

1 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

[MS-OXCNOTIF]: Core Notifications Protocol

Specification

Intellectual Property Rights Notice for Protocol Documentation

 Copyrights. This protocol documentation is covered by Microsoft copyrights.

Regardless of any other terms that are contained in the terms of use for the

Microsoft website that hosts this documentation, you may make copies of it in

order to develop implementations of the protocols, and may distribute portions of

it in your implementations of the protocols or your documentation as necessary to

properly document the implementation. This permission also applies to any

documents that are referenced in the protocol documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this

documentation.

 Patents. Microsoft has patents that may cover your implementations of the

protocols. Neither this notice nor Microsoft's delivery of the documentation grants

any licenses under those or any other Microsoft patents. However, the protocols

may be covered by Microsoft’s Open Specification Promise (available here:

http://www.microsoft.com/interop/osp/default.mspx). If you would prefer a

written license, or if the protocols are not covered by the OSP, patent licenses are

available by contacting protocol@microsoft.com.

 Trademarks. The names of companies and products contained in this

documentation may be covered by trademarks or similar intellectual property

rights. This notice does not grant any licenses under those rights.

Reservation of Rights. All other rights are reserved, and this notice does not grant any

rights other than specifically described above, whether by implication, estoppel, or

otherwise.

Preliminary Documentation. This documentation is preliminary documentation for these

protocols. Since the documentation may change between this preliminary version and the

final version, there are risks in relying on preliminary documentation. To the extent that you

incur additional development obligations or any other costs as a result of relying on this

preliminary documentation, you do so at your own risk.

Tools. This protocol documentation is intended for use in conjunction with publicly available

standard specifications and networking programming art, and assumes that the reader is either

familiar with the aforementioned material or has immediate access to it. A protocol

specification does not require the use of Microsoft programming tools or programming

environments in order for a Licensee to develop an implementation. Licensees who have

access to Microsoft programming tools and environments are free to take advantage of them.

http://www.microsoft.com/interop/osp/default.mspx
mailto:protocol@microsoft.com

2 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Revision Summary

Author Date Version Comments

Microsoft

Corporation

April 4,

2008

0.1 Initial Availability

3 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Table of Contents
1 Introduction ... 4

1.1 Glossary ... 4

1.2 References ... 5

1.2.1 Normative References .. 5

1.2.2 Informative References .. 5

1.3 Protocol Overview (Synopsis) .. 5

1.3.1 Pending Notifications ... 6

1.3.2 Notification Details .. 7

1.4 Relationship to Other Protocols .. 7

1.5 Prerequisites/Preconditions ... 7

1.6 Applicability Statement... 7

1.7 Versioning and Capability Negotiation .. 7

1.8 Vendor-Extensible Fields ... 8

1.9 Standards Assignments ... 8

2 Messages .. 8

2.1 Transport .. 8

2.2 Message Syntax ... 8

2.2.1 Notifications ... 8

3 Protocol Details ... 16

3.1 Notifications Server Details .. 16

3.1.1 Abstract Data Model .. 16

3.1.2 Timers ... 16

3.1.3 Initialization .. 16

3.1.4 Message Processing Events and Sequencing Rules ... 18

3.1.5 Timer Events... 19

3.1.6 Other Local Events ... 19

3.2 Notifications Client Details ... 19

3.2.1 Abstract Data Model .. 19

3.2.2 Timers ... 19

3.2.3 Initialization .. 19

3.2.4 Message Processing Events and Sequencing Rules ... 21

3.2.5 Timer Events... 22

3.2.6 Other Local Events ... 22

4 Protocol Examples .. 22

5 Security .. 22

5.1 Security Considerations for Implementers ... 22

6 Appendix A: Office/Exchange Behavior .. 23

7 Index .. 24

4 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

1 Introduction
This document specifies a protocol for transmitting notifications to a client about certain

events on a server. This protocol is commonly used to inform the client about changes that

occurred in folders and messages on the server.

1.1 Glossary

The following terms are defined in [MS-OXGLOS]:

change number (CN)

dynamic endpoint

endpoint (2)

GUID

Interface Definition Language (IDL)

Microsoft Interface Definition Language (MIDL)

Network Data Representation (NDR)

opnum

remote procedure call (RPC)

ROP request buffer

ROP response buffer

Security Provider

universal unique identifier (UUID)

The following terms are defined in this document:

callback address: An object encapsulating a callback address registered by a client for push

notifications.

Internet datagram: The unit of data exchanged between a pair of Internet modules (includes

the Internet header).

notification: A message the client receives when a specific event occurs on the server.

notification subscription: A request to receive notifications from the server.

outstanding RPC call: An asynchronous RPC call that has not yet been completed by the

server.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used

as described in [RFC2119]. All statements of optional behavior use either MAY,

SHOULD, or SHOULD NOT.

