
1 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

[MS-OXCRPC]:

Wire Format Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for protocols,
file formats, languages, standards as well as overviews of the interaction among each of these
technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the

technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL's, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming
environments in order for you to develop an implementation. If you have access to Microsoft
programming tools and environments you are free to take advantage of them. Certain Open
Specifications are intended for use in conjunction with publicly available standard specifications and
network programming art, and assumes that the reader either is familiar with the aforementioned

material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Revision Summary

Date
Revision
History

Revision
Class Comments

4/4/2008 0.1 Initial Availability.

4/25/2008 0.2 Revised and updated property names and other technical
content.

6/27/2008 1.0 Initial Release.

8/6/2008 1.01 Revised and edited technical content.

9/3/2008 1.02 Revised and edited technical content.

10/1/2008 1.03 Revised and edited technical content.

12/3/2008 1.04 Revised and edited technical content.

3/4/2009 1.05 Revised and edited technical content.

4/10/2009 2.0 Updated technical content and applicable product releases.

7/15/2009 3.0 Major Revised and edited for technical content.

11/4/2009 4.0.0 Major Updated and revised the technical content.

2/10/2010 5.0.0 Major Updated and revised the technical content.

5/5/2010 6.0.0 Major Updated and revised the technical content.

8/4/2010 7.0 Major Significantly changed the technical content.

11/3/2010 7.1 Minor Clarified the meaning of the technical content.

3/18/2011 7.1 No change No changes to the meaning, language, or formatting of the
technical content.

8/5/2011 8.0 Major Significantly changed the technical content.

10/7/2011 9.0 Major Significantly changed the technical content.

1/20/2012 10.0 Major Significantly changed the technical content.

4/27/2012 11.0 Major Significantly changed the technical content.

7/16/2012 11.1 Minor Clarified the meaning of the technical content.

10/8/2012 12.0 Major Significantly changed the technical content.

2/11/2013 13.0 Major Significantly changed the technical content.

7/26/2013 13.1 Minor Clarified the meaning of the technical content.

11/18/2013 13.1 No Change No changes to the meaning, language, or formatting of the
technical content.

2/10/2014 13.1 No Change No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 14.0 Major Significantly changed the technical content.

7/31/2014 14.1 Minor Clarified the meaning of the technical content.

3 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Date
Revision
History

Revision
Class Comments

10/30/2014 15.0 Major Significantly changed the technical content.

3/16/2015 16.0 Major Significantly changed the technical content.

5/26/2015 17.0 Major Significantly changed the technical content.

9/14/2015 17.0 No Change No changes to the meaning, language, or formatting of the
technical content.

4 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 9

1.2.1 Normative References ... 10
1.2.2 Informative References ... 10

1.3 Overview .. 11
1.4 Relationship to Other Protocols .. 13
1.5 Prerequisites/Preconditions ... 13
1.6 Applicability Statement ... 13
1.7 Versioning and Capability Negotiation ... 13
1.8 Vendor-Extensible Fields ... 14
1.9 Standards Assignments ... 14

2 Messages ... 15
2.1 Transport .. 15
2.2 Common Data Types .. 15

2.2.1 Simple Data Types .. 16
2.2.1.1 CXH Data Type ... 16
2.2.1.2 ACXH Data Type ... 16
2.2.1.3 BIG_RANGE_ULONG Data Type .. 16
2.2.1.4 SMALL_RANGE_ULONG Data Type .. 17

2.2.2 Structures ... 17
2.2.2.1 RPC_HEADER_EXT Structure .. 17
2.2.2.2 AUX_HEADER Structure ... 17

2.2.2.2.1 AUX_PERF_REQUESTID Auxiliary Block Structure 20
2.2.2.2.2 AUX_PERF_SESSIONINFO Auxiliary Block Structure 21
2.2.2.2.3 AUX_PERF_SESSIONINFO_V2 Auxiliary Block Structure........................ 21
2.2.2.2.4 AUX_PERF_CLIENTINFO Auxiliary Block Structure 22
2.2.2.2.5 AUX_PERF_SERVERINFO Auxiliary Block Structure 24
2.2.2.2.6 AUX_PERF_PROCESSINFO Auxiliary Block Structure 24
2.2.2.2.7 AUX_PERF_DEFMDB_SUCCESS Auxiliary Block Structure 25
2.2.2.2.8 AUX_PERF_DEFGC_SUCCESS Auxiliary Block Structure 26
2.2.2.2.9 AUX_PERF_MDB_SUCCESS Auxiliary Block Structure 26
2.2.2.2.10 AUX_PERF_MDB_SUCCESS_V2 Auxiliary Block Structure 27
2.2.2.2.11 AUX_PERF_GC_SUCCESS Auxiliary Block Structure 27
2.2.2.2.12 AUX_PERF_GC_SUCCESS_V2 Auxiliary Block Structure 28
2.2.2.2.13 AUX_PERF_FAILURE Auxiliary Block Structure 29
2.2.2.2.14 AUX_PERF_FAILURE_V2 Auxiliary Block Structure................................ 29
2.2.2.2.15 AUX_CLIENT_CONTROL Auxiliary Block Structure 30
2.2.2.2.16 AUX_OSVERSIONINFO Auxiliary Block Structure 31
2.2.2.2.17 AUX_EXORGINFO Auxiliary Block Structure ... 32
2.2.2.2.18 AUX_PERF_ACCOUNTINFO Auxiliary Block Structure 32
2.2.2.2.19 AUX_ENDPOINT_CAPABILITIES Auxiliary Block Structure 32
2.2.2.2.20 AUX_CLIENT_CONNECTION_INFO Auxiliary Block Structure 33
2.2.2.2.21 AUX_SERVER_SESSION_INFO Auxiliary Block Structure 34
2.2.2.2.22 AUX_PROTOCOL_DEVICE_IDENTIFICATION Auxiliary Block Structure 34

3 Protocol Details ... 37
3.1 EMSMDB Server Details .. 37

3.1.1 Abstract Data Model .. 37
3.1.1.1 Global.Handle ... 37

3.1.2 Timers .. 38
3.1.3 Initialization ... 38
3.1.4 Message Processing Events and Sequencing Rules .. 38

3.1.4.1 EcDoConnectEx Method (Opnum 10) ... 40

5 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.1.4.1.1 Extended Buffer Handling ... 44
3.1.4.1.1.1 Extended Buffer Format .. 44

3.1.4.1.1.1.1 rgbAuxIn Input Buffer ... 44
3.1.4.1.1.1.2 rgbAuxOut Output Buffer ... 45

3.1.4.1.1.2 Compression Algorithm ... 45
3.1.4.1.1.2.1 LZ77 Compression Algorithm ... 45

3.1.4.1.1.2.1.1 Compression Algorithm Terminology 45
3.1.4.1.1.2.1.2 Using the Compression Algorithm 46
3.1.4.1.1.2.1.3 Compression Process ... 46
3.1.4.1.1.2.1.4 Compression Process Example .. 46

3.1.4.1.1.2.2 DIRECT2 Encoding Algorithm ... 47
3.1.4.1.1.2.2.1 Bitmask ... 47
3.1.4.1.1.2.2.2 Encoding Metadata .. 48
3.1.4.1.1.2.2.3 Metadata Offset .. 48
3.1.4.1.1.2.2.4 Match Length ... 48

3.1.4.1.1.3 Obfuscation Algorithm .. 50
3.1.4.1.2 Auxiliary Buffer ... 50

3.1.4.1.2.1 Server Topology Information ... 51
3.1.4.1.2.2 Processing Auxiliary Buffers Received from the Client 51

3.1.4.1.3 Version Checking ... 51
3.1.4.1.3.1 Version Number Comparison ... 52
3.1.4.1.3.2 Server Versions ... 52

3.1.4.2 EcDoRpcExt2 Method (Opnum 11)... 53
3.1.4.2.1 Extended Buffer Handling ... 55

3.1.4.2.1.1 Extended Buffer Format .. 55
3.1.4.2.1.1.1 rgbIn Input Buffer .. 56
3.1.4.2.1.1.2 rgbOut Output Buffer .. 56
3.1.4.2.1.1.3 rgbAuxIn Input Buffer ... 57
3.1.4.2.1.1.4 rgbAuxOut Output Buffer ... 57

3.1.4.2.1.2 Extended Buffer Packing ... 57
3.1.4.2.2 Auxiliary Buffer ... 58

3.1.4.2.2.1 Server Topology Information ... 58
3.1.4.2.2.2 Processing Auxiliary Buffers Received from the Client 58

3.1.4.3 EcDoDisconnect Method (Opnum 1) .. 58
3.1.4.4 EcDoAsyncConnectEx Method (Opnum 14) ... 59
3.1.4.5 EcRRegisterPushNotification Method (Opnum 4) .. 59
3.1.4.6 EcDummyRpc Method (Opnum 6) ... 61
3.1.4.7 Opnum0NotUsedOnWire Method (Opnum 0) ... 61
3.1.4.8 Opnum2NotUsedOnWire Method (Opnum 2) ... 61
3.1.4.9 Opnum3NotUsedOnWire Method (Opnum 3) ... 61
3.1.4.10 Opnum5NotUsedOnWire Method (Opnum 5) ... 61
3.1.4.11 Opnum7NotUsedOnWire Method (Opnum 7) ... 61
3.1.4.12 Opnum8NotUsedOnWire Method (Opnum 8) ... 62
3.1.4.13 Opnum9NotUsedOnWire Method (Opnum 9) ... 62
3.1.4.14 Opnum12NotUsedOnWire Method (Opnum 12) ... 62
3.1.4.15 Opnum13NotUsedOnWire Method (Opnum 13) ... 62

3.1.5 Timer Events .. 62
3.1.6 Other Local Events .. 62

3.2 EMSMDB Client Details .. 62
3.2.1 Abstract Data Model .. 62
3.2.2 Timers .. 62
3.2.3 Initialization ... 62
3.2.4 Message Processing Events and Sequencing Rules .. 63

3.2.4.1 Sending the EcDoConnectEx Method.. 63
3.2.4.1.1 Extended Buffer Handling ... 64
3.2.4.1.2 Auxiliary Buffer ... 64

3.2.4.1.2.1 Client Performance Monitoring ... 65
3.2.4.1.2.2 Processing Auxiliary Buffers Received from the Server 66

6 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.2.4.1.3 Version Checking ... 66
3.2.4.1.3.1 Version Number Comparison ... 66
3.2.4.1.3.2 Client Versions .. 66
3.2.4.1.3.3 Version Numbers Received from the Server 67

3.2.4.2 Sending the EcDoRpcExt2 Method ... 67
3.2.4.2.1 Extended Buffer Handling ... 67
3.2.4.2.2 Auxiliary Buffer ... 68

3.2.4.2.2.1 Client Performance Monitoring ... 68
3.2.4.3 Sending the EcDoDisconnect Method ... 70
3.2.4.4 Handling Server Too Busy .. 71
3.2.4.5 Handling Connection Failures .. 71
3.2.4.6 Handling Endpoint Consolidation ... 71

3.2.5 Timer Events .. 71
3.2.6 Other Local Events .. 71

3.3 AsyncEMSMDB Server Details .. 71
3.3.1 Abstract Data Model .. 71
3.3.2 Timers .. 72
3.3.3 Initialization ... 72
3.3.4 Message Processing Events and Sequencing Rules .. 72

3.3.4.1 EcDoAsyncWaitEx Method (Opnum 0) .. 73
3.3.5 Timer Events .. 74
3.3.6 Other Local Events .. 74

3.4 AsyncEMSMDB Client Details ... 74
3.4.1 Abstract Data Model .. 74
3.4.2 Timers .. 74
3.4.3 Initialization ... 74
3.4.4 Message Processing Events and Sequencing Rules .. 74
3.4.5 Timer Events .. 75
3.4.6 Other Local Events .. 75

4 Protocol Examples ... 76
4.1 Connect to the Server ... 76
4.2 Issue ROP Commands to the Server ... 77
4.3 Receive Packed ROP Responses from the Server .. 79
4.4 Disconnect from the Server ... 80

5 Security ... 81
5.1 Security Considerations for Implementers ... 81
5.2 Index of Security Parameters .. 81

6 Appendix A: Full IDL .. 82

7 Appendix B: Product Behavior ... 84

8 Change Tracking .. 90

9 Index ... 91

7 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

1 Introduction

The Wire Format Protocol is used by a client to communicate with a server to access personal
messaging data by using remote procedure call (RPC) interfaces. The Wire Format Protocol uses
the EMSMDB and AsyncEMSMDB protocol interfaces between a client and server. This protocol
extends DCE 1.1: Remote Procedure Call, as described in [C706].

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,

MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are specific to this document:

asynchronous context handle: A remote procedure call (RPC) context handle that is used by

a client when issuing RPCs against a server on AsyncEMSMDB interface methods. It represents a
handle to a unique session context on the server.

binding handle: A data structure that represents the logical connection between a client and a
server.

Client Access License (CAL): A license that gives a user the right to access the services of a
server. To legally access the server software, a CAL can be required. A CAL is not a software
product.

code page: An ordered set of characters of a specific script in which a numerical index (code-point
value) is associated with each character. Code pages are a means of providing support for
character sets (1) and keyboard layouts used in different countries. Devices such as the display
and keyboard can be configured to use a specific code page and to switch from one code page

(such as the United States) to another (such as Portugal) at the user's request.

distinguished name (DN): A name that uniquely identifies an object by using the relative
distinguished name (RDN) for the object, and the names of container objects and domains that
contain the object. The distinguished name (DN) identifies the object and its location in a tree.

endpoint: A communication port that is exposed by an application server for a specific shared
service and to which messages can be addressed.

flags: A set of values used to configure or report options or settings.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

handle: Any token that can be used to identify and access an object such as a device, file, or a
window.

Hypertext Transfer Protocol (HTTP): An application-level protocol for distributed, collaborative,
hypermedia information systems (text, graphic images, sound, video, and other multimedia
files) on the World Wide Web.

Incremental Change Synchronization (ICS): A data format and algorithm that is used to
synchronize folders and messages between two sources.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=89824

8 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see

[C706] section 4.

Kerberos: An authentication (2) system that enables two parties to exchange private information

across an otherwise open network by assigning a unique key (called a ticket) to each user that
logs on to the network and then embedding these tickets into messages sent by the users. For
more information, see [MS-KILE].

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

locale: A collection of rules and data that are specific to a language and a geographical area. A
locale can include information about sorting rules, date and time formatting, numeric and

monetary conventions, and character classification.

mailbox: A message store that contains email, calendar items, and other Message objects for a
single recipient.

message store: A unit of containment for a single hierarchy of Folder objects, such as a mailbox
or public folders.

name service provider interface (NSPI): A method of performing address-book-related

operations on Active Directory.

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

NT LAN Manager (NTLM) Authentication Protocol: A protocol using a challenge-response
mechanism for authentication (2) in which clients are able to verify their identities without

sending a password to the server. It consists of three messages, commonly referred to as Type
1 (negotiation), Type 2 (challenge) and Type 3 (authentication). For more information, see [MS-
NLMP].

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

permission: A rule that is associated with an object and that regulates which users can gain

access to the object and in what manner. See also rights.

public folder: A Folder object that is stored in a location that is publicly available.

recipient: An entity that can receive email messages.

remote operation (ROP): An operation that is invoked against a server. Each ROP represents an
action, such as delete, send, or query. A ROP is contained in a ROP buffer for transmission over
the wire.

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The

preferred usage for this term is "RPC message". For more information about RPC, see [C706].

%5bMS-KILE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-NLMP%5d.pdf
%5bMS-NLMP%5d.pdf

9 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

replica: A copy of the data that is in a user's mailbox at a specific point in time.

ROP request: See ROP request buffer.

ROP request buffer: A ROP buffer that a client sends to a server to be processed.

ROP response: See ROP response buffer.

ROP response buffer: A ROP buffer that a server sends to a client to be processed.

RPC dynamic endpoint: A network-specific server address that is requested and assigned at run
time, as described in [C706].

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

Server object: An object on a server that is used as input or created as output for remote

operations (ROPs).

Session Context: A server-side partitioning for client isolation. All client actions against a server
are scoped to a specific Session Context. All messaging objects and data that is opened by a
client are isolated to a Session Context.

session context handle: A remote procedure call (RPC) context handle that is used by a client
when issuing RPCs against a server on EMSMDB interface methods. It represents a handle to a

unique session context on the server.

stream: (1) An element of a compound file, as described in [MS-CFB]. A stream contains a
sequence of bytes that can be read from or written to by an application, and they can exist only
in storages.

(2) A flow of data from one host to another host, or the data that flows between two hosts.

Unicode: A character encoding standard developed by the Unicode Consortium that represents

almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]

provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in

the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

well-known endpoint: A preassigned, network-specific, stable address for a particular
client/server instance. For more information, see [C706].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents

%5bMS-CFB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=154659
http://go.microsoft.com/fwlink/?LinkId=90317

10 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://www2.opengroup.org/ogsys/catalog/c706

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-OXCFXICS] Microsoft Corporation, "Bulk Data Transfer Protocol".

[MS-OXCNOTIF] Microsoft Corporation, "Core Notifications Protocol".

[MS-OXCROPS] Microsoft Corporation, "Remote Operations (ROP) List and Encoding Protocol".

[MS-OXCSTOR] Microsoft Corporation, "Store Object Protocol".

[MS-OXDSCLI] Microsoft Corporation, "Autodiscover Publishing and Lookup Protocol".

[MS-OXOMSG] Microsoft Corporation, "Email Object Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[UASDC] Ziv, J. and Lempel, A., "A Universal Algorithm for Sequential Data Compression", May 1977,

http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1977_universal_algorithm.pdf

1.2.2 Informative References

[MS-OXABREF] Microsoft Corporation, "Address Book Name Service Provider Interface (NSPI) Referral

Protocol".

[MS-OXNSPI] Microsoft Corporation, "Exchange Server Name Service Provider Interface (NSPI)
Protocol".

[MS-OXPROTO] Microsoft Corporation, "Exchange Server Protocols System Overview".

[MSDN-RpcBindingSetAuthInfoEx] Microsoft Corporation, "RpcBindingSetAuthInfoEx function",
http://msdn.microsoft.com/en-us/library/aa375608(v=VS.85).aspx

[MSDN-SOCKADDR] Microsoft Corporation, "sockaddr", http://msdn.microsoft.com/en-
us/library/ms740496.aspx

[MSFT-ConfigStaticUDPPort] Microsoft Corporation, "Configure a Static UDP Port for Push Notifications

in an Exchange 2010 Environment (en-US)",
http://social.technet.microsoft.com/wiki/contents/articles/2542.configure-a-static-udp-port-for-push-
notifications-in-an-exchange-2010-environment.aspx

http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
%5bMS-OXCFXICS%5d.pdf
%5bMS-OXCNOTIF%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCSTOR%5d.pdf
%5bMS-OXDSCLI%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90549
%5bMS-OXABREF%5d.pdf
%5bMS-OXABREF%5d.pdf
%5bMS-OXNSPI%5d.pdf
%5bMS-OXNSPI%5d.pdf
%5bMS-OXPROTO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=203529
http://go.microsoft.com/fwlink/?LinkId=113717
http://go.microsoft.com/fwlink/?LinkId=113717
http://go.microsoft.com/fwlink/?LinkId=228253
http://go.microsoft.com/fwlink/?LinkId=228253

11 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

1.3 Overview

The Wire Format Protocol enables a client to communicate with a server to access personal messaging
data. Communications with the server are divided into three major functional areas: (1) initiating and

establishing connection with the server, (2) issuing remote operations (ROPs) to the server for
mailbox data, and (3) terminating communications with the server. This functionality is contained in
the EMSMDB interface, as described in section 3.1 and section 3.2. If events are pending on the
server that require client action, the client gets notification of those pending events by using the
functionality contained in the AsyncEMSMDB interface, as described in section 3.3 and section 3.4.

The following figure shows a simplified overview of client and server communications.

12 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Figure 1: Client/server communications

Before a client can retrieve private mailbox or public folder data from a server on the EMSMDB
interface, it first connects with the server, as described in section 3.2.4.1, and establishes a session

13 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

context handle. The session context handle is an RPC context handle that refers to the Session
Context created by the server. The client stores this session context handle and uses it on

subsequent RPCs on the EMSMDB interface.

After the server has returned the session context handle to the client, as described in section 3.1.4.1,

the client begins issuing ROPs to the server. The client retrieves private mailbox or public folder data
by using the method described in section 3.2.4.2. This single interface function is used to submit a
group of ROP commands to the server, and there are no separate interface functions to perform
different operations against mailbox data. The ROP request operations are tokenized into a request
buffer and sent to the server as a byte array. The server parses the ROP request buffer and
performs actions. The response to these actions is then serialized into a ROP response buffer and
returned to the client as a byte array. At the EMSMDB interface level, the format of these ROP

request buffers and ROP response buffers is not understood. For more information about ROP
commands and how to interpret the ROP buffers, see [MS-OXCROPS].

To receive notification that events are available on the server related to the Session Context, the
client establishes an asynchronous connection to the server to support notification, as described in
sections 3.4 and 3.1.4.4. Using the asynchronous context handle returned by the server, the client

uses the AsyncEMSMDB interface to instruct the server to return notification of an event, as

described in section 3.4.4 and section 3.3.4.1.

When the client is finished with the session, the client disconnects from the server as described in
section 3.2.4.3.

1.4 Relationship to Other Protocols

This protocol is dependent upon RPC, as described in [C706] and [MS-RPCE], and various network
protocol sequences for its transport, as specified in section 2.1.

For conceptual background information and overviews of the relationships and interactions between
this and other protocols, see [MS-OXPROTO].

1.5 Prerequisites/Preconditions

The Wire Format Protocol consists of the EMSMDB and AsyncEMSMDB RPC interfaces and has the
same prerequisites as described in [MS-RPCE].

It is assumed that a client has obtained the name of a server that supports this protocol before these
interfaces are invoked. How a client accomplishes this task is outside the scope of this specification.

1.6 Applicability Statement

This protocol is applicable to environments that require access to private mailbox and/or public folder
messaging end-user data.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

 Supported Transports: This protocol uses multiple RPC protocol sequences as described in
section 2.1.

 Protocol Versions: The EMSMDB interface has a single version number of 0.81 and has been

extended by adding methods as specified in section 3.1. The AsyncEMSMDB interface has a
single version number of 0.01.

%5bMS-OXCROPS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-OXPROTO%5d.pdf
%5bMS-RPCE%5d.pdf

14 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

 Security and Authentication Methods: This protocol supports the following authentication
methods: NT LAN Manager (NTLM) Authentication Protocol, Kerberos, and Negotiate. These

authentication methods are described in sections 3.1.3 and 3.3.3.

 Capability Negotiation: The Ethernet protocol does not support negotiation of the interface

version to use. Instead, an implementation is configured with the interface version to use, as
described in this specification.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

This protocol uses the interface entry points and HTTP ports listed in the following table.

Parameter Value Reference

EMSMDB

RPC interface universally unique identifier
(UUID)

A4F1DB00-CA47-1067-B31F-
00DD010662DA

Section 3.1

AsyncEMSMDB

RPC interface UUID

5261574A-4572-206E-B268-6B199213B4E4 Section 3.3

RPC over HTTP protocol sequence endpoint 6001 Section 2.1

15 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

2 Messages

2.1 Transport

This protocol works over the following RPC protocol sequences:<1>

 ncacn_ip_tcp

 ncacn_http

For the network protocol sequence ncacn_http, this protocol MUST use the well-known endpoint
6001.

For ncacn_ip_tcp, this protocol MUST use RPC dynamic endpoints, as defined in Part 4 of [C706].

This protocol MUST use the UUID specified in section 1.9.

This protocol allows any user to establish an authenticated connection to the RPC server by using an
authentication method as specified in [MS-RPCE]. The protocol uses the underlying RPC protocol to
retrieve the identity of the caller that made the method call, as specified in [MS-RPCE]. The server
uses this identity to perform method-specific access checks.

2.2 Common Data Types

This protocol uses the RPC base types and definitions specified in [C706] and [MS-RPCE], plus
additional data types and structures that are defined in section 2.2.1.1 through section 2.2.2.2.22.

The following table lists the types and structures that are defined in this specification. Any structure
that is not defined in this specification is reserved and MUST be ignored by the client.

