[MS-OXIMAP4]:
Internet Message Access Protocol Version 4 (IMAP4) Extensions

Intellectual Property Rights Notice for Open Specifications Documentation

- Technical Documentation. Microsoft publishes Open Specifications documentation ("this documentation") for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.
- Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.
- No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
- Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
- License Programs. To see all of the protocols in scope under a specific license program and the associated patents, visit the Patent Map.
- Trademarks. The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
- Fictitious Names. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.
Revision Summary

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision History</th>
<th>Revision Class</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/4/2008</td>
<td>0.1</td>
<td>New</td>
<td>Initial Availability.</td>
</tr>
<tr>
<td>6/27/2008</td>
<td>1.0</td>
<td>Major</td>
<td>Initial Release.</td>
</tr>
<tr>
<td>8/6/2008</td>
<td>1.01</td>
<td>Minor</td>
<td>Revised and edited technical content.</td>
</tr>
<tr>
<td>9/3/2008</td>
<td>1.02</td>
<td>Minor</td>
<td>Updated references.</td>
</tr>
<tr>
<td>12/3/2008</td>
<td>1.03</td>
<td>Minor</td>
<td>Minor editorial fixes.</td>
</tr>
<tr>
<td>4/10/2009</td>
<td>2.0</td>
<td>Major</td>
<td>Updated technical content and applicable product releases.</td>
</tr>
<tr>
<td>7/15/2009</td>
<td>3.0</td>
<td>Major</td>
<td>Revised and edited for technical content.</td>
</tr>
<tr>
<td>11/4/2009</td>
<td>3.1.0</td>
<td>Minor</td>
<td>Updated the technical content.</td>
</tr>
<tr>
<td>2/10/2010</td>
<td>3.2.0</td>
<td>Minor</td>
<td>Updated the technical content.</td>
</tr>
<tr>
<td>5/5/2010</td>
<td>3.2.1</td>
<td>Editorial</td>
<td>Revised and edited the technical content.</td>
</tr>
<tr>
<td>8/4/2010</td>
<td>4.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>11/3/2010</td>
<td>4.1</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>3/18/2011</td>
<td>5.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>8/5/2011</td>
<td>5.1</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>10/7/2011</td>
<td>5.1</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>1/20/2012</td>
<td>6.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>4/27/2012</td>
<td>6.1</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>7/16/2012</td>
<td>6.1</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>10/8/2012</td>
<td>6.2</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>2/11/2013</td>
<td>6.2</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>7/26/2013</td>
<td>7.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>11/18/2013</td>
<td>7.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>2/10/2014</td>
<td>7.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>4/30/2014</td>
<td>7.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>7/31/2014</td>
<td>7.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>10/30/2014</td>
<td>7.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>Date</td>
<td>Revision History</td>
<td>Revision Class</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>3/16/2015</td>
<td>8.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>5/26/2015</td>
<td>8.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>9/14/2015</td>
<td>8.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>6/13/2016</td>
<td>8.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>9/14/2016</td>
<td>8.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>7/24/2018</td>
<td>9.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>10/1/2018</td>
<td>10.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>4/22/2021</td>
<td>11.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>8/17/2021</td>
<td>12.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>2/15/2022</td>
<td>12.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
</tbody>
</table>
Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References ... 7
1.2.1 Normative References .. 7
1.2.2 Informative References .. 7
1.3 Overview ... 7
1.4 Relationship to Other Protocols ... 8
1.5 Prerequisites/Preconditions .. 8
1.6 Applicability Statement ... 8
1.7 Versioning and Capability Negotiation .. 8
1.8 Vendor-Extensible Fields .. 9
1.9 Standards Assignments ... 9

2 Messages .. 10
2.1 Transport .. 10
2.2 Message Syntax ... 10
2.2.1 IMAP4 NTLM Extension Messages ... 10
2.2.2 IMAP4 Delegate Access Extension Messages 10
2.2.3 IMAP UIDPLUS Extension Messages ... 11

3 Protocol Details .. 12
3.1 Client Details .. 12
3.1.1 Abstract Data Model ... 12
3.1.1.1 IMAP4 NTLM Extension State Model ... 12
3.1.1.2 NTLM Subsystem Interaction ... 13
3.1.2 Timers .. 13
3.1.3 Initialization .. 14
3.1.4 Higher-Layer Triggered Events ... 14
3.1.5 Message Processing Events and Sequencing Rules 14
3.1.5.1 Receiving an IMAP4 NTLM Extension Message 14
3.1.5.1.1 Receiving an IMAP4_AUTHENTICATE_NTLM_Supported_Response Message 14
3.1.5.1.2 Receiving an IMAP4_AUTHENTICATE_NTLM_Unsupported_Response Message .. 14
3.1.5.1.3 Receiving an IMAP4_AUTHENTICATE_NTLM_Blob_Response Message ... 15
3.1.5.1.3.1 Error from NTLM ... 15
3.1.5.1.3.2 NTLM Reports Success and Returns an NTLM Message 15
3.1.5.1.4 Receiving an IMAP4_AUTHENTICATE_NTLM_Succeeded_Response Message ... 15
3.1.5.1.5 Receiving an IMAP4_AUTHENTICATE_NTLM_Fail_Response Message 15
3.1.5.1.6 Receiving an IMAP4_AUTHENTICATE_NTLM_Cancelled_Response Message 15
3.1.5.2 Receiving IMAP4 Delegate Access Extension Messages 16
3.1.5.3 Receiving IMAP UIDPLUS Extension Messages 16
3.1.6 Timer Events .. 16
3.1.7 Other Local Events .. 16

