[bookmark: _GoBack][MS-OXNSPI]: 
Exchange Server Name Service Provider Interface (NSPI) Protocol

Intellectual Property Rights Notice for Open Specifications Documentation
· Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions. 
· Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation. 
· No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation. 
· Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com. 
· License Programs. To see all of the protocols in scope under a specific license program and the associated patents, visit the Patent Map. 
· Trademarks. The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks. 
· Fictitious Names. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.
Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise. 
Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.
Support. For questions and support, please contact dochelp@microsoft.com. 
Revision Summary
	Date
	Revision History
	Revision Class
	Comments

	6/10/2011
	0.1
	New
	Released new document.

	8/5/2011
	1.0
	Major
	Significantly changed the technical content.

	10/7/2011
	1.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	1/20/2012
	2.0
	Major
	Significantly changed the technical content.

	4/27/2012
	3.0
	Major
	Significantly changed the technical content.

	7/16/2012
	3.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	10/8/2012
	3.1
	Minor
	Clarified the meaning of the technical content.

	2/11/2013
	4.0
	Major
	Significantly changed the technical content.

	7/26/2013
	4.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	11/18/2013
	4.1
	Minor
	Clarified the meaning of the technical content.

	2/10/2014
	4.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	4/30/2014
	4.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	7/31/2014
	5.0
	Major
	Significantly changed the technical content.

	10/30/2014
	6.0
	Major
	Significantly changed the technical content.

	3/16/2015
	7.0
	Major
	Significantly changed the technical content.

	5/26/2015
	8.0
	Major
	Significantly changed the technical content.

	9/14/2015
	8.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	6/13/2016
	8.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	9/14/2016
	8.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	10/17/2016
	9.0
	Major
	Significantly changed the technical content.

	12/15/2016
	9.1
	Minor
	Clarified the meaning of the technical content.

	7/24/2018
	10.0
	Major
	Significantly changed the technical content.

	10/1/2018
	11.0
	Major
	Significantly changed the technical content.

	12/11/2018
	11.1
	Minor
	Clarified the meaning of the technical content.

	4/22/2021
	12.0
	Major
	Significantly changed the technical content.

	8/17/2021
	13.0
	Major
	Significantly changed the technical content.

	2/15/2022
	13.1
	Minor
	Clarified the meaning of the technical content.

	8/20/2024
	14.0
	Major
	Significantly changed the technical content.


Table of Contents
1	Introduction	7
1.1	Glossary	7
1.2	References	10
1.2.1	Normative References	10
1.2.2	Informative References	10
1.3	Overview	11
1.4	Relationship to Other Protocols	11
1.5	Prerequisites/Preconditions	12
1.6	Applicability Statement	12
1.7	Versioning and Capability Negotiation	12
1.8	Vendor-Extensible Fields	13
1.9	Standards Assignments	13
2	Messages	14
2.1	Transport	14
2.2	Common Data Types	14
2.2.1	Constant Value Definitions	15
2.2.1.1	Permitted Property Type Values	16
2.2.1.2	Permitted Error Code Values	17
2.2.1.3	Display Type Values	18
2.2.1.4	Default Language Code Identifier	18
2.2.1.5	Required Code Pages	19
2.2.1.6	Unicode Comparison Flags	19
2.2.1.6.1	Comparison Flags	19
2.2.1.7	Permanent Entry ID GUID	21
2.2.1.8	Positioning Minimal Entry IDs	21
2.2.1.9	Ambiguous Name Resolution Minimal Entry IDs	21
2.2.1.10	Table Sort Orders	22
2.2.1.11	Retrieve Property Flags	22
2.2.1.12	NspiGetSpecialTable Flags	23
2.2.1.13	NspiQueryColumns Flag	23
2.2.1.14	NspiGetTemplateInfo Flags	23
2.2.1.15	NspiModLinkAtt Flags	24
2.2.2	Property Values	24
2.2.2.1	FlatUID_r Structure	24
2.2.2.2	PropertyTagArray_r Structure	24
2.2.2.3	Binary_r Structure	24
2.2.2.4	ShortArray_r Structure	25
2.2.2.5	LongArray_r Structure	25
2.2.2.6	StringArray_r Structure	25
2.2.2.7	BinaryArray_r Structure	26
2.2.2.8	FlatUIDArray_r Structure	26
2.2.2.9	WStringArray_r Structure	26
2.2.2.10	DateTimeArray_r Structure	26
2.2.2.11	PROP_VAL_UNION Structure	27
2.2.2.12	PropertyValue_r Structure	28
2.2.3	PropertyRow_r Structure	29
2.2.4	PropertyRowSet_r Structure	29
2.2.5	Restrictions	29
2.2.5.1	AndRestriction_r Restriction, OrRestriction_r Restriction	30
2.2.5.2	NotRestriction_r Restriction	30
2.2.5.3	ContentRestriction_r Restriction	30
2.2.5.4	PropertyRestriction_r Restriction	31
2.2.5.5	ExistRestriction_r Restriction	31
2.2.5.6	RestrictionUnion_r Restriction	32
2.2.5.7	Restriction_r Restriction	32
2.2.6	Property Name/Property ID Structures	32
2.2.6.1	PropertyName_r Structure	33
2.2.7	String Arrays	33
2.2.7.1	StringsArray_r	33
2.2.7.2	WStringsArray_r	33
2.2.8	STAT	34
2.2.9	EntryIDs	35
2.2.9.1	MinimalEntryID	35
2.2.9.2	EphemeralEntryID	35
2.2.9.3	PermanentEntryID	36
2.2.10	NSPI_HANDLE	37
3	Protocol Details	39
3.1	Server Details	39
3.1.1	Abstract Data Model	39
3.1.2	Timers	39
3.1.3	Initialization	39
3.1.4	Message Processing Events and Sequencing Rules	39
3.1.4.1	NSPI Methods	41
3.1.4.1.1	NspiBind (Opnum 0)	41
3.1.4.1.2	NspiUnbind (Opnum 1)	42
3.1.4.1.3	NspiGetSpecialTable (Opnum 12)	43
3.1.4.1.4	NspiUpdateStat (Opnum 2)	45
3.1.4.1.5	NspiQueryColumns (Opnum 16)	46
3.1.4.1.6	NspiGetPropList (Opnum 8)	47
3.1.4.1.7	NspiGetProps (Opnum 9)	48
3.1.4.1.8	NspiQueryRows (Opnum 3)	50
3.1.4.1.9	NspiSeekEntries (Opnum 4)	52
3.1.4.1.10	NspiGetMatches (Opnum 5)	55
3.1.4.1.11	NspiResortRestriction (Opnum 6)	58
3.1.4.1.12	NspiCompareMIds (Opnum 10)	59
3.1.4.1.13	NspiDNToMId (Opnum 7)	61
3.1.4.1.14	NspiModProps (Opnum 11)	61
3.1.4.1.15	NspiModLinkAtt (Opnum 14)	62
3.1.4.1.16	NspiResolveNames (Opnum 19)	64
3.1.4.1.17	NspiResolveNamesW (Opnum 20)	65
3.1.4.1.18	NspiGetTemplateInfo (Opnum 13)	66
3.1.4.2	Required Properties	68
3.1.4.3	String Handling	68
3.1.4.3.1	Required Native Categorizations	69
3.1.4.3.2	Required Code Page Support	69
3.1.4.3.3	Conversion Rules for String Values Specified by the Server to the Client	69
3.1.4.3.4	Conversion Rules for String Values Specified by the Client to the Server	70
3.1.4.3.5	String Comparison	71
3.1.4.3.5.1	Unicode String Comparison	71
3.1.4.3.5.2	8-Bit String Comparison	71
3.1.4.3.6	String Sorting	71
3.1.4.4	Tables	72
3.1.4.4.1	Status-Based Tables	72
3.1.4.4.2	Explicit Tables	72
3.1.4.4.2.1	Restriction-Based Explicit Tables	72
3.1.4.4.2.2	Property Value-Based Explicit Tables	72
3.1.4.4.3	Specific Instantiations of Special Tables	72
3.1.4.4.3.1	Address Book Hierarchy Table	72
3.1.4.4.3.2	Address Creation Table	73
3.1.4.5	Positioning in a Table	73
3.1.4.5.1	Absolute Positioning	73
3.1.4.5.2	Fractional Positioning	74
3.1.4.6	Object Identity	75
3.1.4.7	Ambiguous Name Resolution	75
3.2	Client Details	76
3.2.1	Abstract Data Model	76
3.2.2	Timers	76
3.2.3	Initialization	76
3.2.4	Message Processing Events and Sequencing Rules	76
3.2.5	Timer Events	76
3.2.6	Other Local Events	76
4	Protocol Examples	77
5	Security	82
5.1	Security Considerations for Implementers	82
5.2	Index of Security Parameters	83
6	Appendix A: Full IDL	84
7	Appendix B: Product Behavior	91
8	Change Tracking	93
9	Index	94

[bookmark: section_8c179668eb254f28a8bcaefae709644b][bookmark: _Toc174600500]Introduction
The Exchange Server Name Service Provider Interface (NSPI) Protocol provides a way for messaging clients to access and manipulate address data that is stored by a server. This protocol enables the client to use a single remote procedure call (RPC) interface and several interface methods to manipulate Address Book object data stored on the server. 
Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in this specification are informative.
[bookmark: section_cc7efab50b1c4fef971b3daf33283a50][bookmark: _Toc174600501]Glossary
This document uses the following terms:
[bookmark: gt_d16f7b78-c5a6-48f4-9e0f-3b205b5598b5]address book: A collection of Address Book objects, each of which are contained in any number of address lists.
[bookmark: gt_a34b031c-18b2-40e1-acfa-3b73cc71e80b]address book container: An Address Book object that describes an address list.
[bookmark: gt_814ecf9d-9ad2-4576-9ce9-cf4e2a17bb62]address book hierarchy table: A collection of address book containers arranged in a hierarchy.
[bookmark: gt_4792b6d3-b01a-43f6-aca4-42fc4e79a633]Address Book object: An entity in an address book that contains a set of attributes, each attribute with a set of associated values.
[bookmark: gt_188986ef-1d60-4313-9c3f-21bba9d93892]address creation table: A table containing information about the templates that an address book server supports for creating new email addresses.
[bookmark: gt_500f0788-fb8b-4b09-bd01-15e879894b94]address creation template: A template that describes how to present a dialog to a messaging user along with a script describing how to construct a new email address from the user's response.
[bookmark: gt_8b9cb772-f51d-47be-af66-a68e2bb179ef]address list: A collection of distinct Address Book objects.
[bookmark: gt_74f3dfcc-c54c-4005-8a9e-d88b95c5d33b]ambiguous name resolution (ANR): A search algorithm that permits a client to search multiple naming-related attributes on objects by way of a single clause of the form "(anr=value)" in a Lightweight Directory Access Protocol (LDAP) search filter. This permits a client to query for an object when the client possesses some identifying material related to the object but does not know which attribute of the object contains that identifying material.
[bookmark: gt_24ddbbb4-b79e-4419-96ec-0fdd229c9ebf]Augmented Backus-Naur Form (ABNF): A modified version of Backus-Naur Form (BNF), commonly used by Internet specifications. ABNF notation balances compactness and simplicity with reasonable representational power. ABNF differs from standard BNF in its definitions and uses of naming rules, repetition, alternatives, order-independence, and value ranges. For more information, see [RFC5234].
[bookmark: gt_210637d9-9634-4652-a935-ded3cd434f38]code page: An ordered set of characters of a specific script in which a numerical index (code-point value) is associated with each character. Code pages are a means of providing support for character sets and keyboard layouts used in different countries. Devices such as the display and keyboard can be configured to use a specific code page and to switch from one code page (such as the United States) to another (such as Portugal) at the user's request.
[bookmark: gt_13610349-044b-4a1a-a342-8c400a854546]display template: A template that describes how to display or allow a user to modify information about an Address Book object.
[bookmark: gt_1175dd11-9368-41d5-98ed-d585f268ad4b]distinguished name (DN): A name that uniquely identifies an object by using the relative distinguished name (RDN) for the object, and the names of container objects and domains that contain the object. The distinguished name (DN) identifies the object and its location in a tree.
[bookmark: gt_ccbb0292-fefe-493f-80c3-11533e473591]distribution list: A collection of users, computers, contacts, or other groups that is used only for email distribution, and addressed as a single recipient.
[bookmark: gt_b91c1e27-e8e0-499b-8c65-738006af72ee]endpoint: (1) A client that is on a network and is requesting access to a network access server (NAS).
(2) A network-specific address of a remote procedure call (RPC) server process for remote procedure calls. The actual name and type of the endpoint depends on the RPC protocol sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more information, see [C706].
[bookmark: gt_50f3e9cf-a07f-403a-9ae9-c5ec21b2edaf]entry ID: See EntryID.
[bookmark: gt_64df5f51-e2e6-4cf2-a15f-5bc1167087b5]EntryID: A sequence of bytes that is used to identify and access an object.
[bookmark: gt_6fbe9d37-508e-44f3-be0f-b579e1264f27]Global Address List (GAL): An address list that conceptually represents the default address list for an address book.
[bookmark: gt_f49694cc-c350-462d-ab8e-816f0103c6c1]globally unique identifier (GUID): A term used interchangeably with universally unique identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not imply or require a specific algorithm or mechanism to generate the value. Specifically, the use of this term does not imply or require that the algorithms described in [RFC4122] or [C706] have to be used for generating the GUID. See also universally unique identifier (UUID).
[bookmark: gt_9239bd88-9747-44a6-83a6-473f53f175a7]Hypertext Transfer Protocol Secure (HTTPS): An extension of HTTP that securely encrypts and decrypts web page requests. In some older protocols, "Hypertext Transfer Protocol over Secure Sockets Layer" is still used (Secure Sockets Layer has been deprecated). For more information, see [SSL3] and [RFC5246].
[bookmark: gt_73177eec-4092-420f-92c5-60b2478df824]Interface Definition Language (IDL): The International Standards Organization (ISO) standard language for specifying the interface for remote procedure calls. For more information, see [C706] section 4.
[bookmark: gt_d6a282ce-b1da-41e1-b05a-22f777a5c1fe]Kerberos: An authentication system that enables two parties to exchange private information across an otherwise open network by assigning a unique key (called a ticket) to each user that logs on to the network and then embedding these tickets into messages sent by the users. For more information, see [MS-KILE].
[bookmark: gt_c7f99c66-592f-4053-b62a-878c189653b6]language code identifier (LCID): A 32-bit number that identifies the user interface human language dialect or variation that is supported by an application or a client computer.
[bookmark: gt_45643bfb-b4c4-432c-a10f-b98790063f8d]Lightweight Directory Access Protocol (LDAP): The primary access protocol for Active Directory. Lightweight Directory Access Protocol (LDAP) is an industry-standard protocol, established by the Internet Engineering Task Force (IETF), which allows users to query and update information in a directory service (DS), as described in [MS-ADTS]. The Lightweight Directory Access Protocol can be either version 2 [RFC1777] or version 3 [RFC3377].
[bookmark: gt_079478cb-f4c5-4ce5-b72b-2144da5d2ce7]little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in the memory location with the lowest address.
[bookmark: gt_3ba811bf-4003-43a5-8547-599fd8bacede]Minimal Entry ID: A property of an Address Book object that can be used to uniquely identify the object.
[bookmark: gt_e63aea5b-046b-4176-9359-fde82613a406]name service provider interface (NSPI): A method of performing address-book-related operations on Active Directory.
[bookmark: gt_9ebf9540-2c31-43bc-bc56-4a932faabf2d]Network Data Representation (NDR): A specification that defines a mapping from Interface Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime environment that implements the mapping facilities (for example, data provided to NDR). For more information, see [MS-RPCE] and [C706] section 14.
[bookmark: gt_fff710f9-e3d1-4991-99a2-009768d57585]NT LAN Manager (NTLM) Authentication Protocol: A protocol using a challenge-response mechanism for authentication in which clients are able to verify their identities without sending a password to the server. It consists of three messages, commonly referred to as Type 1 (negotiation), Type 2 (challenge) and Type 3 (authentication).
[bookmark: gt_e127848e-c66d-427d-b3aa-9f904fa4ada7]opnum: An operation number or numeric identifier that is used to identify a specific remote procedure call (RPC) method or a method in an interface. For more information, see [C706] section 12.5.2.12 or [MS-RPCE].
[bookmark: gt_8cfe7d12-6482-4e5b-8ac2-5d6057eeeb39]Permanent Entry ID: A property of an Address Book object that can be used to uniquely identify the object.
[bookmark: gt_c17efaf4-bfdf-479d-8227-e165b647c933]property type: A 16-bit quantity that specifies the data type of a property value.
[bookmark: gt_8a7f6700-8311-45bc-af10-82e10accd331]remote procedure call (RPC): A communication protocol used primarily between client and server. The term has three definitions that are often used interchangeably: a runtime environment providing for communication facilities between computers (the RPC runtime); a set of request-and-response message exchanges between computers (the RPC exchange); and the single message from an RPC exchange (the RPC message).  For more information, see [C706].
[bookmark: gt_0c171cc7-e9c4-41b6-95a9-536db0042c7a]RPC protocol sequence: A character string that represents a valid combination of a remote procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as described in [C706] and [MS-RPCE].
[bookmark: gt_c2eeb200-3cd0-4916-966e-d7d6bff1737a]RPC transport: The underlying network services used by the remote procedure call (RPC) runtime for communications between network nodes. For more information, see [C706] section 2.
[bookmark: gt_05fd3925-0672-4f24-9dd9-2b9d441eb333]security provider: A pluggable security module that is specified by the protocol layer above the remote procedure call (RPC) layer, and will cause the RPC layer to use this module to secure messages in a communication session with the server. The security provider is sometimes referred to as an authentication service. For more information, see [C706] and [MS-RPCE].
[bookmark: gt_db43b88f-b78c-4dd4-bd4e-b4dc80af99ee]shared folder: A folder for which a sharing relationship has been created to share items in the folder between two servers.
[bookmark: gt_b08d36f6-b5c6-4ce4-8d2d-6f2ab75ea4cb]Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send data in the form of message units between computers over the Internet. TCP handles keeping track of the individual units of data (called packets) that a message is divided into for efficient routing through the Internet.
[bookmark: gt_c305d0ab-8b94-461a-bd76-13b40cb8c4d8]Unicode: A character encoding standard developed by the Unicode Consortium that represents almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007] provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16 BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).
[bookmark: gt_c4813fc3-b2e5-4aa3-bde7-421d950d68d3]universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple purposes, from tagging objects with an extremely short lifetime, to reliably identifying very persistent objects in cross-process communication such as client and server interfaces, manager entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of this term does not imply or require that the algorithms described in [RFC4122] or [C706] has to be used for generating the UUID.
[bookmark: gt_69864bcc-33be-41c9-9486-e18618ee3dd0]UTF-16LE: The Unicode Transformation Format - 16-bit, Little Endian encoding scheme. It is used to encode Unicode characters as a sequence of 16-bit codes, each encoded as two 8-bit bytes with the least-significant byte first. 
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
[bookmark: section_397a1f2c067c458b941bdb7ea9087298][bookmark: _Toc174600502]References
Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.  
[bookmark: section_0ac52d6181654a7f9010e388f6c79edb][bookmark: _Toc174600503]Normative References
We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information. 
[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997, https://publications.opengroup.org/c706
Note Registration is required to download the document.
[MS-DTYP] Microsoft Corporation, "Windows Data Types".
[MS-LCID] Microsoft Corporation, "Windows Language Code Identifier (LCID) Reference".
[MS-OXCDATA] Microsoft Corporation, "Data Structures".
[MS-OXCFOLD] Microsoft Corporation, "Folder Object Protocol".
[MS-OXOABKT] Microsoft Corporation, "Address Book User Interface Templates Protocol".
[MS-OXOABK] Microsoft Corporation, "Address Book Object Protocol".
[MS-OXOCNTC] Microsoft Corporation, "Contact Object Protocol".
[MS-OXPROPS] Microsoft Corporation, "Exchange Server Protocols Master Property List".
[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".
[MS-UCODEREF] Microsoft Corporation, "Windows Protocols Unicode Reference".
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, https://www.rfc-editor.org/info/rfc2119
[bookmark: section_229f9f3e95e241d1ae3afecb35d27f00][bookmark: _Toc174600504]Informative References
[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".
[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".
[MS-NSPI] Microsoft Corporation, "Name Service Provider Interface (NSPI) Protocol".
[MS-OXPROTO] Microsoft Corporation, "Exchange Server Protocols System Overview".
[RFC1510] Kohl, J., and Neuman, C., "The Kerberos Network Authentication Service (V5)", RFC 1510, September 1993, https://www.rfc-editor.org/info/rfc1510
[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network Authentication Service (V5)", RFC 4120, July 2005, https://www.rfc-editor.org/rfc/rfc4120
[RFC4511] Sermersheim, J., "Lightweight Directory Access Protocol (LDAP): The Protocol", RFC 4511, June 2006, https://www.rfc-editor.org/info/rfc4511
[bookmark: section_bcec1c9a91d944669d64c75656766f0e][bookmark: _Toc174600505]Overview
Messaging clients that implement a browsable address book need a way to communicate with an address data store in order to access and manipulate that data. This protocol enables communication between a messaging client and a data store. 
This protocol is a protocol layer that uses the remote procedure call (RPC) protocol as a transport, with a series of interface methods as described in this document, that clients can use to communicate with a server. The server will use Lightweight Directory Access Protocol (LDAP) and NSPI to retrieve data that is returned to the client.
The following figure shows a graphical representation of a typical communication sequence between a messaging client and a server.
[image: Exchange Server NSPI Protocol message sequence. RPC/NSPI request is made from messaging client to data store. RPC/NSPI Response is sent back from data store to messaging client.]
Figure 1: Exchange Server NSPI Protocol message sequence 
[bookmark: section_5ceece51e62b419e96ae7598b21d7660][bookmark: _Toc174600506]Relationship to Other Protocols
The Exchange Server NSPI Protocol depends on the following protocols:
· The Remote Procedure Call (RPC) Protocol, as described in [C706] and [MS-RPCE], as a transport. 
· The Kerberos Network Authentication Service (V5), as described in [MS-KILE], [RFC1510], and [RFC4120] for client authentication. 
· The NT LAN Manager (NTLM) Authentication Protocol, as described in [MS-NLMP], for client authentication. 
· The Address Book Object Protocol, as described in [MS-OXOABK], for property definitions. 
· The Address Book User Interface Templates Protocol, as described in [MS-OXOABKT], for the definition of address book templates. 
· The Lightweight Directory Access Protocol (LDAP), as described in [RFC4511].
· The Name Service Provider Interface (NSPI) Protocol, as described in [MS-NSPI].
For conceptual background information and overviews of the relationships and interactions between this and other protocols, see [MS-OXPROTO].
[bookmark: section_d079610c90f44438a9bcb66c92bdd661][bookmark: _Toc174600507]Prerequisites/Preconditions
The client implementation has to have the network address of the server. This network address satisfies the requirements of a network address for the underlying transport of remote procedure call (RPC). This allows the client to initiate communication with the server by using the RPC Protocol. 
This protocol uses security information as specified in [MS-RPCE]. The client and Exchange NSPI server are required to share one or both of the NT LAN Manager (NTLM) Authentication Protocol or Kerberos security providers in common for the RPC transport. Additionally, the server is required to register the negotiation security provider. 
The protocol does not require mutual authentication. The client and Exchange NSPI server use an authentication mechanism that is capable of authenticating the client to the server. The protocol does not require that the client be capable of authenticating the server.
The credentials of the client have to be recognized by the server. These credentials are obtained from the shared security provider. The mechanism for obtaining these credentials is specific to the protocol of the security provider that is used. 
The server has to have determined any local policies as described in sections 2, 3, and 5. This allows the server to provide consistent behavior for all communications in the protocol. 
The server has to be configured to support the required code pages and language code identifiers (LCIDs), as described in sections 2.2.1.4 and 2.2.1.5. This allows the server to provide the minimal required string conversions and sort orders. 
The server has to be started and fully initialized before the protocol can start.
[bookmark: section_d0f4b9f694f34ec29b507e382e5b7b2e][bookmark: _Toc174600508]Applicability Statement
The Exchange Server NSPI Protocol is appropriate for messaging clients that implement online access to address books for browsing and viewing of Address Book objects that are stored in a data store.
[bookmark: section_e2197f9d56db4651a44928d011dacec3][bookmark: _Toc174600509]Versioning and Capability Negotiation
This document covers versioning issues in the following areas: 
· Supported Transports: This protocol uses multiple RPC protocol sequences, as specified in section 2.1. 
· Protocol Versions: This protocol has a single interface version. This version is defined in section 2.1.
· Security and Authentication Methods: This protocol supports the NTLM and Kerberos authentication methods. 
· Localization: This protocol passes text strings in various methods. Localization considerations for such strings are specified in section 3.1.4.3). 
· Capability Negotiation: The Exchange Server NSPI Protocol does not support negotiation. There is only one interface version. 
[bookmark: section_5c33744e16be4096bfa9b9f4b08e6bc8][bookmark: _Toc174600510]Vendor-Extensible Fields
None.
[bookmark: section_8bdad1964bd24376b4afeb4b0b6b82df][bookmark: _Toc174600511]Standards Assignments
	Parameter
	Value
	Reference