Type Type name

Simple Data Type CXH (section 2.2.1.1)

Simple Data Type ACXH (section 2.2.1.2)

Simple Data Type BIG_RANGE_ULONG (section 2.2.1.3)

Simple Data Type SMALL_RANGE_ULONG (section 2.2.1.4)

Structure RPC_HEADER_EXT (section 2.2.2.1)

Structure AUX_HEADER (section 2.2.2.2)

Structure AUX_PERF_REQUESTID (section 2.2.2.2.1)

Structure AUX_PERF_SESSIONINFO (section 2.2.2.2.2)

Structure AUX_PERF_SESSIONINFO_V2 (section 2.2.2.2.3)

Structure AUX_PERF_CLIENTINFO (section 2.2.2.2.4)

Structure AUX_PERF_SERVERINFO (section 2.2.2.2.5)

Structure AUX_PERF_PROCESSINFO (section 2.2.2.2.6)

Structure AUX_PERF_DEFMDB_SUCCESS (section 2.2.2.2.7)

Structure AUX_PERF_DEFGC_SUCCESS (section 2.2.2.2.8)

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

16 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Type Type name

Structure AUX_PERF_MDB_SUCCESS (section 2.2.2.2.9)

Structure AUX_PERF_MDB_SUCCESS_V2 (section 2.2.2.2.10)

Structure AUX_PERF_GC_SUCCESS (section 2.2.2.2.11)

Structure AUX_PERF_GC_SUCCESS_V2 (section 2.2.2.2.12)

Structure AUX_PERF_FAILURE (section 2.2.2.2.13)

Structure AUX_PERF_FAILURE_V2 (section 2.2.2.2.14)

Structure AUX_CLIENT_CONTROL (section 2.2.2.2.15)

Structure AUX_OSVERSIONINFO (section 2.2.2.2.16)

Structure AUX_EXORGINFO (section 2.2.2.2.17)

Structure AUX_PERF_ACCOUNTINFO (section 2.2.2.2.18)

Structure AUX_ENDPOINT_CAPABILITIES (section 2.2.2.2.19)

Structure AUX_CLIENT_CONNECTION_INFO (section 2.2.2.2.20)

Structure AUX_SERVER_SESSION_INFO (section 2.2.2.2.21)

Structure AUX_PROTOCOL_DEVICE_IDENTIFICATION (section 2.2.2.2.22)

2.2.1 Simple Data Types

The Interface Definition Language (IDL) for this protocol, as given in section 6, identifies four
Simple Data Types, which are defined in section 2.2.1.1 through section 2.2.1.4.

2.2.1.1 CXH Data Type

The CXH data type is a session context handle to be used with an EMSMDB interface, as specified in
section 3.1 and section 3.2.

 typedef [context_handle] void * CXH;

2.2.1.2 ACXH Data Type

The AXCH data type is an asynchronous context handle to be used with an AsyncEMSMDB
interface, as specified in section 3.3 and section 3.4.

 typedef [context_handle] void * ACXH;

2.2.1.3 BIG_RANGE_ULONG Data Type

The BIG_RANGE_ULONG data type is an unsigned long that MUST be between 0x0 and 0x40000.

 typedef [range(0x0, 0x40000)] unsigned long BIG_RANGE_ULONG;

17 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

2.2.1.4 SMALL_RANGE_ULONG Data Type

The SMALL_RANGE_ULONG data type is an unsigned long that MUST be between 0x0 and 0x1008.

 typedef [range(0x0, 0x1008)] unsigned long SMALL_RANGE_ULONG;

2.2.2 Structures

Unless otherwise specified, buffers and fields in section 2.2.2.1 through section 2.2.2.2.22 are
depicted in little-endian byte order.

2.2.2.1 RPC_HEADER_EXT Structure

The RPC_HEADER_EXT structure provides information about the payload that follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version Flags

Size SizeActual

Version (2 bytes): The version of the structure. This value MUST be set to 0x0000.

Flags (2 bytes): The flags that specify how data that follows this header MUST be interpreted. The
flags in the following table are valid.

Flag name Value Meaning

Compressed 0x0001 The data that follows the RPC_HEADER_EXT structure is compressed. The size of the
data when uncompressed is in the SizeActual field. If this flag is not set, the Size and
SizeActual fields MUST be the same. If this flag is set, the value of the Size field
MUST be less than the value of the SizeActual field.

XorMagic 0x0002 The data following the RPC_HEADER_EXT structure has been obfuscated. For more
details about the obfuscation algorithm, see section 3.1.4.1.1.3.

Last 0x0004 No other RPC_HEADER_EXT structure follows the data of the current
RPC_HEADER_EXT structure. This flag indicates that there are multiple buffers, each
with its own RPC_HEADER_EXT, one after the other.

Size (2 bytes): The total length of the payload data that follows the RPC_HEADER_EXT structure.
This length does not include the length of the RPC_HEADER_EXT structure.

SizeActual (2 bytes): The length of the payload data after it has been uncompressed. This field is
only useful if the Compressed flag is set in the Flags field. If the Compressed flag is not set,
this value MUST be equal to the value of the Size field.

2.2.2.2 AUX_HEADER Structure

The AUX_HEADER structure provides information about the auxiliary block structures that follow it.

18 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size Version Type

Size (2 bytes): The size of the AUX_HEADER structure plus any additional payload data that
follows.

Version (1 byte): The version information of the payload data that follows the AUX_HEADER
structure. This value in conjunction with the Type field determines which structure to use to

interpret the data that follows the header.

Version Value

AUX_VERSION_1 0x01

AUX_VERSION_2 0x02

Type (1 byte): The type of auxiliary block data structure that follows the AUX_HEADER structure.
The value of the Type field in conjunction with the Version field determines which auxiliary block
structure to use to interpret the data that follows the AUX_HEADER structure. Several of the

types distinguish among the client's foreground request (FG), the client's background request
(BG), and the client's global catalog request (GC). A foreground request is a request where the
client is waiting for a response from the server before continuing. A background request is a
request where the client is operating in cached mode versus online. A global catalog request is a
client request sent to the mailbox directory.

The block type names, associated Type field values, and the corresponding auxiliary block

structure that follows the AUX_HEADER structure when the Version field is AUX_VERSION_1
are listed in the following table.

Type name Value Auxiliary block structure

AUX_TYPE_PERF_REQUESTID 0x01 AUX_PERF_REQUESTID

(section 2.2.2.2.1)

AUX_TYPE_PERF_CLIENTINFO 0x02 AUX_PERF_CLIENTINFO

(section 2.2.2.2.4)

AUX_TYPE_PERF_SERVERINFO 0x03 AUX_PERF_SERVERINFO

(section 2.2.2.2.5)

AUX_TYPE_PERF_SESSIONINFO 0x04 AUX_PERF_SESSIONINFO

(section 2.2.2.2.2)

AUX_TYPE_PERF_DEFMDB_SUCCESS 0x05 AUX_PERF_DEFMDB_SUCCESS

(section 2.2.2.2.7)

AUX_TYPE_PERF_DEFGC_SUCCESS 0x06 AUX_PERF_DEFGC_SUCCESS

(section 2.2.2.2.8)

AUX_TYPE_PERF_MDB_SUCCESS 0x07 AUX_PERF_MDB_SUCCESS

(section 2.2.2.2.9)

AUX_TYPE_PERF_GC_SUCCESS 0x08 AUX_PERF_GC_SUCCESS

(section 2.2.2.2.11)

AUX_TYPE_PERF_FAILURE 0x09 AUX_PERF_FAILURE

19 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Type name Value Auxiliary block structure

(section 2.2.2.2.13)

AUX_TYPE_CLIENT_CONTROL 0x0A AUX_CLIENT_CONTROL

(section 2.2.2.2.15)

AUX_TYPE_PERF_PROCESSINFO 0x0B AUX_PERF_PROCESSINFO

(section 2.2.2.2.6)

AUX_TYPE_PERF_BG_DEFMDB_SUCCESS 0x0C AUX_PERF_DEFMDB_SUCCESS

AUX_TYPE_PERF_BG_DEFGC_SUCCESS 0x0D AUX_PERF_DEFGC_SUCCESS

AUX_TYPE_PERF_BG_MDB_SUCCESS 0x0E AUX_PERF_MDB_SUCCESS

AUX_TYPE_PERF_BG_GC_SUCCESS 0x0F AUX_PERF_GC_SUCCESS

AUX_TYPE_PERF_BG_FAILURE 0x10 AUX_PERF_FAILURE

AUX_TYPE_PERF_FG_DEFMDB_SUCCESS 0x11 AUX_PERF_DEFMDB_SUCCESS

AUX_TYPE_PERF_FG_DEFGC_SUCCESS 0x12 AUX_PERF_DEFGC_SUCCESS

AUX_TYPE_PERF_FG_MDB_SUCCESS 0x13 AUX_PERF_MDB_SUCCESS

AUX_TYPE_PERF_FG_GC_SUCCESS 0x14 AUX_PERF_GC_SUCCESS

AUX_TYPE_PERF_FG_FAILURE 0x15 AUX_PERF_FAILURE

AUX_TYPE_OSVERSIONINFO 0x16 AUX_OSVERSIONINFO

(section 2.2.2.2.16)

AUX_TYPE_EXORGINFO 0x17 AUX_EXORGINFO

(section 2.2.2.2.17)

AUX_TYPE_PERF_ACCOUNTINFO 0x18 AUX_PERF_ACCOUNTINFO

(section 2.2.2.2.18)

AUX_TYPE_ENDPOINT_CAPABILITIES 0x48 AUX_ENDPOINT_CAPABILITIES<2>

(section 2.2.2.2.19)

AUX_CLIENT_CONNECTION_INFO 0x4A AUX_CLIENT_CONNECTION_INFO

(section 2.2.2.2.20)

AUX_SERVER_SESSION_INFO 0x4B AUX_SERVER_SESSION_INFO

(section 2.2.2.2.21)

AUX_PROTOCOL_DEVICE_IDENTIFICATION 0x4E AUX_PROTOCOL_DEVICE_IDENTIFICATION

20 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Type name Value Auxiliary block structure

(section 2.2.2.2.22)

The block type names, associated Type field values, and the corresponding auxiliary block
structure that follows the AUX_HEADER when the Version field is AUX_VERSION_2 are listed
in the following table.

Type name Value Auxiliary block structure

AUX_TYPE_PERF_SESSIONINFO 0x04 AUX_PERF_SESSIONINFO_V2

(section 2.2.2.2.3)

AUX_TYPE_PERF_MDB_SUCCESS 0x07 AUX_PERF_MDB_SUCCESS_V2

(section 2.2.2.2.10)

AUX_TYPE_PERF_GC_SUCCESS 0x08 AUX_PERF_GC_SUCCESS_V2

(section 2.2.2.2.12)

AUX_TYPE_PERF_FAILURE 0x09 AUX_PERF_FAILURE_V2

(section 2.2.2.2.14)

AUX_TYPE_PERF_PROCESSINFO 0x0B AUX_PERF_PROCESSINFO

AUX_TYPE_PERF_BG_MDB_SUCCESS 0x0E AUX_PERF_MDB_SUCCESS_V2

AUX_TYPE_PERF_BG_GC_SUCCESS 0x0F AUX_PERF_GC_SUCCESS_V2

AUX_TYPE_PERF_BG_FAILURE 0x10 AUX_PERF_FAILURE_V2

AUX_TYPE_PERF_FG_MDB_SUCCESS 0x13 AUX_PERF_MDB_SUCCESS_V2

AUX_TYPE_PERF_FG_GC_SUCCESS 0x14 AUX_PERF_GC_SUCCESS_V2

AUX_TYPE_PERF_FG_FAILURE 0x15 AUX_PERF_FAILURE_V2

The auxiliary block structures are specified in section 2.2.2.2.1 through section 2.2.2.2.22.

2.2.2.2.1 AUX_PERF_REQUESTID Auxiliary Block Structure

The AUX_PERF_REQUESTID auxiliary block structure identifies the request associated with the
session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SessionID RequestID

SessionID (2 bytes): The session identification number.

RequestID (2 bytes): The RPC request identification.

21 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

2.2.2.2.2 AUX_PERF_SESSIONINFO Auxiliary Block Structure

The AUX_PERF_SESSIONINFO auxiliary block structure identifies the client session to associate
performance data with.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SessionID Reserved

SessionGuid

...

...

...

SessionID (2 bytes): The session identification number.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field.

SessionGuid (16 bytes): The GUID representing the client session to associate with the session
identification number in the SessionID field.

2.2.2.2.3 AUX_PERF_SESSIONINFO_V2 Auxiliary Block Structure

The AUX_PERF_SESSIONINFO_V2 auxiliary block structure provides diagnostic information about
the client session to the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SessionID Reserved

SessionGuid

...

...

...

ConnectionID

SessionID (2 bytes): The session identification number.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field.

SessionGuid (16 bytes): The GUID representing the client session to associate with the session
identification number in the SessionID field.

ConnectionID (4 bytes): The connection identification number.

22 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

2.2.2.2.4 AUX_PERF_CLIENTINFO Auxiliary Block Structure

The AUX_PERF_CLIENTINFO auxiliary block structure identifies which client to associate
performance data with.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AdapterSpeed

ClientID MachineNameOffset

UserNameOffset ClientIPSize

ClientIPOffset ClientIPMaskSize

ClientIPMaskOffset AdapterNameOffset

MacAddressSize MacAddressOffset

ClientMode Reserved

MachineName (variable)

...

UserName (variable)

...

ClientIP (variable)

...

ClientIPMask (variable)

...

AdapterName (variable)

...

MacAddress (variable)

...

AdapterSpeed (4 bytes): The speed of client computer's network adapter, in kilobits per second.

ClientID (2 bytes): The client-assigned client identification number.

23 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

MachineNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to
the MachineName field. A value of zero indicates that the MachineName field is null or empty.

UserNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to the
UserName field. A value of zero indicates that the UserName field is null or empty.

ClientIPSize (2 bytes): The size of the client IP address referenced by the ClientIPOffset field.
The client IP address is located in the ClientIP field.

ClientIPOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to the
ClientIP field. A value of zero indicates that the ClientIP field is null or empty.

ClientIPMaskSize (2 bytes): The size of the client IP subnet mask referenced by the
ClientIPMaskOffset field. The client IP mask is located in the ClientIPMask field.

ClientIPMaskOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to the

ClientIPMask field. The size of the IP subnet mask is found in the ClientIPMaskSize field. A
value of zero indicates that the ClientIPMask field is null or empty.

AdapterNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to
the AdapterName field. A value of zero indicates that the AdapterName field is null or empty.

MacAddressSize (2 bytes): The size of the network adapter Media Access Control (MAC) address
referenced by the MacAddressOffset field. The network adapter MAC address is located in the

MacAddress field.

MacAddressOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to the
MacAddress field. A value of zero indicates that the MacAddress field is null or empty.

ClientMode (2 bytes): A flag that shows the mode in which the client is running. The valid values
are specified in the following table.

Client mode flag name Value Meaning

CLIENTMODE_UNKNOWN 0x00 Client is not designating a mode of operation.

1. CLIENTMODE_CLASSIC 0x01 Client is running in classic online mode.

2. CLIENTMODE_CACHED 0x02 Client is running in cached mode.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field.

MachineName (variable): A null-terminated Unicode string that contains the client computer
name. This variable field is offset from the beginning of the AUX_HEADER structure by the
MachineNameOffset field value.

UserName (variable): A null-terminated Unicode string that contains the user's account name. This
variable field is offset from the beginning of the AUX_HEADER structure by the
UserNameOffset field value.

ClientIP (variable): The client's IP address. This field is offset from the beginning of the

AUX_HEADER structure by the ClientIPOffset field value. The size of the client IP address data
is found in the ClientIPSize field.

ClientIPMask (variable): The client's IP subnet mask. This field is offset from the beginning of the
AUX_HEADER structure by the ClientIPMaskOffset field value. The size of the client IP mask
data is found in the ClientIPMaskSize field.

AdapterName (variable): A null-terminated Unicode string that contains the client network adapter
name. This field is offset from the beginning of the AUX_HEADER structure by the
AdapterNameOffset field value.

24 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

MacAddress (variable): The client's network adapter MAC address. This field is offset from the
beginning of the AUX_HEADER structure by the MacAddressOffset field value. The size of the

network adapter MAC address data is found in the MacAddressSize field.

2.2.2.2.5 AUX_PERF_SERVERINFO Auxiliary Block Structure

The AUX_PERF_SERVERINFO auxiliary block structure identifies which server a client is
communicating with to associate the performance data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ServerID ServerType

ServerDNOffset ServerNameOffset

ServerDN (variable)

...

ServerName (variable)

...

ServerID (2 bytes): The client-assigned server identification number.

ServerType (2 bytes): The server type assigned by client. The following table specifies valid values.

Server type name Value Meaning

SERVERTYPE_UNKNOWN 0x00 Unknown server type.

3. SERVERTYPE_PRIVATE 0x01 Client/server connection servicing private mailbox data.

4. SERVERTYPE_PUBLIC 0x02 Client/server connection servicing public folder data.

5. SERVERTYPE_DIRECTORY 0x03 Client/server connection servicing directory data.

6. SERVERTYPE_REFERRAL 0x04 Client/server connection servicing referrals.

ServerDNOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to the
ServerDN field. A value of zero indicates that the ServerDN field is null or empty.

ServerNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to the

ServerName field. A value of zero indicates that the ServerName field is null or empty.

ServerDN (variable): A null-terminated Unicode string that contains the DN of the server. This field

is offset from the beginning of the AUX_HEADER structure by the ServerDNOffset field value.

ServerName (variable): A null-terminated Unicode string that contains the server name. This field
is offset from the beginning of the AUX_HEADER structure by the ServerNameOffset field
value.

2.2.2.2.6 AUX_PERF_PROCESSINFO Auxiliary Block Structure

25 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

The AUX_PERF_PROCESSINFO auxiliary block structure identifies the client process to associate
performance data with.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProcessID Reserved_1

ProcessGuid

...

...

...

ProcessNameOffset Reserved_2

ProcessName (variable)

...

ProcessID (2 bytes): The client-assigned process identification number.

Reserved_1 (2 bytes): Padding to enforce alignment of the data on a 4-byte field.

ProcessGuid (16 bytes): The GUID representing the client process to associate with the process
identification number in the ProcessID field.

ProcessNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to

the ProcessName field. A value of zero indicates that the ProcessName field is null or empty.

Reserved_2 (2 bytes): Padding to enforce alignment of the data on a 4-byte field.

ProcessName (variable): A null-terminated Unicode string that contains the client process name.

This field is offset from the beginning of the AUX_HEADER structure by the ProcessNameOffset
field value.

2.2.2.2.7 AUX_PERF_DEFMDB_SUCCESS Auxiliary Block Structure

The AUX_PERF_DEFMDB_SUCCESS auxiliary block structure reports a previously successful RPC to
the messaging server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TimeSinceRequest

TimeToCompleteRequest

RequestID Reserved

TimeSinceRequest (4 bytes): The number of milliseconds since a successful request occurred.

26 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

TimeToCompleteRequest (4 bytes): The number of milliseconds the successful request took to
complete.

RequestID (2 bytes): The request identification number.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field.

2.2.2.2.8 AUX_PERF_DEFGC_SUCCESS Auxiliary Block Structure

The AUX_PERF_DEFGC_SUCCESS auxiliary block structure reports a previously successful call to the
directory service.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ServerID SessionID

TimeSinceRequest

TimeToCompleteRequest

RequestOperation Reserved

ServerID (2 bytes): The server identification number.

SessionID (2 bytes): The session identification number.

TimeSinceRequest (4 bytes): The number of milliseconds since a successful request occurred.

TimeToCompleteRequest (4 bytes): The number of milliseconds the successful request took to
complete.

RequestOperation (1 byte): The client-defined operation that was successful.

Reserved (3 bytes): Padding to enforce alignment of the data on a 4-byte field.

2.2.2.2.9 AUX_PERF_MDB_SUCCESS Auxiliary Block Structure

The AUX_PERF_MDB_SUCCESS auxiliary block structure reports a previously successful RPC to the
messaging server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ClientID ServerID

SessionID RequestID

TimeSinceRequest

TimeToCompleteRequest

ClientID (2 bytes): The client identification number.

ServerID (2 bytes): The server identification number.

27 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

SessionID (2 bytes): The session identification number.

RequestID (2 bytes): The request identification number.

TimeSinceRequest (4 bytes): The number of milliseconds since a successful request occurred.

TimeToCompleteRequest (4 bytes): The number of milliseconds the successful request took to

complete.

2.2.2.2.10 AUX_PERF_MDB_SUCCESS_V2 Auxiliary Block Structure

The AUX_PERF_MDB_SUCCESS_V2 auxiliary header structure reports a previously successful RPC
to the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProcessID ClientID

ServerID SessionID

RequestID Reserved

TimeSinceRequest

TimeToCompleteRequest

ProcessID (2 bytes): The process identification number.

ClientID (2 bytes): The client identification number.

ServerID (2 bytes): The server identification number.

SessionID (2 bytes): The session identification number.

RequestID (2 bytes): The request identification number.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field.

TimeSinceRequest (4 bytes): The number of milliseconds since a successful request occurred.

TimeToCompleteRequest (4 bytes): The number of milliseconds the successful request took to
complete.

2.2.2.2.11 AUX_PERF_GC_SUCCESS Auxiliary Block Structure

The AUX_PERF_GC_SUCCESS auxiliary block structure reports a previously successful call to the

directory service.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ClientID ServerID

SessionID Reserved_1

28 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

TimeSinceRequest

TimeToCompleteRequest

RequestOperation Reserved_2

ClientID (2 bytes): The client identification number.

ServerID (2 bytes): The server identification number.

SessionID (2 bytes): The session identification number.

Reserved_1 (2 bytes): Padding to enforce alignment of the data on a 4-byte field.

TimeSinceRequest (4 bytes): The number of milliseconds since a successful request occurred.

TimeToCompleteRequest (4 bytes): The number of milliseconds the successful request took to

complete.

RequestOperation (1 byte): The client-defined operation that was successful.

Reserved_2 (3 bytes): Padding to enforce alignment of the data on a 4-byte field.

2.2.2.2.12 AUX_PERF_GC_SUCCESS_V2 Auxiliary Block Structure

The AUX_PERF_GC_SUCCESS_V2 auxiliary block structure reports a previously successful call to the

directory service.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProcessID ClientID

ServerID SessionID

TimeSinceRequest

TimeToCompleteRequest

RequestOperation Reserved

ProcessID (2 bytes): The process identification number.

ClientID (2 bytes): The client identification number.

ServerID (2 bytes): The server identification number.

SessionID (2 bytes): The session identification number.

TimeSinceRequest (4 bytes): The number of milliseconds since a successful request occurred.

TimeToCompleteRequest (4 bytes): The number of milliseconds the successful request took to
complete.

RequestOperation (1 byte): The client-defined operation that was successful.

29 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Reserved (3 bytes): Padding to enforce alignment of the data on a 4-byte field.

2.2.2.2.13 AUX_PERF_FAILURE Auxiliary Block Structure

The AUX_PERF_FAILURE auxiliary block structure reports a previously failed call to the messaging

server or the directory service.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ClientID ServerID

SessionID RequestID

TimeSinceRequest

TimeToFailRequest

ResultCode

RequestOperation Reserved

ClientID (2 bytes): The client identification number.

ServerID (2 bytes): The server identification number.

SessionID (2 bytes): The session identification number.

RequestID (2 bytes): The request identification number.

TimeSinceRequest (4 bytes): The number of milliseconds since a request failure occurred.

TimeToFailRequest (4 bytes): The number of milliseconds the failed request took to complete.

ResultCode (4 bytes): The error code returned for the failed request. Returned error codes are
implementation-specific.

RequestOperation (1 byte): The client-defined operation that failed.

Reserved (3 bytes): Padding to enforce alignment of the data on a 4-byte field.

2.2.2.2.14 AUX_PERF_FAILURE_V2 Auxiliary Block Structure

The AUX_PERF_FAILURE_V2 auxiliary block structure reports a previously failed call to the
messaging server or the directory service.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProcessID ClientID

ServerID SessionID

RequestID Reserved_1

30 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

TimeSinceRequest

TimeToFailRequest

ResultCode

RequestOperation Reserved_2

ProcessID (2 bytes): The process identification number.

ClientID (2 bytes): The client identification number.

ServerID (2 bytes): The server identification number.

SessionID (2 bytes): The session identification number.

RequestID (2 bytes): The request identification number.

Reserved_1 (2 bytes): Padding to enforce alignment of the data on a 4-byte field.

TimeSinceRequest (4 bytes): The number of milliseconds since a request failure occurred.

TimeToFailRequest (4 bytes): The number of milliseconds the request failure took to complete.

ResultCode (4 bytes): The error code returned for the failed request. Returned error codes are
implementation-specific.

RequestOperation (1 byte): The client-defined operation that failed.

Reserved_2 (3 bytes): Padding to enforce alignment of the data on a 4-byte field.

2.2.2.2.15 AUX_CLIENT_CONTROL Auxiliary Block Structure

The AUX_CLIENT_CONTROL auxiliary block structure reports a change in client behavior.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EnableFlags

ExpiryTime

EnableFlags (4 bytes): The flags that instruct the client to either enable or disable behavior. The
flag values and their meanings are described in the following table. To disable a client behavior,
the server does not set the flag to the specified value.

Flag name Value Meaning

ENABLE_PERF_SENDTOSERVER 0x00000001 Client MUST start sending performance information to
server.

ENABLE_COMPRESSION 0x00000004 Client MUST compress information up to the server.
Compression MUST ordinarily be the default behavior, but
this allows the server to "disable" compression.

ENABLE_HTTP_TUNNELING 0x00000008 Client MUST use RPC over HTTP if configured.