3.2 Server Details ... 16
3.2.1 Abstract Data Model ... 16
3.2.1.1 IMAP4 NTLM Extension State Model ... 16
3.2.1.2 NTLM Subsystem Interaction ... 18
3.2.2 Timers .. 18
3.2.3 Initialization .. 18
3.2.4 Higher-Layer Triggered Events ... 18
3.2.5 Message Processing Events and Sequencing Rules 18
3.2.5.1 Receiving an IMAP4 NTLM Extension Message 19
3.2.5.1.1 Receiving an IMAP4_AUTHENTICATE_NTLM_Initiation_Command Message .. 19
3.2.5.1.2 Receiving an IMAP4_AUTHENTICATE_NTLM_Blob_Command Message .. 19
3.2.5.1.2.1 NTLM Returns Success, Returning an NTLM Message .. 19
3.2.5.1.2.2 NTLM Returns Success, Indicating Authentication Completed Successfully .. 20
3.2.5.1.2.3 NTLM Returns a Failure Status, Indicating User Name or Password Was Incorrect .. 20
3.2.5.1.2.4 NTLM Returns a Failure Status, Indicating Any Other Error .. 20
3.2.5.1.3 Receiving an IMAP4_AUTHENTICATE_NTLM_Cancellation_Command Message .. 20
3.2.5.2 Receiving an IMAP4 Delegate Access Extension Message .. 20
3.2.5.3 Receiving an IMAP UIDPLUS Extension Message .. 20
3.2.6 Timer Events .. 20
3.2.7 Other Local Events .. 21

4 Protocol Examples .. 22
4.1 IMAP4 NTLM Extension ... 22
4.1.1 Client Successfully Authenticating to a Server ... 22
4.1.2 Client Unsuccessfully Authenticating to a Server .. 23
4.2 IMAP4 Delegate Access Extension .. 25
4.3 IMAP UIDPLUS Extension .. 25

5 Security ... 26
5.1 Security Considerations for Implementers ... 26
5.2 Index of Security Parameters ... 26

6 Appendix A: Product Behavior ... 27

7 Change Tracking ... 28

8 Index ... 29
1 Introduction

The Internet Message Access Protocol Version 4 (IMAP4) Extensions provide an authentication mechanism based on the NT LAN Manager (NTLM) Authentication Protocol, a delegate access mechanism to allow a delegate to access a delegator's mailbox, and support for the IMAP UIDPLUS extension described in [RFC4315].

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in this specification are informative.

1.1 Glossary

This document uses the following terms:

Augmented Backus-Naur Form (ABNF): A modified version of Backus-Naur Form (BNF), commonly used by Internet specifications. ABNF notation balances compactness and simplicity with reasonable representational power. ABNF differs from standard BNF in its definitions and uses of naming rules, repetition, alternatives, order-independence, and value ranges. For more information, see [RFC5234].

base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is converted to a sequence of printable ASCII characters, as described in [RFC4648].

connection-oriented NTLM: A particular variant of NTLM designed to be used with connection-oriented remote procedure call (RPC), as described in [MS-NLMP].

delegate: A user or resource that has permissions to act on behalf of another user or resource.

delegate access: The access that is granted by a delegator to a delegate and is used by the delegate to access the delegator's account.

delegator: A user or resource for which another user or resource has permission to act on its behalf.

domain: A set of users and computers sharing a common namespace and management infrastructure. At least one computer member of the set must act as a domain controller (DC) and host a member list that identifies all members of the domain, as well as optionally hosting the Active Directory service. The domain controller provides authentication of members, creating a unit of trust for its members. Each domain has an identifier that is shared among its members. For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

Hypertext Transfer Protocol (HTTP): An application-level protocol for distributed, collaborative, hypermedia information systems (text, graphic images, sound, video, and other multimedia files) on the World Wide Web.

Internet Message Access Protocol - Version 4 (IMAP4): A protocol that is used for accessing email and news items from mail servers, as described in [RFC3501].

NT LAN Manager (NTLM) Authentication Protocol: A protocol using a challenge-response mechanism for authentication in which clients are able to verify their identities without sending a password to the server. It consists of three messages, commonly referred to as Type 1 (negotiation), Type 2 (challenge) and Type 3 (authentication).

NTLM message: A message that carries authentication information. Its payload data is passed to the application that supports embedded NTLM authentication by the NTLM software installed on the local computer. NTLM messages are transmitted between the client and server embedded within the application protocol that is using NTLM authentication. There are three types of NTLM messages: NTLM NEGOTIATE_MESSAGE, NTLM CHALLENGE_MESSAGE, and NTLM AUTHENTICATE_MESSAGE.
NTLM software: Software that implements the **NT LAN Manager (NTLM) Authentication Protocol**.

user principal name (UPN): A user account name (sometimes referred to as the user logon name) and a domain name that identifies the domain in which the user account is located. This is the standard usage for logging on to a Windows domain. The format is: someone@example.com (in the form of an email address). In Active Directory, the userPrincipalName attribute of the account object, as described in [MS-ADTS].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.

[MS-NLMP] Microsoft Corporation, "**NT LAN Manager (NTLM) Authentication Protocol**".

1.2.2 Informative References

1.3 Overview

The **IMAP4** Extensions are composed of three distinct extensions:

- The Internet Message Access Protocol - Version 4 (IMAP4) **NTLM** extension
The IMAP4 delegate access extension

The IMAP4 NTLM extension enables a client to authenticate to a server using NTLM authentication. It allows the client to send an NTLM message over a standard IMAP4 connection and the server to send a response indicating the success or failure of the authentication.

The IMAP4 delegate access extension enables a client to access a mailbox on the server as a user other than the mailbox owner. This enables client access in the scenario where the mailbox owner has granted delegate access to their mailbox.

The IMAP UIDPLUS extension described in [RFC4315] enables a client to selectively remove messages from the server.

1.4 Relationship to Other Protocols

The IMAP4 NTLM extension uses the IMAP4 AUTHENTICATE extension mechanism, described in [RFC1731], and is an embedded protocol. Unlike standalone application protocols, such as Telnet or HTTP, packets for this extension are embedded in IMAP4 commands and server responses.

The IMAP4 NTLM extension specifies only the sequence in which a client and a server are required to exchange NTLM messages to successfully authenticate the client to the server. It does not specify how the client obtains NTLM messages from the local NTLM software or how the server processes NTLM messages. The client and server implementations depend on the availability of an implementation of NTLM, as described in [MS-NLMP], to obtain and process NTLM messages and on the availability of base64 encoding and decoding mechanisms, as described in [RFC4648], to encode and decode the NTLM messages that are embedded in IMAP4 packets.

For conceptual background information and overviews of the relationships and interactions between this and other protocols, see [MS-OXPROTO].

1.5 Prerequisites/Preconditions

Clients and servers require access to an implementation of NTLM, as described in [MS-NLMP], that is capable of supporting connection-oriented NTLM.

