[IMS-OXODOC]: Document Object Protocol
Specification

Intellectual Property Rights Notice for Protocol Documentation

e Copyrights. This protocol documentation is covered by Microsoft copyrights.
Regardless of any other terms that are contained in the terms of use for the
Microsoft website that hosts this documentation, you may make copies 6f it n
order to develop implementations of the protocols, and may distribute portions of
it in your implementations of the protocols or your documentation as‘meeessary to
properly document the implementation. This permission also appliesto any
documents that are referenced in the protocol documentationt

4

e No Trade Secrets. Microsoft does not claim any tradessecret rights in this

documentation.

e Patents. Microsoft has patents that may cover your implementations of the
protocols. Neither this notice nor Microsoft's delivery of the documentation grants
any licenses under those or any other Microsoft patents: Hewever, the protocols
may be covered by Microsoft’s OpenfSpeeification Promise (available here:
http://www.microsoft.com/interop/0sp/default. mspx). If you would prefer a
written license, or if the protocel§iare not covered by the OSP, patent licenses are
available by contacting proto€ol@microsoft.com.

e Trademarks. The names of companies and products contained in this
documentation maye,coveredbytrademarks or similar intellectual property
rights. This netice does net grant anylicenses under those rights.

Reservation of Rights.” Al other rights are reserved, and this notice does not grant any
rights other thand specifically described above, whether by implication, estoppel, or
otherwise.

Preliminary Documentation. This documentation is preliminary documentation for these
protocols., Since the.doéiimentation may change between this preliminary version and the
final version, there are risks in relying on preliminary documentation. To the extent that you
incur additional development obligations or any other costs as a result of relying on this
preliminary documentation, you do so at your own risk.

Tools. This protocol documentation is intended for use in conjunction with publicly available
standard specifications and networking programming art, and assumes that the reader is either
familiar with the aforementioned material or has immediate access to it. A protocol
specification does not require the use of Microsoft programming tools or programming
environments in order for a Licensee to develop an implementation. Licensees who have
access to Microsoft programming tools and environments are free to take advantage of them.

1of16
[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

http://www.microsoft.com/interop/osp/default.mspx
mailto:protocol@microsoft.com

Revision Summary
Author Date Version | Comments
Microsoft April 4, 0.1 Initial Availability

o\Q
.@

[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

20f16

Table of Contents

1 Introduction 5
Ll GIOSSATY ...ttt ettt ettt ettt a e e 5
1.2 RE@IEIICES. ...ttt ettt 5

1.2.1 Normative REfEIeNCES........c.eivurueuiiririeiiiieiee et 5

122 Informative RETEIENCESccovviiririririririeieieieieieieieeeee e 6
1.3 Protocol Overview (SYNOPSIS).........cccevueiririrerienierieieieeeeerestestesseseeeeseeeeseesessessens 6
1.4 Relationship to Other Protocols................ccocooniiniininnnnenccneen i, 6
1.5 Prerequisites/Preconditionsccoooiniininnenninineneeeeeenee s 6
1.6 Applicability Statementcccocooiiniinineinerrenceeenee i 6
1.7 Versioning and Capability Negotiation.................cccccoevenennen @ S ... 6
1.8 Vendor-Extensible Fieldscccoooioniinnfl b S 6
1.9 Standards ASSIZNMENTScccocoeoinnieninnecrineeeeenneeeec sty sifinn oo dene i 4" 6

2 Messages 6
2.1 TrANSPOTt........oooveeiieiiieiieeeieieieeeeeeeeneesesseesseseesesfitrneeseetaatiuc oo danndhe e eeoiloneneenensenens 6
2.2 MesSage SYNTAX.......c.coooeueueninieueenenennereeneereneeeee e b eneceenenes ametBhe oo etebe e eseneeeenene 7

2.2.1 Inherited Propertiesocoeveee ettt e atet e 7
2.2.2 Document Object Properties and FOrma@t. ...l oeveeeniereeininieeiieveennns 7