31 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Flag name Value Meaning

ENABLE_PERF_SENDGCDATA 0x00000010 Client MUST include performance data of the client that is
communicating with the directory service.

ExpiryTime (4 bytes): The number of milliseconds the client keeps unsent performance data before
the data is expired. Expired data is not transmitted to the server. This prevents the server from
receiving stale performance information that is stored on the client.

2.2.2.2.16 AUX_OSVERSIONINFO Auxiliary Block Structure

The AUX_OSVERSIONINFO auxiliary block structure sends the server's operating system version
information to the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

OSVersionInfoSize

MajorVersion

MinorVersion

BuildNumber

Reserved1 (132 bytes)

...

...

...

ServicePackMajor ServicePackMinor

Reserved2

OSVersionInfoSize (4 bytes): The size of this AUX_OSVERSIONINFO structure.

MajorVersion (4 bytes): The major version number of the operating system of the server.

MinorVersion (4 bytes): The minor version number of the operating system of the server.

BuildNumber (4 bytes): The build number of the operating system of the server.

Reserved1 (132 bytes): Reserved and MUST be ignored when received.

ServicePackMajor (2 bytes): The major version number of the latest operating system service
pack that is installed on the server.

ServicePackMinor (2 bytes): The minor version number of the latest operating system service
pack that is installed on the server.

Reserved2 (4 bytes): Reserved and MUST be ignored when received.

32 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

2.2.2.2.17 AUX_EXORGINFO Auxiliary Block Structure

The AUX_EXORGINFO auxiliary block structure informs the client of the presence of public folders
within the organization.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

OrgFlags

OrgFlags (4 bytes): The flags indicating the server organizational information. The following table
specifies the valid values.

Flag name Value Meaning

PUBLIC_FOLDERS_ENABLED 0x00000001 Organization has public
folders.

USE_AUTODISCOVER_FOR_PUBLIC_FOLDER_CONFIGURATION 0x0000002 The client SHOULD<3>
configure public folders
using the Autodiscover
Publishing and Lookup
Protocol, as specified in
[MS-OXDSCLI].

2.2.2.2.18 AUX_PERF_ACCOUNTINFO Auxiliary Block Structure

The AUX_PERF_ACCOUNTINFO auxiliary block structure reports the client account information to
the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ClientID Reserved

Account

...

...

...

ClientID (2 bytes): The client-assigned identification number. Maps to the ClientID of the

AUX_PERF_CLIENTINFO structure, as specified in section 2.2.2.2.4.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field.

Account (16 bytes): A GUID representing the client account information that relates to the client
identification number in the ClientID field.

2.2.2.2.19 AUX_ENDPOINT_CAPABILITIES Auxiliary Block Structure

%5bMS-OXDSCLI%5d.pdf

33 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

The AUX_ENDPOINT_CAPABILITIES auxiliary block structure informs the client that the server
supports multiple interfaces on a single HTTP endpoint.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EndpointCapabilityFlags

EndpointCapabilityFlag (4 bytes): A flag that indicates that the server combines capabilities on a
single endpoint. The valid flag values are specified in the following table.

Flag name Value Meaning

ENDPOINT_CAPABILITIES_SINGLE_ENDPOINT 0x00000001 The server supports combined Directory
Service Referral interface (RFRI), name
service provider interface (NSPI), and
EMSMDB interface on a single HTTP
endpoint. For more information about
RFRI, see [MS-OXABREF]. For more
information about NSPI, see [MS-OXNSPI].

The server MAY<4> process requests for
different interfaces independently even
when requests are transmitted on the
same connection. A call to one interface is
not to be blocked by a previous call to a
different interface on the same

connection.

2.2.2.2.20 AUX_CLIENT_CONNECTION_INFO Auxiliary Block Structure

The AUX_CLIENT_CONNECTION_INFO auxiliary block structure provides information about the

client connection to be logged by the server.

ConnectionGUID (16 bytes): The GUID of the connection to the server.

OffsetConnectionContextInfo (2 bytes): The offset from the beginning of the AUX_HEADER
structure to the ConnectionContextInfo field. A value of zero indicates that the
ConnectionContextInfo field is null or empty.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field.

%5bMS-OXABREF%5d.pdf
%5bMS-OXNSPI%5d.pdf

34 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

ConnectionAttempts (4 bytes): The number of connection attempts.

ConnectionFlags (4 bytes): A flag designating the mode of operation. A value of 0x0001 for this

field means that the client is running in cached mode. A value of 0x0000 means that the client is
not designating a mode of operation.

ConnectionContextInfo (variable): A null-terminated Unicode string that contains opaque
connection context information to be logged by the server. This field is offset from the beginning
of the AUX_HEADER structure by the OffsetConnectionContextInfo field value.

2.2.2.2.21 AUX_SERVER_SESSION_INFO Auxiliary Block Structure

The AUX_SERVER_SESSION_INFO auxiliary block structure provides server information to be
logged by the client.

OffsetServerSessionContextInfo (2 bytes): The offset from the beginning of the AUX_HEADER
structure to the ServerSessionContextInfo field. A value of zero indicates that the
ServerSessionContextInfo field is null or empty.

ServerSessionContextInfo (variable): A null-terminated Unicode string that contains opaque
server session context information to be logged by the client. This field is offset from the

beginning of the AUX_HEADER structure by the OffsetServerSessionContextInfo field value.

2.2.2.2.22 AUX_PROTOCOL_DEVICE_IDENTIFICATION Auxiliary Block Structure

The AUX_PROTOCOL_DEVICE_IDENTIFICATION auxiliary block structure identifies man-in-middle
equipment used in messaging applications.

35 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

DeviceManufacturerOffset (2 bytes): The offset from the beginning of the AUX_HEADER
structure, as specified in section 2.2.2.2, to the DeviceManufacturer field. A value of zero
indicates that the DeviceManufacturer field is null or empty.

DeviceModelOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to the
DeviceModel field. A value of zero indicates that the DeviceModel field is null or empty.

DeviceSerialNumberOffset (2 bytes): The offset from the beginning of the AUX_HEADER
structure to the DeviceSerialNumber field. A value of zero indicates that the

DeviceSerialNumber field is null or empty.

DeviceVersionOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to
the DeviceVersion field. A value of zero indicates that the DeviceVersion field is null or empty.

DeviceFirmwareVersionOffset (2 bytes): The offset from the beginning of the AUX_HEADER
structure to the DeviceFirmwareVersion field. A value of zero indicates that the
DeviceFirmwareVersion field is null or empty.

DeviceManufacturer (variable): A null-terminated Unicode string that contains the name of the

manufacturer of the device. This field is offset from the beginning of the AUX_HEADER structure
by the value of the DeviceManufacturerOffset field.

DeviceModel (variable): A null-terminated Unicode string that contains the model name of the

device. This field is offset from the beginning of the AUX_HEADER structure by the value of the
DeviceModelOffset field.

DeviceSerialNumber (variable): A null-terminated Unicode string that contains the serial number of
the device. This field is offset from the beginning of the AUX_HEADER structure by the value of

the DeviceSerialNumberOffset field.

DeviceVersion (variable): A null-terminated Unicode string that contains the version number of the
device. This field is offset from the beginning of the AUX_HEADER structure by the value of the
DeviceVersionOffset field.

36 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

DeviceFirmwareVersion (variable): A null-terminated Unicode string that contains the firmware
version of the device. This field is offset from the beginning of the AUX_HEADER structure by the

value of the DeviceFirmwareVersionOffset field.

37 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3 Protocol Details

The Wire Format Protocol contains two RPC interfaces: EMSMDB, as specified in section 3.1 and
section 3.2, and AsyncEMSMDB as specified in section 3.3 and section 3.4.

For some functionality through the EMSMDB interface, the client is required to first establish a session
context handle by a successful call to the EcDoConnectEx method, as specified in section 3.1.4.1.
The session context handle is an RPC context handle. All method calls that require a valid session

context handle are listed in the following table.

Session context handle–based methods Interface

EcDoDisconnect EMSMDB

EcRRegisterPushNotification EMSMDB

EcDoRpcExt2 EMSMDB

EcDoAsyncConnectEx EMSMDB

For some functionality through the AsyncEMSMDB interface, the client is required to call specific
interface methods first to establish an asynchronous context handle. The asynchronous context handle
is an RPC context handle. To establish an asynchronous context handle, a call to the
EcDoAsyncConnectEx method on the EMSMDB interface MUST be successful. All method calls that
require a valid asynchronous context handle are listed in the following table.

Asynchronous context handle–based methods Interface

EcDoAsyncWaitEx AsyncEMSMDB

3.1 EMSMDB Server Details

The server responds to messages it receives from the client.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
specification.

This protocol includes the following abstract data model (ADM) element:

Global.Handle, as specified in section 3.1.1.1.

3.1.1.1 Global.Handle

The following ADM element is maintained by the server for each session context.

Global.Handle: Some methods on this interface require session context handle information to be
stored on the server and used across multiple interface calls for a long duration of time. For these
method calls, this protocol is stateful. The server stores this session context information and provides
a session context handle (the Global.Handle ADM element) to the client to make subsequent
interface calls by using this same session context information.

38 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

The server keeps a list of all active sessions and their associated session context information. Each
session context is identified by a Global.Handle ADM element. After a session context has been

established, a client can access messaging resources through this session context. The server keeps
track of all open resources or any state information specific to the session on the session context. This

can include but is not limited to resources, such as folders, messages, tables, attachments, streams,
associated asynchronous context handles, and notification callbacks.

The server isolates all resources associated with one session context from all other session contexts
on the server. Access to resources on one session context is not allowed using a session context
handle of another session context.

When the session context handle is destroyed or the client connection is lost, the session context and
all session context information is destroyed, all open resources are closed, and all Server objects

that are associated with the session context are released.

3.1.2 Timers

None.

3.1.3 Initialization

The server initializes the RPC session by doing the following:

1. The server MUST register the different protocol sequences that will allow the server to
communicate with the client. The supported protocol sequences are specified in section 2.1,

including named endpoints.

2. The server MUST register the authentication methods that are allowed on the EMSMDB interface.
The server SHOULD<5> register the following authentication methods. A client authenticates
using one of the following authentication methods:

 RPC_C_AUTHN_WINNT

 RPC_C_AUTHN_GSS_KERBEROS<6>

 RPC_C_AUTHN_GSS_NEGOTIATE

 RPC_C_AUTHN_NONE

3. Start listening for RPCs.

4. Register the EMSMDB interface.

5. Register the EMSMDB interface to all the registered binding handles created previously.

3.1.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict Network Data
Representation (NDR) data consistency check at target level 5.0, as specified in [MS-RPCE].

The methods that this interface includes are listed in the following table.<7> The phrase "Reserved"
means that the client MUST NOT send the opnum, and the server behavior is undefined.

Methods in RPC Opnum Order

Method Description

Opnum0NotUsedOnWire Reserved.

%5bMS-RPCE%5d.pdf

39 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Method Description

opnum: 0

EcDoDisconnect Closes a Session Context with the server. The Session Context is destroyed and
all associated server state, objects, and resources that are associated with the
Session Context are released. The method requires an active session context
handle to be returned from the EcDoConnectEx method, as specified in
section 3.1.4.1.

opnum: 1

Opnum2NotUsedOnWire Reserved.

opnum: 2

Opnum3NotUsedOnWire Reserved.

opnum: 3

EcRRegisterPushNotification Registers a callback address with the server for a Session Context. The callback
address is used to notify the client of a pending event on the server. The
method requires an active session context handle to be returned from the
EcDoConnectEx method.

opnum: 4

Opnum5NotUsedOnWire Reserved.

opnum: 5

EcDummyRpc This call returns a SUCCESS. A client can use it to determine whether it can
communicate with the server.

opnum: 6

Opnum7NotUsedOnWire Reserved.

opnum: 7

Opnum8NotUsedOnWire Reserved.

opnum: 8

Opnum9NotUsedOnWire Reserved.

opnum: 9

EcDoConnectEx Creates a session context handle on the server to be used in subsequent calls
to the EcDoDisconnect (section 3.1.4.3), EcDoRpcExt2 (section 3.1.4.2),
and EcDoAsyncConnectEx (section 3.1.4.4) methods.

opnum: 10

EcDoRpcExt2 Passes generic ROP commands to the server for processing within a Session
Context. The method requires an active session context handle to be returned
from the EcDoConnectEx method.

opnum: 11

Opnum12NotUsedOnWire Reserved.

opnum: 12

Opnum13NotUsedOnWire Reserved.

opnum: 13

EcDoAsyncConnectEx Binds a session context handle that is returned in the EcDoConnectEx method
to a new asynchronous context handle that can be used in calls to the
EcDoAsyncWaitEx method (section 3.3.4.1) in the AsyncEMSMDB interface.
The method requires an active session context handle to be returned from the
EcDoConnectEx method.

opnum: 14

40 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.1.4.1 EcDoConnectEx Method (Opnum 10)

The EcDoConnectEx method establishes a new Session Context with the server. The Session Context
is persisted on the server until the client disconnects by using the EcDoDisconnect method, as
specified in section 3.1.4.3. The EcDoConnectEx method returns a session context handle to be used
by a client in subsequent calls.

 long __stdcall EcDoConnectEx(
 [in] handle_t hBinding,
 [out, ref] CXH * pcxh,
 [in, string] unsigned char * szUserDN,
 [in] unsigned long ulFlags,
 [in] unsigned long ulConMod,
 [in] unsigned long cbLimit,
 [in] unsigned long ulCpid,
 [in] unsigned long ulLcidString,
 [in] unsigned long ulLcidSort,
 [in] unsigned long ulIcxrLink,
 [in] unsigned short usFCanConvertCodePages,
 [out] unsigned long * pcmsPollsMax,
 [out] unsigned long * pcRetry,
 [out] unsigned long * pcmsRetryDelay,
 [out] unsigned short * picxr,
 [out, string] unsigned char **szDNPrefix,
 [out, string] unsigned char **szDisplayName,
 [in] unsigned short rgwClientVersion[3],
 [out] unsigned short rgwServerVersion[3],
 [out] unsigned short rgwBestVersion[3],
 [in, out] unsigned long * pulTimeStamp,
 [in, size_is(cbAuxIn)] unsigned char rgbAuxIn[],
 [in] unsigned long cbAuxIn,
 [out, length_is(*pcbAuxOut), size_is(*pcbAuxOut)] unsigned char rgbAuxOut[],
 [in, out] SMALL_RANGE_ULONG *pcbAuxOut
);

hBinding: A valid RPC binding handle.

pcxh: A session context handle for the client. On success, the server MUST return a unique value to be
used as a session context handle.

On failure, the server MUST return a zero value as the session context handle.

szUserDN: The DN of the user who is calling the EcDoConnectEx method in a directory service. The
value of the szUserDN parameter is similar to the following: "/o=First Organization/ou=First
Administrative Group/cn=recipients/cn=janedow".

ulFlags: A flag value that designates the type of connection being established. On input, this

parameter contains connection bits that MUST be set; all flag values not in the following table are
reserved connection flags.

Value Meaning

0x00000000 Requests connection without administrator privilege.

0x00000001 Requests administrator behavior, which causes the server to check that the user has administrator
privilege.

0x00008000 If this flag is not passed and the client version (as specified by the rgwClientVersion parameter) is
less than 12.00.0000.000 and no public folders are configured within the messaging system, the
server MUST fail the connection attempt with error code ecClientVerDisallowed. The

41 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Value Meaning

AUX_EXORGINFO auxiliary block structure, specified in section 2.2.2.2.17, informs the client of
the presence of public folders within the organization. The use of the AUX_EXORGINFO auxiliary
block structure is further defined in section 3.1.4.1.2.1.

If this flag is passed and the client version (as specified by the rgwClientVersion parameter) is less
than 12.00.0000.000, the server MUST NOT fail the connection attempt due to public folders not
being configured within the messaging system.

If the client version (as specified by the rgwClientVersion parameter) is greater than or equal to
12.00.0000.000, the server MUST NOT fail the connection attempt due to public folders not being
configured within the messaging system (regardless of whether or not this flag is passed).

ulConMod: A client-derived 32-bit hash value of the DN passed in the szUserDN parameter. The server
determines which public folder replica to use when accessing public folder information when more
than one replica of a folder exists. The hash can be used to distribute client access across replicas in a

deterministic way for load balancing.

cbLimit: MUST be set to zero when sent and MUST be ignored when received.

ulCpid: The code page in which text data is sent. If the Unicode format is not requested by the client
on subsequent calls that use this Session Context, the ulCpid parameter sets the code page to be used
in subsequent calls.

ulLcidString: The local ID for everything other than sorting.

ulLcidSort: The local ID for sorting.

ulIcxrLink: A value used to link the Session Context created by this call with a currently existing
Session Context on the server. To request Session Context linking, the client MUST pass the value of
0xFFFFFFFF. To link to an existing Session Context, this value is the session index value returned in
the piCxr parameter from a previous call to the EcDoConnectEx method. In addition to passing the
session index in the ulIcxrLink parameter, the client sets the pulTimeStamp parameter to the value
that was returned in the pulTimeStamp parameter from the previous call to the EcDoConnectEx
method. These two values MUST be used by the server to identify an active session with the same

session index and session creation time stamp. If a session is found, the server MUST link the Session
Context created by this call with the one found.<8>

A server allows Session Context linking for the following reasons:

1. To consume a single Client Access License (CAL) for all the connections made from a single
client computer. This gives a client the ability to open multiple independent connections using
more than one Session Context on the server but be seen to the server as only consuming a single

CAL.<9>

2. To get pending notification information for other sessions on the same client computer. For details,
see [MS-OXCNOTIF].

Note that the ulIcxrLink parameter is defined as a 32-bit value. Other than passing 0xFFFFFFFF for no
Session Context linking, the server only uses the low-order 16 bits as the session index. This value is
the value returned in the piCxr parameter from a previous call to the EcDoConnectEx method, which

is the session index and defined as a 16-bit value.

usFCanConvertCodePages: This parameter is reserved. The client MUST pass a value of 0x0001.

pcmsPollsMax: An implementation-dependent value that specifies the number of milliseconds that a
client waits between polling the server for event information. If the client or server does not support
making asynchronous RPCs for notifications as specified in section 3.3.4.1, or the client is unable to
receive notifications via UDP datagrams, as specified in [MS-OXCNOTIF] section 3.2.5.4 and [MS-
OXCNOTIF] section 3.2.5.5.2, the client can poll the server to determine whether any events are
pending for the client.

%5bMS-OXCNOTIF%5d.pdf

42 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

pcRetry: An implementation-dependent value that specifies the number of times a client retries future
RPCs using the session context handle returned in this call. This is for client RPCs that fail with RPC

status code RPC_S_SERVER_TOO_BUSY (0x000006BB). This is a suggested retry count for the client
and is not to be enforced by the server. For more details about circumstances under which the

RPC_S_SERVER_TOO_BUSY status code is returned, see [MS-OXCROPS] section 3.2.4.2. For more
details about how the client handles the RPC_S_SERVER_TOO_BUSY status code, see section 3.2.4.4.

pcmsRetryDelay: An implementation-dependent value that specifies the number of milliseconds a
client waits before retrying a failed RPC. If any future RPC to the server using the session context
handle returned in this call fails with RPC status code RPC_S_SERVER_TOO_BUSY (0x000006BB), the
client waits the number of milliseconds specified in this output parameter before retrying the call. The
number of times a client retries is returned in the pcRetry parameter. This is a suggested delay for the

client and is not to be enforced by the server.

piCxr: A session index value that is associated with the session context handle returned from this call.
This value in conjunction with the session creation time stamp value returned in the pulTimeStamp
parameter will be passed to a subsequent call to the EcDoConnectEx method if the client requests to
link two Session Contexts.<10> The server MUST NOT assign the same session index value to two

active Session Contexts. The server is free to return any 16-bit value for the session index.

The server MUST also use the session index when returning a RopPending ROP response ([MS-
OXCROPS] section 2.2.14.3) on calls to the EcDoRpcExt2 method, as specified in section 3.1.4.2, to
tell the client which Session Context has pending notifications. If Session Contexts are linked, a
RopPending ROP response can be returned for any linked Session Context.

szDNPrefix: An implementation-dependent value that specifies a DN prefix that is used to build
message recipients. An empty value indicates that there is nothing to prepend to recipient entries on
messages.

szDisplayName: The display name of the user associated with the szUserDN parameter.

rgwClientVersion: The client protocol version that the server uses to determine what protocol
functionality the client supports. For more details about how version numbers are interpreted from the
wire data, see section 3.2.4.1.3.

rgwServerVersion: The server protocol version that the client uses to determine what protocol
functionality the server supports. For details about how version numbers are interpreted from the wire
data, see section 3.1.4.1.3.

rgwBestVersion: The minimum client protocol version that the server supports. This information is
useful if the call to the EcDoConnectEx method fails with return code ecVersionMismatch. On
success, the server returns the value passed in the rgwClientVersion parameter by the client. The
server cannot perform any client protocol version negotiation. The server can either return the
minimum client protocol version required to access the server and fail the call with ecVersionMismatch
(0x80040110) or allow the client and return the value passed by the client in the rgwClientVersion

parameter. The server implementation sets the minimum client protocol version that is supported by
the server. For details about how version numbers are interpreted from the wire data, see section
3.1.4.1.3.1.

pulTimeStamp: The creation time of the newly created Session Context. On input, a value used with

the ulIcxrLink parameter to link the Session Context created by this call with an existing Session
Context. If the ulIcxrLink parameter is not set to 0xFFFFFFFF, the client MUST pass in the value of the
pulTimeStamp parameter returned from the server on a previous call to the EcDoConnectEx method.

For more details, see the ulIcxrLink and piCxr parameter descriptions earlier in this section. If the
server supports Session Context linking, the server verifies that there is a Session Context state with
the unique identifier in the ulIcxrLink parameter, and the Session Context state has a creation time
stamp equal to the value passed in this parameter. If so, the server MUST link the Session Context
created by this call with the one found. If no such Session Context state is found, the server does not
fail the EcDoConnectEx method call but simply does not link the Session Contexts.<11>

%5bMS-OXCROPS%5d.pdf

43 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

On output, the server has to return a time stamp in which the new Session Context was created. The
server saves the Session Context creation time stamp within the Session Context state for later use if

a client attempts to link Session Contexts.

rgbAuxIn: An auxiliary payload buffer prefixed by an RPC_HEADER_EXT structure, as specified in

section 2.2.2.1. Information stored in this structure determines how to interpret the data that follows
the structure. The length of the auxiliary payload buffer that includes the RPC_HEADER_EXT
structure is contained in the cbAuxIn parameter.

For details about how to access the embedded auxiliary payload buffer, see section 3.1.4.1.1. For
details about how to interpret the auxiliary payload data, see section 3.1.4.1.2.

cbAuxIn: The length of the rgbAuxIn parameter. If this value on input is larger than 0x00001008
bytes in size, the server SHOULD<12> fail with the RPC status code RPC_X_BAD_STUB_DATA

(0x000006F7). If this value is greater than 0x00000000 and less than 0x00000008, the server
SHOULD<13><14> fail with ecRpcFailed (0x80040115). For more information on returning RPC status
codes, see [C706].

rgbAuxOut: An auxiliary payload buffer prefixed by an RPC_HEADER_EXT structure (section
2.2.2.1). On output, the server can return auxiliary payload data to the client in this parameter. The
server MUST include an RPC_HEADER_EXT structure before the auxiliary payload data.

For details about how to access the embedded auxiliary payload buffer, see section 3.1.4.1.1. For
details about how to interpret the auxiliary payload data, see section 3.1.4.1.2.

pcbAuxOut: The length of the rgbAuxOut parameter. If this value on input is larger than 0x00001008,
the server MUST fail with the RPC status code RPC_X_BAD_STUB_DATA (0x000006F7).

On output, this parameter contains the size of the data to be returned in the rgbAuxOut parameter.

Return Values: If the method succeeds, the return value is 0. If the method fails, the return value is
an implementation-specific error code or one of the protocol-defined error codes listed in the following

table.

Error code name Value Meaning

ecAccessDenied<15> 0x80070005 The authentication context associated with the binding handle does not
have enough privilege or the szUserDN parameter is empty.

ecNotEncrypted 0x00000970 The server is configured to require encryption and the authentication for
the binding handle contained in the hBinding parameter is not set with
RPC_C_AUTHN_LEVEL_PKT_PRIVACY. For more information about
setting the authentication and authorization, see [MSDN-
RpcBindingSetAuthInfoEx]. The client attempts the call again with new
binding handle that is encrypted.

ecClientVerDisallowed 0x000004DF 1. The server requires encryption, but the client is not encrypted and
the client does not support receiving error code ecNotEncrypted
being returned by the server. For details about which client
versions do not support receiving error code ecNotEncrypted, see
section 3.1.4.1.3 and section 3.2.4.1.3.