5 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

1.2 References

1.2.1 Normative References

[MS-OXCFXICS] Microsoft Corporation, "Bulk Data Transfer Protocol Specification", April

2008.

[MS-OXCMSG] Microsoft Corporation, "Message and Attachment Object Protocol

Specification", April 2008.

[MS-OXCROPS] Microsoft Corporation, "Remote Operations (ROP) List and Encoding

Protocol Specification", April 2008.

[MS-OXCRPC] Microsoft Corporation, "Wire Format Protocol Specification", April 2008.

[MS-OXCSTOR] Microsoft Corporation, "Store Object Protocol Specification", April 2008.

[MS-OXCTABL] Microsoft Corporation, "Table Object Protocol Specification", April 2008.

[MS-OXGLOS] Microsoft Corporation, "Office Exchange Protocols Master Glossary", April

2008.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP

14, RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.

1.2.2 Informative References

[MSDN-ENM] Microsoft Corporation, "Event Notification in MAPI",

http://go.microsoft.com/fwlink/?LinkId=113730.

[MSDN-WS2] Microsoft Corporation, "Windows Sockets 2",

http://go.microsoft.com/fwlink/?LinkID=113731.

1.3 Protocol Overview (Synopsis)

The messaging client can register to receive notifications about certain events that can happen

on the messaging server. When an event occurs on the server, and there is a client that has

registered to receive the notification, the server sends the notification details to the client in the

ROP response buffer on the EcDoRpcExt2 calls as specified in [MS-OXCRPC] in the format

described by RopNotify as specified in [MS-OXCROPS].

The notification protocol is logically divided into two parts: notifying a client about pending

notifications and transmitting the notifications. The following subsections detail the two parts

of the protocol.

http://www.ietf.org/rfc/rfc2119.txt
http://go.microsoft.com/fwlink/?LinkId=113730
http://go.microsoft.com/fwlink/?LinkID=113731

6 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

1.3.1 Pending Notifications

Because receiving notification details is only done through the ROP response buffer returned

from EcDoRpcExt2calls, the server needs a mechanism to inform the client of any pending

notifications on the session context on the server when the client is idle and not actively

calling EcDoRpcExt2. The server provides four different methods in which a client can

utilize to be notified of pending notifications.

The following subsections detail the four methods provided by the server.

1.3.1.1 RopPending

If there are pending notifications for the session, the server SHOULD send RopPending as

specified in [MS-OXCROPS] in the response buffer on EcDoRpcExt2 call.

1.3.1.2 Polling

If a client is idle and is not making EcDoRpcExt2calls, then it cannot receive RopNotify. The

simplest way for a client to retrieve notification details is to make a EcDoRpcExt2 calls on

regular intervals. The server MUST allow the client to call EcDoRpcExt2 with no ROP

request operations. This provides the client a means to retrieve any pending notifications.

The interval at which the client polls the server for notifications is returned on the

EcDoConnectEx calls. The output parameter pcmsPollsMax in both of these calls contains

the number of milliseconds the client SHOULD wait before polling the server for event

information. It is not recommended to poll the server more frequently then what is returned by

the server. If the client wants to be very responsive to events on the server, it SHOULD NOT

use the polling method.

1.3.1.3 Push Notification

Instead of polling the server at regular intervals to get notification details, the client can

register a callback address with the server. The server will send a datagram to the callback

address to inform the client that notifications are pending on the server for the session.

Clients connecting via RPC/HTTP protocol SHOULD NOT use the Push Notification method

of being signaled of pending notifications. The client SHOULD either use the basic Polling

method or the Asynchronous RPC Notification method detailed below.

1.3.1.4 Asynchronous RPC Notification

Asynchronous RPC Notification method allows the client to make an asynchronous RPC call

to the server where the server MUST NOT complete the RPC call until there is a notification

for the session. This method SHOULD work through RPC/HTTP protocol connections with

the server where the Push Notification method will not. The client SHOULD determine if the

server supports this notification method by examining the server version information that is

returned from the EcDoConnectEx call. See section 0 to determine which minimum server

version is required to utilize the Asynchronous RPC Notification method.

7 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

1.3.2 Notification Details

Once the client is notified of pending notifications by any of the methods described above, the

client SHOULD call EcDoRpcExt2 to retrieve the notification details. The server SHOULD

add any notification details in the ROP response buffer of the EcDoRpcExt2 using the

RopNotify response command. The server SHOULD return as many notification details

through multiple RopNotify response commands as the ROP response buffer allows. If the

server was not able to fit all pending notifications in the response buffer, the server SHOULD

also return RopPending response command to indicate that some notifications are still

pending.

1.4 Relationship to Other Protocols

The Core Notifications protocol specification provides a low-level explanation of notifying a

client about events on the server. [MSDN-ENM] describes the application of this protocol in

MAPI provider.