3 Protocol Details 10

3.1 Document Object Message ClientdDetails.........h.............lcooieeieineieeeeine 10
3.1.1 Abstract Data Modelfteeenn i e i 10
312 TAMETS e sl siiiaisadh e rate BB ettt ettt ettt be et esesene 11
3.1.3 INttialiZationc.co s bt i et 11
3.1.4 Higher-Lager Triggered EVents..... il oooeiririeeiieieeeieeeeeereveee e 11
3.1.5 Message Processing Event$iand Sequencing Rulesc.cccoovvvnnnnnnviennee 11
3.1.6 TIMEHEVENTS.. il e i ettt 11
3.1.7 Otherfogal EVentSiih...... ...t 11

4 Protocol Examples 11
4.1 Example PidTagMessageClass Values for Different File Types......................... 11
4.2 Example forCreating:a New Document Object Itemccocceevrvevrrennnnene. 12

42.1, Creatifig the OBJECT.........ccoviviririririririeieieiceteeececee ettt 12
422 Attachment DIAILSccoovieiririeieieieieeee e 12
423 Setting Properties on the Document ObjJect...........ccceeeviriereereniereerenieieesennens 12
404 5 FINAL SAVE ...ttt 13

5 /Security 13
5.1 Security Considerations for Implementersccccocenevineiinecneceneenennn 13
5.2 Index of Security Parameters................cocoooeeviriniiinieinieenieiieeeeeeeee e 13

6, Appendix A: Office / Exchange Behavior 13
6.1, Microsoft Office Outlook Behaviorccooiiiniiiiniceeeee 14
6.2 Microsoft Outlook Web Access (Microsoft Exchange)ccococvvnennenn. 14
6.3 PidTagMessageClass Values in Microsoft Outlookccccocoevvninininnnnnnn. 14

6.3.1 Setting PidTagMessageClass When Creating a Document Object Message.... 14

3of16
[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

6.3.2 Getting the Icon to Display from PidTagMessageClasscccceveneuceeveunenenee. 14
6.4 Other Possible Ways to Display the Icon of a Document Object Message........ 15
6.4.1 Directly Access the File Name of the Attachmentccccocevveveeinirreecnnnee. 15

Index

| @‘@

[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

40f16

1 Introduction

The Document Object protocol is an extension to the Message Object protocol. The
Document Object protocol supports the use of a Message Object to represent a document,
such as a file generated by a word-processing application. The Document Object protocol
defines a set of properties that can be used to describe the document embedded within the
Document Object.

1.1 Glossary

The following terms are defined in [MS-DTYP]:
bit

byte

The following terms are defined in [MS-OXGLOS]:
attachment
folder
handle ‘
message
message class
message object
named property

1.2 References

1.2.1 Normative References

OXPROPS|"Microsoft Corporation, "Office Exchange Protocols Master Property List
ecification", April 2008.

2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP
FC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.

5of16
[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

http://go.microsoft.com/fwlink/?LinkId=111558
http://www.ietf.org/rfc/rfc2119.txt

1.2.2 Informative References
None.

1.3 Protocol Overview (Synopsis)

The Document Object protocol allows users to store files in mail folders. For example, a user
might choose to store a few files in his or her mail folder so that they can be accessed not just
on one computer, but on any computer that has access to his or her e-mail.

The Document Object message is a special type of message with certain properties
set that allows a messaging client to display it as a file.

1.4 Relationship to Other Protocols

The Document Object protocol specification relies on the following:

e Anunderstanding of the message object (see [MS-O

The client can utili
folders.

Messages

. ransport
The Document Object protocol uses protocols specified in [MS-OXCMSG].

60f16
[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

2.2 Message Syntax

Before sending requests to the server, the client MUST obtain a handle to the message object
used in property operations.

2.2.1 Inherited Properties

Unless otherwise specified below, a Document Object MUST adhere to all property
constraints specified in [MS-OXPROPS] and all property constraints specified in [MS-
OXCMSG]. A Document Object MAY <1><2 >also contain other properties definedfin
[MS-OXPROPS] but these properties have no impact on the [MS-OXODOC] protécel.

2.2.2 Document Object Properties and Format

The properties specified below are specific to a Document Object message. Howeyer,
additional properties MAY be set on the message by a messaging client.

4
2.2.2.1 PidTagMessageClass Property

For a message to be treated like a Document Object message by a messaging application, the
value of this property MUST begin with “IPM.Decument:. The rest of the string following
“IPM.Document” is determined by the type of the attached file. Eor more information, see
section [PidTagMessageClass | for examples.