2. The client version has been blocked by the administrator.

ecLoginFailure 0x80040111 Server is unable to log in user to the mailbox or public folder database.

ecUnknownUser 0x000003EB The server does not recognize the szUserDN parameter as a valid
enabled mailbox. For more details, see [MS-OXCSTOR] section 3.1.4.1.

ecLoginPerm 0x000003F2 The connection is requested for administrative access, but the
authentication context associated with the binding handle does not
have enough privilege.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=203529
http://go.microsoft.com/fwlink/?LinkId=203529
%5bMS-OXCSTOR%5d.pdf

44 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Error code name Value Meaning

ecVersionMismatch 0x80040110 The client and server versions are not compatible. The client protocol
version is earlier than that required by the server.

ecCachedModeRequired 0x000004E1 The server requires the client to be running in cache mode. For details
about which client versions understand this error code, see section
3.2.4.1.3.

ecRpcHttpDisallowed 0x000004E0 The server requires the client to not be connected via RPC over HTTP.
For details about which client versions understand this error code, see
section 3.1.4.1.3.

ecProtocolDisabled 0x000007D8 The server disallows the user to access the server via this protocol
interface. This could be done if the user is only capable of accessing
their mailbox information through a different means (for example,
Webmail, POP, or IMAP). For details about which client versions
understand this error code, see section 3.1.4.1.3.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

3.1.4.1.1 Extended Buffer Handling

The EcDoConnectEx method contains request and response buffers that use an extended buffer
mechanism where the payload is preceded by a header. The header contains the flags specified in
section 2.2.2.1 that determine whether the payload has been compressed, determine whether the
payload has been obfuscated, and determine whether another extended buffer and payload exist after
the current payload. A single payload MUST NOT exceed 32 KB in size.

An extended buffer is used in the rgbAuxIn and rgbAuxOut parameters on the EcDoConnectEx

method as specified in section 3.1.4.1.1.1.1 and section 3.1.4.1.1.1.2.

The client or server can choose not to compress the payload if the payload is small enough that
compression would not yield much benefit. The client or server can choose not to obfuscate the

payload if the payload has already been compressed. The client or server can choose not to obfuscate
the payload if the client is connected using RPC layer encryption.

The extended buffer format, compression algorithm, obfuscation algorithm, and extended buffer

packing for the EcDoConnectEx method are specified in section 3.1.4.1.1.1 through section 3.1.4.1.3
and their subsections.

3.1.4.1.1.1 Extended Buffer Format

The extended buffer format is used in the EcDoConnectEx method for the rgbAuxIn and rgbAuxOut
parameters. The way the extended buffer is used for the different fields in the EcDoConnectEx
method is specified in section 3.1.4.1.1.1.1 and section 3.1.4.1.1.1.2.

3.1.4.1.1.1.1 rgbAuxIn Input Buffer

The rgbAuxIn parameter input buffer contains an RPC_HEADER_EXT structure, as specified in
section 2.2.2.1, followed by payload data.

The RPC_HEADER_EXT structure provides information about the payload that follows it.

The RPC_HEADER_EXT structure MUST contain the Last flag in the Flags field.

If the Compressed flag is present in the Flags field, the payload data MUST be compressed by the

client and MUST be uncompressed by the server before it can be interpreted. For details about the
compression algorithm, see section 3.1.4.1.1.2.

%5bMS-RPCE%5d.pdf

45 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

If the XorMagic flag is present in the Flags field, the payload data MUST be obfuscated by the client
and MUST be reverted by the server before it can be interpreted. For details about the obfuscation

algorithm, see section 3.1.4.1.1.3.

If both the Compressed and XorMagic flags are present in the Flags field, the payload MUST first be

compressed and then obfuscated by the client, and then MUST first be reverted and then
uncompressed by the server before it can be interpreted.

The payload contains auxiliary information, specified in section 3.2.4.1.2, that can be passed from the
client to the server. The payload data contains an AUX_HEADER structure, as specified in section
2.2.2.2, followed by an auxiliary block structure as specified in the auxiliary block structure table.

3.1.4.1.1.1.2 rgbAuxOut Output Buffer

The rgbAuxOut parameter output buffer contains an RPC_HEADER_EXT structure, as specified in
section 2.2.2.1, followed by payload data.

The RPC_HEADER_EXT structure provides information about the payload that follows it.

The RPC_HEADER_EXT structure MUST contain the Last flag in the Flags field.

If the Compressed flag is present in the Flags field, the payload data MUST be compressed by the
server and MUST be uncompressed by the client before it can be interpreted. For details about the

compression algorithm, see section 3.1.4.1.1.2.

If the XorMagic flag is present in the Flags field, the payload data MUST be obfuscated by the server
and MUST be reverted by the client before it can be interpreted. For details about the obfuscation
algorithm, see section 3.1.4.1.1.3.

If both the Compressed and XorMagic flags are present in the Flags field, the payload data MUST
first be compressed and then obfuscated by the server and then MUST first be reverted and then
uncompressed by the client before it can be interpreted.

Payload data contains auxiliary information passed from the server to the client, as specified in section

3.1.4.1.2. The payload contains an AUX_HEADER structure, as specified in section 2.2.2.2, followed
by an auxiliary block structure as specified in the auxiliary block structure table.

3.1.4.1.1.2 Compression Algorithm

Based on the Compressed flag in the Flags field that is passed in the RPC_HEADER_EXT structure,
as specified in section 2.2.2.1, of the extended buffer, the payload data is compressed or

decompressed by the server and client by using the Lempel-Ziv 1977 (LZ77) compression algorithm,
as specified in [UASDC], and the DIRECT2 encoding algorithm.

The LZ77 compression algorithm is specified in section 3.1.4.1.1.2.1 and its subsections. The basic
encoding algorithm DIRECT2 is specified in section 3.1.4.1.1.2.2 and its subsections.

3.1.4.1.1.2.1 LZ77 Compression Algorithm

The LZ77 compression algorithm is used to analyze input data and determine how to reduce the size

of that input data by replacing redundant information with metadata. Sections of the data that are
identical to sections of the data that have been encoded are replaced by small metadata that indicates
how to expand those sections again. The encoding algorithm is used to take that combination of data
and metadata and serialize it into a stream of bytes that can later be decoded and decompressed.

3.1.4.1.1.2.1.1 Compression Algorithm Terminology

The following terms are associated with the compression algorithm.

http://go.microsoft.com/fwlink/?LinkId=90549

46 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

byte: The basic data element in the input stream.

window: A buffer that indicates the number of bytes from the coding position backward. A window

of size W contains the last W processed bytes.

3.1.4.1.1.2.1.2 Using the Compression Algorithm

To use the LZ77 compression algorithm:

1. Set the coding position to the beginning of the input stream.

2. Find the longest match in the window for the lookahead buffer.

3. Output the P,C pair, where P is the pointer to the match in the window, and C is the first byte in
the lookahead buffer that does not match.

4. If the lookahead buffer is not empty, move the coding position (and the window) L+1 bytes

forward.

5. Return to step 2.

3.1.4.1.1.2.1.3 Compression Process

The compression algorithm searches the window for the longest match with the beginning of the
lookahead buffer and then outputs a pointer to that match. Because even a 1-byte match might not

be found, the output cannot contain only pointers. The compression algorithm solves this problem by
outputting after the pointer the first byte in the lookahead buffer after the match. If no match is
found, the algorithm outputs a NULL pointer and the byte at the coding position.

3.1.4.1.1.2.1.4 Compression Process Example

The following table shows the input stream that is used for this compression example. The bytes in the
input, "AABCBBABC," occupy the first nine positions of the stream.

Input stream

Stream position 1 2 3 4 5 6 7 8 9

Byte value A A B C B B A B C

The output from the compression process is shown in the following table, which includes the following
columns.

Step: Indicates the number of the encoding step. A step in the table finishes every time that the
encoding algorithm makes an output. With the compression algorithm, this process happens in each
pass through step 3.

Pos: Indicates the coding position. The first byte in the input stream has the coding position 1.

Match: Shows the longest match found in the window.

Byte: Shows the first byte in the lookahead buffer after the match.

Output: Presents the output in the format (B,L)C, where (B,L) is the pointer (P) to the match. This
gives the following instructions to the decoder: Go back B bytes in the window and copy L bytes to the
output. C is the explicit byte.

Note One or more pointers might be included before the explicit byte that is shown in the Byte
column.

47 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Compression process output

Step Pos Match Byte Output

1. 1 -- A (0,0)A

2. 2 A B (1,1)B

3. 4 -- C (0,0)C

4. 5 B B (2,1)B

5. 7 A B C (5,2)C

The result of compression, conceptually, is the output column—that is, a series of bytes and optional

metadata that indicates whether that byte is preceded by some sequence of bytes that is already in
the output.

Because representing the metadata itself requires bytes in the output stream, it is inefficient to

represent a single byte that has previously been encoded by 2 bytes of metadata (offset and length).
The overhead of the metadata bytes equals or exceeds the cost of outputting the bytes directly.
Therefore, the server protocol only considers sequences of bytes to be a match if the sequences have
3 or more bytes in common.

3.1.4.1.1.2.2 DIRECT2 Encoding Algorithm

The basic notion of the DIRECT2 encoding algorithm is that data appears unchanged in the
compressed representation (it is not recommended to try to further compress the data by, for
example, applying Huffman compression to that payload), and metadata is encoded in the same
output stream, and in line with, the data.

The key to decoding the compressed data is recognizing what bytes are metadata and what bytes are
data. The decoder MUST be able to identify the presence of metadata in the compressed and encoded
data stream. To provide this information to the decoder, bitmasks are inserted periodically in the byte

stream.

The bitmasks that enable the decoder to distinguish data from metadata and the process of encoding
the metadata are specified in section 3.1.4.1.1.2.2.1 through section 3.1.4.1.1.2.2.4.

3.1.4.1.1.2.2.1 Bitmask

To distinguish data from metadata in the compressed byte stream, the data stream begins with a 4-
byte bitmask that indicates to the decoder whether the next byte to be processed is data ("0" value in
the bit), or if the next byte (or series of bytes) is metadata ("1" value in the bit). If a "0" bit is
encountered, the next byte in the input stream is the next byte in the output stream. If a "1" bit is
encountered, the next byte or series of bytes is metadata that MUST be interpreted further.

For example, a bitmask of 0x01000000 indicates that the first seven bytes are actual data, followed

by encoded metadata that starts at the eighth byte. The metadata is followed by 24 additional bytes
of data.

The bitmask also contains a "1" in the bit following the last encoded element to indicate the end of the
compressed data. For example, given a hypothetical 8-bit bitmask, the string "ABCABCDEF" would be
compressed as (0,0)A(0,0)B(0,0)C(3,3)D(0,0)E(0,0)F. Its bitmask would be b'00010001' (0x11). This
would indicate 3 bytes of data, followed by metadata, followed by an additional 3 bytes, finally
terminated with a "1" to indicate the end of the stream.

The final end bit is always necessary, even if an additional bitmask has to be allocated. If the string in
the above example was "ABCABCDEFG", for example, it would require an additional bitmask. It would

48 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

begin with the bitmask b'00010000', followed by the compressed data, and followed by another
bitmask with a "1" as the next bit to indicate the end of the stream.

When the bitmask has been consumed, the next four bytes in the input stream are another bitmask.

3.1.4.1.1.2.2.2 Encoding Metadata

In the output stream, actual data bytes are stored unchanged. To indicate whether the next byte or
bytes are data or metadata, bitmasks are stored periodically. If the next bit in the bitmask is "1", the
next set of bytes in the input data stream is metadata. This metadata contains an offset back to the
start of the data to be copied to the output stream, and the length of the data to be copied.

To represent the metadata as efficiently as possible, the encoding of that metadata is not fixed in
length. The encoding algorithm supports the largest possible floating compression window to increase

the probability of finding a large match; the larger the window, the greater the number of bytes that
are required for the offset. The encoding algorithm also supports the longest possible match; the
longer the match length, the greater the number of bytes that are required to encode the length.

3.1.4.1.1.2.2.3 Metadata Offset

This protocol assumes the metadata is 2 bytes in length, where the high-order 13 bits are a first

complement of the offset, and the low-order 3 bits are the length. The offset is only encoded with
those 13 bits; this value cannot be extended and defines the maximum size of the compression
floating window. For example, the metadata 0x0018 is converted into the offset b'000000000011',
and the length b'000'. In integers, the offset is '-4', computed by inverting the offset bits, treating the
result as a 2s complement, and converting to integer.

3.1.4.1.1.2.2.4 Match Length

Unlike the metadata offset, the match length is extensible. If the length is less than 10 bytes, it is
encoded in the 3 low-order bits of the 2-byte metadata. Although 3 bits seems to allow for a
maximum length of 6 (the value b'111' is reserved), because the minimum match is 3 bytes, these 3
bits actually allow for the expression of lengths from 3 to 9. The match length goes from L = b'000' +

3 bytes, to L = b'110' + 3 bytes. Because smaller lengths are much more common than the larger
lengths, the algorithm tries to optimize for smaller lengths. To encode a length between 3 and 9, we
use the 3 bits that are "in-line" in the 2-byte metadata.

If the length of the match is greater than 9 bytes, an initial bit pattern of b'111' is put in the 3 bits.
This does not signify a length of 10 bytes, but instead a length that is greater than or equal to 10,
which is included in the low-order nibble of the following byte.

Every other time that the length is greater than 9, an additional byte follows the initial 2-byte
metadata. The first time that the additional byte is included, the low-order nibble is used as the
additive length. The next nibble is "reserved" for the next metadata instance when the length is
greater than 9. Therefore, the first time that the decoder encounters a length that is greater than 9, it

reads the next byte from the data stream and the low-order nibble is extracted and used to compute
length for this metadata instance. The high-order nibble is remembered and used the next time that
the decoder encounters a metadata length that is greater than 9. The third time that a length that is
greater than 9 is encountered, another extra byte is added after the 2-byte metadata, with the low-

order nibble used for this length and the high-order nibble reserved for the fourth length that is
greater than 9, and so on.

If the nibble from this "shared" byte is all 1s (for example, b'1111'), another byte is added after the
shared byte to hold more length. In this manner, a length of 24 is encoded as follows:

b'111' (in the 3 bits in the original 2 bytes of metadata), plus

b'1110' (in the nibble of the 'shared' byte of extended length)

49 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

b'111' means 10 bytes plus b'1110', which is 14, which results in a total of 24.

If the length is more than 24, the next byte is also used in the length calculation. In this manner, a

length of 25 is encoded as follows:

b'111' (in the 3 bits in the original 2 bytes of metadata), plus

b'1111' (in the nibble of the 'shared' byte of extended length), plus

b'00000000' (in the next byte)

This scheme is good for lengths of up to 279 (a length of 10 in the 3 bits in the original 2 bytes of
metadata, plus a length of 15 in the nibble of the "shared" byte of extended length, plus a length of
up to 254 in the extra byte).

A "full" (all b'1') bit pattern (b'111', b'1111', and b'11111111') means that there is more length in the
following 2 bytes.

The final 2 bytes of length differ from the length information that comes earlier in the metadata. For

lengths that are equal to 280 or greater, the length is calculated only from these last 2 bytes and is
not added to the previous length bits. The value in the last 2 bytes, a 16-bit integer, is 3 bytes less
than the metadata length. These last 2 bytes allow for a match length of up to 32,768 bytes + 3 bytes
(the minimum match length).

The following table summarizes the length representation in metadata.

Note Length is computed from the bits that are included in the metadata plus the minimum match
length of 3.

Length representation in metadata

Match
length Length bits in the metadata

24 b'111' (3 bits in the original 2 bytes of metadata)

+

b'1110' (in the high- or low-order nibble, as appropriate, of the shared byte)

25 b'111' (3 bits in the original 2 bytes of metadata)

+

b'1111' (in the high- or low-order nibble, as appropriate, of the shared byte)

+

b'00000000' (in the next byte)

26 b'111' (3 bits in the original 2 bytes of metadata)

+

b'1111' (in the high- or low-order nibble, as appropriate, of the shared byte)

+

b'00000001' (in the next byte)

279 b'111' (3 bits in the original 2 bytes of metadata)

+

b'1111' (in the high- or low-order nibble, as appropriate, of the shared byte)

+

b'11111110' (in the next byte)

280 b'111' (3 bits in the original 2 bytes of metadata)

b'1111' (in the high- or low-order nibble, as appropriate, of the shared byte)

50 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Match
length Length bits in the metadata

b'11111111' (in the next byte)

0x0115 (in the next 2 bytes). These 2 bytes represent a length of 277 + 3 (minimum match
length).

Note All the length is included in the final 2 bytes and is not additive, as were the previous length
calculations for lengths that are smaller than 280 bytes.

281 b'111' (3 bits in the original 2 bytes of metadata)

b'1111' (in the high- or low-order nibble, as appropriate, of the shared byte)

b'11111111' (in the next byte)

0x0116 (in the next 2 bytes). This is 278 + 3 (minimum match length).

Note All the length is included in the final 2 bytes and is not additive, as were the previous length
calculations for lengths that are smaller than 280 bytes.

A "full" bit pattern in that last half word does not mean that more metadata is coming after the last

bytes.

The LZ77 compression algorithm produces a well-compressed encoding for small valued lengths, but
as the length increases, the encoding becomes less well compressed. A match length of greater than
278 bytes requires a relatively large number of bits: 3 + 4 + 8 + 16. This includes 3 bits in the
original 2 bytes of metadata, 4 bits in the nibble in the "shared" byte, 8 bits in the next byte, and 16
bits in the final 2 bytes of metadata.

3.1.4.1.1.3 Obfuscation Algorithm

Based on the XorMagic flag in the Flags field that is passed in the RPC_HEADER_EXT structure, as
specified in section 2.2.2.1, of the extended buffer, the payload data specified in section 3.1.4.1.1.1.1
and section 3.1.4.1.1.1.2 is obfuscated to obscure any easily readable messaging data being
transmitted between the client and server across the network. This is not intended as a security
feature. If a client requests to have secure communications with the server, it MUST use RPC-level

packet encryption.

The algorithm used to obscure data is straightforward and simple. Every byte of the data to be
obfuscated has the XOR operator applied with the value 0xA5.

3.1.4.1.2 Auxiliary Buffer

The EcDoConnectEx method allows for additional data to travel between the server and the client.
This additional data is transferred in the auxiliary buffers of the method. The rgbAuxIn parameter

payload, as specified in in section 3.1.4.1.1.1.1, is for auxiliary data being sent from the client to the
server. The rgbAuxOut parameter payload, as specified in section 3.1.4.1.1.1.2, is for auxiliary data
being sent from the server to the client.

Unlike the ROP request and ROP response payloads in the rgbIn and rgbOut parameters, there is no
request and response nature to the auxiliary buffers. The data sent from the server to the client is
informational data that the client might use to alter its behavior against the server.

The data being transferred from the server to the client enables the server to tell the client about

topology characteristics of the messaging system.

All information in the auxiliary buffer MUST be added with an AUX_HEADER structure preceding the
actual auxiliary information. For details about the AUX_HEADER and how it is formatted, see section
2.2.2.2. Within the AUX_HEADER structure, the Version and Type fields combined determine which
auxiliary block structure follows the AUX_HEADER structure. Details about how to format the
AUX_HEADER structure to indicate which auxiliary block follows are provided in section 2.2.2.2.

51 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

If the server receives an AUX_HEADER auxiliary block with a version and type it does not recognize
(that is, does not support), it MUST skip over the entire block without throwing an error. The

AUX_HEADER structure contains the length of the AUX_HEADER plus the following auxiliary block
structure in the Size field, so the information can be skipped.

3.1.4.1.2.1 Server Topology Information

The auxiliary blocks sent from the server to the client in the rgbAuxOut parameter auxiliary buffer on
the EcDoConnectEx method to provide server topology information are described in the following
table. Each of these auxiliary blocks MUST be preceded by a properly formatted AUX_HEADER
structure, as specified in see section 2.2.2.2.

Sent by server to client in the EcDoConnectEx method

Auxiliary block structure Description

AUX_CLIENT_CONTROL

(section 2.2.2.2.15)

Sent to the client to request a change in client behavior. This
is a means for the server to dynamically change client
behavior. For details about what client behavior the server can
adjust, see section 2.2.2.2.15.

The client alters its behavior based on this request.

AUX_OSVERSIONINFO

(section 2.2.2.2.16)

Sent to the client as informational data to help the client
decide whether it needs to alter its behavior against the
server. The data provided to the client is the server's
operating system version and operating system service pack
information.<16>

AUX_EXORGINFO

(section 2.2.2.2.17)

Sent to the client as informational data to help the client
decide whether it needs to alter its behavior against the
server. The data provided informs the client of the presence of
public folders within the organization.

A client MUST NOT try to open a public message store if the
server informs the client that it is not present or disabled. If
this block is not returned to the client, the client assumes that
public folders are available within the organization.

AUX_SERVER_SESSION_INFO

(section 2.2.2.2.21)

Sent by the server to the client as server information data to
be logged by the client.<17>

AUX_PROTOCOL_DEVICE_IDENTIFICATION

(section 2.2.2.2.22)

This information is returned to the client as diagnostic
information by any device or system operating between the
client and the server.

3.1.4.1.2.2 Processing Auxiliary Buffers Received from the Client

Auxiliary buffers received from the client can contain reserved fields that are inserted in the buffer as
padding to enforce alignment of the data on a 4-byte field. The server MUST ignore the value of these
fields when reading the stream.

The data sent to the server from the client in the auxiliary input buffer is purely informational, and the
server is not required to respond in the auxiliary output buffer.

3.1.4.1.3 Version Checking

When the server receives the client version in the EcDoConnectEx method, the server returns its
version to the client. The server version information indicates what functionality is supported on the
server.

52 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.1.4.1.3.1 Version Number Comparison

On the wire, version numbers are passed as three WORD values, as specified in [MS-DTYP]. In the
EcDoConnectEx method, as specified in section 3.1.4.1, the rgwClientVersion, rgwServerVersion, and

rgwBestVersion parameters are each passed as three WORD values.

Version numbers are now expressed in the format "XX.XX.XXXX.XXX". For example, "08.01.0215.000"
represents a specific server build. The first number is the product major version. The second number
is the product minor version. The third number is the build major number. The fourth number is the
build minor number.

In order to make version comparisons, a three-WORD value version number (as transmitted over the
wire) is converted into a four-WORD value version number. A scheme, referred to a version number

normalization, was devised that converts from the three-WORD on-the-wire format of the version into
a four-number version.

All received version parameters are converted into four-number versions before any version checks
are performed. A function that converts the three-WORD value wire version format into a four-

number (four-WORD) format that can then be used for version comparisons is described in the
following pseudocode example.

 // This routine converts a three-WORD version value into a normalized
 // four-WORD version value.
 //
 // Version[] is an array of 3 WORD values on the wire.
 // NormalizedVersion[] is an array of 4 WORD values for comparison.
 //

 IF high-bit of Version[1]is set THEN
 SET NormalizedVersion[0] to high-byte of Version[0]
 SET NormalizedVersion[1] to low-byte of Version[0]
 SET NormalizedVersion[2] to Version[1] with high-bit cleared
 SET NormalizedVersion[3] to Version[2]

 ELSE
 SET NormalizedVersion[0] to Version[0]
 SET NormalizedVersion[1] to 0
 SET NormalizedVersion[2] to Version[1]
 SET NormalizedVersion[3] to Version[2]
 ENDIF

The first WORD of the three-WORD version number is divided into two BYTE values, as specified in

[MS-DTYP], one being the product major version and the other being the product minor version. On
the wire, the client and server MUST determine whether the version that is being passed is in the old
scheme or the new scheme. If the highest bit of the second WORD value on the wire is set, the
version on the wire is in the new scheme. Otherwise, it is interpreted as the old scheme where the
product minor version is not sent.

3.1.4.1.3.2 Server Versions

A server implementation determines which level of support it will offer clients. Based on this level of

support, it MUST return a server version that corresponds to that support. A server cannot mix and
match functionality. To support functionality at a given server version level, the server MUST support
all functionality from previous server version levels.

The server version values that are returned to the client on the EcDoConnectEx method call are
shown in the following table.

%5bMS-DTYP%5d.pdf

53 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Server
version Description

6.0.6755.0 The server supports passing the sentinel value 0xBABE in the BufferSize field of a
RopFastTransferSourceGetBuffer ROP request ([MS-OXCROPS] section 2.2.12.3). This is the
minimum server version returned to the client.

8.0.295.0 The server supports passing the sentinel value 0xBABE in the ByteCount field of a
RopReadStream ROP request ([MS-OXCROPS] section 2.2.9.2).

8.0.324.0 The server supports the USE_PER_MDB_REPLID_MAPPING (0x01000000) flag in the OpenFlags
field of a RopLogon ROP request ([MS-OXCROPS] section 2.2.3.1).

8.0.358.0 The server supports the EcDoAsyncConnectEx and EcDoAsyncWaitEx RPC methods.

14.0.324.0 The server supports passing the ConversationMembers flag (0x80) in the TableFlags field of a
RopGetContentsTable ROP request ([MS-OXCROPS] section 2.2.4.14).

14.0.616.0 The server supports passing the HardDelete flag (0x02) in the ImportDeleteFlags field of a
RopSynchronizationImportDeletes ROP request ([MS-OXCROPS] section 2.2.13.5).

