

1 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

[MS-OXCNOTIF]:
Core Notifications Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft's Open Specification Promise (available here:
http://www.microsoft.com/interop/osp) or the Community Promise (available here:
http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

Revision Summary

Date

Revision

History

Revision

Class Comments

04/04/2008 0.1 Initial Availability.

06/27/2008 1.0 Initial Release.

08/06/2008 1.01 Revised and edited technical content.

09/03/2008 1.02 Revised and edited technical content.

12/03/2008 1.03 Minor editorial fixes.

03/04/2009 1.04 Revised and edited technical content.

04/10/2009 2.0 Updated technical content and applicable product

releases.

07/15/2009 3.0 Major Revised and edited for technical content.

11/04/2009 3.1.0 Minor Updated the technical content.

02/10/2010 4.0.0 Major Updated and revised the technical content.

05/05/2010 4.1.0 Minor Updated the technical content.

08/04/2010 4.1.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/03/2010 4.1.0 No change No changes to the meaning, language, or formatting of

the technical content.

3 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

Contents

1 Introduction ... 5
1.1 Glossary ... 5
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 6

1.3 Overview .. 6
1.3.1 Pending Notifications .. 6

1.3.1.1 RopPending.. 7
1.3.1.2 Polling ... 7
1.3.1.3 Push Notification ... 7
1.3.1.4 Asynchronous RPC Notification ... 7

1.3.2 Notification Details ... 7
1.4 Relationship to Other Protocols .. 7
1.5 Prerequisites/Preconditions ... 8
1.6 Applicability Statement ... 8
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor-Extensible Fields ... 8
1.9 Standards Assignments .. 8

2 Messages.. 9
2.1 Transport .. 9
2.2 Message Syntax .. 9

2.2.1 Notifications .. 9
2.2.1.1 Server Event Types ... 9

2.2.1.1.1 TableModified Event Types ... 9
2.2.1.2 Subscription Management .. 10

2.2.1.2.1 RopRegisterNotification .. 10
2.2.1.2.1.1 NotificationTypes ... 11

2.2.1.2.2 RopSynchronizationOpenAdvisor ... 12
2.2.1.2.3 RopRegisterSynchronizationNotifications .. 12
2.2.1.2.4 RopSetSynchronizationNotificationGuid .. 12

2.2.1.3 Pending Notifications ... 13
2.2.1.3.1 RopPending .. 13
2.2.1.3.2 EcRRegisterPushNotification ... 13
2.2.1.3.3 EcDoAsyncConnectEx... 13
2.2.1.3.4 EcDoAsyncWaitEx .. 13

2.2.1.4 Notification Details .. 13
2.2.1.4.1 RopNotify ... 13

2.2.1.4.1.1 NotificationFlags .. 16
2.2.1.4.1.2 TableEventType ... 17
2.2.1.4.1.3 MessageFlags .. 17
2.2.1.4.1.4 MessageClass .. 17

3 Protocol Details .. 18
3.1 Notifications Server Details ... 18

3.1.1 Abstract Data Model ... 18
3.1.2 Timers .. 18
3.1.3 Initialization .. 18

3.1.3.1 Subscribing for Notifications ... 18
3.1.3.1.1 Receiving RopRegisterNotification .. 18

4 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

3.1.3.1.2 Receiving RopSynchronizationOpenAdvisor ... 18
3.1.3.1.3 Receiving RopRegisterSynchronizationNotifications 18
3.1.3.1.4 Receiving RopSetSynchronizationNotificationGuid 18
3.1.3.1.5 Subscribing for Table Notifications ... 19

3.1.3.2 Initializing Pending Notifications ... 19
3.1.3.2.1 Receiving EcRRegisterPushNotification ... 19
3.1.3.2.2 Receiving EcDoAsyncConnectEx .. 19

3.1.4 Higher-Layer Triggered Events ... 19
3.1.5 Message Processing Events and Sequencing Rules .. 20

3.1.5.1 Notifying Client about Pending Notifications ... 20
3.1.5.1.1 Sending RopPending .. 20
3.1.5.1.2 Sending Push Notification Datagram .. 20
3.1.5.1.3 Receiving and Completing Asynchronous RPC call 20

3.1.5.2 Sending Notification Details ... 20
3.1.5.2.1 Sending RopNotify ... 20

3.1.6 Timer Events ... 20
3.1.7 Other Local Events ... 20

3.2 Notifications Client Details .. 21
3.2.1 Abstract Data Model ... 21
3.2.2 Timers .. 21
3.2.3 Initialization .. 21

3.2.3.1 Subscribing for Notifications ... 21
3.2.3.1.1 Sending RopRegisterNotification .. 21
3.2.3.1.2 Sending RopSynchronizationOpenAdvisor ... 21
3.2.3.1.3 Sending RopRegisterSynchronizationNotifications 21
3.2.3.1.4 Sending RopSetSynchronizationNotificationGuid 21
3.2.3.1.5 Subscribing for Table Notifications ... 22

3.2.3.2 Initializing Push Notifications .. 22
3.2.3.2.1 Sending EcRRegisterPushNotifications .. 22
3.2.3.2.2 Sending EcDoAsyncConnectEx .. 22

3.2.4 Higher-Layer Triggered Events ... 22
3.2.5 Message Processing Events and Sequencing Rules .. 23

3.2.5.1 Receiving Notification About Pending Notifications .. 23
3.2.5.1.1 Receiving RopPending .. 23
3.2.5.1.2 Receiving Push Notification Datagram .. 23
3.2.5.1.3 Sending and Receiving EcDoAsyncWaitEx ... 23

3.2.5.2 Receiving Notification Details ... 23
3.2.5.2.1 Receiving RopNotify ... 23

3.2.6 Timer Events ... 23
3.2.7 Other Local Events ... 23

4 Protocol Examples .. 24

5 Security .. 30
5.1 Security Considerations for Implementers ... 30

6 Appendix A: Product Behavior .. 31

7 Change Tracking... 32

8 Index ... 33

5 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

1 Introduction

This document specifies a protocol for transmitting notifications to a client about certain events on a
server. This protocol is commonly used to inform the client about changes that occurred in folders
and messages on the server.

1.1 Glossary

The following terms are defined in [MS-OXGLOS]:

ASCII

Asynchronous Context Handle (ACXH)
binary large object (BLOB)
change number (CN)
folder ID (FID)
GUID
handle

Logon object

message ID (MID)
property (1)
remote operation (ROP)
remote procedure call (RPC)
ROP request buffer
ROP response buffer

Server object
Server object handle table
Session Context Handle (CXH)
Table object
Unicode

The following terms are specific to this document:

callback address: An object that encapsulates an Internet address registered by a client that a

server can use for push notifications.

ICS Advisor object: A handle to an object that is created on the server and that receives event
notifications.

Internet datagram: The unit of data exchanged between a pair of Internet modules (includes
the Internet header).

notification: A message the client receives when a specific event occurs on the server.

notification subscription: A request to receive notifications from the server.

outstanding RPC call: An asynchronous remote procedure call (RPC) that has not yet been
completed by the server.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317

6 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[MS-OXCFOLD] Microsoft Corporation, "Folder Object Protocol Specification", April 2008.

