

1 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

[MS-OXOTASK]: Task-Related Objects Protocol

Specification

Intellectual Property Rights Notice for Protocol Documentation

 Copyrights. This protocol documentation is covered by Microsoft copyrights. Regardless of

any other terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the

protocols, and may distribute portions of it in your implementations of the protocols or your

documentation as necessary to properly document the implementation. This permission also

applies to any documents that are referenced in the protocol documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the protocols. Neither

this notice nor Microsoft's delivery of the documentation grants any licenses under those or

any other Microsoft patents. However, the protocols may be covered by Microsoft’s Open

Specification Promise (available here: http://www.microsoft.com/interop/osp). If you would

prefer a written license, or if the protocols are not covered by the OSP, patent licenses are

available by contacting protocol@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be

covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than

specifically described above, whether by implication, estoppel, or otherwise.

Tools. This protocol documentation is intended for use in conjunction with publicly available standard

specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it. A protocol specification does not require the use of

Microsoft programming tools or programming environments in order for you to develop an implementation. If

you have access to Microsoft programming tools and environments you are free to take advantage of them.

Revision Summary

Author Date Version Comments

Microsoft

Corporation

April 4,

2008

0.1 Initial Availability.

Microsoft

Corporation

April 25,

2008

0.2 Revised and updated property names and other technical

content.

Microsoft

Corporation

June 27,

2008

1.0 Initial Release.

http://go.microsoft.com/fwlink/?LinkId=114384
mailto:protocol@microsoft.com

2 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Table of Contents

1 Introduction ... 5
1.1 Glossary ... 5

1.2 References ... 6
1.2.1 Normative References ... 6
1.2.2 Informative References ... 7

1.3 Protocol Overview .. 7
1.4 Relationship to Other Protocols ... 7

1.5 Prerequisites/Preconditions .. 7
1.6 Applicability Statement .. 7
1.7 Versioning and Capability Negotiation ... 7

1.8 Vendor-Extensible Fields ... 8
1.9 Standards Assignments ... 8

2 Messages .. 8
2.1 Transport ... 8

2.2 Message Syntax .. 8
2.2.1 Folder Properties ... 8

2.2.1.1 PidTagOrdinalMost .. 8
2.2.2 Task Object Properties .. 9

2.2.2.1 Additional Property Constraints ... 9

2.2.2.1.1 PidTagMessageClass ... 9

2.2.2.1.2 Body properties ... 9

2.2.2.1.3 PidLidCommonStart ... 9

2.2.2.1.4 PidLidCommonEnd .. 9

2.2.2.1.5 PidTagIconIndex ... 9

2.2.2.2 Task Object Specific Properties .. 9

2.2.2.2.1 PidLidTaskMode ... 9

2.2.2.2.2 PidLidTaskStatus .. 10

2.2.2.2.3 PidLidPercentComplete .. 10

2.2.2.2.4 PidLidTaskStartDate ... 10

2.2.2.2.5 PidLidTaskDueDate .. 10

2.2.2.2.6 PidLidTaskResetReminder ..11

2.2.2.2.7 PidLidTaskAccepted ..11

2.2.2.2.8 PidLidTaskDeadOccurrence ..11

2.2.2.2.9 PidLidTaskDateCompleted ... 12

2.2.2.2.10 PidLidTaskLastUpdate.. 12

2.2.2.2.11 PidLidTaskActualEffort .. 12

2.2.2.2.12 PidLidTaskEstimatedEffort .. 12

2.2.2.2.13 PidLidTaskVersion .. 12

2.2.2.2.14 PidLidTaskState .. 12

2.2.2.2.15 PidLidTaskRecurrence .. 13

3 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

2.2.2.2.16 PidLidTaskAssigners .. 13

2.2.2.2.17 PidLidTaskStatusOnComplete .. 13

2.2.2.2.18 PidLidTaskHistory .. 14

2.2.2.2.19 PidLidTaskUpdates ... 14

2.2.2.2.20 PidLidTaskComplete .. 14

2.2.2.2.21 PidLidTaskFCreator .. 14

2.2.2.2.22 PidLidTaskOwner ... 14

2.2.2.2.23 PidLidTaskMultipleRecipients ... 14

2.2.2.2.24 PidLidTaskAssigner .. 15

2.2.2.2.25 PidLidTaskLastUser.. 15

2.2.2.2.26 PidLidTaskOrdinal .. 15

2.2.2.2.27 PidLidTaskLastDelegate ... 16

2.2.2.2.28 PidLidTaskFRecurring .. 16

2.2.2.2.29 PidLidTaskOwnership .. 16

2.2.2.2.30 PidLidTaskAcceptanceState ... 16

2.2.2.2.31 PidLidTaskFFixOffline ... 16

2.2.2.2.32 PidLidTaskGlobalId .. 17
2.2.3 Task Communications Properties ... 17

2.2.3.1 PidTagProcessed ... 17

2.2.3.2 PidLidTaskMode .. 17

2.2.3.3 Additional Property Constraints ... 17

2.2.3.3.1 PidTagMessageClass ... 17

2.2.3.3.2 PidTagIconIndex ... 17

3 Protocol Details ... 18
3.1 Client Details ... 18

3.1.1 Abstract Data Model ... 18

3.1.1.1 Task Objects and Task Communications .. 18

3.1.1.2 Folder Objects for Task Objects ... 18
3.1.2 Timers .. 18
3.1.3 Initialization ... 18

3.1.4 Higher-Layer Triggered Events .. 18

3.1.4.1 Creation of Task Objects and Task Communications 18

3.1.4.2 Modification of Task Objects and Task Communications 19

3.1.4.3 Embedding Task Objects .. 19

3.1.4.4 Creating Task Objects and Task Communications 19

3.1.4.5 Receiving Updates .. 20

3.1.4.6 Task Communications .. 20

3.1.4.7 Recipients in Task Objects ... 20

3.1.4.8 Generating Instances of Recurring Tasks ... 21

3.1.4.8.1 Deciding Whether to Generate a New Instance 21

3.1.4.8.2 New Instance Dates... 21

3.1.4.8.3 Archive Instances .. 22

4 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

3.1.4.9 Public Folders ... 23
3.1.5 Message Processing Events and Sequencing Rules .. 23
3.1.6 Timer Events ... 23

3.1.7 Other Local Events .. 23
3.2 Server Details .. 23

4 Protocol Examples .. 23
4.1 Sending a Task Request ... 25
4.2 Processing a Task Update .. 27

5 Security .. 31
5.1 Security Considerations for Implementers .. 31
5.2 Index of Security Parameters ... 31

6 Appendix A: Office/Exchange Behavior .. 31

Index ... 33

5 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

1 Introduction

This document specifies the Task-Related Objects protocol, which defines several objects that

model the electronic equivalent of tasks, task assignments, and task updates. These objects

maintain basic task information, such as a description, notes, due date, reminder time, status,

assignment acceptance, and more.

1.1 Glossary

The following terms are defined in [MS-OXGLOS]

EntryID

Attachment object

Bcc recipient

Cc recipient

contents table

Folder object

GUID

handle

Message object

primary recipient

property (1)

public folder

recipient

recurrence pattern

reminder

remote operation (ROP)

special folder

Task object

task request

Unicode

Coordinated Universal Time (UTC)

The following terms are specific to this document:

display name: A label used to identify an object to the user.

recurring task: A series of tasks that are described by a recurrence pattern.

task acceptance: A Message object that is used to convey acceptance of a task assignment.

task assignee: A user to whom a task has been assigned.

task assigner: A user who assigns a task to another user.

task communications: Collectively, task requests, task acceptances, task rejections, and

task updates.