14.1.67.0 The server supports passing the FailOnConflict flag (0x40) in the ImportFlag field of a
RopSynchronizationImportMessageChange ROP request ([MS-OXCROPS] section 2.2.13.2).

3.1.4.2 EcDoRpcExt2 Method (Opnum 11)

The EcDoRpcExt2 method passes generic ROP commands to the server for processing within a
Session Context. Each call can contain multiple ROP commands. The server returns the results of each
ROP command to the client. This call requires an active session context handle returned from the
EcDoConnectEx method.

 long __stdcall EcDoRpcExt2(
 [in, out, ref] CXH * pcxh,
 [in, out] unsigned long *pulFlags,
 [in, size_is(cbIn)] unsigned char rgbIn[],
 [in] unsigned long cbIn,
 [out, length_is(*pcbOut), size_is(*pcbOut)] unsigned char rgbOut[],
 [in, out] BIG_RANGE_ULONG *pcbOut,
 [in, size_is(cbAuxIn)] unsigned char rgbAuxIn[],
 [in] unsigned long cbAuxIn,
 [out, length_is(*pcbAuxOut), size_is(*pcbAuxOut)] unsigned char rgbAuxOut[],
 [in, out] SMALL_RANGE_ULONG *pcbAuxOut,
 [out] unsigned long *pulTransTime
);

pcxh: A session context handle. On input, the client MUST pass a valid session context handle that
was created by calling the EcDoConnectEx method. The server uses the session context handle to

identify the Session Context to use for this call. On output, the server MUST return the same session
context handle on success.

The server can destroy the session context handle by returning a zero session context handle.
Reasons for destroying the session context handle are implementation-dependent; following are
examples of why the server might destroy the session context handle:

 The server determines that the ROP request payload in the rgbIn buffer is malformed or length

parameters are not valid.

 The session context handle that was passed in is not valid.

 An attempt was made to access a mailbox that is in the process of being moved.

%5bMS-OXCROPS%5d.pdf

54 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

 An administrator has blocked a client that has an active connection.

pulFlags: The flags that describe the server output characteristics. On input, this parameter contains

flags that tell the server how to build the rgbOut parameter.

Flag name Value Meaning

NoCompression 0x00000001 The server MUST NOT compress ROP response payload (rgbOut) or auxiliary
payload (rgbAuxOut). For details about server behavior when this flag is
absent, see section 3.1.4.2.1.1.

NoXorMagic 0x00000002 The server MUST NOT obfuscate the ROP response payload (rgbOut) or
auxiliary payload (rgbAuxOut). For details about server behavior when this
flag is absent, see section 3.1.4.2.1.1.

Chain 0x00000004 The client allows chaining of ROP response payloads.

For details about how to use these flags, see section 3.1.4.2.1.1.

On output, the server SHOULD<18> set this parameter to 0x00000000. The output flags not in the
table are reserved for future use.

rgbIn: The ROP request payload. The ROP request payload is prefixed with an RPC_HEADER_EXT
header, as specified in section 2.2.2.1. Information stored in this header determines how to interpret
the data following the header. For details about how to access the embedded ROP request payload,
see section 3.1.4.2.1. The length of the ROP request payload including the RPC_HEADER_EXT
header is contained in the cbIn parameter.

For more information about ROP buffers, see [MS-OXCROPS].

cbIn: The length of the ROP request payload. On input, this parameter contains the length of the ROP

request payload passed in the rgbIn parameter. The ROP request payload includes the size of the
ROPs plus the size of the RPC_HEADER_EXT structure. The server SHOULD<19> fail with the RPC
status code of RPC_X_BAD_STUB_DATA (0x000006F7) if the request buffer is larger than 0x00040000
bytes in size. For more information on returning RPC status codes, see [C706]. If the request buffer is

smaller than the size of the RPC_HEADER_EXT structure (0x00000008 bytes), the server
SHOULD<20> fail with error code ecRpcFailed (0x80040115).

rgbOut: The ROP response payload. The size of the payload is specified in the pcbOut parameter. Like
the ROP request payload, the ROP response payload is also prefixed by a RPC_HEADER_EXT header.
For details about how to format the ROP response payload, see section 3.1.4.2.1. The size of the ROP
response payload plus the RPC_HEADER_EXT header is returned in the pcbOut parameter.

pcbOut: The maximum size of the rgbOut parameter. On input, this parameter contains the maximum
size of the rgbOut parameter. If the value in the pcbOut parameter on input is less than 0x00000008,
the server SHOULD<21> fail with error code ecRpcFailed (0x80040115). If the value in the pcbOut

parameter on input is larger than 0x00040000, the server MUST fail with the RPC status code of
RPC_X_BAD_STUB_DATA (0x000006F7).

On output, this parameter contains the size of the ROP response payload, including the size of the
RPC_HEADER_EXT header in the rgbOut parameter. The server returns 0x00000000 on failure

because there is no ROP response payload. The client ignores any data returned on failure.

rgbAuxIn: The auxiliary payload buffer. The auxiliary payload buffer is prefixed by an
RPC_HEADER_EXT structure. Information stored in this header determines how to interpret the data

following the header. The length of the auxiliary payload buffer including the RPC_HEADER_EXT
header is contained in the cbAuxIn parameter.

For details about how to access the embedded auxiliary payload buffer, see section 3.1.4.2.1. For
details about how to interpret the auxiliary payload data, see section 3.1.4.2.2.

%5bMS-OXCROPS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

55 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

cbAuxIn: The length of the auxiliary payload buffer. On input, this parameter contains the length of
the auxiliary payload buffer passed in the rgbAuxIn parameter. If the request buffer value is larger

than 0x00001008 bytes in size, the server SHOULD<22> fail with the RPC status code
RPC_X_BAD_STUB_DATA (0x000006F7).<23>

rgbAuxOut: The auxiliary payload buffer. On output, the server MAY<24> return auxiliary payload
data to the client. The server MUST include a RPC_HEADER_EXT header before the auxiliary payload
data.

pcbAuxOut: The maximum length of the auxiliary payload buffer. On input, this parameter contains
the maximum length of the rgbAuxOut parameter. If this value on input is larger than 0x00001008,
the server MUST fail with the RPC status code RPC_X_BAD_STUB_DATA (0x000006F7).

On output, this parameter contains the size of the data to be returned in the rgbAuxOut parameter.

pulTransTime: The time it took to execute this method. On output, the server stores the number of
milliseconds the call took to execute. This is the total elapsed time from when the call is dispatched on
the server to the point in which the server returns the call. This is diagnostic information the client can

use to determine the cause of a slow response time from the server. The client can monitor the total
elapsed time across the RPC method call and, using this output parameter, can determine whether
time was spent transmitting the request/response on the network or processing it on the server.

Return Values: If the method succeeds, the return value is 0. If the method fails, the return value is
an implementation-specific error code or the protocol-defined error code listed in the following table.

Error code
name Value Meaning

ecRpcFormat 0x000004B6 The format of the request was found to be invalid. This is a generic error that
means the length was found to be invalid or the content was found to be

invalid.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
as specified in [MS-RPCE].

3.1.4.2.1 Extended Buffer Handling

The EcDoRpcExt2 method, as specified in section 3.1.4.2, contains request and response buffers that

use an extended buffer mechanism where the payload is preceded by a header. The header contains
the flags specified in section 2.2.2.1 that determine whether the payload has been compressed,
determine whether the payload has been obfuscated, and determine whether another extended buffer
and payload exist after the current payload. A single payload MUST NOT exceed 32 KB in size.

An extended buffer is used in the rgbIn, rgbOut, rgbAuxIn, and rgbAuxOut parameters on the
EcDoRpcExt2 method.

For specification of the compression algorithm used in compressing an extended buffer, see section

3.1.4.1.1.2. For specification of the obfuscation algorithm used to obscure readable messaging content
in an extended buffer, see section 3.1.4.1.1.3.

The extended buffer format and extended buffer packing are specified in section 3.1.4.2.1.1 and
section 3.1.4.2.1.2.

3.1.4.2.1.1 Extended Buffer Format

The client or server can choose not to compress the payload if the payload is small enough that

compression would not yield much benefit. The client or server can also choose to not obfuscate the
payload if the payload has already been compressed or if the client is connected using RPC layer

%5bMS-RPCE%5d.pdf

56 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

encryption. These options are specified in the Flags field of the RPC_HEADER_EXT structure in
section 2.2.2.1.

The extended buffer is used in the EcDoRpcExt2 method, as specified in section 3.1.4.2, for a variety
of different fields. The information in section 3.1.4.2.1.1.1 through section 3.1.4.2.1.1.4 describes

how the extended buffer is used for the different parameters in this method.

3.1.4.2.1.1.1 rgbIn Input Buffer

The rgbIn parameter input buffer contains an RPC_HEADER_EXT structure, as specified in section
2.2.2.1, followed by payload data.

The RPC_HEADER_EXT structure MUST contain the Last flag in the Flags field.

If the Compressed flag is present in the Flags field of the RPC_HEADER_EXT structure, the payload

data MUST be compressed by the client and MUST be uncompressed by the server before it can be
interpreted. For details about the compression algorithm, see section 3.1.4.1.1.2.

If the XorMagic flag is present in the Flags field of the RPC_HEADER_EXT structure, the payload
data MUST be obfuscated by the client and MUST be reverted by the server before it can be
interpreted. For details about the obfuscation algorithm, see section 3.1.4.1.1.3.

If both the Compressed and XorMagic flags are present in the Flags field of the

RPC_HEADER_EXT structure the payload data MUST first be compressed and then obfuscated by the
client, and then MUST first be reverted and then uncompressed by the server before it can be
interpreted.

The payload data is ROP request information that can be passed from the client to the server. For
details about how to interpret this data, see [MS-OXCROPS].

3.1.4.2.1.1.2 rgbOut Output Buffer

The rgbOut parameter output buffer can contain multiple extended buffers in a single output buffer.
Each of the extended buffers contains an RPC_HEADER_EXT structure, as specified in section

2.2.2.1, followed by Payload data.

All RPC_HEADER_EXT structures in the output buffer except for the last MUST NOT contain the Last
flag in the Flags field of the RPC_HEADER_EXT structure. The last RPC_HEADER_EXT structure in
the output buffer MUST contain the Last flag in its Flags field.

If the Compressed flag is present in the Flags field of an RPC_HEADER_EXT structure, the payload

data associated with that RPC_HEADER_EXT structure MUST be compressed by the server and MUST
be uncompressed by the client before it can be interpreted. For details about the compression
algorithm, see section 3.1.4.1.1.2.

If the XorMagic flag is present in the Flags field of an RPC_HEADER_EXT structure, the payload
data associated with that RPC_HEADER_EXT structure MUST be obfuscated by the server and MUST
be reverted by the client before it can be interpreted. For details about the obfuscation algorithm, see

section 3.1.4.1.1.3.

If both the Compressed and XorMagic flags are present in the Flags field of an RPC_HEADER_EXT
structure, the payload data associated with that RPC_HEADER_EXT structure MUST first be
compressed and then obfuscated by the server, and then MUST first be reverted and then
uncompressed by the client before it can be interpreted.

Compression or obfuscation can be done differently for each RPC_HEADER_EXT structure and its
related payload data. The server MUST be able to treat each RPC_HEADER_EXT structure and

payload data combination independently and interpret the contents solely on the flags specified in the
associated RPC_HEADER_EXT structure.

%5bMS-OXCROPS%5d.pdf

57 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Each payload contains ROP response information that is returned from the server to the client. For
details about how to interpret this data, see [MS-OXCROPS].

3.1.4.2.1.1.3 rgbAuxIn Input Buffer

The format of the rgbAuxIn parameter input buffer for the EcDoRpcExt2 method, as specified in
section 3.1.4.2, is the same as that of the rgbAuxIn parameter input buffer for the EcDoConnectEx
method, as specified in section 3.1.4.1.1.1.1.

3.1.4.2.1.1.4 rgbAuxOut Output Buffer

The format of the rgbAuxOut parameter input buffer for the EcDoRpcExt2 method, as specified in
section 3.1.4.2, is the same as that of the rgbAuxOut parameter input buffer for the EcDoConnectEx

method, as specified in section 3.1.4.1.1.1.2.

3.1.4.2.1.2 Extended Buffer Packing

As mentioned in section 3.1.4.2.1.1.2, the rgbOut parameter of the EcDoRpcExt2 method, as

specified in section 3.1.4.2, can contain more than one extended buffer, each with an
RPC_HEADER_EXT structure, as specified in section 2.2.2.1. This concept is called packing. The
server has the ability to "pack" additional response data into the rgbOut parameter based on whether

the client has requested this functionality through passing the Chain flag in the pulFlags parameter
and whether the ROP in the rgbIn request on the EcDoRpcExt2 method supports packing. The ROP
commands that support packing are the RopQueryRows ROP ([MS-OXCROPS] section 2.2.5.4), the
RopReadStream ROP ([MS-OXCROPS] section 2.2.9.2), and the RopFastTransferSourceGetBuffer
ROP ([MS-OXCROPS] section 2.2.12.3).

When processing ROP requests, the server MUST NOT produce more than 32 KB worth of response

data for all ROP requests. However, when the server finishes processing a RopQueryRows ROP ([MS-
OXCROPS] section 2.2.5.4), RopReadStream ROP ([MS-OXCROPS] section 2.2.9.2), or
RopFastTransferSourceGetBuffer ROP ([MS-OXCROPS] section 2.2.12.3) from the rgbIn parameter
request and it was the last ROP command in the request and the client has requested packing through
the Chain flag and there is residual room in the rgbOut parameter response, the server can add

additional data to the rgbOut parameter response, each with its own RPC_HEADER_EXT header.

For the server to produce additional response data, it MUST build a response as if the client sent

another request with only a RopQueryRows ROP, RopReadStream ROP, or
RopFastTransferSourceGetBuffer ROP. The additional response data is also limited to 32 KB in
size. The additional ROP response is placed into the rgbOut parameter buffer following the previous
header and associated payload with its own RPC_HEADER_EXT structure. The server can then
compress and/or obfuscate this payload if the client requests and set the Flags field of the
RPC_HEADER_EXT structure to indicate how the payload has been altered. If more residual room
remains in the rgbOut parameter, the server can continue to produce more response data until the

rgbOut parameter does not have enough room to hold another response.

The server MUST stop adding additional packed responses to the rgbOut parameter response if the
residual size of the rgbOut parameter response is less than 8 KB for the RopReadStream ROP and
RopFastTransferSourceGetBuffer ROP and 32 KB for the RopQueryRows ROP. The server
MUST NOT place more than 96 individual payloads into a single rgbOut parameter response.

When it adds additional response data, the server MUST alter its processing of the request to reflect

what has already been done. For example, if the client requests to read 1,000 rows in the
RopQueryRows ROP and the first payload contains 100 rows, the additional response data is
processed as if the client requested only 900 rows. The server MUST NOT return more data to the
client than the client originally requested.

For the RopQueryRows ROP, the server MUST adjust the row count when adding additional response
data. For the RopReadStream ROP, the server MUST adjust the number of bytes to read when
adding additional response data. There is no specific limit for the RopFastTransferSourceGetBuffer

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

58 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

ROP, but the server MUST stop packing additional extended buffers that contain the
RopFastTransferSourceGetBuffer ROP when there is no more data for the fast transfer stream. For

the RopFastTransferSourceGetBuffer ROP, the client requests that the server return all the server
data. For details about how to properly format the RopFastTransferSourceGetBuffer ROP in this

way, see [MS-OXCROPS] section 2.2.12.3.

3.1.4.2.2 Auxiliary Buffer

The EcDoRpcExt2 method, as specified in section 3.1.4.2, allows for additional data to travel
between the server and client by using auxiliary buffers as specified in section 3.1.4.1.2.

3.1.4.2.2.1 Server Topology Information

The following block MAY<25> be sent from the server to the client in the rgbAuxOut parameter
auxiliary buffer, as specified in section 3.1.4.1.1.1.2, on the EcDoRpcExt2 method, as specified in
section 3.1.4.2. Each of these auxiliary blocks MUST be preceded by a properly formatted
AUX_HEADER structure, as specified in section 2.2.2.2.

Sent by server to client in the EcDoRpcExt2 method

Block structure name Description

AUX_CLIENT_CONTROL

(section 2.2.2.2.15)

Sent to the client to request a change in client behavior. This is a means for the
server to dynamically change client behavior. For details about what client behavior
the server can adjust, see section 2.2.2.2.15.

The client alters its behavior based on this request.

3.1.4.2.2.2 Processing Auxiliary Buffers Received from the Client

Auxiliary buffers received from the client can contain reserved fields that are inserted in the buffer as
padding to enforce alignment of the data on a 4-byte field width. The server MUST ignore the value of

these fields when reading the stream.

The data sent to the server from the client in the auxiliary input buffer is purely informational, and the
server is not required to respond in the auxiliary output buffer.

3.1.4.3 EcDoDisconnect Method (Opnum 1)

The EcDoDisconnect method closes a Session Context with the server. The server destroys the
Session Context and releases all associated server state, objects, and resources that are associated
with the Session Context. This call requires an active session context handle from the

EcDoConnectEx method, as specified in section 3.1.4.1.

 long __stdcall EcDoDisconnect(
 [in, out, ref] CXH * pcxh
);

pcxh: A session context handle. On input, this parameter is the session context handle of the Session
Context that the client is disconnecting. On output, the server MUST set the pcxh parameter to a zero

value. Setting the value to zero instructs the RPC layer of the server to destroy the RPC context
handle.

Return Values: If the method succeeds, the return value is 0. If the method fails, the return value is
an implementation-specific error code.

59 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
as specified in [MS-RPCE].

3.1.4.4 EcDoAsyncConnectEx Method (Opnum 14)

The EcDoAsyncConnectEx method binds a session context handle returned from the
EcDoConnectEx method, as specified in section 3.1.4.1, to a new asynchronous context handle that
can be used in calls to the EcDoAsyncWaitEx method in the AsyncEMSMDB interface, as specified
in section 3.3.4.1. This call requires that an active session context handle be returned from the

EcDoConnectEx method.

This method is part of notification handling. For more information about notifications, see [MS-
OXCNOTIF].

 long __stdcall EcDoAsyncConnectEx(
 [in] CXH cxh,
 [out, ref] ACXH * pacxh
);

cxh: A session context handle. The client MUST pass a valid session context handle that was created
by calling the EcDoConnectEx method. The server uses the session context handle to identify the
Session Context to use for this call.

pacxh: An asynchronous context handle. On success, the server returns an asynchronous context

handle that is associated with the Session Context passed in the cxh parameter. On failure, the
returned value is NULL. The asynchronous context handle can be used to make a call to the
EcDoAsyncWaitEx method on the AsyncEMSMDB interface.

Return Values: If the method succeeds, the return value is 0. If the method fails, the return value is
an implementation-specific error code or the protocol-defined error code listed in the following table.

Error code
name Value Meaning

ecRejected<26> 0x000007EE Server has asynchronous RPC notifications disabled. Client either polls for
notifications or calls the EcRRegisterPushNotifications method (section
3.1.4.5).

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
as specified in [MS-RPCE].

3.1.4.5 EcRRegisterPushNotification Method (Opnum 4)

The EcRRegisterPushNotification method registers a callback address with the server for a Session
Context. The server MAY<27> support the EcRRegisterPushNotification method.

The callback address is used to notify the client of pending events on the server. This call requires an
active session context handle from the EcDoConnectEx method, as specified in section 3.1.4.1. The

server MUST store the callback address and the opaque context data in the Session Context. To notify
the client of pending events, the server sends a packet containing just the opaque context data to the
callback address. The callback address specifies which network transport is to be used to send the
data packet.

For more information about notification handling, see [MS-OXCNOTIF].

 long __stdcall EcRRegisterPushNotification(
 [in, out, ref] CXH * pcxh,

%5bMS-RPCE%5d.pdf
%5bMS-OXCNOTIF%5d.pdf
%5bMS-OXCNOTIF%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-OXCNOTIF%5d.pdf

60 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

 [in] unsigned long iRpc,
 [in, size_is(cbContext)] unsigned char rgbContext[],
 [in] unsigned short cbContext,
 [in] unsigned long grbitAdviseBits,
 [in, size_is(cbCallbackAddress)] unsigned char rgbCallbackAddress[],
 [in] unsigned short cbCallbackAddress,
 [out] unsigned long *hNotification
);

pcxh: A session context handle. On input, the client MUST pass a valid session context handle that
was created by calling the EcDoConnectEx method. The server uses the session context handle to
identify the Session Context to use for this call. On output, the server MUST return the same session

context handle on success.

The server can destroy the session context handle by returning a zero for the pcxh parameter.
Reasons for destroying the session context handle are implementation-dependent; following are
examples of why the server might destroy the session context handle:

 The session context handle that was passed in is not valid.

 An attempt was made to access a mailbox that is in the process of being moved.

iRpc: The server MUST ignore this value. The client MUST pass a value of 0x00000000.

rgbContext: Opaque client-generated context data that is sent back to the client at the callback
address, passed in the rgbCallbackAddress parameter, when the server notifies the client of pending
event information. The server MUST save this data within the Session Context and use it when
sending a notification to the client.

cbContext: The size of the opaque client context data that is passed in the rgbContext parameter. If
the value of this parameter is larger than 0x00000010, the server MUST fail this call with error code

ecTooBig.

grbitAdviseBits: This parameter MUST be set to 0xFFFFFFFF.

rgbCallbackAddress: The callback address for the server to use to notify the client of a pending event.
The size of this data is in the cbCallbackAddress parameter.

The data contained in this parameter follows the format of a sockaddr structure. For information
about the sockaddr structure, see [MSDN-SOCKADDR].

The server supports the address families AF_INET and AF_INET6 for a callback address that

corresponds to the protocol sequence types that are specified in section 2.1.

If an address family is requested that is not supported, the server MUST return error code
ecInvalidParam. If the address family is supported but the communications stack of the server does
not support the address type, the server MUST return error code ecNotSupported.

cbCallbackAddress: The length of the callback address in the rgbCallbackAddress parameter. The size
of this parameter depends on the address family being used. If this size does not correspond to the

size of the sockaddr structure based on address family, the server MUST return error code
ecInvalidParam.

hNotification: A handle to the notification callback. If the call completes successfully, the hNotification
parameter contains a handle to the notification callback on the server.

Return Values: If the method succeeds, the return value is 0. If the method fails, the return value is
an implementation-specific error code or one of the protocol-defined error codes listed in the following
table.

http://go.microsoft.com/fwlink/?LinkId=113717

61 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Error code name Value Meaning

ecInvalidParam 0x80070057 A parameter passed was not valid for the call.

ecNotSupported 0x80040102 The callback address is not supported on the server.

ecTooBig 0x80040305 Opaque context data is too large.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
as specified in [MS-RPCE].

3.1.4.6 EcDummyRpc Method (Opnum 6)

The EcDummyRpc method returns a SUCCESS. A client can use it to determine whether it can

communicate with the server.

 long __stdcall EcDummyRpc(
 [in] handle_t hBinding
);

hBinding: A valid RPC binding handle.

Return Values: The function MUST always succeed and return 0.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
as specified in [MS-RPCE].

3.1.4.7 Opnum0NotUsedOnWire Method (Opnum 0)

The Opnum0NotUsedOnWire method is reserved for local use. The client MUST NOT send this
method.

3.1.4.8 Opnum2NotUsedOnWire Method (Opnum 2)

The Opnum2NotUsedOnWire method is reserved for local use. The client MUST NOT send this

method.

3.1.4.9 Opnum3NotUsedOnWire Method (Opnum 3)

The Opnum3NotUsedOnWire method is reserved for local use. The client MUST NOT send this

method.

3.1.4.10 Opnum5NotUsedOnWire Method (Opnum 5)

The Opnum5NotUsedOnWire method is reserved for local use. The client MUST NOT send this
method.

3.1.4.11 Opnum7NotUsedOnWire Method (Opnum 7)

The Opnum7NotUsedOnWire method is reserved for local use. The client MUST NOT send this
method.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

62 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.1.4.12 Opnum8NotUsedOnWire Method (Opnum 8)

The Opnum8NotUsedOnWire method is reserved for local use. The client MUST NOT send this
method.

3.1.4.13 Opnum9NotUsedOnWire Method (Opnum 9)

The Opnum9NotUsedOnWire method is reserved for local use. The client MUST NOT send this
method.

3.1.4.14 Opnum12NotUsedOnWire Method (Opnum 12)

The Opnum12NotUsedOnWire method is reserved for local use. The client MUST NOT send this
method.

3.1.4.15 Opnum13NotUsedOnWire Method (Opnum 13)

The Opnum13NotUsedOnWire method is reserved for local use. The client MUST NOT send this
method.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

3.2 EMSMDB Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
specification.

For some functionality on the EMSMDB interface, it is required that the client store a session context
handle, as specified in section 3.1.1.1, and use it on subsequent interface calls that require a session
context handle.

3.2.2 Timers

None.

3.2.3 Initialization

The client creates an RPC connection to the remote server according to the details specified in section
2.1.

Establishing a connection with the server requires authentication. The RPC binding handle MUST have
an authentication method defined.