[MS-OXCMSG] Microsoft Corporation, "Message and Attachment Object Protocol Specification", April

2008.

[MS-OXCROPS] Microsoft Corporation, "Remote Operations (ROP) List and Encoding Protocol
Specification", April 2008.

[MS-OXCRPC] Microsoft Corporation, "Wire Format Protocol Specification", April 2008.

[MS-OXCSTOR] Microsoft Corporation, "Store Object Protocol Specification", April 2008.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-OXGLOS] Microsoft Corporation, "Exchange Server Protocols Master Glossary", April 2008.

[MSDN-ENM] Microsoft Corporation, "Event Notification in MAPI", http://msdn.microsoft.com/en-
us/library/ms528269(EXCHG.10).aspx

[MSDN-WS2] Microsoft Corporation, "Windows Sockets 2", http://msdn.microsoft.com/en-

us/library/ms740673(VS.85).aspx

1.3 Overview

The messaging client can register to receive notifications about certain events that can happen on
the messaging server. When an event occurs on the server, and a client has registered to receive
the notification, the server sends the notification details to the client in the ROP response buffer
on the EcDoRpcExt2 calls, as specified in [MS-OXCRPC], in the format described by RopNotify, as

specified in [MS-OXCROPS].

The Core Notifications protocol is logically divided into two parts: one that notifies a client about
pending notifications, and one that transmits the notifications. The following subsections describe
the two parts of the protocol.

1.3.1 Pending Notifications

Because the receipt of notification details is only done through the ROP response buffer that is

returned from EcDoRpcExt2 calls, the server needs a mechanism to inform the client of any
pending notifications on the session context on the server when the client is idle and not actively
calling EcDoRpcExt2. The server provides four different methods that a client can use to be notified
of pending notifications.

The following subsections describe the four methods that the server provides.

mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCSTOR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-OXGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113730
http://go.microsoft.com/fwlink/?LinkId=113730
http://go.microsoft.com/fwlink/?LinkID=113731
http://go.microsoft.com/fwlink/?LinkID=113731
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

7 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

1.3.1.1 RopPending

If there are pending notifications for the session, the server sends RopPending, as specified in [MS-
OXCROPS], in the ROP response buffer on EcDoRpcExt2 call.

1.3.1.2 Polling

If a client is idle and is not making EcDoRpcExt2 calls, it cannot receive RopNotify. The simplest
way for a client to retrieve notification details is to make EcDoRpcExt2 calls on regular intervals.
The server allows the client to call EcDoRpcExt2 with no remote operation (ROP) request
operations. This provides the client a means to retrieve any pending notifications.

The interval at which the client polls the server for notifications is returned on the EcDoConnect

and EcDoConnectEx calls as specified in [MS-OXCRPC] section 3.1.4.11. The output parameter
pcmsPollsMax in both of these calls contains the number of milliseconds the client waits before
polling the server for event information. It is not recommended that the client poll the server more
frequently than what is returned by the server. If the client needs to be very responsive to events
on the server, the polling method is not recommended.

1.3.1.3 Push Notification

Instead of polling the server at regular intervals to get notification details, the client can register a
callback address with the server. The server will send an Internet datagram to the callback
address to inform the client that notifications are pending on the server for the session.

Clients connecting via RPC/HTTP protocol may use the Push Notification method of being signaled of
pending notifications.<1>

1.3.1.4 Asynchronous RPC Notification

Asynchronous RPC Notification method allows the client to make an asynchronous RPC call to the
server where the server does not complete the RPC call until there is a notification for the session.
This method works through RPC/HTTP protocol connections with the server where the Push

Notification method will not. The client determines if the server supports this notification method
by examining the server version information that is returned from the EcDoConnectEx call. See
section 1.7 to determine which minimum server version is required to use the Asynchronous RPC

Notification method.

1.3.2 Notification Details

After the client is notified of pending notifications by any of the methods described in sections
1.3.1.1, 1.3.1.2, 1.3.1.3, and 1.3.1.4, the client calls EcDoRpcExt2 to retrieve the notification
details. The server adds any notification details in the ROP response buffer of the EcDoRpcExt2 by
using the RopNotify response command. The server returns as many notification details through

multiple RopNotify response commands as the ROP response buffer allows. If the server was not
able to fit all pending notifications in the response buffer, the server also returns the RopPending
response command to indicate that some notifications are still pending.

1.4 Relationship to Other Protocols

The Core Notifications protocol specification provides a low-level explanation of notifying a client
about events on the server. For information about the application of this protocol in a MAPI provider,

see [MSDN-ENM].

This specification relies on an understanding of [MS-OXCRPC] and [MS-OXCROPS].

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
http://msdn.microsoft.com/en-us/library/cc842079.aspx
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCROPS%5d.pdf

8 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

1.5 Prerequisites/Preconditions

This specification assumes that the client has previously logged on to the server and created a
session context.

1.6 Applicability Statement

The Core Notifications protocol was designed to be used for the following:

Notifying clients about certain events on the server.

Notifying clients about notifications pending for the client on the server.

This protocol provides basic information, high efficiency, and complete preservation of data fidelity

for these uses. It might not be appropriate for use in scenarios that do the following:

Require replication of mailbox content between clients and servers.

Require client-driven copying of data between different mailboxes on different servers.

Require exporting or importing of data from or to a mailbox.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

Supported Transports: This protocol uses the Wire Format protocol [MS-OXCRPC], the Remote

Operations (ROP) List and Encoding protocol [MS-OXCROPS], and Internet protocols as specified
in section 2.1.

Protocol Versions: This protocol has only one interface version.

Capability Negotiation: The protocol does not require Asynchronous RPC Notifications to be

implemented. The client examines the server version to determine if Asynchronous RPC
Notifications are supported. See [MS-OXCRPC] for more details about how to determine server

version.<2>

Localization: This protocol passes text strings in notification details. Localization considerations

for such strings are specified in section 2.2.1.4.1.4.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

%5bMS-OXCRPC%5d.pdf
%5bMS-OXCROPS%5d.pdf

9 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

2 Messages

2.1 Transport

The commands specified by this protocol are sent to and received from the server respectively by
using the underlying ROP request buffers and ROP response buffers, as specified in [MS-
OXCROPS].

Asynchronous calls are made on the server by using remote procedure call (RPC) transport, as
specified in [MS-OXCRPC].

Datagrams are sent from server to client by using underlying networking protocols. For more
information, see [MSDN-WS2].

2.2 Message Syntax

2.2.1 Notifications

2.2.1.1 Server Event Types

The following table describes the events that happen on the server. Clients can register to receive
notifications about these events.

Name Description

CriticalError A critical error has occurred on the server. <3>

NewMail A new e-mail message has been received by the server.

ObjectCreated A new item has been created on the server.

ObjectDeleted An existing item has been deleted from the server.

ObjectModified An existing item has been modified on the server.

ObjectMoved An existing item has been moved to another location on the server.

ObjectCopied An existing item has been copied on the server.

SearchComplete A search operation has been completed on the server.