	Interface UUID
	F5CC5A18-4264-101A-8C59-08002B2F8426
	[C706] section A.2.5



[bookmark: section_5ab36735a271498dbcec8b018f52773c][bookmark: _Toc174600512]Messages
The following sections specify transport methods of Exchange Server NSPI Protocol messages and common Exchange Server NSPI Protocol data types.
Unless otherwise specified, all numeric values in this specification are in little-endian format.
Unless otherwise specified, all Unicode string representations are in UTF-16LE format.
[bookmark: section_0a66f928ffa74b6b86f1e2c3661c8be1][bookmark: _Toc174600513]Transport
All remote procedure call (RPC) protocols use RPC dynamic endpoints (2) and well-known endpoints (2), as specified in [C706].
The Exchange Server NSPI Protocol uses the following RPC protocol sequences: 
· RPC over HTTPS
· [bookmark: Appendix_A_Target_1]RPC over TCP<1>
The protocol allows a server to be configured to use a specific port for RPC over TCP. The mechanism for configuring a server to use a specific port is not constrained by the Exchange Server NSPI Protocol. The mechanism for a client to discover this configured TCP port is not constrained by the Exchange Server NSPI Protocol.
For the network protocol sequence RPC over HTTPS, this protocol MUST use the well-known endpoint 6004. For RPC over TCP, this protocol can use RPC dynamic endpoints, as defined in Part 4 of [C706].
This protocol MUST use the UUID F5CC5A18-4264-101A-8C59-08002B2F8426. The protocol MUST use the RPC version number 56.0.
[bookmark: z11]The protocol uses the underlying RPC protocol to retrieve the identity of the client that made the method call, as specified in [MS-RPCE]. The server MAY use this identity to perform access checks, as described in section 5 of this document. 
[bookmark: z13]The server MAY enforce limits on the maximum RPC packet size that it will accept.
[bookmark: section_cd4c8119bee54732929d124cf6ea3af0][bookmark: _Toc174600514]Common Data Types
This protocol enables the ms_union extension, as specified in [MS-RPCE].
This protocol requests that the RPC runtime, via the strict_context_handle attribute, rejects the use of context handles created by a method of a different RPC interface than this one, as specified in [MS-RPCE].
In addition to the RPC base types and definitions specified in [C706] and [MS-RPCE], the Exchange Server NSPI Protocol uses additional data types.
The following table summarizes the types that are defined in this specification.
	Data type name
	Description

	FlatUID_r
	Byte order specified GUIDs

	PropertyTagArray_r
	Property value structure

	Binary_r
	Property value structure

	ShortArray_r
	Property value structure

	LongArray_r
	Property value structure

	StringArray_r
	Property value structure

	BinaryArray_r
	Property value structure

	FlatUIDArray_r
	Property value structure

	WStringArray_r
	Property value structure

	DateTimeArray_r
	Property value structure

	PROP_VAL_UNION
	Property value structure

	PropertyValue_r
	Property value structure

	PropertyRow_r
	Table row structure

	PropertyRowSet_r
	Table rows structure

	AndRestriction_r
	Table restriction structure

	OrRestriction_r
	Table restriction structure

	NotRestriction_r
	Table restriction structure

	ContentRestriction_r
	Table restriction structure

	PropertyRestriction_r
	Table restriction structure

	ExistRestriction_r
	Table restriction structure

	RestrictionUnion_r
	Table restriction structure

	Restriction_r
	Table restriction structure

	PropertyName_r
	Address book property specifier

	StringsArray_r
	Collection of 8-bit character strings

	WStringsArray_r
	Collection of Unicode strings

	STAT
	Table status structure

	MinimalEntryID
	Address Book object identification

	EphemeralEntryID
	Address Book object identification

	PermanentEntryID
	Address Book object identification

	NSPI_HANDLE
	RPC context handle



[bookmark: section_334c412ab9c34298af4ed2994bfebd16][bookmark: _Toc174600515]Constant Value Definitions
This section defines common values that are used in multiple messages. 
[bookmark: section_9a51c17127d947f78e7393c37140bca4][bookmark: _Toc174600516]Permitted Property Type Values
The property type values specified in this section are used to specify property types. They appear in various places in the Exchange Server NSPI Protocol. All Exchange NSPI servers and clients MUST recognize and be capable of accepting and returning these property types. Values that represent property types are defined in [MS-OXCDATA]. 
The values specified in [MS-OXCDATA] are 16-bit integers. The Exchange Server NSPI Protocol uses the same numeric values but expressed as 32-bit integers. The high-order 16 bits of the 32-bit representation that is used by the Exchange Server NSPI Protocol are always 0x0000. The following table lists the permitted values for the Exchange Server NSPI Protocol.
	Value name
	Value as defined in [MS-OXCDATA] 
	Value as used in the Exchange Server NSPI Protocol

	PtypInteger32 ([MS-OXCDATA] section 2.11.1)
	0x0003
	0x00000003

	PtypBoolean ([MS-OXCDATA] section 2.11.1)
	0x000B
	0x0000000B

	PtypString8 ([MS-OXCDATA] section 2.11.1)
	0x001E
	0x0000001E

	PtypBinary ([MS-OXCDATA] section 2.11.1)
	0x0102
	0x00000102

	PtypString ([MS-OXCDATA] section 2.11.1)
	0x001F
	0x0000001F

	PtypTime ([MS-OXCDATA] section 2.11.1)
	0x0040
	0x00000040

	PtypErrorCode ([MS-OXCDATA] section 2.11.1)
	0x000A
	0x0000000A

	PtypMultipleString8 ([MS-OXCDATA] section 2.11.1)
	0x101E
	0x0000101E

	PtypMultipleBinary ([MS-OXCDATA] section 2.11.1)
	0x1102
	0x00001102

	PtypMultipleString ([MS-OXCDATA] section 2.11.1)
	0x101F
	0x0000101F


In addition, all Exchange NSPI servers and clients MUST recognize and be capable of accepting and returning the property types that are listed in the following table.
	Property type name and value 
	Description 

	PtypEmbeddedTable ([MS-OXCDATA] section 2.11.1.5)
0x0000000D
	Single 32-bit value, referencing an address list. 

	PtypNull ([MS-OXCDATA] section 2.11.1)
0x00000001
	Clients MUST NOT specify this property type in any method's input parameters.
The server MUST specify this property type in any method's output parameters to indicate that a property has a value that cannot be expressed in the Exchange Server NSPI Protocol.

	PtypUnspecified ([MS-OXCDATA] section 2.11.1)
0x00000000
	Clients specify this property type in a method's input parameter to indicate that the client will accept any property type the server chooses when returning propvalues.
Servers MUST NOT specify this property type in any method's output parameters.


All clients and servers MUST NOT use any other property types.
[bookmark: section_1c845258b15f44369748ed4bebb263ce][bookmark: _Toc174600517]Permitted Error Code Values
The error code values listed in this section are used to specify status from an NSPI method. They appear as return codes from NSPI methods and as values of properties with property type PtypErrorCode ([MS-OXCDATA] section 2.11.1). All Exchange NSPI servers MUST recognize and be capable of accepting and returning these error codes. The values that represent the error codes are defined in [MS-OXCDATA] section 2.4. The following are the permitted error code values for the Exchange Server NSPI Protocol:
· Success
· UnbindSuccess
· UnbindFailure
· ErrorsReturned
· GeneralFailure
· NotSupported
· InvalidObject
· OutOfResources
· NotFound
· LogonFailed
· TooComplex
· InvalidCodepage
· InvalidLocale
· TableTooBig
· InvalidBookmark
· AccessDenied
· NotEnoughMemory
· InvalidParameter
All clients and servers MUST NOT use any other error codes.
[bookmark: section_da97977b82244683bad7c21e5aba0f6e][bookmark: _Toc174600518]Display Type Values
The values listed in this section are used to specify display types. They appear in various places in the Exchange Server NSPI Protocol as object properties and as part of EntryIDs. Except where otherwise specified in the following table, all Exchange NSPI servers MUST recognize and be capable of accepting and returning these display types. The following table lists the permitted display type values for the Exchange Server NSPI Protocol.
	Display type name and value 
	Description 

	DT_MAILUSER
0x00000000
	A typical messaging user.

	DT_DISTLIST
0x00000001
	A distribution list.

	DT_FORUM
0x00000002
	A forum, such as a bulletin board service or a public or shared folder.

	DT_AGENT
0x00000003
	An automated agent, such as Quote-Of-The-Day or a weather chart display.

	DT_ORGANIZATION
0x00000004
	An Address Book object defined for a large group, such as helpdesk, accounting, coordinator, or department. Department objects usually have this display type. An Exchange NSPI server MUST NOT return display type.

	DT_PRIVATE_DISTLIST
0x00000005
	A private, personally administered distribution list.

	DT_REMOTE_MAILUSER
0x00000006
	An Address Book object known to be from a foreign or remote messaging system.

	DT_CONTAINER
0x00000100
	An address book hierarchy table container. An Exchange NSPI server MUST NOT return this display type except as part of an EntryID of an object in the address book hierarchy table.

	DT_TEMPLATE
0x00000101
	A display template object. An Exchange NSPI server MUST NOT return this display type.

	DT_ADDRESS_TEMPLATE
0x00000102
	An address creation template. An Exchange NSPI server MUST NOT return this display type except as part of an EntryID of an object in the Address Creation Table.

	DT_SEARCH
0x00000200
	A search template. An Exchange NSPI server MUST NOT return this display type. 


All clients and servers MUST NOT use any other display types.
[bookmark: section_02aba5239d6a4e099814b62674720fc2][bookmark: _Toc174600519]Default Language Code Identifier
The language code identifier (LCID) specified in this section is associated with the minimal required sort order for Unicode strings. It appears in input parameters to Exchange Server NSPI Protocol methods. It affects Exchange NSPI server string handling, as specified in section 3.1.4.3. The following table lists and describes the default LCID for this protocol.
	Default LCID name and value
	Description

	NSPI_DEFAULT_LOCALE
0x00000409
	Represents the default LCID that is used for comparison of Unicode string representations.



[bookmark: section_1341790dc7574793b621e6b83ba677d8][bookmark: _Toc174600520]Required Code Pages
The required code pages listed in this section are associated with the string handling in the Exchange Server NSPI Protocol, and they appear in input parameters to methods in the Exchange Server NSPI Protocol. They affect Exchange NSPI server string handling, as specified in section 3.1.4.3. The following table lists the required code pages.
	Code page name and value
	Description

	CP_TELETEX
0x00004F25
	Represents the Teletex code page.

	CP_WINUNICODE
0x000004B0
	Represents the Unicode code page.



[bookmark: section_8b5cc708b7254b54a9184363a2c00547][bookmark: _Toc174600521]Unicode Comparison Flags
These values are associated with string handling in the Exchange Server NSPI Protocol. These values are defined in terms of definitions, as specified in section 2.2.1.6.1. The server uses these flags to modify the behavior of comparisons of Unicode string representations, as detailed in section 3.1.4.3 
	Name and value
	Description

	NSPI_DEFAULT_LOCALE_COMPARE_FLAGS
(NORM_IGNORECASE | \
NORM_IGNOREKANATYPE | \
NORM_IGNORENONSPACE | \
NORM_IGNOREWIDTH | \
SORT_STRINGSORT)
	Flags used when comparing Unicode strings in the language code identifier (LCID) represented by NSPI_DEFAULT_LOCALE. The comparison flag values are defined in section 2.2.1.6.1.

	NSPI_NON_DEFAULT_LOCALE_COMPARE_FLAGS
(NORM_IGNORECASE | \
NORM_IGNOREKANATYPE | \
NORM_IGNORENONSPACE | \
NORM_IGNOREWIDTH | \
NORM_IGNORESYMBOLS | \
SORT_STRINGSORT)
	Flags used when comparing Unicode strings in any LCID except the LCID represented by NSPI_DEFAULT_LOCALE. The comparison flag values are defined in section 2.2.1.6.1.



[bookmark: section_8506c7217083405aa1c28d1430621375][bookmark: _Toc174600522]Comparison Flags
The following defines the bit settings and meaning of the bits used by the Unicode comparison flags. The flags are presented in big-endian byte order.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	V
	U
	T
	S
	R
	Q
	P
	O
	N
	M
	L
	K
	J
	I
	H
	G
	F
	E
	D
	C
	B
	A
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0


V (1 bit): NORM IGNORECASE: Ignore Case.
U (1 bit): NORM IGNORENONSPACE: Ignore non-spacing characters.
T (1 bit): NORM IGNORESYMBOLS: Ignore symbols.
S (1 bit): Unused.
R (1 bit): Unused.
Q (1 bit): Unused.
P (1 bit): Unused.
O (1 bit): Unused.
N (1 bit): Unused.
M (1 bit): Unused.
L (1 bit): Unused.
K (1 bit): Unused.
J (1 bit): SORT STRINGSORT: Treat punctuation the same as symbols.
I (1 bit): Unused.
H (1 bit): Unused.
G (1 bit): Unused.
F (1 bit): NORM IGNOREKANATYPE: Do not differentiate between hiragana and katakana characters. Corresponding hiragana and katakana characters compare as equal.
E (1 bit): NORM IGNOREWIDTH: Ignore the difference between half-width and full-width characters.
D (1 bit): Unused.
C (1 bit): Unused.
B (1 bit): Unused.
A (1 bit): Unused.
9 (1 bit): Unused.
8 (1 bit): Unused.
7 (1 bit): Unused.
6 (1 bit): Unused.
5 (1 bit): Unused.
4 (1 bit): Unused.
3 (1 bit): Unused.
2 (1 bit): Unused.
1 (1 bit): Unused.
0 (1 bit): Unused.
[bookmark: section_57b7eadb2b564a2ab55ce4e370d21c3a][bookmark: _Toc174600523]Permanent Entry ID GUID
The following table lists the Permanent Entry ID that is associated with the Exchange Server NSPI Protocol.
	Permanent Entry ID name and value
	Description

	GUID_NSPI
{0xDC, 0xA7, 0x40, 0xC8, 0xC0, 0x42, 0x10, 0x1A, 0xB4, 0xB9, 0x08, 0x00, 0x2B, 0x2F, 0xE1, 0x82}
	Represents the Exchange Server NSPI Protocol in Permanent Entry IDs.



[bookmark: section_2ce9ce28b02146e095cab4397e2a8efd][bookmark: _Toc174600524]Positioning Minimal Entry IDs
The positioning Minimal Entry IDs are used to specify objects in the address book as a function of their positions in tables. They appear as Minimal Entry IDs in the CurrentRec field of the STAT structure, as specified in section 2.2.8. The following table lists the possible values.
	Minimal Entry ID name and value
	Description

	MID_BEGINNING_OF_TABLE
0x00000000
	Specifies the position before the first row in the current address book container.

	MID_END_OF_TABLE
0x00000002
	Specifies the position after the last row in the current address book container.

	MID_CURRENT
0x00000001
	Specifies the current position in a table. This Minimal Entry ID is only valid in the NspiUpdateStat method, as specified in section 3.1.4.1.4. In all other cases, it is an invalid Minimal Entry ID, guaranteed to not specify any object in the address book.



[bookmark: section_8ede8d4f522e4a62a03cbcb538d4995f][bookmark: _Toc174600525]Ambiguous Name Resolution Minimal Entry IDs
Ambiguous name resolution (ANR) Minimal Entry IDs are used to specify the outcome of the ANR process. They appear in return data from the NspiResolveNames method, as specified in section 3.1.4.1.16, and the NspiResolveNamesw method, as specified in section 3.1.4.1.17. The following table lists the possible values.
	Minimal Entry ID name and value
	Description

	MID_UNRESOLVED
0x00000000
	The ANR process was unable to map a string to any objects in the address book.

	MID_AMBIGUOUS
0x0000001
	The ANR process mapped a string to multiple objects in the address book.

	MID_RESOLVED
0x0000002
	The ANR process mapped a string to a single object in the address book.



[bookmark: section_e706e0214f164eeb80e22a68707337ea][bookmark: _Toc174600526]Table Sort Orders
The following table lists the values that are used to specify specific sort orders for tables. These values appear in the SortType field of the STAT data structure, as specified in section 2.2.8. 

	Sort type name and value
	Description

	SortTypeDisplayName
0x00000000
	The table is sorted ascending on the PidTagDisplayName property, as specified in [MS-OXCFOLD] section 2.2.2.2.2.5. All Exchange NSPI servers MUST support this sort order for at least one LCID.

	SortTypePhoneticDisplayName
0x00000003
	[bookmark: z15]The table is sorted ascending on the PidTagAddressBookPhoneticDisplayName property, as specified in [MS-OXOABK] section 2.2.3.9. Exchange NSPI servers SHOULD support this sort order. 

	SortTypeDisplayName_RO
0x000003E8
	The table is sorted ascending on the PidTagDisplayName property. The client MUST set this value only when using the NspiGetMatches method, as specified in section 3.1.4.1.10, to open a non-writable table on an object-valued property.

	SortTypeDisplayName_W
0x000003E9
	The table is sorted ascending on the PidTagDisplayName property. The client MUST set this value only when using the NspiGetMatches method to open a writable table on an object-valued property.



[bookmark: section_cef9767cce40449fa37080b330591921][bookmark: _Toc174600527]Retrieve Property Flags
The following table lists the property flag values that are used to specify optional behavior to a server. They appear as bit flags in methods that return property values to the client (NspiGetPropList, NspiGetProps, and NspiQueryRows). 
	Property flag name and value
	Description

	fSkipObjects
0x00000001
	Client requires that the server MUST NOT include proptags with the PtypEmbeddedTable property type in any lists of proptags that the server creates on behalf of the client.

	fEphID
0x00000002
	Client requires that the server MUST return Entry ID values in Ephemeral Entry ID form.



[bookmark: section_43cddd68bdb64dec915d9f4817d8a5ca][bookmark: _Toc174600528]NspiGetSpecialTable Flags
NspiGetSpecialTable flag values are used to specify optional behavior to a server. They appear as bit flags in the NspiGetSpecialTable method, as specified in section 3.1.4.1.3. The following table lists the possible values.
	Flag name and value
	Description

	NspiAddressCreationTemplates
0x00000002
	Specifies that the server MUST return the table of the available address creation templates. Specifying this flag causes the server to ignore the NspiUnicodeStrings flag.

	NspiUnicodeStrings
0x00000004
	Specifies that the server MUST return all strings as Unicode representations rather than as multibyte strings in the client's code page. 



[bookmark: section_9121f1791f134a54af634deff6b9dfa3][bookmark: _Toc174600529]NspiQueryColumns Flag
The NspiQueryColumns flag value is used to specify optional behavior to a server. It appears as a bit flag in the NspiQueryColumns method. The following table lists the value for this flag.
	Flag name and value
	Description

	NspiUnicodeProptypes
0x80000000
	Specifies that the server MUST return all proptags that specify values with string representations as having the PtypString property type. If the NspiUnicodeProptypes flag is not set, the server MUST return all proptags specifying values with string representations as having the PtypString8 property type. 



[bookmark: section_169258adaa724be793b04e3d194aacae][bookmark: _Toc174600530]NspiGetTemplateInfo Flags
The NspiGetTemplateInfo flag values are used to specify optional behavior to a server. They appear as bit flags in the NspiGetTemplateInfo method. The following table lists the possible values.
	Flag name and value
	Description

	TI_TEMPLATE
0x00000001
	Specifies that the server is to return the value that represents a template.

	TI_SCRIPT
0x00000004
	Specifies that the server is to return the value of the script that is associated with a template.

	TI_EMT
0x00000010
	Specifies that the server is to return the e-mail type that is associated with a template.

	TI_HELPFILE_NAME
0x00000020
	Specifies that the server is to return the name of the help file that is associated with a template.

	TI_HELPFILE_CONTENTS
0x00000040
	Specifies that the server is to return the contents of the help file that is associated with a template.



[bookmark: section_cfaebfc5f1da4ad1a667920242e4f94c][bookmark: _Toc174600531]NspiModLinkAtt Flags
The NspiModLinkAtt flag value is used to specify optional behavior to a server. It appears as a bit flag in the NspiModLinkAtt method. The following table lists the value of the flag.
	Flag name and Value
	Description

	fDelete
0x00000001
	Specifies that the server is to remove values when modifying. If the fDelete flag is not set, the server adds values when modifying.


