

1 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

[MS-OXCRPC]: Wire Format Protocol

Specification

Intellectual Property Rights Notice for Protocol Documentation

 Copyrights. This protocol documentation is covered by Microsoft copyrights. Regardless of any

other terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the protocols, and

may distribute portions of it in your implementations of the protocols or your documentation as

necessary to properly document the implementation. You may also distribute in your

implementation, with or without modification, any schema, IDL’s, or code samples that are included

in the documentation. This permission also applies to any documents that are referenced in the

protocol documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the protocols. Neither this

notice nor Microsoft's delivery of the documentation grants any licenses under those or any other

Microsoft patents. However, the protocols may be covered by Microsoft’s Open Specification

Promise (available here: http://www.microsoft.com/interop/osp). If you would prefer a written

license, or if the protocols are not covered by the OSP, patent licenses are available by contacting

protocol@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be

covered by trademarks or similar intellectual property rights. This notice does not grant any licenses

under those rights.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than

specifically described above, whether by implication, estoppel, or otherwise.

Tools. This protocol documentation is intended for use in conjunction with publicly available standard

specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it. A protocol specification does not require the use of

Microsoft programming tools or programming environments in order for you to develop an implementation. If

you have access to Microsoft programming tools and environments you are free to take advantage of them.

Revision Summary

Author Date Version Comments

Microsoft

Corporation

April 4,

2008

0.1 Initial Availability.

Microsoft

Corporation

April 25,

2008

0.2 Revised and updated property names and other technical content.

Microsoft

Corporation

June 27,

2008

1.0 Initial Release.

http://go.microsoft.com/fwlink/?LinkId=114384
mailto:protocol@microsoft.com

2 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Microsoft

Corporation

August 6,

2008

1.01 Revised and edited technical content.

Microsoft

Corporation

September

3, 2008

1.02 Revised and edited technical content.

Microsoft

Corporation

October 1,

2008

1.03 Revised and edited technical content.

Microsoft

Corporation

December

3, 2008

1.04 Revised and edited technical content.

Microsoft

Corporation

March 4,

2009

1.05 Revised and edited technical content.

3 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Table of Contents

1 Introduction ... 7
1.1 Glossary ... 7

1.2 References ... 8
1.2.1 Normative References .. 8
1.2.2 Informative References .. 8

1.3 Protocol Overview .. 9
1.3.1 Initiating Communication with the Server .. 9

1.3.2 Issuing Remote Operations for Mailbox Data .. 9
1.3.3 Terminating Communication with the Server .. 10
1.3.4 Client/Server Communication Lifetime .. 10

1.4 Relationship to Other Protocols .. 12
1.5 Prerequisites/Preconditions ... 12
1.6 Applicability Statement... 12
1.7 Versioning and Capability Negotiation .. 12

1.8 Vendor-Extensible Fields ... 12
1.9 Standards Assignments ... 13

2 Messages .. 13
2.1 Transport .. 13
2.2 Common Data Types .. 14

2.2.1 Simple Data Types ... 14
2.2.1.1 CXH ... 14

2.2.1.2 ACXH .. 14

2.2.1.3 BIG_RANGE_ULONG ... 14

2.2.1.4 SMALL_RANGE_ULONG .. 14
2.2.2 Structures .. 15

2.2.2.1 RPC_HEADER_EXT ... 15
2.2.2.2 AUX_HEADER .. 15
2.2.2.3 AUX_PERF_REQUESTID ... 18

2.2.2.4 AUX_PERF_SESSIONINFO .. 18
2.2.2.5 AUX_PERF_SESSIONINFO_V2 ... 19
2.2.2.6 AUX_PERF_CLIENTINFO .. 20

2.2.2.7 AUX_PERF_SERVERINFO ... 22
2.2.2.8 AUX_PERF_PROCESSINFO ... 23
2.2.2.9 AUX_PERF_DEFMDB_SUCCESS ... 24
2.2.2.10 AUX_PERF_DEFGC_SUCCESS ... 24

2.2.2.11 AUX_PERF_MDB_SUCCESS ... 25
2.2.2.12 AUX_PERF_MDB_SUCCESS_V2 .. 25
2.2.2.13 AUX_PERF_GC_SUCCESS ... 26

2.2.2.14 AUX_PERF_GC_SUCCESS_V2 ... 27
2.2.2.15 AUX_PERF_FAILURE ... 27
2.2.2.16 AUX_PERF_FAILURE_V2 .. 28

4 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

2.2.2.17 AUX_CLIENT_CONTROL .. 29

2.2.2.18 AUX_OSVERSIONINFO.. 30
2.2.2.19 AUX_EXORGINFO ... 31

3 Protocol Details ... 31
3.1 EMSMDB Server Details ... 32

3.1.1 Abstract Data Model .. 32
3.1.2 Timers ... 32
3.1.3 Initialization .. 32
3.1.4 Message Processing Events and Sequencing Rules ... 33

3.1.4.1 Opnum0Reserved (opnum 0) .. 34
3.1.4.2 EcDoDisconnect (opnum 1).. 35
3.1.4.3 Opnum2Reserved (opnum 2) .. 35

3.1.4.4 Opnum3Reserved (opnum 3) .. 35
3.1.4.5 EcRRegisterPushNotification (opnum 4) ... 35
3.1.4.6 Opnum5Reserved (opnum 5) .. 37

3.1.4.7 EcDummyRpc (opnum 6) ... 37
3.1.4.8 Opnum7Reserved (opnum 7) .. 38

3.1.4.9 Opnum8Reserved (opnum 8) .. 38
3.1.4.10 Opnum9Reserved (opnum 9) .. 38
3.1.4.11 EcDoConnectEx (opnum 10) .. 38

3.1.4.12 EcDoRpcExt2 (opnum 11).. 45
3.1.4.13 Opnum12Reserved (opnum 12) ... 48

3.1.4.14 Opnum13Reserved (opnum 13) ... 48
3.1.4.15 EcDoAsyncConnectEx (opnum 14) ... 49

3.1.5 Timer Events... 49

3.1.6 Other Local Events ... 50

3.1.7 Extended Buffer Handling ... 50
3.1.7.1 Extended Buffer Format .. 50

3.1.7.1.1 EcDoConnectEx ... 50

3.1.7.1.2 EcDoRpcExt2 ... 51

3.1.7.2 Compression Algorithm .. 54

3.1.7.2.1 LZ77 Compression Algorithm.. 54

3.1.7.2.2 DIRECT2 Encoding Algorithm .. 56

3.1.7.3 Obfuscation Algorithm .. 61
3.1.7.4 Extended Buffer Packing .. 61

3.1.8 Auxiliary Buffer ... 62

3.1.8.1 Client Performance Monitoring .. 63

3.1.8.2 Server Topology Information ... 70
3.1.9 Version Checking ... 72

3.1.9.1 Version Number Comparison ... 72
3.1.9.2 Server Versions .. 74
3.1.9.3 Client Versions .. 74

5 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

3.2 EMSMDB Client Details .. 76

3.2.1 Abstract Data Model .. 76
3.2.2 Timers ... 76
3.2.3 Initialization .. 76

3.2.4 Message Processing Events and Sequencing Rules ... 76
3.2.4.1 Sending EcDoConnectEx ... 77
3.2.4.2 Sending EcDoRpcExt2 ... 79
3.2.4.3 Handling Server Too Busy .. 79
3.2.4.4 Handling Connection Failures .. 79

3.2.5 Timer Events... 79
3.2.6 Other Local Events ... 79

3.3 AsyncEMSMDB Server Details .. 79
3.3.1 Abstract Data Model .. 80

3.3.2 Timers ... 80
3.3.3 Initialization .. 80

3.3.4 Message Processing Events and Sequencing Rules ... 81
3.3.4.1 EcDoAsyncWaitEx (opnum 0) ... 81

3.3.5 Timer Events... 82
3.3.6 Other Local Events ... 82

3.4 AsyncEMSMDB Client Details ... 82

3.4.1 Abstract Data Model .. 82
3.4.2 Timers ... 83

3.4.3 Initialization .. 83
3.4.4 Message Processing Events and Sequencing Rules ... 83
3.4.5 Timer Events... 83

3.4.6 Other Local Events ... 83

4 Protocol Examples .. 83
4.1 Client Connecting to Server .. 83
4.2 Client Issuing ROP Commands to Server .. 86

4.3 Client Receiving "Packed" ROP Response from Server ... 87
4.4 Client Disconnecting from Server .. 89

5 Security .. 90
5.1 Security Considerations for Implementers ... 90

5.2 Index of Security Parameters .. 90

6 Appendix A: Full IDL/ACF... 90
6.1 IDL ... 90

6.2 ACF .. 94

7 Appendix B: Office/Exchange Behavior .. 94
7.1 Protocol Sequences ... 95

7.1.1 Exchange Server Support ... 95

7.1.2 Office Client Support ... 95
7.2 Authentication Methods .. 95

6 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

7.3 RPC Methods .. 95

7.3.1 Exchange Server Support ... 95
7.3.2 Office Client Support ... 96

7.3.2.1 Accessing Exchange 2003 .. 96

7.3.2.2 Accessing Exchange 2007 .. 97
7.4 Client Access Licenses.. 98

Index ... 99

7 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

1 Introduction

The Wire Format protocol is specific to the EMSMDB and AsyncEMSMDB protocol

interface between a client and server. This interface has traditionally been used by an Outlook

client to communicate with an Exchange messaging server. This protocol extends Remote

Procedure Call [C706].

1.1 Glossary

The following terms are defined in [MS-OXGLOS]:

code page

distinguished name (DN)

dynamic endpoint

endpoint

GUID

Incremental Change Synchronization (ICS)

Interface Definition Language (IDL)

messaging object

Network Data Representation (NDR)

opnum

remote procedure call (RPC)

RPC protocol sequence

remote operation (ROP)

ROP request buffer

ROP response buffer

Server object

Unicode

universal unique identifier (UUID)

The following terms are specific to this document:

Asynchronous Context Handle (ACXH): An RPC context handle used by a client

when issuing RPC calls against a server on AsyncEMSMDB interface methods.

Represents a handle to a unique Session Context on the server.

Client Access License (CAL): A license that gives a user the right to access the

services of the server. To legally access the server software, a CAL might be

required. A CAL is not a software product.

Session Context: A server-side partitioning for client isolation. All client actions

against a server are scoped to a specific Session Context. All messaging objects

and data opened by a client are isolated to a Session Context.

8 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Session Context Handle (CXH): An RPC context handle used by a client when

issuing RPC calls against a server on EMSMDB interface methods. Represents a

handle to a unique Session Context on the server.

well-known endpoint: An endpoint that does not change. Well-known endpoint

information is stored as part of the binding handle.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used

as described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD,

or SHOULD NOT.

1.2 References

1.2.1 Normative References

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

http://www.opengroup.org/public/pubs/catalog/c706.htm.

[MS-OXCFXICS] Microsoft Corporation, "Bulk Data Transfer Protocol Specification", June

2008.

[MS-OXCNOTIF] Microsoft Corporation, "Core Notifications Protocol Specification", June

2008.

[MS-OXCROPS] Microsoft Corporation, "Remote Operations (ROP) List and Encoding

Protocol Specification", June 2008.

[MS-OXCSTOR] Microsoft Corporation, "Store Object Protocol Specification", June 2008.

[MS-OXGLOS] Microsoft Corporation, "Exchange Server Protocols Master Glossary", June

2008.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP

14, RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.

1.2.2 Informative References

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions", July 2006,

http://go.microsoft.com/fwlink/?LinkId=112246.

[MSDN-SOCKADDR] Microsoft Corporation, "sockaddr",

http://go.microsoft.com/fwlink/?LinkId=113717.

http://www.opengroup.org/public/pubs/catalog/c706.htm
http://www.ietf.org/rfc/rfc2119.txt
http://go.microsoft.com/fwlink/?LinkId=112246
http://go.microsoft.com/fwlink/?LinkId=113717

9 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

1.3 Protocol Overview

This specification describes the RPC interfaces that are used by a messaging client to

communicate with a messaging server to access personal messaging data over the Wire

Format protocol. This protocol is comprised of the EMSMDB and AsyncEMSMDB RPC

interfaces.

1.3.1 Initiating Communication with the Server

Before a client can retrieve private mailbox or public folder data from a server on the

EMSMDB interface, it first makes a call to EcDoConnectEx and establish a Session Context

Handle (CXH). The session context handle is a RPC context handle. The client stores this

Session Context Handle and use it on subsequent RPC calls on the EMSMDB interface. The

server uses the Session Context Handle to identify the client and user who is issuing requests

and under which context to perform operations against messaging data.

The EMSMDB interface function EcDoConnectEx is used to create a CXH with the server.

The server verifies that the authentication context used to make the RPC function call

EcDoConnectEx has access rights to perform operations as, or on behalf of, the user whose

distinguished name (DN) is provided on the RPC call. This is done to validate that the client

has permission to perform operations as the user specified in the RPC call. If this access check

fails, the server fails the RPC call with an access denied return code.

If the security check passes, the server creates a Session Context. A CXH that refers to the

Session Context is returned to the client in the response to EcDoConnectEx. The returned

CXH is used in subsequent calls to the server.

1.3.2 Issuing Remote Operations for Mailbox Data

The client retrieves private mailbox or public folder data through the interface function

EcDoRpcExt2. There are no separate interface functions to perform different operations

against mailbox data. A single interface function is used to submit a group of remote

operation (ROP) commands to the server. See [MS-OXCROPS] for more information about

ROP commands. The ROP request operations are tokenized into a request buffer and sent to

the server as a byte array. The server parses the ROP request buffer and perform actions. The

response to these actions is then serialized into a ROP response buffer and returned to the

client as a byte array. At the EMSMDB interface level, the format of these ROP request and

response buffers is not understood. See [MS-OXCROPS] for more information about how to

interpret the ROP buffers. The EMSMDB interface function EcDoRpcExt2 is just the

mechanism in which to pass the ROP request buffer to the server.

10 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

In the call to EcDoRpcExt2, the client passes the CXH which was created in a successful call

to the interface function EcDoConnectEx. The server uses the CXH to identify who is issuing

the remote operation ROP commands and under which Session Context to perform them.

1.3.3 Terminating Communication with the Server

When a client wants to terminate communication with a server, it calls EcDoDisconnect. In

the call to EcDoDisconnect, the client passes the CXH, which was created in a successful call

to the interface function EcDoConnectEx. It is suggested that the server clean up any Session

Context data associated with this CXH.

1.3.4 Client/Server Communication Lifetime

Figure 1 shows a typical example of the client and server communication lifetime. This is a

simplified overview of how the client connects, issues ROP commands, and disconnects from

the server.

11 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Client Server

EcDoConnectEx call

EcDoConnectEx response

EcDoRpcExt2 call

EcDoRpcExt2 response

EcDoRpcExt2 call

EcDoRpcExt2 response

EcDoRpcExt2 call

EcDoRpcExt2 response

EcDoDisconnect call

EcDoDisconnect response

2) Server creates session context and

returns a unique session context

handle CXH.3) Client saves session context

handle for subsequent calls.

1) Client initiates communication

with server.

4) Client sends remote operation

ROP commands to server with

saved session context handle.
5) Server uses session context handle

to find session context and processes

remote operation ROP commands

based on the session context. Results

to ROP commands are returned.6) Client processes remote

operation ROP command results.

Client continues to send

additional remote operation ROP

commands to server with saved

session context handle.

7) Client terminates communication

with server by passing the save

session context handle. 8) Server uses session context handle

to find session context. Session

context is destroyed and session

context handle is invalidated.

Server continues to processes all

remote operation ROP command

requests using the session context

handle provided by the client.

9) Client destroys the saved

session context handle as it is no

longer valid on the server.

 Figure 1: Client/server communications

12 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

1.4 Relationship to Other Protocols

This protocol is dependent upon RPC as specified in [MS-RPCE] and various network

protocol sequences for its transport.

1.5 Prerequisites/Preconditions

The Wire Format protocol is a set of RPC interfaces and has the same prerequisites as

specified in [MS-RPCE].

It is assumed that a messaging client has obtained the name of a remote computer that

supports this protocol before these protocols are invoked. How a client does this is outside the

scope of this specification.

1.6 Applicability Statement

The protocol specified in this document is applicable to environments that require access to

private mailbox and/or public folder messaging end-user data.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

 Supported Transports: This protocol uses multiple RPC protocol sequences as

specified in section 2.1.

 Protocol Versions: The protocol RPC interface EMSMDB has a single version

number of 0.81. The protocol RPC interface AsyncEMSMDB has a single version

number of 0.01.

 Protocol Versions: The protocol RPC interface EMSMDB has a single interface

version, but that interface has been extended by adding additional methods at the end.

The use of these methods are specified in section 3.1.

 Security and Authentication Methods: This protocol supports the following

authentication methods: NTLM, Kerberos, and Negotiate. These authentication

methods are specified in sections 3.1.3 and 3.3.3.

 Capability Negotiation: None.

1.8 Vendor-Extensible Fields

None.