63 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.2.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency
check at target level 5.0, as specified in [MS-RPCE].

Upon the completion of the RPC method, the client returns the result unmodified to the higher layer.
Some method calls require an RPC context handle, which is created in another method call. For details
about method dependencies, see section 3.

A client SHOULD<28> use different RPC methods based on the product version being run on the
server that it is accessing.

3.2.4.1 Sending the EcDoConnectEx Method

When issuing the EcDoConnectEx method on the EMSMDB interface, some parameters require
additional client-side consideration beyond what is stated in section 3.1.4.1. The parameters for which
the client has specific handling are as follows:

hBinding: A valid RPC binding handle that MUST have a server name, protocol sequence, and

authentication method defined. Some protocol sequences have named endpoints that MUST be used.
For details about how to create a binding handle, see section 2.1.

pcxh: On success, this parameter will contain the session context handle. On failure, this value is
NULL. The session context handle MUST be stored on the client and used in subsequent calls on the
EMSMDB interface that require a valid session context handle.

ulConMod: The connection modulus hash is determined by the client for a connection. How the client
determines the hash value is an implementation detail. The client ensures that for a particular DN

passed in the szUserDN parameter, the hash value is always the same. It is acceptable to have the
same hash value for different DNs. The client is free to send any 32-bit value.

cbLimit: A client MUST pass a value of 0x00000000.

ulIcxrLink: This value is used to link the Session Context that is created by this call with an existing

Session Context on the server that was created by a previous call to the EcDoConnectEx
method.<29>

A client can link two Session Contexts for the following reasons:

1. To consume a single CAL for all the connections made from a single client computer. This gives a
client the ability to open multiple independent connections by using more than one Session
Context on the server but be seen to the server as only consuming a single CAL.<30>

2. To get pending notification information for other sessions on the same client computer. For details,
see [MS-OXCNOTIF].

If a client is not requesting to link two Session Contexts or if this is the first call to the

EcDoConnectEx method, the client MUST pass a value of 0xFFFFFFFF.

Note that the ulIcxrLink parameter is defined as a 32-bit value. Other than passing 0xFFFFFFFF if

there is no Session Context link, the client passes a value with the high-order 16-bits set to zero, and
the low-order 16-bits MUST be the value returned in the piCxr parameter from a previous
EcDoConnectEx method call.

usFCanConvertCodePages: The client MUST pass a value of 0x0001.

pcmsPollsMax: On success, this value is the number of milliseconds the client waits before polling the

server for notification information. On failure, the value of this field is undefined and SHOULD be
ignored. Other more dynamic options are available to the client for receiving notifications from the
server. The client saves this value and associates it with the session context handle.

%5bMS-RPCE%5d.pdf
%5bMS-OXCNOTIF%5d.pdf

64 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

pcRetry: On success, this value is the number of times the client retries a subsequent EMSMDB
interface method call that uses the session context handle that is returned in the pcxh parameter. On

failure, the value of this field is undefined and SHOULD be ignored. For details about retrying RPCs,
see section 3.2.4.4. The client saves this value and associates it with the session context handle.

pcmsRetryDelay: On success, this value is the number of milliseconds a client waits before retrying a
subsequent EMSMDB interface method call that uses the session context handle that is returned in
the pcxh parameter. On failure, the value of this field is undefined and SHOULD be ignored. The client
saves this value and associates it with the session context handle.

piCxr: On success, this value is a 16-bit session index that can be used in conjunction with the value
returned in the pulTimeStamp parameter to link two Session Contexts on the server. On failure, the
value of this field is undefined and SHOULD be ignored. For details about how to link Session Contexts

and the reason why a client might request to do so, see the ulIcxrLink parameter.<31>

The client saves this value and associates it with the session context handle. It is the session index
returned in a RopPending ROP response ([MS-OXCROPS] section 2.2.14.3) on calls to the
EcDoRpcExt2 method, as specified in section 3.1.4.2. The RopPending ROP response tells the client

that a Session Context on the server has pending notifications. If a client links Session Contexts, a
RopPending ROP can be returned for any linked Session Context.

rgwClientVersion: The client MUST pass the version number of the highest client protocol version it
supports. This value will provide information to the server about the protocol functionality that the
client supports. For details about how version numbers are interpreted from the wire data and the
expected client behavior, see section 3.2.4.1.3.

rgwServerVersion: On success, this value is the server protocol version that the client uses to
determine what protocol functionality the server supports. On failure, the value of this field is
undefined and SHOULD be ignored. For details about how version numbers are interpreted from the

wire data and the expected server behavior, see section 3.1.4.1.3. The client saves this value and
associates it with the session context handle.

pulTimeStamp: If a client requests to link the Session Context that is created by this call to a
previously created Session Context, the client MUST pass on input the session creation time stamp

returned in the pulTimeStamp parameter on a previous EcDoConnectEx method call. If the client is
not requesting to link Session Contexts, the client passes value 0x00000000.<32>

On success, this value is the Session Context creation time stamp. On failure, the value of this field is

undefined and SHOULD be ignored. The server saves the Session Context creation time stamp and
associates it with the session context handle.

3.2.4.1.1 Extended Buffer Handling

The EcDoConnectEx method, as specified in section 3.1.4.1, contains request and response buffers
that use an extended buffer mechanism where the payload is preceded by a header. The handling of

the extended buffer is specified in section 3.1.4.1.1.

Compression, as specified in section 3.1.4.1.1.2, or obfuscation, as specified in section 3.1.4.1.1.3,
can be done differently for each header and associated payload. The client MUST be able to treat each
header and associated payload independently and interpret the contents solely on the flags specified

in the structure.

3.2.4.1.2 Auxiliary Buffer

The EcDoConnectEx method, as specified in section 3.1.4.1, allows for additional data to travel
between the client and server. This additional data is transferred in the auxiliary buffers of the
method. The rgbAuxIn parameter is for auxiliary data being sent from the client to the server.

%5bMS-OXCROPS%5d.pdf

65 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Unlike the ROP request and ROP response payloads in the rgbIn and rgbOut parameters, there is no
request and response nature to the auxiliary buffers. The data sent to the server from the client in the

auxiliary input buffer is purely informational, and the server is not required to respond in the auxiliary
output buffer.

The data being transferred in the auxiliary buffers from the client to the server is client-side
performance information, which is statistical information that the client can keep regarding its
communication with the messaging server or the directory service. Part of this information is for when
the client fails to communicate with the messaging server or the directory service. The client can then
report this information to the server the next time it communicates.

All information in the auxiliary buffer MUST be added with an AUX_HEADER structure preceding the
actual auxiliary information. Within the AUX_HEADER structure, the Version and Type fields

combined determine which auxiliary block follows the header. For details about how to format the
AUX_HEADER structure to indicate which auxiliary block follows, see section 2.2.2.2.

If the client receives an auxiliary AUX_HEADER structure block with a version and type it does not
recognize (that is, does not support), it MUST skip over the entire block (header and auxiliary

payload) without throwing an error. The AUX_HEADER structure block contains the length of the
AUX_HEADER structure itself plus the following auxiliary block structure in its Size field, so the

information can be skipped.

3.2.4.1.2.1 Client Performance Monitoring

The following blocks are sent from the client to the server in the rgbAuxIn parameter auxiliary buffer
on the EcDoConnectEx method to support client performance monitoring. Each of these auxiliary
blocks MUST be preceded by a properly formatted AUX_HEADER structure. The client can fill
reserved fields in these blocks with any value when writing the stream (2).

Auxiliary block structure Description

AUX_PERF_CLIENTINFO

(section 2.2.2.2.4)

Sent to the server as diagnostic information about the client
for more robust reporting of networking issues.<33> The
client MUST assign a unique client identifier for each
AUX_PERF_CLIENTINFO block sent to the server. The client
identifier is also used in other performance blocks to identify
which client to associate the performance data with.

AUX_PERF_PROCESSINFO

(section 2.2.2.2.6)

Sent to the server as diagnostic information about the client
process for more robust reporting of networking issues. The
client MUST assign a unique process identifier for each
AUX_PERF_PROCESSINFO auxiliary block structure sent to
the server. The process identifier is also used in other
performance blocks to identify which client process to
associate the performance data with.

AUX_PERF_SESSIONINFO

(section 2.2.2.2.2)

Sent to the server as diagnostic information about the client
session for more robust reporting of networking issues. The
client MUST assign a unique session identifier for each
AUX_PERF_SESSIONINFO or
AUX_PERF_SESSIONINFO_V2 auxiliary block structure sent
to the server. The session identifier is also used in other
performance blocks to identify which client session to
associate the performance data with.

It is recommended that the AUX_PERF_SESSIONINFO_V2
auxiliary block structure be used instead of this block
structure. A server still supports this older session information
auxiliary block.

This block can also be passed in the EcDoRpcExt2 method
auxiliary input buffer (section 3.1.4.2.1.1.3).

66 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Auxiliary block structure Description

AUX_PERF_SESSIONINFO_V2

(section 2.2.2.2.3)

Sent to the server as diagnostic information about the client
session for more robust reporting of networking issues. The
client MUST assign a unique session identifier for each
AUX_PERF_SESSIONINFO_V2 or
AUX_PERF_SESSIONINFO auxiliary block structure sent to
the server. The session identifier is also used in other
performance blocks to identify which client session to
associate the performance data with.

This block can also be passed in the EcDoRpcExt2 method
auxiliary input buffer.

AUX_CLIENT_CONNECTION_INFO

(section 2.2.2.2.20)

Sent to the server as information about the client connection
to be logged by the server.<34>

AUX_PROTOCOL_DEVICE_IDENTIFICATION

(section 2.2.2.2.22)

Sent to the server as diagnostic information by any device or
system operating between the client and the server.

3.2.4.1.2.2 Processing Auxiliary Buffers Received from the Server

Auxiliary buffers received from the server can contain reserved fields that are inserted in the buffer as
padding to enforce alignment of the data on a 4-byte field. The client MUST ignore the value of these

fields when reading the stream.

The data received from the server is informational data that the client can use to alter its behavior
against the server.

3.2.4.1.3 Version Checking

In the EcDoConnectEx method, as specified in section 3.2.4.1, the client passes the client version to
the server. The client version information indicates to the server what functionality the client supports.

3.2.4.1.3.1 Version Number Comparison

Version number comparison is specified in section 3.1.4.1.3.1.

3.2.4.1.3.2 Client Versions

A client implementation determines which level of support it will offer servers. Based on this level of
support, it MUST pass a client version that corresponds to that support. A client cannot mix and match

functionality. To support functionality at one client version level, it MUST support all functionality from
previous client version levels.

The following table shows client versions that are passed to the server on the EcDoConnectEx
method, as specified in section 3.1.4.1, where the client can expect the server behavior to change if
the version that is transferred on the wire is equal to or greater than the client version numbers as

listed in the table.

Client version Description

11.0.0.0 The client supports receiving Unicode strings for all string properties on recipient row data
that is returned from the server on the RopReadRecipients ROP ([MS-OXCROPS] section
2.2.6.6), the RopOpenMessage ROP ([MS-OXCROPS] section 2.2.6.1), and the
RopOpenEmbeddedMessage ROP ([MS-OXCROPS] section 2.2.6.16). This is the minimum
version that a client supports to implement the protocol.

%5bMS-OXCROPS%5d.pdf

67 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Client version Description

11.00.0000.4920 The client supports receiving ecServerBusy (0x00000480) in the ReturnValue field of the
RopFastTransferSourceGetBuffer ROP response ([MS-OXCROPS] section 2.2.12.3). The
BackoffTime field is present when the ReturnValue field contains ecServerBusy. If the
value of the ReturnValue field is not ecServerBusy, the BackoffTime field is not present.
For details about the RopFastTransferSourceGetBuffer ROP, see [MS-OXCFXICS] sections
2.2.3.1.1.5 and 3.2.5.8.1.5.

12.00.0000.000 The client supports receiving the errors ecCachedModeRequired, ecRpcHttpDisallowed, and
ecProtocolDisabled on the EcDoConnectEx method call; otherwise, the client will get back
ecClientVerDisallowed instead. The client supports topologies that do not have public folders
available. For client versions earlier than 12.00.0000.000, the server MUST fail the
EcDoConnectEx method call with ecClientVerDisallowed when no public folders are
configured within the messaging system unless the EcDoConnectEx method parameter flag
0x00008000 is passed in the ulFlags parameter.

12.00.3118.000 The client supports receiving an AUX_EXORGINFO block in the rgbAuxOut parameter
(section 3.1.4.1.1.1.2), on the EcDoConnectEx method. The server SHOULD return the
AUX_EXORGINFO auxiliary block structure in the rgbAuxOut parameter on the
EcDoConnectEx method call.

12.00.3619.000 The client supports receiving the error ecNotEncrypted on the EcDoConnectEx method call;
otherwise, the client will get back ecClientVerDisallowed. This error is returned when the
server is configured to only allow encrypted connections and the client is trying to connect on
a nonencrypted connection.

12.00.3730.000 The client supports send optimization for Incremental Change Synchronization (ICS)
using the PidTagTargetEntryId property ([MS-OXOMSG] section 2.2.1.69). For more
details, see [MS-OXCFXICS] section 3.3.4.3.3.2.1.2.

12.00.4207.000 The client supports packing of the RopReadStream ROP ([MS-OXCROPS] section 2.2.9.2) in
the ROP response buffer of the EcDoRpcExt2 method (section 3.1.4.2). The
RopReadStream ROP MUST be the last ROP in the request buffer on the EcDoRpcExt2
method call. For details about extended buffer packing, see section 3.1.4.2.1.2.

12.00.4228.0000 The client supports receiving the RopBackoff ROP ([MS-OXCROPS] section 2.2.15.2) in the
ROP response buffer of the EcDoRpcExt2 method call. For details, see [MS-OXCROPS]
section 3.1.5.1.1.

3.2.4.1.3.3 Version Numbers Received from the Server

The client can assume that the described functionality exists if the version number that is passed in
the RPC buffer is equal to or greater than the server version number in which the functionality was
added, as specified in section 3.1.4.1.3.2.

3.2.4.2 Sending the EcDoRpcExt2 Method

When issuing the EcDoRpcExt2 method, as specified in section 3.1.4.2, some parameters require
additional client-side consideration beyond what is stated in section 3.1.4.2. The client has specific

handling for the following parameter:

pcxh: The client MUST pass a valid session context handle that was created by calling the

EcDoConnectEx method. If the value of the pcxh parameter on output is zero, the Session Context
on the server has been destroyed.

3.2.4.2.1 Extended Buffer Handling

%5bMS-OXCFXICS%5d.pdf
%5bMS-OXOMSG%5d.pdf

68 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

The EcDoRpcExt2 method, as specified in section 3.1.4.2, contains request and response buffers that
use an extended buffer mechanism in which the payload is preceded by a header. Extended buffer

handling is specified in section 3.1.4.1.1.

Compression, as specified in section 3.1.4.1.1.2, or obfuscation, as specified in section 3.1.4.1.1.3,

can be done differently for each header and associated payload section. The client MUST be able to
treat each header and its associated payload independently and to interpret the payload contents
solely on the flags specified in the header.

3.2.4.2.2 Auxiliary Buffer

The EcDoRpcExt2 method, as specified in section 3.1.4.2, allows for additional data to travel
between the client and server. This additional data is transferred in the auxiliary buffers of the

method. The rgbAuxIn parameter payload is for auxiliary data being sent from the client to the server.

Unlike the ROP request and response rgbIn and rgbOut parameter payloads, there is no request and
response nature to the auxiliary buffers. The data sent to the server from the client in the auxiliary
input buffer is purely informational, and the server is not required to respond in the auxiliary output

buffer.

The data being transferred in the auxiliary buffers from the client to the server is client-side

performance information, which is statistical information the client can keep regarding its
communication with the messaging server or the directory service. Part of this information is for when
the client fails to communicate with the messaging server or the directory service. The client can then
report this information to the server the next time it communicates.

All information in the auxiliary buffer MUST be added with an AUX_HEADER structure preceding the
actual auxiliary block information. For details about the AUX_HEADER structure and how it is
formatted, see section 2.2.2.2. Within the AUX_HEADER header, the Version field and Type field

are combined to determine which auxiliary block follows the header. For details about how to format
the AUX_HEADER header to indicate which auxiliary block follows, see section 2.2.2.2.

If the client receives an auxiliary AUX_HEADER structure block with a version and type it does not
recognize (that is, does not support), it MUST skip over the entire block, including the following

auxiliary block, without throwing an error. The AUX_HEADER structure block contains the length of
the AUX_HEADER structure plus the following auxiliary block in the Size field, and so the information
can be skipped.

3.2.4.2.2.1 Client Performance Monitoring

The following blocks are sent from the client to the server in the rgbAuxIn parameter, as specified in
section 3.1.4.1.1.1.1, on the EcDoRpcExt2 method, as specified in section 3.1.4.2, to support client
performance monitoring. Each of these auxiliary blocks MUST be preceded by a properly formatted
AUX_HEADER structure, as specified in section 2.2.2.2. The client can fill reserved fields in these

blocks with any value when writing the stream.

Auxiliary block structure Description

AUX_PERF_SESSIONINFO

(section 2.2.2.2.2)

Sent to the server as diagnostic information about the client session for more
robust reporting of networking issues. The client MUST assign a unique
session identifier for each AUX_PERF_SESSIONINFO or
AUX_PERF_SESSIONINFO_V2 auxiliary block structure sent to the server.
The session identifier is also used in other performance blocks to identify

which client session to associate the performance data with.

It is recommended that the AUX_PERF_SESSIONINFO_V2 auxiliary block
structure be used instead of this auxiliary block structure. A server still
supports this older session information auxiliary block structure.

69 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Auxiliary block structure Description

This block can also be passed in the EcDoConnectEx method auxiliary input
buffer.

AUX_PERF_SESSIONINFO_V2

(section 2.2.2.2.3)

Sent to the server as diagnostic information about the client session for more
robust reporting of networking issues. The client MUST assign a unique
session identifier for each AUX_PERF_SESSIONINFO_V2 or
AUX_PERF_SESSIONINFO auxiliary block structure sent to the server. The
session identifier is also used in other performance blocks to identify which
client session to associate the performance data with.

This block can also be passed in the EcDoConnectEx method auxiliary input
buffer.

AUX_PERF_SERVERINFO

(section 2.2.2.2.5)

Sent to the server as diagnostic information about the server that the client

is communicating with for more robust reporting of networking issues. The
client MUST assign a unique server identifier for each
AUX_PERF_SERVERINFO auxiliary block structure sent to the server. The
server identifier is also used in other performance blocks to identify which
server a client is communicating with to associate the performance data.

AUX_PERF_REQUESTID

(section 2.2.2.2.1)

Sent to the server as diagnostic information about a particular request for
more robust reporting of networking issues. The client MUST assign a unique
request identifier for each AUX_PERF_REQUESTID auxiliary block structure
sent to the server. The request identifier is also used in other performance
blocks to identify which request to associate the performance data with.

The client SHOULD acquire the SessionID field value used within this block
by previously sending either an AUX_PERF_SESSIONINFO auxiliary block
structure or an AUX_PERF_SESSIONINFO_V2 auxiliary block structure to
the server.

AUX_PERF_DEFMDB_SUCCESS

(section 2.2.2.2.7)

Sent to the server as diagnostic information to report a previously successful

RPC to the messaging server. The client can fill the Reserved field in this
auxiliary buffer with any value when writing the stream.

The client acquires the RequestID field value used within this block by
previously sending an AUX_PERF_REQUESTID auxiliary block structure to
the server.

AUX_PERF_DEFGC_SUCCESS

(section 2.2.2.2.8)

Sent to the server as diagnostic information to report a previously successful
call to the directory service.

The client acquires the values of the ServerID and SessionID fields used
within this block by previously sending an AUX_PERF_SERVERINFO
auxiliary block structure and either an AUX_PERF_SESSIONINFO auxiliary
block structure or an AUX_PERF_SESSIONINFO_V2 auxiliary block
structure to the server.

AUX_PERF_MDB_SUCCESS

(section 2.2.2.2.9)

Sent to the server as diagnostic information to report a previously successful
RPC to the messaging server.

The client acquires the values of the RequestID, ClientID, ServerID, and

SessionID fields used within this block by previously sending the
AUX_PERF_REQUESTID auxiliary block structure, the
AUX_PERF_CLIENTINFO auxiliary block structure, the
AUX_PERF_SERVERINFO auxiliary block structure, and either the
AUX_PERF_SESSIONINFO auxiliary block structure or the
AUX_PERF_SESSIONINFO_V2 auxiliary block structure to the server.

It is recommended that the AUX_PERF_MDB_SUCCESS_V2 auxiliary block
structure be used instead of this older auxiliary block structure. A server still
supports this older session information auxiliary block.

AUX_PERF_MDB_SUCCESS_V2

(section 2.2.2.2.10)

Sent to the server as diagnostic information to report a previously successful
RPC to the messaging server.

The client acquires the values of the RequestID, ProcessID, ClientID,
ServerID, and SessionID fields used within this block by previously

70 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Auxiliary block structure Description

sending the AUX_PERF_REQUESTID auxiliary block structure, the
AUX_PERF_PROCESSINFO auxiliary block structure, the
AUX_PERF_CLIENTINFO auxiliary block structure, the
AUX_PERF_SERVERINFO auxiliary block structure, and either the
AUX_PERF_SESSIONINFO auxiliary block structure or the
AUX_PERF_SESSIONINFO_V2 auxiliary block structure to the server.

AUX_PERF_GC_SUCCESS

(section 2.2.2.2.11)

Sent to the server as diagnostic information to report a previously successful
call to the directory service.

The client acquires the values of the ClientID, ServerID, and SessionID
fields used within this block by previously sending the
AUX_PERF_CLIENTINFO auxiliary block structure, the
AUX_PERF_SERVERINFO auxiliary block structure, and either the
AUX_PERF_SESSIONINFO auxiliary block structure or the
AUX_PERF_SESSIONINFO_V2 auxiliary block structure to the server.

It is recommended that the AUX_PERF_GC_SUCCESS_V2 auxiliary block
structure be used instead of this auxiliary block structure. A server still
supports this older session information auxiliary block.

AUX_PERF_GC_SUCCESS_V2

(section 2.2.2.2.12)

Sent to the server as diagnostic information to report a previously successful
call to the directory service.

The client acquires the values of the ProcessID, ClientID, ServerID, and
SessionID fields used within this block by previously sending the
AUX_PERF_PROCESSINFO auxiliary block structure, the
AUX_PERF_CLIENTINFO auxiliary block structure, the
AUX_PERF_SERVERINFO auxiliary block structure, and either the
AUX_PERF_SESSIONINFO auxiliary block structure or the
AUX_PERF_SESSIONINFO_V2 auxiliary block structure to the server.

AUX_PERF_FAILURE

(section 2.2.2.2.13)

Sent to the server as diagnostic information to report a previously failed call
to the messaging server or the directory service.

The client acquires the values of the RequestID, ClientID, ServerID, and
SessionID fields used within this block by previously sending the
AUX_PERF_REQUESTID auxiliary block structure,
theAUX_PERF_CLIENTINFO auxiliary block structure, the
AUX_PERF_SERVERINFO, and either the AUX_PERF_SESSIONINFO
auxiliary block structure or the AUX_PERF_SESSIONINFO_V2 auxiliary
block structure to the server.

It is recommended that AUX_PERF_FAILURE_V2 auxiliary block structure
be used instead of this auxiliary block structure. A server still supports this
older session information auxiliary block.

AUX_PERF_FAILURE_V2

(section 2.2.2.2.14)

Sent to the server as diagnostic information to report a previously failed call
to the messaging server or the directory service.

The client acquires the values of the RequestID, ProcessID, ClientID,
ServerID, and SessionID fields used within this block by previously
sending the AUX_PERF_REQUESTID auxiliary block structure, the
AUX_PERF_PROCESSINFO auxiliary block structure, the
AUX_PERF_CLIENTINFO auxiliary block structure, the
AUX_PERF_SERVERINFO, and either the AUX_PERF_SESSIONINFO
auxiliary block structure or the AUX_PERF_SESSIONINFO_V2 auxiliary
block structure to the server.

3.2.4.3 Sending the EcDoDisconnect Method

A client terminates communication with a server by calling the EcDoDisconnect method, as described
in section 3.1.4.3. In the call to the EcDoDisconnect method, the client passes the session context

71 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

handle that was created in a successful call to the interface EcDoConnectEx method, as described in
section 3.1.4.1. It is suggested that the server clean up any Session Context data associated with this

session context handle.

3.2.4.4 Handling Server Too Busy

All methods that require a valid session context handle are to be retried if the call fails with RPC status
RPC_S_SERVER_TOO_BUSY (0x000006BB). The number of times the client retries and the amount of
time the client waits before retrying is based on the pcRetry and pcmsRetryDelay parameters returned

on the EcDoConnectEx method, as specified in section 3.1.4.1. The EcDoConnectEx method is the
only method that creates a session context handle, so successful processing of this method is a
prerequisite for any method that requires a session context handle. For more details about
circumstances under which the RPC_S_SERVER_TOO_BUSY status code is returned, see [MS-
OXCROPS] section 3.2.4.2.