1.6 Applicability Statement

The IMAP4 NTLM extension is applicable to scenarios where both the client and the server have access to NTLM software and NTLM authentication is desired.

The IMAP4 delegate access extension is applicable to scenarios where IMAP4 is used to access a mailbox owned by another user.

The IMAP UIDPLUS extension is applicable to scenarios where clients require greater control over which messages are removed from the server.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

- **Security and Authentication Methods:** The IMAP4 NTLM extension supports the NTLMv1 and NTLMv2 authentication methods, as described in [MS-NLMP].

- **Capability Negotiation:** IMAP4 does not support negotiation of which version of NTLM to use. Instead, the NTLM version has to be configured on both the client and the server prior to
authentication. NTLM version mismatches are handled by the NTLM implementation, and not by IMAP4.

The client discovers whether the server supports NTLM authentication by sending the IMAP4 \texttt{CAPABILITY} command, as described in [RFC3501] section 6.1.1. The server responds with a list of supported features, among which authentication mechanisms are listed. If NTLM is supported, the server includes the word "AUTH=NTLM" in the list.

\section{1.8 Vendor-Extensible Fields}

None.

\section{1.9 Standards Assignments}

These extensions use standard IANA port assignments for \texttt{IMAP4}, as listed in the following table. Port mapping is configurable so that nondefault values can be used.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IANA assigned port for IMAP</td>
<td>143</td>
<td>\url{http://www.iana.org/assignments/port-numbers}</td>
</tr>
<tr>
<td>IANA assigned port for IMAP4 over TLS/SSL</td>
<td>993</td>
<td>\url{http://www.iana.org/assignments/port-numbers}</td>
</tr>
</tbody>
</table>
2 Messages

2.1 Transport

The IMAP4 Extensions do not establish transport connections. Instead, messages are encapsulated in IMAP4 commands and responses.

2.2 Message Syntax

2.2.1 IMAP4 NTLM Extension Messages

The IMAP4 NTLM extension extends both the IMAP4 AUTHENTICATE command requests and responses and the IMAP4 CAPABILITY command responses. The AUTHENTICATE command extensibility framework is specified in [RFC1731].

Message syntax is shown in Augmented Backus-Naur Form (ABNF), as specified in [RFC5234]. The ABNF rules specified here extend the ABNF rules specified in [RFC3501] section 9. All human readable strings are arbitrary and do not affect protocol functionality.

IMAP4_AUTHENTICATE_NTLM_Initiation_Command = tag "AUTHENTICATE NTLM" CRLF
IMAP4_AUTHENTICATE_NTLM_Supported_Response = "+" CRLF
IMAP4_AUTHENTICATE_NTLM_Unsupported_Response = tag "BAD" text CRLF
IMAP4_AUTHENTICATE_NTLM_Cancellation_Command = "*" SP CRLF
IMAP4_AUTHENTICATE_NTLM_Cancelled_Response = tag "NO The AUTH protocol exchange was canceled by the client." CRLF
IMAP4_AUTHENTICATE_NTLM_Blob_Command = base64-encoded-NTLM-Message CRLF
IMAP4_AUTHENTICATE_NTLM_Blob_Response = "+" SP base64-encoded-NTLM-Message CRLF
IMAP4_AUTHENTICATE_NTLM_Succeeded_Response = tag OK "AUTHENTICATE completed." CRLF
IMAP4_AUTHENTICATE_NTLM_Fail_Response = tag "NO" text CRLF

2.2.2 IMAP4 Delegate Access Extension Messages

The IMAP4 delegate access extension extends the LOGIN command, as specified in [RFC3501] section 6.2.3. Specifically, it extends the user name argument of the LOGIN command so that a delegate and a delegator can be specified in the login string. This extension only affects the arguments of the LOGIN command and does not change the specification of the LOGIN command in [RFC3501].

There are four formats for the user name argument when using delegate access with IMAP4. The message syntax for the four formats is shown in ABNF.

domain = 1*VCHAR ; The name of the user's domain
delegateuseralias = 1*VCHAR ; The delegate's e-mail alias
delegateuserupn = 1*VCHAR ; The delegate's UPN
principaluseralias = 1*VCHAR ; The principal's e-mail alias
principaluserupn = 1*VCHAR ; The principal's UPN
password = 1*VCHAR ; The delegate's password
delegate_spec = (domain "/" delegateuseralias) / delegateuserupn
principal_spec = principaluseralias / principaluserupn
IMAP4_DELEGATE_LOGIN_Command = "LOGIN" SP delegate_spec "/" principal_spec SP password

The "domain" part of the login string represents the delegate's domain.
The "delegateuserupn" part of the login string represents the **user principal name (UPN)** of the delegate, which is composed of the user's identifier and domain, as specified in [RFC822] section 6.1.

The "delegateuseralias" part of the login string represents the e-mail alias of the delegate.

The "principaluserupn" part of the login string represents the UPN of the primary account, which is composed of the primary account's identifier and domain, as specified in [RFC822] section 6.1.

The "principaluseralias" part of the login string represents the e-mail alias of the primary account.

2.2.3 IMAP UIDPLUS Extension Messages

The syntax for IMAP UIDPLUS extension messages is specified in [RFC4315].
3 Protocol Details

3.1 Client Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation maintains to participate in this protocol. The described organization is provided to facilitate the explanation of how the protocol behaves. This document does not mandate that implementations adhere to this model as long as their external behavior is consistent with that described in this document.

3.1.1.1 IMAP4 NTLM Extension State Model

The following figure shows the client IMAP4 NTLM extension state model.

![Figure 1: Client IMAP4 NTLM state model](image)

The abstract data model for IMAP4 NTLM extension has the following states:

1. **Start**: State of the client before the `IMAP4_AUTHENTICATE_NTLM_Initiation_Command` message has been sent.

2. **sent_authentication_request**: State of the client after the `IMAP4_AUTHENTICATE_NTLM_Initiation_Command` message has been sent.

3. **inside_authentication**: State that is entered by a client after it has received an `IMAP4_AUTHENTICATE_NTLM_Supported_Response` message. In this state, the client initializes the NTLM subsystem and performs the following steps:
• Encapsulates the **NTLM message**, returned by the NTLM subsystem, into an **IMAP4_AUTHENTICATE_NTLM_Blob_Command** message and sends the message to the server. Waits for a response from the server.