This specification relies on understanding of [MS-OXCRPC] and [MS-OXCROPS].

1.5 Prerequisites/Preconditions

This specification assumes that the client has previously logged on to the server and created a

session context.

1.6 Applicability Statement

The Core Notifications protocol was designed to be used for the following:

 Notifying clients about certain events on the server.

 Notifying clients about notifications pending for the client on the server.

This protocol provides basic information, high efficiency and complete preservation of data

fidelity for the uses mentioned earlier. It might not be appropriate for use in scenarios that do

the following:

 Require replication of mailbox content between clients and servers.

 Require client-driven copying of data between different mailboxes on different

servers.

 Require exporting or importing of data from/to a mailbox.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

 Supported Transports: This protocol uses [MS-OXCRPC], [MS-OXCROPS] and

Internet protocols as described in section 2.1.

8 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

 Protocol Versions: This protocol has only one interface version.

 Capability Negotiation: The protocol does not require Asynchronous RPC

Notifications to be implemented. The client MUST examine the server version to

determine if Asynchronous RPC Notifications are supported. See [MS-OXCRPC] for

more details about how to determine server version. <1>

 Localization: This protocol passes text strings in notification details. Localization

considerations for such strings are specified in section 2.2.1.4.1.4.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

2 Messages

2.1 Transport

The commands specified by this protocol are sent to and received from the server respectively

using the underlying ROP request buffers and ROP response buffers specified in [MS-

OXCROPS].

Asynchronous calls are made on the server using remote procedure call (RPC) transport

specified in [MS-OXCRPC]

Datagrams are sent from server to client using underlying networking protocols (for more

information, see [MSDN-WS2]).

2.2 Message Syntax

2.2.1 Notifications

2.2.1.1 Server Event Types

The following table describes the events that happen on the server. Clients MAY register to

receive notifications about these events
Name Description

CriticalError A critical error has occurred on the server.

NewMail A new mail has been received by the server.

ObjectCreated A new item has been created on the server

ObjectDeleted An existing item has been deleted from the server.

ObjectModified An existing item has been modified on the server.

ObjectMoved An existing item has been moved to another location on the server.

ObjectCopied An existing item has been copied on the server.

9 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Name Description

SearchComplete A search operation has been completed on the server.

TableModified A table was modified on the server. See 2.2.1.1.1.

StatusObjectModified An ICS state has been modified on the server.

2.2.1.1.1 TableModified Event Types

Name Description

TableChanged A table has been changed.

TableError An error occurred.

TableRowAdded A new row has been added to the table.

TableRowDeleted An existing row has been deleted from the table.

TableRowModified An existing row has been modified in the table.

TableSortDone A table sort has been completed.

TableRestrictionChanged A table restriction has been changed.

TableColumnsChanged Table columns have been changed.

TableReload A table has been reloaded.

2.2.1.2 Subscription Management

2.2.1.2.1 RopRegisterNotification

RopRegisterNotification creates a subscription for specified notifications on the server and

returns a handle of the subscription to the client.

Name Type Size Description

InputHandle Handle 4 Handle of the Logon object. See [MS-

OXCROPS] for more details.

NotificationTypes Byte 1 A set of bits describing notifications

the client is interested to receive. See

2.2.1.2.1.1.

Reserved Byte 1 The field is reserved. The field value

MUST be zero. The behavior is

undefined if the value is not zero.

EntireDatabase Byte 1 Set to TRUE (non-zero) if the scope

the scope for notifications is entire

database. Set to FALSE (zero)

otherwise.

ScopeFolderID ID 8 ID of the folder to limit the scope of

notifications. This field is available

only if EntireDatabase is zero.

ScopeMessageID ID 8 ID of the message inside the folder

referenced by ScopeFolderID to limit

the scope for notifications. This field is

10 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Name Type Size Description

available only if EntireDatabase is

zero.

Response:
Name Type Size Description

OutputHandle Handle 4 Handle of the notification subscription object

created by this ROP. See [MS-OXCROPS] for

more details.

2.2.1.2.1.1 NotificationTypes

0x01 The server MUST send notifications to the client when CriticalError

events occur within the scope of interest.

0x02 The server MUST send notifications to the client when NewMail

events occur within the scope of interest.

0x04 The server MUST send notifications to the client when

ObjectCreated events occur within the scope of interest.

0x08 The server MUST send notifications to the client when

ObjectDeleted events occur within the scope of interest.

0x10 The server MUST send notifications to the client when

ObjectModified events occur within the scope of interest.

0x20 The server MUST send notifications to the client when ObjectMoved

events occur within the scope of interest.

0x40 The server MUST send notifications to the client when ObjectCopied

events occur within the scope of interest.