6 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

task owner: The user who is responsible for updating a task. For unassigned tasks, the local

user is the owner; the task assignee is the owner of assigned tasks.

task rejection: A Message object that is used to convey rejection of a task assignment.

task responses: Collectively, task acceptances and task rejections.

task update: A Message object that is used by a task assignee to send task changes to a task

assigner.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are

used as described in [RFC2119]. All statements of optional behavior use either

MAY, SHOULD, or SHOULD NOT.

1.2 References

1.2.1 Normative References

[MS-OXCMSG] Microsoft Corporation, "Message and Attachment Object Protocol

Specification", April 2008.

[MS-OXCPRPT] Microsoft Corporation, "Property and Stream Object Protocol

Specification", April 2008.

[MS-OXCTABL] Microsoft Corporation, "Table Object Protocol Specification", April 2008.

[MS-OXGLOS] Microsoft Corporation, "Office Exchange Protocols Master Glossary", April

2008.

[MS-OXOCAL] Microsoft Corporation, "Appointment and Meeting Object Protocol

Specification", April 2008.

[MS-OXOMSG] Microsoft Corporation, "E-mail Object Protocol Specification", April 2008.

[MS-OXORMDR] Microsoft Corporation, "Reminder Settings Protocol Specification", April

2008.

[MS-OXPROPS] Microsoft Corporation, "Office Exchange Protocols Master Property List

Specification", April 2008.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP

14, RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.

http://www.ietf.org/rfc/rfc2119.txt

7 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

1.2.2 Informative References

None.

1.3 Protocol Overview

The Task-Related Objects protocol provides an electronic mechanism for tracking tasks, to-do

items, and assignments.

The Task-Related Objects protocol allows for the representation of task-related Message

objects in a messaging store. It extends the Message and Attachment Object protocol in that it

defines new properties and adds restrictions to the properties that the protocol defines. For

details about the Message and Attachment Object protocol, see [MS-OXCMSG].

The task representation is a Task object. The properties that are specific to a Task object

facilitate retaining information about the due date, assignment status, and anticipated work

effort, among other things, of the task. A Task object is stored in a Folder object. The Task-

Related Objects protocol specifies how a Task object is created and manipulated. It also

specifies how task assignments are made, confirmed, and updated through the use of task

communications, which include task requests, task acceptances, task rejections, and task

updates. The Task-Related Objects protocol also specifies how a series of tasks can be

generated from a single Task object with a recurrence pattern.

1.4 Relationship to Other Protocols

The Task-Related Objects protocol has the same dependencies as the Message and

Attachment Object protocol, which it extends. For details about the Message and Attachment

Object protocol, see [MS-OXCMSG].

The Task-Related Objects protocol is a peer of the E-mail Object protocol, and uses a subset

of the properties and ROPs specified by the E-mail Object protocol. For details about the E-

mail Object protocol, see [MS-OXOMSG].

1.5 Prerequisites/Preconditions

The Task-Related Objects protocol has the same prerequisites and preconditions as the

Message and Attachment Object protocol. For details about the Message and Attachment

Object protocol, see [MS-OXCMSG].

1.6 Applicability Statement

The Task-Related Objects protocol is appropriate for clients and servers that manage user

tasks and their associated resources.

1.7 Versioning and Capability Negotiation

None.

8 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

1.8 Vendor-Extensible Fields

This protocol provides no vendor extensibility beyond what is already specified in [MS-

OXCMSG].

1.9 Standards Assignments

None.

2 Messages

2.1 Transport

The Task-Related Objects protocol uses the Property and Stream Object protocol, as specified

in [MS-OXCPRPT], and the Message and Attachment Object protocol, as specified in [MS-

OXCMSG], as its primary transport mechanism.

2.2 Message Syntax

A Task object and a task communication can be created and modified by clients and

servers. Except where noted, this section defines constraints under which both clients and

servers operate.

Clients operate on Task objects and task communications by using the Message and

Attachment Object protocol, as specified in [MS-OXCMSG]. How a server operates on Task

objects and task communications is implementation-dependent, but the results of any such

operations have to be exposed to clients in a manner that is consistent with the Task-Related

Objects protocol.

Unless otherwise specified, a Task object and a task communication adhere to all property

constraints specified in [MS-OXPROPS] and all property constraints specified in [MS-

OXCMSG]. A Task object and a task communication MAY <1> <2> <3> also contain other

properties, which are specified in [MS-OXPROPS], but these properties have no impact on

the Task-Related Objects protocol.

2.2.1 Folder Properties

Properties in this section are set on a Folder object in which Task objects are stored.

2.2.1.1 PidTagOrdinalMost

Type: PtypInteger32

Contains a positive number whose negative is less than or equal to the value of

PidLidTaskOrdinal of all Task objects in the folder. This property MUST be updated to

maintain this condition whenever the PidLidTaskOrdinal property of any Task object in the

folder changes in a way that would violate the condition.

9 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

2.2.2 Task Object Properties

This section specifies property requirements for Task objects.

2.2.2.1 Additional Property Constraints

In some cases, the Task object has specific requirements for properties that are otherwise

inherited. This section specifies these specific requirements.

2.2.2.1.1 PidTagMessageClass

Type: PtypString8, case-insensitive

Specifies the type of the Message object. The value MUST be “IPM.Task” or begin with

“IPM.Task.”.

2.2.2.1.2 Body properties

The specifications in [MS-OXCMSG] regarding Rich Text body properties apply to Task

objects.

2.2.2.1.3 PidLidCommonStart

Type: PtypTime, UTC

This value MUST be the UTC equivalent of the PidLidTaskStartDate property.

2.2.2.1.4 PidLidCommonEnd

Type: PtypTime, UTC

This value MUST be the UTC equivalent of the PidLidTaskDueDate property.

2.2.2.1.5 PidTagIconIndex

Type: PtypInteger32

Specifies which icon is to be used by a user interface to represent this Task object. The value

MUST be one of the following:

Value Meaning
0x00000501 The Task object has not been assigned and is a recurring task.
0x00000502 The Task object is the task assignee’s copy of the Task object.
0x00000503 The Task object is the task assigner’s copy of the Task object.
0x00000500 None of the other conditions apply.

2.2.2.2 Task Object Specific Properties

2.2.2.2.1 PidLidTaskMode

Type: PtypInteger32

10 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Specifies the assignment status of the Task object. The value MUST be one of the following:

Value Meaning
0x00000000 The Task object is not assigned.
0x00000001 The Task object is embedded in a task request.
0x00000002 The Task object has been accepted by the task assignee.
0x00000003 The Task object was rejected by the task assignee.
0x00000004 The Task object is embedded in a task update.
0x00000005 The Task object was assigned to the task assigner (self-delegation).

2.2.2.2.2 PidLidTaskStatus

Type: PtypInteger32

Specifies the status of the user's progress on the task. The value MUST be set to one of the

following:

Value Meaning
0x00000000 The user has not started work on the Task object. If this value is set,

PidLidPercentComplete MUST be 0.0.
0x00000001 The user’s work on this Task object is in progress. If this value is set,

PidLidPercentComplete MUST be greater than 0.0 and less than 1.0.
0x00000002 The user’s work on this Task object is complete. If this value is set,

PidLidPercentComplete MUST be 1.0, PidLidTaskDateCompleted
MUST be the current date, and PidLidTaskComplete MUST be 0x01.