• De-encapsulates the received **IMAP4_AUTHENTICATE_NTLM_Blob_Response** message data (if any) from the server and converts it to NTLM message data.

• Passes the NTLM message data to the NTLM subsystem.

• Encapsulates the NTLM authenticate message, returned by the NTLM subsystem, into an **IMAP4_AUTHENTICATE_NTLM_Blob_Command** message.

• Sends the **IMAP4_AUTHENTICATE_NTLM_Blob_Command** message to the server.

The **inside_authentication** state terminates when:

• An **IMAP4_AUTHENTICATE_NTLM_Succeeded_Response**, **IMAP4_AUTHENTICATE_NTLM_Fail_Response**, or **IMAP4_AUTHENTICATE_NTLM_Cancelled_Response** message is received.

• Any failure is reported by the NTLM subsystem.

4. **completed_authentication**: State of the client on exiting the **inside_authentication** or the **sent_authentication_request** state. The rules for exiting the **inside_authentication** state are defined in section 3.1.5.1.4 and section 3.1.5.1.5. The behavior of IMAP4 in this state is outside the scope of this specification.

3.1.1.2 NTLM Subsystem Interaction

During the **inside_authentication** phase, the **IMAP4** client invokes the **NTLM** subsystem and uses **connection-oriented NTLM**, as specified in [MS-NLMP].

All **NTLM messages** are encapsulated as specified in section 2.2.1. The data model, internal states, and sequencing of NTLM messages are specified in greater detail in [MS-NLMP].

1. The client initiates the authentication by invoking NTLM, after which NTLM will return the NTLM **NEGOTIATE_MESSAGE** message to be sent to the server.

2. Subsequently, the exchange of NTLM messages goes on as defined by NTLM, with the client encapsulating the NTLM messages before sending them to the server, and de-encapsulating IMAP4 messages to obtain the NTLM message before giving it to NTLM.

3. NTLM completes authentication, either successfully or unsuccessfully, as follows:

 • The server sends the **IMAP4_AUTHENTICATE_NTLM_Succeeded_Response** to the client. On receiving this message, the client transitions to the **completed_authentication** state and MUST treat the authentication attempt as successful.

 • The server sends the **IMAP4_AUTHENTICATE_NTLM_Fail_Response** message to the client. On receiving this message, the client transitions to the **completed_authentication** state and MUST treat the authentication attempt as failed.

 • Failures reported from the NTLM subsystem (which can occur for any reason, including incorrect data being passed in or implementation-specific errors) can be reported to the client by the NTLM subsystem. If the NTLM subsystem returns any failure status, the failure status MUST trigger the client to transition to the **completed_authentication** state.

3.1.2 Timers

None.
3.1.3 Initialization

Before attempting NTLM authentication via the IMAP4 NTLM extension, the client SHOULD send a CAPABILITY command, as specified in [RFC3501] section 6.1.1. If the server response does not contain a capability name that equals "AUTH=NTLM", the client SHOULD NOT attempt to use NTLM authentication.

3.1.4 Higher-Layer Triggered Events

When the client initiates NTLM authentication, it sends an IMAP4_AUTHENTICATE_NTLM_Initiation_Command message to the server, as specified in section 2.2.1.

When the client cancels authentication, it sends an IMAP4_AUTHENTICATE_NTLM_Cancellation_Command message to the server, as specified in section 2.2.1.

When the client accesses a delegator's mailbox, it sends an IMAP4_DELEGATE_LOGIN_Command to the server, as specified in section 2.2.1.

3.1.5 Message Processing Events and Sequencing Rules

Message processing events and sequencing rules are divided into the following three categories:

- Receiving IMAP4 NTLM extension messages (section 3.1.5.1)
- Receiving IMAP4 delegate access extension messages (section 3.1.5.2)
- Receiving IMAP UIDPLUS extension messages (section 3.1.5.3)

3.1.5.1 Receiving an IMAP4 NTLM Extension Message

The IMAP4 NTLM extension is driven by a series of message exchanges between an IMAP4 server and an IMAP4 client. The rules governing the sequencing of commands and the internal states of the client and server are defined by a combination of the rules defined in [RFC1731] and [MS-NLMP]. Section 3.1.1.1 and section 3.1.1.2 define how those rules govern IMAP4 authentication.

If the client receives a message that is not expected for its current state, the client MUST cancel the authentication process and transition to completed_authentication state.

3.1.5.1.1 Receiving an IMAP4_AUTHENTICATE_NTLM_Supported_Response Message

The expected state is sent_authentication_request.

On receiving an IMAP4_AUTHENTICATE_NTLM_Supported_Response message, a client MUST generate the first NTLM message by calling the NTLM subsystem. The NTLM subsystem then generates a NEGOTIATE_MESSAGE NTLM message, as specified in [MS-NLMP]. The client encodes the NTLM message with base64 encoding, encapsulates it in an IMAP4_AUTHENTICATE_NTLM_Blob_Command message, and sends it to the server.

The client changes state to inside_authentication.

3.1.5.1.2 Receiving an IMAP4_AUTHENTICATE_NTLM_Unsupported_Response Message

The expected state is sent_authentication_request.
On receiving an **IMAP4_AUTHENTICATE_NTLM_Unsupported_Response** message, a client **MUST**
abort the **NTLM** authentication attempt and change state to **complete_authentication**.

3.1.5.1.3 Receiving an IMAP4_AUTHENTICATE_NTLM_Blob_Response Message

The expected state is **inside_authentication**.

On receiving an **IMAP4_AUTHENTICATE_NTLM_Blob_Response** message, a client **MUST**
decapsulate it to obtain the embedded base64-encoded **NTLM message**, decode it, and pass it to the **NTLM**
subsystem for processing.

If the NTLM subsystem is successful in handling the message, it returns an NTLM
AUTHENTICATE_MESSAGE message. The client then encodes the NTLM message with **base64 encoding**,
decapsulates it in an **IMAP4_AUTHENTICATE_NTLM_Blob_Command** message, and
sends it to the server. The internal state of the client does not change.