2.2.1.1.1 TableModified Event Types

The following table describes the table modification event types.

Name Description

TableChanged A table has been changed.

TableError An error occurred.

TableRowAdded A new row has been added to the table.

TableRowDeleted An existing row has been deleted from the table.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=113731

10 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

Name Description

TableRowModified An existing row has been modified in the table.

TableSortDone A table sort has been completed.

TableRestrictionChanged A table restriction has been changed.

TableColumnsChanged Table columns have been changed.

When a client subscribes to notifications on table changes, the server does one of the following

three things, listed in order from the most useful to the least useful to the client:

1. Generates an informative notification such as TableRowAdded.

2. Generates a basic notification for TableChanged.

3. Does not generate a notification at all.

The notification that is generated depends on several factors, including the following:

The type of table that has been changed.

The resources that are available to the server.

The number of recent changes that affect the table.

Other implementation-dependent conditions.

A client MUST be able to handle any of the three response types in the previous numbered list. The
server SHOULD generate the most useful response that it is capable of generating, as specified in

the previous numbered list.

2.2.1.2 Subscription Management

2.2.1.2.1 RopRegisterNotification

RopRegisterNotification creates a subscription for specified notifications on the server and returns
a handle of the subscription to the client. The following table describes the notification subscription

request.

Name Type Size Description

RopId Byte 1 Unsigned 8-bit integer. This value specifies the type of ROP. For

this operation, this field is set to 0x29.

LogonId Byte 1 Unsigned 8-bit integer. This value specifies the logon associated

with this operation.

InputHandleIndex Byte 1 Unsigned 8-bit integer. This index specifies the location in the

Server object handle table where the handle for the input

Server object is stored.

OutputHandleIndex Byte 1 Unsigned 8-bit integer. This index specifies the location in the

Server object handle table where the handle for the output Server

object will be stored.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

11 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

Name Type Size Description

NotificationTypes Byte 1 A set of bits describing notifications that the client is interested in

receiving. See section 2.2.1.2.1.1.

Reserved Byte 1 This field is reserved. The field value MUST be zero. The server

behavior is undefined if the value is not zero.

WantWholeStore Byte 1 Set to TRUE (nonzero) if the scope for notifications is the entire

database. Set to FALSE (zero) otherwise.

FolderID ID 8 The ID of the folder to limit the scope of notifications. This field is

available only if WantWholeStore is zero.

MessageID ID 8 The ID of the message inside the folder referenced by FolderID to

limit the scope for notifications. This field is available only if

WantWholeStore is zero.

The following table describes the notifications subscription response.

Name Type Size Description

OutputHandleIndex Byte 1 Handle of the Notification Subscription object created by this ROP.

This index MUST be set to the OutputHandleIndex specified in the

request.

2.2.1.2.1.1 NotificationTypes

The following table lists the notification types that are available.

Value Meaning

0x01 The server sends notifications to the client when CriticalError events occur within the scope of

interest.<4>

0x02 The server sends notifications to the client when NewMail events occur within the scope of

interest.

0x04 The server sends notifications to the client when ObjectCreated events occur within the scope of

interest.

0x08 The server sends notifications to the client when ObjectDeleted events occur within the scope of

interest.

0x10 The server sends notifications to the client when ObjectModified events occur within the scope

of interest.

0x20 The server sends notifications to the client when ObjectMoved events occur within the scope of

interest.

0x40 The server sends notifications to the client when ObjectCopied events occur within the scope of

interest.

0x80 The server sends notifications to the client when SearchCompleted events occur within the

scope of interest.

See section 2.2.1.1 for details about server events.

12 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

2.2.1.2.2 RopSynchronizationOpenAdvisor

RopSynchronizationOpenAdvisor creates an ICS Advisor object<5> on the server and returns
a handle of the object to the client. The following table shows the ICS Advisor request.

Name Type Size Description

InputHandleIndex Handle 1 Handle of the Logon object. See [MS-OXCROPS] section 2.2.14.2

for more details.

The following table shows the ICS Advisor response.

Name Type Size Description

OutputHandleIndex Handle 1 Handle of the ICS Advisor object created by this ROP. See [MS-

OXCROPS] section 2.2.14.2 for more details.<6>

2.2.1.2.3 RopRegisterSynchronizationNotifications

RopRegisterSynchronizationNotifications creates a subscription for StatusObjectModified
notifications on the server.

Name Type Size Description

InputHandleIndex Byte 1 Handle of the ICS Advisor object.

FolderCount Short 2 Number of folder IDs that limit the scope of

the notification subscription.

FolderIDs ID[] NumberOfFolderIDs List of folder IDs that limit the scope of the

notification subscription.

FolderChangeNumbers ULong[] NumberOfFolderIDs List of folder change numbers (CNs).

For details about the response, see [MS-OXCROPS] section 2.2.14.3.

2.2.1.2.4 RopSetSynchronizationNotificationGuid

RopSetSynchronizationNotificationGuid assigns a notification GUID to an ICS Advisor object on
the server.

Name Type Size Description

InputHandleIndex Byte 1 Handle of the ICS Advisor object. See [MS-OXCROPS] section

2.2.14.4 for more details.

NotificationGuid GUID 16 A notification GUID to assign to the ICS Advisor object.

For details about the response, see [MS-OXCROPS] section 2.2.14.4.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

13 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

2.2.1.3 Pending Notifications

2.2.1.3.1 RopPending

RopPending notifies the client that there are pending notifications on the server for the client. This
ROP MUST appear only in response buffers of EcDoRpcExt2. See [MS-OXCROPS] section 2.2.14.6
for more details.

2.2.1.3.2 EcRRegisterPushNotification

EcRRegisterPushNotification is an RPC method that is used to register a callback address of a
client on the server. See [MS-OXCRPC] section 3.1.4.5 for more details.

2.2.1.3.3 EcDoAsyncConnectEx

EcDoAsyncConnectEx is an RPC method that is used to acquire an Asynchronous Context
Handle (ACXH) on the server to use in subsequent EcDoAsyncWaitEx calls. See [MS-OXCRPC]

section 3.1.4.15 for more details.

2.2.1.3.4 EcDoAsyncWaitEx

EcDoAsyncWaitEx is an asynchronous RPC method that is used to inform a client about pending
notifications on the server. See [MS-OXCRPC] section 3.3.4.1 for more details.

2.2.1.4 Notification Details

2.2.1.4.1 RopNotify

RopNotify provides the client with the details of notifications that are sent by server. This ROP

MUST appear only in response buffers of EcDoRpcExt2.

Name Type Size Description

NotificationHandle Handle 4 Handle of the target object for the

notification. The target object can be a

notification subscription, an ICS Advisor,

or a table.

NotificationFlags Short 2 Set of bits describing the type of the

notification and availability of the

notification data fields. See section

2.2.1.4.1.1.

TableEventType Byte 2 Subtype of the notification for a

TableModified event. This field is

available only if the NotificationType

value in NotificationFlags is 0x0100.

See section 2.2.1.4.1.2.

