by concatenating all the parameters together,

separating each field with ';'. The constructed document D is represented in an non-Unicode

string.

Given the sequence of bytes comprising a document D, the computational task involved in the

puzzle is to find and exhibit a set of sixteen documents δ such that both of the following are

true:

 When each δ is prepended to the hash under the Son-of-SHA-1 hash algorithm H (see

section 3.1.4.2) of D with its whitespace removed and then hashed again to form H(δ o

H(NWS(D))), the result is zero in at least the first n bits (taken most significant bit first

within each byte taken in order). Here, NWS is the function that takes a sequence of

12 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

bytes as input, removes all those that are legal characters that could match the FWS

production specified in [RFC2822], and produces the remaining as output.

 The last 12 bits of each H(δ o H(NWS(D)) are the same (the particular 12-bit suffix

value shared by these documents does not matter).

That is, the answer to the puzzle P(t, n, m, f, d, s) is a set of 16 documents δ each with these

characteristics. The hash H(NWS(D)) is used as the suffix to which each δ is prepended rather

than simply D in order to minimize the effect of variation in the length of D on the length of

time required to solve the puzzle. Whitespace is stripped from D before being input to the hash

in order to minimize sensitivity to the encoding of D in header fields where it can be subjected

to folding.

No means other than brute force is known to locate satisfactory δ; however, that a given set of

δ indeed answers the puzzle can be quickly verified. The particular brute force approach of

first trying all one-byte solutions, then trying all two-byte solutions, then all three-byte

solutions, and so on, is as good a solution algorithm as any other, but has the additional benefit

that the solutions found will be as small as possible. Furthermore, for puzzles that have

reasonable degrees of difficulty, solutions with four or fewer bytes will be typical.

Specifically, the following pseudo code describes the brute force algorithm:

Solution = 0;

While(true){

 Hash = H(concatenate(Solution, H(NWS(D))))

 If Verify(Solution, Puzzle) succeeds {

 Remember this solution and Hash

 If we have 16 solutions whose last 12 bits of their

 corresponding Hash are the same {

 Return these 16 solutions

 }

 }

Solution ++

}

After the solutions for puzzle P are found, a presolution header is generated. The presolution

header MUST be the concatenation of the solutions string and the document D separated by a

semicolon. The solutions string MUST be a "String" formed by base64 encoding each of the

16 puzzle solutions and concatenating them together, with a ''" (space) delimiter.

The value of X-CR-HashedPuzzle MUST be set to the presolution header. See section 4 for

examples.

13 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

3.1.4.2 Son-Of-SHA-1 Hash Algorithm

The Son-of-SHA-1 algorithm is defined as a constrained perturbation of the [FIP180-1]

algorithm. The intent of defining a new hash algorithm that is unique to the proposed use of

computational puzzles for spam reduction is to reduce the ease with which hardware

accelerators can be applied to reduce the cost and duration of puzzle solving. In conformant

systems, the Son-of-SHA-1 algorithm MUST NOT be implemented in hardware.

In "§5 Functions Used" of the specification of Son-Of-SHA-1, a set of eighty functions are

defined that are subsequently used in the core of the algorithm specified in §7 and §8. Each f
t
,

0 <= t <= 79, operates on three 32-bit words B, C, D and produces a 32-bit word as output.

The Son-Of-SHA-1 algorithm differs from [FIP180-1] only in the specification of these

functions. Specifically, where [FIP180-1] specifies the eighty functions as follows:

f
t
(B,C,D) = (B AND C) OR ((NOT B) AND D) (0 <= t <= 19)

f
t
(B,C,D) = B XOR C XOR D (20 <= t <= 39)

f
t
(B,C,D) = (B AND C) OR (B AND D) OR (C AND D) (40 <= t <= 59)

f
t
(B,C,D) = B XOR C XOR D (60 <= t <= 79)

The Son-of-SHA-1 algorithm instead specifies the first of these functions as involving an

additional XOR operation:

f
t
(B,C,D) = g(B,C,D) XOR ((B AND C) OR ((NOT B) AND D)) (0 <= t <= 19)

f
t
(B,C,D) = (B XOR C XOR D) (20 <= t <= 39)

f
t
(B,C,D) = (B AND C) OR (B AND D) OR (C AND D) (40 <= t <= 59)

f
t
(B,C,D) = (B XOR C XOR D) (60 <= t <= 79)

The supporting function g (B,C,D) is defined as follows:

g
t
(B,C,D) = n(r(m(B,C), m(C,D)))

The binary function m() takes two 32-bit words as input and produces a non-negative 64-bit

integer as output by concatenating the two 32-bits words together with the first word, forming

the high-order bits of the following result:

m(B,C) = (B << 32) OR C

14 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

The unary function n() takes a single 64-bit integer as input and returns the word consisting of

the following lower 32 bits:.

n(x) = x AND FFFFFFFF

Finally, the binary function r() takes two 64-bit integers as input and computes the 64-bit

integer that is the remainder of the first when divided by the second (unless the latter is zero).