If the NTLM subsystem encounters an error when the **CHALLENGE_MESSAGE** NTLM message from
the **IMAP4_AUTHENTICATE_NTLM_Blob_Response** message is handled, the client **MUST**
treat the authentication attempt as a failed attempt and transition to **completed_authentication** state.

3.1.5.1.3.1 Error from NTLM

If the **NTLM** subsystem reports an error, the client **MUST** change its internal state to
completed_authentication and consider the authentication to have failed. The client can then take
any action it considers appropriate; these extensions do not mandate any specific course of action.

Typical actions are to try other **IMAP4** commands that are not related to authentication or to
disconnect the connection.

3.1.5.1.3.2 NTLM Reports Success and Returns an NTLM Message

If **NTLM** reports success, the **NTLM message** it returns **MUST** be encapsulated in an
IMAP4_AUTHENTICATE_NTLM_Blob_Command message and sent to the server. No change
occurs in the state of the client.

3.1.5.1.4 Receiving an IMAP4_AUTHENTICATE_NTLM_Succeeded_Response Message

The expected state is **inside_authentication**.

If the client receives an **IMAP4_AUTHENTICATE_NTLM_Succeeded_Response** message, the
client **MUST** change its internal state to **completed_authentication** and consider the authentication
to have succeeded. The client can then take any action it considers appropriate. These extensions do
not mandate any specific course of action.

3.1.5.1.5 Receiving an IMAP4_AUTHENTICATE_NTLM_Fail_Message Message

The expected state is **inside_authentication**.

If the client receives an **IMAP4_AUTHENTICATE_NTLM_Fail_Message** message, the client **MUST**
change its internal state to **completed_authentication** and consider the authentication to have
failed. The client can then take any action it considers appropriate. These extensions do not mandate
any specific course of action.

3.1.5.1.6 Receiving an IMAP4_AUTHENTICATE_NTLM_Cancelled_Response Message

The expected state is **sent_authentication_request** or **inside_authentication**.

If the client receives an **IMAP4_AUTHENTICATE_NTLM_Cancelled_Response** message, the client
MUST change its internal state to **completed_authentication** and consider the authentication to
have failed. The client can then take any action it considers appropriate. These extensions do not mandate any specific course of action.

3.1.5.2 Receiving IMAP4 Delegate Access Extension Messages

The client SHOULD handle server responses to the `LOGIN` command as specified in [RFC3501].

3.1.5.3 Receiving IMAP UIDPLUS Extension Messages

The client SHOULD handle server responses to the `UID EXPUNGE` command as specified in [RFC4315].

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Server Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation maintains to participate in this protocol. The described organization is provided to facilitate the explanation of how the protocol behaves. This document does not mandate that implementations adhere to this model as long as their external behavior is consistent with that described in this document.

3.2.1.1 IMAP4 NTLM Extension State Model

The following figure shows the server IMAP4 NTLM extension state model.
The abstract data model for the IMAP4 NTLM extension has the following states:

1. **Start**: State of the server before the `IMAP4_AUTHENTICATE_NTLM_Initiation_Command` message has been received.

2. **received_authentication_request**: State of the server after the `IMAP4_AUTHENTICATE_NTLM_Initiation_Command` message has been received.

3. **inside_authentication**: State entered by a server after it has sent an `IMAP4_AUTHENTICATE_NTLM_Supported_Response` message. In this state, the server initializes the NTLM subsystem and performs the following steps:
 - Waits for a message from the client.
 - De-encapsulates the received `IMAP4_AUTHENTICATE_NTLM_Blob_Command` message from the client and obtains the embedded NTLM message data.
 - Passes the NTLM message data to the NTLM subsystem.
 - Encapsulates the NTLM message returned by the NTLM subsystem into an `IMAP4_AUTHENTICATE_NTLM_Blob_Response` message.
 - Sends the `IMAP4_AUTHENTICATE_NTLM_Blob_Response` message to the client.

 This state terminates when one of the following occurs:
 - The NTLM subsystem reports completion with either a success or failed authentication status, upon which the server sends the client an `IMAP4_AUTHENTICATE_NTLM_Succeeded_Response` message or an `IMAP4_AUTHENTICATE_NTLM_Fail_Response` message, as specified in [RFC1731].
- The server receives an **IMAP4_AUTHENTICATE_NTLM_Cancellation_Command** message.

- Any failure is reported by the NTLM subsystem, upon which the server sends the client an **IMAP4_AUTHENTICATE_NTLM_Fail_Response** message.

4. **completed_authentication**: State of the server on exiting the **inside_authentication** or the **received_authentication_request** state. The rules for exiting the **inside_authentication** state are defined in section 3.2.5.1.2.2, section 3.2.5.1.2.3, section 3.2.5.1.2.4, and section 3.2.5.1.3. The behavior of IMAP4 in this state is outside the scope of this protocol.

3.2.1.2 NTLM Subsystem Interaction

During the **inside_authentication** state, the server invokes the **NTLM** subsystem and uses **connection-oriented NTLM**, as specified in [MS-NLMP].

The following is a description of how the **IMAP4** NTLM extension uses NTLM. For more details, see [MS-NLMP].

1. The server, on receiving the NTLM **NEGOTIATE_MESSAGE** message, passes it to the NTLM subsystem and is returned the NTLM **CHALLENGE_MESSAGE** message, if the NTLM **NEGOTIATE_MESSAGE** message was valid.

2. Subsequently, the exchange of **NTLM messages** goes on as defined by NTLM, with the server encapsulating the NTLM messages that are returned by NTLM before sending them to the client.

3. When NTLM completes authentication, either successfully or unsuccessfully, the NTLM subsystem notifies the server.

 - On successful completion, the server MUST exit the **inside_authentication** state and enter the **completed_authentication** state and send the **IMAP4_AUTHENTICATE_NTLM_Succeeded_Response** message to the client.

 - If a failure occurs due to an incorrect password error, as specified in [MS-NLMP], the server MUST enter the **completed_authentication** state and send the client an **IMAP4_AUTHENTICATE_NTLM_Fail_Response** message.