0x00000003 The user is waiting on somebody else.
0x00000004 The user has deferred work on the Task object.

2.2.2.2.3 PidLidPercentComplete

Type: PtypFloating64

Indicates the progress the user has made on a task. The value MUST be a number greater than

or equal to 0.0 and less than or equal to 1.0, where 1.0 indicates that work is completed and

0.0 indicates that work has not begun.

2.2.2.2.4 PidLidTaskStartDate

Type: PtypTime, in the user’s local time zone.

The date on which the user expects work on the task to begin. If left unset, the task does not

have a start date. A value of 0x5AE980E0 (1,525,252,320) also means that the task does not

have a start date. If the task has a start date, the value MUST have a time component of 12:00

midnight, and PidLidTaskDueDate and PidLidCommonStart MUST also be set.

2.2.2.2.5 PidLidTaskDueDate

Type: PtypTime, in the user’s local time zone.

The date by which the user expects work on the task to be complete. The task has no due date

if this property is unset or set to 0x5AE980E0 (1,525,252,320). However, a due date is

optional only if no start date is indicated in PidLidTaskStartDate. If the task has a due date,

11 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

the value MUST have a time component of 12:00 midnight, and PidLidCommonEnd MUST

also be set. If PidLidTaskStartDate has a start date, then the value of this property MUST be

greater than or equal to the value of PidLidTaskStartDate.

2.2.2.2.6 PidLidTaskResetReminder

Type: PtypBoolean

Indicates whether future instances of recurring tasks need reminders, even though

PidLidReminderSet is 0x00. This value is set to 0x01 when the task’s reminder is dismissed,

and set to 0x00 otherwise. If left unset, a default of 0x00 is assumed.

As specified in [MS-OXORMDR], the PidLidReminderSet property indicates whether a

reminder is set on the Task object. However, this property only indicates the presence of a

reminder on a single Task object. It cannot be used alone to determine whether a future

instance of a recurring task needs a reminder.

This is best understood by example. Suppose that the user wants reminders for a series of

recurring tasks. The client creates a Task object and sets PidLidReminderSet to 0x01. At the

appropriate time, the client presents the user with a reminder. When the user dismisses the

reminder, the client sets PidLidReminderSet to 0x00 (and sets PidLidTaskResetReminder

to 0x01). Later, the user completes the task and the client generates a new occurrence of the

Task object. As stated, the user wanted the new occurrence to have a reminder, but the last

known value of PidLidReminderSet was 0x00. The client uses the 0x01 value of

PidLidTaskResetReminder to decide that the user had set and dismissed a reminder on a

previous occurrence of the task. If the value had been 0x00, the client would decide that the

user had never set a reminder on the task at all. The client sets a new reminder, as specified in

[MS-OXCRMDR], if either PidLidReminderSet or PidLidTaskResetReminder is 0x01.

2.2.2.2.7 PidLidTaskAccepted

Type: PtypBoolean

Indicates whether a task assignee has replied to a task request for this Task object. The

client sets this property to 0x00 for a new Task object and to 0x01 when a Task object is either

accepted or rejected. If left unset, a value of 0x00 is assumed.

2.2.2.2.8 PidLidTaskDeadOccurrence

Type: PtypBoolean

Indicates whether new occurrences remain to be generated.

A recurrence pattern is no longer in effect when its final instance is in the past or its

specified number of instances has been generated.

The client sets this property to 0x00 for a new Task object and to 0x01 when it generates the

last instance of a recurring task. Also, when copying a Task object as part of generating a

new instance, this property is set to 0x01 on the copy (which is the completed instance).

12 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

2.2.2.2.9 PidLidTaskDateCompleted

Type: PtypTime, in UTC.

The date when the user completed work on the task. MAY be left unset; if set, this property

MUST have a time component of 12:00 midnight in the local time zone, converted to UTC.

2.2.2.2.10 PidLidTaskLastUpdate

Type: PtypTime, in UTC.

The date and time of the most recent change made to the Task object (indicated by the

PidLidTaskHistory property).

2.2.2.2.11 PidLidTaskActualEffort

Type: PtypInteger32

Indicates the number of minutes that the user actually spent working on a task. The value

MUST be greater than or equal to zero and less than 0x5AE980DF (1,525,252,319), where

480 minutes equal one day and 2400 minutes equal one week (8 hours in a work day and 5

work days in a work week).

2.2.2.2.12 PidLidTaskEstimatedEffort

Type: PtypInteger32

Indicates the number of minutes that the user expects to work on a task. The value MUST be

greater than or equal to zero and less than 0x5AE980DF (1,525,252,319), where 480 minutes

equal one day and 2400 minutes equal one week (8 hours in a work day and 5 work days in a

work week).

2.2.2.2.13 PidLidTaskVersion

Type: PtypInteger32

Indicates which copy is the latest update of a Task object. An update with a lower version

than the Task object is ignored. When embedding a Task object in a task communication, the

client sets the current version of the embedded Task object on the task communication as well.

2.2.2.2.14 PidLidTaskState

Type: PtypInteger32

Indicates the current assignment state of the Task object; MUST be one of the following:

13 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Value Meaning
0x00000001 The Task object is not assigned.
0x00000002 The Task object is the task assignee’s copy of an assigned Task object.
0x00000003 The Task object is the task assigner’s copy of an assigned Task object.
0x00000004 The Task object is the task assigner’s copy of a rejected Task object.
0x00000000 This Task object was created to correspond to a Task object that was

embedded in a task rejection but could not be found locally.

2.2.2.2.15 PidLidTaskRecurrence

Type: PtypBinary

Contains a RecurrencePattern structure that provides information about recurring tasks.

For details about the format of the RecurrencePattern structure, see [MS-OXOCAL] section

2.2.1.44.1.

2.2.2.2.16 PidLidTaskAssigners

Type: PtypBinary

Contains a stack of entries, each representing a task assigner. The most recent task assigner

(that is, the top of the stack) appears at the end.

Size in bytes Type Name Notes

4 PtypInteger32 cAssigners Number of task assigners.

4 PtypInteger32 cbAssigner Size of the task assigner

data to follow, in BYTEs.

variable Address Book

EntryID

EID Task assigner’s Address

Book EntryID.

Variable PtypString8 szDisplayName Task assigner’s display

name, using non-Unicode

characters.

Variable PtypString, as

Unicode

wzDisplayName Task assigner’s display

name, using Unicode

characters.

Next task assigner’s data begins here.

When the client receives a task request, it appends to this property an entry representing the

sender of the task request, pursuant to the structure specified above.

When the client receives a task rejection, the client removes the last task assigner entry from

this property, pursuant to the structure specified above.

When the client sends a task response, the client sends it to the last task assigner listed in the

value of this property. <4>

2.2.2.2.17 PidLidTaskStatusOnComplete

14 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Type: PtypBoolean

Indicates whether the task assignee has been requested to send an e-mail message update

when the task assignee completes the assigned task.

2.2.2.2.18 PidLidTaskHistory

Type: PtypInteger32

Indicates the type of change that was last made to the Task object. When the value of this

property is set, the PidLidTaskLastUpdate property MUST also be set to the current time.