 
[bookmark: section_e630932bad1240f7a9cccf47e94bd029][bookmark: _Toc174600532]Property Values
The following structures are used to represent specific property values.
[bookmark: section_f2357f58b36f4a27a1363cb7d1bdb0c4][bookmark: _Toc174600533]FlatUID_r Structure
The FlatUID_r structure is an encoding of the FlatUID_r data structure defined in [MS-OXCDATA] section 2.5.2. The semantic meaning is unchanged from the FlatUID data structure.
typedef struct {
  BYTE ab[16];
} FlatUID_r;

ab:  Encodes the ordered bytes of the FlatUID data structure.
[bookmark: section_3ee0a32333ef4997bba25423be3caaeb][bookmark: _Toc174600534]PropertyTagArray_r Structure
The PropertyTagArray_r structure is an encoding of the PropertyTagArray_r data structure defined in [MS-OXCDATA] section 2.10.2. The permissible number of proptag values in the PropertyTagArray_r structure exceeds that of the PropertyTagArray_r data structure. The semantic meaning is otherwise unchanged from the PropertyTagArray_r data structure.
typedef struct PropertyTagArray_r {
  DWORD cValues;
  [size_is(cValues+1), length_is(cValues)] 
    DWORD aulPropTag[];
} PropertyTagArray_r;

cValues:  Encodes the Count field of the PropertyTagArray_r data structure. 
aulPropTag:  Encodes the PropertyTags field of the PropertyTagArray_r data structure.
[bookmark: section_d1349d930df34f71b753275d7db708e8][bookmark: _Toc174600535]Binary_r Structure
The Binary_r structure encodes an array of uninterpreted bytes.
typedef struct Binary_r {
  [range(0,2097152)] DWORD cb;
  [size_is(cb)] BYTE* lpb;
} Binary_r;

cb:  The number of uninterpreted bytes represented in this structure. This value MUST NOT exceed 2,097,152.
lpb:  The uninterpreted bytes.
[bookmark: section_08971a901f924c3dba0ae5357999fa3d][bookmark: _Toc174600536]ShortArray_r Structure
The ShortArray_r structure encodes an array of 16-bit integers.
typedef struct ShortArray_r {
  [range(0,100000)] DWORD cValues;
  [size_is(cValues)] short int* lpi;
} ShortArray_r;

cValues:  The number of 16-bit integer values represented in the ShortArray_r structure. This value MUST NOT exceed 100,000.
lpi:  The 16-bit integer values.
[bookmark: section_aef2414567624710b503c8909b3e6fb8][bookmark: _Toc174600537]LongArray_r Structure
The LongArray_r structure encodes an array of 32-bit integers.
typedef struct _LongArray_r {
  [range(0,100000)] DWORD cValues;
  [size_is(cValues)] long* lpl;
} LongArray_r;

cValues:  The number of 32-bit integers represented in this structure. This value MUST NOT exceed 100,000.
lpl:  The 32-bit integer values.
[bookmark: section_e0d1048faa5b4f748be8b645dd1da947][bookmark: _Toc174600538]StringArray_r Structure
The StringArray_r structure encodes an array of references to 8-bit character strings.
typedef struct _StringArray_r {
  [range(0,100000)] DWORD cValues;
  [string, size_is(cValues)] char** lppszA;
} StringArray_r;

cValues:  The number of 8-bit character string references represented in the StringArray_r structure. This value MUST NOT exceed 100,000.
lppszA:  The 8-bit character string references. The strings referred to are NULL-terminated.
[bookmark: section_22e2f48554bc427aa6437642cace94c8][bookmark: _Toc174600539]BinaryArray_r Structure
The BinaryArray_r structure is an array of Binary_r data structures.
typedef struct _BinaryArray_r {
  [range(0,100000)] DWORD cValues;
  [size_is(cValues)] Binary_r* lpbin;
} BinaryArray_r;

cValues:  The number of Binary_r data structures represented in the BinaryArray_r structure. This value MUST NOT exceed 100,000.
lpbin:  The Binary_r data structures.
[bookmark: section_6b8b4d87996b4a8f8027dbae0b4d847f][bookmark: _Toc174600540]FlatUIDArray_r Structure
The FlatUIDArray_r structure encodes an array of FlatUID_r data structures.
typedef struct _FlatUIDArray_r {
  [range(0,100000)] DWORD cValues;
  [size_is(cValues)] FlatUID_r** lpguid;
} FlatUIDArray_r;

cValues:  The number of FlatUID_r structures represented in the FlatUIDArray_r structure. This value MUST NOT exceed 100,000.
lpguid:  The FlatUID_r data structures.
[bookmark: section_5823df522f624a2b9d3a78655cdf93ab][bookmark: _Toc174600541]WStringArray_r Structure
The WStringArray_r structure encodes an array of references to Unicode strings.
typedef struct _WStringArray_r {
  [range(0,100000)] DWORD cValues;
  [string, size_is(cValues)] wchar_t** lppszW;
} WStringArray_r;

cValues:  The number of Unicode character string references represented in the WStringArray_r structure. This value MUST NOT exceed 100,000.
lppszW:  The Unicode character string references. The strings referred to are NULL-terminated.
[bookmark: section_eecf98eb5b104c23b069e3f6310dc778][bookmark: _Toc174600542]DateTimeArray_r Structure
The DateTimeArray_r structure encodes an array of FILETIME structures.
typedef struct _DateTimeArray_r {
  [range(0,100000)] DWORD cValues;
  [size_is(cValues)] FILETIME* lpft;
} DateTimeArray_r;

cValues:  The number of FILETIME data structures represented in the DateTimeArray_r structure. This value MUST NOT exceed 100,000.
lpft:  The FILETIME data structures.
[bookmark: section_e008b0c43d7c4a0db9f3b8d240118c07][bookmark: _Toc174600543]PROP_VAL_UNION Structure
The PROP_VAL_UNION structure encodes a single instance of any type of property value. It is an aggregation data structure, allowing a single parameter to an NSPI method to contain any type of property value.
typedef 
[switch_type(long)] 
  union _PV_r {
  [case(0x00000002)] 
    short int i;
  [case(0x00000003)] 
    long l;
  [case(0x0000000B)] 
    unsigned short int b;
  [case(0x0000001E)] 
    [string] char* lpszA;
  [case(0x00000102)] 
    Binary_r bin;
  [case(0x0000001F)] 
    [string] wchar_t* lpszW;
  [case(0x00000048)] 
    FlatUID_r* lpguid;
  [case(0x00000040)] 
    FILETIME ft;
  [case(0x0000000A)] 
    long err;
  [case(0x00001002)] 
    ShortArray_r MVi;
  [case(0x00001003)] 
    LongArray_r MVl;
  [case(0x0000101E)] 
    StringArray_r MVszA;
  [case(0x00001102)] 
    BinaryArray_r MVbin;
  [case(0x00001048)] 
    FlatUIDArray_r MVguid;
  [case(0x0000101F)] 
    WStringArray_r MVszW;
  [case(0x00001040)] 
    DateTimeArray_r MVft;
  [case(0x00000001, 0x0000000D)] 
    long lReserved;
} PROP_VAL_UNION;
i:  PROP_VAL_UNION contains an encoding of the value of a property that can contain a single 16-bit integer value.
l:  PROP_VAL_UNION contains an encoding of the value of a property that can contain a single 32-bit integer value.
b:  PROP_VAL_UNION contains an encoding of the value of a property that can contain a single Boolean value. The client and server MUST NOT set this to values other than 1 or 0.
lpszA:  PROP_VAL_UNION contains an encoding of the value of a property that can contain a single 8-bit character string value. This value is NULL-terminated.
bin:  PROP_VAL_UNION contains an encoding of the value of a property that can contain a single binary data value. The number of bytes that can be encoded in this structure is 2,097,152.
lpszW:  PROP_VAL_UNION contains an encoding of the value of a property that can contain a single Unicode string value. This value is NULL-terminated.
lpguid:  PROP_VAL_UNION contains an encoding of the value of a property that can contain a single GUID value. The value is encoded as a FlatUID_r data structure.
ft:  PROP_VAL_UNION contains an encoding of the value of a property that can contain a single 64-bit integer value. The value is encoded as a FILETIME structure. 
err:  PROP_VAL_UNION contains an encoding of the value of a property that can contain a single PtypErrorCode value.
MVi:  PROP_VAL_UNION contains an encoding of the values of a property that can contain multiple 16-bit integer values. The number of values that can be encoded in this structure is 100,000.
MVl:  PROP_VAL_UNION contains an encoding of the values of a property that can contain multiple 32-bit integer values. The number of values that can be encoded in this structure is 100,000.
MVszA:  PROP_VAL_UNION contains an encoding of the values of a property that can contain multiple 8-bit character string values. These string values are NULL-terminated. The number of values that can be encoded in this structure is 100,000.
MVbin:  PROP_VAL_UNION contains an encoding of the values of a property that can contain multiple binary data values. The number of bytes that can be encoded in each value of this structure is 2,097,152. The number of values that can be encoded in this structure is 100,000.
MVguid:  PROP_VAL_UNION contains an encoding of the values of a property that can contain multiple GUID values. The values are encoded as FlatUID_r data structures. The number of values that can be encoded in this structure is 100,000.
MVszW:  PROP_VAL_UNION contains an encoding of the values of a property that can contain multiple Unicode string values. These string values are NULL-terminated. The number of values that can be encoded in this structure is 100,000.
MVft:  PROP_VAL_UNION contains an encoding of the value of a property that can contain multiple 64-bit integer values. The values are encoded as FILETIME structures. The number of values that can be encoded in this structure is 100,000.
lReserved:  Reserved. All clients and servers MUST set this value to the constant 0x00000000.
[bookmark: section_469fa0b8ab414d2e9f1ab5664fecc6d0][bookmark: _Toc174600544]PropertyValue_r Structure
The PropertyValue_r structure is an encoding of the PropertyValue_r data structure, as specified in [MS-OXCDATA] section 2.11.2.2. 
For property values with uninterpreted byte values, the permissible number of bytes in the PropertyValue_r structure exceeds that of the PropertyValue data structure. For property values with multiple values, the permissible number of values in the PropertyValue_r structure exceeds that of the PropertyValue data structure. The semantic meaning is otherwise unchanged from the PropertyValue data structure.
typedef struct _PropertyValue_r {
  DWORD ulPropTag;
  DWORD ulReserved;
  [switch_is((long)(ulPropTag & 0x0000FFFF))] 
    PROP_VAL_UNION Value;
} PropertyValue_r;

ulPropTag:  Encodes the proptag of the property whose value is represented by the PropertyValue_r data structure.
ulReserved:  Reserved. All clients and servers MUST set this value to the constant 0x00000000.
Value:  Encodes the actual value of the property represented by the PropertyValue_r data structure. The type value held is specified by the property type of the proptag in the ulPropTag field.
[bookmark: section_aef64f91ee2c44e68d05357a95737a0d][bookmark: _Toc174600545]PropertyRow_r Structure
The PropertyRow_r structure is an encoding of the StandardPropertyRow data structure, as specified in [MS-OXCDATA] section 2.8.1.1. The semantic meaning is unchanged from the StandardPropertyRow data structure.
typedef struct _PropertyRow_r {
  DWORD Reserved;
  [range(0,100000)] DWORD cValues;
  [size_is(cValues)] PropertyValue_r* lpProps;
} PropertyRow_r;

Reserved:  Reserved. All clients and servers MUST set this value to the constant 0x00000000.
cValues:  The number of PropertyValue_r structures represented in the PropertyRow_r structure. This value MUST NOT exceed 100,000.
lpProps:  Encodes the ValueArray field of the StandardPropertyRow data structure.
[bookmark: section_7d5e2759093c491fbbf1ade55d8f84fd][bookmark: _Toc174600546]PropertyRowSet_r Structure
The PropertyRowSet_r structure is an encoding of the PropertyRowSet_r data structure, as specified in [MS-OXCDATA] section 2.8.2.2. 
The permissible number of PropertyRows in the PropertyRowSet_r data structure exceeds that of the PropertyRowSet data structure. The semantic meaning is otherwise unchanged from the PropertyRowSet data structure.
typedef struct _PropertyRowSet_r {
  [range(0,100000)] DWORD cRows;
  [size_is(cRows)] PropertyRow_r aRow[];
} PropertyRowSet_r;

cRows:  Encodes the RowCount field of the PropertyRowSet data structures. This value MUST NOT exceed 100,000.
aRow:  Encodes the Rows field of the PropertyRowSet data structure.
[bookmark: section_888443f3f02d468f90db4b0921cabec4][bookmark: _Toc174600547]Restrictions
The following structures are used to represent restrictions of a table, as defined in [MS-OXCDATA] section 2.12.
[bookmark: section_1e49490a319040c89a2c8e2362b174be][bookmark: _Toc174600548]AndRestriction_r Restriction, OrRestriction_r Restriction
The AndRestriction_r, OrRestriction_r restriction types share a single RPC encoding. The AndOrRestriction_r structure is an encoding of the both the AndRestriction_r data structure and the OrRestriction_r data structure, as specified in [MS-OXCDATA] sections 2.12.1.2 and 2.12.2.2. These two data structures share the same data layout, so a single encoding is included in the Exchange Server NSPI Protocol. The sense of the data structure's use is derived from the context of its inclusion in the RestrictionUnion_r data structure, as specified in section 2.2.5.6. 
The permissible number of restriction structures in the AndRestriction_r and OrRestriction_r data structures exceeds that of the AndRestriction and OrRestriction structures. The semantic meaning is otherwise unchanged from the AndRestriction and OrRestriction data structures, as context dictates.
typedef struct _AndOrRestriction_r {
  [range(0,100000)] DWORD cRes;
  [size_is(cRes)] Restriction_r* lpRes;
} AndRestriction_r, 
 OrRestriction_r;

cRes:  Encodes the RestrictCount field of the AndRestriction and OrRestriction data structures. This value MUST NOT exceed 100,000.
lpRes:  Encodes the Restricts field of the AndRestriction and OrRestriction data structures. 
[bookmark: section_841d5a8a06374713b17ef20fd2465a47][bookmark: _Toc174600549]NotRestriction_r Restriction
The NotRestriction_r structure is an encoding of the NotRestriction_r data structure, as specified in [MS-OXCDATA] section 2.12.3.2. The semantic meaning is unchanged from the NotRestriction data structure.
typedef struct _NotRestriction_r {
  Restriction_r* lpRes;
} NotRestriction_r;

lpRes:  Encodes the Restriction field of the NotRestriction data structure.
[bookmark: section_9b62c431fef543f391d66c1d4839d370][bookmark: _Toc174600550]ContentRestriction_r Restriction
The ContentRestriction_r structure is an encoding of the ContentRestriction_r data structure, as specified in [MS-OXCDATA] section 2.12.4.2. The semantic meaning is unchanged from the ContentRestriction data structure.
  typedef struct _ContentRestriction_r {
    DWORD ulFuzzyLevel;
    DWORD ulPropTag;
    PropertyValue_r * lpProp;
  } ContentRestriction_r;

ulFuzzyLevel:  Encodes the FuzzyLevelLow and  FuzzyLevelHigh fields of the ContentRestriction data structure.
[image: ContentRestriction data structure. FuzzyLevelLow, FuzzyLevelHigh, and R1 fields.]
Figure 2: ContentRestriction data structure
FuzzyLevelLow:  Encodes the FuzzyLevelLow field of the ContentRestriction data structure.
FuzzyLevelHigh:  Encodes the FuzzyLevelHigh field of the ContentRestriction data structure.
R1:  Reserved. All clients MUST set this value to the constant 0x00.
ulPropTag:  Encodes the PropertyTag field of the ContentRestriction data structure.
lpProp:  Encodes the TaggedValue field of the ContentRestriction data structure.
[bookmark: section_f300ff58994743a38fc6b895edd81ab1][bookmark: _Toc174600551]PropertyRestriction_r Restriction
The PropertyRestriction_r structure is an encoding of the PropertyRestriction_r data structure, as specified in [MS-OXCDATA] section 2.12.5.2. The semantic meaning is unchanged from the PropertyRestriction data structure.
typedef struct _PropertyRestriction_r {
  DWORD relop;
  DWORD ulPropTag;
  PropertyValue_r* lpProp;
} PropertyRestriction_r;

relop:  Encodes the RelOp field of the PropertyRestriction data structure.
ulPropTag:  Encodes the PropTag field of the PropertyRestriction data structure.
lpProp:  Encodes the TaggedValue field of the PropertyRestriction data structure.
[bookmark: section_e7d23f13ac344f788ab5aec8aaeaa56c][bookmark: _Toc174600552]ExistRestriction_r Restriction
The ExistRestriction_r structure is an encoding of the ExistRestriction_r data structure, as specified in [MS-OXCDATA] section 2.12.9.2. The semantic meaning is unchanged from the ExistRestriction data structure.
typedef struct _ExistRestriction_r {
  DWORD ulReserved1;
  DWORD ulPropTag;
  DWORD ulReserved2;
} ExistRestriction_r;

ulReserved1:  Reserved. All clients MUST set this value to the constant 0x00000000.
ulPropTag:  Encodes the PropTag field of the ExistRestriction data structure.
ulReserved2:  Reserved. All clients MUST set this value to the constant 0x00000000.
[bookmark: section_660128be6dad4b529485df748b316730][bookmark: _Toc174600553]RestrictionUnion_r Restriction
The RestrictionUnion_r structure encodes a single instance of any type of restriction. It is an aggregation data structure, allowing a single parameter to an NSPI method to contain any type of restriction data structure.
typedef 
[switch_type(long)] 
  union _RestrictionUnion_r {
  [case(0x00000000)] 
    AndRestriction_r resAnd;
  [case(0x00000001)] 
    OrRestriction_r resOr;
  [case(0x00000002)] 
    NotRestriction_r resNot;
  [case(0x00000003)] 
    ContentRestriction_r resContent;
  [case(0x00000004)] 
    PropertyRestriction_r resProperty;
  [case(0x00000008)] 
    ExistRestriction_r resExist;
} RestrictionUnion_r;
resAnd:  RestrictionUnion_r contains an encoding of an AndRestriction.
resOr:  RestrictionUnion_r contains an encoding of an OrRestriction.
resNot:  RestrictionUnion_r contains an encoding of a NotRestriction.
resContent:  RestrictionUnion_r contains an encoding of a ContentRestriction.
resProperty:  RestrictionUnion_r contains an encoding of a PropertyRestriction.
resExist:  RestrictionUnion_r contains an encoding of an ExistRestriction.
[bookmark: section_aa4f4c6851914dc7a888613315446347][bookmark: _Toc174600554]Restriction_r Restriction
The Restriction_r structure is an encoding of the Restriction filters, as specified in [MS-OXCDATA] section 2.12. 
The permissible number of Restriction structures encoded in AndRestriction_r and OrRestriction_r data structures recursively included in the Restriction_r data type exceeds that of the AndRestriction_r and OrRestriction_r data structures recursively included in the Restriction filters. The semantic meaning is otherwise unchanged from the Restriction filters.
typedef struct _Restriction_r {
  DWORD rt;
  [switch_is((long)rt)] RestrictionUnion_r res;
} Restriction_r;

rt:  Encodes the RestrictType field common to all restriction structures.
res:  Encodes the actual restriction specified by the type in the rt field.
[bookmark: section_c901d60706944e219cb951ac8ca1f914][bookmark: _Toc174600555]Property Name/Property ID Structures
The following structures are used to represent named properties, as specified in [MS-OXCDATA] section 2.6.
[bookmark: section_691381e86a3344848f001c69f8a9f571][bookmark: _Toc174600556]PropertyName_r Structure
The PropertyName_r structure is an encoding of the PropertyName_r data structure, as specified in [MS-OXCDATA] section 2.6.2. The semantic meaning is unchanged from the PropertyName data structure.
typedef struct PropertyName_r {
  FlatUID_r* lpguid;
  DWORD ulReserved;
  long lID;
} PropertyName_r;

lpguid:  Encodes the GUID field of the PropertyName data structure. This field is encoded as a FlatUID_r data structure.
ulReserved:  Reserved. All clients MUST set this value to the constant 0x00000000.
lID:  Encodes the lID field of the PropertyName data structure. In addition to the definition of the LID field, this field is always present in the PropertyName_r data structure; it is not optional.
[bookmark: section_d89a706c93424a25b728f77773f360dc][bookmark: _Toc174600557]String Arrays
The following structures are used to aggregate a number of strings into a single data structure.
[bookmark: section_c993c198bf514b02b52129cfbdc41ca8][bookmark: _Toc174600558]StringsArray_r
The StringsArray_r structure is used to aggregate a number of character type strings into a single data structure.
typedef struct _StringsArray {
  [range(0,100000)] DWORD Count;
  [string, size_is(Count)] char* Strings[];
} StringsArray_r;

Count:  The number of character string structures in this aggregation. The value MUST NOT exceed 100,000.
Strings:  The list of character type strings in this aggregation. The strings in this list are NULL-terminated.
[bookmark: section_229a6d7be7ed4843b6ce7601c0b728a5][bookmark: _Toc174600559]WStringsArray_r
The WStringsArray_r structure is used to aggregate a number of wchar_t type strings into a single data structure.
typedef struct _WStringsArray {
  [range(0,100000)] DWORD Count;
  [string, size_is(Count)] wchar_t* Strings[];
} WStringsArray_r;

Count:  The number of character strings structures in this aggregation. The value MUST NOT exceed 100,000.
Strings:  The list of wchar_t type strings in this aggregation. The strings in this list are NULL-terminated.
[bookmark: section_df2b3acfc85a43aaaf8f3397bed6b2a9][bookmark: _Toc174600560]STAT
The STAT structure is used to specify the state of a table and location information that applies to that table. It appears as both an input parameter and an output parameter in many NSPI methods.
typedef struct {
  DWORD SortType;
  DWORD ContainerID;
  DWORD CurrentRec;
  long Delta;
  DWORD NumPos;
  DWORD TotalRecs;
  DWORD CodePage;
  DWORD TemplateLocale;
  DWORD SortLocale;
} STAT;

SortType:  This field contains a DWORD [MS-DTYP] value that represents a sort order. The client sets this field to specify the sort type of this table. Possible values are specified in section 2.2.1.10. The server MUST NOT modify this field.
ContainerID:  This field contains a Minimal Entry ID. The client sets this field to specify the Minimal Entry ID of the address book container that this STAT structure represents. The client obtains these Minimal Entry IDs from the server's address book hierarchy table. The server MUST NOT modify this field in any NSPI method except the NspiGetMatches method.
CurrentRec:  This field contains a Minimal Entry ID. The client sets this field to specify a beginning position in the table for the start of an NSPI method. The server sets this field to report the end position in the table after processing an NSPI method.
Delta:  This field contains a long value. The client sets this field to specify an offset from the beginning position in the table for the start of an NSPI method. If the NSPI method returns a success value, the server MUST set this field to 0.
NumPos:  This field contains a DWORD value that specifies a position in the table. The client sets this field to specify a fractional position for the beginning position in the table for the start of an NSPI method, as specified in section 3.1.4.5.2. If absolute positioning, as specified in section 3.1.4.5.1, is used, the value of this field specified by the client will be ignored by the server. The server sets this field to specify the approximate fractional position at the end of an NSPI method. This value is a zero index; the first element in a table has the numeric position 0. Although the protocol places no boundary or requirements on the accuracy of the approximation the server reports, it is recommended that implementations maximize the accuracy of the approximation to improve usability of the server for clients.
TotalRecs:  This field contains a DWORD value that specifies the number of rows in the table. The client sets this field to specify a fractional position for the beginning position in the table for the start of an NSPI method, as specified in section 3.1.4.5.2. If absolute positioning, as specified in section 3.1.4.5.1, is used, the value of this field specified by the client will be ignored by the server. The server sets this field to specify the total number of rows in the table. Unlike the NumPos field, the server MUST report this number accurately; an approximation is insufficient.
CodePage:  This field contains a DWORD value that represents a code page. The client sets this field to specify the code page the client uses for non-Unicode strings. The server MUST use this value during string handling, as specified in section 3.1.4.3. The server MUST NOT modify this field.
TemplateLocale:  This field contains a DWORD value that represents a language code identifier (LCID). The client sets this field to specify the LCID associated with the template the client wants the server to return. The server MUST NOT modify this field.
SortLocale:  This field contains a DWORD value that represents an LCID. The client sets this field to specify the LCID that it wants the server to use when sorting any strings. The server MUST use this value during sorting, as specified in section 3.1.4.3. The server MUST NOT modify this field.
[bookmark: section_0c044376848e48948a4952b1f671c710][bookmark: _Toc174600561]EntryIDs
Each object in the address book is identified by one or more EntryIDs, as specified in section 3.1.4.6. The following table lists the three types of EntryIDs.
	EntryID name 
	Description 

	MinimalEntryID
	A minimal identifier

	EphemeralEntryID
	An ephemeral identifier

	PermanentEntryID
	A permanent identifier



[bookmark: section_902ede0dbb0a46f0bf6803a6ed08d4e8][bookmark: _Toc174600562]MinimalEntryID
A Minimal Entry ID is a single DWORD value that identifies a specific object in the address book. Minimal Entry IDs with values less than 0x00000010 are used by clients as signals to trigger specific behaviors in specific NSPI methods. Except in those places where the protocol defines a specific behavior for these Minimal Entry IDs, the server MUST treat these Minimal Entry IDs as Minimal Entry IDs that do not specify an object in the address book. Specific values used in this way are defined in sections 2.2.1.8 and 2.2.1.9.
Minimal Entry IDs are created and assigned by Exchange NSPI server. The algorithm used by a server to create a Minimal Entry ID is not restricted by this protocol. A Minimal Entry ID is valid only to servers that respond to an NspiBind method, as specified in section 3.1.4.1.1, with the same server GUID as that used by the server that created the Minimal Entry ID. It is not possible for a client to predict a Minimal Entry ID.
This type is declared as follows:
typedef DWORD MinEntryID; 


[bookmark: section_7c3bd279cfaf48069e513ef45ea3c313][bookmark: _Toc174600563]EphemeralEntryID
The EphemeralEntryID structure identifies a specific object in the address book. Additionally, it encodes the server that issued the Ephemeral Entry ID and enough information for a client to make a decision as to how to display the object to an end user.
A server MUST NOT change an object's Ephemeral Entry ID during the lifetime of an NSPI session. 
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ID Type
	R1
	R2
	R3

	ProviderUID

	...

