
1 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

[MS-OXCNOTIF]:

Core Notifications Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for protocols,
file formats, languages, standards as well as overviews of the interaction among each of these
technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the

technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL's, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming
environments in order for you to develop an implementation. If you have access to Microsoft
programming tools and environments you are free to take advantage of them. Certain Open
Specifications are intended for use in conjunction with publicly available standard specifications and
network programming art, and assumes that the reader either is familiar with the aforementioned

material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Revision Summary

Date
Revision
History

Revision
Class Comments

4/4/2008 0.1 Initial Availability.

6/27/2008 1.0 Initial Release.

8/6/2008 1.01 Revised and edited technical content.

9/3/2008 1.02 Revised and edited technical content.

12/3/2008 1.03 Minor editorial fixes.

3/4/2009 1.04 Revised and edited technical content.

4/10/2009 2.0 Updated technical content and applicable product releases.

7/15/2009 3.0 Major Revised and edited for technical content.

11/4/2009 3.1.0 Minor Updated the technical content.

2/10/2010 4.0.0 Major Updated and revised the technical content.

5/5/2010 4.1.0 Minor Updated the technical content.

8/4/2010 5.0 Major Significantly changed the technical content.

11/3/2010 5.0 No change No changes to the meaning, language, or formatting of the
technical content.

3/18/2011 6.0 Major Significantly changed the technical content.

8/5/2011 6.0 No Change No changes to the meaning, language, or formatting of the
technical content.

10/7/2011 7.0 Major Significantly changed the technical content.

1/20/2012 8.0 Major Significantly changed the technical content.

4/27/2012 9.0 Major Significantly changed the technical content.

7/16/2012 10.0 Major Significantly changed the technical content.

10/8/2012 10.1 Minor Clarified the meaning of the technical content.

2/11/2013 10.1 No Change No changes to the meaning, language, or formatting of the
technical content.

7/26/2013 10.1 No Change No changes to the meaning, language, or formatting of the
technical content.

11/18/2013 11.0 Major Significantly changed the technical content.

2/10/2014 11.0 No Change No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 12.0 Major Significantly changed the technical content.

7/31/2014 12.0 No Change No changes to the meaning, language, or formatting of the
technical content.

10/30/2014 13.0 Major Significantly changed the technical content.

3 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Date
Revision
History

Revision
Class Comments

3/16/2015 14.0 Major Significantly changed the technical content.

5/26/2015 15.0 Major Significantly changed the technical content.

9/14/2015 16.0 Major Significantly changed the technical content.

4 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Other Protocols .. 9
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 9
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields ... 10
1.9 Standards Assignments ... 10

2 Messages ... 11
2.1 Transport .. 11
2.2 Message Syntax ... 11

2.2.1 Notifications ... 11
2.2.1.1 Server Event Types ... 11

2.2.1.1.1 TableModified Event Types.. 12
2.2.1.2 Subscription Management .. 12

2.2.1.2.1 RopRegisterNotification ROP ... 12
2.2.1.2.1.1 RopRegisterNotification ROP Request Buffer 12

2.2.1.3 Pending Notifications ... 13
2.2.1.3.1 EcDoAsyncConnectEx Method .. 13
2.2.1.3.2 EcDoAsyncWaitEx Method ... 13
2.2.1.3.3 EcRRegisterPushNotification Method .. 14
2.2.1.3.4 RopPending ROP .. 14

2.2.1.4 Notification Details .. 14
2.2.1.4.1 RopNotify ROP .. 14

2.2.1.4.1.1 RopNotify ROP Response Buffer ... 14
2.2.1.4.1.2 NotificationData Structure ... 14

3 Protocol Details ... 20
3.1 Server Details .. 20

3.1.1 Abstract Data Model .. 20
3.1.2 Timers .. 20
3.1.3 Initialization ... 20
3.1.4 Higher-Layer Triggered Events ... 20

3.1.4.1 Sending Pending Notifications ... 20
3.1.4.2 Sending Notification Details .. 20
3.1.4.3 Creating and Sending TableModified Event Notifications 21

3.1.5 Message Processing Events and Sequencing Rules .. 21
3.1.5.1 Receiving a RopRegisterNotification ROP Request 21
3.1.5.2 Receiving an EcDoAsyncConnectEx Method Call .. 22
3.1.5.3 Receiving an EcDoAsyncWaitEx Method Call ... 22
3.1.5.4 Receiving an EcRRegisterPushNotification Method Call 22
3.1.5.5 Receiving an EcDoRpcExt2 Method Call .. 23
3.1.5.6 Sending a RopPending ROP Response .. 23
3.1.5.7 Sending a RopNotify ROP Response ... 23

3.1.6 Timer Events .. 23
3.1.7 Other Local Events .. 23

3.2 Client Details ... 23
3.2.1 Abstract Data Model .. 23
3.2.2 Timers .. 23
3.2.3 Initialization ... 23

5 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.2.4 Higher-Layer Triggered Events ... 24
3.2.4.1 Subscribing to Notifications .. 24
3.2.4.2 Subscribing to TableModified Event Notifications 24
3.2.4.3 Initializing Asynchronous RPC Notifications ... 24
3.2.4.4 Initializing Push Notifications .. 24
3.2.4.5 Polling the Server for Notifications .. 24

3.2.5 Message Processing Events and Sequencing Rules .. 25
3.2.5.1 Sending a RopRegisterNotification ROP Request .. 25
3.2.5.2 Sending an EcDoAsyncConnectEx Method Call .. 25
3.2.5.3 Sending an EcDoAsyncWaitEx Method Call ... 25
3.2.5.4 Sending an EcRRegisterPushNotification Method Call 26
3.2.5.5 Receiving Pending Notifications ... 26

3.2.5.5.1 Sending and Receiving EcDoAsyncWaitEx Method Calls 26
3.2.5.5.2 Receiving Push Notification UDP Datagrams .. 26
3.2.5.5.3 Receiving the RopPending ROP .. 27

3.2.5.6 Sending an EcDoRpcExt2 Method Call .. 27
3.2.5.7 Receiving Notification Details By Using the RopNotify ROP 27

3.2.6 Timer Events .. 27
3.2.7 Other Local Events .. 27

4 Protocol Examples ... 28

5 Security ... 33
5.1 Security Considerations for Implementers ... 33
5.2 Index of Security Parameters .. 33

6 Appendix A: Product Behavior ... 34

7 Change Tracking .. 37

8 Index ... 39

6 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

1 Introduction

The Core Notifications Protocol transmits notifications to a client about specific events on a server.
This protocol is commonly used to inform the client about changes that have occurred in folders and
messages on the server.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also

normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are specific to this document:

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-
encoding scheme based on the English alphabet. ASCII codes represent text in computers,

communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

asynchronous context handle: A remote procedure call (RPC) context handle that is used by

a client when issuing RPCs against a server on AsyncEMSMDB interface methods. It represents a
handle to a unique session context on the server.

binary large object (BLOB): A discrete packet of data that is stored in a database and is treated
as a sequence of uninterpreted bytes.

callback address: An object that encapsulates an Internet address that is registered by a client
and that a server can use for push notifications.

datagram: A style of communication offered by a network transport protocol where each message

is contained within a single network packet. In this style, there is no requirement for

establishing a session prior to communication, as opposed to a connection-oriented style.

handle: Any token that can be used to identify and access an object such as a device, file, or a
window.

Hypertext Transfer Protocol (HTTP): An application-level protocol for distributed, collaborative,
hypermedia information systems (text, graphic images, sound, video, and other multimedia

files) on the World Wide Web.

Internet Protocol version 6 (IPv6): A revised version of the Internet Protocol (IP) designed to
address growth on the Internet. Improvements include a 128-bit IP address size, expanded
routing capabilities, and support for authentication (2) and privacy.

mailbox: A message store that contains email, calendar items, and other Message objects for a
single recipient.

message class: A property that loosely defines the type of a message, contact, or other Personal

Information Manager (PIM) object in a mailbox.

Messaging Application Programming Interface (MAPI): A messaging architecture that
enables multiple applications to interact with multiple messaging systems across a variety of
hardware platforms.

notification subscription: A request to receive notifications from a server when specific events
occur on that server.

http://go.microsoft.com/fwlink/?LinkId=90317

7 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

outstanding RPC call: An asynchronous remote procedure call (RPC) that has not been
completed by a server yet.

remote operation (ROP): An operation that is invoked against a server. Each ROP represents an
action, such as delete, send, or query. A ROP is contained in a ROP buffer for transmission over

the wire.

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC

exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

ROP request: See ROP request buffer.

ROP request buffer: A ROP buffer that a client sends to a server to be processed.

ROP response: See ROP response buffer.

ROP response buffer: A ROP buffer that a server sends to a client to be processed.

search folder: A collection of related items to be crawled by a search service.

session context handle: A remote procedure call (RPC) context handle that is used by a client
when issuing RPCs against a server on EMSMDB interface methods. It represents a handle to a
unique session context on the server.

Table object: An object that is used to view properties for a collection of objects of a specific type,
such as a Message object or a Folder object. A Table object is structured in a row and column
format with each row representing an object and each column representing a property of the

object.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=154659
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com

8 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

[MS-OXCDATA] Microsoft Corporation, "Data Structures".

[MS-OXCFOLD] Microsoft Corporation, "Folder Object Protocol".

[MS-OXCMAPIHTTP] Microsoft Corporation, "Messaging Application Programming Interface (MAPI)
Extensions for HTTP".

[MS-OXCMSG] Microsoft Corporation, "Message and Attachment Object Protocol".

[MS-OXCROPS] Microsoft Corporation, "Remote Operations (ROP) List and Encoding Protocol".

[MS-OXCRPC] Microsoft Corporation, "Wire Format Protocol".

[MS-OXCTABL] Microsoft Corporation, "Table Object Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980,
http://www.ietf.org/rfc/rfc768.txt

1.2.2 Informative References

[MS-OXPROTO] Microsoft Corporation, "Exchange Server Protocols System Overview".