13 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

1.9 Standards Assignments

Parameter Value Reference

EMSMDB

RPC Interface UUID

A4F1DB00-CA47-1067-B31F-

00DD010662DA

3.1

AsyncEMSMDB

RPC Interface UUID

5261574A-4572-206E-B268-6B199213B4E4 3.3

RPC/HTTP protocol

sequence endpoint

6001 2.1

LRPC protocol sequence

endpoint

MSExchangeIS_LPC 2.1

2 Messages

2.1 Transport

This protocol works over the following protocol sequences:

Protocol Sequence

ncalrpc

ncacn_ip_tcp

ncacn_http

This protocol uses well-known endpoints for network protocol sequences "ncalrpc" and

"ncacn_http". The following well-known endpoints are used:

Protocol Sequence Endpoint

ncalrpc MSExchangeIS_LPC

ncacn_http 6001

For all other network protocol sequences, the protocol uses RPC dynamic endpoints as

specified in Part 4 of [C706].

14 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

This protocol MUST use the UUID specified in section 1.9. The RPC version number is 4.0.

This protocol allows any user to establish an authenticated connection to the RPC server using

an authentication method as specified in [MS-RPCE]. The protocol uses the underlying RPC

protocol to retrieve the identity of the caller that made the method call as specified in [MS-

RPCE]. The server SHOULD use this identity to perform method-specific access checks.

2.2 Common Data Types

Data types in addition to the RPC base types and definitions specified in [C706] and [MS-

RPCE] are defined in the following sections.

2.2.1 Simple Data Types

2.2.1.1 CXH

typedef [context_handle] void * CXH;

2.2.1.2 ACXH

typedef [context_handle] void * ACXH;

2.2.1.3 BIG_RANGE_ULONG

typedef [range(0x0, 0x40000)] unsigned long BIG_RANGE_ULONG;

2.2.1.4 SMALL_RANGE_ULONG

typedef [range(0x0, 0x1008)] unsigned long SMALL_RANGE_ULONG;

15 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

2.2.2 Structures

2.2.2.1 RPC_HEADER_EXT

Version (2 bytes): Defines the version of the header. There is only one version of the header

at this time so this value MUST be set to 0x0000.

Flags (2 bytes): Flags that specify how data that follows this header MUST be interpreted.

The following flags are valid:

Flag Value Description

Compressed 0x0001 The data that follows the RPC_HEADER_EXT is

compressed. The size of the data when uncompressed is in

field SizeActual. If this flag is not set, the Size and

SizeActual fields MUST be the same.

XorMagic 0x0002 The data following the RPC_HEADER_EXT has been

obfuscated. See section 3.1.7.3 for more information about

the obfuscation algorithm.

Last 0x0004 Indicates that no other RPC_HEADER_EXT follows the

data of the current RPC_HEADER_EXT. This flag is used

to indicate that there are multiple buffers, each with its own

RPC_HEADER_EXT, one after the other.

Size (2 bytes): The total length of the payload data that follows the RPC_HEADER_EXT

structure. This length does not include the length of the RPC_HEADER_EXT structure.

SizeActual (2 bytes): The length of the payload data after it has been uncompressed. This

field is only useful if the Compressed flag is set in the Flags field. If the Compressed flag is

not set, this value MUST be equal to Size.

2.2.2.2 AUX_HEADER

16 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Size (2 bytes): Size of the AUX_HEADER structure plus any additional payload data that

follows.

Version (1 byte): Version information of the payload data that follows the AUX_HEADER.

This value in conjunction with the Type field determines which structure to use to interpret

the data that follows the header.

Version Value

AUX_VERSION_1 0x01

AUX_VERSION_2 0x02

Type (1 byte): Type of payload data that follows the AUX_HEADER. This value in

conjunction with the Version field determines which structure to use to interpret the data that

follows the header. When several of the types distinguish between foreground (FG),

background (BG), and global catalog (GC).

The following is a list of block types and the corresponding structure that follows the

AUX_HEADER when the Version field is AUX_VERSION_1.

Type Value Payload

AUX_TYPE_PERF_REQUESTID 0x01 AUX_PERF_REQUESTID

AUX_TYPE_PERF_CLIENTDINFO 0x02 AUX_PERF_CLIENTINFO

AUX_TYPE_PERF_SERVERINFO 0x03 AUX_PERF_SERVERINFO

AUX_TYPE_PERF_SESSIONINFO 0x04 AUX_PERF_SESSIONINFO

AUX_TYPE_PERF_DEFMDB_SUCCESS 0x05 AUX_PERF_DEFMDB_SUCCES

S

AUX_TYPE_PERF_DEFGC_SUCCESS 0x06 AUX_PERF_DEFGC_SUCCESS

AUX_TYPE_PERF_MDB_SUCCESS 0x07 AUX_PERF_MDB_SUCCESS

AUX_TYPE_PERF_GC_SUCCESS 0x08 AUX_PERF_GC_SUCCESS

AUX_TYPE_PERF_FAILURE 0x09 AUX_PERF_FAILURE

17 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Type Value Payload

AUX_TYPE_CLIENT_CONTROL 0x0A AUX_CLIENT_CONTROL

AUX_TYPE_PERF_PROCESSINFO 0x0B AUX_PERF_PROCESSINFO

AUX_TYPE_PERF_BG_DEFMDB_SUCC

ESS

0x0C AUX_PERF_DEFMDB_SUCCES

S

AUX_TYPE_PERF_BG_DEFGC_SUCCES

S

0x0D AUX_PERF_DEFGC_SUCCESS

AUX_TYPE_PERF_BG_MDB_SUCCESS 0x0E AUX_PERF_MDB_SUCCESS

AUX_TYPE_PERF_BG_GC_SUCCESS 0x0F AUX_PERF_GC_SUCCESS

AUX_TYPE_PERF_BG_FAILURE 0x10 AUX_PERF_FAILURE

AUX_TYPE_PERF_FG_DEFMDB_SUCCE

SS

0x11 AUX_PERF_DEFMDB_SUCCES

S

AUX_TYPE_PERF_FG_DEFGC_SUCCES

S

0x12 AUX_PERF_DEFGC_SUCCESS

AUX_TYPE_PERF_FG_MDB_SUCCESS 0x13 AUX_PERF_MDB_SUCCESS

AUX_TYPE_PERF_FG_GC_SUCCESS 0x14 AUX_PERF_GC_SUCCESS

AUX_TYPE_PERF_FG_FAILURE 0x15 AUX_PERF_FAILURE

AUX_TYPE_OSVERSIONINFO 0x16 AUX_OSVERSIONINFO

AUX_TYPE_EXORGINO 0x17 AUX_EXORGINFO

The following is a list of block types and the corresponding structure that follows the

AUX_HEADER when the Version field is AUX_VERSION_2.

Type Value Payload

AUX_TYPE_PERF_SESSIONINFO 0x04 AUX_PERF_SESSIONINFO_V2

AUX_TYPE_PERF_MDB_SUCCESS 0x07 AUX_PERF_MDB_SUCCESS_V2

AUX_TYPE_PERF_GC_SUCCESS 0x08 AUX_PERF_GC_SUCCESS_V2

18 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Type Value Payload

AUX_TYPE_PERF_FAILURE 0x09 AUX_PERF_FAILURE_V2

Any other block type and version combination that is not understood MUST be ignored.

2.2.2.3 AUX_PERF_REQUESTID

SessionID (2 bytes): Session identification number.

RequestID (2 bytes): Request identification number.

2.2.2.4 AUX_PERF_SESSIONINFO

SessionID (2 bytes): Session identification number.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can

fill this field with any value when writing the stream. The server MUST ignore the value of

this field when reading the stream.

SessionGuid (16 bytes): GUID representing the client session to associate with the session

identification number in field SessionID.

19 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

2.2.2.5 AUX_PERF_SESSIONINFO_V2

SessionID (2 bytes): Session identification number.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can

fill this field with any value when writing the stream. The server MUST ignore the value of

this field when reading the stream.

SessionGuid (16 bytes): GUID representing the client session to associate with the session

identification number in field SessionID.

ConnectionID (4 bytes): Connection identification number.

20 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

2.2.2.6 AUX_PERF_CLIENTINFO

AdapterSpeed (4 bytes): Speed of client computer’s network adaptor (kbits/s).

ClientID (2 bytes): Client-assigned identification number.

MachineNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER

structure to the MachineName field.

UserNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure

to the UserName field.

ClientIPSize (2 bytes): Size of the client IP address referenced by the ClientIPOffset field.

The client IP address is located in the ClientIP field.

ClientIPOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure to

the ClientIP field.

ClientIPMaskSize (2 bytes): Size of the client IP subnet mask referenced by the

ClientIPMaskOffset field. The client IP mask is located in the ClientIPMask field.

21 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

ClientIPMaskOffset (2 bytes): The offset from the beginning of the AUX_HEADER

structure to the ClientIPMask field. The size of the IP subnet mask is found in the

ClientIPMaskSize field.

AdapterNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER

structure to the AdapterName field.

MacAddressSize (2 bytes): Size of the network adapter MAC address referenced by the

MacAddressOffset field. The network adapter MAC address is located in the MacAddress

field.

MacAddressOffset (2 bytes): The offset from the beginning of the AUX_HEADER

structure to the MacAddress field.

ClientMode (2 bytes): Determines the mode in which the client is running. The following

table specifies valid values.

Mode Value Description

CLIENTMODE_UNKNOWN 0x00 Client is not designating a mode of operation.

CLIENTMODE_CLASSIC 0x01 Client is running in classic online mode.

CLIENTMODE_CACHED 0x02 Client is running in cached mode.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can

fill this field with any value when writing the stream. The server MUST ignore the value of

this field when reading the stream.

MachineName (variable): A null-terminated Unicode string that contains the client computer

name. This variable field is offset from the beginning of the AUX_HEADER structure by the

MachineNameOffset value.

UserName (variable): A null-terminated Unicode string that contains the user's account name

name. This variable field is offset from the beginning of the AUX_HEADER structure by the

UserNameOffset value.

ClientIP (variable): The client's IP address. This variable field is offset from the beginning of

the AUX_HEADER structure by the ClientIPOffset value. The size of the client IP address

data is found in the ClientIPSize field.

ClientIPMask (variable): The client's IP subnet mask. This variable field is offset from the

beginning of the AUX_HEADER structure by the ClientIPMaskOffset value. The size of

the client IP mask data is found in the ClientIPMaskSize field.

22 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

AdapterName (variable): A null-terminated Unicode string that contains the client network

adapter name. This variable field is offset from the beginning of the AUX_HEADER

structure by the AdapterNameOffset value.

MacAddress (variable): The client's network adapter MAC address. This variable field is

offset from the beginning of the AUX_HEADER structure by the MacAddressOffset value.

The size of the network adapter MAC address data is found in the MacAddressSize field.

2.2.2.7 AUX_PERF_SERVERINFO

ServerID (2 bytes): Client assigned server identification number.

ServerType (2 bytes): Server type assigned by client. The following table specifies valid

values.

Type Value Description

SERVERTYPE_UNKNOWN 0x00 Unknown server type.

SERVERTYPE_PRIVATE 0x01 Client server connection servicing private

mailbox data.

SERVERTYPE_PUBLIC 0x02 Client server connection servicing public

folder data.

SERVERTYPE_DIRECTORY 0x03 Client server connection servicing directory

data.

SERVERTYPE_REFERRAL 0x04 Client server connection servicing referrals.

ServerDNOffset (2 bytes): The offset from the beginning of the AUX_HEADER structure

to the ServerDN field.

ServerNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER

structure to the ServerName field.

23 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

ServerDN (variable): A null-terminated Unicode string that contains the distinguished name

(DN) of the server. This variable field is offset from the beginning of the AUX_HEADER

structure by the ServerDNOffset value.

ServerName (variable): A null-terminated Unicode string that contains the server name. This

variable field is offset from the beginning of the AUX_HEADER structure by the

ServerNameOffset value.

2.2.2.8 AUX_PERF_PROCESSINFO

ProcessID (2 bytes): Client-assigned process identification number.

Reserved 1 (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client

can fill this field with any value when writing the stream. The server MUST ignore the value

of this field when reading the stream.

ProcessGuid (16 bytes): GUID representing the client process to associate with the process

identification number in field ProcessID.

ProcessNameOffset (2 bytes): The offset from the beginning of the AUX_HEADER

structure to the ProcessName field.

Reserved 2 (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client

can fill this field with any value when writing the stream. The server MUST ignore the value

of this field when reading the stream.

ProcessName (variable): A null-terminated Unicode string that contains the client process

name. This variable field is offset from the beginning of the AUX_HEADER structure by the

ProcessNameOffset value.

24 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

2.2.2.9 AUX_PERF_DEFMDB_SUCCESS

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to

complete.

RequestID (2 bytes): Request identification number.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can

fill this field with any value when writing the stream. The server MUST ignore the value of

this field when reading the stream.

2.2.2.10 AUX_PERF_DEFGC_SUCCESS

ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification number.

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to

complete.

RequestOperation (1 byte): Client-defined operation that was successful.

Reserved (3 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can

fill this field with any value when writing the stream. The server MUST ignore the value of

this field when reading the stream.

25 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

2.2.2.11 AUX_PERF_MDB_SUCCESS

ClientID (2 bytes): Client identification number.

ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification number.

RequestID (2 bytes): Request identification number.

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to

complete.

2.2.2.12 AUX_PERF_MDB_SUCCESS_V2

PrcoessID (2 bytes): Process identification number.

ClientID (2 bytes): Client identification number.

ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification number.

RequestID (2 bytes): Request identification number.

Reserved (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can

fill this field with any value when writing the stream. The client MUST ignore the value of

this field when reading the stream.

26 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to

complete.

2.2.2.13 AUX_PERF_GC_SUCCESS

ClientID (2 bytes): Client identification number.

ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification number.

Reserved 1 (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client

can fill this field with any value when writing the stream. The server MUST ignore the value

of this field when reading the stream.

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to

complete.

RequestOperation (1 byte): Client-defined operation that was successful.

Reserved 2 (3 bytes): Padding to enforce alignment of the data on a 4-byte field. The client

can fill this field with any value when writing the stream. The server MUST ignore the value

of this field when reading the stream.

27 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

2.2.2.14 AUX_PERF_GC_SUCCESS_V2

ProcessID (2 bytes): Process identification number.

ClientID (2 bytes): Client identification number.

ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification number.

TimeSinceRequest (4 bytes): Number of milliseconds since successful request occurred.

TimeToCompleteRequest (4 bytes): Number of milliseconds the successful request took to

complete.

RequestOperation (1 byte): Client-defined operation that was successful.

Reserved (3 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can

fill this field with any value when writing the stream. The server MUST ignore the value of

this field when reading the stream.

2.2.2.15 AUX_PERF_FAILURE

ClientID (2 bytes): Client identification number.

ServerID (2 bytes): Server identification number.

28 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

SessionID (2 bytes): Session identification number.

RequestID (2 bytes): Request identification number.

TimeSinceRequest (4 bytes): Number of milliseconds since failure request occurred.

TimeToFailRequest (4 bytes): Number of milliseconds the failure request took to complete.

ResultCode (4 bytes): Error code return of failed request.

RequestOperation (1 byte): Client-defined operation that failed.

Reserved (3 bytes): Padding to enforce alignment of the data on a 4-byte field. The client can

fill this field with any value when writing the stream. The server MUST ignore the value of

this field when reading the stream.

2.2.2.16 AUX_PERF_FAILURE_V2

ProcessID (2 bytes): Process identification number.

ClientID (2 bytes): Client identification number.

ServerID (2 bytes): Server identification number.

SessionID (2 bytes): Session identification number.

RequestID (2 bytes): Request identification number.

Reserved 1 (2 bytes): Padding to enforce alignment of the data on a 4-byte field. The client

can fill this field with any value when writing the stream. The server MUST ignore the value

of this field when reading the stream.

TimeSinceRequest (4 bytes): Number of milliseconds since failure request occurred.

TimeToFailRequest (4 bytes): Number of milliseconds the failure request took to complete.

29 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

ResultCode (4 bytes): Error code return of failed request.

RequestOperation (1 byte): Client-defined operation that failed.

Reserved 2 (3 bytes): Padding to enforce alignment of the data on a 4-byte field. The client

can fill this field with any value when writing the stream. The server MUST ignore the value

of this field when reading the stream.

2.2.2.17 AUX_CLIENT_CONTROL

EnableFlags (4 bytes): The following table describes the flags that instruct the client to either

enable or disable behavior. To disable behavior, do not set the flag to the specified value.

Flag Value Description

ENABLE_PERF_SENDTOSERVER 0x00000001 Client MUST start sending

performance information to server.

ENABLE_PERF_SENDTOMAILBOX 0x00000002 Client MUST start sending

performance information as logs to

a special location in the user’s

mailbox.

ENABLE_COMPRESSION 0x00000004 Client MUST compress information

up to the server. Compression

MUST ordinarily be the default

behavior, but this allows the server

to 'disable' compression.

ENABLE_HTTP_TUNNELING 0x00000008 Client MUST utilize RPC/HTTP if

configured.

ENABLE_PERF_SENDGCDATA 0x00000010 Client MUST include performance

data of the client that is

communicating with the directory

service.

30 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

ExpiryTime (4 bytes): The number of milliseconds the client SHOULD keep unsent

performance data before the data is expired. Expired data is not transmitted to the server. This

prevents the server from receiving stale performance information that is stored on the client.