	...

	...

	R4

	Display Type

	MId


ID Type (1 byte):  The type of this ID. The value is the constant 0x87. The server uses the presence of this value to identify this EntryID as an Ephemeral Entry ID rather than a Permanent Entry ID.
R1 (1 byte):  Reserved. All clients and servers MUST set this value to the constant 0x00.
R2 (1 byte):  Reserved. All clients and servers MUST set this value to the constant 0x00.
R3 (1 byte):  Reserved. All clients and servers MUST set this value to the constant 0x00.
ProviderUID (16 bytes):  A FlatUID_r value, as specified in section 2.2.2.1, that contains the GUID of the server that issued this Ephemeral Entry ID.
R4 (4 bytes):  Reserved. All clients and servers MUST set this value to the constant 0x00000001.
Display Type (4 bytes):  The display type of the object specified by this Ephemeral Entry ID. This value is expressed in little-endian format. Valid values for this field are specified in section 2.2.1.3. The display type is not considered part of the object's identity; it is set in the EphemeralEntryID structure by the server as a convenience to clients. The server MUST set this field when this data structure is returned in an output parameter. A server MUST ignore values of this field on input parameters.
MId (4 bytes):  The Minimal Entry ID of this object, as specified in section 2.2.9.1. This value is expressed in little-endian format.
[bookmark: section_8c5917c37d6d47b986888a63bb6567dd][bookmark: _Toc174600564]PermanentEntryID
The PermanentEntryID structure identifies a specific object in the address book. Additionally, it encodes the constant Exchange Server NSPI Protocol interface (via the ProviderUID field) and enough information for a client to make a decision as to how to display the object to an end user. 
Permanent Entry IDs are transmitted in the protocol as values with the PtypBinary property type.
[bookmark: z19][bookmark: z21]A server MAY allow an object's distinguished name (DN) to change. If this happens, the server is expected to map a Permanent Entry ID that contains the original DN to the object with the new DN. When returning a PermanentEntryID structure to satisfy a query from a client, a server MUST use the most current version of an object's DN.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ID Type
	R1
	R2
	R3

	ProviderUID

	...

	...

	...

	R4

	Display Type String

	Distinguished Name (variable)

	...


ID Type (1 byte):  The type of this ID. The value is the constant 0x00. The server uses the presence of this value to identify this EntryID as a Permanent Entry ID rather than an Ephemeral Entry ID.
R1 (1 byte):  Reserved. All clients and servers MUST set this value to the constant 0x00.
R2 (1 byte):  Reserved. All clients and servers MUST set this value to the constant 0x00.
R3 (1 byte):  Reserved. All clients and servers MUST set this value to the constant 0x00.
ProviderUID (16 bytes):  A FlatUID_r value that contains the constant GUID specified in Permanent Entry ID GUID, as specified in section 2.2.1.7. 
R4 (4 bytes):  Reserved. All clients and servers MUST set this value to the constant 0x00000001.
Display Type String (4 bytes):  The display type of the object specified by this Permanent Entry ID. This value is expressed in little-endian format. Valid values for this field are specified in section 2.2.1.3. The display type is not considered part of the object's identity; it is set in the PermanentEntryID field by the server as a convenience to clients. A server MUST set this field when this data structure is returned in an output parameter. A server MUST ignore values of this field on input parameters.
[bookmark: Appendix_A_Target_2]Distinguished Name (variable):  The DN of the object specified by this Permanent Entry ID. The value is expressed as a DN, as specified in [MS-OXOABK] section 2.2.1.1.<2> 
[bookmark: section_9cad80d9b4e0470e961267608072c8d1][bookmark: _Toc174600565]NSPI_HANDLE
The NSPI_HANDLE handle is an RPC context handle that is used to share a session between method calls.
The RPC context handle is specified in [C706] section 2.3.1.
This type is declared as follows:
typedef [context_handle] void* NSPI_HANDLE; 


[bookmark: section_ad349f9fdaaf4802948d4590743763e3][bookmark: _Toc174600566]Protocol Details
The client side of this protocol is simply a pass-through. That is, no additional timers or other state is required on the client side of this protocol. Calls made by the higher-layer protocol or application are passed directly to the transport, and the results returned by the transport are passed directly back to the higher-layer protocol or application.
The client MUST call the NSPI NspiBind method, as specified in section 3.1.4.1.1, in order to obtain an RPC context handle to be used in all other NSPI methods. The NSPI NspiUnbind method, as specified in section 3.1.4.1.2, destroys this context handle. Therefore, it is not possible to call any methods other than NspiBind immediately after a call to NspiUnbind. The final method a client MUST call is NspiUnbind.
[bookmark: section_9b34ff41571749788f5a2d34211c1ad2][bookmark: _Toc174600567]Server Details
This protocol enables address book access to a directory data store. This includes address book hierarchy table discovery, address creation template table discovery, address book container access and browsing, and read and modification of individual address book entries. In addition to the abstract data model specified here, this specification uses the address book data model, as specified in [MS-OXOABK], for the server of this protocol. This specification uses the definitions of object properties specified in [MS-OXPROPS].
[bookmark: section_5439e149466840158aa29bbc60cf5522][bookmark: _Toc174600568]Abstract Data Model
None.
[bookmark: section_ff4ff42c079a45958a08aa3fbe1270bc][bookmark: _Toc174600569]Timers
This protocol does not introduce any timers. For details about any transport-level timers, see [MS-RPCE].
[bookmark: section_178c2333171546f6bf15ae2b848f9a36][bookmark: _Toc174600570]Initialization
Each server MUST have at least one unique GUID, used to identify an NSPI session, as specified in section 3.1.4.1.1. The server MUST acquire this GUID before it is prepared to respond to Exchange Server NSPI Protocol methods. The protocol does not constrain how a server acquires this GUID. The server MUST maintain this GUID for the duration of an NSPI session. Although the protocol places no further boundary or requirements on the time period for which the server maintains this GUID, it is recommended that implementations maximize this time period to improve the usability of the server for clients.
Each server maintains a set of Address Book objects and containers, as specified in [MS-OXOABK]. The Exchange Server NSPI Protocol does not constrain how a server obtains its initial data set, nor does it constrain the contents of this initial data set. How a server obtains this data is an implementation-specific detail.
When a server is prepared to respond to Exchange Server NSPI Protocol methods, it creates an RPC listening endpoint, as specified in section 2.1.
[bookmark: section_a888485d1d0442a19679875533fb9ff9][bookmark: _Toc174600571]Message Processing Events and Sequencing Rules
This protocol MUST indicate to the RPC runtime that it is to perform a strict Network Data Representation (NDR) data consistency check at target level 6.0, as specified in [MS-RPCE].
This protocol MUST indicate to the RPC runtime via the strict_context_handle property that it is to reject use of context handles created by a method of a different RPC interface than this one, as specified in [MS-RPCE].
This protocol MUST indicate to the RPC runtime via the type_strict_context_handle property that it is to reject use of context handles created by a method that creates a different type of context handle, as specified in [MS-RPCE].
This interface includes the methods listed in the following table.

	Method name
	Description

	NspiBind
	Initiates a session with the server.
Opnum: 0

	NspiUnbind
	Concludes a session with the server.
Opnum: 1

	NspiUpdateStat
	Updates the logical position in a specified table.
Opnum: 2

	NspiQueryRows
	Returns information about a set of rows in a table.
Opnum: 3

	NspiSeekEntries
	Seeks forward in a specified table and update the logical position in that table.
Opnum: 4

	NspiGetMatches
	Restricts a specific table based on input parameters and return the resultant Explicit Table.
Opnum: 5

	NspiResortRestriction
	Changes the sort order of an Explicit Table.
Opnum: 6

	NspiDNToMId
	Translates a DN to a Minimal Entry ID.
Opnum: 7

	NspiGetPropList
	Returns a list of all the properties which exist on a specific object in the address book.
Opnum: 8

	NspiGetProps
	Returns a list of properties and their values for a specific object in the address book.
Opnum: 9

	NspiCompareMIds
	Compares the position of two rows in a table.
Opnum: 10

	NspiModProps
	Modifies a property of a row in the address book.
Opnum: 11

	NspiGetSpecialTable
	Retrieves the address book hierarchy table of the server, or retrieves the address creation table from the server.
Opnum: 12

	NspiGetTemplateInfo
	Retrieves addressing or display templates from the server.
Opnum: 13

	NspiModLinkAtt
	Modifies a property of a row in the address book. Applies only to rows that support the PtypEmbeddedTable property type.
Opnum: 14

	NspiQueryColumns
	Returns the information about a list of all the properties that the server is aware of.
Opnum: 16

	NspiResolveNames
	Performs ANR on a set of provided names. The names are specified in the code page of the client.
Opnum: 19

	NspiResolveNamesW
	Performs ANR on a set of provided names. The names are specified in the Unicode character set.
Opnum: 20