[MSDN-ENM] Microsoft Corporation, "Event Notification in MAPI", http://msdn.microsoft.com/en-
us/library/ms528269(EXCHG.10).aspx

[MSDN-WS2] Microsoft Corporation, "Windows Sockets 2", http://msdn.microsoft.com/en-
us/library/ms740673(VS.85).aspx

[MSFT-ConfigStaticUDPPort] Microsoft Corporation, "Configure a Static UDP Port for Push Notifications
in an Exchange 2010 Environment (en-US)",
http://social.technet.microsoft.com/wiki/contents/articles/2542.configure-a-static-udp-port-for-push-

notifications-in-an-exchange-2010-environment.aspx

1.3 Overview

This protocol enables a client to receive notifications about specific events that occur on the
messaging server. The client can subscribe to certain events on the server, and when one of the
events occurs, the server sends the client a notification. The notification sent by the server is
commonly a two part operation. First, the server notifies the client about pending notifications. Then

the server transmits the notification details.

The server supports three methods for notifying the client of pending notifications on the server:

 Asynchronous RPC notifications. This method enables the client to make an asynchronous remote
procedure call (RPC) call to the server; the server does not complete the RPC call until there is a
notification for the session.

 Asynchronous notifications via HTTP extensions, as described in [MS-OXCMAPIHTTP].

 Push notifications. This method relies on a callback address being registered with the server, so
that User Datagram Protocol (UDP) datagrams can be sent to the callback address when
pending notifications exist.

 The RopPending ROP ([MS-OXCROPS] section 2.2.14.3). This ROP is included in the
EcDoRpcExt2 method call response if there are pending notifications on the server and the
details of the notification do not fit in the response buffer.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCTABL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90490
%5bMS-OXPROTO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113730
http://go.microsoft.com/fwlink/?LinkId=113730
http://go.microsoft.com/fwlink/?LinkId=113731
http://go.microsoft.com/fwlink/?LinkId=113731
http://go.microsoft.com/fwlink/?LinkId=228253
http://go.microsoft.com/fwlink/?LinkId=228253
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCROPS%5d.pdf

9 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Regardless of the means used to notify the client of the pending notification, the notification details
are sent to the client by using the RopNotify ROP (section 2.2.1.4.1).

1.4 Relationship to Other Protocols

This specification provides a low-level explanation of notifying a client about events on the server. For
information about applying this protocol in a Messaging Application Programming Interface
(MAPI) provider, see [MSDN-ENM].

This specification relies on an understanding of [MS-OXCRPC] , [MS-OXCMAPIHTTP], and [MS-

OXCROPS].

For conceptual background information and overviews of the relationships and interactions between
this and other protocols, see [MS-OXPROTO].

1.5 Prerequisites/Preconditions

This specification assumes that the client has previously logged on to the server and created a session
context.

1.6 Applicability Statement

This protocol was designed to be used for the following purposes:

 Notifying clients about specific events on the server.

 Notifying clients about notifications pending for the client on the server.

This protocol provides basic information, a high degree of efficiency, and complete preservation of
data fidelity for these uses. Note, however, that it might not be appropriate for use in scenarios that
do any of the following:

 Require replication of mailbox content between clients and servers.

 Require client-driven copying of data between different mailboxes on different servers.

 Require exporting or importing of data to or from a mailbox.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

 Supported Transports: This protocol uses the Wire Format Protocol, as described in [MS-OXCRPC],
the Remote Operations (ROP) List and Encoding Protocol, as described in [MS-OXCROPS], the
MAPI extensions to HTTP, as described in [MS-OXCMAPIHTTP], and Internet protocols as described
in section 2.1.

 Protocol Versions: This protocol has only one interface version.

 Capability Negotiation: The protocol does not require asynchronous RPC notifications to be
implemented. The client examines the server version to determine whether asynchronous RPC

notifications are supported. For more information about how to determine server version, see
[MS-OXCRPC].

 Localization: This protocol passes text strings in notification details. Localization considerations for
such strings are described in [MS-OXCMSG] section 2.2.1.3.

http://go.microsoft.com/fwlink/?LinkId=113730
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXPROTO%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCMSG%5d.pdf

10 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

11 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

2 Messages

2.1 Transport

The commands specified by this protocol are sent to and received from the server by using the

underlying ROP request buffers and ROP response buffers, respectively, as specified in [MS-
OXCROPS].

Asynchronous calls are made on the server by using RPC transport, as specified in [MS-OXCRPC], and
the MAPI extensions to HTTP<1>, as specified in [MS-OXCMAPIHTTP].

UDP datagrams are sent from server to client by using the User Datagram Protocol (UDP), as specified
in [RFC768]. For more information, see [MSDN-WS2].

2.2 Message Syntax

2.2.1 Notifications

This section specifies the following:

 The server events that the client can be notified of.

 The RopRegisterNotification ROP, which is used to subscribe to notifications.

 The ROPs and RPCs used to notify the client of pending notifications:

 The EcDoAsyncConnectEx method.

 The EcDoAsyncWaitEx method.

 The EcRRegisterPushNotification method.

 The RopPending ROP ([MS-OXCROPS] section 2.2.14.3).

 The NotificationWait request type<2> ([MS-OXCMAPIHTTP] section 2.2.4.4).

 The RopNotify ROP (section 2.2.1.4.1), which is used to send notification details.

2.2.1.1 Server Event Types

The following table specifies the events that happen on the server. Clients can register to receive
notifications about these events by using the RopRegisterNotification ROP (section 2.2.1.2.1).

Event name Description

NewMail A new email message has been received by the server.

ObjectCopied An existing object has been copied on the server.

ObjectCreated A new object has been created on the server.

ObjectDeleted An existing object has been deleted from the server.

ObjectModified An existing object has been modified on the server.

ObjectMoved An existing object has been moved to another location on the server.

SearchComplete A search operation has been completed on the server.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90490
http://go.microsoft.com/fwlink/?LinkId=113731
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf

12 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Event name Description

TableModified A table has been modified on the server. TableModified event types are specified in section
2.2.1.1.1.

2.2.1.1.1 TableModified Event Types

The following table specifies the table modification event types. Clients can register to receive
notifications about these events by using the RopRegisterNotification ROP (section 2.2.1.2.1).

Event name Description

TableChanged A table has been changed.

TableRowAdded A new row has been added to the table.

TableRowDeleted An existing row has been deleted from the table.

TableRowModified An existing row has been modified in the table.

TableRestrictionChanged A table restriction has been cleared, removed, or is pending. For more details
about how a table restriction is cleared or removed, see [MS-OXCTABL] section
3.2.5.16. For more details about how this event type is related to the
TBLSTAT_RESTRICTING value of the TableStatus field, as specified in [MS-
OXCTABL] section 2.2.2.1.3, of the RopRestrict ROP ([MS-OXCROPS] section
2.2.5.3), see [MS-OXCTABL] section 3.2.5.1.

For server steps related to creating and sending TableModified event notifications, see section
3.1.4.3. For client initialization steps related to subscribing to TableModified event notifications, see
section 3.2.4.2.

2.2.1.2 Subscription Management

Subscription management is handled by the RopRegisterNotification ROP (section 2.2.1.2.1). For
more information about how clients subscribe to notification events, see section 3.2.4.1.

2.2.1.2.1 RopRegisterNotification ROP

The RopRegisterNotification ROP ([MS-OXCROPS] section 2.2.14.1) creates a subscription for
specified notifications on the server and returns a handle of the subscription to the client.

The complete syntax of the ROP request and response buffers for this ROP is specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully specified
in [MS-OXCROPS].

2.2.1.2.1.1 RopRegisterNotification ROP Request Buffer

The following descriptions define valid fields for the request buffer of the RopRegisterNotification
ROP ([MS-OXCROPS] section 2.2.14.1).

NotificationTypes (2 bytes): A set of bits describing notifications that the client is interested in
receiving.

The following table lists the values that are available for notification types.

%5bMS-OXCTABL%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

13 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Value Meaning

0x0002 The server sends notifications to the client when NewMail events occur within the scope of interest.

0x0004 The server sends notifications to the client when ObjectCreated events occur within the scope of
interest.

0x0008 The server sends notifications to the client when ObjectDeleted events occur within the scope of
interest.

0x0010 The server sends notifications to the client when ObjectModified events occur within the scope of
interest.

0x0020 The server sends notifications to the client when ObjectMoved events occur within the scope of
interest.

0x0040 The server sends notifications to the client when ObjectCopied events occur within the scope of
interest.

0x0080 The server sends notifications to the client when SearchComplete events occur within the scope of
interest.

0x0100 The server sends notifications to the client when TableModified events occur within the scope of
interest.

0x0400 The server sends notifications to the client when the Extended flag is set.

For details about server events, see section 2.2.1.1.

Reserved (1 byte): This field is reserved. The field value MUST be 0x00. The server behavior is
undefined if the value is not 0x00. This field is optional and is present only if the Extended (0x0400)
flag is set in the NotificationTypes field.

WantWholeStore (1 byte): A value of TRUE (0x01) if the scope for notifications is the entire

mailbox; otherwise, FALSE (0x00).

2.2.1.3 Pending Notifications

Pending notifications rely on transmission of one or more of the following methods:

 The EcDoAsyncConnectEx method, which is used in asynchronous RPC notifications.

 The EcDoAsyncWaitEx method, which is also used in asynchronous RPC notifications.

 The EcRRegisterPushNotification method, which is used for push notifications.

 The EcDoRpcExt2 method and the RopPending ROP ([MS-OXCROPS] section 2.2.14.3).

 The NotificationWait request type as described in [MS-OXCMAPIHTTP] section 2.2.4.4.<3>

2.2.1.3.1 EcDoAsyncConnectEx Method

The EcDoAsyncConnectEx<4> RPC method, as specified in [MS-OXCRPC] section 3.1.4.4, is used to
acquire an asynchronous context handle on the server to use in subsequent EcDoAsyncWaitEx
method calls, as specified in [MS-OXCRPC] section 3.3.4.1. The EcDoAsyncConnectEx method is
used to support asynchronous RPC notifications. For more information about how the client sends
EcDoAsyncConnectEx method to initialize the notification process, see section 3.2.5.2. For more
information about how the server receives the EcDoAsyncConnectEx method, see section 3.1.5.2.