2.2.2.18 AUX_OSVERSIONINFO

OSVersionInfoSize (4 bytes): Size of the AUX_OSVERSIONINFO structure.

MajorVersion (4 bytes): Major version number of the operating system of the server.

MinorVersion (4 bytes): Minor version number of the operating system of the server.

BuildNumber (4 bytes): Build number of the operating system of the server.

Reserved1 (132 bytes): Reserved. Content MUST be ignored by client.

ServicePackMajor (2 bytes): Major version number of the latest operating system service

pack that is installed on server.

ServicePackMinor (2 bytes): Minor version number of the latest operating system service

pack that is installed on server.

Reserved2 (4 bytes): Reserved. Content MUST be ignored by client.

31 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

2.2.2.19 AUX_EXORGINFO

OrgFlags (4 bytes): Flags indicating the server organizational information. The following

table specifies the valid values.

Flag Value Description

PUBLIC_FOLDERS_ENABLED 0x00000001 Organization has public folders.

3 Protocol Details

The Wire Format protocol is comprised of two RPC interfaces: EMSMDB and

AsyncEMSMDB. This section describes the details of each interface.

For some functionality through the EMSMDB interface, the client is required to call interface

method EcDoConnectEx first to establish a Session Context Handle (CXH). The CXH is an

RPC context handle. To establish a CXH, a call to EcDoConnectEx MUST be successful.

The following table lists all method calls that require a valid CXH.

CXH Based Methods Interface

EcDoDisconnect EMSMDB

EcRRegisterPushNotification EMSMDB

EcDoConnectEx EMSMDB

EcDoRpcExt2 EMSMDB

EcDoAsyncConnectEx EMSMDB

For some functionality through the AsyncEMSMDB interface, the client is required to call

specific interface methods first to establish an Asynchronous Context Handle (ACXH). The

ACXH is an RPC context handle. To establish an ACXH, a call to EcDoAsyncConnectEx on

the EMSMDB interface MUST be successful. The following table lists all method calls that

require a valid ACXH context handle.

ACXH Based Methods Interface

EcDoAsyncWaitEx AsyncEMSMDB

32 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

3.1 EMSMDB Server Details

The server responds to messages it receives from the client.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an

implementation maintains to participate in this protocol. The described organization is

provided to facilitate the explanation of how the protocol behaves. This document does not

mandate that implementations adhere to this model as long as their external behavior is

consistent with that described in this document.

Some methods on this interface require CXH information to be stored on the server and used

across multiple interface calls for a long duration of time. For these method calls, this protocol

is stateful. The server MUST store this Session Context information and provide a CXH to

the client to make subsequent interface calls by using this same Session Context information.

The server MUST keep a list of all active sessions and their associated Session Context

information. Each Session Context MUST be identified by a CXH. After a Session Context

has been established, a client can access messaging resources through this Session Context.

The server MUST keep track of all open resources or any state information specific to the

session on the Session Context. This can include but is not limited to resources, such as

folders, messages, tables, attachments, streams, associated Asynchronous Context Handles

(ACXHs), and notification callbacks.

The server MUST isolate all resources associated with one Session Context from all other

Session Contexts on the server. Access to resources on one Session Context MUST NOT be

allowed using a CXH of another Session Context.

When the CXH is destroyed or the client connection is lost, the Session Context and all

Session Context information MUST be destroyed, all open resources MUST be closed, and all

Server objects that are associated with the Session Context MUST be released.

3.1.2 Timers

None.

3.1.3 Initialization

The server MUST first register the different protocol sequences that will allow the server to

communicate with the client. This is done by calling the RPC function

RpcServerUseProtseqEp. For protocol sequences and details about this function, see [MS-

RPCE]. The supported protocol sequences are specified in section 2.1. Note some protocol

sequences use named endpoints, which are also specified in section 2.1.

33 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

The server MUST register the different authentication methods that are allowed on the

EMSMDB interface. This is done by calling the RPC function RpcServerRegisterAuthInfo.

For details about this function and the authentication methods, see [MS-RPCE].

The server MUST start listening for RPC calls by calling RPC function RpcServerListen.

For details about this function, see [MS-RPCE].

The server MUST register the EMSMDB interface. This is done by calling the RPC function

RpcServerRegisterIfEx. For details about this function, see [MS-RPCE].

The last step is to register the EMSMDB interface to all the registered binding handles created

previously in calls to RpcServerUseProtseq or RpcServerUseProtseqEp. This is done by

first acquiring all the binding handle information through RPC function

RpcServerInqBindings and then calling RPC function RpcEpRegister with the binding

information. For details about these functions, see [MS-RPCE].

3.1.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict Network Data

Representation (NDR) data consistency check at target level 5.0, as specified in [MS-RPCE]

section 3.

The following table lists the methods that this interface includes. The term "Reserved" in

the table means that the client SHOULD NOT send the opnum.

Method Opnum Description

Opnum0Reserved 0 Reserved.

EcDoDisconnect 1 Closes a Session Context with the server. The

Session Context is destroyed and all associated

server state, objects, and resources that are

associated with the Session Context are

released. The method requires an active

Session Context Handle (CXH) to be

returned from EcDoConnectEx.

Opnum2Reserved 2 Reserved.

Opnum3Reserved 3 Reserved.

EcRRegisterPushNotification 4 Registers a callback address with the server for

a Session Context. The callback address is

used to notify the client of a pending event on

the server. The method requires an active CXH

to be returned from EcDoConnectEx.

34 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Method Opnum Description

Opnum5Reserved 5 Reserved.

EcDummyRpc 6 This call does nothing. A client can use it to

determine whether it can communicate with

the server.

Opnum7Reserved 7 Reserved.

Opnum8Reserved 8 Reserved.

Opnum9Reserved 9 Reserved.

EcDoConnectEx 10 Creates a CXH on the server to be used in

subsequent calls to EcDoDisconnect,

EcDoRpcExt2, and EcDoAsyncConnectEx.

EcDoRpcExt2 11 Passes generic remote operation (ROP)

commands to the server for processing within

a Session Context. The method requires an

active CXH to be returned from

EcDoConnectEx.

Opnum12Reserved 12 Reserved.

Opnum13Reserved 13 Reserved.

EcDoAsyncConnectEx 14 Binds a CXH that is returned in

EcDoConnectEx to a new Asynchronous

Context Handle (ACXH) which can be used

in calls to EcDoAsyncWaitEx in interface

AsyncEMSMDB. The method requires an

active Session Context Handle to be returned

from EcDoConnectEx.

3.1.4.1 Opnum0Reserved (opnum 0)

The Opnum0Reserved method is reserved and SHOULD NOT be used.

35 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

3.1.4.2 EcDoDisconnect (opnum 1)

The method EcDoDisconnect closes a Session Context with the server. The Session Context

is destroyed and all associated server state, objects, and resources that are associated with the

Session Context are released. This call requires an active Session Context Handle (CXH) to

be returned from method EcDoConnectEx.

long __stdcall EcDoDisconnect(

[in, out, ref] CXH * pcxh

);

pcxh: On input, contains the CXH of the Session Context that the client wants to disconnect.

On output, the server MUST clear the CXH to a zero value. Setting the value to zero instructs

the RPC layer of the server to destroy the RPC context handle.

Error Values: If the method succeeds, the return value is 0. If the method fails, the return

value is an implementation-specific error code.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC

protocol [MS-RPCE].

3.1.4.3 Opnum2Reserved (opnum 2)

The Opnum2Reserved method is reserved and SHOULD NOT be used.

3.1.4.4 Opnum3Reserved (opnum 3)

The Opnum3Reserved method is reserved and SHOULD NOT be used.

3.1.4.5 EcRRegisterPushNotification (opnum 4)

The method EcRRegisterPushNotification registers a callback address with the server for a

Session Context. The callback address is used to notify the client of pending events on the

server. This call requires an active Session Context Handle (CXH) to be returned from

method EcDoConnectEx.

The server MUST store the callback address and the opaque context data in the Session

Context. Whenever the server wants to notify the client of pending events, it SHOULD send a

packet containing just the opaque context data to the callback address. The callback address

specifies which network transport SHOULD be used to send the data packet.

For more information about notification handling, see [MS-OXCNOTIF].

36 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

long __stdcall EcRRegisterPushNotification(

[in, out, ref] CXH * pcxh,

[in] unsigned long iRpc,

[in, size_is(cbContext)]unsigned char rgbContext[],

[in] unsigned short cbContext,

[in] unsigned long grbitAdviseBits,

[in, size_is(cbCallbackAddress)] unsigned char rgbCallbackAddress[],

[in] unsigned short cbCallbackAddress,

[out] unsigned long *hNotification

);

pcxh: On input, the client MUST pass a valid CXH that was created by calling

EcDoConnectEx. The server uses the CXH to identify the Session Context to use for this call.

On output, the server MUST return the same CXH on success.

The server can destroy the CXH by returning a zero CXH. The server might want to destroy

the CXH for the following reasons:

1. The CXH that was passed in is invalid.

2. An attempt was made to access a mailbox that is in the process of being moved.

iRpc: The server MUST completely ignore this value. The client MUST pass a value of

0x00000000.

rgbContext: This parameter contains opaque client-generated context data that is sent back to

the client at the callback address, passed in parameter rgbCallbackAddress, when the server

wants to notify the client of pending event information. The server MUST save this data

within the Session Context and use it when sending a notification to the client.

cbContext: This parameter contains the size of the opaque client context data that is passed in

parameter rgbContext. The server MUST fail this call with error code ecTooBig if this

parameter is larger than 0x00000010.

grbitAdviseBits: This parameter MUST be 0xFFFFFFFF.

rgbCallbackAddress: This parameter contains the callback address for the server to use to

notify the client of a pending event. The size of this data is in the parameter

cbCallbackAddress.

37 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

The data contained in this parameter follows the format of a sockaddr structure. For

information about the sockaddr structure, see [MSDN-SOCKADDR].

The server SHOULD support the address families AF_INET and AF_INET6 for a callback

address that corresponds to the protocol sequence types that are specified in section 2.1.

If an address family is requested that is not supported, the server MUST return error code

ecInvalidParam. If the address family is supported, but the communications stack of the server

does not support the address type, the server MUST return error code ecNotSupported.

cbCallbackAddress: This parameter contains the length of the callback address in parameter

rgbCallbackAddress. The size of this parameter depends on the address family being used. If

this size does not correspond to the sockaddr size based on address family, the server MUST

return error code ecInvalidParam.

hNotification: If the call completes successfully, this output parameter will contain a handle

to the notification callback on the server.

Error Codes: If the method succeeds, the return value is 0. If the method fails, the error codes

listed in the following table are returned. Additional implementation-specific error codes

might be returned.

Name Value Meaning

ecInvalidParam 0x80070057 A parameter passed was not valid for the call.

ecNotSupported 0x80040102 The callback address is not support on the

server.

ecTooBig 0x80040305 Opaque context data is too large.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC

protocol [MS-RPCE].

3.1.4.6 Opnum5Reserved (opnum 5)

The Opnum5Reserved method is reserved and SHOULD NOT be used.

3.1.4.7 EcDummyRpc (opnum 6)

The method EcDummyRpc does nothing. A client can use it to determine if it can

communicate with the server.

38 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

long __stdcall EcDummyRpc(

[in] handle_t hBinding

);

hBinding: A valid RPC binding handle.

Error Codes: The function MUST always succeed and return 0.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC

protocol [MS-RPCE].

3.1.4.8 Opnum7Reserved (opnum 7)

The Opnum7Reserved method is reserved and SHOULD NOT be used.

3.1.4.9 Opnum8Reserved (opnum 8)

The Opnum8Reserved method is reserved and SHOULD NOT be used.

3.1.4.10 Opnum9Reserved (opnum 9)

The Opnum9Reserved method is reserved and SHOULD NOT be used.

3.1.4.11 EcDoConnectEx (opnum 10)

The EcDoConnectEx method establishes a new Session Context with the server. The

Session Context is persisted on the server until the client disconnects by using

EcDoDisconnect. This method returns a Session Context Handle (CXH) to be used by a

client in subsequent calls.

long __stdcall EcDoConnectEx(

[in] handle_t hBinding,

[out, ref] CXH * pcxh,

[in, string] unsigned char * szUserDN,

[in] unsigned long ulFlags,

[in] unsigned long ulConMod,

[in] unsigned long cbLimit,

[in] unsigned long ulCpid,

[in] unsigned long ulLcidString,

[in] unsigned long ulLcidSort,

39 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

[in] unsigned long ulIcxrLink,

[in] unsigned short usFCanConvertCodePages,

[out] unsigned long * pcmsPollsMax,

[out] unsigned long * pcRetry,

[out] unsigned long * pcmsRetryDelay,

[out] unsigned short * picxr,

[out, string] unsigned char **szDNPrefix,

[out, string] unsigned char **szDisplayName,

[in] unsigned short rgwClientVersion[3],

[out] unsigned short rgwServerVersion[3],

[out] unsigned short rgwBestVersion[3],

[in, out] unsigned long * pulTimeStamp,

[in, size_is(cbAuxIn)] unsigned char rgbAuxIn[],

[in] unsigned long cbAuxIn,

[out, length_is(*pcbAuxOut), size_is(*pcbAuxOut)] unsigned char

rgbAuxOut[],

[in, out] SMALL_RANGE_ULONG *pcbAuxOut

);

hBinding: A valid RPC binding handle.

pcxh: On success, the server MUST return a unique value to be used as a CXH. This unique

value serves as the CXH for the client.

On failure, the server MUST return a zero value as the CXH.

szUserDN: User’s distinguished name (DN). String containing the DN of the user who is

making the EcDoConnectEx call in a directory service. Value: "/o=Microsoft/ou=First

Administrative Group/cn=Recipients/cn=janedow".

ulFlags: For ordinary client calls this value MUST be 0x00000000.

40 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Value Meaning

0x00000000 Ordinary client connection.

0x00000001 Administrator privilege requested for connection.

ulConMod: The connection modulus is a client derived 32-bit hash value of the DN passed in

field szUserDN and can be used by the server to decide which public folder replica to use

when accessing public folder information when more than one replica of a folder exists. The

hash can be used to distribute client access across replicas in a deterministic way for load

balancing.

cbLimit: This field is reserved. A client MUST pass a value of 0x00000000.

ulCpid: The code page in which text data SHOULD be sent if Unicode format is not

requested by the client on subsequent calls using this Session Context.

ulLcidString: The local ID for everything other than sorting.

ulLcidSort: The local ID for sorting.

ulIcxrLink: This value is used to link the Session Context created by this call with an existing

Session Context on the server. If no session linking is requested, this value will be

0xFFFFFFFF. To link to an existing Session Context, this value SHOULD be the session

index value returned in field piCxr from a previous EcDoConnectEx call. In addition to

passing the session index, the value in pulTimeStamp will be returned in the pulTimeStamp

field from the previous EcDoConnectEx call. These two values MUST be used by the server

to identify an active session with the same session index and session creation time stamp. If a

session is found, the server MUST link the Session Context created by this call with the one

found.

A server allows Session Context linking for the following reasons:

1. To consume a single Client Access License (CAL) for all the connections made from

a single client computer. This gives a client the ability to open multiple independent

connections using more than one Session Context on the server, but be seen to the

server as only consuming a single CAL.

2. To get pending notification information for other sessions on the same client

computer. For details, see RopPending in [MS-OXCNOTIF].

41 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Note that the ulIcxrLink parameter is defined as a 32-bit value. Other than passing

0xFFFFFFFF for no Session Context linking, the server SHOULD only use the low-order 16

bits as the session index. This value SHOULD be the value returned in piCxr from a previous

EcDoConnectEx call, which is the session index and defined as a 16-bit value.

usFCanConvertCodePages: This field is reserved.The client MUST pass a value of 0x01.

pcmsPollsMax: The server returns the number of milliseconds that a client SHOULD wait

between polling the server for event information. If the client or server does not support

making asynchronous RPC calls for notifications (see EcDoAsyncWaitEx), or the client is

unable to receive notifications via UDP datagrams (see EcRRegisterPushNotifications), the

client can poll the server to determine whether any events are pending for the client. For

details about notifications, see [MS-OXNOTIF].

pcRetry: The server returns the number of times a client SHOULD retry future RPC calls

using the CXH returned in this call. This is for client RPC calls that fail with RPC status code

RPC_S_SERVER_TOO_BUSY. This is a suggested retry count for the client and SHOULD

NOT be enforced by the server.

pcmsRetryDelay: The server returns the number of milliseconds a client SHOULD wait

before retrying a failed RPC call. If any future RPC call to the server using the CXH returned

in this call fails with RPC status code RPC_S_SERVER_TOO_BUSY, it SHOULD wait the

number of milliseconds specified in this output parameter before retrying the call. The number

of times a client SHOULD retry is returned in parameter pcRetry. This is a suggested delay for

the client and SHOULD NOT be enforced by the server.

piCxr: The server returns a session index value that is associated with the CXH returned from

this call. This value in conjunction with the session creation time stamp value returned in

pulTimeStamp will be passed to a subsequent EcDoConnectEx call, if the client wants to

link two Session Contexts. The server MUST NOT assign two active Session Contexts the

same session index value. The server is free to return any 16-bit value for the session index.