2.2.2.2 PidTagDisplayName Property,

A Document Object message SHOULD have the PidTagDisplayName property defined. This
SHOULD be the file name of the file that'1s attached.

2.2.2.3 Attachment tothe Message Object

A Document Object messagedSHOULD have only one attachment and MUST have at least
one attachment. T¢ understand how attachments are stored within a message, see [MS-
OXCMSQG]. If there'1s more than'one attachment, then a messaging client can choose to
display an error or could ehoose to pickany attachment in the collection to use as “the main
file”. However, adDocument Object message only makes sense if there is only one attachment,
which why it SHOULD¢have only one attachment. If there are zero attachments, the
messaging client SHOULD cause an error when the item is invoked.

2:2.24, Document,Specific Properties

A Document Object message encapsulates the behavior of the attached document (or file). As
such, many:pteperties on a document or file SHOULD be promoted as properties on the
message itselfif those properties exist on the file. The following is a list of such properties that
SHOULD be set on the message if they exist on the attached document, which are further
documented in [MS-OXPROPS].

2.2.2.4.1 PidNameTitle

This is a string value that represents the title property of the file attached to the document
object. This value MAY be present.

70f 16
[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

2.2.24.2 PidNameSubject

This is a string value that represents the subject property of the file attached to the document
object. This value MAY be present.

2.2.24.3 PidNameAuthor

This is a string value that represents the author property of the file attached to the document
object. This value MAY be present.

2.2.24.4 PidNameKeywords

This is a multi-string value that represents the Categories property of the file attaghed to the
document object. This value MAY be present.

2.2.2.4.5 PidNameComments

This is a string value that represents the comments property of the file attached to the
document object. This value MAY be present.

4

2.2.24.6 PidNameTemplate

This is a string value that represents the template“property of the¥file attached'to the document
object. This value MAY be present.

2.2.2.4.7 PidNameLastAuthor

This is a string value that represents the Last Author property of the file attached to the
document object. This property represehts the name of the person that last authored the file.
This value MAY be present.

2.2.24.8 PidNameRevisionNumber

This is a string valueithat represents the revision number property of the file attached to the
document object. This value MAY be present:

2.2.24.9 PidNameApplicationName

This is a string value that represents the Application Name property of the file attached to the
document,objeety, This propefty répresents the name of the application that might open the file.
This value MAY. be present.

2.2.24.10) PidNameEditTime

This is a stringwalue that represents the time that the document was last edited. This value
MAY be present.

2.2.2.4.11 PidNameLastPrinted
This, property represents the value when the file was last printed. This value MAY be present.

2.2.2.4.12 PidNameCreateDateTimeReadOnly
This property represents the value when the file was first created. This value MAY be present.

8of 16
[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

2.2.2.4.13 PidNameLastSaveDateTime
This property represents the value when the file was last saved. This value MAY be present.

2.2.2.4.14 PidNamePageCount

This is an Int32 value that represents the page count of the file attached to the document
object. This value MAY be present.

2.2.2.4.15 PidNameWordCount

This is an Int32 value that represents the word count of the file attached to the docuiment
object. This value MAY be present.

2.2.2.4.16 PidNameCharacterCount

This is an Int32 value that represents the character count of the file attached to the'document
object. This value MAY be present.

2.2.2.4.17 PidNameSecurity

This is an Int32 value that represents the securitygpropertyof the file attached,to the document
object. This value MAY be present.

2.2.2.4.18 PidNameCategory

This is a string value that represents the category of'the file:attached to the document object.
This value MAY be present.

2.2.2.4.19 PidNamePresentationFormat

This is a string value that represents the presentation format of the file attached to the
document object. This value MAY be present.

2.2.2.4.20 PidNameManager

This is a string valuethatrépresents theimanager property of the file attached to the document
object. This valué MAY. be present.

2.2.2.4.21 PidNameCompany

This is a string value that represents the company property of the file attached to the document
object. This value MAY be present.

2.2.2.4.22" PidNameByteCount

ThiS 1s an Int32%value that represents the byte count of the file attached to the document object.
This value MAY be present.

2.2:2.4.23 PidNameLineCount

This'is an Int32 value that represents the line count of the file attached to the document object.
This value MAY be present.