2.2.1.3.2 EcDoAsyncWaitEx Method

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCRPC%5d.pdf

14 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

The EcDoAsyncWaitEx<5> asynchronous RPC method, as specified in [MS-OXCRPC] section 3.3.4.1,
is used to inform a client about pending notifications on the server. The EcDoAsyncWaitEx method is

used to support asynchronous RPC notifications. For more information about how the client sends and
receives EcDoAsyncWaitEx method calls, see section 3.2.5.5.1. For more information about how the

server receives and completes EcDoAsyncWaitEx method calls, see section 3.1.5.3.

2.2.1.3.3 EcRRegisterPushNotification Method

The EcRRegisterPushNotification<6> RPC method, as specified in [MS-OXCRPC] section 3.1.4.5, is
used to register a callback address of a client on the server. The callback address is required in order
to receive UDP datagrams from the server, and is used to support push notifications, which is one way
in which the server can notify clients of pending notifications. The UDP datagrams inform the client

that notifications are pending on the server for the session.

2.2.1.3.4 RopPending ROP

The RopPending ROP ([MS-OXCROPS] section 2.2.14.3) notifies the client that there are pending
notifications on the server for the client. This ROP MUST appear only in response buffers of either the

EcDoRpcExt2 method, as specified in [MS-OXCRPC] section 3.1.4.2, or the Execute request

type,<7> as specified in [MS-OXCMAPIHTTP] section 2.2.4.2.2. For more information about how the
server sends this ROP response, see section 3.1.5.6. For more information about how the client
receives this ROP response, see section 3.2.5.5.3.

2.2.1.4 Notification Details

Notification details are transmitted by using the RopNotify ROP (section 2.2.1.4.1).

2.2.1.4.1 RopNotify ROP

The RopNotify ROP ([MS-OXCROPS] section 2.2.14.2) provides the client with the details of
notifications that are sent by server. This ROP MUST appear only in response buffers of the
EcDoRpcExt2 method, as specified in [MS-OXCRPC] section 3.1.4.2, or in the Execute request type
success response body<8>, as specified in [MS-OXCMAPIHTTP] section 2.2.4.2.2.

The complete syntax of the ROP response buffer for this ROP is specified in [MS-OXCROPS]. This
section specifies the syntax and semantics of various fields that are not fully specified in [MS-
OXCROPS].

For more information about how the server sends notification details using the RopNotify ROP, see
section 3.1.5.7. For more information about how the client receives notification details using the
RopNotify ROP, see section 3.2.5.7.

2.2.1.4.1.1 RopNotify ROP Response Buffer

The following descriptions define valid fields for the response buffer of the RopNotify ROP ([MS-
OXCROPS] section 2.2.14.2).

NotificationHandle (4 bytes): The 32-bit server object handle of the target object for the

notification. The target object can be a notification subscription or a table.

LogonId (1 byte): An unsigned integer that specifies the logon associated with the notification

event.

NotificationData (variable): This field contains a NotificationData structure, as specified in
section 2.2.1.4.1.2.

2.2.1.4.1.2 NotificationData Structure

%5bMS-OXCRPC%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

15 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

The NotificationData structure specifies details about the notification. The contents of this structure
are as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationFlags TableEventType

TableRowFolderID

...

TableRowMessageID

...

TableRowInstance

InsertAfterTableRowFolderID

...

InsertAfterTableRowID

...

InsertAfterTableRowInstance

TableRowDataSize TableRowData (variable)

...

FolderId

...

MessageId

...

ParentFolderId

...

OldFolderId

16 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

...

OldMessageId

...

OldParentFolderId

...

TagCount Tags (variable)

...

TotalMessageCount

UnreadMessageCount

MessageFlags

UnicodeFlag MessageClass (variable)

...

NotificationFlags (2 bytes): A combination of an enumeration and flags that describe the type of

the notification and the availability of the notification data fields.

The least significant 12 bits of the NotificationFlags field contain the NotificationType
enumeration, which defines the type of the notification. The possible values for this enumeration
are listed in the following table.

Bit Meaning

0x0002 The notification is for a NewMail event.

0x0004 The notification is for an ObjectCreated event.

0x0008 The notification is for an ObjectDeleted event.

0x0010 The notification is for an ObjectModified event.

0x0020 The notification is for an ObjectMoved event.

17 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Bit Meaning

0x0040 The notification is for an ObjectCopied event.

0x0080 The notification is for a SearchCompleted event.

0x0100 The notification is for a TableModified event.

0x0400 This value is reserved. It is not used by the server and MUST be ignored by the
client.

The most significant four bits of the NotificationFlags field are flags that specify the availability
of the notification data fields.

Bit Flag Meaning

0x1000 T The notification contains information about a change in the total number of
messages in a folder triggering the event. If this bit is set, the
NotificationType value MUST be 0x0010.

0x2000 U The notification contains information about a change in the number of
unread messages in a folder triggering the event. If this bit is set, the
NotificationType value MUST be 0x0010.

0x4000 S The notification is caused by an event in a search folder. If this bit is set,
bit 0x8000 MUST be set.

0x8000 M The notification is caused by an event on a message.

TableEventType (2 bytes): A subtype of the notification for a TableModified event. This field is

available only if the NotificationType value in the NotificationFlags field is 0x0100.

The following table lists the values that are available for event types. For more details, see section
2.2.1.1.1.

Value Meaning

0x0001 The notification is for TableChanged events.

0x0003 The notification is for TableRowAdded events.

0x0004 The notification is for TableRowDeleted events.

18 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Value Meaning

0x0005 The notification is for TableRowModified events.

0x0007 The notification is for TableRestrictionChanged events.

TableRowFolderID (8 bytes): The value of the Folder ID structure, as specified in [MS-OXCDATA]

section 2.2.1.1, of the item triggering the notification. This field is available only if the
TableEventType field is available and is 0x0003, 0x0004, or 0x0005.

TableRowMessageID (8 bytes): The value of the Message ID structure, as specified in [MS-
OXCDATA] section 2.2.1.2, of the item triggering the notification. This field is available only if bit
0x8000 is set in the NotificationFlags field and if the TableEventType field is available and is

0x0003, 0x0004, or 0x0005.

TableRowInstance (4 bytes): An identifier of the instance of the previous row in the table. This

field is available only if bit 0x8000 is set in the NotificationFlags field and if the
TableEventType field is available and is 0x0003, 0x0004, or 0x0005.

InsertAfterTableRowFolderID (8 bytes): The old value of the Folder ID structure of the item
triggering the notification. This field is available only if the TableEventType field is available and
is 0x0003 or 0x0005.

InsertAfterTableRowID (8 bytes): The old value of the Message ID structure of the item
triggering the notification. This field is available only if bit 0x8000 is set in the NotificationFlags

field and if the TableEventType field is available and is 0x0003 or 0x0005.

InsertAfterTableRowInstance (4 bytes): An unsigned 32-bit identifier of the instance of the row
where the modified row is inserted. This field is available only if bit 0x8000 is set in the

NotificationFlags field and if the TableEventType field is available and is 0x0003 or 0x0005.

TableRowDataSize (2 bytes): An unsigned 16-bit integer that indicates the length of the table row
data. This field is available only if the TableEventType field is available and is 0x0003 or 0x0005.

TableRowData (variable): The table row data, which contains a list of property values in a
PropertyRow structure, as specified in [MS-OXCDATA] section 2.8, for the row that was added or
modified in the table. The property values to be included are determined by a previous
RopSetColumns ROP, as specified in [MS-OXCTABL] section 2.2.2.2. This field is available only if
the TableEventType field is available and is 0x0003 or 0x0005.

FolderId (8 bytes): The Folder ID structure of the item triggering the event. This field is available
only if the NotificationType value in the NotificationFlags field is not 0x0100 or 0x0400.

MessageId (8 bytes): The Message ID structure, as specified in [MS-OXCDATA] section 2.2.1.2, of
the item triggering the event. This field is available only if the NotificationType value in the

NotificationFlags field is not 0x0100 or 0x0400, and bit 0x8000 is set in the NotificationFlags
field.

ParentFolderId (8 bytes): The Folder ID structure of the parent folder of the item triggering the
event. This field is available only if the value of the NotificationType in the NotificationFlags
field is 0x0004, 0x0008, 0x0020, or 0x0040, and it is sent for either a message in a search folder

(both bit 0x4000 and bit 0x8000 are set in the NotificationFlags field) or a folder (both bit
0x4000 and bit 0x8000 are not set in the NotificationFlags field).

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.docx#Section_ca1e5c95a32940b5b50f911dd3f46d50
%5bMS-OXCTABL%5d.pdf
%5bMS-OXCTABL%5d.docx#Section_6aac6d3a81dd48b4999546db48ce2242

19 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

OldFolderId (8 bytes): The old Folder ID structure of the item triggering the event. This field is
available only if the NotificationType value in the NotificationFlags field is 0x0020 or 0x0040.

OldMessageId (8 bytes): The old Message ID structure of the item triggering the event. This field
is available only if the value of the NotificationType in the NotificationFlags field is 0x0020 or

0x0040 and bit 0x8000 is set in the NotificationFlags field.

OldParentFolderId (8 bytes): The old parent Folder ID structure of the item triggering the event.
This field is available only if the value of the NotificationType in the NotificationFlags field is
0x0020 or 0x0040 and bit 0x8000 is not set in the NotificationFlags field.

TagCount (2 bytes): An unsigned 16-bit integer that specifies the number of property tags in the
Tags field. This field is available only if the value of the NotificationType in the
NotificationFlags field is 0x0004 or 0x0010. If the value of the NotificationType in the

NotificationFlags field is 0x0010, the value of this field SHOULD<9> be set to 0x0000.