3.2.4.5 Handling Connection Failures

If the client's connection to the server fails or if the server prematurely disconnects a client by clearing
the session context handle in the response to an EMSMDB interface RPC, the client cleans up any
saved session state information and closes the session context handle if it is not already set to zero.
The binding handle of the session is to be closed.

A client can choose to reconnect to the server automatically by creating a new binding handle and

calling the EcDoConnectEx method, as specified in section 3.1.4.1. This creates a new Session
Context on the server. Note that all Server objects previously opened on the server will no longer
exist, and the client MUST issue ROP commands to re-create or reopen the Server objects.

3.2.4.6 Handling Endpoint Consolidation

During the first connection to the server, the client does not know whether the server supports port
consolidation. If the client receives the AUX_ENDPOINT_CAPABILITIES auxiliary block structure,
as specified in section 2.2.2.2.19, in the server's response to the EcDoConnectEx method, as
specified in section 3.1.4.1, initiated by the client, then the client SHOULD<35> save the information

so that on subsequent connections to that server the client can consolidate the RFRI, NSPI, and
EMSMDB interfaces to a single port, such as port 6001. There is no requirement that the client

consolidate the interfaces because this behavior is completely optional.
There is always a one reconnection lag until the client connects in the most optimal way.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

3.3 AsyncEMSMDB Server Details

The server responds to messages it receives from the client.

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

72 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

adhere to this model as long as their external behavior is consistent with that described in this
specification.

The ADM for this interface is the same as that for the EMSMDB interface, as specified in section 3.1.1.

The AsyncEMSMDB uses an asynchronous Global.Handle ADM element, as defined in section

3.1.1.1. The Global.Handle ADM element maps to the session context that is associated with a
session context handle. There is only one asynchronous Global.Handle ADM element for a session
context.

All methods on the AsyncEMSMDB interface that use an asynchronous context handle are performed
against the Session Context that is associated with the asynchronous Global.Handle ADM element
(or asynchronous context handle).

The server keeps a mapping between the asynchronous Global.Handle ADM element and an active

Session Context on the server. A Session Context can be created and destroyed through the EMSMDB
interface.

When the Session Context is destroyed or the client connection is lost, the asynchronous context

handle becomes invalid and will be rejected if used.

3.3.2 Timers

None.

3.3.3 Initialization

To initialize the AsyncEMSMDB interface, the server MUST do the following:

1. Register the different protocol sequences that will allow clients to communicate with the server.
The supported protocol sequences are specified in section 2.1. Note that some protocol sequences
use named endpoints, which are also specified in section 2.1.

2. Register the authentication methods that are allowed on the AsyncEMSMDB interface:

 RPC_C_AUTHN_WINNT

 RPC_C_AUTHN_GSS_KERBEROS

 RPC_C_AUTHN_GSS_NEGOTIATE

A client uses one of these authentication methods to authenticate.

3. Start listening for RPCs.

4. Register the AsyncEMSMDB interface.

5. Register the AsyncEMSMDB interface to all the registered binding handles created previously.

3.3.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency
check at target level 5.0, as specified in [MS-RPCE].

This interface includes the following method.<36>

Method Description

EcDoAsyncWaitEx An asynchronous call that the server will not complete until there are pending events on

%5bMS-RPCE%5d.pdf

73 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Method Description

the Session Context. The method requires an active asynchronous context handle returned
from the EcDoAsyncConnectEx method on the EMSMDB interface.

Opnum: 0

3.3.4.1 EcDoAsyncWaitEx Method (Opnum 0)

The EcDoAsyncWaitEx method is an asynchronous call that the server does not complete until
events are pending on the Session Context, up to a 5-minute duration of no client activity. If no
events are available within 5 minutes of the time that the client last accessed the server<37> through
a call to the EcDoRpcExt2 method, as specified in section 3.1.4.2, the server returns the call and
does not set the NotificationPending flag in the pulFlagsOut parameter. If an event is pending, the
server completes the call immediately and returns the NotificationPending flag in the pulFlagsOut

parameter. This call requires an active asynchronous context handle to be returned from the

EcDoAsyncConnectEx method on the EMSMDB interface, as specified in section 3.1.4.1. The
asynchronous context handle is associated with the Session Context.

This method is part of notification handling. For more information about notifications, see [MS-
OXCNOTIF].

 long __stdcall EcDoAsyncWaitEx(
 [in] ACXH acxh,
 [in] unsigned long ulFlagsIn,
 [out] unsigned long *pulFlagsOut
);

acxh: An asynchronous context handle. On input, the client MUST pass a valid asynchronous context
handle that was created by calling the EcDoAsyncConnectEx method on the EMSMDB interface. The
server uses the asynchronous context handle to identify the Session Context to use for this call. If the

asynchronous context handle is not valid, the server successfully completes the call, setting the

NotificationPending flag in the pulFlagsOut parameter.

ulFlagsIn: Unused. Reserved for future use. Client MUST pass a value of 0x00000000.

pulFlagsOut: The output flags for the client. Flag values are specified in the following table.

Flag name Value Description

NotificationPending 0x00000001 Signals that events are pending for the client on the Session Context on
the server. The client MUST call the EcDoRpcExt2 method (with
additional data in the ROP request buffer if there is additional data to
send to the server, or with an empty ROP request buffer if there is no
additional data to send to the server). The server will return the event
details in the ROP response buffer.

Return Values: If the method succeeds, the return value is 0. If the method fails, the return value is
an implementation-specific error code or one of the protocol-defined error codes listed in the following
table.

Error code
name Value Meaning

Rejected 0x000007EE An EcDoAsyncWaitEx method call is already outstanding on this
asynchronous context handle.<38>

%5bMS-OXCNOTIF%5d.pdf
%5bMS-OXCNOTIF%5d.pdf

74 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Error code
name Value Meaning

Exiting 0x000003ED The server is shutting down.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
as specified in [MS-RPCE].

3.3.5 Timer Events

None.

3.3.6 Other Local Events

None.

3.4 AsyncEMSMDB Client Details

3.4.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

specification.

For some functionality on the AsyncEMSMDB interface, it is required that the client store an
asynchronous context handle, as described in section 3.3.1, and use it on subsequent interface calls
that require an asynchronous context handle.

3.4.2 Timers

None.

3.4.3 Initialization

This interface can only be used after first obtaining an asynchronous context handle from the
EcDoAsyncConnectEx method from the EMSMDB interface, as specified in section 3.1.4.1.

3.4.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency

check at target level 5.0, as specified in [MS-RPCE].

A client SHOULD<39> use different RPC methods based on the product version being run on the
server that it is accessing.

Upon the completion of the RPC method, the client returns the result unmodified to the higher layer.
Some method calls require an RPC context handle, which is created in another method call. For details
about method dependencies, see section 3.

3.4.5 Timer Events

None.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

75 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.4.6 Other Local Events

None.

76 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

4 Protocol Examples

The following examples show how a client and server use this protocol connection, submit ROP
commands, and disconnect.

4.1 Connect to the Server

To begin, the client creates an RPC binding handle to the server with the "ncacn_ip_tcp" protocol
sequence and the RPC_C_AUTHN_WINNT authentication method.

The client then establishes a Session Context with the server by using the EcDoConnectEx method,
as described in section 3.1.4.1, and sets the parameters as follows:

hBinding: Binding handle returned from the EcDoConnectEx method call.

pcxh: Pointer to session context handle to hold output value. In this example, the client initializes
the session context handle to zero.

szUserDN: "/o=First Organization/ou=First Administrative Group/CN=recipients/CN=janedow" (This
is the user's DN. A string that contains the DN of the user who is making the EcDoConnectEx
method call in a directory service.)

ulFlags: 0x00000000 (Regular user access.)

ulConMod: 0x00340567 (Client-computed hash on the szUserDN parameter value.)

cbLimit: 0x00000000

ulCpid: 0x000004E4 (Code page 1252.)

ulLcidString: 0x00000409 (Locale 1033 "en-us".)

ulLcidSort: 0x00000409 (Locale 1033 "en-us".)

ulIcxrLink: 0xFFFFFFFF (No session link.)

usFCanConvertCodePages: 0x0001

rgwClientVersion: Pointer to unsigned short array containing values 0x000C, 0x183E, and 0x03E8.

Client supports protocol client version 12.6206.1000.

pulTimeStamp: Pointer to unsigned long value 0x00000000.

rgbAuxIn: NULL pointer value.

cbAuxIn: 0x00000000

rgbAuxOut: Pointer to buffer of size 0x1008.

pcbAuxOut: Pointer to unsigned long value 0x00001008.

The server processes the EcDoConnectEx method request. The server verifies that authentication
context associated with the hBinding parameter binding handle has ownership privileges to a directory
service object that contains a DN that is in the szUserDN parameter. The server creates a Session
Context and assigns a session context handle (using 0x00001234 for this example). The server
returns the following output values:

pcxh: Value at session context handle pointer is 0x00001234. Note that the actual RPC context
handle returned to the client in this parameter might not be what the server returned. The RPC

layer on the server and client might map the context handle. The context handle returned to the

77 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

client is guaranteed to be unique and will map back to the server-assigned context handle if used
on subsequent calls to the server.

pcmsPollsMax: Value at unsigned long pointer is 0x0000EA60. (The client is instructed to poll for
events every 60 seconds.)

pcRetry: Value at unsigned long pointer is 0x00000006. (The client is instructed to retry six times
before failing.)

pcmsRetryDelay: Value at unsigned long pointer is 0x00001770. (The client is instructed to wait 10
seconds between each retry.)

picxr: Value at unsigned short pointer is a server-assigned session index with value 0x0304.

szDNPrefix: Value at unsigned CHAR pointer is a pointer to a null-terminated ANSI string with value
"/o=First Group/ou=First Administrative Group/CN=Configuration/CN=Servers/CN=MBX-SRV-02".

szDisplayName: Value at unsigned CHAR pointer is a pointer to a null-terminated ANSI string with
value "MBX-SRV-02".

rgwServerVersion: Value at unsigned short array contains values 0x0008, 0x82B4, and 0x0003.
(Server supports protocol server version 8.0.692.3.)

rgwBestVersion: Value at unsigned short array contains values 0x000C, 0x183E, and 0x03E8.

pulTimeStamp: Value at unsigned long pointer is a 32-bit value that represents the internal server

time when the Session Context was created.

rgbAuxOut: The server returns the following extended buffer and payload containing auxiliary
information.

RPC_HEADER_EXT Payload

 AUX_HEADER AUX_EXORGINFO

Version Flags Size SizeActual Size Version Type OrgFlags

0x0000 0x0004 0x0008 0x0008 0x0008 0x01 0x17 0x00000001

(Payload is not compressed and not obfuscated.)

pcbAuxOut: Value at unsigned long pointer is 0x00000010. (The rgbAuxOut parameter is 16 bytes
in length.)

Return Value: 0x00000000

4.2 Issue ROP Commands to the Server

The client has already established a Session Context with the server and has a valid session context
handle. For more information, see section 4.1.

The client sends ROP commands to server by using the EcDoRpcExt2 method, as described in section
3.1.4.2, and by using the session context handle returned from the EcDoConnectEx method RPC, as
described in section 3.1.4.1.

pcxh: Pointer to session context handle value, which is 0x00001234.

pulFlags: Pointer to unsigned long containing value 0x00000003. (Client requests server to not
compress or perform the XOR operation on the payload of the rgbOut and rgbAuxOut parameters.)

78 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

rgbIn: Client passes extended buffer and payload containing ROP commands to be processed by
server. For details about ROP commands, see [MS-OXCROPS].

RPC_HEADER_EXT Payload

 ROP request commands

Version Flags Size SizeActual RopSize ROPs ServerObjectHandleTable (SOHT)

0x0000 0x0004 0x0152 0x0152 0x0142 320 bytes 16 bytes

(Payload is not compressed and not obfuscated.)

cbIn: 0x0000015A

rgbAuxIn: Null pointer value.

cbAuxIn: 0x00000000

rgbOut: Pointer to buffer of size 0x00018008.

pcbOut: Pointer to unsigned long value 0x00018008.

rgbAuxOut: Pointer to buffer of size 0x1008.

pcbAuxOut: Pointer to unsigned long value 0x00001008.

The server processes the EcDoRpcExt2 method request. The server verifies that the session context
handle is for a valid Session Context for this user. The server processes the ROP request commands
and returns the ROP response results to the client with the following output values:

pcxh: Value at session context handle pointer is 0x00001234.

pulFlags: Value at unsigned long is 0x00000000.

rgbOut: Server returns the following extended buffer and payload containing ROP response
commands.

RPC_HEADER_EXT Payload

 ROP response commands

Version Flags Size SizeActual RopSize ROPs SOHT

0x0000 0x0004 0x0052 0x0052 0x0042 64 bytes 16 bytes

(Payload is not compressed and not obfuscated.)

pcbOut: 0x0000005A

rgbAuxOut: Server returns nothing in the auxiliary output buffer.

pcbAuxOut: 0x00000000

pulTransTime: Value at unsigned long pointer is 0x00000010. (The number of milliseconds it took
the server to process the EcDoRpcExt2 method RPC.)

Return Value: 0x00000000

%5bMS-OXCROPS%5d.pdf

79 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

4.3 Receive Packed ROP Responses from the Server

The client has already established a Session Context with the server and has a valid session context
handle. For more information, see section 4.1.

The client sends ROP commands to server by calling the EcDoRpcExt2 method, as described in
section 3.1.4.2, by using the session context handle that is returned from the EcDoConnectEx
method call, as described in section 3.1.4.1. The last ROP request contains the RopReadStream ROP
([MS-OXCROPS] section 2.2.9.2), so the client requests response chaining (for example, packing).

pcxh: Pointer to session context handle value, which is 0x00001234.

pulFlags: Pointer to unsigned long containing value 0x00000007. (Client requests that the server
not compress or perform an XOR operation on the payload of the rgbOut and rgbAuxOut

parameters. Client requests response chaining.)

rgbIn: Client passes extended buffer and payload containing ROP commands to be processed by
server. For details about ROP commands, see [MS-OXCROPS].

RPC_HEADER_EXT Payload

 ROP request commands

Version Flags Size SizeActual RopSize ROPs SOHT

0x0000 0x0004 0x0152 0x0152 0x0142 320 bytes (last ROP command is
RopReadStream)

16
bytes

(Payload is not compressed and not obfuscated.)

cbIn: 0x0000015A

rgbAuxIn: Null pointer value.

cbAuxIn: 0x000000

rgbOut: Pointer to buffer of size 0x00018008.

pcbOut: Pointer to unsigned long value 0x00018008.

rgbAuxOut: Pointer to buffer of size 0x1008.

pcbAuxOut: Pointer to unsigned long value 0x00001008.

The server processes the EcDoRpcExt2 method request. The server verifies that the session context
handle is for a valid Session Context for this user. The server processes the ROP request commands
and returns ROP response results to client. The last ROP was the RopReadStream ROP, and the
client has requested chaining; there is more data to return in the stream being read, there is more
room in the rgbOut parameter output buffer, and the server adds another extended buffer and

payload. The server returns the following output values.

pcxh: Value at session context handle pointer is 0x00001234.

pulFlags: Value at unsigned long is 0x00000000.

rgbOut: Server returns two extended buffer header and payload pairs containing ROP response
commands. The last payload contains only the RopReadStream ROP command.

%5bMS-OXCROPS%5d.pdf

80 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

RPC_HEADER_EXT

 Payload

RPC_HEADER_EXT

 Payload

Flags: 0x0000

Size: 0x7FFE

ROP response commands Flags: 0x0004

Size: 0x2008

ROP response command

RopSize

0x7FEE

ROPs SOHT

16 bytes

RopSize

0x1FF8

ROP SOHT

16 bytes

(Payloads are not compressed and not obfuscated.)

pcbOut: 0x0000A016

rgbAuxOut: Server returns nothing in the auxiliary output buffer.

pcbAuxOut: 0x00000000

pulTransTime: Value at unsigned long pointer is 0x00000010. (The number of milliseconds it took
the server to process the EcDoRpcExt2 method call.)

Return Value: 0x00000000

4.4 Disconnect from the Server

The client has already established a Session Context with the server and has a valid session context
handle. For more information, see section 4.1.

The client is exiting and requests to destroy the Session Context on the server. The client calls the
EcDoDisconnect method, as described in section 3.1.4.3, using the session context handle that was

returned from the EcDoConnectEx method call, as described in section 3.1.4.1.

pcxh: Pointer to session context handle value, which is 0x00001234.

The server processes the EcDoDisconnect method request. The server verifies that the session
context handle is for a valid Session Context for this user. The server destroys the Session Context

and invalidates the session context handle. The server returns the following output values.

pcxh: Value at session context handle pointer is 0x00000000.

Return Value: 0x00000000

81 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

5 Security

5.1 Security Considerations for Implementers

To reduce exploits of server code, it is recommended that anonymous access to the server not be

granted. To make method calls on the EMSMDB and AsyncEMSMDB interfaces, only properly
authenticated RPC binding handles are allowed.

Most of the EMSMDB and AsyncEMSMDB interface methods require a session context handle, which
can only be created from a successful call to the EcDoConnectEx method, as described in section
3.1.4.1. The server verifies that the authentication context on the RPC binding handle has sufficient
permissions to access the server and create a Session Context. These method RPCs are used by the

client to create a Session Context with the server. They are also used to declare to the server who is
attempting to access messaging data on the server through the DN passed in the szUserDN
parameter. It is recommended that the server verify that the authentication context on the RPC
binding handle has ownership permissions to the directory service object that is associated with the
DN. If the authentication context does not have adequate permissions, the server fails the call and

does not create a Session Context.

Although the protocol allows for data compression and data obfuscation on the EcDoRpcExt2 method

specified in section 3.1.4.2, it is recommended that data compression and data obfuscation not be
used in place of proper encryption. It is recommended that RPC-level encryption be used by the client
when establishing a connection with the server. This will properly encrypt all parameters of all method
RPCs on the EMSMDB and AsyncEMSMDB interfaces.

5.2 Index of Security Parameters

None.

82 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

6 Appendix A: Full IDL

For ease of implementation, the following full IDL is provided, where "ms-dtyp.idl" refers to the IDL
found in [MS-DTYP] Appendix A. The syntax uses the IDL syntax extensions defined in [MS-RPCE]. For
example, as noted in [MS-RPCE], a pointer_default declaration is not required and
pointer_default(unique) is assumed.

 import "ms-rpce.idl";

 typedef [context_handle] void * CXH;
 typedef [context_handle] void * ACXH;
 // Special restricted types to prevent allocation of big buffers.
 typedef [range(0x0, 0x40000)] unsigned long BIG_RANGE_ULONG;
 typedef [range(0x0, 0x1008)] unsigned long SMALL_RANGE_ULONG;

 [uuid (A4F1DB00-CA47-1067-B31F-00DD010662DA),
 version(0.81),
 pointer_default(unique)]
 interface emsmdb
 {
 long __stdcall Opnum0Reserved(
);

 long __stdcall EcDoDisconnect(
 [in, out, ref] CXH * pcxh
);

 long __stdcall Opnum2Reserved(
);

 long __stdcall Opnum3Reserved(
);

 long __stdcall EcRRegisterPushNotification(
 [in, out, ref] CXH * pcxh,
 [in] unsigned long iRpc,
 [in, size_is(cbContext)]unsigned char rgbContext[],
 [in] unsigned short cbContext,
 [in] unsigned long grbitAdviseBits,
 [in, size_is(cbCallbackAddress)] unsigned char rgbCallbackAddress[],
 [in] unsigned short cbCallbackAddress,
 [out] unsigned long *hNotification
);

 long __stdcall Opnum5Reserved(
);

 long __stdcall EcDummyRpc(
 [in] handle_t hBinding
);

 long __stdcall Opnum7Reserved(
);

 long __stdcall Opnum8Reserved(
);

 long __stdcall Opnum9Reserved(
);

 long __stdcall EcDoConnectEx(
 [in] handle_t hBinding,
 [out, ref] CXH * pcxh,
 [in, string] unsigned char * szUserDN,
 [in] unsigned long ulFlags,
 [in] unsigned long ulConMod,
 [in] unsigned long cbLimit,

%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf

83 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

 [in] unsigned long ulCpid,
 [in] unsigned long ulLcidString,
 [in] unsigned long ulLcidSort,
 [in] unsigned long ulIcxrLink,
 [in] unsigned short usFCanConvertCodePages,
 [out] unsigned long * pcmsPollsMax,
 [out] unsigned long * pcRetry,
 [out] unsigned long * pcmsRetryDelay,
 [out] unsigned short * picxr,
 [out, string] unsigned char **szDNPrefix,
 [out, string] unsigned char **szDisplayName,
 [in] unsigned short rgwClientVersion[3],
 [out] unsigned short rgwServerVersion[3],
 [out] unsigned short rgwBestVersion[3],
 [in, out] unsigned long * pulTimeStamp,
 [in, size_is(cbAuxIn)] unsigned char rgbAuxIn[],
 [in] unsigned long cbAuxIn,
 [out, length_is(*pcbAuxOut), size_is(*pcbAuxOut)] unsigned char rgbAuxOut[],
 [in, out] SMALL_RANGE_ULONG *pcbAuxOut
);

 long __stdcall EcDoRpcExt2(
 [in, out, ref] CXH * pcxh,
 [in, out] unsigned long *pulFlags,
 [in, size_is(cbIn)] unsigned char rgbIn[],
 [in] unsigned long cbIn,
 [out, length_is(*pcbOut), size_is(*pcbOut)] unsigned char rgbOut[],
 [in, out] BIG_RANGE_ULONG *pcbOut,
 [in, size_is(cbAuxIn)] unsigned char rgbAuxIn[],
 [in] unsigned long cbAuxIn,
 [out, length_is(*pcbAuxOut), size_is(*pcbAuxOut)] unsigned char rgbAuxOut[],
 [in, out] SMALL_RANGE_ULONG *pcbAuxOut,
 [out] unsigned long *pulTransTime
);

 long __stdcall Opnum12Reserved(
);

 long __stdcall Opnum13Reserved(
);

 long __stdcall EcDoAsyncConnectEx(
 [in] CXH cxh,
 [out, ref] ACXH * pacxh
);

 }

 [uuid (5261574A-4572-206E-B268-6B199213B4E4),
 version(0.01),
 pointer_default(unique)]
 interface asyncemsmdb
 {
 long __stdcall EcDoAsyncWaitEx(
 [in] ACXH acxh,
 [in] unsigned long ulFlagsIn,
 [out] unsigned long *pulFlagsOut
);

 }

84 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Microsoft Exchange Server 2003

 Microsoft Exchange Server 2007

 Microsoft Exchange Server 2010

 Microsoft Exchange Server 2013

 Microsoft Exchange Server 2016

 Microsoft Office Outlook 2003

 Microsoft Office Outlook 2007

 Microsoft Outlook 2010

 Microsoft Outlook 2013

 Microsoft Outlook 2016

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or

SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2.1: The following tables indicate which product versions support a given protocol
sequence.

Protocol sequence Exchange 2003 Exchange 2007 Exchange 2010 Exchange 2013
Exchange
2016

ncacn_ip_tcp X X X

ncacn_http X X X X X

Protocol sequence
Office Outlook
2003

Office Outlook
2007 Outlook 2010 Outlook 2013

Outlook
2016

ncacn_ip_tcp X X X X X

ncacn_http X X X X X

<2> Section 2.2.2.2: Exchange 2003, Exchange 2007, and Exchange 2010 do not return the
AUX_ENDPOINT_CAPABILITIES auxiliary block structure. Office Outlook 2003, the initial release
version of Office Outlook 2007, Microsoft Office Outlook 2007 Service Pack 1, Microsoft Office Outlook
2007 Service Pack 2 (SP2), and the initial release version of Microsoft Outlook 2010 ignore the

85 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

AUX_ENDPOINT_CAPABILITIES auxiliary block structure. Microsoft Outlook 2010 Service Pack 1
(SP1), Outlook 2013, and Outlook 2016 support the AUX_ENDPOINT_CAPABILITIES auxiliary

block structure.

<3> Section 2.2.2.2.17: Exchange 2003, Exchange 2007, and Exchange 2010 do not set this flag.

Office Outlook 2003, Office Outlook 2007, and Outlook 2010 ignore this flag.

<4> Section 2.2.2.2.19: Exchange 2003, Exchange 2007, and Exchange 2010 do not support
combined RFRI, NSPI, and EMSMDB interfaces on the same connection.

<5> Section 3.1.3: The following tables indicate which product versions support each authentication
method.

Authentication method

Exchange
2003 and
Office
Outlook
2003

Exchange
2007 and
Office
Outlook
2007

Exchange
2010 and
Outlook
2010

Exchange
2013 and
Outlook
2013

Exchange
2016 and
Outlook
2016

RPC_C_AUTHN_WINNT X X X X X

RPC_C_AUTHN_GSS_KERBEROS X X X

RPC_C_AUTHN_GSS_NEGOTIATE X X X X X

RPC_C_AUTHN_NONE X X

<6> Section 3.1.3: Exchange 2003, Exchange 2007, Exchange 2010, Office Outlook 2003, Office
Outlook 2007, and Outlook 2010 use "exchangeMDB/<Mailbox server FQDN>" as the service principal
name (SPN) for the Kerberos authentication method.