The server MUST also use the session index when returning a RopPending response

command on calls to EcDoRpcExt2 to tell the client which Session Context has pending

notifications. If Session Contexts are linked, a RopPending can be returned for any linked

Session Context. For details about RopPending, see [MS-OXCROPS] and [MS-OXCNOTIF].

szDNPrefix: The server returns the distinguished name (DN) of the server.

szDisplayName: The server returns the display name of the user associated with the

szUserDN parameter.

42 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

rgwClientVersion: The client passes the client protocol version the server SHOULD use to

determine what protocol functionality the client supports. For more information about how

version numbers are interpreted from the wire data, see section 3.1.9.

rgwServerVersion: The server returns the server protocol version the client SHOULD use to

determine what protocol functionality the server supports. For details about how version

numbers are interpreted from the wire data, see section 3.1.9.

rgwBestVersion: The server returns the minimum client protocol version the server supports.

This information is useful if the EcDoConnectEx call fails with return code

ecVersionMismatch. On success, the server SHOULD return the value passed in

rgwClientVersion by the client. The server cannot perform any client protocol version

negotiation. The server can either return the minimum client protocol version required to

access the server and fail the call with ecVersionMismatch, or the server can allow the client

and return the value passed by the client in rgwClientVersion. It is up to the server

implementation to set the minimum client protocol version that is supported by the server. For

details about how version numbers are interpreted from the wire data, see section 3.1.9.

pulTimeStamp: On input, this parameter and parameter ulIcxrLink are used for linking the

Session Context created by this call with an existing Session Context. If the ulIcxrLink

parameter is not 0xFFFFFFFF, the client MUST pass in the pulTimeStamp value returned

from the server on a previous call to EcDoConnectEx (see the ulIcxrLink and piCxr

parameters for more details). If the server supports Session Context linking, the server

SHOULD verify that there is a Session Context state with the unique identifier ulIcxrLink

and it has a creation time stamp equal to the value passed in this parameter. If so, the server

MUST link the Session Context created by this call with the one found. If no such Session

Context state is found, the server SHOULD NOT fail the EcDoConnectEx call, but simply

not do linking.

On output, the server has to return a time stamp in which the new Session Context was

created. The server SHOULD save the Session Context creation time stamp within the

Session Context state for later use if a client attempts to do Session Context linking.

rgbAuxIn: This parameter contains an auxiliary payload buffer. The auxiliary payload buffer

is prefixed by an RPC_HEADER_EXT structure. Information stored in this header

determines how to interpret the data following the header. The length of the auxiliary payload

buffer that includes the RPC_HEADER_EXT header is contained in parameter cbAuxIn.

See section 3.1.7 for details about how to access the embedded auxiliary payload buffer. See

section 3.1.8 for details about how to interpret the auxiliary payload data.

cbAuxIn: On input, this parameter contains the length of the auxiliary payload buffer passed

in the rgbAuxIn parameter. The server MUST fail with the RPC status code

43 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

RPC_X_BAD_STUB_DATA (0x000006F7), if this value on input is larger than 0x00001008

bytes in size. For more information, see [C706].

rgbAuxOut: On output, the server can return auxiliary payload data to the client. The server

MUST include an RPC_HEADER_EXT header before the auxiliary payload data.

See section 3.1.7 for details about how to access the embedded auxiliary payload buffer. See

section 3.1.8 for details about how to interpret the auxiliary payload data.

pcbAuxOut: On input, this parameter contains the maximum length of the rgbAuxOut buffer.

The server MUST fail with the RPC status code RPC_X_BAD_STUB_DATA (0x000006F7)

if this value on input is larger than 0x00001008. For more information, see [C706].

On output, this parameter contains the size of the data to be returned in the rgbAuxOut buffer.

Error Values: If the method succeeds, the return value is 0. If the method fails, the return

value is an implementation-specific error code or one of the protocol-defined error codes listed

in the following table.

44 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Name Value Meaning

ecRpcAuthentication 0x000004B6 The szUserDN parameter does not reference a

user or references a guest user or a built-in user.

ecNotEncrypted 0x00000970 The server is configured to require encryption

and the binding handle, hBinding, authentication

is not set with

RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

For more information about setting the

authentication and authorization, see

RpcBindingSetAuthInfoEx. The client

SHOULD attempt the call again with new

binding handle that is encrypted.

ecClientVerDisallowed 0x000004DF 1.The server requires encryption, but the client is

not encrypted and the client does not support

receiving error code ecNotEncrypted being

returned by the server. See section 3.1.9 for

details about which client versions do not

support receiving error code ecNotEncrypted.

2. The client version has been blocked by the

administrator.

ecLoginFailure 0x80040111 1. The user does not have any access to a private

mailbox or public folder messaging data.

2. There are no private mailboxes or public

folders on the server.

3. The server is exiting or is about to exit.

ecUnknownUser 0x000003EB The server does not recognize the szUserDN as

a valid enabled mailbox. For more details, see

[MS-OXCSTOR].

ecLoginPerm 0x000003F2 The connection is requested for administrative

access, but the authentication context associated

with the binding handle does not have enough

privilege.

ecVersionMismatch 0x80040110 The client and server versions are not

compatible. The client protocol version is older

than that required by the server.

ecCachedModeRequired 0x000004E1 The server requires the client to be running in

cache mode. See section 3.1.9 for details about

http://msdn2.microsoft.com/en-us/library/aa375608.aspx

45 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Name Value Meaning

which client versions understand this error code.

ecRpcHttpDisallowed 0x000004E0 The server requires the client to not be

connected via RPC/HTTP. See section 3.1.9 for

details about which client versions understand

this error code.

ecProtocolDisabled 0x000007D8 The server disallows the user to access the

server via this protocol interface. This could be

done if the user is only capable of accessing

their mailbox information through a different

means (for example, Webmail, POP, IMAP, and

so on). See section 3.1.9 for details about which

client versions understand this error code.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC

protocol [MS-RPCE].

3.1.4.12 EcDoRpcExt2 (opnum 11)

The method EcDoRpcExt2 passes generic remote operation (ROP) commands to the server

for processing within a Session Context. Each call can contain multiple ROP commands. The

server returns the results of each ROP command to the client. This call requires an active

Session Context Handle (CXH) returned from method EcDoConnectEx.

long __stdcall EcDoRpcExt2(

[in, out, ref] CXH * pcxh,

[in, out] unsigned long *pulFlags,

[in, size_is(cbIn)] unsigned char rgbIn[],

[in] unsigned long cbIn,

[out, length_is(*pcbOut), size_is(*pcbOut)] unsigned char rgbOut[],

[in, out] BIG_RANGE_ULONG *pcbOut,

[in, size_is(cbAuxIn)] unsigned char rgbAuxIn[],

[in] unsigned long cbAuxIn,

[out, length_is(*pcbAuxOut), size_is(*pcbAuxOut)] unsigned char

rgbAuxOut[],

[in, out] SMALL_RANGE_ULONG *pcbAuxOut,

46 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

[out] unsigned long *pulTransTime

);

pcxh: On input, the client MUST pass a valid Session Context Handle that was created by

calling EcDoConnectEx. The server uses the CXH to identify the Session Context to use for

this call. On output, the server MUST return the same CXH on success.

The server can destroy the CXH by returning a zero CXH. The server might destroy the

Session CXH for the following reasons:

1. It determines that the ROP request payload in the rgbIn buffer is malformed or length

parameters are invalid.

2. The CXH passed in is invalid.

3. It is trying to access a mailbox that is in the process of being moved.

4. If an administrator blocks a client that has an active connection.

pulFlags: On input, this parameter contains flags that tell the server how to build the rgbOut

parameter.

Name Value Meaning

NoCompression 0x00000001 The server MUST NOT compress ROP

response payload (rgbOut) or auxiliary payload

(rgbAuxOut). If flag is absent, server MUST

compress.

NoXorMagic 0x00000002 The server MUST NOT obfuscate the ROP

response payload (rgbOut) or auxiliary payload

(rgbAuxOut). If flag is absent, server SHOULD

obfuscate.

Chain 0x00000004 The server SHOULD allow chaining of ROP

response payloads.

See section 3.1.7 for details about how to use these flags.

On output, the server MUST return 0x00000000. The meaning of the output flags are reserved

for future use.

47 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

rgbIn: This buffer contains the ROP request payload. The ROP request payload is prefixed

with an RPC_HEADER_EXT header. Information stored in this header determines how to

interpret the data following the header. See section 3.1.7 for details about how to access the

embedded ROP request payload. The length of the ROP request payload including the

RPC_HEADER_EXT header is contained in parameter cbIn.

For more information about ROP buffers, see [MS-OXCROPS].

cbIn: On input, this parameter contains the length of the ROP request payload passed in the

rgbIn parameter. The server MUST fail with error code ecRpcFormat if the request buffer is

larger than 0x00008007 bytes in size or is smaller than the size of the RPC_HEADER_EXT

(0x00000008 bytes). The ROP request payload includes the size of the ROPs plus the size of

RPC_HEADER_EXT. For more details, see [MS-OXCROPS].

rgbOut: On success, this buffer contains the ROP response payload. Like the ROP request

payload, the ROP response payload is also prefixed by a RPC_HEADER_EXT header. For

details about how to format the ROP response payload, see section 3.1.7. The size of the ROP

response payload plus the RPC_HEADER_EXT header is returned in pcbOut.

For more information about ROP buffers, see [MS-OXCROPS].

pcbOut: On input, this parameter contains the maximum size of the rgbOut buffer. The server

MUST fail with error code ecRpcFormat if the value in pcbOut on input is less than

0x00008007 . The server MUST fail with the RPC status code of

RPC_X_BAD_STUB_DATA (0x000006F7) if the value in pcbOut on input is larger than

0x00040000. For more information, see [C706].

On output, this parameter contains the size of the ROP response payload, including the size of

the RPC_HEADER_EXT header in the rgbOut parameter. The server SHOULD return

0x00000000 on failure as there is no ROP response payload. The client SHOULD ignore any

data returned on failure.

rgbAuxIn: This parameter contains an auxiliary payload buffer. The auxiliary payload buffer

is prefixed by an RPC_HEADER_EXT structure. Information stored in this header

determines how to interpret the data following the header. The length of the auxiliary payload

buffer including the RPC_HEADER_EXT header is contained in parameter cbAuxIn.

See section 3.1.7 for details about how to access the embedded auxiliary payload buffer. See

section 3.1.8 for details about how to interpret the auxiliary payload data.

cbAuxIn: On input, this parameter contains the length of the auxiliary payload buffer passed

in the rgbAuxIn parameter. The server MUST fail with the RPC status code

RPC_X_BAD_STUB_DATA (0x000006F7) if the request buffer is larger than 0x00001008

bytes in size. For more information, see [C706].

48 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

rgbAuxOut: On output, the server can return auxiliary payload data to the client. The server

MUST include a RPC_HEADER_EXT header before the auxiliary payload data.

See section 3.1.7 for details about how to access the embedded auxiliary payload buffer. See

section 3.1.8 for details about how to interpret the auxiliary payload data.

pcbAuxOut: On input, this parameter contains the maximum length of the rgbAuxOut buffer.

The server MUST fail with the RPC status code RPC_X_BAD_STUB_DATA (0x000006F7)

if this value on input is larger than 0x00001008. For more information, see [C706].

On output, this parameter contains the size of the data to be returned in the rgbAuxOut buffer.

pulTransTime: On output, the server SHOULD store the number of milliseconds the call

took to execute. This is the total elapsed time from when the call is dispatched on the server to

the point in which the server returns the call. This is diagnostic information the client can use

to determine the cause of a slow response time from the server. The client can monitor the

total elapsed time across the RPC function call and, using this output parameter, can determine

whether time was spent transmitting the request/response on the network on processing time

on the server.

Error Values: If the method succeeds, the return value is 0. If the method fails, the error

codes listed in the following table are returned. Additional implementation-specific error

codes could be returned.

Name Value Meaning

ecRpcFormat 0x000004B6 The format of the request was found to be

invalid. This is a generic error that means the

length was found to be invalid or the content

was found to be invalid.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC

protocol [MS-RPCE].

3.1.4.13 Opnum12Reserved (opnum 12)

The Opnum12Reserved method is reserved and SHOULD NOT be used.

3.1.4.14 Opnum13Reserved (opnum 13)

The Opnum13Reserved method is reserved and SHOULD NOT be used.

49 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

3.1.4.15 EcDoAsyncConnectEx (opnum 14)

The method EcDoAsyncConnectEx binds a Session Context Handle (CXH) returned from

method EcDoConnectEx to a new Asynchronous Context Handle (ACXH) that can be

used in calls to EcDoAsyncWaitEx in interface AsyncEMSMDB. This call requires an

active CXH to be returned from method EcDoConnectEx.

This method is part of Notification handling. For more information about notifications, see

[MS-OXCNOTIF].

long __stdcall EcDoAsyncConnectEx(

[in] CXH cxh,

[out, ref] ACXH * pacxh

);

cxh: Client MUST pass a valid CXH that was created by calling EcDoConnectEx. The server

uses the CXH to identify the Session Context to use for this call.

pacxh: On success, the server returns an ACXH that is associated with the Session Context

passed in parameter cxh. This ACXH can be used to make a call to EcDoAsyncWaitEx on

interface AsyncEMSMDB.

Error Values: If the method succeeds, the return value is 0. If the method fails, the error

codes listed in the following table are returned. Additional implementation-specific error

codes could be returned.

Name Value Meaning

ecRejected 0x000007EE Server has asynchronous RPC notifications

disabled. Client SHOULD either poll for

notifications or call

EcRRegisterPushNotifications.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC

protocol [MS-RPCE].

3.1.5 Timer Events

None.

50 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

3.1.6 Other Local Events

None.

3.1.7 Extended Buffer Handling

Interface methods EcDoConnectEx and EcDoRpcExt2 contain request and response buffers

that use an extended buffer mechanism where the payload is preceded by a header. The header

contains flags that determine whether or not the payload has been compressed, obfuscated, or

another extended buffer and payload exists after the current payload. A single payload MUST

NOT exceed 32 KB in size.

An extended buffer is used in fields rgbAuxIn and rgbAuxOut on the EcDoConnectEx

method and in the fields rgbIn, rgbOut, rgbAuxIn, and rgbAuxOut on the EcDoRpcExt2

method.

The following sections detail the extended buffer format, compression algorithm, obfuscation

algorithm, and extended buffer packing.

3.1.7.1 Extended Buffer Format

See section 2.2.2.1 for details about the structure and individual fields.

The client or server MAY choose not to compress the payload if the payload is small. The

client or server MAY choose to not obfuscate the payload if the payload has already been

compressed. The client or server MAY choose to not obfuscate the payload if the client is

connected using RPC layer encryption.

The extended buffer is used in both the EcDoConnectEx and EcDoRpcExt2 for a variety of

different fields. The information in the following sections describes how the extended buffer is

used for the different fields on each method.

3.1.7.1.1 EcDoConnectEx

3.1.7.1.1.1 rgbAuxIn

The input buffer rgbAuxIn has the following format:

RPC_HEADER_EXT Payload

The header MUST contain the Last flag in the Flags field.

51 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

If the Compressed flag is present in the Flags field, the content of the payload MUST be

compressed by the client and MUST be uncompressed by the server before it can be

interpreted. See section 3.1.7.2 for details about how to compress and uncompress payload

data.

If the XorMagic flag is present in the Flags field, the content of the payload MUST be

obfuscated by the client and MUST be reverted by the server before it can be interpreted. See

section 3.1.7.3 for details about how to obfuscate and revert obfuscated payload data.

The payload is auxiliary information that can be passed from the client to the server. See

section 3.1.8 for details about how to interpret this data.

3.1.7.1.1.2 rgbAuxOut

The output buffer rgbAuxOut has the following format:

RPC_HEADER_EXT Payload

The header MUST contain the Last flag in the Flags field.

If the Compressed flag is present in the Flags field, the content of the payload MUST be

compressed by the server and MUST be uncompressed by the client before it can be

interpreted. See section 3.1.7.2 details about how to compress and uncompress payload data.

If the XorMagic flag is present in the Flags field, the content of the payload MUST be

obfuscated by the server and MUST be reverted by the client before it can be interpreted. See

section 3.1.7.3 for details about how to obfuscate and revert obfuscated payload data.

The payload is auxiliary information that can be passed from the server to the client. See

section 3.1.8 for details about how to interpret this data.

3.1.7.1.2 EcDoRpcExt2

The flags passed to the server in field pulFlags by the client request that the server compress

or obfuscate the response data returned in field rgbOut and rgbAuxOut. If the client requests

no compression or no obfuscation through the flags NoCompression or NoXorMagic, the

server MUST honor the client request. If the client requests compression or obfuscation

through the absence of either flags NoCompression or NoXorMagic, the server SHOULD

honor the client request. The client MUST NOT assume a response will compressed or

obfuscated if requested and SHOULD have the ability to handle data which is not compressed

or not obfuscated.

52 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

3.1.7.1.2.1 rgbIn

The input buffer rgbIn has the following format:

RPC_HEADER_EXT Payload

The header MUST contain the Last flag in the Flags field.