Tags (variable): An array of unsigned 32-bit integers that identifies the IDs of properties that have
changed. This field is available only if the TagCount field is available and the value of the

TagCount field is not 0x0000 or 0xFFFF.

TotalMessageCount (4 bytes): An unsigned 32-bit integer that specifies the total number of items
in the folder triggering this event. This field is available only if bit 0x1000 is set in the

NotificationFlags field.

UnreadMessageCount (4 bytes): An unsigned 32-bit integer that specifies the number of unread
items in a folder triggering this event. This field is available only if bit 0x2000 is set in the
NotificationFlags field.

MessageFlags (4 bytes): An unsigned 32-bit integer that specifies the message flags of new mail
that has been received.<10> This field is available only if the value of the NotificationType in
the NotificationFlags field is 0x0002. For details, see [MS-OXCMSG] section 2.2.1.6.

UnicodeFlag (1 byte): A value of TRUE (0x01) indicates the value of the MessageClass field is in
Unicode; otherwise, FALSE (0x00) indicates the value of the MessageClass is in ASCII. A value
of FALSE is returned if the client is working in cached mode, as specified by the ClientMode field

in [MS-OXCRPC] section 2.2.2.2.4. This field is available only if the value of the NotificationType
field in the NotificationFlags field is 0x0002.

MessageClass (variable): A null-terminated string containing the message class of the new mail.
The string is in Unicode if the UnicodeFlag field is set to TRUE (0x01). The string is in ASCII if

UnicodeFlag is set to FALSE (0x00). This field is available only if the value of the
NotificationType in the NotificationFlags field is 0x0002.

%5bMS-OXCMSG%5d.pdf
%5bMS-OXCRPC%5d.pdf

20 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3 Protocol Details

3.1 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

This protocol includes the following abstract data model (ADM) elements:

Global.Handle, as specified in [MS-OXCRPC] section 3.1.1.

Global.AsynchronousHandle, as specified in [MS-OXCRPC] section 3.3.1.

cookies, as specified in [MS-OXCMAPIHTTP] section 3.2.1.<11>

The following ADM types are defined in this section:

NotificationSubscriptionObject: An object on the server associated with the session context that
manages event notifications and notification subscriptions.

3.1.2 Timers

If push notifications are supported by the server, as specified in section 3.1.5.4, the server SHOULD

allow for a 60-second interval between UDP datagrams until the client has retrieved all event
information for the session. The server MUST provide server administrators a means to configure the
time interval between the UDP datagrams.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Sending Pending Notifications

The server notifies the client of pending notifications in one of three ways: by completing an
asynchronous EcDoAsyncWaitEx RPC method call, by using push notifications and sending a UDP

datagram to a callback address, or by sending a RopPending ROP response ([MS-OXCROPS] section
2.2.14.3). For more details about responding to an asynchronous RPC call, see section 3.1.5.3. For

more details about using push notifications and sending a UDP datagram, see section 3.1.5.4. For
more details about sending a RopPending ROP response, see section 3.1.5.6.

3.1.4.2 Sending Notification Details

The server sends notification details to the client by sending the RopNotify ROP response (section
2.2.1.4.1). The RopNotify command is the only method to transmit notification details to the client,
so it is used regardless of the method used to notify the client of the pending notification. For more
details about sending the RopNotify ROP, see section 3.1.5.7.

%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCROPS%5d.pdf

21 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.1.4.3 Creating and Sending TableModified Event Notifications

If the client has subscribed to TableModified event notifications, by using the
RopRegisterNotification ROP (section 2.2.1.2.1), the server SHOULD<12> require that a table view

is created in order to send the TableModified event notifications, as specified in section 2.2.1.1.1. If
a table view is required on the server, the server MUST receive a request from one of the following
ROPs, each of which cause a table view to be created on the server: RopCollapseRow ([MS-
OXCROPS] section 2.2.5.17), RopExpandRow ([MS-OXCROPS] section 2.2.5.16), RopFindRow
([MS-OXCROPS] section 2.2.5.13), RopQueryColumnsAll ([MS-OXCROPS] section 2.2.5.12),
RopQueryPosition ([MS-OXCROPS] section 2.2.5.7), RopQueryRows ([MS-OXCROPS] section
2.2.5.4), RopSeekRow ([MS-OXCROPS] section 2.2.5.8), RopSeekRowFractional ([MS-OXCROPS]

section 2.2.5.10), and RopSeekRowBookmark ([MS-OXCROPS] section 2.2.5.9). The server
SHOULD then create a subscription to TableModified event notifications automatically for every table
created on the server. The server MUST NOT create a subscription to table notifications for the tables
that were created with a NoNotifications flag. For more details about the NoNotifications flag, see
[MS-OXCFOLD] section 2.2.1.14.1 and [MS-OXCFOLD] section 2.2.1.13.1.

When a TableModified event occurs, the server generates a notification using one of the following

three methods, listed in descending order of usefulness to the client.

1. The server generates an informative notification that specifies the nature of the change (content
or hierarchy), the value of the Folder ID structure, as specified in [MS-OXCDATA] section 2.2.1.1,
the value of the Message ID structure, as specified in [MS-OXCDATA] section 2.2.1.2, and new
table values. The TableRowAdded, TableRowDeleted, and TableRowModified events each
produce informative notifications.

2. The server generates a basic notification that does not include specifics about the change made.

The TableChanged and TableRestrictionChanged events produce basic notifications.

3. The server does not generate a notification at all.

The notification level is server implementation-specific; however, the server SHOULD generate
informative notifications whenever possible and only generate a basic notification when it is not
feasible to generate an informative notification.

The server SHOULD<13> stop sending notifications if the RopResetTable ROP ([MS-OXCROPS]
section 2.2.5.15) is received, until a new table view is created using one of the following ROPs:

RopCollapseRow, RopExpandRow, RopFindRow, RopQueryColumnsAll, RopQueryPosition,
RopQueryRows, RopSeekRow, RopSeekRowFractional, or RopSeekRowBookmark.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Receiving a RopRegisterNotification ROP Request

When a RopRegisterNotification ROP (section 2.2.1.2.1) message is received by the server, the
server SHOULD create a new Notification Subscription object and associate it with the session context.
The server SHOULD save the information provided in the RopRegisterNotification ROP request

fields for future use.

The server SHOULD allow multiple Notification Subscription objects to be created and associated with
the same session context.

For details about how the client sends the RopRegisterNotification ROP request, see section
3.2.5.1.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCDATA%5d.pdf

22 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.1.5.2 Receiving an EcDoAsyncConnectEx Method Call

The server SHOULD<14> support the EcDoAsyncConnectEx method call, as specified in [MS-
OXCRPC] section 3.1.4.4.

When a call to the EcDoAsyncConnectEx RPC, as specified in [MS-OXCRPC] section 3.1.4.4, is
received by the server, the server MUST create an asynchronous context handle and MUST bind it to
the session context handle used to make the call.

3.1.5.3 Receiving an EcDoAsyncWaitEx Method Call

The server SHOULD<15> support the EcDoAsyncWaitEx method call, as specified in [MS-OXCRPC]
section 3.3.4.1.

Whenever an asynchronous EcDoAsyncWaitEx method call, as specified in [MS-OXCRPC] section
3.3.4.1, on the AsyncEMSMDB interface is received by the server, the server MUST validate that the
asynchronous context handle provided is a valid asynchronous context handle that was returned from
the EcDoAsyncConnectEx method call, as specified in [MS-OXCRPC] section 3.1.4.4. The server

SHOULD NOT complete the call until there is a notification for the client session, or the call has been
outstanding on the server 5 minutes. If the server already has a call outstanding for the same session
context handle, the server SHOULD complete the new call and set the ErrorCode field to Rejected,
as specified in [MS-OXCRPC] section 3.3.4.1, if another asynchronous RPC call is currently in progress
on the server.

If the server completes the outstanding RPC call when there is a notification for the client session,
the server MUST return the value NotificationPending in the pulFlagsOut field. The server MUST

return 0x00000000 in the pulFlagsOut field if the call was completed when there is no notification for
the client session.

3.1.5.4 Receiving an EcRRegisterPushNotification Method Call

The server MAY<16> support the EcRRegisterPushNotification method call, as specified in [MS-

OXCRPC] section 3.1.4.5.

When a call to the EcRRegisterPushNotification method is received by the server, a valid callback
address in the rgbCallbackAddress field and buffer with opaque client data in the rgbContext field
MUST be present. The server MUST fail the call and MUST NOT take any actions if the callback address
is not a valid SOCKADDR structure. For more information, see [MSDN-WS2].

The server SHOULD support at a minimum the AF_INET address type for IP support and the AF_INET6

address type for IPv6 support.

The server MUST save the callback address and opaque context data on the session context for future
use.

After the callback address has been successfully registered with the server, the server SHOULD send a
UDP datagram containing the client's opaque data, from the rgbContext field, when a notification
becomes available for the client.

If the server supports sending push notification UDP datagrams, the server MUST continue sending a

UDP datagram to the callback address at 60-second intervals if event details are still queued for the
client. The server SHOULD stop sending UDP datagrams only when all of the notifications have been
retrieved from the server through EcDoRpcExt2 method calls, as specified in [MS-OXCRPC] section
3.1.4.2.

%5bMS-OXCRPC%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCRPC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113731

23 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.1.5.5 Receiving an EcDoRpcExt2 Method Call

When the server receives an EcDoRpcExt2 method call, as specified in [MS-OXCRPC] section 3.1.4.2,
if there are pending notifications on the server, the server SHOULD send a RopNotify ROP response

(section 2.2.1.4.1) for each pending notification on the session context that is associated with the
client. If all the RopNotify ROP responses do not fit in the response buffer, the server SHOULD
include as many RopNotify ROP responses as will fit in the response, and then include a RopPending
ROP response ([MS-OXCROPS] section 2.2.14.3) to indicate that additional notifications are available
on the server. For more details, see section 3.1.5.6 and section 3.1.5.7.