 - If a failure occurs on the server due to any reason other than the incorrect password error, the server enters the **completed_authentication** state and sends the client an **IMAP4_AUTHENTICATE_NTLM_Fail_Response** message.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

Message processing events and sequencing rules are divided into the following three categories:

- Receiving **IMAP4 NTLM** extension messages (section 3.2.5.1)
- Receiving IMAP4 `delegate access` extension messages (section 3.2.5.2)
- Receiving IMAP UIDPLUS extension messages (section 3.2.5.3)

3.2.5.1 Receiving an IMAP4 NTLM Extension Message

Servers SHOULD support the IMAP4 NTLM extension. The IMAP4 NTLM extension is driven by a series of message exchanges between a server and a client. The rules governing the sequencing of commands and the internal states of the client and server are defined by a combination of the rules specified in [RFC1731] and [MS-NLMP]. Section 3.2.1.1 and section 3.2.1.2 define how those rules govern IMAP4 authentication.

If the server receives a message that is not expected for its current state, the server MUST cancel the authentication process and transition to completed_authentication state.

3.2.5.1.1 Receiving an IMAP4_AUTHENTICATE_NTLM_Initiation_Command Message

The expected state is **start**.

On receiving the IMAP4_AUTHENTICATE_NTLM_Initiation_Command message, the server changes its state to the received_authentication_request state.

If the server supports the IMAP4 NTLM extension, it MUST reply with the IMAP4_AUTHENTICATE_NTLM_Supported_Response message and change its state to the inside_authentication state.

If the server does not support the IMAP4 NTLM extension, it MUST respond with the IMAP4_AUTHENTICATE_NTLM_Unsupported_Response message, and change its state to completed_authentication.

3.2.5.1.2 Receiving an IMAP4_AUTHENTICATE_NTLM_Blob_Command Message

The expected state is inside_authentication.

On receiving the IMAP4_AUTHENTICATE_NTLM_Blob_Command message, the server de-encapsulates the message to obtain the embedded NTLM message and passes it to the NTLM subsystem. The server then takes action based on the response from the NTLM subsystem, as specified in the following table.

<table>
<thead>
<tr>
<th>NTLM subsystem response</th>
<th>Server action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success, returning an NTLM message</td>
<td>As specified in section 3.2.5.1.2.1</td>
</tr>
<tr>
<td>Success, indicating authentication complete</td>
<td>As specified in section 3.2.5.1.2.2</td>
</tr>
<tr>
<td>Failure, indicating user name or password incorrect</td>
<td>As specified in section 3.2.5.1.2.3</td>
</tr>
<tr>
<td>Failure for any reason other than incorrect user name or password</td>
<td>As specified in section 3.2.5.1.2.4</td>
</tr>
</tbody>
</table>

3.2.5.1.2.1 NTLM Returns Success, Returning an NTLM Message

If the server passes an NEGOTIATE_MESSAGE NTLM message to the NTLM subsystem, the NTLM subsystem returns an NTLM CHALLENGE_MESSAGE message. The server encapsulates the CHALLENGE_MESSAGE message in an IMAP4_AUTHENTICATE_NTLM_Blob_Response message and sends it to the client. The server does not change its internal state.
3.2.5.1.2 NTLM Returns Success, Indicating Authentication Completed Successfully

If the server passes an AUTHENTICATE_MESSAGE NTLM message with the correct user name and password to the NTLM subsystem, the NTLM subsystem returns success. The server MUST return the IMAP4_AUTHENTICATE_NTLM_Succeeded_Response message and change its internal state to completed_authentication.

3.2.5.1.2.3 NTLM Returns a Failure Status, Indicating User Name or Password Was Incorrect

If the server passes an AUTHENTICATE_MESSAGE NTLM message and the NTLM subsystem returns status that indicates that the user name or password was incorrect, the server MUST return the IMAP4_AUTHENTICATE_NTLM_Fail_Response message and change its internal state to completed_authentication.

3.2.5.1.2.4 NTLM Returns a Failure Status, Indicating Any Other Error

If the server passes an AUTHENTICATE_MESSAGE NTLM message and the NTLM subsystem returns failure status that indicates an error other than the user name or password being incorrect, the server MUST return the IMAP4_AUTHENTICATE_NTLM_Fail_Response message and change its internal state to completed_authentication.

3.2.5.1.3 Receiving an IMAP4_AUTHENTICATE_NTLM_Cancellation_Command Message

The expected states are received_authentication_request or inside_authentication.

On receiving the IMAP4_AUTHENTICATE_NTLM_Cancellation_Command message, the server MUST change to completed_authentication state and send an IMAP4_AUTHENTICATE_NTLM_Cancelled_Response message to the client.

3.2.5.2 Receiving an IMAP4 Delegate Access Extension Message

Servers SHOULD support the IMAP4 delegate access extension. When the server receives the IMAP4_DELEGATE_LOGIN_Command message, it SHOULD take the following actions:

1. Authenticate the delegate using the delegate's alias or UPN and password.
2. Verify that the delegate has access to the delegator's mailbox.

If the authentication succeeds and the delegate has access to the delegator's mailbox, the server returns an OK response, as specified in [RFC3501] section 6.2.3. If the authentication does not succeed or the delegate does not have access to the delegator's mailbox, the server returns a NO response.

3.2.5.3 Receiving an IMAP UIDPLUS Extension Message

The server SHOULD support the IMAP UIDPLUS extension. Message processing and sequencing rules are specified in [RFC4315]. The server SHOULD implement the response codes specified in [RFC4315] section 3 except for the UIDNOTSTICKY response code.

3.2.6 Timer Events

None.
3.2.7 Other Local Events

None.
4 Protocol Examples

4.1 IMAP4 NTLM Extension

The following sections describe operations used in a common scenario to illustrate the function of the IMAP4 NTLM extension.

4.1.1 Client Successfully Authenticating to a Server

The following example illustrates an IMAP4 NTLM extension scenario in which a client successfully authenticates to a server by using NTLM.

The client sends an IMAP4_AUTHENTICATE_NTLM_Initiation_Command message to the server.

1 AUTHENTICATE NTLM

The server sends the IMAP4_AUTHENTICATE_NTLM_Supported_Response message, indicating that it can perform NTLM authentication.

+

The client sends an IMAP4_AUTHENTICATE_NTLM_Blob_Command message that contains an NEGOTIATE_MESSAGE NTLM message that is encoded with base64 encoding.