If the Compressed flag is present in the Flags field, the content of the payload MUST be

compressed by the client and MUST be uncompressed by the server before it can be

interpreted. See section 3.1.7.2 for details about how to compress and uncompress payload

data.

If the XorMagic flag is present in the Flags field, the content of the payload MUST be

obfuscated by the client and MUST be reverted by the server before it can be interpreted. See

section 3.1.7.3 for details about how to obfuscate and revert obfuscated payload data.

The payload is remote operation (ROP) request information that can be passed from the

client to the server. See [MS-OXCROPS] for details about how to interpret this data.

3.1.7.1.2.2 rgbOut

The output buffer rgbOut has the following format:

RPC_HEADER_EXT Payload RPC_HEADER_EXT Payload . . . RPC_HEADER_EXT Payload

There might be multiple extended buffers contained in the single output buffer. They will each

have an RPC_HEADER_EXT header followed by a Payload.

All headers except for the last MUST NOT contain the Last flag in the Flags field. The last

header MUST contain the Last flag in the Flags field.

If the Compressed flag is present in the Flags field, the content of the payload following the

header MUST be compressed by the server and MUST be uncompressed by the client before

it can be interpreted. See section 3.1.7.2 for details about how to compress and uncompress

payload data.

If the XorMagic flag is present in the Flags field, the content of the payload following the

header MUST be obfuscated by the server and MUST be reverted by the client before it can

53 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

be interpreted. See section 3.1.7.3 for details about how to obfuscate and revert obfuscated

payload data.

Compression or obfuscation can be done differently for each header and payload section. The

client MUST be able to treat each header and payload independently and interpret the contents

solely on the flags specified in the header.

Each payload contains remote operation (ROP) response information that is returned from

the server to the client. See [MS-OXCROPS] for details about how to interpret this data.

3.1.7.1.2.3 rgbAuxIn

The input buffer rgbAuxIn has the following format:

RPC_HEADER_EXT Payload

The header MUST contain the Last flag in the Flags field.

If the Compressed flag is present in the Flags field, the content of the payload MUST be

compressed by the client and MUST be uncompressed by the server before it can be

interpreted. See section 3.1.7.2 for details about how to compress and uncompress payload

data.

If the XorMagic flag is present in the Flags field, the content of the payload MUST be

obfuscated by the client and MUST be reverted by the server before it can be interpreted. See

section 3.1.7.3 for details about how to obfuscate and revert obfuscated payload data.

The payload is auxiliary information that can be passed from the client to the server. See

section 3.1.8 for details about how to interpret this data.

3.1.7.1.2.4 rgbAuxOut

The output buffer rgbAuxOut has the following format:

RPC_HEADER_EXT Payload

The header MUST contain the Last flag in the Flags field.

If the Compressed flag is present in the Flags field, the content of the payload MUST be

compressed by the server and MUST be uncompressed by the client before it can be

54 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

interpreted. See section 3.1.7.2 for details about how to compress and uncompress payload

data.

If the XorMagic flag is present in the Flags field, the content of the payload MUST be

obfuscated by the server and MUST be reverted by the client before it can be interpreted. See

section 3.1.7.3 for details about how to obfuscate and revert obfuscated payload data.

The payload is auxiliary information that can be passed from the server to the client. See

section 3.1.8 for details about how to interpret this data.

3.1.7.2 Compression Algorithm

Based on flags that are passed in RPC_HEADER_EXT header of the extended buffer, the

payload is compressed or decompressed by the server and client by using the LZ77

compression algorithm and the DIRECT2 encoding algorithm.

This section describes the compression algorithm LZ77 and the basic encoding algorithm

DIRECT2 that are used by the Wire Format protocol.

3.1.7.2.1 LZ77 Compression Algorithm

The compression algorithm is used to analyze input data and determine how to reduce the size

of that input data by replacing redundant information with metadata. Sections of the data that

are identical to sections of the data that have been encoded are replaced by small metadata that

indicates how to expand those sections again. The encoding algorithm is used to take that

combination of data and metadata and serialize it into a stream of bytes that can later be

decoded and decompressed.

3.1.7.2.1.1 Compression Algorithm Terminology

The following terms are associated with the compression algorithm.

input stream: The sequence of bytes to be compressed.

byte: The basic data element in the input stream.

coding position: The position of the byte in the input stream that is currently being coded (the

beginning of the lookahead buffer).

lookahead buffer: The byte sequence from the coding position to the end of the input

stream.

window: A buffer that indicates the number of bytes from the coding position backward. A

window of size W contains the last W processed bytes.

55 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

pointer: Information about the beginning of the match in the window (referred to as "B" in

the example later in this section) and also specifies its length (referred to as "L" in the example

later in this section).

match: The string that is used to find a match of the byte sequence between the lookahead

buffer and the window.

3.1.7.2.1.2 Using the Compression Algorithm

To use the LZ77 compression algorithm:

1. Set the coding position to the beginning of the input stream.

2. Find the longest match in the window for the lookahead buffer.

3. Output the P,C pair, where P is the pointer to the match in the window, and C is the

first byte in the lookahead buffer that does not match.

4. If the lookahead buffer is not empty, move the coding position (and the window) L+1

bytes forward.

5. Return to step 2.

3.1.7.2.1.3 Compression Process

The compression algorithm searches the window for the longest match with the beginning of

the lookahead buffer and then outputs a pointer to that match. Because even a 1-byte match

might not be found, the output cannot contain only pointers. The compression algorithm

solves this problem by outputting after the pointer the first byte in the lookahead buffer after

the match. If no match is found, the algorithm outputs a null-pointer and the byte at the coding

position.

3.1.7.2.1.4 Compression Process Example

The following table shows the input stream that is used for this compression example. The

bytes in the input, "AABCBBABC," occupy the first nine positions of the stream.

Input stream

Pos 1 2 3 4 5 6 7 8 9

Byte A A B C B B A B C

The following table shows the output from the compression process. The table includes the

following columns:

56 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Step: Indicates the number of the encoding step. A step in the table finishes every time that

the encoding algorithm makes an output. With the compression algorithm, this process

happens in each pass through step 3.

Pos: Indicates the coding position. The first byte in the input stream has the coding position 1.

Match: Shows the longest match found in the window.

Byte: Shows the first byte in the lookahead buffer after the match.

Output: Presents the output in the format (B,L)C, where (B,L) is the pointer (P) to the match.

This gives the following instructions to the decoder: Go back B bytes in the window and copy

L bytes to the output. C is the explicit byte.

Note: One or more pointers might be included before the explicit byte that is shown in the

Byte column.

Compression process output

Step Pos Match Byte Output

1. 1 -- A (0,0)A

2. 2 A B (1,1)B

3. 4 -- C (0,0)C

4. 5 B B (2,1)B

5. 7 A B C (5,2)C

The result of compression, conceptually, is the output column – that is, a series of bytes and

optional metadata that indicates whether that byte is preceded by some sequence of bytes that

is already in the output.

Because representing the metadata itself requires bytes in the output stream, it is inefficient to

represent a single byte that has previously been encoded by two bytes of metadata (offset and

length). The overhead of the metadata bytes equals or exceeds the cost of outputting the bytes

directly. Therefore, the Exchange Server Protocol only considers sequences of bytes to be a

match if the sequences have three or more bytes in common.

3.1.7.2.2 DIRECT2 Encoding Algorithm

The basic notion of the DIRECT2 encoding algorithm is that data appears unchanged in the

compressed representation (it is not recommended to try to further compress the data by, for

57 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

example, applying Huffman compression to that payload), and metadata is encoded in the

same output stream, and in line with, the data.

The key to decoding the compressed data is recognizing what bytes are metadata and what

bytes are data. The decoder MUST be able to identify the presence of metadata in the

compressed and encoded data stream. Bitmasks are inserted periodically in the byte stream to

provide this information to the decoder.

This section describes the bitmasks that enable the decoder to distinguish data from metadata.

It also describes the process of encoding the metadata.

3.1.7.2.2.1 Bitmask

To distinguish data from metadata in the compressed byte stream, the data stream begins with

a 4-byte bitmask that indicates to the decoder whether the next byte to be processed is data

("0" value in the bit), or if the next byte (or series of bytes) is metadata ("1" value in the bit). If

a "0" bit is encountered, the next byte in the input stream is the next byte in the output

stream. If a "1" bit is encountered, the next byte or series of bytes is metadata that MUST be

interpreted further.

For example, a bitmask of 0x01000000 indicates that the first seven bytes are actual data,

followed by encoded metadata that starts at the eighth byte. The metadata is followed by 24

additional bytes of data.

When the bitmask has been consumed, the next four bytes in the input stream are another

bitmask.

3.1.7.2.2.2 Encoding Metadata

In the output stream, actual data bytes are stored unchanged. Bitmasks are stored periodically

to indicate whether the next byte or bytes are data or metadata. If the next bit in the bitmask is

"1," the next set of bytes in the input data stream is metadata. This metadata contains an offset

back to the start of the data to be copied to the output stream, and the length of the data to be

copied.

To represent the metadata as efficiently as possible, the encoding of that metadata is not fixed

in length. The encoding algorithm supports the largest possible floating compression window

to increase the probability of finding a large match; the larger the window, the greater the

number of bytes that are needed for the offset. The encoding algorithm also supports the

longest possible match; the longer the match length, the greater the number of bytes that are

needed to encode the length.

3.1.7.2.2.3 Metadata Offset

This protocol assumes the metadata is two bytes in length, where the high-order 13 bits are a

first complement of the offset, and the low-order three bits are the length. The offset is only

58 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

encoded with those 13 bits; this value cannot be extended and defines the maximum size of

the compression floating window. For example, the metadata 0x0018 is converted into the

offset b'000000000011', and the length b'000'. In integers, the offset is '-4', computed by

inverting the offset bits, treating the result as a 2s complement, and converting to integer.

3.1.7.2.2.4 Match Length

Unlike the metadata offset, the match length is extensible. If the length is less than 10 bytes, it

is encoded in the three low-order bits of the 2-byte metadata. Although three bits seems to

allow for a maximum length of six (the value b'111' is reserved), because the minimum match

is three bytes, these three bits actually allow for the expression of lengths from three to nine.

The match length goes from L = b'000' + 3 bytes, to L = b'110' + 3 bytes. Because smaller

lengths are much more common than the larger lengths, the algorithm tries to optimize for

smaller lengths. To encode a length between three and nine, we use the three bits that are "in-

line" in the 2-byte metadata.

If the length of the match is greater than nine bytes, an initial bit pattern of b'111' is put in the

three bits. This does not signify a length of 10 bytes, but instead a length that is greater than or

equal to 10, which is included in the low-order nibble of the following byte.

Every other time that the length is greater than nine, an additional byte follows the initial 2-

byte metadata. The first time that the additional byte is included, the low-order nibble is used

as the additive length. The next nibble is "reserved" for the next metadata instance when the

length is greater than nine. Therefore, the first time that the decoder encounters a length that is

greater than nine, it reads the next byte from the data stream and the low-order nibble is

extracted and used to compute length for this metadata instance. The high-order nibble is

remembered and used the next time that the decoder encounters a metadata length that is

greater than nine. The third time that a length that is greater than nine is encountered, another

extra byte is added after the 2-byte metadata, with the low-order nibble used for this length

and the high-order nibble reserved for the fourth length that is greater than nine, and so on.

If the nibble from this "shared" byte is all 1s (for example, b'1111'), another byte is added after

the shared byte to hold more length. In this manner, a length of 24 is encoded as follows:

b'111' (in the three bits in the original two bytes of metadata), plus

b'1110' (in the nibble of the 'shared' byte of extended length)

b'111' means 10 bytes plus b'1110', which is 14, which results in a total of 24.

If the length is more than 24, the next byte is also used in the length calculation. In this

manner, a length of 25 is encoded as follows:

b'111' (in the three bits in the original two bytes of metadata), plus

59 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

b'1111' (in the nibble of the 'shared' byte of extended length), plus

b'00000000' (in the next byte)

This scheme is good for lengths of up to 278 (a length of 10 in the three bits in the original two

bytes of metadata, plus a length of 15 in the nibble of the 'shared' byte of extended length, plus

a length of up to 254 in the extra byte).

A "full" (all b'1') bit pattern (b'111', b'1111', and b'11111111') means that there is more length

in the following two bytes.

The final two bytes of length differ from the length information that comes earlier in the

metadata. For lengths that are equal to 280 or greater, the length is calculated only from these

last two bytes, and is not added to the previous length bits. The value in the last two bytes, a

16-bit integer, is three less than the metadata length. These last two bytes allow for a match

length of up to 32,768 bytes + 3 bytes (the minimum match length).

The following table summarizes the length representation in metadata.

Note: Length is computed from the bits that are included in the metadata plus the minimum

match length of three.

Length representation in metadata

60 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Match Length Length Bits in the Metadata

24 b'111' (three bits in the original two bytes of metadata)

+

b'1110' (in the high or lower-order nibble, as appropriate, of the shared

byte)

25 b'111' (three bits in the original two bytes of metadata)

+

b'1111' (in the high or lower-order nibble, as appropriate, of the shared

byte)

+

b'00000000' (in the next byte)

26 b'111' (three bits in the original two bytes of metadata)

+

b'1111' (in the high or lower-order nibble, as appropriate, of the shared

byte)

+

b'00000001' (in the next byte)

279 b'111' (three bits in the original two bytes of metadata)

+

b'1111' (in the high or lower-order nibble, as appropriate, of the shared

byte)

+

b'11111110' (in the next byte)

280 b'111' (three bits in the original two bytes of metadata)

b'1111' (in the high or lower-order nibble, as appropriate, of the shared

byte)

b'11111111' (in the next byte)

0x0115 (in the next two bytes). These two bytes represent a length of 277 +

3 (minimum match length).

Note: All the length is included in the final two bytes and is not additive, as

were the previous length calculations for lengths that are smaller than 280

bytes.

281 b'111' (three bits in the original two bytes of metadata)

b'1111' (in the high or lower-order nibble, as appropriate, of the shared

byte)

b'11111111' (in the next byte)

0x0116 (in the next two bytes). This is 278 + 3 (minimum match length).

61 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Match Length Length Bits in the Metadata

Note: All the length is included in the final two bytes and is not additive, as

were the previous length calculations for lengths that are smaller than 280

bytes.

A "full" bit pattern in that last half word does not mean that more metadata is coming after the

last bytes.

The LZ77 compression algorithm produces a well-compressed encoding for small valued

lengths, but as the length increases, the encoding becomes less well compressed. A match

length of greater than 278 bytes requires a relatively large number of bits: 3+4+8+16. This

includes three bits in the original two bytes of metadata, four bits in the nibble in the 'shared'

byte, eight bits in the next byte, and 16 bits in the final two bytes of metadata.

3.1.7.3 Obfuscation Algorithm

Obfuscation is used to obscure any easily readable messaging data being transmitted between

the client and server across the network. This is not intended as a security feature. If a client

wants to have secure communications with the server, it MUST use RPC-level packet

encryption.

The algorithm used to obscure data is straightforward and simple. Every byte of the data to be

obfuscated SHOULD have XOR applied with the value 0xA5.

3.1.7.4 Extended Buffer Packing

As mentioned in section 3.1.7.1.2.2, the rgbOut field of method EcDoRpcExt2 can contain

more than one extended buffer, each with an RPC_HEADER_EXT header. This concept is

called "packing". The server has the ability to "pack" additional response data into the rgbOut

field based on whether the client has requested this functionality through passing flag Chain in

the pulFlags field and whether the remote operation (ROP) in the rgbIn request buffer on the

EcDoRpcExt2 method support "packing". The ROP commands that support "packing" are

RopQueryRows, RopReadStream, and RopFastTransferSourceGetBuffer. See [MS-

OXCROPS] for details about these ROP commands.

When processing ROP requests, the server MUST NOT produce more than 32 KB worth of

response data for all ROP requests. However, when the server finishes processing a

RopQueryRows, RopReadStream, and RopFastTransferSourceGetBuffer from the rgbIn

request buffer and it was the last ROP command in the request buffer and the client has

requested "packing" through the Chain flag and there is residual room in the rgbOut response

buffer, the server can add additional data to the rgbOut response buffer with its own

RPC_HEADER_EXT header.

62 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

For the server to produce additional response data, it MUST build a response "as if" the client

sent another request with only a RopQueryRows, RopReadStream, or

RopFastTransferSourceGetBuffer. The additional response data is also limited to 32 KB in

size.The additional ROP response is placed into the rgbOut buffer following the previous

header and payload with its own RPC_HEADER_EXT header. The server can then compress

and/or obfuscate this payload if the client requests and set the appropriate flags in the header

indicating how the payload has been altered. If there is still more residual room in the rgbOut

buffer, the server can continue to produce more response data until there is not enough room

in the rgbOut buffer to hold another response.

The server MUST stop adding additional "packed" buffers to the rgbOut response buffer if the

residual size of the rgbOut response buffer is less than 8 KB for RopReadStream and

RopFastTransferSourceGetBuffer and 32 KBfor RopQueryRows. The server MUST NOT

place more than 96 individual payloads into a single rgbOut response buffer.

When it adds additional response data, the server MUST alter the request to reflect what has

already been done. For example, if the client requests to read 1,000 rows in RopQueryRows

and the first payload contains 100 rows, the additional response data MUST be processed "as

if" the client only request 900 rows. The server MUST NOT return more data to the client

than the client originally requested.