The server does not require that the EcDoRpcExt2 method call include a ROP request.

3.1.5.6 Sending a RopPending ROP Response

The server SHOULD send a RopPending ROP response (section 2.2.1.3.4) to the client whenever
there are pending notifications on the session context associated with the client and the RopNotify
ROP response (section 2.2.1.4.1) for the associated notification does not fit in the response buffer.

The server sends a RopPending ROP response to the client whenever there are pending notifications

on any linked session contexts.

3.1.5.7 Sending a RopNotify ROP Response

The server SHOULD send a RopNotify ROP response (section 2.2.1.4.1) to the client for each pending

notification on the session context that is associated with the client. The server SHOULD send as many
RopNotify ROP responses as the response buffer allows. If the server was not able to fit the details
for all pending notifications into the response buffer using RopNotify ROP responses, it SHOULD
include a RopPending ROP response (section 2.2.1.3.4) to indicate there are additional notifications
available on the server, if the RopPending ROP response fits in the response buffer.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

The server events and table events specified in section 2.2.1.1 and section 2.2.1.1.1 that occur on the
server cause the pending notifications and notification detail messages to be sent. How the server
triggers each of these events is implementation dependent and external to this protocol.

3.2 Client Details

3.2.1 Abstract Data Model

None.

3.2.2 Timers

None.

3.2.3 Initialization

Protocol initialization occurs when a client sends a request to the server to subscribe to notifications
from the server, as specified in section 3.2.4.1.

%5bMS-OXCRPC%5d.pdf
%5bMS-OXCROPS%5d.pdf

24 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.2.4 Higher-Layer Triggered Events

The following sections specify the client-side higher-layer triggered events for this protocol.

3.2.4.1 Subscribing to Notifications

The client sends the RopRegisterNotification ROP request (section 2.2.1.2.1) to the server to
subscribe to all notifications specified in section 2.2.1.1.

For more details about sending the RopRegisterNotification ROP request, see section 3.2.5.1.

3.2.4.2 Subscribing to TableModified Event Notifications

For a client to receive TableModified event notifications, in addition to sending the
RopRegisterNotification ROP request, the client SHOULD<17> also send the one of the following
ROPs to the server, which causes a table view to be created: RopCollapseRow ([MS-OXCROPS]

section 2.2.5.17), RopExpandRow ([MS-OXCROPS] section 2.2.5.16), RopFindRow ([MS-

OXCROPS] section 2.2.5.13), RopQueryColumnsAll ([MS-OXCROPS] section 2.2.5.12),
RopQueryPosition ([MS-OXCROPS] section 2.2.5.7), RopQueryRows ([MS-OXCROPS] section
2.2.5.4), RopSeekRow ([MS-OXCROPS] section 2.2.5.8), RopSeekRowFractional ([MS-OXCROPS]
section 2.2.5.10), and RopSeekRowBookmark ([MS-OXCROPS] section 2.2.5.9). Once a table view
has been created, the client will receive TableModified event notifications so long as the
NoNotifications flag has not been set on the table. The NoNotifications flag is specified in [MS-

OXCFOLD] section 2.2.1.14.1 and [MS-OXCFOLD] section 2.2.1.13.1.

If the client sends the RopResetTable ROP ([MS-OXCROPS] section 2.2.5.15), the client
SHOULD<18> stop receiving table notifications until one of the following ROPs is sent:
RopCollapseRow, RopExpandRow, RopFindRow, RopQueryColumnsAll, RopQueryPosition,
RopQueryRows, RopSeekRow, RopSeekRowFractional, or RopSeekRowBookmark.

3.2.4.3 Initializing Asynchronous RPC Notifications

The client SHOULD<19> support the use of asynchronous RPCs as means to notify the client of
pending notifications. To initialize asynchronous RPC notifications on the server, the client sends the
EcDoAsyncConnectEx method, as specified in [MS-OXCRPC] section 3.1.4.4, followed by the
EcDoAsyncWaitEx method, as specified in [MS-OXCRPC] section 3.3.4.1. For more details about

sending these two methods, see section 3.2.5.2 and section 3.2.5.3 respectively.

3.2.4.4 Initializing Push Notifications

As an alternate to polling, the client MAY<20> support receiving push notifications from the server.
Push notifications use UDP datagrams as a means to notify the client of pending notifications. To

initialize push notifications and register a callback address on the server, the client sends the
EcRRegisterPushNotification method, as specified in section 3.2.5.4.

Clients that do not support push notifications SHOULD use either the basic polling method or the
asynchronous RPC notification method.

3.2.4.5 Polling the Server for Notifications

In cases where neither push notifications nor asynchronous RPC notifications are being used, and the
client is not actively calling the EcDoRpcExt2 method, as specified in [MS-OXCRPC] section 3.1.4.2,
or the Execute request type <21>, as specified in [MS-OXCMAPIHTTP] section 2.2.4.2, the client
MUST poll the server for pending notifications. To poll the server for pending notifications, the client
MUST make EcDoRpcExt2 method calls as specified in section 3.2.5.6, or the Execute request type.

The EcDoRPCExt2 method call does not require a ROP request is included in the call.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf

25 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

If the client is polling the server, the client SHOULD poll at a regular interval, as specified by the value
of the pcmsPollsMax field returned on the EcDoConnectEx method call, as specified in [MS-

OXCRPC] section 3.1.4.1.

If the client is polling the server, the client SHOULD NOT poll more frequently than the interval

specified by the value of the pcmsPollsMax field. If the client is required to respond to notifications
at a rate that is more frequent than the polling interval, then the polling method SHOULD NOT be used
for retrieving notifications.

3.2.5 Message Processing Events and Sequencing Rules

The following sections specify the client-side message processing events and sequencing rules for this
protocol.

3.2.5.1 Sending a RopRegisterNotification ROP Request

If the client is required to receive notifications from the server, the client SHOULD send a

RopRegisterNotification ROP (section 2.2.1.2.1) message to the server to subscribe to notifications.
The client MUST provide specific details about the notifications it needs to receive and the scope of the
notifications, as specified in section 2.2.1.2.1. Upon receiving the RopRegisterNotification ROP
response from the server, the client MUST save the returned handle to the Notification Subscription
object. When the client no longer needs to receive notifications, the handle of the Notification
Subscription object MUST be released by using the RopRelease ROP ([MS-OXCROPS] section

2.2.15.3).

The client can send the RopRegisterNotification ROP message multiple times to the server.

3.2.5.2 Sending an EcDoAsyncConnectEx Method Call

The client sends the EcDoAsyncConnectEx method, as specified in [MS-OXCRPC] section 3.1.4.4, to
initialize the server for asynchronous RPC notifications.

The client SHOULD determine whether the server supports the EcDoAsyncConnectEx method by
examining the server version information that is returned from the EcDoConnectEx method call, as
specified in [MS-OXCRPC] section 3.1.4.1. For details about which minimum server version is required
for using the asynchronous RPC notification method, see section 1.7.

The client can call the EcDoAsyncConnectEx method after a successful EcDoConnectEx method

call. The client MUST save the returned asynchronous context handle after the EcDoAsyncConnectEx
method call completes. The client MUST use the asynchronous context handle in the subsequent
EcDoAsyncWaitEx method calls to the server, as specified in [MS-OXCRPC] section 3.3.4.1.

3.2.5.3 Sending an EcDoAsyncWaitEx Method Call

The client determines whether the server supports the asynchronous RPC notification method by
examining the server version information that is returned from the EcDoConnectEx method call, as
described in [MS-OXCRPC] section 3.1.4.1. To determine which minimum server version is required
for using the asynchronous RPC notification method, see section 1.7.

If the server supports asynchronous RPC notifications, and the client successfully created
asynchronous context handle by calling the EcDoAsyncConnectEx method, as specified in [MS-

OXCRPC] section 3.1.4.4, the client SHOULD call the EcDoAsyncWaitEx method, as specified in [MS-
OXCRPC] section 3.3.4.1, to determine whether notifications are pending on the server.

For more details about receiving an EcDoAsyncWaitEx method response from the server, see section
3.2.5.5.1.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCRPC%5d.pdf

26 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.2.5.4 Sending an EcRRegisterPushNotification Method Call

The client MAY<22> make an EcRRegisterPushNotification method call, as specified in [MS-
OXCRPC] section 3.1.4.5, to register a callback address for the session context with the server. The

callback address is required in order to receive push notification UDP datagrams from the server. In
addition to the callback address, the client MUST provide a buffer of opaque data to the server.

The client can register a variety of different callback address types if the server supports the address
type. A client SHOULD register a callback address by using an address type that corresponds to the
protocol being used to communicate with the server. For example, if the client makes an RPC call to
EcDoConnectEx, as specified in [MS-OXCRPC] section 3.1.4.1, by using the TCP/IP protocol, it
registers an AF_INET callback address in the EcRRegisterPushNotification method call.

Because of network conditions such as firewalls or the use of RPC/HTTP connections by the client, it is
not always possible for the UDP datagram that is sent from the server to the client's callback address
to be successful. To overcome this problem, the client SHOULD poll the server by using the polling
method, even after registering a callback address with the server through an
EcRRegisterPushNotification method call, until it receives a UDP datagram from the server. When

the client receives a UDP datagram from the server at the specified callback address, it SHOULD stop

polling the server and rely on datagrams pushed from the server to know when to call the
EcDoRpcExt2 method, as specified in [MS-OXCRPC] section 3.1.4.2, to retrieve event information.

3.2.5.5 Receiving Pending Notifications

This section specifies the following actions performed by the client to receive pending notifications:

 Receiving the RopPending ROP response (section 2.2.1.3.4).

 Receiving push notification UDP datagrams.

 Sending and receiving asynchronous RPC calls.