TableRowFolderID ID 8 Folder ID of the item that is triggering

this notification. This field is only

available if the TableEventType field is

available and is equal to 0x03, 0x04, or

0x05.

TableRowMessageID ID 8 Message ID of the item triggering this

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXGLOS%5d.pdf

14 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

Name Type Size Description

notification. This field is only available if

bit 0x8000 is set in NotificationFlags

and TableEventType is available and is

equal to 0x03, 0x04, or 0x05.

TableRowInstance ULong 4 An identifier of the instance of the

previous row in the table. This field is

only available if bit 0x8000 is set in

NotificationFlags and TableEventType

is available and is equal to 0x03, 0x04,

or 0x05.

InsertAfterTableRowFolderID ID 8 Old folder ID of the item triggering this

notification. This field is only available if

the TableEventType field is available

and is equal to 0x03 or 0x05.

InsertAfterTableRowID ID 8 Old message ID of the item triggering

this notification. This field is only

available if bit 0x8000 is set in

NotificationFlags and TableEventType

is available and is equal to 0x03 or 0x05.

InsertAfterTableRowInstance ULong 4 An identifier of the instance of the row

where the modified row is inserted.

TableRowDataSize Short 2 Length of table row data. This field is

only available if the TableEventType

field is available and is equal to 0x03 or

0x05.

TableRowData String TableRowDataSize Table row data. This field is only available

if the TableEventType field is available

and is equal to 0x03 or 0x05.

HierarchyChanged Byte 1 Set to TRUE (nonzero) if folder hierarchy

has changed. Set to FALSE (zero)

otherwise. This field is available only if

the NotificationType value in

NotificationFlags is 0x0200.

FolderIDNumber ULong 4 Number of folder IDs. This field is

available only if the NotificationType

value in NotificationFlags is 0x0200.

FolderIDs GID [] FolderIDNumber Folder IDs. This field is available only if

the NotificationType value in

NotificationFlags is 0x0200.

ICSChangeNumbers ULong[] FolderIDNumber Folder CNs. This field is available only if

the NotificationType value in

NotificationFlags is 0x0200.

FolderId ID 8 Folder ID of the item triggering the

event. This field is available only if the

NotificationType value in

NotificationFlags is not 0x0100,

0x0200, or 0x0400.

15 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

Name Type Size Description

MessageId ID 8 Message ID of the item triggering the

event. This field is available only if the

NotificationType value in

NotificationFlags is not 0x0100,

0x0200, or 0x0400, and bit 0x8000 is set

in NotificationFlags.

ParentFolderId ID 8 Folder ID of the parent folder of the item

triggering the event. This field is

available only if the NotificationType

value is 0x0004, 0x0008, 0x0020, or

0x0040, and it is sent for either a

message in a search folder (both bit

0x4000 and bit 0x8000 are set in

NotificationFlags) or a folder (both bit

0x4000 and bit 0x8000 are not set in

NotificationFlags).

OldFolderId ID 8 Old folder ID of the item triggering the

event. This field is available only if the

NotificationType value in

NotificationFlags is 0x0020 or 0x0040.

OldMessageId ID 8 Old message ID of the item triggering the

event. This field is available only if the

NotificationType value in

NotificationFlags is 0x0020 or 0x0040

and bit 0x8000 is set in

NotificationFlags.

OldParentFolderId ID 8 Old parent folder ID of the item

triggering the event. This field is

available only if the NotificationType

value in NotificationFlags is 0x0020 or

0x0040 and bit 0x8000 is not set in

NotificationFlags.

TagCount Short 2 Number of property tags. This field is

available only if the NotificationType

value in NotificationFlags is 0x0004 or

0x0010. A value of 0xFFFF is returned if

there were too many tags to fit into the

response and the list of property tags

was omitted.

Tags ULong[] TagCount List of IDs of properties that have

changed. This field is available only if

TagCount is available and TagCount is

not equal to 0xFFFF.

TotalMessageCount ULong 4 Total number of items in a folder

triggering this event. This field is

available only if bit 0x1000 is set in

NotificationFlags.

UnreadMessageCount ULong 4 Number of unread items in a folder

triggering this event. This field is

available only if bit 0x2000 is set in

%5bMS-OXGLOS%5d.pdf

16 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

Name Type Size Description

NotificationFlags.

MessageFlags ULong 4 Message flags of new mail that has been

received. This field is available only if the

NotificationType value in

NotificationFlags is 0x0002.

UnicodeFlag Byte 1 Set to TRUE (nonzero) if MessageClass

is in Unicode. Set to FALSE (zero)

otherwise. This field is available only if

the NotificationType value in

NotificationFlags is 0x0002.<7>

MessageClass String Variable Null-terminated string containing the

message class of the new mail. The

string is in Unicode if UnicodeFlag is

TRUE (nonzero). The string is in ASCII if

UnicodeFlag is FALSE (zero). This field

is available only if the NotificationType

value in NotificationFlags is 0x0002.

2.2.1.4.1.1 NotificationFlags

NotificationFlags is a 16-bit combination of an enumeration and flags. The layout is shown in the
following table.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

NotificationType T U S M

NotificationType (12 bits): NotificationType is a 12 bit enumeration defining the type of the
notification. The possible values are listed in the following table.

Value Meaning

0x0001 The notification is for a CriticalError event.

0x0002 The notification is for a NewMail event.

0x0004 The notification is for an ObjectCreated event.

0x0008 The notification is for an ObjectDeleted event.

0x0010 The notification is for an ObjectModified event.

0x0020 The notification is for an ObjectMoved event.

0x0040 The notification is for an ObjectCopied event.

0x0080 The notification is for a SearchCompleted event.

0x0100 The notification is for a TableModified events.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

17 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

Value Meaning

0x0200 The notification is for a StatusObjectModified event.

0x0400 This value is reserved.

T (1 bit): Value = 0x1000. The notification contains information about a change in total number
of messages in a folder triggering the event. If this bit is set, NotificationType MUST be
0x0010.

U (1 bit): Value = 0x2000. The notification contains information about a change in number of
unread messages in a folder triggering the event. If this bit is set, NotificationType MUST be

0x0010.

S (1 bit): Value = 0x4000. The notification is caused by an event in a search folder. If this bit is
set, bit 0x8000 MUST be set.

M (1 bit): Value = 0x8000. The notification is caused by an event on a message.

2.2.1.4.1.2 TableEventType

The following table lists the table event types that are available.

Value Meaning

0x0001 The notification is for TableChanged events.

0x0002 The notification is for TableError events.

0x0003 The notification is for TableRowAdded events.

0x0004 The notification is for TableRowDeleted events.

0x0005 The notification is for TableRowModified events.

0x0006 The notification is for TableSortDone events.

0x0007 The notification is for TableRestrictionChanged events.

0x0008 The notification is for TableColumnsChanged events.

2.2.1.4.1.3 MessageFlags

See [MS-OXCMSG] section 2.2.1.6 for details.

2.2.1.4.1.4 MessageClass

See [MS-OXCMSG] section 2.2.1.3 for details.