For RopQueryRows, the server MUST adjust the row count when adding additional response

data. For RopReadStream, the server MUST adjust the number of bytes to read when adding

additional response data. There is no specific limit for RopFastTransferSourceGetBuffer,

but the server MUST stop if no more data is indicated for the fast transfer stream. For

RopFastTransferSourceGetBuffer, the client SHOULD request that the server return "as

much" data as possible. See [MS-OXCROPS] for details about how to properly format

RopFastTransferSourceGetBuffer in this way.

3.1.8 Auxiliary Buffer

Methods EcDoConnectEx and EcDoRpcExt2 allow for additional data to travel between the

client and server. This additional data is transferred in the auxiliary buffers of both methods.

The rgbAuxIn is for auxiliary data being sent from the client to the server and rgbAuxOut is

for auxiliary data being sent from the server to the client.

Unlike the ROP request and response payloads rgbIn and rgbOut, there is no request and

response nature to the auxiliary buffers. The data sent to the server from the client in the

auxiliary input buffer is purely informational and the server is not required to respond in the

auxiliary output buffer. The data sent from the server to the client is also informational data

that the client might use to alter its behavior against the server.

The data being transferred in the auxiliary buffers is divided into two different categories. The

first is client-side performance information, which is statistical information the client can keep

63 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

regarding its communication with the messaging server or the directory service. Part of this

information is for when the client fails to communicate with the messaging server or the

directory service. The client can then report this information to the server the next time it

communicates. The server is free to analyze this information and provide feedback to help

diagnose any potential networking or communications issues with the client/server messaging

network infrastructure.

The second category of auxiliary information is server-to-client oriented and enables the

server to tell the client about topology characteristics of the messaging system. The client

MAY use this information to change how it interacts with the server.

All information in the auxiliary buffer MUST be added with an AUX_HEADER preceding

the actual auxiliary information. See section 2.2.2.2 for details about the AUX_HEADER and

how it is formatted. Within the AUX_HEADER header the fields Version and Type

combined determine which auxiliary block follows the header. Section 2.2.2.2 provides details

about how to format the AUX_HEADER header to indicate which auxiliary block follows.

If the client or server receives an auxiliary AUX_HEADER block with a version and type it

does not identify, it MUST skip over the entire block. The AUX_HEADER contains the

length of the AUX_HEADER plus the following auxiliary block in the field Size, and so

skipping the information can be done. The client or server SHOULD NOT throw an error if

there is an auxiliary block that it does not identify. This will allow for future expansion to the

auxiliary blocks without affecting legacy clients or servers.

3.1.8.1 Client Performance Monitoring

The following are sent from the client to the server in the rgbAuxIn auxiliary buffer on method

EcDoConnectEx. Each of these auxiliary blocks MUST be preceded by a properly formatted

AUX_HEADER header .

Sent by client to server in EcDoConnectEx

64 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Block Description

AUX_PERF_CLIENTINFO
 (see section 2.2.2.6)

Sent to the server as diagnostic information about the

client for more robust reporting of networking issues.

The client MUST assign a unique ClientID parameter

for each AUX_PERF_CLIENTINFO block sent to

the server. The ClientID is also used in other

performance blocks to identify which client to

associate the performance data with.

AUX_PERF_PROCESSINFO
 (see section 2.2.2.8)

Sent to the server as diagnostic information about the

client process for more robust reporting of networking

issues. The client MUST assign a unique ProcessID

for each AUX_PERF_PROCESSINFO block sent to

the server. The ProcessID is also used in other

performance blocks to identify which client process to

associate the performance data with.

AUX_PERF_SESSIONINFO
 (see section 2.2.2.4)

Sent to the server as diagnostic information about the

client session for more robust reporting of networking

issues. The client MUST assign a unique SessionID

for each AUX_PERF_SESSIONINFO/

AUX_PERF_SESSIONINFO_V2 block sent to the

server. The SessionID is also used in other

performance blocks to identify which client session to

associate the performance data with.

If writing a client, it is recommended that

AUX_PERF_SESSIONINFO_V2 be used instead.

A server SHOULD still support this older session

information auxiliary block.

This block can also be passed in the EcDoRpcExt2

auxiliary input buffer.

AUX_PERF_SESSIONINFO_V2
 (see section 2.2.2.5)

Sent to the server as diagnostic information about the

client session for more robust reporting of networking

issues. The client MUST assign a unique SessionID

for each AUX_PERF_SESSIONINFO_V2/

AUX_PERF_SESSIONINFO block sent to the

server. The SessionID is also used in other

performance blocks to identify which client session to

associate the performance data with.

65 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Block Description

This block can also be passed in the EcDoRpcExt2

auxiliary input buffer.

The following are sent from the client to the server in the rgbAuxIn auxiliary buffer on method

EcDoRpcExt2. Each of these auxiliary blocks MUST be preceded by a properly formatted

AUX_HEADER header (see section 2.2.2.2).

Sent by client to server in EcDoRpcExt2

66 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Block Description

AUX_PERF_SESSIONINFO
(see section 2.2.2.4)

Sent to the server as diagnostic information about

the client session for more robust reporting of

networking issues. The client MUST assign a

unique SessionID for each

AUX_PERF_SESSIONINFO/

AUX_PERF_SESSIONINFO_V2 block sent to

the server. The SessionID is also used in other

performance blocks to identify which client session

to associate the performance data with.

If writing a client, it is recommended that

AUX_PERF_SESSIONINFO_V2 be used

instead. A server SHOULD still support this older

session information auxiliary block.

This block can also be passed in the

EcDoConnectEx auxiliary input buffer.

AUX_PERF_SESSIONINFO_V2
 (see section 2.2.2.5)

Sent to the server as diagnostic information about

the client session for more robust reporting of

networking issues. The client MUST assign a

unique SessionID for each

AUX_PERF_SESSIONINFO_V2/

AUX_PERF_SESSIONINFO block sent to the

server. The SessionID is also used in other

performance blocks to identify which client session

to associate the performance data with.

This block can also be passed in the

EcDoConnectEx auxiliary input buffer.

AUX_PERF_SERVERINFO
 (see section 2.2.2.7)

Sent to the server as diagnostic information about

the server that the client is communicating with for

more robust reporting of networking issues. The

client MUST assign a unique ServerID for each

AUX_PERF_SERVERINFO block sent to the

server. The ServerID is also used in other

performance blocks to identify which server a

client is communicating with to associate the

performance data.

AUX_PERF_REQUESTID Sent to the server as diagnostic information about a

67 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Block Description

 (see section 2.2.2.3) particular request for more robust reporting of

networking issues. The client MUST assign a

unique RequestID for each

AUX_PERF_REQUESTINFO block sent to the

server. The RequestID is also used in other

performance blocks to identify which request to

associate the performance data with.

This block requires an

AUX_PERF_SESSIONINFO or

AUX_PERF_SESSIONINFO_V2 to have been

previously sent to the server for the SessionID

field within this block.

AUX_PERF_DEFMDB_SUCCESS
 (see section 2.2.2.9)

Sent to the server as diagnostic information to

report a previously successful RPC call to the

messaging server.

This block requires an

AUX_PERF_REQUESTID to have been

previously sent to the server for the RequestID

field within this block.

AUX_PERF_DEFGC_SUCCESS
 (see section 2.2.2.10)

Sent to the server as diagnostic information to

report a previously successful call to the Active

Directory directory service.

This block requires an

AUX_PERF_SERVERINFO and

AUX_PERF_SESSIONINFO/

AUX_PERF_SESSIONINFO_V2 to have been

previously sent to the server for the ServerID and

SessionID fields within this block.

AUX_PERF_MDB_SUCCESS
 (see section 2.2.2.11)

Sent to the server as diagnostic information to

report a previously successful RPC call to the

messaging server.

This block requires an

AUX_PERF_REQUESTID,

AUX_PERF_CLIENTINFO,

AUX_PERF_SERVERINFO, and

68 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Block Description

AUX_PERF_SESSIONINFO/

AUX_PERF_SESSIONINFO_V2 to have been

previously sent to the server for the RequestID,

ClientID, ServerID, and SessionID fields within

this block.

If writing a client, it is recommended that

AUX_PERF_MDB_SUCCESS_V2 be used

instead. A server SHOULD still support this older

session information auxiliary block.

AUX_PERF_MDB_SUCCESS_V2

 (see section 2.2.2.12)

Sent to the server as diagnostic information to

report a previously successful RPC call to the

messaging server.

This block requires an

AUX_PERF_REQUESTID,

AUX_PERF_PROCESSINFO,

AUX_PERF_CLIENTINFO,

AUX_PERF_SERVERINFO, and

AUX_PERF_SESSIONINFO/

AUX_PERF_SESSIONINFO_V2 to have been

previously sent to the server for the RequestID,

ProcessID, ClientID, ServerID, and SessionID

fields within this block.

AUX_PERF_GC_SUCCESS
 (see section 2.2.2.13)

Sent to the server as diagnostic information to

report a previously successful call to the directory

service.

This block requires an

AUX_PERF_CLIENTINFO,

AUX_PERF_SERVERINFO, and

AUX_PERF_SESSIONINFO/

AUX_PERF_SESSIONINFO_V2 to have been

previously sent to the server for the ClientID,

ServerID, and SessionID fields within this block.

If writing a client, it is recommended that

AUX_PERF_GC_SUCCESS_V2 be used

instead. A server SHOULD still support this older

69 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Block Description

session information auxiliary block.

AUX_PERF_GC_SUCCESS_V2
 (see section 2.2.2.14)

Sent to the server as diagnostic information to

report a previously successful call to the directory

service.

This block requires an

AUX_PERF_PROCESSINFO,

AUX_PERF_CLIENTINFO,

AUX_PERF_SERVERINFO, and

AUX_PERF_SESSIONINFO/

AUX_PERF_SESSIONINFO_V2 to have been

previously sent to the server for the ProcessID,

ClientID, ServerID, and SessionID fields within

this block.

AUX_PERF_FAILURE
(see section 2.2.2.15)

Sent to the server as diagnostic information to

report a previously FAILED call to the messaging

server or the directory service.

This block requires an

AUX_PERF_REQUESTID,

AUX_PERF_CLIENTINFO,

AUX_PERF_SERVERINFO, and

AUX_PERF_SESSIONINFO/

AUX_PERF_SESSIONINFO_V2 to have been

previously sent to the server for the RequestID,

ClientID, ServerID, and SessionID fields within

this block.

If writing a client, it is recommended that

AUX_PERF_FAILURE_V2 be used instead. A

server SHOULD still support this older session

information auxiliary block.

AUX_PERF_FAILURE_V2
 (see section 2.2.2.16)

Sent to the server as diagnostic information to

report a previously FAILED call to the messaging

server or the directory service.

This block requires an

AUX_PERF_REQUESTID,

AUX_PERF_PROCESSINFO,

70 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Block Description

AUX_PERF_CLIENTINFO,

AUX_PERF_SERVERINFO, and

AUX_PERF_SESSIONINFO/

AUX_PERF_SESSIONINFO_V2 to have been

previously sent to the server for the RequestID,

ProcessID, ClientID, ServerID, and SessionID

fields within this block.

3.1.8.2 Server Topology Information

The following are sent from the server to the client in the rgbAuxOut auxiliary buffer on

method EcDoConnectEx. Each of these auxiliary blocks MUST be preceded by a properly

formatted AUX_HEADER header (see section 2.2.2.2).

Sent by server to client in EcDoConnectEx

71 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Block Description

AUX_CLIENT_CONTROL
 (see section 2.2.2.17)

Sent to the client to request a change in client

behavior. This is a means for the server to

dynamically change client behavior. See

section 2.2.2.17 for details about what client

behavior the server can adjust.

The client SHOULD alter its behavior based

on this request.

AUX_OSVERSIONINFO
 (see section 2.2.2.18)

Sent to the client as informational data to help

the client decide whether it needs to alter its

behavior against the server. The data

provided to the client is the servers operating

system version and operating system service

pack information.

AUX_EXORGINFO
 (see section 2.2.2.19)

Sent to the client as informational data to help

the client decide whether it needs to alter its

behavior against the server. The data

provided informs the client of the presence of

public folders within the organization.

A client MUST NOT try to open a public

store if the server informs the client that it is

not present or disabled. If this block is not

returned to the client, the client SHOULD

assume that public folders are available

within the organization.

The following are sent from the server to the client in the rgbAuxOut auxiliary buffer on

method EcDoRpcExt2. Each of these auxiliary blocks MUST be preceded by a properly

formatted AUX_HEADER header (see section 2.2.2.2).

Sent by server to client in EcDoRpcExt2

72 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Block Description

AUX_CLIENT_CONTROL
(see section 2.2.2.17)

Sent to the client to request a change in client

behavior. This is a means for the server to

dynamically change client behavior. See

section 2.2.2.17 for details about what client

behavior the server can adjust.

The client SHOULD alter its behavior based

on this request.

3.1.9 Version Checking

In the method EcDoConnectEx, the client passes the client version to the server. In response,

the server returns its version to the client. The server version information indicates to the client

what functionality is supported on the server. The client version information indicates to the

server what functionality the client supports.

Sometimes the functionality represents a change in the protocol wire format. This section

describes the following:

 How version numbers are compared.

 Specific server versions and their associated functionality.

 Specific client versions and their associated functionality.

3.1.9.1 Version Number Comparison

On the wire, client and server versions numbers are passed as three WORD values. See

section 3.1.4.11 for details about the EcDoConnectEx method. In this method, the fields

rgwClientVersion, rgwServerVersion, and rgwBestVersion are all passed as three WORD

values. However, manipulation MUST be performed before the numbers can be compared.

Because versions that are passed on the wire were historically represented as only three

numbers, the version number was expressed as "XX.XXXX.XXX." The first number

represented the product major version. The second number was the build major number. The

third number was the build minor number. However, this representation prevented the

inclusion of a required fourth number, the product minor number, which is used when

shipping service packs.

Microsoft changed the versioning to be represented as "XX.XX.XXXX.XXX." For example,

"08.01.0215.000" represents a specific build of Exchange 2007 with Service Pack 1 applied.

The first number is the product major version. The second number is the product minor

73 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

version. The third number is the build major number. The fourth number is the build minor

number.

However, the version size on the wire did not change: it is still represented as three WORD

values. A scheme was devised that converts from the three WORD on-the-wire-format of the

version into a four-number version. This is referred to as version number normalization.

All versions are converted into four-number versions before any version checks are

performed. The following pseudo-code example describes a function that converts the three

WORD value wire version format into a four-number format that can then be used for version

comparisons.

// This routine converts a three WORD version value into a normalized

// four WORD version value.

//

// Version[] is an array of 3 WORD values on the wire.

// NormalizedVersion[] is an array of 4 WORD values for comparison.

//

IF high-bit of Version[1]is set THEN

SET NormalizedVersion[0] to high-byte of Version[0]

SET NormalizedVersion[1] to low-byte of Version[0]

SET NormalizedVersion[2] to Version[1] with high-bit cleared

SET NormalizedVersion[3] to Version[2]

ELSE

SET NormalizedVersion[0] to Version[0]

SET NormalizedVersion[1] to 0

SET NormalizedVersion[2] to Version[1]

SET NormalizedVersion[3] to Version[2]

ENDIF

The first WORD is divided into two BYTE values, one being the product major version and

the other being the product minor version. On the wire, the client and server need to know

whether the version that is being passed is in the old scheme or the new scheme. If the highest

74 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

bit of the second WORD value on the wire is set, the version on the wire is in the new scheme.

Otherwise, it is interpreted as the old scheme where the product minor version is not sent.

3.1.9.2 Server Versions

The following table shows server version values that are returned to the client on the

EcDoConnectEx method call. The client can assume that the described functionality exists if

the version number that is passed in the RPC buffer is equal to or greater than the server

version number in which the functionality was added, as shown in the table.

Server version Description

6.0.6755.0 The server supports passing the sentinel value

0xBABE in the BufferSize field of a

RopFastTransferSourceGetBuffer request. For

details, see [MS-OXCROPS].

8.0.295.0 The server supports passing the sentinel value

0xBABE in the ByteCount field of a

RopReadStream request. For details, see [MS-

OXCROPS].

8.0.324.0 The server supports the flag

CLI_WITH_PER_MDB_FIX in the OpenFlags

field of a RopLogon request. For details, see

[MS-OXCROPS] and [MS-OXCSTOR].

8.0.358.0 The server supports the EcDoAsyncConnectEx

and EcDoAsyncWaitEx RPC function calls.

A server implementation needs to determine which level of support it will offer clients. Based

on this level of support, it MUST return a server version that corresponds to that support. A

server cannot mix and match functionality. To support functionality at one server version

level, the server MUST support all functionality from previous server version levels.

3.1.9.3 Client Versions

The following table shows client versions that are passed to the server on the

EcDoConnectEx method call, where the client can expect the server behavior to change if the

version that is transferred on the wire is equal to or greater than client version numbers as

listed in the table.

75 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Client version Description

11.0.0.0 The client supports receiving UNICODE strings for all

string properties on Recipient Row data that is returned

from the server on RopReadRecipients,

RopOpenMessage, and

RopOpenEmbeddedMessage. For details, see [MS-

OXCROPS].