90f 16
[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

2.2.2.4.24 PidNameParagraphCount

This is an Int32 value that represents the paragraph count of the file attached to the document
object. This value MAY be present.

2.2.2.4.25 PidNameSlideCount

This is an Int32 value that represents the slide count of the file attached to the document
object. This value MAY be present.

2.2.2.4.26 PidNameNoteCount

This is an Int32 value that represents the note count of the file attached to the doéument object.
This value MAY be present.

2.2.2.4.27 PidNameHiddenCount

This is an Int32 value that represents the Hidden property of the file attacheddo the docum%nt
object. This value MAY be present.

2.2.2.4.28 PidNameMultimediaClipCount

This is an Int32 value that represents the multimedia clip count of the file attached to the
document object. This value MAY be present.

3 Protocol Details
3.1 Document Object Messagé Client Details

3.1.1 Abstract DatadModel

This section describes a congéptual model of possible data organization that an
implementation nfaintains to participate in this,protocol. The described organization is
provided to facilitate théiexplanatiomof how the protocol behaves. This document does not
mandate that implementations adhere t0,this model as long as their external behavior is
consistent with that'deseribed in this document.

3.1.1.1 Managing Document Object Messages

A messaging client user canhoose to create a Document Object message either
progtammatically orasi@atesult of user interaction. As specified in section 2.2, choosing either
of these routes will result in a message being created that has certain properties that make the
message a Doeument Object message. For instance, a user could drag a file from his desktop
intofa folder in'the messaging client. The end result of this user interaction MAY be a
Pocument Object message in that folder. Now, how does a user interact with this Document
Object message? That behavior is a design that is entirely up to the messaging client. One
behavior can be that when a user invokes (double-clicks) this message, the file is directly
opened instead of first opening the message and then necessitating another click on the
attachment.

100f16
[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

3.1.2 Timers
None.

3.1.3 Initialization

A Document Object is initialized or created either programmatically or as a result of user
interaction. In either case, a Document Object message is created with the correct attachment
and properties being set on the message. See section 2.2 for more details.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Creating a Document Object Message

One of the ways that a Document Object message can be created by a mesSaging elientis by
dragging any file from the user’s desktop (or any file folder) into a mailfolder in'the
messaging client. This action SHOULD cause a Document Object message to'be creatéd With
one attachment and the PidTagMessageClass and PidTagDisplaylName property correctly set
(see section 2.2). As another example, a Document Object mes§sage can be created
programmatically.

3.1.4.2 Invoking a Document Object Message

So, what happens when a Document Object message 18 invoked? In@messaging client, when
a message is invoked, the messaging client fizst needs,to get'the message type. This involves
getting the PidTagMessageClass property (|[MS-OXOMSGTand [MS-OXPROPS]). In the
case of Document Object messages, thistvalue MUST begin with “IPM.Document”. If this
value does not begin with “IPM.Document” thenyit is not a'Document Object message, and
the messaging client willdandle it i & different way. If the PidTagMessageClass does begin
with “IPM.Document”, then it is a Document Object message, and the messaging client will
proceed to retrievethe attachment (there SHOULD be only one) in the message’s attachment
collection ([MS-OXCMSG]) and open that attachment.

3.1.5 Message Proeessing Events and Sequencing Rules
None.

3.1.6 'Fimer Evénts
Nonex

3.1.7 Other Local Events
None.

4 Protocol Examples

4.1 »Example PidTagMessageClass Values for Different File Types

The following table shows example message class values for different file types.

| File Extension | PidTagMessageClass value

11of16
[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

.doc IPM.Document. Word.Document.8
.docx IPM.Document.Word.Document. 12
Xls IPM.Document.Excel.Sheet.8

xlsx IPM.Document.Excel.Sheet.12

.ppt IPM.Document.PowerPoint.Show.8
.pptx IPM.Document.PowerPoint.Show.12
xt IPM.Document.txtfile

4.2 Example for Creating a New Document Object Item

Joe drags a file (for example, testDocObj.txt) from his desktop into one of his mail folders.
The following is a description of what a protocol client might do to accomplish Jog’s
intentions and the responses a protocol server might return.

4.2.1 Creating the Object 4

To create a document object, the protocol client uses RopCreatelMessage. The protocol server
returns a success code and a handle to a message object.