0x80 The server MUST send notifications to the client when

SearchCompleted events occur within the scope of interest.

See section 2.2.1.1 for details about server events.

2.2.1.2.2 RopSynchronizationOpenAdvisor

RopSynchronizationOpenAdvisor creates an ICS Advisor object on the server and returns a

handle of the object to the client.

Name Type Size Description

InputHandle Handle 4 Handle of the Logon object. See [MS-

OXCROPS] for more details.

Response:
Name Type Size Description

OutputHandle Handle 4 Handle of the ICS Advisor object created by this

ROP. See [MS-OXCROPS] for more details.

2.2.1.2.3 RopRegisterSynchronizationNotifications

RopRegisterSynchronizationNotifications creates a subscription for StatusObjectModified

notifications on the server.

11 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Name Type Size Description

InputHandle Handle 4 Handle of the ICS Advisor object.

NumberOfFolderIDs Short 2 Number of folder IDs that limit the

scope of the notification subscription.

FolderIDs ID[] Number

OfFolder

IDs

List of folder IDs that limit the scope

of the notification subscription.

ChangeNumbers ULong

[]

Number

OfFolder

IDs

List of folder CNs.

For details about the response, see [MS-OXCROPS].

2.2.1.2.4 RopSetSynchronizationNotificationGuid

RopSetSynchronizationNotificationGuid assigns a notification GUID to an ICS Advisor

object on the server.

Name Type Size Description

InputHandle Handle 4 Handle of the ICS Advisor object. See

[MS-OXCROPS] for more details.

NotificationGuid GUID 16 A notification GUID to assign to the

ICS Advisor object.

For details about the response, see [MS-OXCROPS].

2.2.1.3 Pending Notifications

2.2.1.3.1 RopPending

RopPending notifies the client that there are pending notifications on the server for the client.

This ROP MUST appear only in response buffers of EcDoRpcExt2. See [MS-OXCROPS]

for more details.

2.2.1.3.2 EcRRegisterPushNotification

EcRRegisterPushNotification is an RPC method used to register a callback address of a

client on the server. See [MS-OXCRPC] for more details.

2.2.1.3.3 EcDoAsyncConnectEx

EcDoAsyncConnectEx is an RPC method used to acquire ACXH context handle on the

server to use in subsequent EcDoAsyncWaitEx calls. See [MS-OXCRPC] for more details.

2.2.1.3.4 EcDoAsyncWaitEx

EcDoAsyncWaitEx is an asynchronous RPC method used to inform a client about pending

notifications on the server. See [MS-OXCRPC] for more details.

12 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

2.2.1.4 Notification Details

2.2.1.4.1 RopNotify

RopNotify provides the client with the details of notifications sent by server. This ROP

MUST appear only in response buffers of EcDoRpcExt2.

Response:
Name Type Size Description

NotificationHandle Handle 4 Handle of the target object for the

notification. The target object can be

notification subscription, ICS Advisor or

table.

NotificationFlags Short 2 Set of bits describing the type of the

notification and availability of

notification data fields. See 2.2.1.4.1.1.

TableEventType Byte 1 Subtype of the notification for

TableModified event. This field is

available only if NotificationType value

in NotificationFlags is 0x0100. See

2.2.1.4.1.2.

TableRowFolderID ID 8 Folder ID of the item triggering this

notification. This field is only available if

TableEventType field is available and is

equal to 0x03, 0x04 or 0x05.

TableRowMessageID ID 8 MessageID of the item triggering this

notification. This field is only available if

bit 0x8000 is set in NotificationFlags and

TableEventType is available and is qeual

to 0x03, 0x04 or 0x05.

TableRowPreviousInstance ULong 4 An identifier of the instance of the

previous row in the table. See [MS-

OXCTABL] for more details. This field

is only available if bit 0x8000 is set in

NotificationFlags and TableEventType is

available and is equal to 0x03, 0x04 or

0x05.

TableRowOldFolderID ID 8 Old folder ID of the item triggering this

notification. This field is only available if

TableEventType field is available and is

equal to 0x03 or 0x05.

TableRowOldMessageID ID 8 Old message ID of the item triggering

this notification. This field is only

available if bit 0x8000 is set in

NotificationFlags and TableEventType is

available and is equal to 0x03 or 0x05.

13 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Name Type Size Description

TableRowDataSize Short 2 Length of table row data. This field is

only available if bit 0x8000 is set in

NotificationFlags and TableEventType is

available and is equal to 0x03 or 0x05.

TableRowData String TableRow

DataSize

Table row data. This field is only

available if bit 0x8000 is set in

NotificationFlags and TableEventType is

available and is equal to 0x03 or 0x05.

HierarchyChanged Byte 1 Set to TRUE (non-zero) if folder

hierarchy has changed. Set to FALSE

(zero) otherwise. This field is available

only if NotificationType value in

NotificationFlags is 0x0200.