No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
The server MUST return the value NotEnoughMemory if unable to complete processing a method due to errors allocating memory. 
The server MUST return the value OutOfResources if unable to complete processing a method due to lack of some non-memory resource. 
The server MUST return the value GeneralFailure if unable to complete processing a method for reasons other than those specified here or in the methods details.
The server MUST return the value Success if it completes without some other return value being specified in the method details.
[bookmark: z33]Note  Gaps in the opnum numbering sequence represent opnums that are reserved for local use. The server behavior is undefined, because it does not affect interoperability. 
[bookmark: section_45b63dd592364289827853bf5d5a66de][bookmark: _Toc174600572]NSPI Methods
[bookmark: section_d3580fbacc814e27a136b8114b25a6c4][bookmark: _Toc174600573]NspiBind (Opnum 0)
The NspiBind method initiates a session between a client and the server.
long NspiBind(
  [in] handle_t hRpc,
  [in] DWORD dwFlags,
  [in] STAT* pStat,
  [in, out, unique] FlatUID_r* pServerGuid,
  [out, ref] NSPI_HANDLE* contextHandle
);
hRpc: An RPC binding handle parameter, as specified in [C706] section 2.
dwFlags: A DWORD [MS-DTYP] value that contains a set of bit flags. The server MUST ignore values other than the bit flag fAnonymousLogin (0x00000020).
pStat: A pointer to a STAT block that describes a logical position in a specific address book container. This parameter is used to specify input parameters from the client.
pServerGuid: The value NULL or a pointer to a GUID value that is associated with the specific server.
contextHandle: An RPC context handle, as specified in section 2.2.10.
Return Values: The server returns a LONG [MS-DTYP] value that specifies the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints:
1. If the CodePage field of the input parameter pStat contains the value CP_WINUNICODE, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
2. [bookmark: z35]The server MAY make additional validations including but not limited to limiting the number of concurrent connections to any specific client or checking the data access rights of the client. If these checks fail, the server MUST return "LogonFailed".
3. [bookmark: z37]A value of "fAnonymousLogin" in the input parameter dwFlags indicates that the server did not validate that the client is an authenticated user. The server MAY ignore this request.
4. [bookmark: z39]Subject to constraint 3, the server MAY authenticate the client. How a server authenticates a client is an implementation-specific detail.
5. The CodePage field of the input parameter pStat specifies the code page to use in this session. If the server will not service connections using that code page, the server MUST return the error code "InvalidCodepage".
6. Subject to the prior constraints, if the input parameter pServerGuid is not NULL, the server MUST set the output parameter pServerGuid to a GUID associated with the server. The server MAY use a different GUID for each RPC connection. Each server MUST use a different GUID.
7. If no other return code has been set, the server MUST return the value "Success".
[bookmark: section_ec0b5b97e15248f49da16d1ccbf0ce6b][bookmark: _Toc174600574]NspiUnbind (Opnum 1)
The NspiUnbind method destroys the context handle. No other action is taken.
DWORD NspiUnbind(
  [in, out] NSPI_HANDLE* contextHandle,
  [in] DWORD Reserved
);
contextHandle: An RPC context handle as specified in section 2.2.10.
Reserved: A DWORD [MS-DTYP] value reserved for future use. MUST be ignored by the server.
Return Values: The server returns a DWORD value that specifies the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints:
1. If the server successfully destroys the context handle, the server MUST return the value "UnbindSuccess", as specified in section 2.2.1.2.
2. If the server does not successfully destroy the context handle, the server MUST return the value "UnbindFailure", as specified in section 2.2.1.2.
3. The server MUST set the output parameter contextHandle to NULL.
[bookmark: section_e0d887a8508f4234b45f4cef410fe817][bookmark: _Toc174600575]NspiGetSpecialTable (Opnum 12)
The NspiGetSpecialTable method returns the rows of a special table to the client. The special table can be an address book hierarchy table or an address creation table.
long NspiGetSpecialTable(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD dwFlags,
  [in] STAT* pStat,
  [in, out] DWORD* lpVersion,
  [out] PropertyRowSet_r** ppRows
);
hRpc: An RPC context handle, as specified in section 2.2.10.
dwFlags: A DWORD [MS-DTYP] value that contains a set of bit flags. The server MUST ignore values other than the bit flags NspiAddressCreationTemplates and NspiUnicodeStrings.
pStat: A pointer to a STAT block that describes a logical position in a specific address book container. This parameter is used to specify input parameters from the client.
lpVersion: A reference to a DWORD. On input, holds the value of the version number of the address book hierarchy table that the client has.
ppRows: A PropertyRowSet_r structure. On return, holds the rows for the table that the client is requesting.
Return Values: The server returns a LONG [MS-DTYP] value that specifies the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints:
1. If the input parameter dwFlags does not contain the value "NspiUnicodeStrings", and the input parameter dwFlags does not contain the value "NspiAddressCreationTemplates", and the CodePage field of the input parameter pStat contains the value CP_WINUNICODE, the server MUST return one of the return values specified in section 2.2.1.2.  No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or whether the server changes its state.
2. If the server returns any return value other than "Success", the server MUST return a NULL for the output parameter ppRows.
3. [bookmark: z43]The server MAY make additional validations, as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
4. If the input parameter dwFlags contains both the value "NspiAddressCreationTemplates" and the value "NspiUnicodeStrings", the server MUST ignore the value "NspiUnicodeStrings" and proceed as if the parameter dwFlags contained only the value "NspiAddressCreationTemplates".
5. If the input parameter dwFlags does not contain the value "NspiAddressCreationTemplates", the client is requesting the rows of the server's address book hierarchy table, as specified in section 3.1.4.4.3.1.
6. If the client is requesting the rows of the server's address book hierarchy table and the server is not maintaining an address book hierarchy table, the server MUST return the error code "OutOfResources".
7. [bookmark: Appendix_A_Target_3]If the client is requesting the rows of the server's address book hierarchy table, the input parameter lpVersion contains a version number. If the version number of the address book hierarchy table the server is holding matches this version number, the server MUST proceed as if the address book hierarchy table had no rows.<3>
8. [bookmark: Appendix_A_Target_4]If the client is requesting the rows of the server's address book hierarchy table and the server returns the value "Success", the server MUST set the output parameter lpVersion to the version of the server's address book hierarchy table.<4>
9. If the input parameter dwFlags contains the value "NspiAddressCreationTemplates", the client is requesting the rows of an address creation table, as specified in section 3.1.4.4.3.2.
10. There is no constraint on the parameter lpVersion if the client is requesting the rows of an address creation table.
11. If the client is requesting the rows of an address creation table, the TemplateLocale field of the input parameter pStat specifies the LCID for which the client requires an address creation table. If the server does not maintain an address creation table for that LCID, the server MUST proceed as if it maintained an address creation table with no rows for that LCID. That is, the server MUST NOT return an error code if it does not maintain an address creation table for that LCID.
12. If the input parameter dwFlags contains the value "NspiUnicodeStrings" and the client is requesting the rows of the server's address book hierarchy table, the server MUST express string-valued properties in the table as Unicode values, as specified in section 3.1.4.3.
13. If the input parameter dwFlags does not contain the value "NspiUnicodeStrings" and the client is requesting the rows of the server's hierarchy table, and the CodePage field of the input parameter pStat does not contain the value CP_WINUNICODE, the server MUST express string-valued properties as 8-bit strings in the code page specified by the field CodePage in the input parameter pStat. For more details, see section 3.1.4.3.
14. The server MUST return the following properties for each container in the hierarchy, in the order listed:
· PidTagEntryId ([MS-OXPROPS] section 2.684)
· PidTagContainerFlags ([MS-OXPROPS] section 2.645)
· PidTagDepth ([MS-OXPROPS] section 2.674)
· PidTagAddressBookContainerId ([MS-OXPROPS] section 2.512)
· PidTagDisplayName ([MS-OXPROPS] section 2.677)
· PidTagAddressBookIsMaster ([MS-OXPROPS] section 2.545)
· PidTagAddressBookParentEntryId ([MS-OXPROPS] section 2.559) (optional, and MUST be the seventh column if it is included)
15. For every row returned, all of these properties except PidTagAddressBookParentEntryId MUST be present, and each of them MUST have a value prescribed under its definition.
16. The PidTagEntryId property MUST be in the form of a PermanentEntryID structure, as section 2.2.9.3, with its PidTagDisplayType property having the value DT_CONTAINER, as specified in section 2.2.1.3, and its DN following the addresslist-dn format specification, as specified in [MS-OXOABK] section 2.2.1.1. When the object is the Global Address List (GAL) container, its DN MUST follow the gal-addrlist-dn format specification.
17. Subject to the prior constraints, the server returns the rows of the table requested by the client in the output parameter ppRows. 
18. If no error condition has been specified by the previous constraints, the server MUST return the value "Success".
[bookmark: section_9258bc619e9a49f0ab9f2b2f4fed18e2][bookmark: _Toc174600576]NspiUpdateStat (Opnum 2)
The NspiUpdateStat method updates the STAT block that represents position in a table to reflect positioning changes requested by the client.
long NspiUpdateStat(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD Reserved,
  [in, out] STAT* pStat,
  [in, out, unique] long* plDelta
);
hRpc: An RPC context handle, as specified in section 2.2.10.
Reserved: A DWORD [MS-DTYP] value. Reserved for future use. Ignored by the server. 
pStat: A pointer to a STAT block describing a logical position in a specific address book container. This parameter is used to specify both input parameters from the client and return values from the server.
plDelta: The value NULL or a pointer to a LONG [MS-DTYP] value that, on return, indicates movement within the address book container specified by the input parameter pStat. The server MUST ignore the value specified by this parameter in the request if it is not NULL.
Return Values: The server returns a long value specifying the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints: 
1. If the CodePage field of the input parameter pStat contains the value CP_WINUNICODE, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or whether the server changes its state.
2. If the server returns any return value other than "Success", the server MUST NOT modify the output parameter pStat.
3. [bookmark: z45]The server MAY make additional validations, as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
4. If the server is unable to locate the address book container specified by the ContainerID field in the input parameter pStat, the server MUST return the return value InvalidBookmark.
5. The server locates the initial position row in the table specified by the ContainerID field of the input parameter pStat as follows:
· If the row specified by the CurrentRec field of the input parameter pStat is not MID_CURRENT, the server locates that row as the initial position row using the absolute position, as specified in section 3.1.4.5.1. If the row cannot be found, the server MUST return the error "NotFound".
· If the row specified by the CurrentRec field of the input parameter pStat is MID_CURRENT, the server locates the initial position row using the fractional position specified in the NumPos field of the input parameter pStat as specified in section 3.1.4.5.2.
6. After locating the initial position row in the current table, the server locates the final position row by moving forward or backward in the table from the current position row as specified in the Delta field of the input parameter pStat, with the constraints specified in section 3.1.4.5 with respect to movement beyond the beginning or end of a table.
7. If the input parameter plDelta is not null, the server MUST set it to the actual number of rows between the initial position row and the final position row. If the input parameter plDelta is null, the server MUST set the output parameter plDelta to null.
8. The server MUST set the CurrentRec field of the parameter pStat to the Minimal Entry ID of the current row in the current address book container.
9. The server MUST set the NumPos field of the parameter pStat to the approximate numeric position of the current row of the current address book container according to section 3.1.4.5.2.
10. The server MUST set the TotalRecs field of the parameter pStat to the number of rows in the current address book container according to section 3.1.4.5.2.
11. The server MUST leave all other fields of the parameter pStat unchanged.
12. If no error condition has been specified by the previous constraints, the server MUST return "Success".
[bookmark: section_3317714f40754f04b81a10c28bc1b6f8][bookmark: _Toc174600577]NspiQueryColumns (Opnum 16)
The NspiQueryColumns method returns a list of all the properties that the server is aware of. It returns this list as an array of proptags.
long NspiQueryColumns(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD Reserved,
  [in] DWORD dwFlags,
  [out] PropertyTagArray_r** ppColumns
);
hRpc: An RPC context handle, as specified in section 2.2.10.
Reserved: A DWORD [MS-DTYP] value reserved for future use. Ignored by the server. 
dwFlags: A DWORD value that contains a set of bit flags. The server MUST ignore values other than the bit flag NspiUnicodeProptypes.
ppColumns: A reference to a PropertyTagArray_r structure. On return, contains a list of proptags.
Return Values: The server returns a LONG [MS-DTYP] value that specifies the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints: 
1. If the server returns any return value other than "Success", the server MUST return a NULL for the output parameter ppColumns.
2. [bookmark: z47]The server MAY make additional validations, as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
3. If the input parameter dwFlags contains the bit flag NspiUnicodeProptypes, then the server MUST report the property type of all string valued properties as PtypString.
4. If the input parameter dwFlags does not contain the bit flag NspiUnicodeProptypes, the server MUST report the property type of all string valued properties as PtypString8.
5. Subject to the prior constraints, the server MUST construct a list of all the properties it is aware of and return that list as a PropertyTagArray_r structure, as specified in section 2.2.2.2, in the output parameter ppColumns. The protocol does not constrain the order of this list.
6. If no error condition has been specified by the previous constraints, the server MUST return the value "Success".
[bookmark: section_24d9b8d9654f4579b102f185d763243f][bookmark: _Toc174600578]NspiGetPropList (Opnum 8)
The NspiGetPropList method returns a list of all the properties that have values on a specified object.
long NspiGetPropList(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD dwFlags,
  [in] DWORD dwMId,
  [in] DWORD CodePage,
  [out] PropertyTagArray_r** ppPropTags
);
hRpc: An RPC context handle, as specified in section 2.2.10.
dwFlags: A DWORD [MS-DTYP] value that contains a set of bit flags. The server MUST ignore values other than the bit flag fSkipObjects.
dwMId: A DWORD value that contains a Minimal Entry ID.
CodePage: The code page in which the client wants the server to express string values properties.
ppPropTags: A PropertyTagArray_r value. On return, it holds a list of properties.
Return Values: The server returns a long value that specifies the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints: 
1. If the server returns any return value other than "Success", the server MUST return a NULL for the output parameter ppPropTags.
2. [bookmark: z49]The server MAY make additional validations, as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
3. If the input parameter dwFlags contains the bit flag fSkipObjects, the server MUST NOT return any proptags with the PtypEmbeddedTable property type in the output parameter ppPropTags.
4. The server MUST return all string valued properties as having the PtypString8 property type. 
5. Subject to the previous constraints, the server constructs a list of all proptags that correspond to values on the object specified in the input parameter dwMId. The server MUST return this list in the output parameter ppPropTags. The protocol does not constrain the order of this list.
6. If no error condition has been specified by the previous constraints, the server MUST return the value "Success".
[bookmark: section_fdad11ee3b5d41a8852efc32f4a3eabe][bookmark: _Toc174600579]NspiGetProps (Opnum 9)
The NspiGetProps method returns an address book row that contains a set of the properties and values that exist on an object.
long NspiGetProps(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD dwFlags,
  [in] STAT* pStat,
  [in, unique] PropertyTagArray_r* pPropTags,
  [out] PropertyRow_r** ppRows
);
hRpc: An RPC context handle, as specified in section 2.2.10.
dwFlags: A DWORD [MS-DTYP] value that contains a set of bit flags. The server MUST ignore values other than the bit flags fEphID and fSkipObjects.
pStat: A pointer to a STAT block that describes a logical position in a specific address book container. This parameter is used to specify input parameters from the client.
pPropTags: The value NULL or a reference to a PropertyTagArray_r value. Contains list of the proptags of the properties that the client wants to be returned.
ppRows: A reference to a PropertyRow_r value. Contains the address book container row the server returns in response to the request.
Return Values: The server returns a long value specifying the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints:
1. If the CodePage field of the input parameter pStat is set to the value CP_WINUNICODE and the type of the proptags in the input parameter pPropTags is PtypString8, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
2. If the server returns any return values other than "ErrorsReturned" (0x00040380) or "Success" (0x00000000), the server MUST return a NULL for the output parameter ppRows. 
3. [bookmark: z51]The server MAY make additional validations, as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
4. [bookmark: Appendix_A_Target_5]If the server is unable to locate the address book container specified by the ContainerID field in the input parameter pStat, the server MUST return the value "InvalidBookmark" (0x80040405).<5>
5. The server constructs a list of proptags for which it will return property values as follows:
· If the input parameter pPropTags is not NULL, the client is requesting the server return only those properties and their values in the output parameter ppRows. The server MUST use this list.
· If the input parameter pPropTags is NULL, the client is requesting that the server constructs a list of proptags on its behalf. The server MUST construct a proptag list that is exactly the same list that would be returned to the client in the pPropTags output parameter of the NspiGetPropList method, as specified in section 3.1.4.1.6, using the following parameters as inputs to the NspiGetPropList method:
· The NspiGetProps parameter hRpc is used as the NspiGetPropList parameter hRpc. 
· The NspiGetProps parameter dwFlags is used as the NspiGetPropList parameter dwFlags. 
· The CurrentRec field of the NspiGetProps parameter pStat is used as the NspiGetPropList parameter dwMId.
· The CodePage field of the NspiGetProps parameter pStat is used as the NspiGetPropList parameter CodePage.
· If a call to the NspiGetPropList method with these parameters and relaxed constraints would return anything other than "Success", the server MUST return that error code as the return value for the NspiGetProps method.
6. If the length of the list of proptags for which the server will return property values is excessive, the server MUST return the return value "TableTooBig", as specified in [MS-OXCDATA] section 2.4. The Exchange Server NSPI Protocol does not prescribe what constitutes an excessive length.
7. If input parameter dwFlags contains the bit flag fEphID and the PidTagEntryId property is present in the list of proptags, the server MUST return the values of the PidTagEntryId property in the Ephemeral Entry ID format, as specified in section 2.2.9.2.
8. If input parameter dwFlags does not contain the bit flag fEphID and the PidTagEntryId property is present in the list of proptags, the server MUST return the values of the PidTagEntryId property in the Permanent Entry ID format, as specified in section 2.2.9.3.
9. The server MUST return string-valued properties in the code page specified in CodePage field of the input parameter pStat, as specified in section 3.1.4.3.
10. If the server can locate the object specified in the CurrentRec field of the input parameter pStat, the server MUST return values associated with this object.
11. If the server is unable to locate the object specified in the CurrentRec field of the input parameter pStat, the server MUST proceed as if the object was located but had no values for any properties.
12. If a property in the proptag list has no value on the object specified by the CurrentRec field, the server MUST return the error code ErrorsReturned. The server MUST set the aulPropTag member corresponding to the proptag with no value with the proptag that has no value with the PtypErrorCode property type. Subject to the prior constraints, the server constructs a list of properties and their values as a single PropertyRow_r structure with a one-to-one order preserving correspondence between the values in the proptag list specified by input parameters and the returned properties and values in the RowSet. If there are duplicate properties in the proptag list, the server MUST create duplicate values in the parameter RowSet. The server MUST return this RowSet in the output parameter ppRows.
13. If no other return values have been specified by these constraints, the server MUST return the return value "Success".
[bookmark: section_7608782e1d4e4b8799514b3bd47cf6a0][bookmark: _Toc174600580]NspiQueryRows (Opnum 3)
The NspiQueryRows method returns to the client a number of rows from a specified table. Although the protocol places no boundary or requirements on the minimum number of rows the server returns, implementations SHOULD return as many rows as possible to improve usability of the server for clients.
long NspiQueryRows(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD dwFlags,
  [in, out] STAT* pStat,
  [in, range(0,100000)] DWORD dwETableCount,
  [in, unique, size_is(dwETableCount)] 
    DWORD* lpETable,
  [in] DWORD Count,
  [in, unique] PropertyTagArray_r* pPropTags,
  [out] PropertyRowSet_r** ppRows
);
hRpc: An RPC context handle, as specified in section 2.2.10.
dwFlags: A DWORD [MS-DTYP] value that contains a set of bit flags. The server MUST ignore values other than the bit flags fEphID and fSkipObjects.
pStat: A pointer to a STAT block that describes a logical position in a specific address book container. This parameter is used to specify both input parameters from the client and return values from the server.
dwETableCount: A DWORD value that contains the number values in the input parameter lpETable. This value is limited to 100,000.
lpETable: An array of DWORD values, representing an Explicit Table, as specified in section 3.1.4.4.2.
Count: A DWORD value that contains the number of rows the client is requesting.
pPropTags: The value NULL or a reference to a PropertyTagArray_r value, containing a list of the proptags of the properties that client requires to be returned for each row returned.
ppRows: A reference to a PropertyRowSet_r value. Contains the address book container rows that the server returns in response to the request.
Return Values: The server returns a long value specifying the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints: 
1. If the CodePage field of the input parameter pStat contains the value CP_WINUNICODE, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or whether the server changes its state.
2. If the input parameter lpETable is NULL and the input parameter Count is 0, the server MUST return one of the return values specified in section 2.2.1.2.  No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
3. If the server returns any return values other than "Success", the server MUST return a NULL for the output parameter ppRows and MUST NOT modify the output parameter pStat.
4. [bookmark: z53]The server MAY make additional validations, as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
5. If the input parameter lpETable is NULL and the server is unable to locate the address book container specified by the ContainerID field in the input parameter pStat, the server MUST return the return value "InvalidBookmark".
6. The server constructs a list of proptags for which it will return property values as follows:
· If the input parameter pPropTags is not NULL, the client is requesting the server return only those properties and their values in the output parameter ppRows. The server MUST use this list.
· If the input parameter pPropTags is NULL, the client is requesting that the server construct a list of proptags on its behalf. This server MUST use the following proptag list (using proptags defined in [MS-OXPROPS]), in this order: {PidTagAddressBookContainerId ([MS-OXOABK] section 2.2.2.3), PidTagObjectType ([MS-OXOABK] section 2.2.3.10), PidTagDisplayType ([MS-OXOABK] section 2.2.3.11), PidTagDisplayName ([MS-OXOABK] section 2.2.3.1) with the property type PtypString8, as specified in [MS-OXCDATA] section 2.11.1, PidTagPrimaryTelephoneNumber ([MS-OXOCNTC] section 2.2.1.4.5) with the property type PtypString8, PidTagDepartmentName ([MS-OXOABK] section 2.2.4.6) with the property type PtypString8, PidTagOfficeLocation ([MS-OXOABK] section 2.2.4.5) with the property type PtypString8}
7. If the input parameter lpETable is NULL, the server MUST use the table specified by the input parameter pStat when constructing the return parameter ppRows.
8. If the input parameter lpETable is not NULL, it contains an Explicit Table. The server MUST use that table when constructing the return parameter ppRows.
9. The client MUST NOT specify the value 0 for the input parameter Count if the input parameter lpETable is not NULL.
10. If there are any rows that satisfy the client's query, the server MUST return at least one row.
11. The server MUST return rows in the order they exist in the table being used.
12. If the server is using the table specified by the input parameter pStat, the server MUST process rows starting from the current position in the table specified in that parameter (including any values of the Delta field).
13. If the server is using the table specified by the input parameter lpETable, the server MUST process rows starting from the beginning of the table.
14. The server constructs a RowSet. Each row in the RowSet corresponds to a row in the table specified by input parameters. The rows in the RowSet are in a one-to-one order preserving correspondence with the rows in the table specified by input parameters. The Rows placed into the RowSet are exactly those rows that would be returned to the client in the ppRows output parameter of the NspiGetProps method, as specified in section 3.1.4.1.7, using the following parameters:
· The NspiQueryRows parameter hRpc is used as the NspiGetProps parameter hRpc. 
· The NspiQueryRows parameter dwFlags is used as the NspiGetProps parameter dwFlags. 
· The NspiQueryRows input parameter pStat is used as the NspiGetProps parameter pStat The CurrentRec field is set to the Minimal Entry ID of the row being returned.
· The list of proptags the server constructs as specified by constraint 6 is used as the NspiGetProps parameter pPropTags.
· If a call to the NspiGetProps method with these parameters would return any value other than "Success" or "ErrorsReturned", the server MUST return that error code as the return value for the NspiQueryRows method. Otherwise, the server MUST return the RowSet constructed in the output parameter ppRows.
15. If the server has no rows that satisfy this query, the server MUST return the value "Success" and place a PropertyRowSet_r with rows according to the input parameter "Count" in the output parameter ppRows, in which the property type fields of the property are all set to 0x0000000A (PtypErrorCode).
16. If the server is using the table specified by the input parameter pStat, the server MUST update the status of the table. This update MUST be exactly the same update that would occur via the NspiUpdateStat method with the following parameters: 
· The NspiQueryRows parameter hRpc is used as the NspiUpdateStat parameter hRpc.
· The value 0 is used as NspiUpdateStat parameter Reserved.
· The NspiQueryRows output parameter pStat (as modified by the prior constraints) is used as the NSPIUpdateStat parameter pStat. The number of rows returned in the NspiQueryRows output parameter ppRows is added to the Delta field.
· The value NULL is used as the NspiUpdateStat parameter plDelta. 
17. If no other return values have been specified by these constraints, the server MUST return the return value "Success".
[bookmark: section_c0e611341082430da3a4814d3965d7a2][bookmark: _Toc174600581]NspiSeekEntries (Opnum 4)
The NspiSeekEntries method searches for and sets the logical position in a specific table to the first entry greater than or equal to a specified value. Optionally, it might also return information about rows in the table.
long NspiSeekEntries(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD Reserved,
  [in, out] STAT* pStat,
  [in] PropertyValue_r* pTarget,
  [in, unique] PropertyTagArray_r* lpETable,
  [in, unique] PropertyTagArray_r* pPropTags,
  [out] PropertyRowSet_r** ppRows
);
hRpc: An RPC context handle, as specified in section 2.2.10.
Reserved: A DWORD [MS-DTYP] value that is reserved for future use. Ignored by the server.
pStat: A pointer to a STAT block that describes a logical position in a specific address book container. This parameter is used to both specify input parameters from the client and return values from the server.
pTarget: A PropertyValue_r value holding the value that is being sought.
lpETable: The value NULL or a PropertyTagArray_r value. It holds a list of Minimal Entry IDs that comprises a restricted address book container.
pPropTags: The value NULL or a reference to a PropertyTagArray_r value. Contains list of the proptags of the columns that client wants to be returned for each row returned.
ppRows: A reference to a PropertyRowSet_r value. Contains the address book container rows the server returns in response to the request. 
Return Values: The server returns a long value specifying the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints:
1. If the CodePage field of the input parameter pStat contains the value CP_WINUNICODE, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or whether the server changes its state.
2. If the input parameter lpETable is not NULL and does not contain an Explicit Table both containing a restriction of the table specified by the input parameter pStat and sorted as specified by the SortType field of the input parameter pStat, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or whether the server changes its state.
3. If the input parameter Reserved contains any value other than 0, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
4. If the server returns any return values other than "Success", the server MUST return a NULL for the output parameter ppRows and MUST NOT modify the value of the parameter pStat.
5. [bookmark: z55]The server MAY make additional validations as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
6. If the server is unable to locate the address book container specified by the ContainerID field in the input parameter pStat, the server MUST return the return value "InvalidBookmark".
7. If the input parameter lpETable is NULL, the server MUST use the table specified by the input parameter pStat when constructing the return parameter ppRows.
8. If the input parameter lpETable contains an Explicit Table, the server MUST use that table when constructing the return parameter ppRows.
9. If the SortType field in the input parameter pStat has any value other than SortTypeDisplayName, the server MUST return the value GeneralFailure.
10. If the SortType field in the input parameter pStat is SortTypeDisplayName and the property specified in the input parameter pTarget is anything other than PidTagDisplayName (with either the Property Type PtypString8 or PtypString), the server MUST return the value GeneralFailure.
11. The server MUST locate the first row in the specified table that has a value equal to or greater than the value specified in the input parameter pTarget. If no such row exists, the server MUST return the value NotFound.
12. If a qualifying row was found, the server MUST update the position information in the parameter pStat. 
· The server MUST set CurrentRec field of the parameter pStat to the Minimal Entry ID of the qualifying row.
· If the server is using the table specified by the input parameter lpETable, the server MUST set the NumPos field of the parameter pStat to the accurate numeric position of the qualifying row in the table.
· If the server is using the table specified by the input parameter pStat, the server MUST set the NumPos field of the parameter pStat to the approximate numeric position of the qualifying row in the table.
· The TotalRecs field of the parameter pStat MUST be set to the accurate number of records in the table used.
· The server MUST NOT modify any other fields of the parameter pStat.
13. If the input parameter pPropTags is not NULL, the client is requesting the server to return an PropertyRowSet_r. Subject to the prior constraints, the server MUST construct an PropertyRowSet_r to return to the client in the output parameter ppRows. The server MUST return the same PropertyRowSet_r for the NspiSeekEntries method after the NspiQueryRows method is called using the input parameters. This PropertyRowSet_r MUST be exactly the same PropertyRowSet_r that would be returned in the ppRows parameter of a call to the NspiQueryRows method with the following parameters:
· The NspiSeekEntries parameter hRpc is used as the NspiQueryRows parameter hRpc.
· The value fEphID is used as the NspiQueryRows parameter dwFlags.
· The NspiSeekEntries output parameter pStat (as modified by the prior constraints) is used as the NspiQueryRows parameter pStat.
· If the NspiSeekEntries input parameter lpETable is NULL, the value 0 is used as the NspiQueryRows parameter dwETableCount, and the value NULL is used as the NspiQueryRows parameter lpETable.
· If the NspiSeekEntries input parameter lpETable is not NULL, the server constructs an explicit table from the table specified by lpETable by copying rows in order from lpETable to the new explicit table. The server begins copying from the row specified by the NumPos field of the pStat parameter (as modified by the prior constraints), and continues until all remaining rows are added to the new table. The number of rows in this new table is used as the NspiQueryRows parameter dwETableCount, and the new table is used as the NspiQueryRows lpETable parameter.
· The list of Minimal Entry IDs in the input parameter lpETable starting with the qualifying row is used as the NspiQueryRows parameter lpETable. These Minimal Entry IDs are expressed as a simple array of DWORD values rather than as a PropertyTagArray_r value. Note that the qualifying row is included in this list, and that the order of the Minimal Entry IDs from the input parameter lpETable is preserved in this list.
· If the NspiSeekEntries input parameter lpETable is NULL, the server MUST choose a value for the NspiQueryRows parameter Count. The Exchange Server NSPI Protocol does not prescribe any particular algorithm. The server MUST use a value greater than 0.
· If the NspiSeekEntries input parameter lpETable is not NULL, the value used for the NspiQueryRows parameter dwETableCount is used for the NspiQueryRows parameter Count.
· The NspiSeekEntries parameter pPropTags is used as the NspiQueryRows parameter pPropTags.
· Note that the server MUST NOT modify the return value of the NspiSeekEntries output parameter pStat in any way in the process of constructing the output PropertyRowSet_r.
14. If no other return values have been specified by these constraints, the server MUST return the return value "Success".
[bookmark: section_7c1b62dc77044923ad957ce01c02fc90][bookmark: _Toc174600582]NspiGetMatches (Opnum 5)
The NspiGetMatches method returns an Explicit Table. The rows in the table are chosen based on two possible criteria: a restriction applied to an address book container or the values of a property on a single object that hold references to other objects.
long NspiGetMatches(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD Reserved1,
  [in, out] STAT* pStat,
  [in, unique] PropertyTagArray_r* pReserved,
  [in] DWORD Reserved2,
  [in, unique] Restriction_r* Filter,
  [in, unique] PropertyName_r* lpPropName,
  [in] DWORD ulRequested,
  [out] PropertyTagArray_r** ppOutMIds,
  [in, unique] PropertyTagArray_r* pPropTags,
  [out] PropertyRowSet_r** ppRows
);
hRpc: An RPC context handle, as specified in section 2.2.10.
Reserved1: A DWORD [MS-DTYP] value reserved for future use.
pStat: A reference to a STAT block describing a logical position in a specific address book container.
pReserved: A PropertyTagArray_r reserved for future use. 
Reserved2: A DWORD value reserved for future use. Ignored by the server. 
Filter: The value NULL or an Restriction_r value. Holds a logical restriction to apply to the rows in the address book container specified in the pStat parameter.
lpPropName: The value NULL or a PropertyName_r value. Holds the property to be opened as a restricted address book container.
ulRequested: A DWORD value. Contains the maximum number of rows to return in a restricted address book container.
ppOutMIds: A PropertyTagArray_r value. On return, it holds a list of Minimal Entry IDs that comprise a restricted address book container.
pPropTags: The value NULL or a reference to a PropertyTagArray_r value. Contains list of the proptags of the columns that client wants to be returned for each row returned. 
ppRows: A reference to a PropertyRowSet_r value. Contains the address book container rows the server returns in response to the request. 
Return Values: The server returns a long value specifying the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints: 
1. If the CodePage field of the input parameter pStat contains the value CP_WINUNICODE, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
2. If the input parameter Filter contains any value other than NULL and the SortType field of the input parameter pStat contains any value other than SortTypeDisplayName or SortTypePhoneticDisplayName, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
3. If the input parameter Reserved1 contains any value other than 0, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
4. If the server returns any return values other than "Success", the server MUST return a NULL for the output parameters ppOutMIds and ppRows and MUST NOT modify the value of the parameter pStat. 
5. [bookmark: z57]The server MAY make additional validations as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
6. If the input SortType field of the input parameter pStat is SortTypeDisplayName or SortTypePhoneticDisplayName and the server is unable to locate the address book container specified by the ContainerID field in the input parameter pStat, the server MUST return the return value "InvalidBookmark".
7. If the input parameter Filter is not NULL, the server constructs an Explicit Table as follows:
· If the input parameter Filter is not NULL, it specifies a restriction, as specified in [MS-OXCDATA]. 
· If the server will not support the call because the search is too complex, the server MUST return the value "TooComplex". The Exchange Server NSPI Protocol does not prescribe what constitutes a search that is too complex.
· If the server will support the filter, it identifies the rows in the table specified in the input parameter pStat for which the filter is true. The Minimal IDs of these rows are inserted into the Explicit Table, maintaining their order from the originating table.
8. If the input parameter Filter is NULL, the server constructs an Explicit Table as follows:
· The Minimal Entry ID of the object the server is to read values from is specified in the CurrentRec field of the input parameter pStat. The server MUST ignore any values of the Delta and ContainerID fields while locating the object. That is, the server MUST NOT enforce any restrictions that the object specified by CurrentRec is actually in any particular address book container. Note that this is an exceptional use of the pStat parameter for position, not conforming to the semantic meaning of this field in all other NSPI methods.
· If the input parameter lpPropName is not NULL, it specifies the property the server is to read the values of. If the input parameter lpPropName is NULL, the server is to read the values of the property specified as a proptag value in the ContainerID field of the input parameter pStat. Note, this is an exceptional use of this field, not conforming to the semantic meaning of this field in all other NSPI methods.
11. The server locates the object specified by the client, subject to these restraints. If the server is unable to locate the object, the server MUST return the value "GeneralFailure".
12. If the SortType field of the input parameter pStat has the value SortTypeDisplayName_W and the server does not support modifying the value of the property specified by the client on the object specified by the client, the server MUST return the value "NotSupported".
13. If the server is unable to locate objects in the address book based on values of the property specified by the client on the object specified by the client, the server MUST return the value "NotSupported". Note that this constraint is intended to apply in the case where the server is categorically unable to locate specific objects based on the value of the property, not the case where the property has no values.
14. The server reads the values of the property specified by the client. For each value read, the server tries to locate a specific object in the address book corresponding to this value. If a specific object is located, the Minimal ID of the object is inserted into the Explicit Table. 
15. The server MUST sort the rows in Explicit Table by the Unicode representation of the value of the PidTagDisplayName property, as specified in section 3.1.4.3).
16. If the server returns "Success", the server MUST set the ContainerID field of the output parameter pStat to be equal to the CurrentRec field of the input parameter pStat. The server MUST NOT modify any other fields in this parameter.
17. If the number of rows in the constructed Explicit Table is greater than the input parameter ulRequested, the server MUST return the value "TableTooBig".
18. If the server will not support the call because the Explicit Table is larger than the server will allow, the server MUST return the value "TableTooBig". The Exchange Server NSPI Protocol does not prescribe what constitutes a table that is too large.
19. If the input parameter proptags is not NULL, the client is requesting the server to return a PropertyRowSet_r. Subject to the prior constraints, the server MUST construct a PropertyRowSet_r to return to the client in the output parameter ppRows. This PropertyRowSet_r MUST be exactly the same PropertyRowSet_r that would be returned in the ppRows parameter of a call to the NspiQueryRows method with the following parameters:
· The NspiGetMatches parameter hRpc is used as the NspiQueryRows parameter hRpc. 
· The value "fEphID" is used as the NspiQueryRows parameter dwFlags.
· The NspiGetMatches output parameter pStat (as modified by the prior constraints) is used as the NspiQueryRows parameter pStat.
· The number of Minimal Entry IDs in the constructed Explicit Table is used as the NspiQueryRows parameter dwETableCount.
· The constructed Explicit Table is used as the NspiQueryRows parameter lpETable. These Minimal Entry IDs are expressed as a simple array of DWORD values rather than as a PropertyTagArray_r value.
· The number of Minimal Entry IDs in the constructed Explicit Table is used as the NspiQueryRows parameter Count.
· The NspiGetMatches parameter proptags is used as the NspiQueryRows parameter proptags.
Note that the server MUST NOT modify the return value of the NspiGetMatches method output parameter pStat in any way in the process of constructing the output PropertyRowSet_r. The server MUST return the constructed PropertyRowSet_r in the output parameter ppRows.
20. If no other return values have been specified by these constraints, the server MUST return the return value "Success".
[bookmark: section_f27da8875a9f49cd8c5f49717b856769][bookmark: _Toc174600583]NspiResortRestriction (Opnum 6)
The NspiResortRestriction method applies a sort order to the objects in a restricted address book container.
long NspiResortRestriction(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD Reserved,
  [in, out] STAT* pStat,
  [in] PropertyTagArray_r* pInMIds,
  [in, out] PropertyTagArray_r** ppOutMIds
);
hRpc: An RPC context handle, as specified in section 2.2.10.
Reserved: A DWORD [MS-DTYP] value reserved for future use. Ignored by the server.
pStat: A reference to a STAT block describing a logical position in a specific address book container.
pInMIds: A PropertyTagArray_r value. It holds a list of Minimal Entry IDs that comprise a restricted address book container.
ppOutMIds: A PropertyTagArray_r value. The server MUST ignore this parameter in the request. On return, it holds a list of Minimal Entry IDs that comprise a restricted address book container.
Return Values: The server returns a long value that specifies the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints: 
1. If the CodePage field of the input parameter pStat contains the value CP_WINUNICODE, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
2. If the SortType field of the input parameter pStat contains any value other than "SortTypeDisplayName" or "SortTypePhoneticDisplayName", the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
3. If the server returns any return values other than "Success", the server MUST return a NULL for the output parameter ppOutMIds and MUST NOT modify the value of the parameter pStat
4. [bookmark: z59]The server MAY make additional validations as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
5. [bookmark: Appendix_A_Target_6]If the SortType field in the input parameter pStat has any value other than SortTypeDisplayName, the server SHOULD<6> return the value "GeneralFailure".
6. The server constructs an Explicit Table as follows:
· The server locates all the objects specified in the Explicit Table specified by the input value pInMIds. The server MUST ignore any Minimal Entry IDs that do not specify an object.
· For each such object located, a row is inserted into the constructed Explicit Table.
· The server MUST sort the rows in the constructed explicit table by the property specified in the SortType field of the input parameter pStat.
7. The server MUST return the constructed Explicit Table in the output parameter ppOutMIds.
8. The server MUST update the output parameter pStat as follows:
· The TotalRecs field is set to the number of objects in the constructed Explicit Table.
· If the object specified by the CurrentRec field of the input parameter pStat is not in the constructed Explicit Table, the CurrentRec field of the output parameter pStat is set to the value MID_BEGINNING_OF_TABLE and the NumPos field of the output parameter pStat is set to the value 0.
· The server MUST NOT modify any other fields of the output parameter pStat.
9. If no other return values have been specified by these constraints, the server MUST return the return value "Success".
[bookmark: section_db96abd85ca14a2581c29059ac1fa4fa][bookmark: _Toc174600584]NspiCompareMIds (Opnum 10)
The NspiCompareMIds method compares the position in an address book container of two objects identified by Minimal Entry ID and returns the value of the comparison.
long NspiCompareMIds(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD Reserved,
  [in] STAT* pStat,
  [in] DWORD MId1,
  [in] DWORD MId2,
  [out] long* plResult
);
hRpc: An RPC context handle, as specified in section 2.2.10.
Reserved: A DWORD [MS-DTYP] value reserved for future use. Ignored by the server. 
pStat: A reference to a STAT block that describes a logical position in a specific address book container.
MId1: A DWORD value containing a Minimal Entry ID.
MId2: A DWORD value containing a Minimal Entry ID.
plResult: A pointer to a long value which specifies the compare result of the NspiCompareMids method. 
Return Values: The server returns a long value that specifies the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints: 
1. If the CodePage field of the input parameter pStat contains the value CP_WINUNICODE, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
2. [bookmark: z61]The server MAY make additional validations as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
3. If the server is unable to locate the address book container specified by the ContainerID field in the input parameter pStat, the server MUST return the return value "InvalidBookmark".
4. If the server returns any return value other than "Success", the protocol does not constrain the value in the return parameter plResult.
5. If the server is unable to locate the objects specified by the input parameters MId1 or MId2 in the table specified by the ContainerID field of the input parameter pStat, the server MUST return the return value "GeneralFailure".
6. If the position of the object specified by MId1 comes before the position of the object specified by MId2 in the table specified by the field ContainerID of the input parameter pStat, the server MUST return a value less than 0 in the output parameter plResult.
7. If the position of the object specified by MId1 comes after the position of the object specified by MId2 in the table specified by the field ContainerID of the input parameter pStat, the server MUST return a value greater than 0 in the output parameter plResult.
8. If the position of the object specified by MId1 is the same as the position of the object specified by MId2 in the table specified by the ContainerID field of the input parameter pStat (that is, they specify the same object), the server MUST return a value of 0 in the output parameter plResult.
9. If no other return values have been specified by these constraints, the server MUST return the return value "Success".
[bookmark: section_a4e056f07d054e6d8acb65751e83a071][bookmark: _Toc174600585]NspiDNToMId (Opnum 7)
The NspiDNToMId method maps a set of DNs to a set of Minimal Entry ID.
long NspiDNToMId(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD Reserved,
  [in] StringsArray_r* pNames,
  [out] PropertyTagArray_r** ppMIds
);
hRpc: An RPC context handle, as specified in section 2.2.10.
Reserved: A DWORD [MS-DTYP] value reserved for future use. Ignored by the server.
pNames: A StringsArray_r value. It holds a list of strings that contain DNs, as specified in [MS-OXOABK].
ppMIds: A PropertyTagArray_r value. On return, it holds a list of Minimal Entry IDs.
Return Values: The server returns a long value that specifies the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints: 
1. If the server returns any return value other than "Success", the server MUST return the value NULL in the return parameter ppMIds.
2. [bookmark: z63]The server MAY make additional validations as described in section 5). If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
3. If the server is unable to locate an appropriate mapping between a DN and a Minimal Entry ID, it MUST map the DN to a Minimal Entry ID with the value 0.
4. The server constructs a list of Minimal Entry IDs to return to the client, encoding the mappings. The list is in a one-to-one order preserving correspondence with the list of DNs in the input parameter pNames. The server MUST return the list in the output parameter ppMIds.
5. If no other return values have been specified by these constraints, the server MUST return the return value "Success".
[bookmark: section_59a1612831da432699e4665823c91b74][bookmark: _Toc174600586]NspiModProps (Opnum 11)
The NspiModProps method is used to modify the properties of an object in the address book. This protocol supports the PidTagUserX509Certificate ([MS-OXPROPS] section 2.1055) and PidTagAddressBookX509Certificate ([MS-OXPROPS] section 2.575) properties.
long NspiModProps(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD Reserved,
  [in] STAT* pStat,
  [in, unique] PropertyTagArray_r* pPropTags,
  [in] PropertyRow_r* pRow
);
hRpc: An RPC context handle, as specified in section 2.2.10.
Reserved: A DWORD [MS-DTYP] value reserved for future use. 
pStat: A reference to a STAT block that describes a logical position in a specific address book container.
pPropTags: The value NULL or a reference to a PropertyTagArray_r. Contains list of the proptags of the columns that client requests all values to be removed from. 
pRow: A PropertyRow_r value. Contains an address book row.
Return Values: The server returns a long value that specifies the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints:
1. If the CodePage field of the input parameter pStat contains the value CP_WINUNICODE, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
2. If the server returns any return value other than "Success", the server MUST NOT modify any properties of any objects in the address book.
3. [bookmark: z65]The server MAY make additional validations, as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
4. If the Reserved input parameter contains any value other than 0, the server MUST ignore the value.
5. If the input parameter pPropTags is NULL, the server MUST return the value "InvalidParameter".
6. If the server is unable to locate the object specified by the CurrentRec field of the input parameter pStat, the server MUST return the value "InvalidParameter".
7. If the server is able to locate the object, but will not allow modifications to the object due to its display type, the server MUST return the value "InvalidObject".
8. The server MUST remove all values for all properties specified in the input parameter pPropTags from the object specified by the field CurrentRec in the input parameter pStat.
9. The server MUST remove all values for all properties specified in the input parameter pRow from the object specified by the field CurrentRec in the input parameter pStat.
10. [bookmark: Appendix_A_Target_7]The server SHOULD<7> add all values for all properties specified in the input parameter pRow to the object specified by the field CurrentRec in the input parameter pStat.
11. If the server is unable to apply the modifications specified for any other reason, the server MUST return the value "AccessDenied".
12. If no other return values have been specified by these constraints, the server MUST return the return value "Success".
[bookmark: section_0199960fc38b4c7da959623705edc4af][bookmark: _Toc174600587]NspiModLinkAtt (Opnum 14)
The NspiModLinkAtt method modifies the values of a specific property of a specific row in the address book. This protocol only supports modifying the value of the PidTagAddressBookMember property ([MS-OXOABK] section 2.2.6.1) of an address book object with display type DT_DISTLIST and the PidTagAddressBookPublicDelegates property ([MS-OXOABK] section 2.2.5.5) of an address book object with display type DT_MAILUSER.
long NspiModLinkAtt(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD dwFlags,
  [in] DWORD ulPropTag,
  [in] DWORD dwMId,
  [in] BinaryArray_r* lpEntryIds
);
hRpc: An RPC context handle, as specified in section 2.2.10.
dwFlags: A DWORD [MS-DTYP] value that contains a set of bit flags. The server MUST ignore values other than the bit flag fDelete.
ulPropTag: A DWORD value. Contains the proptag of the property that the client wants to modify.
dwMId: A DWORD value that contains the Minimal Entry ID of the address book row that the client wants to modify.
lpEntryIds: A BinaryArray_r value. Contains a list of EntryIDs to be used to modify the requested property on the requested address book row. These EntryIDs can be either Ephemeral Entry IDs or Permanent Entry IDs or both.
Return Values: The server returns a long value that specifies the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints:
1. [bookmark: Appendix_A_Target_8]If the server returns any return value other than Success (0x00000000), the server MUST NOT modify any properties of any objects in the address book.<8>
2. [bookmark: z67]The server MAY make additional validations, as described in section 5). If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
3. If the input parameter ulPropTag does not specify a proptag the server recognizes, the server MUST return NotFound.
4. If the server is unable to locate the object specified by the input parameter dwMId, the server MUST return the value InvalidParameter (0x80070057).
5. If the server is able to locate the object, but will not allow modifications to the object due to its display type, the server MUST NOT modify any properties of any objects in the address book, and the server MUST return the value AccessDenied (0x80070005).
6. If the input parameter dwFlags contains the bit value fDelete, the server MUST remove all values specified by the input parameter lpEntryIDs from the property specified by ulPropTag for the object specified by input parameter dwMId. The server MUST ignore any values specified by lpEntryIDs that are not present on the object specified by dwMId.
7. If the input parameter dwFlags does not contain the bit value fDelete, the server MUST add all values specified by the input parameter lpEntryIDs to the property specified by ulPropTag for the object specified by the input parameter dwMId. The server MUST ignore any values specified by lpEntryIDs that are already present on the object specified by dwMId.
8. If the server is unable to apply the modifications specified, the server MUST return the value AccessDenied (0x80070005).
9. If no other return values have been specified by these constraints, the server MUST return the return value Success (0x00000000).
[bookmark: section_dad1d897800a4ca6b557d1b0bb1b3136][bookmark: _Toc174600588]NspiResolveNames (Opnum 19)
The NspiResolveNames method takes a set of string values in an 8-bit character set and performs ANR (as specified in section 3.1.4.7 on those strings. The server reports the Minimal Entry ID that is the result of the ANR process. Certain property values are returned for any valid Minimal Entry IDs identified by the ANR process.
long NspiResolveNames(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD Reserved,
  [in] STAT* pStat,
  [in, unique] PropertyTagArray_r* pPropTags,
  [in] StringsArray_r* paStr,
  [out] PropertyTagArray_r** ppMIds,
  [out] PropertyRowSet_r** ppRows
);
hRpc: An RPC context handle, as specified in section 2.2.10.
Reserved: A DWORD [MS-DTYP] reserved for future use. 
pStat: A reference to a STAT block that describes a logical position in a specific address book container.
pPropTags: The value NULL or a reference to a PropertyTagArray_r value containing a list of the proptags of the columns that the client requests to be returned for each row returned. 
paStr: A StringsArray_r value. Specifies the values the client is requesting the server to do ANR on. The server MUST apply any necessary character set conversion as specified in section 3.1.4.3.
ppMIds: A PropertyTagArray_r value. On return, contains a list of Minimal Entry IDs that match the array of strings, as specified in the input parameter paStr. 
ppRows: A reference to a PropertyRowSet_r structure (section 2.2.4), which contains the address book container rows that the server returns in response to the request. 
Return Values: The server returns a long value that specifies the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints: 
1. If the CodePage field of the input parameter pStat contains the value CP_WINUNICODE, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
2. If the input parameter Reserved contains any value other than 0, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
3. If the server returns any return value other than "Success", the server MUST return the value NULL in the return parameters ppMIds and ppRows.
4. [bookmark: z73]The server MAY make additional validations, as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
5. If the server is unable to locate the address book container specified by the ContainerID field in the input parameter pStat, the server MUST return the return value "InvalidBookmark".
6. The server constructs a list of the Minimal Entry IDs specified in section 2.2.1.9 to return to the client. These Minimal Entry IDs are those that result from applying the ANR process, as specified in section 3.1.4.7, to the strings in the input parameter paStr. The server MUST return this list of Minimal Entry IDs in the output parameter ppMIds.
7. Subject to the prior constraints, the server MUST construct a PropertyRowSet_r structure to return to the client.
8. If no other return values have been specified by these constraints, the server MUST return the return value "Success".
[bookmark: section_b0bcb777fac8472c8a3a166868526f5e][bookmark: _Toc174600589]NspiResolveNamesW (Opnum 20)
The NspiResolveNamesW method takes a set of string values in the Unicode character set and performs ANR (as specified in section 3.1.4.7) on those strings. The server reports the Minimal Entry IDs that are the result of the ANR process. Certain property values are returned for any valid Minimal Entry IDs identified by the ANR process. 
long NspiResolveNamesW(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD Reserved,
  [in] STAT* pStat,
  [in, unique] PropertyTagArray_r* pPropTags,
  [in] WStringsArray_r* paWStr,
  [out] PropertyTagArray_r** ppMIds,
  [out] PropertyRowSet_r** ppRows
);
hRpc: An RPC context handle, as specified in section 2.2.10.
Reserved: A DWORD [MS-DTYP] value that is reserved for future use.
pStat: A reference to a STAT block that describes a logical position in a specific address book container.
pPropTags: The value NULL or a reference to a PropertyTagArray_r containing a list of the proptags of the columns that the client requests to be returned for each row returned. 
paWStr: A WStringsArray_r value. Specifies the values on which the client is requesting that the server perform ANR. The server MUST apply any necessary character set conversion, as specified in section 3.1.4.3.
ppMIds: A PropertyTagArray_r value. On return, contains a list of Minimal Entry IDs that match the array of strings, as specified in the input parameter paWStr
ppRows: A reference to a PropertyRowSet_r structure (section 2.2.4), which contains the address book container rows that the server returns in response to the request. 
Return Values: The server returns a long value that specifies the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints: 
1. If the CodePage field of the input parameter pStat contains the value CP_WINUNICODE, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
2. If the input parameter Reserved contains any value other than 0, the server MUST return one of the return values specified in section 2.2.1.2. No further constraints are applied to server processing of this method; in this case server behavior is undefined. Note especially that there is no constraint on the data the server returns in any output parameter other than the return value, nor is there any constraint on how or if the server changes its state.
3. If the server returns any return value other than "Success", the server MUST return the value NULL in the return parameters ppMIdsand ppRows.
4. [bookmark: z75]The server MAY make additional validations, as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
5. If the server is unable to locate the address book container specified by the ContainerID field in the input parameter pStat, the server MUST return the return value "InvalidBookmark".
6. The server constructs a list of the Minimal Entry IDs specified in section 2.2.1.9 to return to the client. These Minimal Entry IDs are those that result from the ANR process, as specified in section 3.1.4.7, to the strings in the input parameter paWStr. The server MUST return this list of Minimal Entry IDs in the output parameter ppMIds.
7. Subject to the prior constraints, the server MUST construct a PropertyRowSet_r structure to return to the client.
8. If no other return values have been specified by these constraints, the server MUST return the return value "Success".
[bookmark: section_9bd7fcd1f9314cad94a89bf294c552ff][bookmark: _Toc174600590]NspiGetTemplateInfo (Opnum 13)
The NspiGetTemplateInfo method returns information about template objects in the address book.
long NspiGetTemplateInfo(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD dwFlags,
  [in] DWORD ulType,
  [string, in, unique] char* pDN,
  [in] DWORD dwCodePage,
  [in] DWORD dwLocaleID,
  [out] PropertyRow_r** ppData
);
hRpc: An RPC context handle, as specified in section 2.2.10.
dwFlags: A DWORD [MS-DTYP] value that contains a set of bit flags. The server MUST ignore values other than the bit flags TI_EMT, TI_SCRIPT and TI_TEMPLATE.
ulType: A DWORD value. Specifies the display type of the template for which information is requested.
pDN: The value NULL or the DN of the template requested. The value is NULL-terminated. 
dwCodePage: A DWORD value. Specifies the code page of the template for which information is requested.
dwLocaleID: A DWORD value. Specifies the LCID, as specified in [MS-LCID], of the template for which information is requested.
ppData: A reference to a PropertyRow_r value. On return, it contains the information requested.
Return Values: The server returns a long value that specifies the return status of the method.
Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as specified in [MS-RPCE].
Server Processing Rules: Upon receiving this message, the server MUST process the data from the message subject to the following constraints: 
1. If the server returns any return value other than "Success", the server MUST return the value NULL in the return parameters ppData.
2. [bookmark: z77]The server MAY make additional validations, as described in section 5. If the server chooses to limit the visibility of data based on these validations, the server MUST proceed as if that data did not exist in the address book.
3. If the codepage specified in the dwCodePage input parameter has the value CP_WINUNICODE, the server MUST return the value "InvalidCodePage".
4. If the server does not recognize the codepage specified in the dwCodePage input parameter as a supported code page, the server MUST return the value "InvalidCodePage".
5. The server locates the template for which it will return information as follows: 
· If the input parameter pDN is NULL, the server MUST choose an appropriate template object for the display type specified by the input parameter ulType and for the LCID specified by the input parameter dwLocaleID. The specific choice of an appropriate template object is defined by local policy, and is not constrained by the Exchange Server NSPI Protocol. For details, see [MS-OXOABKT].
· If the input parameter pDN is not NULL, it specifies the DN of a template object in the address book. In this case, the server MUST ignore the input parameters ulType and dwLocaleID. 
· If the server is unable to locate a specific object based on these constraints, the server MUST return the value "InvalidLocale".
6. The server constructs a PropertyRow_r value. The property values in this PropertyRow_r are specified as follows:
· If the input parameter dwFlags has the TI_SCRIPT bit set, the client is requesting the script data for the template, as specified in [MS-OXOABKT]. The server MUST place this data into the PropertyRow_r structure.
· If the input parameter dwFlags has the TI_TEMPLATE bit set, the client is requesting the user interface data for the template, as specified in the [MS-OXOABKT]. The server MUST place this data into the PropertyRow_r structure.
7. The server MUST return the constructed PropertyRow_r structure in the output parameter ppData.
8. If no other return values have been specified by these constraints, the server MUST return the return value "Success".
[bookmark: section_4b44da4895a54f509dec2fc728c58733][bookmark: _Toc174600591]Required Properties
For every object in the address book, the server MUST minimally maintain the following properties, which are defined in [MS-OXOABK]:
· PidTagObjectType ([MS-OXOABK] section 2.2.3.10)
· PidTagInitialDetailsPane ([MS-OXOABK] section 2.2.3.33)
· PidTagAddressBookDisplayNamePrintable ([MS-OXOABK] section 2.2.3.7)
· PidTagAddressBookContainerId ([MS-OXOABK] section 2.2.2.3)
· PidTagEntryId ([MS-OXOABK] section 2.2.3.2)
· PidTagInstanceKey ([MS-OXOABK] section 2.2.3.6)
· PidTagSearchKey ([MS-OXOABK] section 2.2.3.5)
· PidTagRecordKey ([MS-OXOABK] section 2.2.3.4)
· PidTagAddressType ([MS-OXOABK] section 2.2.3.13)
· PidTagEmailAddress ([MS-OXOABK] section 2.2.3.14)
· PidTagDisplayType ([MS-OXOABK] section 2.2.3.11)
· PidTagTemplateid ([MS-OXOABK] section 2.2.3.3)
· PidTagTransmittableDisplayName ([MS-OXOABK] section 2.2.3.8)
· PidTagDisplayName ([MS-OXOABK] section 2.2.3.1)
· PidTagMappingSignature ([MS-OXOABK] section 2.2.3.32)
· PidTagAddressBookObjectDistinguishedName ([MS-OXOABK] section 2.2.3.15)
The server MUST maintain the following properties, which are defined in [MS-OXOABK], for every object that has a PidTagObjectType property with a value of DISTLIST, value, as specified in [MS-OXOABK] section 2.2.3.10:
· PidTagContainerContents ([MS-OXOABK] section 2.2.6.3)
· PidTagContainerFlags ([MS-OXOABK] section 2.2.2.1)
If the server does not conform to the preceding rules, client behavior is undefined.
[bookmark: section_5bc58da5c33744d8b1c7f4eee7021ab3][bookmark: _Toc174600592]String Handling
A server holds values of properties for objects. Some of these values are strings. The Exchange Server NSPI Protocol allows string values to be represented as 8-bit character strings or Unicode strings. All string valued properties held by a server are categorized as either natively of property type PtypString or natively of property type PtypString8. Those properties natively of property type PtypString8 are further categorized as either case-sensitive or case-insensitive. 
[bookmark: section_bfa0bc4e4338449c83904927f1ada889][bookmark: _Toc174600593]Required Native Categorizations
Unless otherwise specified in this document, the Exchange Server NSPI Protocol does not constrain the categorization of properties, and clients and servers MUST NOT require specific categorizations. However, because the protocol intends for clients to be able to persist sorted string values across multiple NSPI connections to a server, a server MUST NOT modify its native categorization for string properties after the categorization has been determined, as doing so would lead to inconsistent behavior of NSPI methods across multiple NSPI sessions.
The following table lists those properties categorization for which is specified by the Exchange Server NSPI Protocol, and the categorization of those properties.
	Property  name
	String categorization 