%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf

18 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

3 Protocol Details

3.1 Notifications Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described.

3.1.2 Timers

The server SHOULD allow for a certain time interval between datagrams until the client has
retrieved all event information for the session. The server MUST provide server administrators a
means to configure the time interval between the datagrams.

3.1.3 Initialization

3.1.3.1 Subscribing for Notifications

3.1.3.1.1 Receiving RopRegisterNotification

When a RopRegisterNotification (section 2.2.1.2.1) message is received by the server, the server
SHOULD create a new Notification Subscription object and associate it with the session context. The

server SHOULD save the information provided in the RopRegisterNotification fields for future use.

The server SHOULD allow multiple notification subscriptions to be created and associated with the
same session context.

3.1.3.1.2 Receiving RopSynchronizationOpenAdvisor

When RopSynchronizationOpenAdvisor message is received by the server, the server SHOULD
create a new ICS Advisor object and associate it with the session context.

The server SHOULD allow multiple ICS Advisors to be created and associated with the same session
context.

3.1.3.1.3 Receiving RopRegisterSynchronizationNotifications

When a RopRegisterSynchronizationNotifications message is received by the server, InputHandle
MUST be a valid handle of the ICS Advisor object.

The server SHOULD allow multiple RopRegisterSynchronizationNotifications messages to be received

for the same ICS Advisor object.

The server SHOULD adjust the scope of the notification subscription with the details provided by the
last RopRegisterSynchronizationNotifications message that was successfully processed.

3.1.3.1.4 Receiving RopSetSynchronizationNotificationGuid

When a RopSetSynchronizationNotificationGuid message is received by the server, the InputHandle
MUST be a valid handle of the ICS Advisor object.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

19 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

The server SHOULD allow multiple RopSetSynchronizationNotificationGuid messages to be received
for the same ICS Advisor object.

The server SHOULD assign the ICS Advisor a notification GUID provided by the last
RopSetSynchronizationNotificationGuid message that was successfully processed.

The server MUST NOT send ay nStatusObjectModified notifications to the client, if these notifications
were triggered by a client logon that has a PidTagChangeNotificationGuid property value that
matches the GUID assigned to the ICS Advisor object by RopSetSynchronizationNotificationGuid.
See [MS-OXCSTOR] for more details.

3.1.3.1.5 Subscribing for Table Notifications

The server SHOULD NOT require any additional actions to register for notifications on table events.

If a table is created on the server, the server SHOULD create a subscription to table notifications
automatically for every table created on the server. The server MUST NOT create a subscription to
table notifications for the tables that were created with a NoNotifications flag. See [MS-OXCFOLD]
for more details.

3.1.3.2 Initializing Pending Notifications

3.1.3.2.1 Receiving EcRRegisterPushNotification

When a call to EcRRegisterPushNotification is received by the server, a valid callback address in
the rgbCallbackAddress field and buffer with opaque client data in the rgbContext field MUST be
present. The server MUST fail the call and MUST NOT take any actions if the callback address is not
a valid SOCKADDR structure. See [MSDN-WS2] for more information.

The server SHOULD support a variety of different callback address types. The server SHOULD

support at minimum the AF_INET address type for IP support and AF_INET6 address type for IPv6
support.

The server MUST save the callback address and opaque context data on the session context for

future use.

After the callback address has been successfully registered with the server, the server SHOULD send
a datagram containing the client's opaque data.

3.1.3.2.2 Receiving EcDoAsyncConnectEx

When a call to EcDoAsyncConnectEx is received by the server, the server MUST create an ACXH
and MUST bind it to the Session Context Handle (CXH) used to make the call.

3.1.4 Higher-Layer Triggered Events

None.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCSTOR%5d.pdf
%5bMS-OXCFOLD%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=113731
%5bMS-OXGLOS%5d.pdf

20 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Notifying Client about Pending Notifications

3.1.5.1.1 Sending RopPending

The server SHOULD send a RopPending response command to the client whenever there are
pending notifications on the session context associated with the client and any linked session
contexts.

3.1.5.1.2 Sending Push Notification Datagram

The server MUST NOT take any actions if the client has not previously registered a callback address
using EcRRegisterPushNotification.

The server MUST send a datagram to the callback address when a notification is available for the
client. The datagram sent by the server MUST contain the opaque data that was provided by the

client when the callback address was registered.

The server MUST continue sending a datagram to the callback address at periodic intervals if event
details are still queued for the client. The server SHOULD only stop sending datagrams when all the

notifications have been retrieved from the server through EcDoRpcExt2 calls.

3.1.5.1.3 Receiving and Completing Asynchronous RPC call

Whenever an asynchronous call to EcDoAsyncWaitEx on interface AsyncEMSMDB is received by
the server, the server MUST validate that the ACXH provided is a valid ACXH that was returned from
EcDoAsyncConnectEx. The server SHOULD NOT complete the call until there is a notification for
the client session, or the call has been outstanding on the server for a certain time. If the server

already has a call outstanding for the same CXH, the server SHOULD complete the new call.

If the server completes the outstanding RPC call when there is a notification for the client session,
the server MUST return the value NotificationPending in the output field pulFlagsOut. The server

MUST return zero in pulFlagsOut if the call was completed for any other reasons.

3.1.5.2 Sending Notification Details

3.1.5.2.1 Sending RopNotify

The server SHOULD send a RopNotify response command to the client whenever there are pending
notifications on the session context that is associated with the client. The server SHOULD send as
many notification details through multiple RopNotify response commands as the ROP response
buffer allows. If the server was not able to fit the details for all pending notifications into the ROP
response buffer, it SHOULD also send a RopPending response command if the response buffer

allows.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

21 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

3.2 Notifications Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described.

3.2.2 Timers

None.

3.2.3 Initialization

3.2.3.1 Subscribing for Notifications

3.2.3.1.1 Sending RopRegisterNotification

If the client needs to receive notifications from the server, the client SHOULD send a

RopRegisterNotification to the server. The client MUST provide specific details about notifications it
needs to receive and the scope of the notification as specified in section 2.2.1.2.1. Upon receiving
the response from the server, the client MUST save the returned handle to the Notification
Subscription object. When the client no longer needs to receive notifications, the handle of the
Notification Subscription object MUST be released by using RopRelease.

The client MAY send RopRegisterNotification multiple times to the server.

3.2.3.1.2 Sending RopSynchronizationOpenAdvisor

If the client needs to receive StatusObjectModified notifications, it MUST first create an ICS Advisor
object by sending RopSynchronizationOpenAdvisor. The client MUST save the returned handle to the

ICS Advisor object. When the client no longer needs to receive StatusObjectModified notifications,
the handle of the ICS Advisor object MUST be released by using RopRelease.

The client can send RopSynchronizationOpenAdvisor multiple times to the server.

3.2.3.1.3 Sending RopRegisterSynchronizationNotifications

After the ICS Advisor object has been created by using RopSynchronizationOpenAdvisor, the client
SHOULD define the scope of notifications by using RopRegisterSynchronizationNotifications. The
client can send RopRegisterSynchronizationNotifications multiple times to the server.