IMAP4_AUTHENTICATE_NTLM_Blob_Command:

TlRMTVNTUAABAAAAB4IIogAAAAAAAAAAAAAAAAAFASgKAAAADw==

NEGOTIATE_MESSAGE:

00000000:4e 54 4c 53 53 50 00 01 00 00 00 07 82 08 a2 NTLMSSP.....,
00000010:00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000020:05 01 28 0a 00 00 00 (.......

The server sends an IMAP4_AUTHENTICATE_NTLM_Blob_Response message that contains an CHALLENGE_MESSAGE NTLM message that is encoded with base64 encoding.

IMAP4_AUTHENTICATE_NTLM_Blob_Response:

+ TlRMTVNTUAACAAAAFAAAAgAAAAAFgqinizIKgYjdEAAAAAAAAAAAGQAZABMAAAAABQ LODgAAAESUEQUwBUAPMARQBSAFYARQBSAINFABUAEUAUwBUAPMARQBSAFYARQBSAA EAPABUBUAuPBuAPMARQBSAFYARQBSAAQAPBUAGUAcxB0AFMAMZQByAHIAYAQByAAMF
BUAGUAcwB0AFMAMZQByAHIAYAQByAAMFA

CHALLENGE_MESSAGE:

00000000:4e 54 4c 53 53 50 00 02 00 00 00 14 00 14 00 NTLMSSP........
00000010:38 00 00 00 51 38 8 a8 66 23 76 51 8....,8$Y8'f#VQ
00000020:00 00 00 00 00 00 00 00 64 00 64 00 0c 00 00 00d.d.L...
00000030:0f 02 ce 0e 00 00 00 00 05 54 00 45 00 53 00 54 00 ..Ï......T.E.S.T.
00000040:53 00 45 00 52 00 56 00 45 00 52 00 02 00 14 00 S.E.R.V.E.R....
00000050:54 00 45 00 53 00 54 00 53 00 45 00 52 00 02 00 56 00 T.E.S.T.S.E.R.V.
00000060:45 00 52 00 01 00 14 00 54 00 45 00 53 00 54 00 E.R......T.E.S.T.
The client sends an **IMAP4_AUTHENTICATE_NTLM_Blob_Command** message that contains an **AUTHENTICATE_MESSAGE** NTLM message that is encoded with base64 encoding.

IMAP4_AUTHENTICATE_NTLM_Blob_Command:

```
TlRMTVNTUAADAA
AAGAAYAGIAAAAYABgAegAAAAAAAABIAAAACAAIAEgAAAASABIAUAAA
AAAAAASAAAAABYK1ogUBKAoAAAApDBzAGUAcgBOAERYALQBDAEwASQBFAE4AVABKM1Q4
djhcSgAACAAAAAAAAAAAC7zUSgB0Auy98brI6h3mwHMcAibKNTxamo=
```

AUTHENTICATE_MESSAGE:

```
00000000:4e 54 4c 53 53 50 00 03 00 00 00 18 00 18 00
00000010:62 00 00 00 18 00 18 00 7a 00 00 00 00 00 00 00
00000020:48 00 00 00 08 00 08 00 48 00 00 00 12 00 12 00
00000030:50 00 00 00 00 00 00 00 92 00 00 00 05 82 88 a2
00000040:05 01 28 0a 00 00 00 0f 75 00 73 00 65 00 72 00
00000050:4e 00 46 00 2d 00 43 00 4c 00 49 00 45 00 4e 00
00000060:54 00 4j 2$8v8\J..........
```

The server sends an **IMAP4_AUTHENTICATE_NTLM_Succeeded_Response** message.

```
1 OK AUTHENTICATE completed.
```

4.1.2 Client Unsuccessfully Authenticating to a Server

The following example illustrates an **IMAP4 NTLM** extension scenario in which an client tries NTLM authentication to a server and the authentication fails.

The client sends an **IMAP4_AUTHENTICATE_NTLM_Initiation_Command** message to the server.

```
1 AUTHENTICATE NTLM
```

The server sends the **IMAP4_AUTHENTICATE_NTLM_Supported_Response** message, indicating that it can perform NTLM authentication.

```
+
```

The client sends an **IMAP4_AUTHENTICATE_NTLM_Blob_Command** message that contains an **NEGOTIATE_MESSAGE** NTLM message that is encoded with **base64 encoding**.

IMAP4_AUTHENTICATE_NTLM_Blob_Command:

```
TlRMTVNTUAADAA
AAGAAYAGIAAAAYABgAegAAAAAAAABIAAAACAAIAEgAAAASABIAUAAA
AAAAAASAAAAABYK1ogUBKAoAAAApDBzAGUAcgBOAERYALQBDAEwASQBFAE4AVABKM1Q4
djhcSgAACAAAAAAAAAAAC7zUSgB0Auy98brI6h3mwHMcAibKNTxamo=
```
The server sends an `IMAP4_AUTHENTICATE_NTLM_Blob_Response` message that contains an `CHALLENGE_MESSAGE` NTLM message that is encoded with base64 encoding.

IMAP4_AUTHENTICATE_NTLM_Blob_Response:

```
+ T1RMTVNTUAACAAAAFAAUAdgAAAAAFgoqieUWd5ES4B10AAAAAAAAAAAGQAZABMAA
   AABQLODgAAAA9UAEUAUwBUAFMARQBSAFYARQBSAIAFABUEUAUwBUAFMARQBSAF
   YAQBAAAFABUEUAIwBUAFMARQBSAFYARQBSAIAFABUAGUAcwB0AFMAZQByAH
   YAZQByAAMAFABUAGUAcwB0AFMAZQByAHYAZQByAAAAAA=
```

The client sends an `IMAP4_AUTHENTICATE_NTLM_Blob_Command` message that contains an `AUTHENTICATE_MESSAGE` NTLM message that is encoded with base64 encoding.