The value MUST be one of the following (listed in order of decreasing priority):

Value Meaning
0x00000004 The PidLidTaskDueDate property changed.
0x00000003 Another property was changed.
0x00000001 The task assignee accepted this Task object.
0x00000002 The task assignee rejected this Task object.
0x00000005 The Task object has been assigned to a task assignee.
0x00000000 No changes were made.

2.2.2.2.19 PidLidTaskUpdates

Type: PtypBoolean

Indicates whether the task assignee has been requested to send a task update when the

assigned Task object changes.

2.2.2.2.20 PidLidTaskComplete

Type: PtypBoolean

Indicates that the task has been completed.

2.2.2.2.21 PidLidTaskFCreator

Type: PtypBoolean

Indicates that the Task object was originally created by the action of the current user or user

agent instead of by the processing of a task request. The client sets this to 0x01 when the user

creates the task and to 0x00 when the task was assigned by another user. If left unset, a value

of 0x01 is assumed.

2.2.2.2.22 PidLidTaskOwner

Type: PtypString

The name of the task owner.

2.2.2.2.23 PidLidTaskMultipleRecipients

15 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Type: PtypInteger32

Provides optimization hints about the recipients of a Task object.

This property MAY be left unset; if set, it MUST be set to a bitwise OR of zero or more of the

following values:

Name Value Meaning
Sent 0x00000001 The Task object has multiple primary recipients.
Received 0x00000002 Although the “Sent” hint was not present, the client detected

that the Task object has multiple primary recipients.
Reserved 0x00000004 This value is reserved<5>.

2.2.2.2.24 PidLidTaskAssigner

Type: PtypString

The name of the user that last assigned the task. Left unset if the task has not been assigned.

Because this property is set by the client after the task assignee receives a task request, the

property will not be set on the task assigner’s copy of the Task object.

When the client adds or removes a task assigner from the stack of task assigners listed in the

PidLidTaskAssigners property (for details, see section 2.2.2.2.16), this property MUST be

set to the added or removed task assigner.

2.2.2.2.25 PidLidTaskLastUser

Type: PtypString

The name of the most recent user to have been the task owner.

Before a client sends a task request, it sets this property to the name of the task assigner.

Before a client sends a task acceptance, it sets this property to the name of the task assignee.

Before a client sends a task rejection, it sets this property to the name of the task assigner.

2.2.2.2.26 PidLidTaskOrdinal

Type: PtypInteger32

An aid to custom sorting of Task objects. This property MAY be left unset; if set, its value

MUST be greater than 0x800186A0 (-2,147,383,648) and less than 0x7FFE7960

(2,147,383,648) and MUST be unique among Task objects in the same folder.

Whenever the client sets this property to a number less than the negative of the current value

of the PidTagOrdinalMost property of the folder, the client MUST also update

PidTagOrdinalMost on the folder.

The PidTagOrdinalMost property of the folder provides an efficient way to determine a

unique value among Task objects in the same folder.

16 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

2.2.2.2.27 PidLidTaskLastDelegate

Type: PtypString

The name of the user who most recently assigned the task, or the user to whom it was most

recently assigned.

Before sending a task request, the client sets this property to the name of the task assigner.

Before sending a task response, the client sets this property to the name of the task assignee.

2.2.2.2.28 PidLidTaskFRecurring

Type: PtypBoolean

Indicates whether the task includes a recurrence pattern. If left unset, a default value of 0x00 is

assumed. If set to 0x01, the PidLidTaskRecurrence and PidLidTaskDeadOccurrence

properties MUST also be set, as specified in sections 2.2.2.2.15 and 2.2.2.2.8, respectively.

2.2.2.2.29 PidLidTaskOwnership

Type: PtypInteger32

Indicates the role of the current user relative to the Task object. MUST be one of the

following values:

Value Meaning
0x00000000 The Task object is not assigned.
0x00000001 The Task object is the task assigner’s copy of the Task object.
0x00000002 The Task object is the task assignee’s copy of the Task object.

2.2.2.2.30 PidLidTaskAcceptanceState

Type: PtypInteger32

Indicates the acceptance state of the task. MUST be one of the following values:

Value Meaning
0x00000000 The Task object is not assigned.
0x00000001 The Task object’s acceptance status is unknown.
0x00000002 The task assignee has accepted the Task object. This value is set when

the client processes a task acceptance.
0x00000003 The task assignee has rejected the Task object. This value is set when

the client processes a task rejection.

2.2.2.2.31 PidLidTaskFFixOffline

Type: PtypBoolean

Indicates the accuracy of PidLidTaskOwner.

Value Meaning
0x00 or unset The value for PidLidTaskOwner is correct.
0x01 The client cannot determine an accurate value for PidLidTaskOwner.

When setting a value of 0x01, the client MAY also set the PidLidTaskOwner property to a

generic owner name, such as "Unknown".

17 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

A client that discovers a value of 0x01 in this property and that can determine an accurate

owner name updates PidLidTaskOwner and sets the value of this property to 0x00.

2.2.2.2.32 PidLidTaskGlobalId

Type: PtypBinary

A unique GUID for this task, used to locate an existing task upon receipt of a task response

or task update. This property is left unset for unassigned tasks.

2.2.3 Task Communications Properties

This section specifies property requirements that are specific to task requests, task

acceptances, task rejections, and task updates (collectively, task communications).

2.2.3.1 PidTagProcessed

Type: PtypBoolean

Indicates whether a client has already processed a received task communication. Left unset

until processing has completed, then set to 0x01.

2.2.3.2 PidLidTaskMode

Type: PtypInteger32

Specifies the assignment status of the embedded Task object. The value MUST be the same

value that is stored in the PidLidTaskMode property of the embedded Task object.

2.2.3.3 Additional Property Constraints

In some cases, the task communication has specific requirements for properties that are

otherwise inherited. This section specifies these specific requirements.

2.2.3.3.1 PidTagMessageClass

Type: PtypString8, case-insensitive.

Specifies the type of the Message object. The value MUST be one of the following strings:

String Type of task communication
“IPM.TaskRequest” Task request
“IPM.TaskRequest.Accept” Task acceptance
“IPM.TaskRequest.Decline” Task rejection
“IPM.TaskRequest.Update” Task update

2.2.3.3.2 PidTagIconIndex

Type: PtypInteger32

Specifies which icon is to be used by a user interface to represent this task communication.

The value MUST be one of the following:

18 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Value Type of task communication
0x00000504 Task request
0x00000505 Task acceptance
0x00000506 Task rejection
0x00000500 Task update
0xFFFFFFFF Unspecified

3 Protocol Details

General protocol details, as specified in [MS-OXPROPS] and [MS-OXCMSG], apply, unless

otherwise specified in the following sections.

3.1 Client Details

The client role is to create and manipulate Task objects, and otherwise the client operates in

its roles as specified in [MS-OXCMSG].

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an

implementation maintains to participate in this protocol. The described organization is

provided to facilitate the explanation of how the protocol behaves. This document does not

mandate that implementations adhere to this model as long as their external behavior is

consistent with that described in this document.

3.1.1.1 Task Objects and Task Communications

Task objects and task communications extend the Message object. For details about

Message objects, see [MS-OXCMSG].

3.1.1.2 Folder Objects for Task Objects

A Task object is created in the Tasks special folder unless the end user or user agent

explicitly specifies another Folder object.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Creation of Task Objects and Task Communications

To create Task objects and task communications, the client or server creates a Message

object as specified in [MS-OXCMSG], sets properties in accordance with the requirements

19 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

both in section 2 of this document and in [MS-OXCPRPT], and saves and/or submits the

resulting Message objects as specified in [MS-OXCMSG] and [MS-OXOMSG].