FolderIDNumber ULong 4 Number of folder IDs. This field is

available only if NotificationType value

in NotificationFlags is 0x0200.

FolderIDs GID[] FolderID

Number

Folder IDs. This field is available only if

NotificationType value in

NotificationFlags is 0x0200.

ICSChangeNumbers ULong[] FolderID

Number

Folder CNs. This field is available only

NotificationType value in

NotificationFlags is 0x0200.

FolderId ID 8 Folder ID of the item triggering the

event. This field is available only if

NotificationType value in

NotificationFlags is not 0x0100, 0x0200

or 0x0400.

MessageId ID 8 Message ID of the item triggering the

event. This field is available only if

NotificationType value in

NotificationFlags is not 0x0100, 0x0200

or 0x0400and bit 0x8000 is set in

NotificationFlags.

ParentFolderId ID 8 Folder ID of the parent folder of the item

triggering the event. This field is

available only if NotificationType value

in NotificationFlags is 0x0004, 0x0008,

0x0020 or 0x0040 and bit 0x4000 is set

or bit 0x8000 is not set in

NotificationFlags.

OldFolderId ID 8 Old folder ID of the item triggering the

event. This field is available only if

NotificationType value in

NotificationFlags is 0x0020 or 0x0040.

14 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Name Type Size Description

OldMessageId ID 8 Old message ID of the item triggering

the event. This field is available only if

This field is available only if

NotificationType value in

NotificationFlags is 0x0020 or 0x0040

and bit 0x8000 is set in

NotificationFlags.

OldParentFolderId ID 8 Old parent folder ID of the item

triggering the event. This field is

available only if This field is available

only if NotificationType value in

NotificationFlags is 0x0020 or 0x0040

and bit 0x8000 is not set in

NotificationFlags.

TagCount Short 2 Number of property tags. This field is

available only if This field is available

only if NotificationType value in

NotificationFlags is 0x0004 or 0x0010.

Tags ULong[] TagCount List of ID of properties that have

changed. This field is available only if

TagCount is available and TagCount is

not equal to 0xFFFF.

TotalMessageCount ULong 4 Total number of items in a folder

triggering this event. This field is

available only if bit 0x1000 is set in

NotificationFlags.

UnreadMessageCount ULong 4 Number of unread items in a folder

triggering this event. This field is

available only if bit 0x2000 is set in

NotificationFlags.

MessageFlags ULong 4 Message flags of new mail that has been

received. This field is available only if

This field is available only if

NotificationType value in

NotificationFlags is 0x0002.

UnicodeFlag Byte 1 Set to TRUE (non-zero) if

MessageClass is in UNICODE. Set to

FALSE (zero) otherwise. This field is

available only if This field is available

only if NotificationType value in

NotificationFlags is 0x0002.

MessageClass String Variable Null-terminated string containing

message class of the new mail. The

string is in UNICODE if UnicodeFlag is

15 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

Name Type Size Description

TRUE (non-zero). The string is in

ASCII if UnicodeFlag is FALSE (zero).

This field is available only if

NotificationType value in

NotificationFlags is 0x0002

2.2.1.4.1.1 NotificationFlags

NotificationFlags is a 16 bit combination of an enumeration and flags. The layout is outlined

in the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType T U S M

NotificationType is a 12 bit enumeration defining the type of the notification. The possible

values are outlined in the following table.

0x0001 The notification is for CriticalError event.

0x0002 The notification is for NewMail events.

0x0004 The notification is for ObjectCreated event.

0x0008 The notification is for ObjectDeleted event.

0x0010 The notification is for ObjectModified event.

0x0020 The notification is for ObjectMoved event.

0x0040 The notification is for ObjectCopied event.

0x0080 The notification is for SearchCompleted event.

0x0100 The notification is for TableModified events.

0x0200 The notification is for StatusObjectModified event.

0x0400 The value is reserved and MUST NOT be used.

The meaning of other flags is outlined in the following table.

0x1000 T bit. The notification contains information about a change in total number of

messages in a folder triggering the event. If this bit is set, then NotificationType

MUST be 0x0010.

0x2000 U bit. The notification contains information about a change in number of unread

messages in a folder triggering the event. If this bit is set, then NotificationType

MUST be 0x0010.

0x4000 S bit. The notification is caused by an event in a search folder. If this bit is set,

then bit 0x8000 MUST be set.

0x8000 M bit. The notification is caused by an event on a message.

2.2.1.4.1.2 TableEventType

16 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

0x01 The notification is for TableChanged events.

0x02 The notification is for TableError events.

0x03 The notification is for TableRowAdded event.

0x04 The notification is for TableRowDeleted events.

0x05 The notification is for TableRowModified event.