	PidTagDisplayName
	PtypString

	PidTagAddressBookPhoneticDisplayName
	PtypString

	PidTagAddressBookDisplayNamePrintable
	PtypString8, case sensitive



[bookmark: section_9d87d510dcde495c95cf287e15488732][bookmark: _Toc174600594]Required Code Page Support
While processing an NSPI method, a server associates a code page with all strings expressed as parameters in the method. The server MUST at a minimum be able to convert string representations between the Unicode code page CP_WINUNICODE and the TELETEX code page CP_TELETEX. Clients specify a code page for 8-bit strings in input parameters to server methods. This protocol does not specify conversion rules. However, because the protocol allows for clients to be able to reliably access data that has been so converted, after a server uses an algorithm, it MUST NOT modify its algorithm for converting between string representations in different code pages. Doing so would lead to inconsistent behavior of NSPI methods across multiple NSPI sessions.
[bookmark: section_8609fd33b11748b28d415c9863a64d4e][bookmark: _Toc174600595]Conversion Rules for String Values Specified by the Server to the Client
When returning string values as output parameters for methods where the method allows for both Unicode and 8-bit character representations, the server MUST adhere to the following conversion rules.
If the native type of a property is PtypString and the client has requested that property with the type PtypString8, the server MUST convert the Unicode representation to an 8-bit character representation in the code page specified by the CodePage field of the pStat parameter, or the dwCodePage parameter prior to returning the value.
If the native type of a property is PtypString and the client has requested that property with the type PtypString, the server MUST return the Unicode representation unmodified.
If the native type of a property is PtypString8 and the client has requested that property with the type PtypString, the server MUST convert the 8-bit character representation to a Unicode representation prior to returning the value. The 8-bit character representation is considered to be in the code page CP_TELETEX.
If the native type of a property is PtypString8 and the client has requested that property with the type PtypString8, the server MUST return the 8-bit character representation unmodified.
[bookmark: z23]Servers MAY undertake other conversions and substitutions for specific properties.
The following table lists NSPI methods that are capable of returning string values in both Unicode and 8-bit character representations, and the methods for which the conversion rules are applicable.
	Method name
	Description 

	NspiGetTemplateInfo
	String values can be returned in the output parameter ppData. 

	NspiGetSpecialTable
	String values can be returned in the output parameter ppRows. 

	NspiGetProps
	String values can be returned in the output parameter ppRows. 

	NspiQueryRows
	String values can be returned in the output parameter ppRows. 

	NspiGetMatches
	String values can be returned in the output parameter ppRows. 

	NspiSeekEntries
	String values can be returned in the output parameter ppRows. 

	NspiResolveNames
	String values can be returned in the output parameter ppRows. 

	NspiResolveNamesW
	String values can be returned in the output parameter ppRows. 