3.1.4.2 Modification of Task Objects and Task Communications

When modifying Task objects and task communications, the client or server opens a

Message object as specified in [MS-OXCMSG], modifies any of the properties in accordance

with the requirements both in section 2 of this document and in [MS-OXCPRPT], and saves

the Message object as specified in [MS-OXCMSG].

3.1.4.3 Embedding Task Objects

A task communication conveys a request or response about a Task object. To identify the

Task object, the client embeds a copy of the Task object as an attachment object within the

task communication (the embedding object).

To embed a Task object, the client MUST complete the following steps, in the order specified:

1. Create an Attachment object on the embedding object, as specified in [MS-

OXCMSG]. This attachment MUST be the first Attachment object created on the

embedding object.

2. Set PidTagAttachMethod to afEmbeddedMessage (0x00000005),

PidTagRenderingPosition to 0xFFFFFFFF, and PidTagAttachmentHidden to

0x01, as specified in [MS-OXCMSG] <6>.

3. Open the Attachment object as an embedded Message object, as specified in [MS-

OXCMSG].

4. Set the appropriate properties of the embedded Message object (the embedded Task

object) as specified throughout this document.

5. If the original Task object has a PidLidTaskGlobalId property, copy it to the

embedded Task object. Otherwise, set the value of the PidLidTaskGlobalId property

of the embedded Task object to a new, unique GUID.

6. Save the embedded Message object, as specified in [MS-OXCMSG].

7. Save the Attachment object, as specified in [MS-OXCMSG].

8. Release the Message object, as specified in [MS-OXCMSG].

9. Release the Attachment object, as specified in [MS-OXCMSG].

3.1.4.4 Creating Task Objects and Task Communications

Task objects and task communications are all created the same way. They differ in the

properties and property values that are set on them.

To create a Task object or task communication, the client creates a Message object, as

specified in [MX-OXCMSG], and sets the type-specific properties, as specified in section 2 of

this document. To send task communications, the client addresses them to the appropriate

recipients, as specified in [MS-OXOMSG], and submits the Message object, as specified in

[MS-OXOMSG]. When creating task communications, the client also embeds the related

Task object, as specified in section 3.1.4.3, and submits the task communications for delivery,

as specified in [MS-OXOMSG].

20 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

When the client accepts a task request, the client creates a local Task object and copies to it

the relevant properties from the embedded Task object of the task request.

When the client receives a task request, it adds the sender to the Cc recipients list if the value

of the PidLidTaskUpdates property is non-zero.

3.1.4.5 Receiving Updates

When a client receives a task response or a task update, it contains an embedded Task

object, which is an update to a local Task object that client already has. The client uses the

PidLidTaskGlobalId property of the embedded Task object to locate the local Task object

(see [MS-OXCTABL] for details about using a restriction to find a Message object). If the

client can locate the local Task object, it copies any relevant properties from the embedded

Task object to the local Task object.

3.1.4.6 Task Communications

Before the client sends a task request, it computes the name of the new owner of the task by

retrieving the primary recipients from the Task object. If there is only one primary recipient,

its display name is the name of the new owner. If there are multiple primary recipients, the

new owner name is derived by concatenating the display names of all the primary recipients,

separated with semicolons (";"). The client sets the value of the PidLidTaskOwner property

of the Task object with this new owner name. The client also sets the value of the

PidLidTaskGlobalId property of the Task object to a new, unique GUID if it does not

already have one.

When the client receives a task request, it appends an entry that represents the sender of the

task request to the PidLidTaskAssigners property of the Task object and sets the value of the

PidLidTaskOwner property of the Task object to the name of the task assignee. The client

also adds the sender to the Bcc recipients of the Task object if the value of the

PidLidTaskUpdates property of the Task object is non-zero.

Before the client sends a task response, it addresses the response to the last task assigner

listed in the PidLidTaskAssigners property of the Task object.

Before the client sends a task rejection, it removes the last entry from the value of the

PidLidTaskAssigners property of the Task object. The client sets the value of the

PidLidTaskOwner property of the Task object to the name from this last entry.

3.1.4.7 Recipients in Task Objects

Clients do not submit Task objects to servers for delivery to other users, even though they

support recipients, as specified in [MS-OXCMSG]. Instead, clients embed Task objects

within task communications, as specified in section 3.1.4.6, for delivery to other users.

Yet, recipients are still meaningful for Task objects. The client adds a user as a Cc recipient if

that user wants to receive task updates. The client adds a user as a Bcc recipient if that user

wants to receive an e-mail status report when the task is completed.

21 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

When the client changes a Task object, it sends a task update to all the Cc recipients if

PidLidTaskUpdates is non-zero.

When the client marks a Task object as complete (by setting the value of the

PidLidTaskStatus property), it sends an e-mail status report to all the Bcc recipients if

PidLidTaskStatusOnComplete is non-zero.

Task requests can be assigned to one task assignee only. If a task request has more than one

primary recipient, the Task object is shared, not assigned, and the client does not send task

responses or task updates.

3.1.4.8 Generating Instances of Recurring Tasks

The client does not generate all instances of a recurring task at once. It begins by generating

an initial instance only. In many cases, this instance will already exist when a recurrence

pattern is added to it.

3.1.4.8.1 Deciding Whether to Generate a New Instance

The client considers generating a new instance of the recurring task when the prior instance:

(a) is completed (the PidLidTaskStatus property is marked as Complete); (b) is deleted; or

(c) is given a new recurring start date or due date.

While considering whether to generate a new instance of a recurring task, the client does not

generate a new instance if the value of the PidLidTaskFRecurring property is 0x00 or if the

value of the PidLidTaskDeadOccurrence property is 0x01.

The client also considers the criteria specified in the recurrence pattern. For details, see

[MS-OXOCAL]. If the recurrence pattern specifies a valid end date and a positive count of

occurrences, the client decrements the count of occurrences, saves the new recurrence pattern,

and generates a new instance. If the occurrence count reaches 0, the client sets the value of the

PidLidTaskDeadOccurrence property to 0x01.

3.1.4.8.2 New Instance Dates

Some recurrence patterns are "sliding," as specified in [MS-OXOCAL]. In such cases, the

recurrence pattern does not specify the absolute date of each occurrence. Rather, the

recurrence pattern specifies a date that is relative to the completion date of the prior instance.

The client computes the date of the new instance accordingly.

Having determined from the recurrence pattern the appropriate date for a new instance, the

client determines and sets the values for the start date and due date properties of the new

instance. The new values of these properties are determined by combining the values of these

properties from the prior instance with the newly calculated instance date, as follows: If the

prior instance does not have a start date, the new instance does not have a start date, and the

new due date is the newly calculated instance date. Otherwise, the new start date is the newly

calculated instance date and the new instance and the new due date is the sum of the new start

22 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

date and the difference between the old due date and the old start date. In other words, new

due date = new start date + (old due date - old start date).

Finally, the client sets the reminder properties of the new instance, as specified in [MS-

OXORMDR]. In particular, the client sets the PidLidReminderSet property of the new

instance to 0x01 if the reminder time has not already passed and (a) the PidLidReminderSet

property of the prior instance is 0x01, or (b) the PidLidTaskResetReminder property of the

priori instance is 0x01. If the reminder time has already passed but either condition (a) or (b)

applies, the client sets PidLidTaskResetReminder to 0x01 so that future instances can

continue to follow the same logic.