0x06 The notification is for TableSortDone event.

0x07 The notification is for TableRestrictionChangedevent.

0x08 The notification is for TableColumnsChanged event.

0x09 The notification is for TableReloaded event.

2.2.1.4.1.3 MessageFlags

See [MS-OXCMSG] for more details.

2.2.1.4.1.4 MessageClass

See [MS-OXCMSG] for more details.

3 Protocol Details

3.1 Notifications Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an

implementation maintains to participate in this protocol. The described organization is

provided to facilitate the explanation of how the protocol behaves. This document does not

mandate that implementations adhere to this model as long as their external behavior is

consistent with that described in this document.

3.1.2 Timers

None.

3.1.3 Initialization

3.1.3.1 Subscribing for Notifications

3.1.3.1.1 Receiving RopRegisterNotification

When RopRegisterNotification message is received by the server, the server SHOULD

create a new notification subscription object and associate it with the session context. The

server SHOULD save the information provided in various fields of the

RopRegisterNotification for future use.

The server SHOULD allow multiple notification subscriptions to be created and associated

with the same session context.

3.1.3.1.2 Receiving RopSynchronizationOpenAdvisor

17 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

When RopSynchronizationOpenAdvisor message is received by the server, the server

SHOULD create a new ICS Advisor object and associate it with the session context.

The server SHOULD allow multiple ICS Advisors to be created and associated with the same

session context.

3.1.3.1.3 Receiving RopRegisterSynchronizationNotifications

When RopRegisterSynchronizationNotifications message is received by the server,

InputHandle MUST be a valid handle of ICS Advisor object.

The server SHOULD allow multiple RopRegisterSynchronizationNotifications messages to

be received for the same ICS Advisor object.

The server SHOULD adjust the scope of notification subscription with the details provided by

the last RopRegisterSynchronizationNotifications message that was successfully processed.

3.1.3.1.4 Receiving RopSetSynchronizationNotificationGuid

When RopSetSynchronizationNotificationGuid message is received by the server, the

InputHandle MUST be a valid handle of ICS Advisor object.

The server SHOULD allow multiple RopSetSynchronizationNotificationGuid messages to

be received for the same ICS Advisor object.

The server SHOULD assign the ICS Advisor a notification GUID provided by the last

RopSetSynchronizationNotificationGuid message that was successfully processed.

The server MUST NOT send any StatusObjectModified notifications to the client, if these

notifications were triggered by a client Logon that has the value of

PidTagChangeNotificationGuid property that matches the GUID assigned to the ICS

Advisor object by RopSetSynchronizationNotificationGuid. See [MS-OXCSTOR] for

more details.

3.1.3.1.5 Subscribing for Table Notifications

The server SHOULD NOT require any special actions to register for notifications on table

events. The server SHOULD create a subscription to table notifications for every table created

on the server. The server MUST NOT create a subscription to table notifications for the tables

that were created with NoNotifications flag.

3.1.3.2 Initializing Pending Notifications

3.1.3.2.1 Receiving EcRRegisterPushNotification

When a call to EcRRegisterPushNotification is received by the server, a valid callback

address in rgbCallbackAddress field and buffer with opaque client data in rgbContext field

MUST be present. The server MUST fail the call and MUST NOT take any actions if the

18 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

callback address is not a valid SOCKADDR structure. See [MSDN-WS2] for more

information.

The server SHOULD support a variety of different callback address types. The server

SHOULD support at minimum the AF_INET address type for IP support and AF_INET6

address type for IPv6 support.

The server MUST save the callback address and opaque context data on the session context

for future use.

After the callback address has been successfully registered with the server, the server

SHOULD immediately send a datagram containing the client’s opaque data.

3.1.3.2.2 Receiving EcDoAsyncConnectEx

When a call to EcDoAsyncConnectEx is received by the server, the server MUST create an

Asynchronous Context Handle (ACXH) and MUST bind it to the Session Context Handle

(CXH) used to make the call.

3.1.4 Message Processing Events and Sequencing Rules

3.1.4.1 Notifying Client About Pending Notifications

3.1.4.1.1 Sending RopPending

The server SHOULD send RopPending response command to the client whenever there are

pending notifications on the session context associated with the client and any linked session

contexts.

3.1.4.1.2 Sending Push Notification Datagram

The server MUST NOT take any actions if the client has not previously registered a callback

address using EcRRegisterPushNotification.

The server MUST send a datagram to the callback address when a notification is available for

the client. The datagram sent by the server MUST contain the opaque data that was provided

by the client when callback address was registered.

The server MUST continue sending a datagram to the callback address at periodic intervals if

event details are still queued for the client. The server SHOULD only stop sending datagrams

when all of the notifications have been retrieved from the server through EcDoRpcExt2 calls.