3.2.3.1.4 Sending RopSetSynchronizationNotificationGuid

If the client needs to suppress StatusObjectModified notifications on certain operations, it SHOULD

assign a StatusObjectModified with a special GUID via RopSetSynchronizationNotificationGuid. If the
client has assigned a GUID to the StatusObjectModified, the client MUST set the value of the

PidTagChangeNotificationGuid property to the Logon object to suppress StatusObjectModified
notifications for the operations made by using that logon.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf

22 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

3.2.3.1.5 Subscribing for Table Notifications

The client MUST NOT take any actions to subscribe to table notifications. The subscription is created
automatically when the client creates a Table object on the server.

3.2.3.2 Initializing Push Notifications

3.2.3.2.1 Sending EcRRegisterPushNotifications

The client calls EcRRegisterPushNotification to register a callback address for the session
context. In addition to the callback address, the client MUST provide a buffer of opaque data to the
server.

The client can register a variety of different callback address types if the server supports the
address type. It is not required, but recommended that a client register a callback address by using
an address type that corresponds to the protocol being used to communicate with the server. For
example, if the client makes an RPC call to EcDoConnectEx, as specified in [MS-OXCRPC] section
3.1.4.11, by using the TCP/IP protocol, it registers an AF_INET callback address in call

EcRRegisterPushNotification.

Clients connecting via RPC/HTTP protocol SHOULD NOT use the Push Notification method of being

signaled of pending event information. The client SHOULD either use the basic Polling method or the
Asynchronous RPC Notification method described in sections 1.3.1.2 and 1.3.1.4.

Because of network conditions such as firewalls or the use of RPC/HTTP connections by the client, it
is not always possible for the datagram that is sent from the server to the client's callback address
to be successful. To overcome this problem, the client SHOULD poll the server by using the polling
method, even after registering a callback address with the server through

EcRRegisterPushNotification, up until it receives a datagram from the server. When the client
receives a datagram from the server at the callback address, it SHOULD stop polling the server and
rely on datagrams pushed from the server to know when to call EcDoRpcExt2 to retrieve event
information.

3.2.3.2.2 Sending EcDoAsyncConnectEx

The client SHOULD determine whether the server supports EcDoAsyncConnectEx by examining

the server version information that is returned from the EcDoConnectEx call, as specified in [MS-
OXCRPC] section 3.1.4.11. See section 1.7 for details about which minimum server version is
required to utilize the Asynchronous RPC Notification method.

The client can call EcDoAsyncConnectEx after a successful EcDoConnectEx call. The client MUST
save the returned ACXH after the EcDoAsyncConnectEx call completes. The client MUST use the
ACXH in the subsequent EcDoAsyncWaitEx calls to the server.

3.2.4 Higher-Layer Triggered Events

None.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCRPC%5d.pdf

23 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Receiving Notification About Pending Notifications

3.2.5.1.1 Receiving RopPending

Upon receiving RopPending in the response buffer of EcDoRpcExt2, the client MUST determine
whether the session index provided in the RopPending matches any of the sessions created by the
client. If the session index matches, the client SHOULD make EcDoRpcExt2 calls to receive
notification details from the server by using the CXH that is associated with the session specified by
the session index. If the session index in RopPending does not match the index of any session

created by the client, the client MUST NOT take any actions.

3.2.5.1.2 Receiving Push Notification Datagram

Upon receiving a datagram on the callback address that was previously registered by the client via
EcRRegisterPushNotification, the client MUST verify that the content of the datagram is valid by

matching it with the content of the opaque data binary large object (BLOB) that was provided to
the server via EcRRegisterPushNotification. If the content of the datagram is valid, the client

SHOULD make EcDoRpcExt2 calls to receive notification details from the server. Otherwise, the
client MUST NOT take any actions on the datagram.

3.2.5.1.3 Sending and Receiving EcDoAsyncWaitEx

If the server supports Asynchronous RPC Notifications, and the client successfully created ACXH by
calling EcDoAsyncConnectEx, the client SHOULD call EcDoAsyncWaitEx to determine whether
notifications are pending on the server.

When a call to EcDoAsyncWaitEx completes, the client MUST examine its return value and the
value of the pulFlagsOut output parameter. If the return value is 0x00000000 and bit 0x00000001 is
set in the pulFlagsOut output parameter, the client SHOULD make EcDoRpcExt2 calls to receive
notification details from the server.

After the results of EcDoAsyncWaitEx are processed, the client SHOULD call EcDoAsyncWaitEx
again to continue to listen for more notifications.

3.2.5.2 Receiving Notification Details

3.2.5.2.1 Receiving RopNotify

Upon receiving RopNotify, the client MUST verify that NotificationHandle is a valid handle to a
notification subscription, an ICS Advisor, or a Table object that was previously created by the client.
If the NotificationHandle is valid, the client can update its internal state by using the details provided

in the RopNotify. Otherwise, the client MUST ignore the RopNotify.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

24 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

4 Protocol Examples

The examples in this section are XML fragments that contain various notifications. The type of
notification is identified by the name attribute of the <Data> element.

[XML]

 <Data name="NewMailNotification">

 <Buffer>

 02 // NewMail

 80 // Message

 010000000078291F // Message FID

 0100000000783484 // Message MID

 22000000 // MessageFlags

 00 // ASCII

 49504D2E4E6F746500 // Message class

 </Buffer>

 </Data>

 <Data name="ObjectCreatedNotification">

 <Buffer>

 04 // ObjectCreated

 00 // No flags

 0100000000782781 // Object FID

 0100000000782780 // Parent FID

 0000 // Number of PTAGs

 </Buffer>

 </Data>

 <Data name="ObjectCreatedNotification">

 <Buffer>

 04 // ObjectCreated

 80 // Message

 0100000000782780 // Message FID

 0100000000784172 // Message MID

 1F00 // Number of PTAGs

 0B001B0E // PTAGs...

 0300790E

 02010B30

 0300A166

 0300F13F

 40000730

 40000830

 0201F93F

 1E00F83F

 03005940

 0201FB3F

 1E00FA3F

 03005A40

 0201BD67

 0201BE67

 40000967

 1F003510

 1F000010

 02010910

25 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

 02011310

 1E00040E

 1E00030E

 1F003700

 1F003D00

 1F001D0E

 0B001F0E

 0300FD3F

 40003900

 4000060E

 0300080E

 0300230E

 </Buffer>

 </Data>

 <Data name="ObjectDeletedNotification">

 <Buffer>

 08 // ObjectDeleted

 00 // No flags

 0100000000782780 // Folder FID

 010000000078277F // Parent FID

 </Buffer>

 </Data>

 <Data name="ObjectModifiedNotification">

 <Buffer>

 10 // ObjectModified

 00 // No flags

 0100000000782780 // Object FID

 0200 // Number of PTAGs

 03003866 // Ptags...

 0B000A36

 </Buffer>

 </Data>

 <Data name="ObjectModifiedNotification">

 <Buffer>

 10 // ObjectModified

 20 // UnreadItemsChanged

 010000000078291F // Object FID

 0100 // Number of PTAGs

 03000336 // Ptag

 00000000 // Value of unread items changes

 </Buffer>

 </Data>

 <Data name="ObjectModifiedNotification">

 <Buffer>

 10 // ObjectModified

 10 // TotalItemsChanged

 0100000000782780 // Object FID

 0400 // Number of PTAGs

 03000236 // Ptags...