3.1.4.8.3 Archive Instances

If a new instance is warranted, the client does not create a new Task object for the new

instance. A new Task object would have distinct values for properties (PidTagSearchKey,

PidTagEntryId, and others) that might affect later efforts to locate and identify the Task

object. Instead, the client updates the properties of the existing Task object and uses it as the

new instance. If preferred, the client first creates a new Task object to represent the now-

completed task.

To create a Task object to represent the now-completed task, the client creates a new Task

object, as usual. Then, the client copies any relevant recipients, attachments, and properties,

as specified in [MS-OXCMSG], from the prior Task object to the new Task object, with these

exceptions:

Property Action

PidLidTaskOwnership Set to 0, not assigned.

PidLidTaskAcceptanceState Set to 0, not assigned.

PidLidTaskState Set to 1, not assigned.

PidLidTaskMode Set to 0, not assigned.

PidLidTaskOrdinal Set to a unique ordinal.

PidTagReadReceiptRequested Set to 0x00.

PidTagOriginatorDeliveryReportRequested Set to 0x00.

PidLidTaskAssigner Set to "", empty string.

PidTagSenderName Delete.

PidTagSenderEmailAddress Delete.

PidTagSenderAddressType Delete.

PidTagSenderEntryId Delete.

PidTagSenderSearchKey Delete.

PidTagSentRepresentingName Delete.

PidTagSentRepresentingEmailAddress Delete.

PidTagSentRepresentingAddressType Delete.

PidTagSentRepresentingEntryId Delete.

PidTagSentRepresentingSearchKey Delete.

PidLidTaskAssigners Delete.

23 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

PidLidTaskFFixOffline Set to 0x00.

PidLidTaskDeadOccurrence Set to 0x01.

PidLidTaskStatus Set to 2, complete.

PidLidTaskComplete Set to 0x01.

PidLidPercentComplete Set to 1.0, 100%.

3.1.4.9 Public Folders

Task objects in public folders are not assigned. That is, the client does not create task

requests for Task objects in public folders.

The client does not allow users to accept or reject task requests in public folders.

3.1.5 Message Processing Events and Sequencing Rules

None.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Server Details

The server role for this protocol is as specified in [MS-OXCPRPT].

4 Protocol Examples

All the examples that follow use property identifiers that are provided by the server. The client

asks the server to perform a mapping from property names to property identifiers by using the

RopGetPropertyIdsFromNames operation (for details about this operation, see [MS-

OXCPRPT] section 2.2.12).

Property Property Set GUID Name or ID

PidLidTaskComplete {00062003-0000-0000-C000-

00000000046}

0x0000811C

PidLidTaskStatus {00062003-0000-0000-C000-

00000000046}

0x00008101

PidLidPercentComplete {00062003-0000-0000-C000-

00000000046}

0x00008102

PidLidTaskActualEffort {00062003-0000-0000-C000-

00000000046}

0x00008110

24 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

PidLidTaskEstimatedEffort {00062003-0000-0000-C000-

00000000046}

0x00008111

PidLidTaskUpdates {00062003-0000-0000-C000-

00000000046}

0x0000811B

PidLidTaskStatusOnComplete {00062003-0000-0000-C000-

00000000046}

0x00008119

PidLidTaskFFixOffline {00062003-0000-0000-C000-

00000000046}

0x0000812C

PidLidTaskOwnership {00062003-0000-0000-C000-

00000000046}

0x00008129

PidLidTaskAcceptanceState {00062003-0000-0000-C000-

00000000046}

0x0000812A

PidLidTaskState {00062003-0000-0000-C000-

00000000046}

0x00008148

PidLidTaskOrdinal {00062003-0000-0000-C000-

00000000046}

0x00008123

PidLidTaskHistory {00062003-0000-0000-C000-

00000000046}

0x0000811A

PidLidTaskLastUpdate {00062003-0000-0000-C000-

00000000046}

0x00008115

PidLidTaskLastUser {00062003-0000-0000-C000-

00000000046}

0x00008122

PidLidTaskLastDelegate {00062003-0000-0000-C000-

00000000046}

0x00008125

PidLidTaskVersion {00062003-0000-0000-C000-

00000000046}

0x00008112

PidLidTaskOwner {00062003-0000-0000-C000-

00000000046}

0x0000811F

PidLidTaskFRecurring {00062003-0000-0000-C000-

00000000046}

0x00008126

PidLidTaskMode {00062008-0000-0000-C000-

00000000046}

0x00008518

PidLidTaskGlobalId {00062008-0000-0000-C000-

00000000046}

0x00008519

The server might respond with the following identifiers, which will be used in the examples

that follow (the actual identifiers are at the discretion of the server):

Property Property Identifier

PidLidTaskComplete 0x8149

PidLidTaskStatus 0x8146

PidLidPercentComplete 0x8147

25 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

PidLidTaskActualEffort 0x814D

PidLidTaskEstimatedEffort 0x814E

PidLidTaskUpdates 0x82C3

PidLidTaskStatusOnComplete 0x82C4

PidLidTaskFFixOffline 0x8156

PidLidTaskOwnership 0x8154

PidLidTaskAcceptanceState 0x8151

PidLidTaskState 0x8148

PidLidTaskOrdinal 0x815D

PidLidTaskHistory 0x8150

PidLidTaskLastUpdate 0x8153

PidLidTaskLastUser 0x8152

PidLidTaskLastDelegate 0x82C5

PidLidTaskVersion 0x8158

PidLidTaskOwner 0x801B

PidLidTaskFRecurring 0x814B

PidLidTaskMode 0x8212

PidLidTaskGlobalId 0x8211

4.1 Sending a Task Request

Mary North assigns a task to her coworker, Paul West. The following is a description of what

a client might do to accomplish Mary’s intentions.

The client begins by obtaining property identifiers from the server, as described in section 4.

To create the task request, the client uses the RopCreateMessage operation. The server

returns a success code and a handle to a Message object. The client uses the

RopSetProperties operation to transmit Mary’s data to the server:

Property Property

Identifier

Type Value

PidTagMessageClass 0x001A 0x001F (PTypString) "IPM.TaskRequest"

PidTagIconIndex 0x1080 0x0003 (PTypInteger32) 0xFFFFFFFF

The client provides the actual Task object in an embedded Message object. The protocol

creates an Attachment object into which it will embed the Task object by using the

RopCreateAttachment operation, which returns a handle to the new Attachment object. The

client then uses this handle with the RopSetProperties operation to set the

PidTagAttachMethod property to afEmbeddedMessage (0x00000005):

Property Property

Identifier

Type Value

26 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

PidTagAttachMethod 0x3705 0x0003

(PTypInteger32)

0x00000005

(afEmbeddedMessage)

PidTagRenderingPositio

n

0x370B 0x0040

(PTypTime)

4501/01/01

PidTagAttachmentHidd

en

0x7FFE 0x000B

(PTypBoolean)

0x01

The client acquires the handle to the embedded Message object within the Attachment object

by using the RopOpenEmbeddedMessage operation, which can be used as a Task object.