3.2.5.5.1 Sending and Receiving EcDoAsyncWaitEx Method Calls

When a call to the EcDoAsyncWaitEx method completes, as specified in [MS-OXCRPC] section
3.3.4.1, the client MUST examine its return value and the value of the pulFlagsOut field. If the return

value is 0x00000000 and bit 0x00000001 is set in the pulFlagsOut field, the client SHOULD make
EcDoRpcExt2 method calls, as specified in [MS-OXCRPC] section 3.1.4.2, to receive notification
details from the server. After the successful results of the EcDoAsyncWaitEx method call are
processed, the client SHOULD make another EcDoAsyncWaitEx method call to continue to listen for
more notifications.

If the EcDoAsyncWaitEx method returns a non-zero result code, it indicates that an error occurred.

In this case, the client SHOULD NOT retry an EcDoAsyncWaitEx method call, and SHOULD instead
use the push notification method specified in section 3.2.4.4. If the push notification method is not
supported, the client SHOULD instead use the polling method specified in section 3.2.4.5.

3.2.5.5.2 Receiving Push Notification UDP Datagrams

Upon receiving a UDP datagram on the callback address that was previously registered by the client
by means of the EcRRegisterPushNotification method, as specified in [MS-OXCRPC] section

3.1.4.5, the client MUST verify that the content of the UDP datagram is valid by matching it with the
content of the opaque data binary large object (BLOB) that was provided to the server by means of
the EcRRegisterPushNotification method. If the content of the UDP datagram is valid, the client
SHOULD make EcDoRpcExt2 method calls, as specified in [MS-OXCRPC] section 3.1.4.2, to receive
notification details from the server. Otherwise, the client MUST NOT take any actions on the UDP
datagram.

%5bMS-OXCRPC%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCRPC%5d.pdf

27 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

3.2.5.5.3 Receiving the RopPending ROP

Upon receiving the RopPending ROP response (section 2.2.1.3.4) either in the buffer of the
EcDoRpcExt2 method response, as specified in [MS-OXCRPC] section 3.1.4.2, or in the Execute

request type response body,<23> as specified in [MS-OXCMAPIHTTP] section 2.2.4.2.2, the client
MUST determine whether the session index provided in the RopPending ROP response matches any
of the sessions created by the client. If the session index matches, the client SHOULD make an
EcDoRpcExt2 method call or send an Execute request type to receive notification details from the
server by using the session context handle that is associated with the session specified by the session
index. If the session index in RopPending ROP does not match the index of any session created by
the client, the client MUST NOT take any actions.

3.2.5.6 Sending an EcDoRpcExt2 Method Call

The client can send the EcDoRpcExt2 method, as specified in [MS-OXCRPC] section 3.1.4.2, as part
of client polling as specified in section 3.2.4.5 with no ROP request operation included in the method

call. Or, the client can send the EcDoRpcExt2 method as part of a communication pattern unrelated

to notifications. In either case, if any pending notifications exist on the server, the client receives
either a RopNotify (section 2.2.1.4.1) or RopPending ([MS-OXCROPS] section 2.2.14.3) ROP in
response to their EcDoRpcExt2 method call, as specified in section 3.1.5.5.

3.2.5.7 Receiving Notification Details By Using the RopNotify ROP

After the client is notified of pending notifications by any of the methods described in section 3.2.5.5
the client calls the EcDoRpcExt2 method, as described in [MS-OXCRPC] section 3.1.4.2, or sends an
Execute request type<24>, as specified in [MS-OXCMAPIHTTP] section 2.2.4.2, to retrieve the
notification details. In response to the EcDoRpcExt2 method or the Execute request, the client
receives a RopNotify ROP response (section 2.2.1.4.1).

Upon receiving a RopNotify ROP response, the client MUST verify that the value of the

NotificationHandle field is a valid handle to a notification subscription or a Table object that was
previously created by the client. If the value of the NotificationHandle field is valid, the client can
update its internal state by using the details provided in the RopNotify ROP response. Otherwise, the

client MUST ignore the RopNotify ROP response.

When the client subscribes to TableModified event notifications, the client MUST NOT make any
assumptions about the level of notifications that it will receive and the client MUST be able to handle

any of the three response types specified in section 3.1.4.3.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf

28 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

4 Protocol Examples

The examples in this section are XML fragments that contain various notifications. The type of
notification in each case is identified by the name attribute of the Data element.

[XML]

 <Data name="NewMailNotification">
 <Buffer>
 02 // NotificationType is NewMail
 80 // Message
 010000000078291F // New message FolderId
 0100000000783484 // New message MessageId

 22000000 // MessageFlags
 00 // UnicodeFlag indicates ASCII
 49504D2E4E6F746500 // MessageClass
 </Buffer>
 </Data>

 <Data name="ObjectCreatedNotification">
 <Buffer>
 04 // NotificationType is ObjectCreated
 00 // No flags
 0100000000782781 // New object FolderId
 0100000000782780 // Parent FolderId
 0000 // TagCount
 </Buffer>
 </Data>

 <Data name="ObjectCreatedNotification">
 <Buffer>
 04 // NotificationType is ObjectCreated
 80 // Message
 0100000000782780 // New message FolderId
 0100000000784172 // New message MessageId

 1F00 // TagCount
 0B001B0E // Tags
 0300790E
 02010B30
 0300A166
 0300F13F
 40000730
 40000830
 0201F93F
 1E00F83F
 03005940
 0201FB3F
 1E00FA3F
 03005A40
 0201BD67
 0201BE67
 40000967
 1F003510
 1F000010
 02010910
 02011310
 1E00040E
 1E00030E
 1F003700
 1F003D00
 1F001D0E
 0B001F0E
 0300FD3F
 40003900

29 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

 4000060E
 0300080E
 0300230E
 </Buffer>
 </Data>

 <Data name="ObjectDeletedNotification">
 <Buffer>
 08 // NotificationType is ObjectDeleted
 00 // No flags
 0100000000782780 // FolderId
 010000000078277F // ParentFolderId
 </Buffer>
 </Data>

 <Data name="ObjectModifiedNotification">
 <Buffer>
 10 // NotificationType is ObjectModified
 00 // No flags
 0100000000782780 // FolderId

 0200 // TagCount
 03003866 // Tags
 0B000A36
 </Buffer>
 </Data>

 <Data name="ObjectModifiedNotification">
 <Buffer>
 10 // NotificationType is ObjectModified
 20 // U flag, unread items changed
 010000000078291F // FolderId
 0100 // TagCount
 03000336 // Tags
 00000000 // Unread message count
 </Buffer>
 </Data>

 <Data name="ObjectModifiedNotification">
 <Buffer>
 10 // NotificationType is ObjectModified
 10 // T flag, total items changed
 0100000000782780 // FolderId

 0400 // TagCount
 03000236 // Tags
 0300080E
 0300AF66
 0300B366

 01000000 // TotalMessageCount
 </Buffer>
 </Data>

 <Data name="ObjectModifiedNotification">
 <Buffer>
 10 // NotificationType is ObjectModified
 30 // U flag, unread items changed
 010000000078291F // FolderId

 0500 // TagCount
 03000236 // Tags
 03000336
 0300080E
 0300AF66
 0300B366

 04000000 // TotalMessageCount
 03000000 // UnreadMessageCount

30 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

 </Buffer>
 </Data>

 <Data name="ObjectMovedNotification">
 <Buffer>
 20 // NotificationType isObjectMoved
 80 // Message
 0100000000782781 // Message FolderId
 0100000000784378 // MessageId
 0100000000782780 // OldFolderId
 0100000000784172 // OldMessageId
 </Buffer>
 </Data>

 <Data name="ObjectCopiedNotification">
 <Buffer>
 40 // NotificationType is ObjectCopied
 80 // Message
 0100000000782780 // Message FolderId
 0100000000784173 // MessageId
 0100000000782780 // OldMessageId
 0100000000784172 // OldFolderId
 </Buffer>
 </Data>

 <Data name="TableModifiedNotification">
 <Buffer>
 00 01 // NotificationType is TableModified
 01 00 // TableEventType is TableChanged
 </Buffer>
 </Data>

 <Data name="TableModifiedNotification">
 <Buffer>
 00 01 // NotificationType is TableModified
 07 00 // TableEventType is TableRestrictionChanged
 </Buffer>
 </Data>

 <Data name="TableRowAddModifiedNotification">
 <Buffer>
 00 01 // NotificationType is TableModified
 03 00 // TableEventType is TableRowAdded
 01 00 00 02 81 6C EA 9D // TableRowFolderID
 01 00 00 02 81 6C EA 9E // InsertAfterTableRowFolderID

 A3 00 // TableRowDataSize

 // TableRowData
 00 // No errors
 42 00 69 00 6c 00 6c 00
 79 00 20 00 44 00 2e 00
 53 00 2e 00 20 00 50 00
 72 00 6f 00 78 00 79 00 00

 00 7e
 00 00 00 00 00 dc
 a7 40 c8 c0 42 10 1a b4 b9 08 00 2b 2f e1 82 01
 00 00 00 00 00 00 00 2f 4f 3d 46 49 52 53 54 20
 4f 52 47 41 4e 49 5a 41 54 49 4f 4e 2f 4f 55 3d
 45 58 43 48 41 4e 47 45 20 41 44 4d 49 4e 49 53
 54 52 41 54 49 56 45 20 47 52 4f 55 50 20 28 46
 59 44 49 42 4f 48 46 32 33 53 50 44 4c 54 29 2f
 43 4e 3d 52 45 43 49 50 49 45 4e 54 53 2f 43 4e
 3d 44 53 50 52 4f 58 59 00
 </Buffer>
 </Data>

 <Data name="TableRowAddModifiedNotification">

31 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

 <Buffer>
 00 C1 // NotificationType is TableModified and the
 // S and M flags are set
 03 00 // TableEventType is TableRowAdded
 01 00 00 00 00 78 60 45 // FolderId
 01 00 00 02 81 6C FC 84 // MessageId
 01 00 00 00 // TableRowInstance
 01 00 00 00 00 78 60 45 // InsertAfterTableRowFolderId
 01 00 00 02 81 6C FC 82 // InsertAfterTableRowID
 01 00 00 00 // InsertAfterTableRowInstance