4.2.2 Attachment Details

Now the protocol client uses RopCreateAttachment€o ereate theattachment object. Then the
protocol client uses RopOpenStream and RopSetStreamSize followediby RopWriteStream to
write out the contents of the file into the attaciment.

Now the protocol client uses RopSetProperties to set vatious properties on the attachment. The
following table shows just some of the gropetties that would be set on the attachment.

Property Property | Type Value
ID

PidTagAttachLongFilenanie | 0x3707 0x001f (string) | “testDocOb;.txt”

PidTagAttachExtension 0x3703 0x001f (string) | “.txt”

PidTagCreationTime 0x3007 0x0040(date 2008/02/15 19:57:52.557
and time)

Now the protocel elient uses'RopSaveChangesAttachment to save the attachment object.

4.2.3 Setting Properties on the Document Object

Now/the protoeol client uses RopSetProperties to transmit his data to the protocol server. The
following table shows some of the relevant properties that need to be set for a document

abject.

Proeperty Property | Type Value
ID
PidTagDisplayName | 0x3001 0x001f “testDocObyj.txt”

120f16
[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

(PT_UNICODE)

PidTagMessageClass | 0x001a 0x001f “IPM.Document.txtfile”

4.2.4 Final Save

The protocol client uses RopSaveChangesMessage to commit the properties on the protocol
server and then uses RopRelease to release the object. The values of some properties will
change during the execution of RopSaveChangesMessage, but none of the properties specified
in this protocol will change.

5 Security

5.1 Security Considerations for Implementers

Document Object messages store files as attachments. These files can be any/files on the Iﬁrd
drive. When a user invokes a Document Object message, one behavior is to open up'the
attached file directly. There is a security implication here in that this file eould dediarmful
things when invoked. While this is less of an issue for a us€r’s personal maihfolders, it
becomes much more of an issue for public mail folders. It is up te the messaging client to
choose what kind of behavior to follow when a user€lieks on one of these Document Object
messages.

5.2 Index of Security Parameters

Security Parameter Section

Security Property 2.2.24.17

6 AppendixA: Office / Exchange Behavior

The information in'this, specificatien is applicable to the following versions of
Office/Exchange:

Office 2003 with Service,Pack 3 (SP3) applied
Exchange 2003 withService Pack 2 (SP2) applied
Office 2007 with Service Pack 1 (SP1) applied
Exchange 2007 with Service Pack 1 (SP1) applied

Exceptions, ifany, are noted below. Unless otherwise specified, any statement of optional
behawior in this Specification prescribed using the terms SHOULD or SHOULD NOT implies
Office/Exchange behavior in accordance with the SHOULD or SHOULD NOT prescription.
Unless otherwise specified, the term MAY implies Office/Exchange does not follow the
prescription.

130f16
[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

6.1 Microsoft Office Outlook Behavior

When a Document Object message in a user’s mail folder is invoked, Microsoft Office
Outlook will open the underlying attachment to the message directly, thus making the feature
behave in the most optimal fashion from a user’s perspective.

6.2 Microsoft Outlook Web Access (Microsoft Exchange)

The default behavior for a Document Object message in Outlook Web Access is to treat the
Document Object message as an e-mail message. When the user invokes it, the attachufient is
not opened. Instead, the message is opened, and the user can then choose to invokefthe
attachment in the message.

6.3 PidTagMessageClass Values in Microsoft Outlook

Outlook uses the Windows registry to determine and interpret the valug of the “file<typc® gart
of the PidTagMessageClass property.

6.3.1 Setting PidTagMessageClass When Creating a Document Objeet Message

If a text file (with extension .txt) is dragged into amail folderin Outlook, thén the Document
Object message that will be created will have a PidTagMessage€lass value of
“IPM.Document.txtfile”. Outlook produces this valde by doing the following:
1. Determine the file extension of the file (fox,example, .txt)
2. Reference the registry under HKEY LCLASSES ROOT\<fileExtension>. In this case,
reference HKEY CLASSES ROOT\ txt
3. Look at the value of the (defaulf) registry value under
HKEY CLASSES ROOT)<fileExtension>. The value in this example is “txtfile” and
1s used as the filgléxtension part,of PidTagMessageClass. If the file extension is not
found in the registry, Qutlook simply uses the actual file extension as part of the
PidTagMessageClasswvalue. For instance, if the file extension was “.zzz”, and “.zzz”
was not found in the registry, Outlook would create a PidTagMessageClass value that
1s “IPM.Document.*.zzz”. Notice the “*.zzz” after “IPM.Document.” .
4. So in thisexample, the PidTagMessageClass would be “IPM.Document.txtfile”

This is just an impleméntationsfollowed by Outlook. Non-Windows messaging clients that
might nof wanttou€ference the registry could use a more prescriptive approach, where a
predefined list of filéiextensions can generate corresponding PidTagMessageClass values.