 0300080E

 0300AF66

 0300B366

26 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

 01000000 // Value of total items changes

 </Buffer>

 </Data>

 <Data name="ObjectModifiedNotification">

 <Buffer>

 10 // ObjectModified

 30 // UnreadItemsChanged

 010000000078291F // Object FID

 0500 // Number of PTAGs

 03000236 // Ptags...

 03000336

 0300080E

 0300AF66

 0300B366

 04000000 // Value of total items changes

 03000000 // Value of unread items changes

 </Buffer>

 </Data>

 <Data name="ObjectMovedNotification">

 <Buffer>

 20 // ObjectMoved

 80 // Message

 0100000000782781 // Message FID

 0100000000784378 // Message MID

 0100000000782780 // Old message FID

 0100000000784172 // Old message MID

 </Buffer>

 </Data>

 <Data name="ObjectCopiedNotification">

 <Buffer>

 40 // ObjectCopied

 80 // Message

 0100000000782780 // Message FID

 0100000000784173 // Message MID

 0100000000782780 // Old message FID

 0100000000784172 // Old message MID

 </Buffer>

 </Data>

 <Data name="TableModifiedNotification">

 <Buffer>

 00 01 // NotificationType = Hierarchy

 01 00 // TableModifiedNotificationTypeType = TableChanged

 </Buffer>

 </Data>

 <Data name="TableModifiedNotification">

 <Buffer>

 00 01 // NotificationType = Hierarchy

 07 00 // TableModifiedNotificationTypeType = TableRestrictDone

 </Buffer>

 </Data>

 <Data name="TableRowAddModifiedNotification">

27 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

 <Buffer>

 00 01 // NotificationType (Hierarchy)

 03 00 // TableModifiedNotificationType (Added)

 01 00 00 02 81 6C EA 9D // FID

 01 00 00 02 81 6C EA 9E // InsertAfterFID

 A3 00 // Size of the property row

 // Values for the columns of the new row

 00 // no errors

 42 00 69 00 6c 00 6c 00

 79 00 20 00 44 00 2e 00

 53 00 2e 00 20 00 50 00

 72 00 6f 00 78 00 79 00 00

 00 7e

 00 00 00 00 00 dc

 a7 40 c8 c0 42 10 1a b4 b9 08 00 2b 2f e1 82 01

 00 00 00 00 00 00 00 2f 4f 3d 46 49 52 53 54 20

 4f 52 47 41 4e 49 5a 41 54 49 4f 4e 2f 4f 55 3d

 45 58 43 48 41 4e 47 45 20 41 44 4d 49 4e 49 53

 54 52 41 54 49 56 45 20 47 52 4f 55 50 20 28 46

 59 44 49 42 4f 48 46 32 33 53 50 44 4c 54 29 2f

 43 4e 3d 52 45 43 49 50 49 45 4e 54 53 2f 43 4e

 3d 44 53 50 52 4f 58 59 00

 </Buffer>

 </Data>

 <Data name="TableRowAddModifiedNotification">

 <Buffer>

 00 C1 // NotificationType = Contents (TableModified | SearchFolder |

Message)

 03 00 // TableModifiedNotificationType (Added)

 01 00 00 00 00 78 60 45 // FID

 01 00 00 02 81 6C FC 84 // MID

 01 00 00 00 // Instance

 01 00 00 00 00 78 60 45 // InsertAfterFID

 01 00 00 02 81 6C FC 82 // InsertAfterMID

 01 00 00 00 // InsertAfterInstance

 A3 00 // Size of the property row

 // Values for the columns of the new row

 00 // no errors

 42 00 69 00 6c 00 6c 00

 79 00 20 00 44 00 2e 00

 53 00 2e 00 20 00 50 00

 72 00 6f 00 78 00 79 00 00

 00 7e

 00 00 00 00 00 dc

 a7 40 c8 c0 42 10 1a b4 b9 08 00 2b 2f e1 82 01

 00 00 00 00 00 00 00 2f 4f 3d 46 49 52 53 54 20

 4f 52 47 41 4e 49 5a 41 54 49 4f 4e 2f 4f 55 3d

 45 58 43 48 41 4e 47 45 20 41 44 4d 49 4e 49 53

 54 52 41 54 49 56 45 20 47 52 4f 55 50 20 28 46

 59 44 49 42 4f 48 46 32 33 53 50 44 4c 54 29 2f

 43 4e 3d 52 45 43 49 50 49 45 4e 54 53 2f 43 4e

 3d 44 53 50 52 4f 58 59 00

28 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

 </Buffer>

 </Data>

 <Data name="TableRowAddModifiedNotification">

 <Buffer>

 00 01 // NotificationType (Hierarchy)

 05 00 // TableModifiedNotificationType (Modified)

 01 00 00 00 00 78 60 45 // FID

 01 00 00 00 00 78 60 50 // InsertAfterFID

 A3 00 // Size of the property row

 // Values for the columns of the new row

 00 // no errors

 42 00 69 00 6c 00 6c 00

 79 00 20 00 44 00 2e 00

 53 00 2e 00 20 00 50 00

 72 00 6f 00 78 00 79 00 00

 00 7e

 00 00 00 00 00 dc

 a7 40 c8 c0 42 10 1a b4 b9 08 00 2b 2f e1 82 01

 00 00 00 00 00 00 00 2f 4f 3d 46 49 52 53 54 20

 4f 52 47 41 4e 49 5a 41 54 49 4f 4e 2f 4f 55 3d

 45 58 43 48 41 4e 47 45 20 41 44 4d 49 4e 49 53

 54 52 41 54 49 56 45 20 47 52 4f 55 50 20 28 46

 59 44 49 42 4f 48 46 32 33 53 50 44 4c 54 29 2f

 43 4e 3d 52 45 43 49 50 49 45 4e 54 53 2f 43 4e

 3d 44 53 50 52 4f 58 59 00

 </Buffer>

 </Data>

 <Data name="TableRowAddModifiedNotification">

 <Buffer>

 00 C1 // NotificationType (Contents)

 05 00 // TableModifiedNotificationType (Modified)

 01 00 00 00 00 78 60 45 // FID

 01 00 00 02 81 6C FC 83 // MID

 01 00 00 00 // Instance

 01 00 00 00 00 78 60 46 // InsertAfterFID

 01 00 00 02 81 6C FC 84 // InsertAfterMID

 01 00 00 00 // Insert after instance

 A3 00 // Size of the property row

 // Values for the columns of the new row

 00 // no errors

 42 00 69 00 6c 00 6c 00

 79 00 20 00 44 00 2e 00

 53 00 2e 00 20 00 50 00

 72 00 6f 00 78 00 79 00 00

 00 7e

 00 00 00 00 00 dc

 a7 40 c8 c0 42 10 1a b4 b9 08 00 2b 2f e1 82 01

 00 00 00 00 00 00 00 2f 4f 3d 46 49 52 53 54 20

 4f 52 47 41 4e 49 5a 41 54 49 4f 4e 2f 4f 55 3d

 45 58 43 48 41 4e 47 45 20 41 44 4d 49 4e 49 53

 54 52 41 54 49 56 45 20 47 52 4f 55 50 20 28 46

29 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

 59 44 49 42 4f 48 46 32 33 53 50 44 4c 54 29 2f

 43 4e 3d 52 45 43 49 50 49 45 4e 54 53 2f 43 4e

 3d 44 53 50 52 4f 58 59 00

 </Buffer>

 </Data>

 <Data name="TableRowDeletedModifiedNotification">

 <Buffer>

 00 01 // NotificationType = Hierarchy (TableModified)