The server SHOULD allow for certain time interval between datagrams until the client has

retrieved all event information for the session. The server MAY provide a server

administrators means to configure the time interval between the datagrams.

3.1.4.1.3 Receiving and Completing Asynchronous RPC call

Whenever an asynchronous call to EcDoAsyncWaitEx on interface AsyncEMSMDB is

received by the server, the server MUST validate that the ACXH provided is a valid ACXH

19 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

returned from EcDoAsyncConnectEx. The server SHOULD NOT complete the call until

there is a notification for the client session, or the call has been outstanding on the server for a

certain time. If the server already has a call outstanding for the same session context handle,

the server SHOULD immediately complete the new call.

If the server completes the outstanding call when there is a notification for the client session,

the server MUST return value NotificationPending in the output field pulFlagsOut. The

server MUST return zero in pulFlagsOut if the call was completed for any other reasons.

3.1.4.2 Sending Notification Details

3.1.4.2.1 Sending RopNotify

The server SHOULD send RopNotify response command to the client whenever there are

pending notifications on the session context associated with the client. The server SHOULD

send as many notification details through multiple RopNotify response commands as the ROP

response buffer allows. If the server was not able to fit the details for all pending notifications

into the ROP response buffer, it SHOULD also send RopPending response command if the

response buffer allows.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

3.2 Notifications Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an

implementation maintains to participate in this protocol. The described organization is

provided to facilitate the explanation of how the protocol behaves. This document does not

mandate that implementations adhere to this model as long as their external behavior is

consistent with that described in this document.

3.2.2 Timers

None.

3.2.3 Initialization

3.2.3.1 Subscribing for Notifications

3.2.3.1.1 Sending RopRegisterNotification

If the client needs to receive notifications from the server, the client SHOULD send

RopRegisterNotification to the server. The client MUST provide specific details about

20 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

notifications it needs to receive and the scope of the notification as described in 2.2.1.2.1.

Upon receiving the response from the server, the client MUST save the returned handle to the

subscription object. When the client no longer needs to receive notifications, the handle of the

notification subscription object MUST be release using RopRelease.

The client MAY send RopRegisterNotification multiple times to the server.

3.2.3.1.2 Sending RopSynchronizationOpenAdvisor

If the client needs to receive StatusObjectModified notifications, it MUST first create ICS

Advisor object by sending RopSynchronizationOpenAdvisor. The client MUST save the

returned handle to the ICS Advisor object. When the client no longer needs to receive

StatusObjectModified notifications, the handle of the ICS Advisor object MUST be released

using RopRelease.

The client MAY send RopSynchronizationOpenAdvisor multiple times to the sever.

3.2.3.1.3 Sending RopRegisterSynchronizationNotifications

Once the ICS Advisor object has been created using RopSynchronizationOpenAdvisor, the

client SHOULD define the scope of notifications using

RopRegisterSynchronizationNotifications. The client MAY send

RopRegisterSynchronizationNotifications multiple times to the server.

3.2.3.1.4 Sending RopSetSynchronizationNotificationGuid

If the client needs to suppress StatusObjectModified notifications on certain operations, it

SHOULD assign an ICS Advisor object with a special GUID via

RopSetSynchronizationNotificationGuid. If the client has assigned a GUID to the ICS

Advisor object, the client MUST set the value of PidTagChangeNotificationGuid property

to the Logon object to suppress StatusObjectModified notifications for the operations made

using that Logon.

3.2.3.1.5 Subscribing for Table Notifications

The client MUST NOT take any actions to subscribe to table notifications. The subscription is

created automatically when the client creates a Table object on the server.

3.2.3.2 Initializing Push Notifications

3.2.3.2.1 Sending EcRRegisterPushNotifications

The client calls EcRRegisterPushNotification to register a callback address for the session

context. In addition to the callback address the client MUST provide a buffer of opaque data to

the server.

The client MAY register a variety of different callback address types if the server supports the

address type. It is not required, but recommended that a client register a callback address using

an address type which corresponds to the protocol being used to communicate with the server.

21 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

For instance, if the client makes an RPC call to EcDoConnectEx using the TCP/IP protocol, it

SHOULD register an AF_INET callback address in call EcRRegisterPushNotification.

Clients connecting via RPC/HTTP protocol SHOULD NOT use the Push Notification method

of being signaled of pending event information. The client SHOULD either use the basic

Polling method or the Asynchronous RPC Notification method outlined in sections 1.3.1.2

and 1.3.1.4.

Because of network conditions, such as firewalls or the client using RPC/HTTP connections,

it isn’t always possible for the datagram sent from the server to the client’s callback address to

be successful. In order to overcome this problem the client SHOULD poll the server using the

polling method even after registering a callback address with the server through

EcRRegisterPushNotification up until it receives a datagram from the server. When the

client receives a datagram from the server at the callback address it SHOULD stop polling the

server and rely on datagrams pushed from the server to know when to call EcDoRpcExt2 to

retrieve event information.