[bookmark: section_38a1650c3c594f94b21981fe57e26035][bookmark: _Toc174600596]Conversion Rules for String Values Specified by the Client to the Server
When accepting strings as input parameters for methods where the method allows for both Unicode and 8-bit character representations, the server MUST follow these conversion rules:
If the native type of a property is PtypString8 and the client has specified a property value with the type PtypString, the server MUST convert the Unicode representation to an 8-bit character representation in the code page specified by the CodePage field of the pStat parameter prior to processing the method.
If the native type of a property is PtypString8 and the client has specified a property value with the type PtypString8, the server MUST leave the 8-bit character representation unmodified while processing the method.
If the native type of a property is PtypString and the client has specified a property value with the type PtypString8, the server MUST convert the 8-bit character representation to a Unicode representation prior to processing the method. The 8-bit character representation is considered to be in the code page specified by the CodePage field of the pStat parameter.
If the native type of a property is PtypString and the client has specified a property value with the type PtypString, the server MUST leave the Unicode representation unmodified while processing the method.
The following table lists NSPI methods that are capable of specifying input parameters that contain string values in both Unicode and 8-bit character representations, and methods for which these conversion rules are applicable.
	Method name
	Description 

	NspiModProps
	String values can be specified in the input parameter pRow. 

	NspiSeekEntries
	String values can be specified in the input parameter pTarget. 

	NspiGetMatches
	String values can be specified in the input parameter Filter. 

	NspiResolveNames
	String values can be specified in the input parameter paStr. 

	NspiResolveNamesW
	String values can be specified in the input parameter paWStr. 



[bookmark: section_f0c9a906754d482ba9ed5eb31ddfc3dd][bookmark: _Toc174600597]String Comparison
Servers MUST implement comparison between string values. This comparison yields the normal semantics of less than, equal to, and greater than. 
[bookmark: section_f33760f8ea7642f49274639f7681cbf1][bookmark: _Toc174600598]Unicode String Comparison
[bookmark: z25]Servers MUST compare Unicode representations of strings as specified in [MS-UCODEREF]. All methods in which a server is required to perform such Unicode string comparison include LCID as part of the input parameters. The server SHOULD compare the strings using the closest supported LCID. The Exchange Server NSPI Protocol does not constrain how a server chooses this closest supported LCID. However, because the protocol intends for clients to be able to persist sorted string values across multiple NSPI connections to a server, a server SHOULD NOT modify its algorithm for choosing the closest LCID after an algorithm has been implemented because doing so would lead to inconsistent behavior of NSPI methods across multiple NSPI sessions. The server MUST minimally support the LCID NSPI_DEFAULT_LOCALE flag, as specified in section 2.2.1.4. When making comparisons of Unicode string values, if the server uses LCID NSPI_DEFAULT_LOCALE, the server MUST also use the NSPI_DEFAULT_LOCALE_COMPARE_FLAGS flag for the comparison.  Otherwise, the server MUST use the NSPI_NON_DEFAULT_LOCALE_COMPARE_FLAGS flag.
[bookmark: section_7d4fd6a157504d58a09054825ae45119][bookmark: _Toc174600599]8-Bit String Comparison
When making comparisons of 8-bit character string values, the server MUST compare according to the following series of steps:
If the strings are categorized as case-sensitive, the server MUST implement a case-sensitive buffer comparison. If the strings are case-insensitive, the server MUST implement a case-insensitive buffer comparison. The Exchange Server NSPI Protocol does not constrain how a server implements these comparison functions. However, because the protocol intends for clients to be able to persist sorted string values across multiple NSPI connections to a server, a server MUST NOT modify its algorithm for either of these buffer comparison functions, because doing so would lead to inconsistent behavior of NSPI methods across multiple NSPI sessions.
If the buffer representing one of the string values is shorter than the buffer representing the other string value, then the server considers the string value represented by the shorter buffer to be less than the string represented by the longer buffer. No further comparison steps are taken.
1. If the buffers representing the two string values have equal lengths, the comparison function implemented by the server MUST determine that one buffer is less than the other, or that the buffers are equal.
If the comparison function determines that one of the buffers is less than the other, then the server considers the string value represented by the lesser buffer to be less than the string value represented by the greater buffer.  No further comparison steps are taken.
If the comparison function determines that the two buffers are equal, the server considers the two string values to be equal.
[bookmark: section_f0204911cabb47e7b652f9c4d2ddad9e][bookmark: _Toc174600600]String Sorting
Every server MUST support sorting on Unicode string representations for the PidTagDisplayName property. If the server supports the SortTypePhoneticDisplayName sort order, it MUST also support sorting on Unicode string representation for the PidTagAddressBookPhoneticDisplayName property. The server MUST minimally support the LCID NSPI_DEFAULT_LOCALE flag. This sorting conforms to that specified in [MS-UCODEREF].
[bookmark: section_2aad066b09014a15ba75ecf145212d97][bookmark: _Toc174600601]Tables
In order to achieve the primary goal of the Exchange Server NSPI Protocol (browsing address book containers), the protocol defines a data model based on tables. Two types of tables are used in the data model for the Exchange Server NSPI Protocol.
[bookmark: section_a2b77aecf25f45aa895837487cec53cb][bookmark: _Toc174600602]Status-Based Tables
The first type of table specified by the Exchange Server NSPI Protocol is the Status-Based Table. This table directly represents an address book container. A Status-Based Table is specified in the protocol by the use of a STAT data structure. The data structure identifies an address book container, the order of objects in the address book container as exposed by the table, and positioning in the address book container. 
The server is not required to maintain any state for a Status-Based Table; the state of the table is entirely specified by the fields of the STAT data structure, which is passed back and forth between the client and the server. Therefore, a single client can have multiple instances of an "open" address book container, each specified by a separate STAT structure.
[bookmark: section_66058b4eae224937b99c8f32c1006bc7][bookmark: _Toc174600603]Explicit Tables
The second type of table specified by the Exchange Server NSPI Protocol is the Explicit Table. This table is implemented as a list of Minimal Entry IDs. The list is instantiated in the protocol either as an array of DWORDs or as a PropertyTagArray_r structure. This kind of table is used to implement Restriction-Based Explicit Tables and Property Value-Based Explicit Tables.
[bookmark: section_2a5f091832f4442b8928ec15b5f0e985][bookmark: _Toc174600604]Restriction-Based Explicit Tables
When a restriction on a table is specified to the server via the NspiGetMatches method, the server locates all the objects that meet the restriction criteria, and the list of the Minimal Entry IDs of those objects is constructed. This list is passed back to the client. Therefore, these Explicit Tables are "snapshots" of the base table. That is, if an object is placed in an Explicit Table, even if the object is deleted from the server, the Minimal Entry ID that specifies that object will still be in the Explicit Table.
[bookmark: section_d8c19ce8cfd34a72834c9462cac845d4][bookmark: _Toc174600605]Property Value-Based Explicit Tables
When a specific object in the address book and a property on that object is specified to the server via the NspiGetMatches method, the server reads the values of that property and constructs a list of Minimal Entry IDs based on a mapping between the values and other objects in the address book. This is not possible on all properties, only on those properties for which the server can establish a reference between the value of the property and some object in the address book. The Exchange Server NSPI Protocol does not constrain how a server establishes this reference. Clients can identify the properties that the server can map by trying to obtain such a table. The server MUST return an error when it cannot make such a mapping, as specified in section 3.1.4.1.10. 
[bookmark: section_8452cf2dd6584e94b788b08ee59be6b3][bookmark: _Toc174600606]Specific Instantiations of Special Tables
The Exchange Server NSPI Protocol requires servers to maintain two special tables, in addition to any tables they maintain for normal browsing. The two required special tables are specified in the following two sections.
[bookmark: section_28b6235f4f5e48b985462d39b294dbcb][bookmark: _Toc174600607]Address Book Hierarchy Table
Each server MUST maintain an address book hierarchy table, as specified in [MS-OXOABK] section 3.1.4.1.
[bookmark: section_7d88092de0414491895b6ddb59320f33][bookmark: _Toc174600608]Address Creation Table
Each server MUST maintain an address creation table to clients, as specified in [MS-OXOABKT].
[bookmark: section_0aa591e470a94473a0653abc9bdfca3c][bookmark: _Toc174600609]Positioning in a Table
In order to achieve the primary goal of the Exchange Server NSPI Protocol (browsing address lists), in addition to the concept of tables, a server MUST support the concept of position in Status-Based and Explicit Tables. Each such table has a Current Position, which specifies a specific row in the table. Methods such as NspiQueryRows return values based on the Current Position in the table, and methods such as NspiUpdateStat and NspiQueryRows modify the Current Position. Positioning in an Explicit Table is defined specifically in the semantics of the NSPI methods that operate on them. 
When specifying position in a STAT structure–based table, the client sets the CurrentRec, Delta, ContainerID, SortType, and SortLocale fields of the STAT structure to specify to the server the Current Position in the table at the beginning of an NSPI method. The server sets the CurrentRec, NumPos, and TotalRecs fields to specify to the client the Current Position in the table at the end of an NSPI method. There are two ways for the client to specify position in a STAT structure-based table in the Exchange Server NSPI Protocol: Absolute Positioning and Fractional Positioning.
[bookmark: section_4be99c1d94ee4dee8a4c50ee84646e1b][bookmark: _Toc174600610]Absolute Positioning
The first form of specifying position in a STAT structure–based table is called Absolute Positioning. The client specifies this type of positioning by setting any value in the field CurrentRec field other than MID_CURRENT. The server uses the following steps to identify the Current Position specified by the client:
1. [bookmark: z27]First, the server MUST determine the LCID that it supports that is closest to the LCID specified by SortLocale. The server MAY choose this closest LCID in any way.
2. The server sorts the objects in the address book container specified by ContainerID by the sort type specified in the SortType field and the LCID specified in step 1 of section 3.1.4.5.2.
3. The server identifies the number of objects in the sorted table. The server reports this in the TotalRecs field of the STAT structure.
4. The server locates the object specified by the CurrentRec field. If the server cannot locate the object, the Current Position in the table is undefined. The server MUST support the special Minimal Entry ID MID_BEGINNING_OF_TABLE and MID_END_OF_TABLE, as specified in section 2.2.1.8. 
5. The server verifies that the object located in step 4 is in the container specified by the ContainerID field. If the server cannot verify this, the Current Position in the table is undefined.
6. The server moves the Current Position by the number of rows specified by the absolute value of the Delta field of the STAT structure. If the value of Delta is negative, the Current Position is moved toward the beginning of the table. If the value of Delta is positive, the Current Position is moved toward the end of the table. A Delta with the value 0 results in no change to the Current Position.
7. If applying the Delta as described in step 6 would move the Current Position to be before the first row of the table, the server sets the Current Position to the first row of the table and sets the CurrentRec to the Minimal Entry ID of the object that occupies the first row of the table.
8. If applying the Delta as described in step 6 would move the Current Position to be after the end of the table, the server sets the Current Position to a location one row past the last valid row of the table and sets the CurrentRec to the value MID_END_OF_TABLE.
9. The server sets the field CurrentRec to the Minimal Entry ID of the object occupying the row specified by the Current Position.
The server identifies the numeric row of the Current Position in the sorted table. This numeric row is 0-based. That is, the first valid row in the table has the numeric position 0. This is the Numeric Position of the Current Position of the table. The server reports this in the NumPos field of the STAT structure. The server MAY report an approximate value for the Numeric Position. Although the protocol places no boundary or requirements on the accuracy of the approximate value the server returns, it is recommended that implementations maximize the accuracy of the approximation to improve usability of the Exchange NSPI server for clients. 
[bookmark: section_e39a55b226f44087a45362ff80ed15c3][bookmark: _Toc174600611]Fractional Positioning
[bookmark: z29]The second form of specifying position in a STAT structure–based table is called Fractional Positioning. The client specifies this type of positioning by setting the field CurrentRec to the value MID_CURRENT. Fractional positioning is defined as only an approximation in the Exchange Server NSPI Protocol. The server MAY be inaccurate both in locating a row based on fractional positioning and in reporting the resultant actual fractional position. The server uses the following steps to identify the Current Position specified by the client:
1. [bookmark: z31]First, the server identifies the LCID it supports that is closest to the LCID specified by the SortLocale field. The server MAY choose this closest LCID in any way.
2. The server sorts the objects in the address book container specified by the ContainerID field by the sort type specified in the SortType field and the LCID specified in step 1 of section 3.1.4.3.
3. The server identifies the number of objects in the sorted table. The server reports this in the TotalRecs field of the STAT structure.
4. The server calculates the Intended Numeric Position in the table as the TotalRecs reported by the server multiplied by the NumPos field of the STAT structure divided by the value of TotalRecs as specified by the client. The value is truncated to its integral part.
5. If the Intended Numeric Position thus calculated is greater than TotalRecs, the intended Intended Numeric Position is TotalRecs (that is, the last row in the table).
After the server has identified the Intended Numeric Position, the server sets Numeric Position to an approximation of that value. Although the protocol places no boundary or requirements on the accuracy of the approximation the server uses to set the Numeric Position, it is recommended that implementations maximize accuracy of the approximation to improve usability of the server for clients. 
6. The server moves the Current Position to the row chosen in step 6.
7. The server moves the Current Position by the number of rows specified by the absolute value of the Delta field of the STAT structure. If the value of Delta is negative, the Current Position is moved toward the beginning of the table. If the value of Delta is positive, the Current Position is moved toward the end of the table. A Delta field with the value 0 results in no change to the Current Position.
8. If applying the Delta as described in step 8 would move the Current Position to be before the beginning of the table, the server sets the Current Position to the beginning of the table and sets the CurrentRec field to the Minimal Entry ID of the object occupying the first row of the table.
9. If applying Delta as described in step 8 would move the Current Position to be after the end of the table, the server sets the Current Position to a location one row past the last valid row of the table and sets the CurrentRec to the value MID_END_OF_TABLE.
10. The server sets the field CurrentRec to the Minimal Entry ID of the object occupying the row specified by the Current Position.
11. The server identifies the numeric row of the Current Position in the sorted table. This numeric row is 0-based. That is, the first valid row in the table has the numeric position 0. This is the Numeric Position of the Current Position of the table. The server reports this in the NumPos field of the STAT structure.
[bookmark: section_51cb04e397b14d25b802aed64b4db86f][bookmark: _Toc174600612]Object Identity
Objects maintained by the server need to be identified in the Exchange Server NSPI Protocol. The Exchange Server NSPI Protocol makes use of the following three kinds of identifiers, differentiated primarily by their intended lifespan:
· Permanent Identifier: Specifies a specific object across all NSPI sessions. The display type of the object is included in the Permanent Identifier.
· Ephemeral Identifier: Specifies a specific object in a single NSPI session. The display type of the object is included in the Ephemeral Identifier. A server MUST NOT change an object's Ephemeral Identifier during the lifetime of an NSPI session. If a server uses the same NSPI session GUID (that is, the GUID returned by the server in the pServerGuid output parameter of the NspiBind method) for multiple NSPI sessions, the server MUST use the same Ephemeral Identifier for the same specific object in both sessions.
· Minimal Identifier: Specifies a specific object in a single NSPI session. A server MUST NOT change an object's Minimal Entry ID during the lifetime of an NSPI session. If a server uses the same NSPI session GUID (that is, the GUID returned by the server in the in the pServerGuid output parameter of the NspiBind method) for multiple NSPI sessions, the server MUST use the same Minimal Identifier for the same specific object in all sessions.
[bookmark: section_3bafaf2c373a433fafe6927e1be80cb6][bookmark: _Toc174600613]Ambiguous Name Resolution
Ambiguous name resolution (ANR) is a process by which a server maps a string to a specific object in a specific address book container. The string is provided by the client and is interpreted by the server as specified in section 3.1.4.3.
The specific algorithm used to map the string to an object is not prescribed by this protocol and is left to each server instance to define as local policy. The intended usage is an end user of a computer program entering free-form text and finding a unique object in an address book most closely matching the user's requirements. The specific result of an ANR process is a Minimal Entry ID. There are three possible outcomes to the ANR process:
1. If the server is unable to map the string to any objects in the address book, the result of the ANR process is the Minimal Entry ID with the value MID_UNRESOLVED.
2. If the server is able to map the string to more than one object in the address book, the result of the ANR process is the Minimal Entry ID with the value MID_AMBIGUOUS.
3. If the server is able to map the string to exactly one object in the address book, the result of the ANR process is the Minimal Entry ID with the value MID_RESOLVED.
The server MUST map the NULL string to the Minimal Entry ID MID_UNRESOLVED.
The server MUST map a zero-length string to the Minimal Entry ID MID_UNRESOLVED.
[bookmark: section_1f5759e97f01453791e70f1fc52d4569][bookmark: _Toc174600614]Client Details
[bookmark: section_4b2c3ddb80854b34986757e1ac4e24a2][bookmark: _Toc174600615]Abstract Data Model
None.
[bookmark: section_c0f21f2b4ff142a2850e7b744f01bbec][bookmark: _Toc174600616]Timers
None.
[bookmark: section_aad66597cd184fddb92a38e755af8350][bookmark: _Toc174600617]Initialization
None.
[bookmark: section_1726e9d7e4ef490ba6765ba91e4dd836][bookmark: _Toc174600618]Message Processing Events and Sequencing Rules
In order to obtain any context handle to the server, the NspiBind method MUST be called initially. With the contextHandle parameter returned from this method, it is possible to call any associated methods on the handle, as described in section 4. 
This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency check at target level 6.0, as specified in [MS-RPCE]. 
This protocol MUST indicate to the RPC runtime via the strict_context_handle attribute that it is to reject use of context handles created by a method of a different RPC interface than this one, as specified in [MS-RPCE]. 
This protocol MUST indicate to the RPC runtime via the type_strict_context_handle attribute that it is to reject use of context handles created by a method that creates a different type of context handle, as specified in [MS-RPCE]. 
[bookmark: section_03d60254f80143149511403be63baab5][bookmark: _Toc174600619]Timer Events
For details about any transport-level timers, see [MS-RPCE].
[bookmark: section_5c3616a4111a4dfb9eedc1cfcaf4664c][bookmark: _Toc174600620]Other Local Events
None.
[bookmark: section_d18a84d38d71493c96dc990b9da472ad][bookmark: _Toc174600621]Protocol Examples
This section shows the call sequence for obtaining the address book hierarchy table at the NSPI layer. It further shows how a messaging client can use this table to retrieve properties of the Address Book objects by using the NspiQueryRows method.
It is assumed that the messaging client has established an RPC connection to the server.
Note  Only parts of the details of client request parameters and server response parameters are documented, to show only the relevant information.
[image: NSPI session message sequence example. NspiBind requests are sent from client to server. NspiBind responses are sent from server to client.]
Figure 3: NSPI session message sequence example
The client initiates a session to the server by calling the NspiBind method. Messaging clients send the following values to the server.
Note   Only relevant information, and not all parameters, are shown.
dwFlags        0x00000000        unsigned long
pStat
    hIndex           0x00000000        unsigned long
    ContainerID      0x00000000        unsigned long
    CurrentRec       0x00000000        unsigned long
    Delta            0x00000000        long
    NumPos           0x00000000        unsigned long
    TotalRecs        0x00000000        unsigned long
    CodePage         0x000004e4        unsigned long
    TemplateLocale   0x00000409        unsigned long
    SortLocale       0x00000409        unsigned long
pServerGuid   
<pointer to an array of 16 unsigned char to be returned by the server>
The server responds to the NspiBind method call with return code "Success" and a valid server GUID. Typical parameters are as follows.
pServerGuid
   [0x0]0xab 0xbc 0x8b 0x86 0x79 0x33 0xc4 0x48 0xa1 0xef 
   [0xa]0x1b 0x53 0xe6 0x3b 0xdc 0x46

contextHandle
   <a token>
The client requests the address book hierarchy table from the server by calling the NspiGetSpecialTable method with dwFlags parameter typically set to the NspiUnicodeStrings bit flag. More importantly, the client does not set the NspiAddressCreationTemplates flag. Typical parameters are as follows.
dwFlags        0x00000004        unsigned long
pStat
     hIndex             0x00000000        unsigned long
     ContainerID        0x00000000        unsigned long
     CurrentRec         0x00000000        unsigned long
     Delta              0x00000000        long
     NumPos             0x00000000        unsigned long
     TotalRecs          0x00000000        unsigned long
     CodePage           0x000004e4        unsigned long
     TemplateLocale     0x00000409        unsigned long
     SortLocale         0x00000409        unsigned long
ppRows
<memory location that holds _PropertyRowSet_r** returned by the 
  server>
The server responds to the NspiGetSpecialTable method call with return code "Success", and the rows of the address book hierarchy table typically have the following columns set, as described in [MS-OXOABK]: 
· PidTagEntryId
· PidTagContainerFlags
· PidTagDepth
· PidTagAddressBookContainerId
· PidTagDisplayName
· PidTagAddressBookIsMaster. 
In this example, the server did not return the optional PidTagAddressBookParentEntryId property. Typical parameters are as follows.
Note   Only relevant information, and not all return parameters, are shown.
ppRows_PropertyRowSet_r * *
      {
          cRows=0x00000007 
          aRow=<a pointer to an array of rows> 
      }  
In this example, the server has returned a total of seven rows, denoted as [0x0]...[0x6], and each row typically looks as follows.
aRow[0x0] ... [0x6]_PropertyRow_r  * 
     {
         Reserved=0x00000000 
         cValues=0x00000006 
         lpProps=<a pointer to an array of columns>
     }
In this example, the server has returned a column set of six properties, and each column looks as follows.
[0x0]_PropertyValue_r
      {
      ulPropTag=PidTagEntryId
        dwAlignPad=0x00000000 
        Value={...} 
      }
[0x1]_PropertyValue_r
     {
        ulPropTag=PidTagContainerFlags
        dwAlignPad=0x00000000 
        Value={...} 
     }
[0x2]_PropertyValue_r
     {
       ulPropTag=PidTagDepth
       dwAlignPad=0x00000000 
       Value={...} 
     }
[0x3]_PropertyValue_r 
     {
       ulPropTag=PidTagAddressBookContainerId
       dwAlignPad=0x00000000 
       Value={...} 
     }
[0x4]_PropertyValue_r
     {
       ulPropTag=PidTagDisplayName
       dwAlignPad=0x00000000 
       Value={...} 
     }
[0x5]_PropertyValue_r 
     {
       ulPropTag=PidTagAddressBookIsMaster
       dwAlignPad=0x00000000 
       Value={...} 
     }
Note   The client can invoke additional NSPI calls to access other information from the server before calling the NspiUnbind method.
Messaging clients call the NspiQueryRows method to retrieve various properties of Address Book objects. The following example shows the client requesting the server a total of two rows that contain the following properties: 
· PidTagEntryId
· PidTagDisplayName
· PidTagSmtpAddress
· PidTagTitle. 
[bookmark: z81]Also, the client is requesting the server to use the pStat structure for table information by setting lpETable NULL and setting relevant values in the pStat structure. Typical parameters are as follows.
Note   Only relevant information, and not all return parameters, are shown.
pStat
     hIndex           0x00000000        unsigned long
     ContainerID      0x00000000        unsigned long
     CurrentRec       0x00000000        unsigned long
     Delta            0x00000000        long
     NumPos           0x00000000        unsigned long
     TotalRecs        0xffffffff        unsigned long
     CodePage         0x000004e4        unsigned long
     TemplateLocale   0x00000409        unsigned long
     SortLocale       0x00000409        unsigned long
dwETableCount0        0x00000000        unsigned long
lpETable              0x00000000        unsigned long *
Count                 0x00000002        unsigned long
Flags                 0x00000000        unsigned long
pPropTags_PropertyTagArray_r * 
     {
        cValues=0x00000004
        aulPropTag=<a pointer to an array of properties> 
     }
     aulPropTag<array of 4 PropTags>
      [0x0]PidTagEntryId        unsigned long
      [0x1]PidTagDisplayName    unsigned long
      [0x2]PidTagSmtpAddress    unsigned long
      [0x3]PidTagTitle          unsigned long
The server responds to the NspiQueryRows method call with return code "Success" and a row set. Typical return parameters are as follows.
Note  Only relevant information, and not all parameters, are shown.
dwFlags    0x00000000unsigned long
pStat
     hIndex             0x00000000        unsigned long
     ContainerID        0x00000000        unsigned long
     CurrentRec         0x00001928        unsigned long
     Delta              0x00000000        long
     NumPos             0x00000002        unsigned long
     TotalRecs          0x00000016        unsigned long
     CodePage           0x000004e4        unsigned long
     TemplateLocale     0x00000409        unsigned long
     SortLocale         0x00000409        unsigned long