6.3.2 Getting the Icon to Display from PidTagMessageClass

Outlook usesthe, ‘file-type” part of the PidTagMessageClass property to determine the icon to
diSplay. Outlook uses this mechanism to display the icon of the attached file. To determine the
icon, Outlook does the following:
1. Retrieves the PidTagMessageClass property of the Document Object message
2. Determines the value after “IPM.Document.”. For example, if the attached file were a
text file (with .txt as the extension), then the PidTagMessageClass value would be
“IPM.Document.txtfile”, and the file-type part would be “txtfile”.

140of16
[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

3. Uses the registry to access HKEY CLASSES ROOT\<filetype>\Defaultlcon to
retrieve the icon for this file type. In the above example, the registry needs to look at
HKEY CLASSES ROOT\txtfile\Defaultlcon. If the registry key is not found, then a
default icon (as chosen by the messaging client) could be used.

4. Accesses the (default) value for this registry key. It will give you the location of the
icon to display. For example, the value will look something like this:
“%SystemRoot%\system32\imageres.dll,-102”. That means that the icon to display is
a resource in the imageres.dll file with resource ID 102.

6.4 Other Possible Ways to Display the Icon of a Document Objéet
Message

A messaging client can display the Document Object message in a mail folder asif they were
files on the hard drive. As such, they can choose to display a relevant icon for the attached\file
of the Document Object message.

6.4.1 Directly Access the File Name of the Attachment

One way to directly access the file name of the attachmentgnight be to simply aceess the
attached file name, and use the extension to detétmine the icon to display.

<I> “Microsoft Office Outlook 2003 and “Microsoft Office Outlook, 2007 sometimes set
the following properties regardless of user inpuf; théir values have no'meaning in the context
of this protocol.

PidLidAgingDontAgeMe, PidLidCurrentVersion, PidLidCurréntVersionName,
PidLidPrivate, PidLidSideEffects, PidTagAlternateR ecipientAllowed,
PidTagClientSubmitTime, PidTagDelete A fterSubmit, PidTaglmportance,
PidTagMessageDeliveryTime, PidTagPsiority, PidTagReadReceiptRequested,
PidTagSensitivity, PidLidRefninderDelta, PidLLidReminderSet, PidLidReminderNextTime,
PidLidTaskMode

<2> “Microsoft Offiee,Outlook 2007 sets the following properties regardless of user input;
their values havé no meaning in the context of this protocol.

PidLidPercentComplete, PidLid Task A ctualEffort, PidLidTaskComplete,
PidLidTaskAssigner;, PidLidTaskAcceptanceState, PidLidTaskEstimatedEffort,
PidLidTaskFFixOffline, PidlLidTaskFRecurring, PidLidTaskNoCompute, PidLidTaskOrdinal,
PidkidTaskOwnership;PidLidTaskRole, PidLidTaskState, PidLidTaskStatus,
PidLidTaskVersion, PidLidTeamTask, PidLidValidFlagStringProof

150f16
[MS-OXODOC] - v0.1
Document Object Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

Index

Introduction, 5
Applicability, 6
Glossary, 5
Prerequisites/Preconditions, 6
Protocol overview (synopsis), 6
References, 5

Relationship to other protocols, 6
Standards assignments, 6
Vendor-extensible fields, 6
Versioning, 6
Messages, 6
Message syntax, 7
Transport, 6
Protocol details, 10
Document object message client details, 10

Protocol examples, 11
Example for creating a new document object item,

Example PidTagMessageClass values for different fi es, 11
References \
Informative references, 6
Normative references, 5
Security, 13

Index of security parameters,
Security consideraﬁns for implemen

[MS-OXODOC] - v0.1
Document Object Protocol Specification

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

3

160f 16