11.00.0000.4920 The client supports receiving ecServerBusy in the

ReturnValue field of the

RopFastTransferSourceGetBuffer response. The

client also assumes that the BackoffTime field will be

present when the ReturnValue is ecServerBusy. If

ReturnValue is not ecServerBusy, the BackoffTime

field is not present. For details, see [MS-OXCROPS]

and [MS-OXCFXICS].

12.00.0000.000 The client supports receiving the errors

ecCachedModeRequired, ecRpcHttpDisallowed, and

ecProtocolDisabled on the EcDoConnectEx call;

otherwise, the client will get back

ecClientVerDisallowed instead.

12.00.3118.000 The client supports receiving an AUX_EXORGINFO

block in the rgbAuxOut buffer on the EcDoConnectEx

call.

12.00.3619.000 The client supports receiving the errors

ecNotEncrypted on the EcDoConnectEx call;

otherwise, the client will get back

ecClientVerDisallowed. This error is returned when the

server is configured to only allow encrypted

connections and the client is trying to connect on a

nonencrypted connection.

12.00.3730.000 The client supports send optimization for Incremental

Change Synchronization (ICS) using

PidTagTargetEntryId. See [MS-OXCFXICS] for

more details.

12.00.4207.000 The client supports "packing" of RopReadStream in

the ROP response buffer of the EcDoRpcExt2 RPC

call. The RopReadStream MUST be the last ROP in

the request buffer on the EcDoRpcExt2 call. See

76 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Client version Description

section 3.1.7.4 for details about extended buffer

"packing".

12.00.4228.0000 The client supports receiving RopBackoff in the ROP

response buffer of the EcDoRpcExt2 call. For details,

see [MS-OXCROPS].

A client implementation needs to determine which level of support it will offer servers. Based

on this level of support, it MUST pass a client version that corresponds to that support. A

client cannot mix and match functionality. To support functionality at one client version level,

it MUST support all functionality from previous client version levels.

3.2 EMSMDB Client Details

3.2.1 Abstract Data Model

For some functionality on the EMSMDB interface, it is required that the client store a Session

Context Handle (CXH) and use it on subsequent interface calls that require a CXH context

handle.

3.2.2 Timers

No protocol timers are required beyond the internal timers that are used in RPC to implement

resiliency to network outages. For details, see [MS-RPCE].

3.2.3 Initialization

The client creates an RPC connection to the remote server using the details described in

section 2.1.

Establishing a connection with the server requires authentication. The RPC binding handle

MUST have an authentication method defined.

3.2.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data

consistency check at target level 5.0, as specified in section 3 of [MS-RPCE].

Upon the completion of the RPC method, the client returns the result unmodified to the higher

layer. Some method calls require an RPC context handle, which is created in another method

call. For details about method dependencies, see section 3.

77 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

3.2.4.1 Sending EcDoConnectEx

When issuing the interface call EcDoConnectEx, some parameters need additional client-side

consideration beyond what is stated in section 3.1.4.11. The following is a list of parameters

for which the client SHOULD have specific handling:

hBinding: A valid RPC binding handle that MUST have a server name, protocol sequence,

and authentication method defined. Some protocol sequences have named endpoints that

MUST be used. See section 2.1 for details about how to create a binding handle.

pcxh: On success, this field will contain the Session Context Handle (CXH). The CXH

MUST be stored on the client and used in subsequent calls on the EMSMDB interface that

require a valid CXH.

ulConMod: The connection modulus hash is determined by the client for a connection. How

the client determines the hash value is not important. The client SHOULD ensure that for a

particular distinguished name passed in field szUserDN, the hash value SHOULD always be

the same. It is acceptable to have the same hash value for different distinguished names. The

client is free to send any 32-bit value.

cbLimit: A client MUST pass a value of 0x00000000.

ulIcxrLink: This value is used to link the Session Context that is created by this call with an

existing Session Context on the server that was created by a previous call to EcDoConnectEx.

A client MAY want to link two Session Contexts for the following reasons:

1. To consume a single Client Access License (CAL)for all the connections made from

a single client computer. This gives a client the ability to open multiple independent

connections using more than one Session Context on the server, but be seen to the

server as only consuming a single CAL.

2. To get pending notification information for other sessions on the same client

computer. See RopPending in [MS-OXCNOTIF] for details.

If a client does not want to link two Session Contexts or if this is the first call to

EcDoConnectEx, the client MUST pass a value of 0xFFFFFFFF.

Note that the ulIcxrLink parameter is defined as a 32-bit value. Other than passing

0xFFFFFFFF for no Session Context link, the client SHOULD only pass a value with the

high-order 16-bits set to zero and the low-order 16-bits MUST be the value returned in field

piCxr from a previous EcDoConnectEx call.

78 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

usFCanConvertCodePages: The client MUST pass a value of value 0x01.

pcmsPollsMax: On success, this value is the number of milliseconds the client SHOULD

wait before polling the server for notification information. Other more dynamic options are

available to the client for receiving notifications from the server. See [MS-OXCNOTIF] for

details about working with Notifications. The client SHOULD save this value and associate it

with the CXH.

pcRetry: On success, this value is the number of times the client SHOULD retry a subsequent

EMSMDB method call that uses the CXH that is returned in field pcxh. See section 3.2.4.3

for details about retrying RPC calls. This value SHOULD be saved and associated with the

CXH.

pcmsRetryDelay: On success, this value is the number of milliseconds a client SHOULD

wait before retrying a subsequent EMSMDB method call that uses the CXH that is returned in

field pcxh. See section 3.2.4.3 for details about retrying RPC calls. This value SHOULD be

saved and associated with the CXH.

piCxr: On success, this value is a 16-bit session index that can be used in conjunction with the

value returned in pulTimeStamp to link two Session Contexts on the server. See field

ulIcxrLink for details about how to link Session Contexts and the reason why a client might

want to do so.

This value SHOULD be saved and associated with the CXH. It is the session index returned in

a RopPending response command on calls to EcDoRpcExt2. The RopPending response

command tells the client that a Session Context on the server has pending notifications. If a

client links Session Contexts, a RopPending can be returned for any linked Session Context.

See [MS-OXCROPS] and [MS-OXCNOTIF] for details about RopPending.

rgwClientVersion: The client MUST pass the version number of the highest client protocol

version it supports. This value will provide information to the server about the protocol

functionality that the client supports. For details about how version numbers are interpreted

from the wire data and the expected client behavior, see section 3.1.9.

rgwServerVersion: On success, this value is the server protocol version that the client

SHOULD use to determine what protocol functionality the server supports. For details about

how version numbers are interpreted from the wire data and the expected server behavior, see

section 3.1.9. This value SHOULD be saved and associated with the CXH.

pulTimeStamp: If a client wants to link the Session Context that is created by this call to a

previously created Session Context, the client MUST pass on input the session creation time

stamp returned in pulTimeStamp on a previous EcDoConnectEx call. If the client does not

want to link Session Contexts, the client SHOULD pass value 0x00000000.

79 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

On success, this value is the Session Context creation time stamp. The server SHOULD save

the Session Context creation time stamp and associate it with the CXH.

3.2.4.2 Sending EcDoRpcExt2

When issuing the interface call EcDoRpcExt2 some parameters need additional client-side

consideration beyond what is stated in section 3.1.4.12. The following is a parameter for

which the client SHOULD have specific handling:

pcxh: The client MUST pass a valid Session Context Handle (CXH) that was created by

calling EcDoConnectEx. On output, the server might have prematurely closed the client’s

session by clearing the CXH to zero. If the value on output is zero, the Session Context on the

server has been destroyed.

3.2.4.3 Handling Server Too Busy

All method calls that require a valid Session Context Handle (CXH) SHOULD be retried if

the call fails with RPC status RPC_S_SERVER_TOO_BUSY. The number of times the

client SHOULD retry and the amount of time the client SHOULD wait before retrying is

based on fields pcRetry and pcmsRetryDelay returned on EcDoConnectEx. EcDoConnectEx

is the only method that creates a CXH, so it is a prerequisite for any method that requires a

CXH.

3.2.4.4 Handling Connection Failures

If the client’s connection to the server fails or if the server prematurely disconnects a client by

clearing the Session Context Handle (CXH) in the response to an EMSMDB method call,

the client SHOULD clean up any saved session state information and close the CXH if it is

not already set to zero. The binding handle of the session SHOULD also be closed.

A client might chose to reconnect to the server automatically by creating a new binding handle

and calling EcDoConnectEx. This will create a new Session Context on the server. Note that

all Server objects previously opened on the server will no longer exist and the client MUST

issue ROP commands if the client wants to recreate or reopen the Server objects.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

3.3 AsyncEMSMDB Server Details

The server responds to messages it receives from the client.

80 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an

implementation maintains to participate in this protocol. The described organization is

provided to facilitate the explanation of how the protocol behaves. This document does not

mandate that implementations adhere to this model as long as their external behavior is

consistent with that described in this document.

The abstract data model for this interface is the same as that for the EMSMDB interface. See

section 3.1.1 for details about Session Context and Session Context Handles (CXHs).

Some methods on this interface require Session Context information to be stored on the server

and used across multiple interface calls for a long duration of time. For these method calls, this

protocol is stateful. The server MUST store this Session Context information and provide a

CXH to the client to make subsequent interface calls using this same Session Context

information.

The AsyncEMSMDB uses Asynchronous Context Handles (ACXH), which are RPC

context handles. Every ACXH MUST map to the Session Context that is associated with a

CXH. There SHOULD only be one ACXH for a Session Context.

All methods on the AsyncEMSMDB interface that use an ACXH MUST be performed

against the Session Context that is associated with the ACXH.

The server MUST keep a mapping between the ACXH and an active Session Context on the

server. Session Contexts can be created and destroyed through the EMSMDB interface.

When the Session Context is destroyed or the client connection is lost, the ACXH MUST also

be destroyed.

3.3.2 Timers

None.

3.3.3 Initialization

The server first MUST register the different protocol sequences that will allow clients to

communicate with the server. This is done by calling RPC function

RpcServerUseProtseqEp. See [MS-RPCE] for details about this function and protocol

sequences. The supported protocol sequences are specified in section 2.1. Note that some

protocol sequences use named endpoints, which are also specified in section 2.1.

The server MUST register the different authentication methods that are allowed on the

AsyncEMSMDB interface. This is done by calling RPC function

RpcServerRegisterAuthInfo. See [MS-RPCE] for details about this function and

authentication methods.

81 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

The server MUST start listening for RPC calls by calling RPC function RpcServerListen.

See [MS-RPCE] for details about this function.

The server MUST register the AsyncEMSMDB interface. This is done by calling RPC

function RpcServerRegisterIfEx. See [MS-RPCE] for details about this function.

The last step is to register the AsyncEMSMDB interface to all the registered binding handles

created previously in calls to RpcServerUseProtseq or RpcServerUseProtseqEp. This is

done by first acquiring all the binding handle information through RPC function

RpcServerInqBindings, and then calling RPC function RpcEpRegister with the binding

information. See [MS-RPCE] for details about these functions.

3.3.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data

consistency check at target level 5.0, as specified in [MS-RPCE] Section 3.

This interface includes the following method:

Method Opnum Description

EcDoAsyncWaitEx 0 Asynchronous call that the server will not

complete until there are pending events on the

Session Context. The method requires an

active Asynchronous Context Handle

(ACXH) returned from

EcDoAsyncConnectEx on interface

EMSMDB.

3.3.4.1 EcDoAsyncWaitEx (opnum 0)

The method EcDoAsyncWaitEx is an asynchronous call that the server will not complete

until there are pending events on the Session Context up to a five minute duration. If no

events are available within five minutes, the server will return the call and will not set the

NotificationPending flag in the pulFlagsOut field. If an event is pending, the server will

complete the call immediately and return the NotificationPending flag in the pulFlagsOut

field. This call requires an active Asynchronous Context Handle (ACXH) returned from

EcDoAsyncConnectEx on interface EMSMDB. The ACXH is associated with the Session

Context.

This method is part of Notification handling. See [MS-OXCNOTIF] for details about

notifications.

82 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

long __stdcall EcDoAsyncWaitEx(

[in] ACXH acxh,

[in] unsigned long ulFlagsIn,

[out] unsigned long *pulFlagsOut

);

acxh: On input, the client MUST pass a valid ACXH that was created by calling

EcDoAsyncConnectEx on interface EMSMDB. The server uses the ACXH to identify the

Session Context to use for this call.

ulFlagsIn: Unused. Reserved for future use. Client MUST pass a value of 0x00000000.

pulFlagsOut: Output flags for the client.

Flag Value Description

NotificationPending 0x00000001 Signals that events are pending for the client

on the Session Context on the server. The

client SHOULD call EcDoRpcExt2 with an

empty remote operation (ROP) request

buffer. The server will return the event details

in the ROP response buffer.

3.3.5 Timer Events

None.

3.3.6 Other Local Events

None.

3.4 AsyncEMSMDB Client Details

3.4.1 Abstract Data Model

For some functionality on the AsyncEMSMDB interface, it is required that the client store an

Asynchronous Context Handle (ACXH) and use it on subsequent interface calls that require

an ACXH.

83 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

3.4.2 Timers

No protocol timers are required beyond those internal timers used in RPC to implement

resiliency to network outages. For details, see [MS-RPCE].

3.4.3 Initialization

This interface can only be used after first obtaining an Asynchronous Context Handle

(ACXH) from the method EcDoAsyncConnectEx from interface EMSMDB.

3.4.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data

consistency check at target level 5.0, as specified in [MS-RPCE] section 3.

Upon the completion of the RPC method, the client returns the result unmodified to the higher

layer. Some method calls require an RPC context handle, which is created in another method

call. For details about method dependencies, see section 3.

3.4.5 Timer Events

None.

3.4.6 Other Local Events

None.

4 Protocol Examples

The following are examples of how a client and server use this protocol connection, submit

ROP commands, and disconnect.

4.1 Client Connecting to Server

1. Client creates an RPC binding handle to the server with the "ncacn_ip_tcp" protocol

sequence and the RPC_C_AUTHN_WINNT authentication method.

2. Client makes EMSMDB interface method call EcDoConnectEx with the following

parameters to establish a Session Context with the server:

hBinding: Binding handle created in step 1.

pcxh: Pointer to CXH to hold output value. In this example the client initializes

CXH to zero.

szUserDN: User’s distinguished name. String that contains the distinguished

named of the user who is making the EcDoConnectEx call in a directory service.

84 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Value: "/o=Microsoft/ou=First Administrative

Group/cn=Recipients/cn=janedow".

ulFlags: Value 0x00000000. Regular user access.

ulConMod: Value 0x00340567. Client computed hash on szUserDN value.

cbLimit: Value 0x00000000.

ulCpid: Value 0x000004E4. Code page 1252.

ulLcidString: Value 0x00000409. Locale 1033 "en-us".

ulLcidSort: Value 0x00000409. Locale 1033 "en-us".

ulIcxrLink: Value 0xFFFFFFFF. No session link.

usFCanConvertCodePages: Value 0x01.

rgwClientVersion: Pointer to unsigned short array containing values: 0x000C,

0x183E, and 0x03E8. Client supports protocol client version 12.6206.1000.

pulTimeStamp: Pointer to unsigned long value 0x00000000.

rgbAuxIn: Null pointer value.

cbAuxIn: Value 0x00000000.

rgbAuxOut: Pointer to buffer of size 0x1008.

pcbAuxOut: Pointer to unsigned long value 0x00001008.

3. Server processes EcDoConnectEx request. Verifies that authentication context

associated with hBinding handle has ownership privileges to a directory service object

that contains a distinguished name in field szUserDN. Server creates Session Context

and assigns a CXH (using 0x00001234 for this example). Server returns the following

output values:

pcxh: Value at CXH pointer is 0x00001234. Note that the actual RPC context

handle returned to the client in this field might not be what the server returned.

The RPC layer on the server and client might map the context handle. The context

handle returned to the client is guaranteed to be unique and will map back to the

server assigned context handle if used on subsequent calls to the server.

85 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

pcmsPollsMax: Value at unsigned long pointer is 0x0000EA60. In this example

the client is instructed to poll for events every 60 seconds.

pcRetry: Value at unsigned long pointer is 0x00000006. In this example the client

is instructed to retry six time before failing.

pcmsRetryDelay: Value at unsigned long pointer is 0x00001770. In this example

the client is instructed to wait 10 seconds between each retry.

picxr: Value at unsigned short pointer is a server assigned session index with

value 0x0304.

szDNPrefix: Value at unsigned char pointer is a pointer to a null-terminated ANSI

string with value "/o=Microsoft/ou=First Administrative

Group/cn=Configuration/cn=Servers/cn=MBX-SRV-02"..

szDisplayName: Value at unsigned char pointer is a pointer to a null-terminated

ANSI string with value "MBX-SRV-02".

rgwServerVersion: Value at unsigned short array contains values: 0x0008,

0x82B4, 0x0003. Server supports protocol server version 8.0.692.3.

rgwBestVersion: Value at unsigned short array contains values: 0x000C, 0x183E

and 0x03E8.

pulTimeStamp: Value at unsigned long pointer is a 32-bit value that represents

the internal server time when the Session Context was created.

rgbAuxOut: Server returns the following extended buffer and payload containing

auxiliary information.