Specifically, r(x,y) is defined by the following relations:

If y ≠ 0: x = k y + r(x,y) for some non-negative integer k, where 0 <= r(x,y) < y

If y = 0: x = r(x,y)

Other than the introduction of function g(), another difference between Son-Of-SHA-1 and

[FIP180-1] is that in [FIP180-1], the following are the constants that are used:

K = 5A827999 (0 <= t <= 19)

Kt = 6ED9EBA1 (20 <= t <= 39)

Kt = 8F1BBCDC (40 <= t <= 59)

Kt = CA62C1D6 (60 <= t <= 79).

In Son-Of-SHA-1, the constants are instead the following:

K = 041D0411 (0 <= t <= 19)

Kt = 416C6578 (20 <= t <= 39)

Kt = A116F5B6 (40 <= t <= 59)

Kt = 404B2429 (60 <= t <= 79).

In all other ways, the Son-of-SHA-1 algorithm is identical to [FIP180-1].

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 On Message Delivery

3.1.5.1.1 Determining When to Validate

The presence of the custom SMTP header X-CR-HashedPuzzle indicates that the message is

a presolved message.

The receiving client SHOULD verify that the parameters, as expressed in the puzzle, match

the fields of the e-mail message as specified in section 2, in order to prevent spammers from

reusing the same presolved message binary large object (BLOB) for multiple recipients,

thereby allowing them to get away with doing less computation.

The actual difficulty of computing a presolution can be expressed as the difficulty indicated by

n, multiplied by the number of To: and Cc: recipients in the presolved message indicated by r

(in other words, the number of To: tags in the presolution data).

15 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

3.1.5.1.2 Validating the Puzzle

The process of validating the puzzle is performed on the receiving end of the communication.

The server-side Mail Transport Authority (MTA) SHOULD validate the puzzle. Also, e-mail

clients SHOULD validate the puzzle.

The validating process is divided into the following two steps:

1. Validate the puzzle part inside the presolution, making sure that the puzzle is

generated for the received e-mail message. An e-mail message passes this validation if

all the following tests pass:

a. Extract Recipient Part (RP) information from the puzzle string (r & t).

i. RP SHOULD be a subset of the MIME Recipients extracted from

the MIME header of the e-mail message.

ii. RP SHOULD contain the recipient's SMTP address.

1. If the algorithm is being run on an e-mail client, the client

will have a list of e-mail accounts, Recipient Catalog (RC). At

least one e-mail address of RC MUST be in RP.

2. If the algorithm is being run on an e-mail server, the

protocol server will have a list of e-mail addresses, and

Received Recipients (RR) from the RCPT TO command as

part of the SMTP [RFC2821] process. RR MUST be a subset

of RP.

b. Extract the message identifier from the puzzle string m. The identifier

MUST match the puzzle ID extracted from the x-cr-puzzleid header.

c. Extract the Sender Part from the puzzle string f. The sender's e-mail address

MUST match the FROM address in the MIME header of the e-mail message.

d. Extract the subject line from the puzzle string s. The subject line MUST

match the subject extracted from the MIME header of the e-mail message.

2. Validate the solution part inside the presolution. The solution for the puzzle MUST

meet the difficulty level n.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

16 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

3.2 Server Details

The server SHOULD validate postmarks after the e-mail message arrives at the server. The

content specified in 3.1.5.1 is symetrical on both the client and the server when an e-mail

message is received.

3.2.1 Abstract Data Model

None.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

None.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

4 Protocol Examples

4.1 Example 1

Input Parameter Value Base64 encoded

Number of

recipients

1

Recipient list "user1@example.com" dQBzAGUAcgAxAEAAZQB4

AGEAbQBwAGwAZQAuAG

MAbwBtAA==

Algorithm type "sosha1_v1"

Degree of difficulty 7

Message identifier "{d04b23f4-b443-453a-

abc6-3d08b5a9a334}"

From address "sender@example.com" cwBlAG4AZABlAHIAQABlA

HgAYQBtAHAAbABlAC4A

17 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

YwBvAG0A

DateTime "Tue, 01 Jan 2008

08:00:00 GMT"

Subject "Hello" SABlAGwAbABvAA==

Result "X-CR-HashedPuzzle: BjHi CbbP CsE4 DoWO EhAv FJE7 FMx3 FOJO FjsQ

HDPJ IFAE IRyJ I5E3 I+BV KBb7

L+gd;1;dQBzAGUAcgAxAEAAZQB4AGEAbQBwAGwAZQAuAGMAbwBtA

A==;Sosha1_v1;7;{d04b23f4-b443-453a-abc6-

3d08b5a9a334};cwBlAG4AZABlAHIAQABlAHgAYQBtAHAAbABlAC4AYw

BvAG0A;Tue, 01 Jan 2008 08:00:00 GMT;SABlAGwAbABvAA==X-CR-

PuzzleID:

{d04b23f4-b443-453a-abc6-3d08b5a9a334}"

4.2 Example 2

Input Parameter Value Base64 encoded

Number of

recipients

2

Recipient list "user1@example.com;user

2@example.com"

dQBzAGUAcgAxAEAAZQB

4AGEAbQBwAGwAZQAuA

GMAbwBtADsAdQBzAGUA

cgAyAEAAZQB4AGEAbQB

wAGwAZQAuAGMAbwBtA

A==

Algorithm type "sosha1_v1"