The client sets the properties that it wants for this Task object or copies them from a local

Task object by using the RopSetProperties operation:

Property Property

Identifier

Type Value

PidTagMessageClass 0x001A 0x001F

(PTypString)
"IPM.Task"

PidTagIconIndex 0x1080 0x0003

(PTypInteger32)

0x00000500

PidLidTaskComplete 0x8149 0x000B

(PTypBoolean)

0x00

PidLidPercentComplete 0x8147 0x0005

(PtypFloating64)

0.0

PidLidTaskStatus 0x8146 0x0003

(PTypInteger32)
0 (Not started)

PidLidTaskActualEffort 0x814D 0x0003

(PTypInteger32)

0

PidLidTaskEstimatedEffort 0x814E 0x0003

(PTypInteger32)

0

PidLidTaskUpdates 0x82C3 0x000B

(PTypBoolean)

0x01

PidLidTaskStatusOnComplete 0x82C4 0x000B

(PTypBoolean)

0x01

PidLidTaskFFixOffline 0x8156 0x000B

(PTypBoolean)

0x00

PidLidTaskOwnership 0x8154 0x0003

(PTypInteger32)
0 (Not assigned)

PidLidTaskAcceptanceState 0x8151 0x0003

(PTypInteger32)
0 (Not assigned)

PidLidTaskState 0x8148 0x0003

(PTypInteger32)
1 (Not assigned)

PidLidTaskOrdinal 0x815D 0x0003

(PTypInteger32)

-1000

27 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

PidLidTaskHistory 0x8150 0x0003

(PTypInteger32)
0x00000005 (sent with

a task request)

PidLidTaskLastUpdate 0x8153 0x0040 (PTypTime) 2008/02/19

PidLidTaskLastUser 0x8152 0x001F

(PTypString)
"Mary North"

PidLidTaskLastDelegate 0x82C5 0x001F

(PTypString)
"Mary North "

PidLidTaskVersion 0x8158 0x0003

(PTypInteger32)

1

PidLidTaskOwner 0x801B 0x001F

(PTypString)
"Mary North"

PidLidTaskFRecurring 0x814B 0x000B

(PTypBoolean)

0x00

PidLidTaskMode 0x8212 0x0003

(PTypInteger32)
1 (embedded in a task

request)

PidLidTaskGlobalId 0x8211 0x0102

(PTypBinary)

0E B0 1E 03 85 02

EF 4B 9A 14 50 83

B3 BB 4D E9

The client then sets other attachment properties, as specified in [MS_OXCMSG].

The client saves and closes the embedded Message object by using, in order, the following

operations: RopSaveChangesMessage (embedded Task object handle),

RopSaveChangesAttachment (attachment handle), RopRelease (embedded Task object

handle), and RopRelease (attachment handle).

The client uses the RopAddRecipients operation to add Paul’s recipient information to the

task request. See [MS-OXOMSG] for details.

When Mary is ready to send her task request, the client uses the RopSaveChanges operation

to commit the properties to the server, the RopSubmitMessage operation to send it, and then

RopRelease to release the task request object.

4.2 Processing a Task Update

Russell King assigned a task to Scott Bishop. Scott updated some of the task properties, such

as percent completed, and sent an update. Russell has now received a task update and needs

to merge Scott’s changes into his own copy of the task. The following is a description of what

a client might do to process the update.

The client begins by obtaining property identifiers from the server as described in section 4.

The client obtains a handle to the task update by using the RopOpenMessage operation. The

updated task information is part of the Task object that is embedded within the first

attachment of the task update. To get the attachment, the client uses the handle to the task

update with the RopOpenAttachment operation. The client gets a handle to the embedded

28 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Message object from this attachment by using the RopOpenEmbeddedMessage operation,

which can then be used as the Task object. The client reads properties from the embedded

Task object by using the RopGetPropertiesSpecific operation:

Property Property

Identifier

Type Value obtained

from server

PidLidTaskStatus 0x8146 0x0003

(PTypInteger32)
0 (Not started)

PidLidPercentComplete 0x8147 0x0005

(PtypFloating64)
0.0 (0%)

PidLidTaskDueDate 0x8145 0x0040 (PTypTime) <not found>

PidLidTaskStartDate 0x8144 0x0040 (PTypTime) <not found>

PidLidTaskActualEffort 0x814D 0x0003

(PTypInteger32)

0

PidLidTaskEstimatedEffort 0x814E 0x0003

(PTypInteger32)

0

PidLidTaskDateCompleted 0x814A 0x0040 (PTypTime) <not found>

PidLidTaskAccepted 0x82C2 0x000B (PTypBoolean) 0x01

PidLidTaskResetReminder 0x815C 0x000B (PTypBoolean) <not found>

PidLidTaskMultipleRecipients 0x814F 0x0003

(PTypInteger32)

0

PidLidTaskUpdates 0x82C3 0x000B (PTypBoolean) 0x01

PidLidTaskStatusOnComplete 0x82C4 0x000B (PTypBoolean) 0x01

PidLidTaskDeadOccurrence 0x814C 0x000B (PTypBoolean) <not found>

PidLidTaskComplete 0x8149 0x000B (PTypBoolean) 0x00

PidLidTaskFFixOffline 0x8156 0x000B (PTypBoolean) 0x00

PidLidTaskOwnership 0x8154 0x0003

(PTypInteger32)
2 (task assignee’s

copy)

PidLidTaskAcceptanceState 0x8151 0x0003

(PTypInteger32)
0 (Not assigned)

PidLidTaskHistory 0x8150 0x0003

(PTypInteger32)
1 (Accepted)

PidLidTaskLastUpdate 0x8153 0x0040 (PTypTime) 2008/02/19

PidLidTaskLastUser 0x8152 0x001F (PTypString) "Scott Bishop"

PidLidTaskLastDelegate 0x82C5 0x001F (PTypString) "Scott Bishop"

PidLidTaskRole 0x8157 0x001F (PTypString) "

PidLidTaskVersion 0x8158 0x0003

(PTypInteger32)

4

PidLidTaskState 0x8148 0x0003

(PTypInteger32)
2 (task assignee’s

copy)

PidLidTaskAssigners 0x82C8 0x0102 (PTypBinary) <binary data>

PidLidTaskRecurrence 0x815B 0x0102 (PTypBinary) <not found>

29 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

PidLidTaskAssigner 0x8159 0x001F (PTypString) "Russell King"

PidLidTaskOwner 0x801B 0x001F (PTypString) "Scott Bishop"

PidLidTaskFCreator 0x82CA 0x000B (PTypBoolean) 0x00

PidLidTaskOrdinal 0x815D 0x0003

(PTypInteger32)

-1000

PidLidTaskFRecurring 0x814B 0x000B (PTypBoolean) 0x00

PidLidCommonStart 0x81BD 0x0040 (PTypTime) <not found>

PidLidCommonEnd 0x81BC 0x0040 (PTypTime) <not found>

PidLidTaskGlobalId 0x8211 0x0102 (PTypBinary) 0E B0 1E 03 85

02 EF 4B 9A 14

50 83 B3 BB 4D

E9

The client will use the value of the PidLidTaskGlobalId property to locate the Task object

locally and will then use the values of the other properties to copy to the local Task object.