<7> Section 3.1.4: The following table indicates which EMSMDB methods are supported in which
product versions.

Method
Exchange
2003

Exchange
2007

Exchange
2010

Exchange
2013

Exchange
2016

EcDoDisconnect X X X X X

EcRRegisterPushNotification X X See section
3.1.4.5.

EcDummyRpc X X X X X

EcDoConnectEx X X X X X

EcDoRpcExt2 X X X X X

EcDoAsyncConnectEx X X X X

<8> Section 3.1.4.1: Exchange 2010, Exchange 2013, and Exchange 2016 do not support Session
Context linking. If the value of the ulIcxrLink parameter is not 0xFFFFFFFF, the server will not attempt

to search for a session with the same Session Context and link to them. It will then return the same
value in the pulTimeStamp parameter that was passed in.

86 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

<9> Section 3.1.4.1: In Exchange 2003 and the initial release version of Exchange 2007, the server
counts individual connections for CAL accounting, so Session Context linking is useful in a call to the

EcDoConnectEx method on the EMSMDB interface.

<10> Section 3.1.4.1: Exchange 2010, Exchange 2013, and Exchange 2016 do not support Session

Context linking.

<11> Section 3.1.4.1: Exchange 2010, Exchange 2013, and Exchange 2016 do not support Session
Context linking. If the ulIcxrLink parameter is not 0xFFFFFFFF, the server will not attempt to search
for a session with the same Session Context and link to it. Rather, it will then return the same value in
the pulTimeStamp parameter that was passed in.

<12> Section 3.1.4.1: Exchange 2007 fails with return code 0x80040110 when the value of the
cbAuxIn parameter on input is larger than 0x00001008.

<13> Section 3.1.4.1: The initial release version of Exchange 2010 will fail with ecInvalidParam
(0x80070057) if the cbAuxIn parameter is greater than 0x00000000 and less than 0x00000008.

<14> Section 3.1.4.1: Exchange 2007 does not fail if the cbAuxIn parameter is greater than

0x00000000 and less than 0x00000008.

<15> Section 3.1.4.1: Exchange 2003 and Exchange 2007 return ecRpcAuthentication (0x000004B6)
if the authentication context associated with the binding handle does not have enough privilege and if

the szUserDn parameter is not empty. If the szUserDN parameter is empty, Exchange 2003 and
Exchange 2007 return ecNone (0x00000000).

<16> Section 3.1.4.1.2.1: Exchange 2010, Exchange 2013, and Exchange 2016 do not support
sending the AUX_OSVERSIONINFO auxiliary block.

<17> Section 3.1.4.1.2.1: Exchange 2003 and Office Outlook 2003 do not support the
AUX_SERVER_SESSION_INFO auxiliary block.

<18> Section 3.1.4.2: Exchange 2010 returns the same value on output as was input, not

0x00000000.

<19> Section 3.1.4.2: Exchange 2003, Exchange 2007 and Exchange 2010 will fail with error code
ecRpcFormat (0x000004B6) if the request buffer is larger than 0x00008007 bytes in size. Microsoft
Exchange Server 2010 Service Pack 2 (SP2), Microsoft Exchange Server 2013 Service Pack 1 (SP1),
and Exchange 2016 will fail with error code ecRpcFailed (0x80040115) if the request buffer is larger
than 0x00008007 bytes in size.

<20> Section 3.1.4.2: Exchange 2003, Exchange 2007, and Microsoft Exchange Server 2010 Service

Pack 1 (SP1) fail with error code ecRpcFormat (0x000004B6) if the value in the cbIn parameter is less
than 0x00000008. The initial release version of Exchange 2010 will not allow a cbIn parameter value
smaller than 0x00000008.

<21> Section 3.1.4.2: Exchange 2003 and Exchange 2007 will fail with ecRpcFormat (0x000004B6) if
the output buffer is less than 0x00008007. Exchange 2013 and Exchange 2016 will succeed if output
buffer is less than 0x00000008, but no request ROPs will have been processed.

<22> Section 3.1.4.2: Exchange 2007 fails with return code 0x80040110 if the request buffer value of

the cbAuxIn parameter is larger than 0x00001008 bytes in size.

<23> Section 3.1.4.2: Exchange 2010 will fail with ecRpcFailed (0x80040115) if the value of the
cbAuxIn parameter is greater than 0x00000000 and less than 0x00000008.

<24> Section 3.1.4.2: Exchange 2003, Exchange 2007, Exchange 2013, and Exchange 2016 support
returning data in the rgbAuxOut parameter.

<25> Section 3.1.4.2.2.1: Exchange 2003, Exchange 2007, Exchange 2013, and Exchange 2016

support returning data in the rgbAuxOut parameter.

87 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

<26> Section 3.1.4.4: Exchange 2010, Exchange 2013, and Exchange 2016 do not return the
ecRejected error code.

<27> Section 3.1.4.5: Exchange 2003 and Exchange 2007 do support the
EcRRegisterPushNotification method. The initial release version of Exchange 2010 and Exchange

2010 SP1 do not support the EcRRegisterPushNotification method and always return
ecNotSupported. Exchange 2010 SP2 supports the EcRRegisterPushNotification method when a
registry key is created to support push notifications, as described in [MSFT-ConfigStaticUDPPort].
Exchange 2013 and Exchange 2016 do not support the EcRRegisterPushNotification method and
always returns ecNotSupported.

<28> Section 3.2.4: The following table indicates which EMSMDB interface methods are used by a
client when accessing a server that is running Exchange 2003.

Method
Office Outlook
2003

Office Outlook
2007

Outlook
2010

Outlook
2013

Outlook
2016

EcDoDisconnect X X X X X

EcRRegisterPushNotification X X X

EcDummyRpc

EcDoConnectEx X X X X X

EcDoRpcExt2 X X X X X

EcDoAsyncConnectEx

The following table indicates which EMSMDB interface methods are used by a client when it is
accessing a server that is running Exchange 2007.

Method
Office Outlook
2003

Office Outlook
2007

Outlook
2010

Outlook
2013

Outlook
2016

EcDoDisconnect X X X X X

EcRRegisterPushNotification X X X

EcDummyRpc

EcDoConnectEx X X X X X

EcDoRpcExt2 X X X X X

EcDoAsyncConnectEx X X X X

The following table indicates which EMSMDB interface methods are used by a client when it is
accessing a server that is running Exchange 2010.

Method
Office Outlook
2003

Office Outlook
2007

Outlook
2010

Outlook
2013

Outlook
2016

EcDoDisconnect X X X X X

EcRRegisterPushNotification See section
3.1.4.5.

EcDummyRpc

EcDoConnectEx X X X X X

http://go.microsoft.com/fwlink/?LinkId=228253

88 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Method
Office Outlook
2003

Office Outlook
2007

Outlook
2010

Outlook
2013

Outlook
2016

EcDoRpcExt2 X X X X X

EcDoAsyncConnectEx X X X X

The following table indicates which EMSMDB interface methods are used by a client when it is
accessing a server that is running Exchange 2013 or Exchange 2016.

Method
Office Outlook
2003

Office Outlook
2007

Outlook
2010

Outlook
2013

Outlook
2016

EcDoDisconnect X X X X X

EcRRegisterPushNotification See section
3.1.4.5.

EcDummyRpc

EcDoConnectEx X X X X X

EcDoRpcExt2 X X X X X

EcDoAsyncConnectEx X X X X

<29> Section 3.2.4.1: Exchange 2010, Exchange 2013, and Exchange 2016 not support Session

Context linking.

<30> Section 3.2.4.1: In Exchange 2003 and the initial release version of Exchange 2007, the server
counts individual connections for CAL accounting, so Session Context linking is useful in the
EcDoConnectEx method on the EMSMDB interface.

<31> Section 3.2.4.1: Exchange 2010, Exchange 2013, and Exchange 2016 do not support Session
Context linking.

<32> Section 3.2.4.1: Exchange 2010, Exchange 2013, and Exchange 2016 do not support Session

Context linking.

<33> Section 3.2.4.1.2.1: Outlook 2010 by default does not populate the MachineName,
UserName, ClientIP, and MacAddress fields within the AUX_PERF_CLIENTINFO auxiliary block
structure.

<34> Section 3.2.4.1.2.1: Exchange 2003 and Office Outlook 2003 do not support the
AUX_CLIENT_CONNECTION_INFO auxiliary block structure.

<35> Section 3.2.4.6: Office Outlook 2003, the initial release version of Office Outlook 2007, Office

Outlook 2007 SP1, Office Outlook 2007 SP2, and Outlook 2010 do not support port consolidation.
Microsoft Office Outlook 2007 Service Pack 3 (SP3) supports port consolidation. Clients that do not

support port consolidation ignore the AUX_ENDPOINT_CAPABILITIES auxiliary block structure, as
described in section 2.2.2.2.19. Office Outlook 2007 SP3, Outlook 2013, and Outlook 2016 support
port consolidation.

<36> Section 3.3.4: The following table indicates which AsyncEMSMDB interface methods are

supported in which product versions.

89 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Method
Exchange
2003

Exchange
2007

Exchange
2010

Exchange
2013

Exchange
2016

EcDoAsyncWaitEx X X X X

<37> Section 3.3.4.1: Exchange 2003 and Exchange 2007 complete the call every 5 minutes
regardless of the client's last activity time.

<38> Section 3.3.4.1: Exchange 2007 and Exchange 2010 also reject the request if the asynchronous
context handle is not valid.

<39> Section 3.4.4: The AsyncEMSMDB interface methods are not used by a client when accessing a
server that is running Exchange 2003. The following table indicates which AsyncEMSMDB interface
methods are used by a client when accessing a server that is running Exchange 2007, Exchange 2010,
Exchange 2013, or Exchange 2016.

Method

Office Outlook

2003

Office Outlook

2007

Outlook

2010

Outlook

2013

Outlook

2016

EcDoAsyncWaitEx X X X X

90 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

91 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

9 Index

A

Abstract data model
 client (section 3.2.1 62, section 3.4.1 74)
 server (section 3.1.1 37, section 3.3.1 71)
Applicability 13
asyncemsmdb interface 71
AUX_HEADER structure 17

C

Capability negotiation 13
Change tracking 90
Client
 abstract data model (section 3.2.1 62, section

3.4.1 74)
 Handling Connection Failures method 71
 Handling Endpoint Consolidation method 71

 Handling Server Too Busy method 71
 initialization (section 3.2.3 62, section 3.4.3 74)
 local events (section 3.2.6 71, section 3.4.6 75)
 message processing (section 3.2.4 63, section

3.4.4 74)
 Sending the EcDoConnectEx Method method 63
 Sending the EcDoDisconnect Method method 70
 Sending the EcDoRpcExt2 Method method 67
 sequencing rules (section 3.2.4 63, section 3.4.4

74)
 timer events (section 3.2.5 71, section 3.4.5 75)
 timers (section 3.2.2 62, section 3.4.2 74)
Common data types 15
 Simple Data Types 16
Connect to the server example 76

D

Data model - abstract
 client (section 3.2.1 62, section 3.4.1 74)
 server (section 3.1.1 37, section 3.3.1 71)
Data types
 common - overview 15
Disconnect from the server example 80

E

EcDoAsyncConnectEx Method (Opnum 14) method

59
EcDoAsyncWaitEx Method (Opnum 0) method 73
EcDoConnectEx Method (Opnum 10) method 40
EcDoDisconnect Method (Opnum 1) method 58
EcDoRpcExt2 Method (Opnum 11) method 53

EcDummyRpc Method (Opnum 6) method 61
EcRRegisterPushNotification Method (Opnum 4)

method 59
emsmdb interface 37
Events
 local - client (section 3.2.6 71, section 3.4.6 75)
 local - server (section 3.1.6 62, section 3.3.6 74)
 timer - client (section 3.2.5 71, section 3.4.5 75)
 timer - server (section 3.1.5 62, section 3.3.5 74)
Examples
 connect to the server 76

 disconnect from the server 80
 issue rop commands to the server 77
 overview 76
 receive packed rop responses from the server 79

F

Fields - vendor-extensible 14
Full IDL 82

G

Glossary 7

H

Handling Connection Failures method 71
Handling Endpoint Consolidation method 71
Handling Server Too Busy method 71

I

IDL 82
Implementer - security considerations 81
Index of security parameters 81
Informative references 10
Initialization
 client (section 3.2.3 62, section 3.4.3 74)
 server (section 3.1.3 38, section 3.3.3 72)
Interfaces - server
 asyncemsmdb 71
 emsmdb 37
Introduction 7
Issue rop commands to the server example 77

L

Local events
 client (section 3.2.6 71, section 3.4.6 75)
 server (section 3.1.6 62, section 3.3.6 74)

M

Message processing
 client (section 3.2.4 63, section 3.4.4 74)
 server (section 3.1.4 38, section 3.3.4 72)
Messages
 common data types 15
 transport 15
Methods
 EcDoAsyncConnectEx Method (Opnum 14) 59
 EcDoAsyncWaitEx Method (Opnum 0) 73
 EcDoConnectEx Method (Opnum 10) 40
 EcDoDisconnect Method (Opnum 1) 58
 EcDoRpcExt2 Method (Opnum 11) 53
 EcDummyRpc Method (Opnum 6) 61
 EcRRegisterPushNotification Method (Opnum 4) 59
 Handling Connection Failures 71
 Handling Endpoint Consolidation 71
 Handling Server Too Busy 71
 Opnum0NotUsedOnWire Method (Opnum 0) 61
 Opnum12NotUsedOnWire Method (Opnum 12) 62

92 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

 Opnum13NotUsedOnWire Method (Opnum 13) 62
 Opnum2NotUsedOnWire Method (Opnum 2) 61
 Opnum3NotUsedOnWire Method (Opnum 3) 61
 Opnum5NotUsedOnWire Method (Opnum 5) 61
 Opnum7NotUsedOnWire Method (Opnum 7) 61
 Opnum8NotUsedOnWire Method (Opnum 8) 62
 Opnum9NotUsedOnWire Method (Opnum 9) 62
 Sending the EcDoConnectEx Method 63
 Sending the EcDoDisconnect Method 70
 Sending the EcDoRpcExt2 Method 67

N

Normative references 10

O

Opnum0NotUsedOnWire Method (Opnum 0) method

61
Opnum12NotUsedOnWire Method (Opnum 12)

method 62
Opnum13NotUsedOnWire Method (Opnum 13)

method 62
Opnum2NotUsedOnWire Method (Opnum 2) method

61
Opnum3NotUsedOnWire Method (Opnum 3) method

61
Opnum5NotUsedOnWire Method (Opnum 5) method

61
Opnum7NotUsedOnWire Method (Opnum 7) method

61
Opnum8NotUsedOnWire Method (Opnum 8) method

62
Opnum9NotUsedOnWire Method (Opnum 9) method

62
Overview (synopsis) 11

P

Parameters - security index 81
Preconditions 13
Prerequisites 13
Product behavior 84
Protocol Details
 overview 37
Protocol details overview 37

R

Receive packed rop responses from the server

example 79
References 9
 informative 10
 normative 10
Relationship to other protocols 13
RPC_HEADER_EXT structure 17

S

Security
 implementer considerations 81
 parameter index 81
Sending the EcDoConnectEx Method method 63
Sending the EcDoDisconnect Method method 70

Sending the EcDoRpcExt2 Method method 67
Sequencing rules
 client (section 3.2.4 63, section 3.4.4 74)
 server (section 3.1.4 38, section 3.3.4 72)
Server
 abstract data model (section 3.1.1 37, section

3.3.1 71)
 asyncemsmdb interface 71
 EcDoAsyncConnectEx Method (Opnum 14) method

59
 EcDoAsyncWaitEx Method (Opnum 0) method 73
 EcDoConnectEx Method (Opnum 10) method 40
 EcDoDisconnect Method (Opnum 1) method 58
 EcDoRpcExt2 Method (Opnum 11) method 53
 EcDummyRpc Method (Opnum 6) method 61
 EcRRegisterPushNotification Method (Opnum 4)

method 59
 emsmdb interface 37
 initialization (section 3.1.3 38, section 3.3.3 72)
 local events (section 3.1.6 62, section 3.3.6 74)
 message processing (section 3.1.4 38, section

3.3.4 72)
 Opnum0NotUsedOnWire Method (Opnum 0)

method 61
 Opnum12NotUsedOnWire Method (Opnum 12)

method 62
 Opnum13NotUsedOnWire Method (Opnum 13)

method 62
 Opnum2NotUsedOnWire Method (Opnum 2)

method 61
 Opnum3NotUsedOnWire Method (Opnum 3)

method 61
 Opnum5NotUsedOnWire Method (Opnum 5)

method 61
 Opnum7NotUsedOnWire Method (Opnum 7)

method 61
 Opnum8NotUsedOnWire Method (Opnum 8)

method 62
 Opnum9NotUsedOnWire Method (Opnum 9)

method 62
 overview (section 3.1 37, section 3.3 71)
 sequencing rules (section 3.1.4 38, section 3.3.4

72)
 timer events (section 3.1.5 62, section 3.3.5 74)
 timers (section 3.1.2 38, section 3.3.2 72)
Simple Data Type common data types 16
Standards assignments 14
Structures
 AUX_HEADER 17
 RPC_HEADER_EXT 17

T

Timer events
 client (section 3.2.5 71, section 3.4.5 75)
 server (section 3.1.5 62, section 3.3.5 74)
Timers
 client (section 3.2.2 62, section 3.4.2 74)
 server (section 3.1.2 38, section 3.3.2 72)
Tracking changes 90
Transport 15

V

Vendor-extensible fields 14

93 / 93

[MS-OXCRPC] - v20150914
Wire Format Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Versioning 13

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Simple Data Types
	2.2.1.1 CXH Data Type
	2.2.1.2 ACXH Data Type
	2.2.1.3 BIG_RANGE_ULONG Data Type
	2.2.1.4 SMALL_RANGE_ULONG Data Type

	2.2.2 Structures
	2.2.2.1 RPC_HEADER_EXT Structure
	2.2.2.2 AUX_HEADER Structure
	2.2.2.2.1 AUX_PERF_REQUESTID Auxiliary Block Structure
	2.2.2.2.2 AUX_PERF_SESSIONINFO Auxiliary Block Structure
	2.2.2.2.3 AUX_PERF_SESSIONINFO_V2 Auxiliary Block Structure
	2.2.2.2.4 AUX_PERF_CLIENTINFO Auxiliary Block Structure
	2.2.2.2.5 AUX_PERF_SERVERINFO Auxiliary Block Structure
	2.2.2.2.6 AUX_PERF_PROCESSINFO Auxiliary Block Structure
	2.2.2.2.7 AUX_PERF_DEFMDB_SUCCESS Auxiliary Block Structure
	2.2.2.2.8 AUX_PERF_DEFGC_SUCCESS Auxiliary Block Structure
	2.2.2.2.9 AUX_PERF_MDB_SUCCESS Auxiliary Block Structure
	2.2.2.2.10 AUX_PERF_MDB_SUCCESS_V2 Auxiliary Block Structure
	2.2.2.2.11 AUX_PERF_GC_SUCCESS Auxiliary Block Structure
	2.2.2.2.12 AUX_PERF_GC_SUCCESS_V2 Auxiliary Block Structure
	2.2.2.2.13 AUX_PERF_FAILURE Auxiliary Block Structure
	2.2.2.2.14 AUX_PERF_FAILURE_V2 Auxiliary Block Structure
	2.2.2.2.15 AUX_CLIENT_CONTROL Auxiliary Block Structure
	2.2.2.2.16 AUX_OSVERSIONINFO Auxiliary Block Structure
	2.2.2.2.17 AUX_EXORGINFO Auxiliary Block Structure
	2.2.2.2.18 AUX_PERF_ACCOUNTINFO Auxiliary Block Structure
	2.2.2.2.19 AUX_ENDPOINT_CAPABILITIES Auxiliary Block Structure
	2.2.2.2.20 AUX_CLIENT_CONNECTION_INFO Auxiliary Block Structure
	2.2.2.2.21 AUX_SERVER_SESSION_INFO Auxiliary Block Structure
	2.2.2.2.22 AUX_PROTOCOL_DEVICE_IDENTIFICATION Auxiliary Block Structure

	3 Protocol Details
	3.1 EMSMDB Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Global.Handle

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 EcDoConnectEx Method (Opnum 10)
	3.1.4.1.1 Extended Buffer Handling
	3.1.4.1.1.1 Extended Buffer Format
	3.1.4.1.1.1.1 rgbAuxIn Input Buffer
	3.1.4.1.1.1.2 rgbAuxOut Output Buffer

	3.1.4.1.1.2 Compression Algorithm
	3.1.4.1.1.2.1 LZ77 Compression Algorithm
	3.1.4.1.1.2.1.1 Compression Algorithm Terminology
	3.1.4.1.1.2.1.2 Using the Compression Algorithm
	3.1.4.1.1.2.1.3 Compression Process
	3.1.4.1.1.2.1.4 Compression Process Example

	3.1.4.1.1.2.2 DIRECT2 Encoding Algorithm
	3.1.4.1.1.2.2.1 Bitmask
	3.1.4.1.1.2.2.2 Encoding Metadata
	3.1.4.1.1.2.2.3 Metadata Offset
	3.1.4.1.1.2.2.4 Match Length

	3.1.4.1.1.3 Obfuscation Algorithm

	3.1.4.1.2 Auxiliary Buffer
	3.1.4.1.2.1 Server Topology Information
	3.1.4.1.2.2 Processing Auxiliary Buffers Received from the Client

	3.1.4.1.3 Version Checking
	3.1.4.1.3.1 Version Number Comparison
	3.1.4.1.3.2 Server Versions

	3.1.4.2 EcDoRpcExt2 Method (Opnum 11)
	3.1.4.2.1 Extended Buffer Handling
	3.1.4.2.1.1 Extended Buffer Format
	3.1.4.2.1.1.1 rgbIn Input Buffer
	3.1.4.2.1.1.2 rgbOut Output Buffer
	3.1.4.2.1.1.3 rgbAuxIn Input Buffer
	3.1.4.2.1.1.4 rgbAuxOut Output Buffer

	3.1.4.2.1.2 Extended Buffer Packing

	3.1.4.2.2 Auxiliary Buffer
	3.1.4.2.2.1 Server Topology Information
	3.1.4.2.2.2 Processing Auxiliary Buffers Received from the Client

	3.1.4.3 EcDoDisconnect Method (Opnum 1)
	3.1.4.4 EcDoAsyncConnectEx Method (Opnum 14)
	3.1.4.5 EcRRegisterPushNotification Method (Opnum 4)
	3.1.4.6 EcDummyRpc Method (Opnum 6)
	3.1.4.7 Opnum0NotUsedOnWire Method (Opnum 0)
	3.1.4.8 Opnum2NotUsedOnWire Method (Opnum 2)
	3.1.4.9 Opnum3NotUsedOnWire Method (Opnum 3)
	3.1.4.10 Opnum5NotUsedOnWire Method (Opnum 5)
	3.1.4.11 Opnum7NotUsedOnWire Method (Opnum 7)
	3.1.4.12 Opnum8NotUsedOnWire Method (Opnum 8)
	3.1.4.13 Opnum9NotUsedOnWire Method (Opnum 9)
	3.1.4.14 Opnum12NotUsedOnWire Method (Opnum 12)
	3.1.4.15 Opnum13NotUsedOnWire Method (Opnum 13)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 EMSMDB Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Sending the EcDoConnectEx Method
	3.2.4.1.1 Extended Buffer Handling
	3.2.4.1.2 Auxiliary Buffer
	3.2.4.1.2.1 Client Performance Monitoring
	3.2.4.1.2.2 Processing Auxiliary Buffers Received from the Server

	3.2.4.1.3 Version Checking
	3.2.4.1.3.1 Version Number Comparison
	3.2.4.1.3.2 Client Versions
	3.2.4.1.3.3 Version Numbers Received from the Server

	3.2.4.2 Sending the EcDoRpcExt2 Method
	3.2.4.2.1 Extended Buffer Handling
	3.2.4.2.2 Auxiliary Buffer
	3.2.4.2.2.1 Client Performance Monitoring

	3.2.4.3 Sending the EcDoDisconnect Method
	3.2.4.4 Handling Server Too Busy
	3.2.4.5 Handling Connection Failures
	3.2.4.6 Handling Endpoint Consolidation

	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 AsyncEMSMDB Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 EcDoAsyncWaitEx Method (Opnum 0)

	3.3.5 Timer Events
	3.3.6 Other Local Events

	3.4 AsyncEMSMDB Client Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Message Processing Events and Sequencing Rules
	3.4.5 Timer Events
	3.4.6 Other Local Events

	4 Protocol Examples
	4.1 Connect to the Server
	4.2 Issue ROP Commands to the Server
	4.3 Receive Packed ROP Responses from the Server
	4.4 Disconnect from the Server

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