Degree of difficulty 7

Message identifier "{d04b23f4-b443-453a-

abc6-3d08b5a9a334}"

From address "sender@example.com" cwBlAG4AZABlAHIAQABl

AHgAYQBtAHAAbABlAC4

AYwBvAG0A

DateTime "Tue, 01 Jan 2008

08:00:00 GMT"

Subject "Hello" SABlAGwAbABvAA==

Result "X-CR-HashedPuzzle: AejA Arsz Bwjf DuSf Een1 Et0s FrxA GmCG HaiQ It8u

Jpqj QdZB R6vS SDZh SrAv

UANK;2;dQBzAGUAcgAxAEAAZQB4AGEAbQBwAGwAZQAuAGMAbwBt

ADsAdQBzAGUAcgAyAEAAZQB4AGEAbQBwAGwAZQAuAGMAbwBtAA

==;Sosha1_v1;7;{d04b23f4-b443-453a-abc6-

3d08b5a9a334};cwBlAG4AZABlAHIAQABlAHgAYQBtAHAAbABlAC4AYw

BvAG0A;Tue, 01 Jan 2008 08:00:00 GMT;SABlAGwAbABvAA==X-CR-

PuzzleID: {d04b23f4-b443-453a-abc6-3d08b5a9a334}"

18 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

4.3 Example 3

The following table provides four examples of hash values that result from using the

[FIPS180-1] Son-of-Sha-1 algorithm on the indicated input values.

Input Son-of-Sha-1 hash

value

The string "abc"

FA12E295

9DB79C97 25338C0F

D4DE3E01

78C286BD

The string

"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"

48F6CE9F DCF53F40

89200091 ED9739E1

7D73D975

A string consisting of 1,000,000 a's

57338A4C C33E70D4

3A3D3AD7

E93C85ED

E6996CCD

An empty string

7A790886 F5044A7B

DA812BA8

BFC286C4 F51E7B34

5 Security

5.1 Security Considerations for Implementers

There are no special security considerations specific to the E-Mail Postmark Validation

protocol. General security considerations that pertain to the underlying E-Mail Object

protocol, as specified in [MS-OXOMSG], apply.

5.2 Index of Security Parameters

None.

6 Appendix A: Office/Exchange Behavior

The information in this specification is applicable to the following versions of

Office/Exchange:

 Microsoft Exchange Server 2003

 Microsoft Office Outlook 2007

 Microsoft Exchange Server 2007

 Microsoft Outlook 2010

 Microsoft Exchange Server 2010

19 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

Exceptions, if any, are noted below. Unless otherwise specified, any statement of optional

behavior in this specification prescribed using the terms SHOULD or SHOULD NOT

implies Office/Exchange behavior in accordance with the SHOULD or SHOULD NOT

prescription. Unless otherwise specified, the term MAY implies Office/Exchange does

not follow the prescription.

The following table lists the product, along with the presolution generation and

verification.

Product Presolution generation Presolution verification

Outlook 2010 Yes Yes

Outlook 2007 Yes Yes

Exchange 2003 No Yes (both patches "KB

922105" and "KB

912064" have to be

installed)

Exchange 2007 No Yes

<1> Section 2.2.1: Outlook 2007 and Outlook 2010 always format parameters as UTF-16.

<2> Section 2.2.1.4: Outlook 2007 and Outlook 2010 always use "7" as the Degree of

Difficulty value.

20 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

Index

"X-CR-HashedPuzzle" X-Header property, 11

"X-CR-PuzzleID" X-Header Property, 10

"X-CR-PuzzleID”, 10

Abstract data model, 11

Applicability statement, 8

Client Details, 11

Creating the postmark puzzle, 11

Determining when to validate, 14

Examples, 16

Fields, vendor-extensible, 8

Glossary, 5

Higher-layer triggered events, 11

Index of security parameters, 18

Informative references, 7

Initialization, 11

Input Parameters for generating x-header message properties, 8

Introduction, 5

Message "From:" address, 10

Message "To:" recipients, 9

Message processing events and sequencing rules, 14

Message syntax, 8

Messages, 8

Message syntax, 8

Transport, 8

Normative references, 6

Office/Exchange behavior, 18

On message delivery, 14

Overview, 7

PidTagSubject, 10

Preconditions, 8

Prerequisites, 8

Pre-Solver output values, 10

Protocol details, 11

Client details, 11

Server details, 16

References, 6

Informative references, 7

Normative references, 6

Relationship to other protocols, 7

21 of 21

[MS-OXPSVAL] - v2.0
E-Mail Postmark Validation Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Friday, April 10, 2009

Security, 18

Considerations for implementers, 18

Index of security parameters, 18

Security considerations for implementers, 18

Server details, 16

Son-Of-SHA-1 hash algorithm, 13

Standards assignments, 8

Submit message event, 11

Timers, 11

Transport, 8

Validating the postmark puzzle, 15

Vendor-extensible fields, 8

Versioning and capability negotiation, 8