 04 00 // TableModifiedNotificationType = Deleted

 01 00 00 00 00 78 60 45 // FID

 </Buffer>

 </Data>

 <Data name="TableRowDeletedModifiedNotification">

 <Buffer>

 00 C1 // NotificationType = Contents (TableModified | SearchFolder |

Message)

 04 00 // TableModifiedNotificationType = Deleted

 01 00 00 02 81 6C EA 96 // FID

 01 00 00 02 81 6D 09 01 // MID

 01 00 00 00 // Instance

 </Buffer>

 </Data>

30 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

5 Security

5.1 Security Considerations for Implementers

There are no special security considerations specific to this protocol. General security considerations

pertaining to the underlying ROP transport protocol specified in [MS-OXCROPS] do apply.

%5bMS-OXCROPS%5d.pdf

31 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products:

Microsoft® Office Outlook® 2003

Microsoft® Exchange Server 2003

Microsoft® Office Outlook® 2007

Microsoft® Exchange Server 2007

Microsoft® Outlook® 2010

Microsoft® Exchange Server 2010

Exceptions, if any, are noted below. If a service pack number appears with the product version,
behavior changed in that service pack. The new behavior also applies to subsequent service packs of

the product unless otherwise specified. If a product edition appears with the product version,
behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification prescribed using
the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that product does not
follow the prescription.

<1> Section 1.3.1.3: Office Outlook 2007 and Outlook 2010 use either the basic polling method or
the Asynchronous RPC Notification method described in section 1.3.1.4.

<2> Section 1.7: Office Outlook 2007, Outlook 2010, Exchange 2007, and Exchange 2010 support
Asynchronous RPC Notifications.

<3> Section 2.2.1.1: Exchange 2003, Exchange 2007, and Exchange 2010 cannot trigger this
event.

<4> Section 2.2.1.2.1.1: Exchange 2010 returns NotImplemented for a RopRegisterNotification
request with a CriticalError notification type.

<5> Section 2.2.1.2.2: Exchange 2010 does not support the creation of this object.

<6> Section 2.2.1.2.2: Exchange 2010 parses these ROPs, but the return value is "Not Supported".

<7> Section 2.2.1.4.1: The server returns ANSI values for Office Outlook 2003 and Office Outlook
2007 clients if the client is running in "cached mode".

32 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

33 / 33

[MS-OXCNOTIF] — v20101026
 Core Notifications Protocol Specification

 Copyright © 2010 Microsoft Corporation.

 Release: Tuesday, October 26, 2010

8 Index

A

Applicability 8

C

Capability negotiation 8
Change tracking 32

E

Examples
overview 24

F

Fields – vendor-extensible 8

G

Glossary 5

I

implementer – security considerations 30
Informative references 6
Introduction 5

M

Messages
overview 9

Messaging
transport 9

N

Normative references 6
Notification_Details_RopNotify_NotificationFlag

packet 16
Notifications Client

overview 21
Notifications Server

overview 18

O

Overview (synopsis) 6

P

Preconditions 8
Prerequisites 8
Product behavior 31

R

References
informative 6

normative 6
Relationship to other protocols 7

S

Security
implementer considerations 30
overview 30

Standards Assignments 8

T

Tracking changes 32
Transport 9

V

Vendor-extensible fields 8
Versioning 8

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Pending Notifications
	1.3.1.1 RopPending
	1.3.1.2 Polling
	1.3.1.3 Push Notification
	1.3.1.4 Asynchronous RPC Notification

	1.3.2 Notification Details

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Notifications
	2.2.1.1 Server Event Types
	2.2.1.1.1 TableModified Event Types

	2.2.1.2 Subscription Management
	2.2.1.2.1 RopRegisterNotification
	2.2.1.2.1.1 NotificationTypes

	2.2.1.2.2 RopSynchronizationOpenAdvisor
	2.2.1.2.3 RopRegisterSynchronizationNotifications
	2.2.1.2.4 RopSetSynchronizationNotificationGuid

	2.2.1.3 Pending Notifications
	2.2.1.3.1 RopPending
	2.2.1.3.2 EcRRegisterPushNotification
	2.2.1.3.3 EcDoAsyncConnectEx
	2.2.1.3.4 EcDoAsyncWaitEx

	2.2.1.4 Notification Details
	2.2.1.4.1 RopNotify
	2.2.1.4.1.1 NotificationFlags
	2.2.1.4.1.2 TableEventType
	2.2.1.4.1.3 MessageFlags
	2.2.1.4.1.4 MessageClass

	3 Protocol Details
	3.1 Notifications Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.3.1 Subscribing for Notifications
	3.1.3.1.1 Receiving RopRegisterNotification
	3.1.3.1.2 Receiving RopSynchronizationOpenAdvisor
	3.1.3.1.3 Receiving RopRegisterSynchronizationNotifications
	3.1.3.1.4 Receiving RopSetSynchronizationNotificationGuid
	3.1.3.1.5 Subscribing for Table Notifications

	3.1.3.2 Initializing Pending Notifications
	3.1.3.2.1 Receiving EcRRegisterPushNotification
	3.1.3.2.2 Receiving EcDoAsyncConnectEx

	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Notifying Client about Pending Notifications
	3.1.5.1.1 Sending RopPending
	3.1.5.1.2 Sending Push Notification Datagram
	3.1.5.1.3 Receiving and Completing Asynchronous RPC call

	3.1.5.2 Sending Notification Details
	3.1.5.2.1 Sending RopNotify

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Notifications Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.3.1 Subscribing for Notifications
	3.2.3.1.1 Sending RopRegisterNotification
	3.2.3.1.2 Sending RopSynchronizationOpenAdvisor
	3.2.3.1.3 Sending RopRegisterSynchronizationNotifications
	3.2.3.1.4 Sending RopSetSynchronizationNotificationGuid
	3.2.3.1.5 Subscribing for Table Notifications

	3.2.3.2 Initializing Push Notifications
	3.2.3.2.1 Sending EcRRegisterPushNotifications
	3.2.3.2.2 Sending EcDoAsyncConnectEx

	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Receiving Notification About Pending Notifications
	3.2.5.1.1 Receiving RopPending
	3.2.5.1.2 Receiving Push Notification Datagram
	3.2.5.1.3 Sending and Receiving EcDoAsyncWaitEx

	3.2.5.2 Receiving Notification Details
	3.2.5.2.1 Receiving RopNotify

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