 A3 00 // TableRowDataSize

 // TableRowData
 00 // No errors
 42 00 69 00 6c 00 6c 00
 79 00 20 00 44 00 2e 00
 53 00 2e 00 20 00 50 00
 72 00 6f 00 78 00 79 00 00

 00 7e
 00 00 00 00 00 dc
 a7 40 c8 c0 42 10 1a b4 b9 08 00 2b 2f e1 82 01
 00 00 00 00 00 00 00 2f 4f 3d 46 49 52 53 54 20
 4f 52 47 41 4e 49 5a 41 54 49 4f 4e 2f 4f 55 3d
 45 58 43 48 41 4e 47 45 20 41 44 4d 49 4e 49 53
 54 52 41 54 49 56 45 20 47 52 4f 55 50 20 28 46
 59 44 49 42 4f 48 46 32 33 53 50 44 4c 54 29 2f
 43 4e 3d 52 45 43 49 50 49 45 4e 54 53 2f 43 4e
 3d 44 53 50 52 4f 58 59 00
 </Buffer>
 </Data>

 <Data name="TableRowAddModifiedNotification">
 <Buffer>
 00 01 // NotificationType is TableModified
 05 00 // TableEventType is TableRowModified
 01 00 00 00 00 78 60 45 // FolderId
 01 00 00 00 00 78 60 50 // InsertAfterTableRowFolderID

 A3 00 // TableRowDataSize

 // TableRowData
 00 // No errors
 42 00 69 00 6c 00 6c 00
 79 00 20 00 44 00 2e 00
 53 00 2e 00 20 00 50 00
 72 00 6f 00 78 00 79 00 00

 00 7e
 00 00 00 00 00 dc
 a7 40 c8 c0 42 10 1a b4 b9 08 00 2b 2f e1 82 01
 00 00 00 00 00 00 00 2f 4f 3d 46 49 52 53 54 20
 4f 52 47 41 4e 49 5a 41 54 49 4f 4e 2f 4f 55 3d
 45 58 43 48 41 4e 47 45 20 41 44 4d 49 4e 49 53
 54 52 41 54 49 56 45 20 47 52 4f 55 50 20 28 46
 59 44 49 42 4f 48 46 32 33 53 50 44 4c 54 29 2f
 43 4e 3d 52 45 43 49 50 49 45 4e 54 53 2f 43 4e
 3d 44 53 50 52 4f 58 59 00
 </Buffer>
 </Data>

 <Data name="TableRowAddModifiedNotification">
 <Buffer>
 00 C1 // NotificationType is TableModified and the
 // S and M flags are set
 05 00 // TableEventType is TableRowModified
 01 00 00 00 00 78 60 45 // TableRowFolderID
 01 00 00 02 81 6C FC 83 // TableRowMessageID

32 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

 01 00 00 00 // TableRowInstance
 01 00 00 00 00 78 60 46 // InsertAfterTableRowFolderID
 01 00 00 02 81 6C FC 84 // InsertAfterTableRowID
 01 00 00 00 // InsertAfterTableRowInstance

 A3 00 // TableRowDataSize

 // TableRowData
 00 // No errors
 42 00 69 00 6c 00 6c 00
 79 00 20 00 44 00 2e 00
 53 00 2e 00 20 00 50 00
 72 00 6f 00 78 00 79 00 00

 00 7e
 00 00 00 00 00 dc
 a7 40 c8 c0 42 10 1a b4 b9 08 00 2b 2f e1 82 01
 00 00 00 00 00 00 00 2f 4f 3d 46 49 52 53 54 20
 4f 52 47 41 4e 49 5a 41 54 49 4f 4e 2f 4f 55 3d
 45 58 43 48 41 4e 47 45 20 41 44 4d 49 4e 49 53
 54 52 41 54 49 56 45 20 47 52 4f 55 50 20 28 46
 59 44 49 42 4f 48 46 32 33 53 50 44 4c 54 29 2f
 43 4e 3d 52 45 43 49 50 49 45 4e 54 53 2f 43 4e
 3d 44 53 50 52 4f 58 59 00
 </Buffer>
 </Data>

 <Data name="TableRowDeletedModifiedNotification">
 <Buffer>
 00 01 // NotificationType is TableModified
 04 00 // TableEventType is TableRowDeleted
 01 00 00 00 00 78 60 45 // FolderId
 </Buffer>
 </Data>

 <Data name="TableRowDeletedModifiedNotification">
 <Buffer>
 00 C1 // NotificationType is TableModified and the
 // S and M flags are set
 04 00 // TableEventType is TableRowDeleted
 01 00 00 02 81 6C EA 96 // TableRowFolderID
 01 00 00 02 81 6D 09 01 // TableRowMessageID
 01 00 00 00 // TableRowInstance
 </Buffer>
 </Data>

33 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

5 Security

5.1 Security Considerations for Implementers

There are no special security considerations specific to this protocol. However, general security

considerations pertaining to the underlying ROP transport protocol described in [MS-OXCROPS] do
apply to this protocol.

5.2 Index of Security Parameters

None.

%5bMS-OXCROPS%5d.pdf

34 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Microsoft Exchange Server 2003

 Microsoft Exchange Server 2007

 Microsoft Exchange Server 2010

 Microsoft Exchange Server 2013

 Microsoft Exchange Server 2016

 Microsoft Office Outlook 2003

 Microsoft Office Outlook 2007

 Microsoft Outlook 2010

 Microsoft Outlook 2013

 Microsoft Outlook 2016

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or

SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2.1: Exchange 2003, Exchange 2007, Exchange 2010, the initial release of Exchange
2013, Office Outlook 2003, Office Outlook 2007, Outlook 2010, and the initial release of Outlook 2013
do not support the MAPI extensions to HTTP. The MAPI extensions to HTTP were introduced in
Microsoft Outlook 2013 Service Pack 1 (SP1) and Microsoft Exchange Server 2013 Service Pack 1
(SP1).

<2> Section 2.2.1: Exchange 2003, Exchange 2007, Exchange 2010, the initial release of Exchange
2013, Office Outlook 2003, Office Outlook 2007, Outlook 2010, and the initial release of Outlook 2013
do not support the NotificationWait request type. The NotificationWait request type was
introduced in Outlook 2013 SP1 and Exchange 2013 SP1.

<3> Section 2.2.1.3: Exchange 2003, Exchange 2007, Exchange 2010, the initial release of Exchange
2013, Office Outlook 2003, Office Outlook 2007, Outlook 2010, and the initial release of Outlook 2013

do not support the NotificationWait request type. The NotificationWait request type was
introduced in Outlook 2013 SP1 and Exchange 2013 SP1.

<4> Section 2.2.1.3.1: Exchange 2003 and Office Outlook 2003 do not support the
EcDoAsyncConnectEx method, as specified in [MS-OXCRPC] section 3.1.4.4.

<5> Section 2.2.1.3.2: Exchange 2003 and Office Outlook 2003 do not support the
EcDoAsyncWaitEx method, as specified in [MS-OXCRPC] section 3.3.4.1.

<6> Section 2.2.1.3.3: Exchange 2003, Exchange 2007, Office Outlook 2003, Office Outlook 2007,

and Outlook 2010 support the EcRRegisterPushNotification method, as specified in [MS-OXCRPC]
section 3.1.4.5. The initial release version of Exchange 2010, and Microsoft Exchange Server 2010

%5bMS-OXCRPC%5d.pdf

35 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

Service Pack 1 (SP1), do not support the EcRRegisterPushNotification method, and the returned
value is always ecNotSupported (0x80040102). Microsoft Exchange Server 2010 Service Pack 2

(SP2) does support the EcRRegisterPushNotification method if a registry key is created to support
push notifications, as described in [MSFT-ConfigStaticUDPPort]. Outlook 2013 and Outlook 2016 do

not send the EcRRegisterPushNotification RPC method call. Exchange 2013 and Exchange 2016 do
not support the EcRRegisterPushNotification method, and the returned value is always
ecNotSupported (0x80040102).

<7> Section 2.2.1.3.4: Exchange 2003, Exchange 2007, Exchange 2010, the initial release of
Exchange 2013, Office Outlook 2003, Office Outlook 2007, Outlook 2010, and the initial release of
Outlook 2013 do not support the Execute request type. The Execute request type was introduced in
Outlook 2013 SP1 and Exchange 2013 SP1.

<8> Section 2.2.1.4.1: Exchange 2003, Exchange 2007, Exchange 2010, the initial release of
Exchange 2013, Office Outlook 2003, Office Outlook 2007, Outlook 2010, and the initial release of
Outlook 2013 do not support the Execute response type. The Execute response type was introduced
in Outlook 2013 SP1 and Exchange 2013 SP1.

<9> Section 2.2.1.4.1.2: Exchange 2003, Exchange 2007, and Exchange 2010 do not set the value
of the TagCount field to 0x0000; they set the value of the field to the number of property tags in the

Tags field.

<10> Section 2.2.1.4.1.2: In Exchange 2013 the value of MessageFlags is zero.

<11> Section 3.1.1: Exchange 2003, Exchange 2007, Exchange 2010, the initial release of Exchange
2013, Office Outlook 2003, Office Outlook 2007, Outlook 2010, and the initial release of Outlook 2013
do not support cookies. The cookies element was introduced in Outlook 2013 SP1 and Exchange
2013 SP1.

<12> Section 3.1.4.3: Exchange 2003 and Exchange 2007 do not require that a table view is created

in order to send table notifications.

<13> Section 3.1.4.3: Exchange 2003 and Exchange 2007 do not stop sending notifications if the
RopResetTable ROP ([MS-OXCROPS] section 2.2.5.15) is received.

<14> Section 3.1.5.2: Exchange 2003 does not support the EcDoAsyncConnectEx method call or
asynchronous RPC notifications.

<15> Section 3.1.5.3: Exchange 2003 does not support the EcDoAsyncWaitEx method call or
asynchronous RPC notifications.