IMAP4_AUTHENTICATE_NTLM_Blob_Command:

```
T1RMTVNTUAADAABAAYAGIAAAAAAYAbgAegAAAAAABIAAAAAAAEgAAAAAABIA
   UAAAAAAAACSAAAABYK1ogUBKACAAAAPdZAGUIAgCZAOYALQDABAEwASQBSFAB4A
   VAASarj61Z5NWAAAAAAABIAAAAAAAAAC9m8jmK4P2eS9/nMb1cF2HkL0C
   GZw=
```

The server sends an `IMAP4_AUTHENTICATE_NTLM_Fail_Response` message.

```
1 NO AUTHENTICATE failed.
```
4.2 IMAP4 Delegate Access Extension

In this scenario, Jason Carlson is using an IMAP4 client to access his email. His coworker, David Jones, has granted Jason delegate access to his mailbox. Jason uses his client to access David's mailbox.

```
0001 LOGIN contoso/jason/david @ssw0rd
```

The server responds with a successful LOGIN response as described in [RFC3501].

```
0001 OK LOGIN completed.
```

4.3 IMAP UIDPLUS Extension

For examples using the IMAP UIDPLUS extension, see [RFC4315].
5 Security

5.1 Security Considerations for Implementers

Implementers have to be aware of the security considerations of using NTLM authentication, as described in [MS-NLMP].

5.2 Index of Security Parameters

<table>
<thead>
<tr>
<th>Security parameter</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLM</td>
<td>Section 3.1.5.1 and section 3.2.5.1</td>
</tr>
</tbody>
</table>
6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include updates to those products.

- Microsoft Exchange Server 2003
- Microsoft Exchange Server 2007
- Microsoft Exchange Server 2010
- Microsoft Exchange Server 2013
- Microsoft Exchange Server 2016
- Microsoft Office Outlook 2003
- Microsoft Office Outlook 2007
- Microsoft Outlook 2010
- Microsoft Outlook 2013
- Microsoft Outlook 2016
- Microsoft Exchange Server 2019
- Microsoft Outlook 2019
- Microsoft Outlook 2021

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base (KB) number appears with a product name, the behavior changed in that update. The new behavior also applies to subsequent updates unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the product does not follow the prescription.

<1> Section 3.2.5.1: The initial release version of Exchange 2010 does not support the IMAP4 NTLM extension. Microsoft Exchange Server 2010 Service Pack 1 (SP1) supports the IMAP4 NTLM extension.

<2> Section 3.2.5.2: Exchange 2007 and Microsoft Exchange Server 2007 Service Pack 1 (SP1) do not support the IMAP4 delegate access extension. Microsoft Exchange Server 2007 Service Pack 2 (SP2) supports the IMAP4 delegate access extension.

<3> Section 3.2.5.3: Exchange 2003, Exchange 2007, and Exchange 2010 do not support the IMAP UIDPLUS extension. Exchange 2010 SP1 supports the IMAP UIDPLUS extension.
7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last release.
8 Index

A
Abstract data model
 client 12
 server 16
Applicability 8

C
Capability negotiation 8
Change tracking 28
Client
 abstract data model 12
 higher-layer triggered events 14
 initialization 14
 message processing 14
 other local events 16
 sequencing rules 14
 timer events 16
 timers 13
Client - abstract data model
 IMAP4 NTLM extension state model 12
 NTLM subsystem interaction 13
Client - message processing
 receiving IMAP UIDPLUS extension messages 16
 receiving IMAP4 delegate access extension messages 16
 receiving IMAP4 NTLM extension messages 14
Client - sequencing rules
 receiving IMAP UIDPLUS extension messages 16
 receiving IMAP4 delegate access extension messages 16
 receiving IMAP4 NTLM extension messages 14

D
Data model - abstract
 client 12
 server 16

E
Examples
 IMAP UIDPLUS extension 25
 IMAP4 delegate access extension 25
 IMAP4 NTLM extension overview 22

F
Fields - vendor-extensible 9

G
Glossary 6

H
Higher-layer triggered events
 client 14
 server 18

I
IMAP UIDPLUS extension example 25
IMAP UIDPLUS Extension Messages message 11
IMAP4 delegate access extension example 25
IMAP4 Delegate Access Extension Messages message 10
IMAP4 NTLM extension example
 client successfully authenticating to a server 22
 client unsuccessfully authenticating to a server 23
 overview 22
IMAP4 NTLM Extension Messages message 10
IMAP4 NTLM extension state model
 client 12
 server 16
Implementer - security considerations 26
Index of security parameters 26
Informative references 7
Initialization
 client 14
 server 18
Introduction 6

M
Message processing
 client 14
 server 18
Message processing - client
 receiving IMAP4 delegate access extension messages 16
 receiving IMAP4 NTLM extension messages 14
 receiving IMAP4 UIDPLUS extension messages 16
Message processing - server
 receiving IMAP4 delegate access extension messages 20
 receiving IMAP4 delegate access extension messages 20
 receiving IMAP4 NTLM extension messages 19
Messages
 IMAP UIDPLUS Extension Messages 11
 IMAP4 Delegate Access Extension Messages 10
 IMAP4 NTLM Extension Messages 10
 transport 10

N
Normative references 7
NTLM subsystem interaction
 client 13
 server 18

O
Other local events
 client 16
 server 21
Overview (synopsis) 7

P
Parameters - security index 26
Preconditions 8
Prerequisites 8
Product behavior 27

R

References 7
informative 7
normative 7
Relationship to other protocols 8

S

Security
implementer considerations 26
parameter index 26
Sequencing rules
client 14
server 18
Sequencing rules - client
receiving IMAP UIDPLUS extension messages 16
receiving IMAP4 delegate access extension messages 16
receiving IMAP4 NTLM extension messages 14
Sequencing rules - server
receiving IMAP UIDPLUS extension messages 20
receiving IMAP4 delegate access extension messages 20
receiving IMAP4 NTLM extension messages 19
Server
abstract data model 16
higher-layer triggered events 18
initialization 18
message processing 18
other local events 21
sequencing rules 18
timer events 20
timers 18
Server - abstract data model
IMAP4 NTLM extension state model 16
NTLM subsystem interaction 18
Server - message processing
receiving IMAP UIDPLUS extension messages 20
receiving IMAP4 delegate access extension messages 20
receiving IMAP4 NTLM extension messages 19
Server - sequencing rules
receiving IMAP UIDPLUS extension messages 20
receiving IMAP4 delegate access extension messages 20
receiving IMAP4 NTLM extension messages 19
Standards assignments 9

T

Timer events
client 16
server 20
Timers
client 13
server 18
Tracking changes 28
Transport 10
Triggered events - higher-layer
client 14
server 18