dwETableCount   0x00000000        unsigned long
lpETable        0x00000000        unsigned long *
Count           0x00000002        unsigned long
pPropTags_PropertyRowSet_r * *
{
          cRows=0x00000002 
          aRow=<a pointer to an array of rows> 
} 
In this example, the server has returned a total of 0x2 rows denoted as [0x0]...[0x1] equal to the number of rows requested by the client. Each row typically looks as follows.
aRow[0x0] ... [0x1]_PropertyRow_r  * 
{
    Reserved=0x00000000 
    cValues=0x00000004 
    lpProps=<a pointer to an array of columns>
}
In this example, the server has returned a column set of four properties equal to the number of properties requested by the client. Each column looks as follows.
[0x0]_PropertyValue_r
     {
         ulPropTag= PidTagEntryId
         dwAlignPad=0x00000000 
         Value={...} 
    }
[0x1]_PropertyValue_r
     {
        ulPropTag= PidTagDisplayName
        dwAlignPad=0x00000000 
        Value={...} 
     }
[0x2]_PropertyValue_r
     {
        ulPropTag= PidTagSmtpAddress
        dwAlignPad=0x00000000 
        Value={...} 
     }
[0x3]_PropertyValue_r 
     {
       ulPropTag= PidTagTitle
       dwAlignPad=0x00000000 
       Value={...} 
     }
The client terminates the connection by calling the NspiUnbind method with a token that the server returned in response to the NspiBind method call.
contextHandleNSPI_HANDLE  *
<a token>
dwFlags    0x00000000    unsigned long
The server responds with return code 0x00000001 and destroys the token that the client passed.
[bookmark: section_f077a3a6d19f481398dba753f511368b][bookmark: _Toc174600622]Security
[bookmark: section_b6749d28d45f4b7fb040570d3c9a6a19][bookmark: _Toc174600623]Security Considerations for Implementers
The Exchange Server NSPI Protocol is not suitable for general administration of the data held by a server. It is suitable for client read access to data with limited modification of existing objects, not including address book container objects. Administration tasks the Exchange Server NSPI Protocol does not support include (but are not limited to) adding new objects to an address book, removing existing objects, and moving existing objects from one address book to another. 
[bookmark: z83][bookmark: z85]Beyond the basic support for address book browsing, a server can apply local security policies. When applying these security policies, the server can limit a client's access to data, either reading access and/or modification access. The simplest form of local security policy is the empty set; all data held by the server is accessible to all clients of the Exchange Server NSPI Protocol for both reading and modifying, regardless of the identity of the client. Local security policy is, with one exception, an implementation-specific detail and is not constrained by the Exchange Server NSPI Protocol. If local security policy allows a client read access to an object, the server is required to allow the client read access to the properties of the object specifying the objects identity. The following properties specify an object's identity:
· PidTagTransmittableDisplayName
· PidTagDisplayName
· PidTagAddressBookDisplayNamePrintable
· PidTagEmailAddress
· PidTagAddressType
· PidTagInitialDetailsPane
· PidTagInstanceKey
· PidTagAddressBookContainerId
· PidTagObjectType
· PidTagContainerContents
· PidTagContainerFlags
· PidTagDisplayType
· PidTagTemplateid
· PidTagEntryId
· PidTagMappingSignature
· PidTagRecordKey
· PidTagSearchKey
The protocol does not provide support for administration of local security policy or for client discovery of a server's security policy.
The protocol carries identity information from the client to the server in the form of an authenticated remote procedure call (RPC) connection. The client MUST create a secure RPC session such that the server can identify and determine the authorization for the client. For details about secure RPC, see [MS-RPCE]. This requirement exists so that the server can implement its security model. 
[bookmark: z87]The server can use this information to apply local security policy. How the server uses this information is an implementation-specific detail and is not constrained by the protocol.
[bookmark: section_5163fd580598470d864262a1c2e4e911][bookmark: _Toc174600624]Index of Security Parameters
	Security parameter 
	Section 

	RPC connection security
	2.1 



[bookmark: section_27af6e6e4ad243e0b343967e3d0505a8][bookmark: _Toc174600625]Appendix A: Full IDL
For ease of implementation, the following full IDL is provided, where "ms-dtyp.idl" refers to the IDL found in [MS-DTYP] Appendix A. The syntax uses the IDL syntax extensions defined in [MS-RPCE]. For example, as noted in [MS-RPCE], a pointer_default declaration is not required and pointer_default(unique) is assumed.
import "ms-dtyp.idl";

typedef long NTSTATUS;
typedef unsigned long DWORD;

[
 uuid (F5CC5A18-4264-101A-8C59-08002B2F8426),
 version(56.0)
 ]

interface nspi {

  typedef struct {
    BYTE ab[16];
  } FlatUID_r;

  typedef struct PropertyTagArray_r {
    DWORD cValues;
    [range(0, 100001)] 
[size_is(cValues + 1),
length_is(cValues)] DWORD aulPropTag[];
  } PropertyTagArray_r;

  typedef struct Binary_r {
    [range(0, 2097152)] DWORD cb;
    [size_is(cb)] BYTE * lpb;
  } Binary_r;

  typedef struct ShortArray_r {
    [range(0, 100000)] DWORD cValues;
    [size_is(cValues)] short int * lpi;
  } ShortArray_r;

  typedef struct _LongArray_r {
    [range(0, 100000)] DWORD cValues;
    [size_is(cValues)] long * lpl;
  } LongArray_r;

  typedef struct _StringArray_r {
    [range(0, 100000)] DWORD cValues;
    [size_is(cValues)] [string] char ** lppszA;
  } StringArray_r;

  typedef struct _BinaryArray_r {
    [range(0, 100000)] DWORD cValues;
    [size_is(cValues)] Binary_r * lpbin;
  } BinaryArray_r;

  typedef struct _FlatUIDArray_r {
    [range(0, 100000)] DWORD cValues;
    [size_is(cValues)] FlatUID_r** lpguid;
  } FlatUIDArray_r;

  typedef struct _WStringArray_r {
    [range(0, 100000)] DWORD cValues;
    [size_is(cValues)] [string] wchar_t ** lppszW;
  } WStringArray_r;

  typedef struct _DateTimeArray_r {
    [range(0, 100000)] DWORD cValues;
    [size_is(cValues)] FILETIME * lpft;
  } DateTimeArray_r;

  typedef struct _PropertyValue_r PropertyValue_r;

  typedef struct _PropertyRow_r {
    DWORD Reserved;
    [range(0, 100000)] DWORD cValues;
    [size_is(cValues)] PropertyValue_r * lpProps;
  } PropertyRow_r;

  typedef struct _PropertyRowSet_r {
    [range(0, 100000)] DWORD cRows;
    [size_is(cRows)] PropertyRow_r aRow[];
  } PropertyRowSet_r;

  typedef struct _Restriction_r Restriction_r;

  typedef struct _AndOrRestriction_r {
    [range(0, 100000)] DWORD cRes;
    [size_is(cRes)] Restriction_r * lpRes;
  } AndRestriction_r, OrRestriction_r;

  typedef struct _NotRestriction_r {
    Restriction_r * lpRes;
  } NotRestriction_r;

  typedef struct _ContentRestriction_r {
    DWORD ulFuzzyLevel;
    DWORD ulPropTag;
    PropertyValue_r * lpProp;
  } ContentRestriction_r;

  typedef struct _BitMaskRestriction_r {
    DWORD relBMR;
    DWORD ulPropTag;
    DWORD ulMask;
  } BitMaskRestriction_r;

  typedef struct _PropertyRestriction_r {
    DWORD relop;
    DWORD ulPropTag;
    PropertyValue_r * lpProp;
  } PropertyRestriction_r;

  typedef struct _ComparePropsRestriction_r {
    DWORD relop;
    DWORD ulPropTag1;
    DWORD ulPropTag2;
  } ComparePropsRestriction_r;

  typedef struct _SubRestriction_r {
    DWORD ulSubObject;
    Restriction_r * lpRes;
  } SubRestriction_r;

  typedef struct _SizeRestriction_r {
    DWORD relop;
    DWORD ulPropTag;
    DWORD cb;
  } SizeRestriction_r;

  typedef struct _ExistRestriction_r {
    DWORD ulReserved1;
    DWORD ulPropTag;
    DWORD ulReserved2;
  } ExistRestriction_r;


  typedef [switch_type(long)] union _RestrictionUnion_r {
    [case (0x00000000)] AndRestriction_r resAnd;
    [case (0x00000001)] OrRestriction_r resOr;
    [case (0x00000002)] NotRestriction_r resNot;
    [case (0x00000003)] ContentRestriction_r resContent;
    [case (0x00000004)] PropertyRestriction_r resProperty;
    [case (0x00000005)] ComparePropsRestriction_r resCompareProps;
    [case (0x00000006)] BitMaskRestriction_r resBitMask;
    [case (0x00000007)] SizeRestriction_r resSize;
    [case (0x00000008)] ExistRestriction_r resExist;
    [case (0x00000009)] SubRestriction_r resSubRestriction;
  } RestrictionUnion_r;

  struct _Restriction_r {
    DWORD rt;
    [switch_is((long)rt)] RestrictionUnion_r res;
  };

  typedef struct PropertyName_r {
    FlatUID_r * lpguid;
    DWORD ulReserved;
    long lID;
  } PropertyName_r;


  typedef struct _StringsArray {
    [range(0, 100000)] DWORD Count;
    [size_is(Count)] [string] char * Strings[];
  } StringsArray_r;


  typedef struct _WStringsArray {
    [range(0, 100000)] DWORD Count;
    [size_is(Count)] [string] wchar_t * Strings[];
  } WStringsArray_r;

  typedef struct _STAT {
    DWORD SortType;
    DWORD ContainerID;
    DWORD CurrentRec;
    long Delta;
    DWORD NumPos;
    DWORD TotalRecs;
    DWORD CodePage;
    DWORD TemplateLocale;
    DWORD SortLocale;
  }STAT;


  typedef [switch_type(long)] union _PV_r {
    [case (0x00000002)] short int i;
    [case (0x00000003)] long l;
    [case (0x0000000B)] unsigned short int b;
    [case (0x0000001E)] [string] char * lpszA;
    [case (0x00000102)] Binary_r bin;
    [case (0x0000001F)] [string] wchar_t * lpszW;
    [case (0x00000048)] FlatUID_r * lpguid;
    [case (0x00000040)] FILETIME ft;
    [case (0x0000000A)] long err;
    [case (0x00001002)] ShortArray_r MVi;
    [case (0x00001003)] LongArray_r MVl;
    [case (0x0000101E)] StringArray_r MVszA;
    [case (0x00001102)] BinaryArray_r MVbin;
    [case (0x00001048)] FlatUIDArray_r MVguid;
    [case (0x0000101F)] WStringArray_r MVszW;
    [case (0x00001040)] DateTimeArray_r MVft;
    [case (0x00000001, 0x0000000D)] long lReserved;
  } PROP_VAL_UNION;

  struct _PropertyValue_r {
    DWORD ulPropTag;
    DWORD ulReserved;
    [switch_is ((long)(ulPropTag & 0x0000FFFF))] 
PROP_VAL_UNION Value;
  };

  typedef [context_handle ] void * NSPI_HANDLE;



//opnum 0
long 
   NspiBind(
     [in] handle_t hRpc,
     [in] DWORD dwFlags,
     [in] STAT * pStat,
     [in,out,unique] FlatUID_r * pServerGuid,
     [out,ref] NSPI_HANDLE * contextHandle 
     );

//opnum 1
DWORD
    NspiUnbind(
       [in,out] NSPI_HANDLE * contextHandle, 
       [in] DWORD Reserved
       );

  //opnum 2
  long
    NspiUpdateStat(
   [in] NSPI_HANDLE hRpc,
   [in] DWORD Reserved,
   [in,out] STAT * pStat,
   [in,out,unique] long * plDelta
   );

  //opnum 3
  long
    NspiQueryRows(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD dwFlags, 
  [in, out] STAT * pStat,
  [in, range(0, 100000)] DWORD dwETableCount,
  [in, unique, size_is(dwETableCount)] DWORD * lpETable,
  [in] DWORD Count,
  [in,unique] PropertyTagArray_r * pPropTags,
  [out] PropertyRowSet_r ** ppRows 
  );

  //opnum 4
  long
    NspiSeekEntries(
    [in] NSPI_HANDLE hRpc,
    [in] DWORD Reserved, 
    [in,out] STAT * pStat,
    [in] PropertyValue_r * pTarget,
    [in, unique] PropertyTagArray_r * lpETable,
    [in,unique] PropertyTagArray_r * pPropTags,
    [out] PropertyRowSet_r ** ppRows 
    );

  //opnum 5
  long
    NspiGetMatches(
   [in] NSPI_HANDLE hRpc,
   [in] DWORD Reserved1,
   [in,out] STAT * pStat,
   [in, unique] PropertyTagArray_r * pReserved,
   [in] DWORD Reserved2,
   [in,unique] Restriction_r * Filter,
   [in,unique] PropertyName_r * lpPropName,
   [in] DWORD ulRequested,
   [out] PropertyTagArray_r ** ppOutMIds,
   [in,unique] PropertyTagArray_r * pPropTags,
   [out] PropertyRowSet_r ** ppRows 
   );

  //opnum 6
  long
    NspiResortRestriction(
  [in] NSPI_HANDLE hRpc,
  [in] DWORD Reserved,
  [in,out] STAT * pStat,
  [in] PropertyTagArray_r * pInMIds,
  [in,out] PropertyTagArray_r ** ppOutMIds
  );

  //opnum 7
  long
    NspiDNToMId(
[in] NSPI_HANDLE hRpc,
[in] DWORD Reserved,
[in] StringsArray_r * pNames,
[out] PropertyTagArray_r ** ppOutMIds
);

  //opnum 8
  long
     NspiGetPropList(
    [in] NSPI_HANDLE hRpc,
    [in] DWORD dwFlags,
    [in] DWORD dwMId,
    [in] DWORD CodePage,
    [out] PropertyTagArray_r ** ppPropTags 
    );

  //opnum 9
  long
    NspiGetProps(
 [in] NSPI_HANDLE hRpc,
 [in] DWORD dwFlags, 
 [in] STAT * pStat,
 [in,unique] PropertyTagArray_r * pPropTags,
 [out] PropertyRow_r ** ppRows
 );

  //opnum 10
  long
    NspiCompareMIds(
    [in] NSPI_HANDLE hRpc,
    [in] DWORD Reserved,
    [in] STAT * pStat,
    [in] DWORD MId1,
    [in] DWORD MId2,
    [out] long * plResult
    );

  //opnum 11
  long
    NspiModProps(
    [in] NSPI_HANDLE hRpc,
    [in] DWORD Reserved, 
    [in] STAT * pStat,
    [in, unique] PropertyTagArray_r * pPropTags,
    [in] PropertyRow_r * pRow
    );

  //opnum 12
  long
    NspiGetSpecialTable(
   [in] NSPI_HANDLE hRpc,
   [in] DWORD dwFlags,
   [in] STAT * pStat,
   [in, out] DWORD * lpVersion, 
   [out] PropertyRowSet_r ** ppRows
   );

  //opnum 13
  long
    NspiGetTemplateInfo(
   [in] NSPI_HANDLE hRpc,
   [in] DWORD dwFlags, 
   [in] DWORD ulType,
   [in,unique] [string] char * pDN,
   [in] DWORD dwCodePage,
   [in] DWORD dwLocaleID,
   [out] PropertyRow_r ** ppData
);

  //opnum 14
  long
    NspiModLinkAtt(
    [in] NSPI_HANDLE hRpc,
    [in] DWORD dwFlags, 
    [in] DWORD ulPropTag,
    [in] DWORD dwMId,
    [in] BinaryArray_r * lpEntryIds
    );

// opnum 15
void Opnum15NotUsedOnWire(void);

  //opnum 16
  long
    NspiQueryColumns(
     [in] NSPI_HANDLE hRpc,
     [in] DWORD Reserved,
     [in] DWORD dwFlags, 
     [out] PropertyTagArray_r ** ppColumns
     );

// opnum 17
void Opnum17NotUsedOnWire(void);

// opnum 18
void Opnum18NotUsedOnWire(void);

  //opnum 19
  long
    NspiResolveNames(
     [in] NSPI_HANDLE hRpc,
     [in] DWORD Reserved, 
     [in] STAT * pStat,
     [in, unique] PropertyTagArray_r * pPropTags,
     [in] StringsArray_r * paStr,
     [out] PropertyTagArray_r ** ppMIds,
     [out] PropertyRowSet_r ** ppRows
     );

  //opnum 20
  long
    NspiResolveNamesW(
      [in] NSPI_HANDLE hRpc,
      [in] DWORD Reserved, 
      [in] STAT * pStat,
      [in, unique] PropertyTagArray_r * pPropTags,
      [in] WStringsArray_r * paWStr,
      [out] PropertyTagArray_r ** ppMIds,
      [out] PropertyRowSet_r ** ppRows
      );

}
[bookmark: section_c652757cb5f7409498f465589ec60899][bookmark: _Toc174600626]Appendix B: Product Behavior
The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include updates to those products.
· Microsoft Exchange Server 2010
· Microsoft Exchange Server 2013
· Microsoft Exchange Server 2016 
· Microsoft Exchange Server 2019 
· Microsoft Office Outlook 2003
· Microsoft Office Outlook 2007
· Microsoft Outlook 2010
· Microsoft Outlook 2013
· Microsoft Outlook 2016
· Microsoft Outlook 2019 
· Microsoft Outlook 2021
· Microsoft Outlook LTSC 2024
Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base (KB) number appears with a product name, the behavior changed in that update. The new behavior also applies to subsequent updates unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.
Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the product does not follow the prescription.
<1> Section 2.1:  Office Outlook 2003, Office Outlook 2007, Outlook 2010, Outlook 2013, Outlook 2016, and Outlook 2019 can connect to the Exchange 2010 NSPI server using RPC over TCP. Office Outlook 2003, Office Outlook 2007, Outlook 2010, Outlook 2013, Outlook 2016, and Outlook 2019 cannot connect to the Exchange 2013 NSPI server or the Exchange 2016 or Exchange 2019 NSPI server using RPC over TCP.
<2> Section 2.2.9.3:  Exchange 2013, Exchange 2016, and Exchange 2019 do not follow the ABNF format that is specified in [MS-OXOABK] section 2.2.1.1.
<3> Section 3.1.4.1.3:  Exchange 2010, Exchange 2013, Exchange 2016, and Exchange 2019: the input parameter lpVersion does not impact the search results.
<4> Section 3.1.4.1.3:  Exchange 2010, Exchange 2013, Exchange 2016, and Exchange 2019 do not set the output parameter lpVersion to the version of the server's address book hierarchy table.
<5> Section 3.1.4.1.7:  Microsoft Exchange Server 2010 Service Pack 3 (SP3), Exchange 2013, Exchange 2016, and Exchange 2019 return "ErrorsReturned" (0x00040380).
<6> Section 3.1.4.1.11:  Exchange 2013, Exchange 2016, and Exchange 2019 returns "Success".
<7> Section 3.1.4.1.14:  Exchange 2010 SP3, Exchange 2013, Exchange 2016, and Exchange 2019 do not add values for the PidTagUserX509Certificate and PidTagAddressBookX509Certificate properties.
<8> Section 3.1.4.1.15:  Exchange 2013, Exchange 2016, and Exchange 2019 return "GeneralFailure" (0x80004005) when modification of either the PidTagAddressBookMember property ([MS-OXOABK] section 2.2.6.1) or the PidTagAddressBookPublicDelegates property ([MS-OXOABK] section 2.2.5.5) is attempted.
[bookmark: section_ca276bab10c14cba866b6742a7b8a81d][bookmark: _Toc174600627]Change Tracking
This section identifies changes that were made to this document since the last release. Changes are classified as Major, Minor, or None. 
The revision class Major means that the technical content in the document was significantly revised. Major changes affect protocol interoperability or implementation. Examples of major changes are:
· A document revision that incorporates changes to interoperability requirements.
· A document revision that captures changes to protocol functionality.
The revision class Minor means that the meaning of the technical content was clarified. Minor changes do not affect protocol interoperability or implementation. Examples of minor changes are updates to clarify ambiguity at the sentence, paragraph, or table level.
The revision class None means that no new technical changes were introduced. Minor editorial and formatting changes may have been made, but the relevant technical content is identical to the last released version.
The changes made to this document are listed in the following table. For more information, please contact dochelp@microsoft.com.
	Section
	Description
	Revision class

	7 Appendix B: Product Behavior
	Updated list of supported products.
	Major


[bookmark: section_a491d5e99636413789c1c27bdf275274][bookmark: _Toc174600628]Index
93 / 94
[MS-OXNSPI] - v20240820
Exchange Server Name Service Provider Interface (NSPI) Protocol
Copyright © 2024 Microsoft Corporation
Release: August 20, 2024
A

Abstract data model
   client 76
   server 39
Ambiguous Name Resolution method 75
Applicability 12

C

Capability negotiation 12
Change tracking 93
Client
   abstract data model 76
   initialization 76
   local events 76
   message processing 76
   sequencing rules 76
   timer events 76
   timers 76
Common data types 14

D

Data model - abstract
   client 76
   server 39
Data types
   common - overview 14

E

Events
   local - client 76
   timer - client 76
Examples
   overview 77

F

Fields - vendor-extensible 13
Full IDL 84

G

Glossary 7

I

IDL 84
Implementer - security considerations 82
Index of security parameters 83
Informative references 10
Initialization
   client 76
   server 39
Introduction 7

L

Local events
   client 76

M

Message processing
   client 76
   server 39
Messages
   common data types 14
   transport 14
Methods
   Ambiguous Name Resolution 75
   Object Identity 75
   Positioning in a Table 73
   Required Properties 68
   String Handling 68
   Tables 72

N

Normative references 10

O

Object Identity method 75
Overview (synopsis) 11

P

Parameters - security index 83
Positioning in a Table method 73
Preconditions 12
Prerequisites 12
Product behavior 91
Protocol Details
   overview 39

R

References 10
   informative 10
   normative 10
Relationship to other protocols 11
Required Properties method 68

S

Security
   implementer considerations 82
   parameter index 83
Sequencing rules
   client 76
   server 39
Server
   abstract data model 39
   Ambiguous Name Resolution method 75
   initialization 39
   message processing 39
   Object Identity method 75
   Positioning in a Table method 73
   Required Properties method 68
   sequencing rules 39
   String Handling method 68
   Tables method 72
   timers 39
Standards assignments 13
String Handling method 68

T

Tables method 72
Timer events
   client 76
Timers
   client 76
   server 39
Tracking changes 93
Transport 14

V

Vendor-extensible fields 13
Versioning 12
[bookmark: EndOfDocument_ST]
94 / 94
[MS-OXNSPI] - v20240820
Exchange Server Name Service Provider Interface (NSPI) Protocol
Copyright © 2024 Microsoft Corporation
Release: August 20, 2024
image3.bin
Client Server

— .
NsplGetSpecialTable() Request
\>

.
NspiGetSpecialTable() Response
——

— .
NsplQueryRows() Request
\»

o
NspiQueryRows() Response
-





image1.bin
Messaging Client Data Store





image2.bin
1 2
5(617(8|9|0 71819(0]1(2 718
FuzzylLevelLow FuzzylLevelHigh R1