The client uses a handle to the Tasks special folder and the RopGetContentsTable operation

to get a handle to the contents table of the folder. Using this handle, the client uses the

RopSetColumns operation:

Property Property

Identifier

Type

PidTagFolderId 0x6748 0x0014 (PtypInteger64)

PidTagMid 0x674A 0x0014 (PtypInteger64)

With the proper column set, the client can now search for the local Task object whose

PidLidTaskGlobalId property matches the one found in the embedded Task object. The

client performs the search with the RopFindRow operation:

Condition Type Relational

Operator

Property Identifier Property Data

0x04

(RES_PROPERTY)

0x04

(RELOP_EQ)

0x8211

(PidLidTaskGlobalId)

0E B0 1E 03 85 02

EF 4B 9A 14 50 83

B3 BB 4D E9

Having completed the search, the client releases the handle to the contents table by using

ROPRelease.

If the search succeeded, the client will have located the PidTagFolderId and PidTagMid

properties for the local Task object. The client uses these values to open a handle to the local

Task object by using RopOpenMessage. The client will now use the RopSetProperties

operation to update the properties of the local Task object, copying the properties from the

embedded Task object, as appropriate:

30 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Property Property

Identifier

Type Value

PidLidTaskStatus 0x8146 0x0003

(PTypInteger32)
0 (Not started)

PidLidPercentComplete 0x8147 0x0005

(PtypFloating64)
0.0 (0%)

PidLidTaskActualEffort 0x814D 0x0003

(PTypInteger32)

0

PidLidTaskEstimatedEffort 0x814E 0x0003

(PTypInteger32)

0

PidLidTaskAccepted 0x82C2 0x000B

(PTypBoolean)

0x01

PidLidTaskMultipleRecipients 0x814F 0x0003

(PTypInteger32)

0

PidLidTaskUpdates 0x82C3 0x000B

(PTypBoolean)

0x01

PidLidTaskStatusOnComplete 0x82C4 0x000B

(PTypBoolean)

0x01

PidLidTaskComplete 0x8149 0x000B

(PTypBoolean)

0x00

PidLidTaskFFixOffline 0x8156 0x000B

(PTypBoolean)

0x00

PidLidTaskOwnership 0x8154 0x0003

(PTypInteger32)
1 (task assigner’s

copy)

PidLidTaskAcceptanceState 0x8151 0x0003

(PTypInteger32)
2 (Accepted)

PidLidTaskHistory 0x8150 0x0003

(PTypInteger32)
1 (Accepted)

PidLidTaskLastUpdate 0x8153 0x0040 (PTypTime) 2008/02/19

PidLidTaskLastUser 0x8152 0x001F

(PTypString)
"Scott Bishop"

PidLidTaskLastDelegate 0x82C5 0x001F

(PTypString)
"Scott Bishop"

PidLidTaskRole 0x8157 0x001F (PTypString

)

"

PidLidTaskVersion 0x8158 0x0003

(PTypInteger32)

4

PidLidTaskState 0x8148 0x0003

(PTypInteger32)
3 (task assigner’s copy

of an accepted Task

object)

PidLidTaskAssigner 0x8159 0x001F

(PTypString)

"

31 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

PidLidTaskOwner 0x801B 0x001F

(PTypString)
"Scott Bishop"

PidLidTaskFCreator 0x82CA 0x000B

(PTypBoolean)

0x01

PidLidTaskOrdinal 0x815D 0x0003

(PTypInteger32)

-1000

PidLidTaskFRecurring 0x814B 0x000B

(PTypBoolean)

0x00

PidLidTaskGlobalId 0x8211 0x0102

(PTypBinary)

0E B0 1E 03 85 02

EF 4B 9A 14 50 83

B3 BB 4D E9

The client saves and closes the local Task object, embedded Task object, and attachment by

using, in order, RopSaveChangesMessage (local Task object handle), RopRelease

(embedded Task object handle), RopRelease (attachment handle), and RopRelease (local

Task object handle).

5 Security

5.1 Security Considerations for Implementers

There are no special security considerations specific to the Task-Related Objects protocol.

General security considerations pertaining to the underlying transport apply, as specified in

[MS-OXCMSG] and [MS-OXCPRPT].

5.2 Index of Security Parameters

None.

6 Appendix A: Office/Exchange Behavior

The information in this specification is applicable to the following versions of Office and

Exchange:

 Office 2003 with Service Pack 3 applied

 Exchange 2003 with Service Pack 2 applied

 Office 2007 with Service Pack 1 applied

 Exchange 2007 with Service Pack 1 applied

Exceptions, if any, are noted below. Unless otherwise specified, any statement of optional

behavior in this specification prescribed using the terms SHOULD or SHOULD NOT

implies Office/Exchange behavior in accordance with the SHOULD or SHOULD NOT

prescription. Unless otherwise specified, the term MAY implies that Office/Exchange

does not follow the prescription.

32 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

1 Outlook 2003 SP3 and Outlook 2007 SP1 set the following properties regardless of user

input; their values have no meaning in the context of this protocol.

PidLidAgingDontAgeMe, PidLidCurrentVersion, PidLidCurrentVersionName,

PidLidPrivate, PidLidSideEffects, PidLidValidFlagStringProof,

PidTagAlternateRecipientAllowed, PidTagClientSubmitTime,

PidTagDeleteAfterSubmit, PidTagImportance, PidTagMessageDeliveryTime,

PidTagMessageLocaleId, PidTagNormalizedSubject,

PidTagOriginatorDeliveryReportRequested, PidTagPriority,

PidTagReadReceiptRequested, PidTagSensitivity

2 Outlook 2003 SP3 and Outlook 2007 SP1 set the following properties on Task objects

regardless of user input; their values have no meaning in the remaining contexts of this

protocol.

PidLidTaskNoCompute, PidLidTaskRole, PidLidTaskCustomFlags, PidLidTeamTask

3 Outlook 2007 SP1 sets the following properties regardless of user input; their values have

meaning in the context of this protocol only when applied to Task objects.

PidLidPercentComplete, PidLidTaskActualEffort, PidLidTaskComplete,

PidLidTaskAssigner, PidLidTaskAcceptanceState, PidLidTaskEstimatedEffort,

PidLidTaskFFixOffline, PidLidTaskFRecurring, PidLidTaskOrdinal,

PidLidTaskOwnership, PidLidTaskState, PidLidTaskStatus.

4 Outlook 2003 SP3 and Outlook 2007 SP1 sometimes delete the stack of assigners

incorrectly, leaving only the most recent assigner.

5 Outlook 2003 SP3 and Outlook 2007 SP1 sometimes set this property to indicate that the

Task object is a "Team Task." However, the distinction is no longer meaningful.

6 Outlook 2003 SP3 and Outlook 2007 SP1 set the rendering position and hidden flag in a

separate ROPSetProperties request, after opening the embedded message.

33 of 33

[MS-OXOTASK] - v1.0
Task-Related Objects Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, June 27, 2008

Index
Applicability statement, 7

Client details, 18

Glossary, 5

Index of security parameters, 31

Introduction, 5

Messages, 8
Message syntax, 8
Transport, 8

Normative references, 6

Office/Exchange behavior, 31

Prerequisites/preconditions, 7

Processing a task update, 27

Protocol details, 18
Client details, 18
Server details, 23

Protocol examples, 23
Processing a task update, 27
Sending a task request, 25

Protocol overview, 7

References, 6
Informative references, 7
Normative references, 6

Relationship to other protocols, 7

Security, 31
Index of security parameters, 31
Security considerations for implementers, 31

Security considerations for implementers, 31

Sending a task request, 25

Server details, 23

Standards assignments, 8

Transport, 8

Vendor-extensible fields, 8

Versioning and capability negotiation, 7