3.2.3.2.2 Sending EcDoAsyncConnectEx

The client SHOULD determine if the server supports EcDoAsyncConnectEx by examining

the server version information that is returned from the EcDoConnectEx call. See the Version

Checking section to determine which minimum server version is required to utilize the

Asynchronous RPC Notification method.

The client MAY call EcDoAsyncConnectEx after a successful EcDoConnectEx call. The

client MUST save the returned Asynchronous Context Handle (ACXH) after

EcDoAsyncConnectEx call completes. The client MUST use the ACXH in the subsequent

EcDoAsyncWaitEx calls to the server.

3.2.4 Message Processing Events and Sequencing Rules

3.2.4.1 Receiving Notification About Pending Notifications

3.2.4.1.1 Receiving RopPending

Upon receiving RopPending in the response buffer of EcDoRpcExt2, the client MUST

determine if the session index provided in the RopPending matches any of the sessions

created by the client. If the session index matches, then the client SHOULD make

EcDoRpcExt2 calls to receive notification details from the sever using the CXH associated

with the session specified by the session index. If the session index in RopPending does not

match the index of any of the sessions created by the client, the client MUST NOT take any

actions.

3.2.4.1.2 Receiving Push Notification Datagram

Upon receiving a datagram on the callback address that was previously registered by the client

via EcRRegisterPushNotification, the client MUST verify that the content of the datagram is

valid by matching it with the content of the opaque data blob that was provided to the server

22 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

via EcRRegisterPushNotification. If the content of the datagram is valid, the client

SHOULD make EcDoRpcExt2 calls to receive notification details from the sever. Otherwise

the client MUST NOT take any actions on the datagram.

3.2.4.1.3 Sending and Receiving EcDoAsyncWaitEx

If the server supports Asynchronous RPC Notifications, and the client successfully created

ACXH by calling EcDoAsyncConnectEx, the client SHOULD call EcDoAsyncWaitEx in

order to identify if notifications are pending in the server.

When a call to EcDoAsyncWaitEx completes, the client MUST examine its return value and

the value of the pulFlagsOut output parameter. If the return value is 0x00000000 and bit

0x00000001 is set in the pulFlagsOut output parameter, the client SHOULD make

EcDoRpcExt2 calls to receive notification details from the sever.

After the results of EcDoAsyncWaitEx are processed, the client SHOULD call

EcDoAsyncWaitEx again to continue listening for more notifications.

3.2.4.2 Receiving Notification Details

3.2.4.2.1 Receiving RopNotify

Upon receiving RopNotify, the client MUST verify that NotificationHandle is a valid handle

to a notification subscription, an ICS Advisor or a Table objects which were previously

created by the client. If the NotificationHandle is valid, the client MAY update its internal

state using the details provided in the RopNotify. Otherwise the client MUST ignore the

RopNotify.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

4 Protocol Examples
None.

5 Security

5.1 Security Considerations for Implementers

There are no special security considerations specific to this protocol. General security

considerations pertaining to the underlying ROP transport protocol defined in [MS-

OXCROPS] do apply.

23 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

6 Appendix A: Office/Exchange Behavior
The information in this specification is applicable to the following versions of

Office/Exchange:

 Office 2003 with Service Pack 3 applied

 Exchange 2003 with Service Pack 2 applied

 Office 2007 with Service Pack 1 applied

 Exchange 2007 with Service Pack 1 applied

Exceptions, if any, are noted below. Unless otherwise specified, any statement of

optional behavior in this specification prescribed using the terms SHOULD or SHOULD

NOT implies Office/Exchange behavior in accordance with the SHOULD or SHOULD

NOT prescription. Unless otherwise specified, the term MAY implies Office/Exchange

does not follow the prescription.

<1> Section 1.7: Microsoft Office 2007 SP1 and Microsoft Exchange Server 2007 SP1

support Asynchronous RPC Notifications.

24 of 24

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

7 Index

Applicability statement, 7

Examples, 22

Fields, vendor-extensible, 8

Glossary, 4

Informative References, 5

Introduction, 4

Message syntax, 8

Messages, 8

Message Syntax, 8

Transport, 8

Normative references, 5

Notifications client details, 19

Notifications server details, 16

Office/Exchange behavior, 23

Overview, 5

Preconditions, 7

Prerequisites, 7

Protocol details, 16

Notifications client details, 19

Notifications server details, 16

References, 5

Informative references, 5

Normative references, 5

Relationship to other protocols, 7

Security, 22

Considerations for implementers, 22

Security considerations for implementers, 22

Standards assignments, 8

Transport, 8

Vendor-extensible fields, 8

Versioning and capability negotiation, 7