RPC_HEADER_EXT Payload

AUX_HEADER AUX_EXORGINFO

Version Flags Size SizeActual Size Version Type OrgFlags

0x0000 0x0004 0x0008 0x0008 0x0008 0x01 0x17 0x00000001

Payload is not compressed and not obfuscated.

pcbAuxOut: Value at unsigned long pointer is 0x00000010. Field rgbAuxOut is

16 bytes in length.

86 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Return Value: Value is 0x00000000.

4.2 Client Issuing ROP Commands to Server

1. Client has already established a Session Context with the server and has a valid

Session Context Handle (CXH). For more information, see steps 1 through 3 of

section 4.1.

2. Client sends ROP commands to server by calling EcDoRpcExt2 using the CXH

returned from the EcDoConnectEx call.

pcxh: Pointer to CXH value which is 0x00001234.

pulFlags: Pointer to unsigned long containing value 0x00000003. Client requests

server to not compress or XOR payload of rgbOut and rgbAuxOut.

rgbIn: Client passes extended buffer and payload containing ROP commands to

be processed by server. See [MS-OXCROPS] for details about ROP commands.

RPC_HEADER_EXT Payload

ROP Request Commands

Version Flags Size SizeActual RopSize Rops ServerObjectHandleTable

0x0000 0x0004 0x0152 0x0152 0x0142 320 bytes 16 bytes

Payload is not compressed and not obfuscated.

cbIn: Value of 0x0000015A.

rgbAuxIn: Null pointer value.

cbAuxIn: Value of 0x00000000.

rgbOut: Pointer to buffer of size 0x00018008.

pcbOut: Pointer to unsigned long value 0x00018008.

rgbAuxOut: Pointer to buffer of size 0x1008.

pcbAuxOut: Pointer to unsigned long value 0x00001008.

87 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

3. Server processes EcDoRpcExt2 request. Server verifies that CXH is for a valid

session context for this user. Server processes ROP request commands and returns

ROP response results to client. Server returns the following output values:

pcxh: Value at CXH pointer is 0x00001234.

pulFlags: Value at unsigned long is 0x00000000.

rgbOut: Server returns the following extended buffer and payload containing

ROP response commands:

RPC_HEADER_EXT Payload

ROP Response Commands

Version Flags Size SizeActual RopSize Rops ServerObjectHandleTable

0x0000 0x0004 0x0052 0x0052 0x0042 64 bytes 16 bytes

Payload is not compressed and not obfuscated.

pcbOut: Value is 0x0000005A.

rgbAuxOut: Server returns nothing in the auxiliary output buffer.

pcbAuxOut: Value is 0x00000000.

pulTransTime: Value at unsigned long pointer is 0x00000010. Contains the

number of milliseconds it took the server to process the EcDoRpcExt2 call.

Return Value: Value is 0x00000000.

4.3 Client Receiving "Packed" ROP Response from Server

1. Client has already established a Session Context with the server and has a valid

Session Context Handle (CXH). For more information, see steps 1 through 3 of

section 4.1.

2. Client sends ROP commands to server by calling EcDoRpcExt2 using the CXH that

is returned from the EcDoConnectEx call. The last ROP request contains

RopReadStream, and so client requests response chaining (for example, "packing").

pcxh: Pointer to CXH value, which is 0x00001234.

88 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

pulFlags: Pointer to unsigned long containing value 0x00000007. Client requests

server to not compress or XOR payload of rgbOut and rgbAuxOut. Client requests

response chaining.

rgbIn: Client passes extended buffer and payload containing ROP commands to

be processed by server. See [MS-OXCROPS] for details about ROP commands.

RPC_HEADER_EXT Payload

ROP Request Commands

Version Flags Size SizeActual RopSize Rops SOHT

0x0000 0x0004 0x0152 0x0152 0x0142 320 bytes (last ROP command is

RopReadStream)

16 bytes

Payload is not compressed and not obfuscated.

cbIn: Value of 0x0000015A.

rgbAuxIn: Null pointer value.

cbAuxIn: Value of 0x00000000.

rgbOut: Pointer to buffer of size 0x00018008.

pcbOut: Pointer to unsigned long value 0x00018008.

rgbAuxOut: Pointer to buffer of size 0x1008.

pcbAuxOut: Pointer to unsigned long value 0x00001008.

3. Server processes EcDoRpcExt2 request. Server verifies that CXH is for a valid

Session Context for this user. Server processes ROP request commands and returns

ROP response results to client. The last ROP was RopReadStream, and the client has

requested chaining; there is more data to return in the stream being read, there is more

room in the rgbOut output buffer and the server adds another extended buffer and

payload. The server returns the following output values:

pcxh: Value at CXH pointer is 0x00001234.

pulFlags: Value at unsigned long is 0x00000000.

89 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

rgbOut: Server returns two extended buffer header and payload pairs containing

ROP response commands. The last payload contains only the RopReadStream

command.

RPC_HEADER_EXT

Flags: 0x0000

Size: 0x7FFE

Payload RPC_HEADER_EXT

Flags: 0x0004

Size: 0x2008

Payload

ROP Response Commands ROP Response Command

RopSize

0x7FEE

Rops

. . .

SOHT

16 bytes

RopSize

0x1FF8

Rop

. . .

SOHT

16 bytes

Payloads are not compressed and not obfuscated.

pcbOut: Value is 0x0000A016.

rgbAuxOut: Server returns nothing in the auxiliary output buffer.

pcbAuxOut: Value is 0x00000000.

pulTransTime: Value at unsigned long pointer is 0x00000010. Contains the

number of milliseconds it took the server to process the EcDoRpcExt2 call.

Return Value: Value is 0x00000000.

4.4 Client Disconnecting from Server

1. Client has already established a Session Context with the server and has a valid

Session Context Handle (CXH). For more information, see steps 1 through 3 of

section 4.1.

2. Client is exiting and wants to destroy the Session Context on the server. Client issues

EcDoDisconnect using the CXH that was returned from the EcDoConnectEx call.

pcxh: Pointer to CXH value, which is 0x00001234.

3. Server processes EcDoDisconnect request. Server verifies that CXH is for a valid

Session Context for this user. Server destroys Session Context and invalidates CXH.

Server returns the following output values:

pcxh: Value at CXH pointer is 0x00000000.

Return Value: Value is 0x00000000.

90 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

5 Security

5.1 Security Considerations for Implementers

To reduce exploits of server code, it is recommended that anonymous access to the server not

be granted. To make method calls on the EMSMDB and AsyncEMSMDB interfaces, only

properly authenticated RPC binding handles are allowed..

Most of the EMSMDB and AsyncEMSMDB interface methods require a Session Context

Handle (CXH), which can only be created from a successful call to EcDoConnectEx. The

server verifies that the authentication context on the RPC binding handle has sufficient

permissions to access the server and create a Session Context. These method calls are used by

the client to create a Session Context with the server. They are also used to declare to the

server who is attempting to access messaging data on the server through the distinguished

named passed in the szUserDN field. It is recommended that the server verify that the

authentication context on the RPC binding handle has ownership permissions to the directory

service object that is associated with the distinguished name. If the authentication context

does not have adequate permissions, then the server fails the call and does not create a Session

Context.

Although the protocol allows for data compression and data obfuscation on method call

EcDoRpcExt2, it is recommended that data compression and data obfuscation not be used in

place of proper encryption. It is recommended that RPC-level encryption be used by the client

when establishing a connection with the server. This will properly encrypt all fields of all

method calls on the EMSMDB and AsyncEMSMDB interfaces.

5.2 Index of Security Parameters

None.

6 Appendix A: Full IDL/ACF

For ease of implementation, the full IDL and ACF is provided in the following sections, where

"ms-rpce.idl" refers to the IDL found in [MS-RPCE] Appendix A. The syntax uses the IDL

syntax extensions as specified in [MS-RPCE] sections 2.2.4 and 3.1.5.1. For example, as

specified in [MS-RPCE] section 2.2.4.8, a pointer_default declaration is not required and

pointer_default(unique) is assumed.

6.1 IDL

import "ms-rpce.idl";

typedef [context_handle] void * CXH;

typedef [context_handle] void * ACXH;

91 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

// Special restricted types to prevent allocation of big buffers.

typedef [range(0x0, 0x40000)] unsigned long BIG_RANGE_ULONG;

typedef [range(0x0, 0x1008)] unsigned long SMALL_RANGE_ULONG;

 [uuid (A4F1DB00-CA47-1067-B31F-00DD010662DA),

 version(0.81),

 pointer_default(unique)]

interface emsmdb

{

long __stdcall Opnum0Reserved(

);

long __stdcall EcDoDisconnect(

[in, out, ref] CXH * pcxh

);

long __stdcall Opnum2Reserved(

);

long __stdcall Opnum3Reserved(

);

long __stdcall EcRRegisterPushNotification(

[in, out, ref] CXH * pcxh,

[in] unsigned long iRpc,

[in, size_is(cbContext)]unsigned char rgbContext[],

[in] unsigned short cbContext,

[in] unsigned long grbitAdviseBits,

[in, size_is(cbCallbackAddress)] unsigned char rgbCallbackAddress[],

[in] unsigned short cbCallbackAddress,

[out] unsigned long *hNotification

);

long __stdcall Opnum5Reserved(

);

92 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

long __stdcall EcDummyRpc(

[in] handle_t hBinding

);

long __stdcall Opnum7Reserved(

);

long __stdcall Opnum8Reserved(

);

long __stdcall Opnum9Reserved(

);

long __stdcall EcDoConnectEx(

[in] handle_t hBinding,

[out, ref] CXH * pcxh,

[in, string] unsigned char * szUserDN,

[in] unsigned long ulFlags,

[in] unsigned long ulConMod,

[in] unsigned long cbLimit,

[in] unsigned long ulCpid,

[in] unsigned long ulLcidString,

[in] unsigned long ulLcidSort,

[in] unsigned long ulIcxrLink,

[in] unsigned short usFCanConvertCodePages,

[out] unsigned long * pcmsPollsMax,

[out] unsigned long * pcRetry,

[out] unsigned long * pcmsRetryDelay,

[out] unsigned short * picxr,

[out, string] unsigned char **szDNPrefix,

[out, string] unsigned char **szDisplayName,

[in] unsigned short rgwClientVersion[3],

[out] unsigned short rgwServerVersion[3],

93 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

[out] unsigned short rgwBestVersion[3],

[in, out] unsigned long * pulTimeStamp,

[in, size_is(cbAuxIn)] unsigned char rgbAuxIn[],

[in] unsigned long cbAuxIn,

[out, length_is(*pcbAuxOut), size_is(*pcbAuxOut)] unsigned char

rgbAuxOut[],

[in, out] SMALL_RANGE_ULONG *pcbAuxOut

);

long __stdcall EcDoRpcExt2(

[in, out, ref] CXH * pcxh,

[in, out] unsigned long *pulFlags,

[in, size_is(cbIn)] unsigned char rgbIn[],

[in] unsigned long cbIn,

[out, length_is(*pcbOut), size_is(*pcbOut)] unsigned char rgbOut[],

[in, out] BIG_RANGE_ULONG *pcbOut,

[in, size_is(cbAuxIn)] unsigned char rgbAuxIn[],

[in] unsigned long cbAuxIn,

[out, length_is(*pcbAuxOut), size_is(*pcbAuxOut)] unsigned char

rgbAuxOut[],

[in, out] SMALL_RANGE_ULONG *pcbAuxOut,

[out] unsigned long *pulTransTime

);

long __stdcall Opnum12Reserved(

);

long __stdcall Opnum13Reserved(

);

long __stdcall EcDoAsyncConnectEx(

[in] CXH cxh,

[out, ref] ACXH * pacxh

);

94 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

}

[uuid (5261574A-4572-206E-B268-6B199213B4E4),

 version(0.01),

 pointer_default(unique)]

interface asyncemsmdb

{

long __stdcall EcDoAsyncWaitEx(

[in] ACXH acxh,

[in] unsigned long ulFlagsIn,

[out] unsigned long *pulFlagsOut

);

}

6.2 ACF

typedef [context_handle_noserialize] ACXH;

interface asyncemsmdb

{

 [async] EcDoAsyncWaitEx();

}

7 Appendix B: Office/Exchange Behavior

The information in this specification is applicable to the following versions of

Office/Exchange:

 Microsoft Office Outlook 2003

 Microsoft Exchange Server 2003

 Microsoft Office Outlook 2007

 Microsoft Exchange Server 2007

95 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Exceptions, if any, are noted below. Unless otherwise specified, any statement of optional

behavior in this specification prescribed using the terms SHOULD or SHOULD NOT

implies Office/Exchange behavior in accordance with the SHOULD or SHOULD NOT

prescription. Unless otherwise specified, the term MAY implies Office/Exchange does

not follow the prescription.

7.1 Protocol Sequences

7.1.1 Exchange Server Support

Exchange 2003 SP2 allows all RPC protocol sequences listed in section 2.1.

Exchange 2007 SP1 allows only the following RPC protocol sequences: ncalrpc,

ncacn_ip_tcp and ncacn_http.

7.1.2 Office Client Support

Office 2003 SP3 uses only the following RPC protocol sequences: ncacn_ip_tcp and

ncacn_http.

Office 2007 SP1 uses only the following RPC protocol sequences: ncacn_ip_tcp and

ncacn_http.

7.2 Authentication Methods

The following table lists the authentication methods supported by Exchange 2003 SP2 and

Exchange 2007 SP1. A client authenticates using one of these authentication methods.

Authentication Method

RPC_C_AUTHN_WINNT

RPC_C_AUTHN_GSS_KERBEROS

RPC_C_AUTHN_GSS_NEGOTIATE

7.3 RPC Methods

7.3.1 Exchange Server Support

The following table indicates which RPC methods are supported in which versions of

Exchange.

96 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

EMSMDB Interface:

Method Exchange

2003 SP2

Exchange

2007 SP1

EcDoDisconnect

EcRRegisterPushNotification

EcDummyRpc

EcDoConnectEx

EcDoRpcExt2

EcDoAsyncConnectEx

AsyncEMSMDB Interface:

Method Exchange

2003 SP2

Exchange

2007 SP1

EcDoAsyncWaitEx

7.3.2 Office Client Support

An Office client will use different RPC methods based on the version of Exchange that it

is accessing.

7.3.2.1 Accessing Exchange 2003

The following table indicates which RPC methods are used by an Office client when

accessing a computer that is running Exchange 2003.

EMSMDB Interface:

Method Office

2003 SP2

Office

2007 SP1

97 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

EcDoDisconnect

EcRRegisterPushNotification

EcDummyRpc

EcDoConnectEx

EcDoRpcExt2

EcDoAsyncConnectEx

AsyncEMSMDB Interface:

Method Office

2003 SP2

Office

2007 SP1

EcDoAsyncWaitEx

7.3.2.2 Accessing Exchange 2007

The following table indicates which RPC methods are used by an Office client when it is

accessing a computer that is running Exchange 2007.

EMSMDB Interface:

Method Office

2003 SP2

Office

2007 SP1

EcDoDisconnect

EcRRegisterPushNotification

EcDummyRpc

EcDoConnectEx

EcDoRpcExt2

EcDoAsyncConnectEx

AsyncEMSMDB Interface:

98 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Method Office

2003 SP2

Office

2007 SP1

EcDoAsyncWaitEx

7.4 Client Access Licenses

As of Exchange 2007 SP1, the server no longer counts individual connections for Client

Access License accounting, so Session Context linking is not required in method call

EcDoConnectEx on the EMSMDB interface.

99 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Index
ACF, 94

Applicability statement, 12

AsyncEMSMDB client details, 82

AsyncEMSMDB server details, 79

Authentication methods, 95

Client connecting to server, 83

Client disconnecting from server, 89

Client issuing ROP commands to server, 86

Client receiving "packed" ROP response from server, 87

Common data types, 14

EMSMDB client details, 76

EMSMDB server details, 32

Full IDL/ACF, 90

ACF, 94

IDL, 90

Glossary, 7

IDL, 90

Index of security parameters, 90

Informative references, 8

Introduction, 7

Messages, 13

Common data types, 14

Transport, 13

Normative references, 8

Office/Exchange behavior, 94

Authentication methods, 95

Client access licenses, 98

Protocol sequences, 95

RPC methods, 95

Prerequisites/preconditions, 12

Protocol details, 31

AsyncEMSMDB client details, 82

AsyncEMSMDB server details, 79

EMSMDB client details, 76

EMSMDB server details, 32

Protocol examples, 83

Client connecting to server, 83

Client disconnecting from server, 89

Client issuing ROP commands to server, 86

100 of 100

[MS-OXCRPC] - v1.05
Wire Format Protocol Specification

Copyright © 2009 Microsoft Corporation.

Release: Wednesday, March 4, 2009

Client receiving "packed" ROP response from server, 87

Protocol sequences, 95

References, 8

Informative references, 8

Normative references, 8

Relationship to other protocols, 12

RPC methods, 95

Security, 90

Index of security parameters, 90

Security considerations for implementers, 90

Security considerations for implementers, 90

Standards assignments, 13

Transport, 13

Vendor-extensible fields, 12

Versioning and capability negotiation, 12