<16> Section 3.1.5.4: Exchange 2003 and Exchange 2007 support push notifications and the
EcRRegisterPushNotification method, as specified in [MS-OXCRPC] section 3.1.4.5. The initial
release version of Exchange 2010, and Exchange 2010 SP1 do not support push notifications or the
EcRRegisterPushNotification method. Exchange 2010 SP2 does support push notifications and the
EcRRegisterPushNotification method if a registry key is created, as described in [MSFT-
ConfigStaticUDPPort]. Microsoft Exchange Server 2010 Service Pack 3 (SP3) and Exchange 2013 do

not support push notifications of the EcRRegisterPushNotification method.

<17> Section 3.2.4.2: Exchange 2003 and Exchange 2007 do not require that the client send any

ROPs to the server in order to receive TableModified event notifications, as specified in section
2.2.1.1.1. In Exchange 2003 and Exchange 2007, the subscription is created automatically when the
client creates a Table object on the server.

<18> Section 3.2.4.2: The client will continue to receive table notifications even if the
RopResetTable ROP ([MS-OXCROPS] section 2.2.5.15) is sent, if the server is Exchange 2003 or

Exchange 2007.

http://go.microsoft.com/fwlink/?LinkId=228253
%5bMS-OXCROPS%5d.pdf

36 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

<19> Section 3.2.4.3: Office Outlook 2003 does not support the asynchronous RPC notification
method. Office Outlook 2007, Outlook 2010, Outlook 2013, and Outlook 2016 do support the

asynchronous RPC notification method.

<20> Section 3.2.4.4: Office Outlook 2003, Office Outlook 2007 and Outlook 2010 do support the

push notification method. Outlook 2013 and Outlook 2016 do not support the push notification
method.

<21> Section 3.2.4.5: Exchange 2003, Exchange 2007, Exchange 2010, the initial release of
Exchange 2013, Office Outlook 2003, Office Outlook 2007, Outlook 2010, and the initial release of
Outlook 2013 do not support the Execute request type. The Execute request type was introduced in
Outlook 2013 SP1 and Exchange 2013 SP1.

<22> Section 3.2.5.4: Outlook 2013 and Outlook 2016 do not support the push notification method

and do not send the EcRRegisterPushNotification RPC method call.

<23> Section 3.2.5.5.3: Exchange 2003, Exchange 2007, Exchange 2010, the initial release of
Exchange 2013, Office Outlook 2003, Office Outlook 2007, Outlook 2010, and the initial release of

Outlook 2013 do not support the Execute request type. The Execute request type was introduced in
Outlook 2013 SP1 and Exchange 2013 SP1.

<24> Section 3.2.5.7: Exchange 2003, Exchange 2007, Exchange 2010, the initial release of

Exchange 2013, Office Outlook 2003, Office Outlook 2007, Outlook 2010, and the initial release of
Outlook 2013 do not support the Execute request type. The Execute request type was introduced in
Outlook 2013 SP1 and Exchange 2013 SP1.

37 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as New, Major, Minor, Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements or functionality.

 The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed. Editorial

changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor editorial
and formatting changes may have been made, but the technical content of the document is identical
to the last released version.

Major and minor changes can be described further using the following change types:

 New content added.

 Content updated.

 Content removed.

 New product behavior note added.

 Product behavior note updated.

 Product behavior note removed.

 New protocol syntax added.

 Protocol syntax updated.

 Protocol syntax removed.

 New content added due to protocol revision.

 Content updated due to protocol revision.

 Content removed due to protocol revision.

 New protocol syntax added due to protocol revision.

 Protocol syntax updated due to protocol revision.

 Protocol syntax removed due to protocol revision.

 Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

38 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

 Protocol syntax refers to data elements (such as packets, structures, enumerations, and
methods) as well as interfaces.

 Protocol revision refers to changes made to a protocol that affect the bits that are sent over the
wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section
Tracking number (if applicable) and
description

Major
change (Y
or N)

Change type

2.2.1.1.1 TableModified Event
Types

Added reference to MS-OXCTABL to
describe how a table restriction is cleared
or removed.

Y
Content
update.

2.2.1.2.1.1
RopRegisterNotification ROP
Request Buffer

Clarified that the NotificationTypes field is
two bytes.

Y
Content
update.

2.2.1.2.1.1
RopRegisterNotification ROP
Request Buffer

Added description of NotificationTypes
field values 0x0100 and 0x0400.

Y
New content
added.

2.2.1.2.1.1
RopRegisterNotification ROP
Request Buffer

Clarified the usage of the Reserved field. Y
Content
update.

2.2.1.4.1.2 NotificationData
Structure

Clarified the structure of the
NotificationFlags field.

Y
Content
update.

2.2.1.4.1.2 NotificationData
Structure

Clarified the description of the
NotificationFlags field value 0x0400.

Y
Content
update.

2.2.1.4.1.2 NotificationData
Structure

Clarified the availability of the
InsertAfterTableRowInstance field.

Y
Content
update.

2.2.1.4.1.2 NotificationData
Structure

Clarified the contents of the
TableRowData field.

Y
Content
update.

3.1.5.6 Sending a RopPending
ROP Response

Clarified the server behavior when there
are pending notifications on any linked
session contexts.

Y
Product
behavior note
removed.

3.2.4.3 Initializing Asynchronous
RPC Notifications

Clarified product support for the use of
asynchronous RPCs.

Y
Product
behavior note
updated.

3.2.4.4 Initializing Push
Notifications

Clarified product support for the use of
push notifications.

Y
Product
behavior note
updated.

3.2.5.4 Sending an
EcRRegisterPushNotification
Method Call

Clarified product support for the use of
push notifications.

Y
Product
behavior note
updated.

3.2.5.4 Sending an
EcRRegisterPushNotification
Method Call

Clarified product support for the use of
EcRRegisterPushNotification method call.

Y
Product
behavior note
updated.

6 Appendix A: Product Behavior Updated list of applicable products. Y
Content
update.

mailto:dochelp@microsoft.com

39 / 39

[MS-OXCNOTIF] - v20150914
Core Notifications Protocol
Copyright © 2015 Microsoft Corporation
Release: September 14, 2015

8 Index

A

Abstract data model
 client 23
 server 20
Applicability 9

C

Capability negotiation 9
Change tracking 37
Client
 abstract data model 23
 higher-layer triggered events 24
 initialization 23
 message processing 25
 other local events 27
 sequencing rules 25

 timer events 27
 timers 23

D

Data model - abstract
 client 23
 server 20

F

Fields - vendor-extensible 10

G

Glossary 6

H

Higher-layer triggered events
 client 24
Higher-layer triggered events - server 20

I

Implementer - security considerations 33
Index of security parameters 33
Informative references 8
Initialization
 client 23
 server 20
Introduction 6

M

Message processing
 client 25
Messages
 Notifications 11
 transport 11

N

Normative references 7
Notifications message 11

O

Other local events
 client 27
 server 23
Overview (synopsis) 8

P

Parameters - security index 33
Preconditions 9
Prerequisites 9
Product behavior 34

R

References 7
 informative 8
 normative 7
Relationship to other protocols 9

S

Security
 implementer considerations 33
 parameter index 33
Sequencing rules
 client 25
Server
 abstract data model 20
 initialization 20
 other local events 23
 timer events 23
 timers 20
Server - higher-layer triggered events 20
Standards assignments 10

T

Timer events
 client 27

 server 23
Timers
 client 23
 server 20
Tracking changes 37
Transport 11
Triggered events - higher-layer
 client 24
Triggered events - server 20

V

Vendor-extensible fields 10
Versioning 9

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Notifications
	2.2.1.1 Server Event Types
	2.2.1.1.1 TableModified Event Types

	2.2.1.2 Subscription Management
	2.2.1.2.1 RopRegisterNotification ROP
	2.2.1.2.1.1 RopRegisterNotification ROP Request Buffer

	2.2.1.3 Pending Notifications
	2.2.1.3.1 EcDoAsyncConnectEx Method
	2.2.1.3.2 EcDoAsyncWaitEx Method
	2.2.1.3.3 EcRRegisterPushNotification Method
	2.2.1.3.4 RopPending ROP

	2.2.1.4 Notification Details
	2.2.1.4.1 RopNotify ROP
	2.2.1.4.1.1 RopNotify ROP Response Buffer
	2.2.1.4.1.2 NotificationData Structure

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Sending Pending Notifications
	3.1.4.2 Sending Notification Details
	3.1.4.3 Creating and Sending TableModified Event Notifications

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Receiving a RopRegisterNotification ROP Request
	3.1.5.2 Receiving an EcDoAsyncConnectEx Method Call
	3.1.5.3 Receiving an EcDoAsyncWaitEx Method Call
	3.1.5.4 Receiving an EcRRegisterPushNotification Method Call
	3.1.5.5 Receiving an EcDoRpcExt2 Method Call
	3.1.5.6 Sending a RopPending ROP Response
	3.1.5.7 Sending a RopNotify ROP Response

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Subscribing to Notifications
	3.2.4.2 Subscribing to TableModified Event Notifications
	3.2.4.3 Initializing Asynchronous RPC Notifications
	3.2.4.4 Initializing Push Notifications
	3.2.4.5 Polling the Server for Notifications

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Sending a RopRegisterNotification ROP Request
	3.2.5.2 Sending an EcDoAsyncConnectEx Method Call
	3.2.5.3 Sending an EcDoAsyncWaitEx Method Call
	3.2.5.4 Sending an EcRRegisterPushNotification Method Call
	3.2.5.5 Receiving Pending Notifications
	3.2.5.5.1 Sending and Receiving EcDoAsyncWaitEx Method Calls
	3.2.5.5.2 Receiving Push Notification UDP Datagrams
	3.2.5.5.3 Receiving the RopPending ROP

	3.2.5.6 Sending an EcDoRpcExt2 Method Call
	3.2.5.7 Receiving Notification Details By Using the RopNotify ROP

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

