IMS-OXCNOTIF]: Core Notifications Protocol
Specification

Intellectual Property Rights Notice for Protocol Documentation

e Copyrights. This protocol documentation is covered by Microsoft copyrights.
Regardless of any other terms that are contained in the terms of use for the
Microsoft website that hosts this documentation, you may make copies 6f it n
order to develop implementations of the protocols, and may distribute portions of
it in your implementations of the protocols or your documentation as‘meeessary to
properly document the implementation. This permission also appliesto any
documents that are referenced in the protocol documentationt

4

e No Trade Secrets. Microsoft does not claim any tradessecret rights in this

documentation.

e Patents. Microsoft has patents that m@ay cover your implementations of the
protocols. Neither this notice nor Microsoft's delivery of the documentation grants
any licenses under those or any other Microsoft patents: Hewever, the protocols
may be covered by Microsoft’s OpenfSpeeification Promise (available here:
http://www.microsoft.com/interop/0sp/default. mspx). If you would prefer a
written license, or if the protocel§iare not covered by the OSP, patent licenses are
available by contacting proto€ol@microsoft.com.

e Trademarks. The names of companies and products contained in this
documentation maye,coveredbytrademarks or similar intellectual property
rights. This netice does net grant anylicenses under those rights.

Reservation of Rights.” Al other rights are reserved, and this notice does not grant any
rights other thand specifically described above, whether by implication, estoppel, or
otherwise.

Preliminary Documentation. This documentation is preliminary documentation for these
protocols., Since the.doéiimentation may change between this preliminary version and the
final version, there are risks in relying on preliminary documentation. To the extent that you
incur additional development obligations or any other costs as a result of relying on this
preliminary documentation, you do so at your own risk.

Tools. This protocol documentation is intended for use in conjunction with publicly available
standard specifications and networking programming art, and assumes that the reader is either
familiar with the aforementioned material or has immediate access to it. A protocol
specification does not require the use of Microsoft programming tools or programming
environments in order for a Licensee to develop an implementation. Licensees who have
access to Microsoft programming tools and environments are free to take advantage of them.

1of24
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008


http://www.microsoft.com/interop/osp/default.mspx
mailto:protocol@microsoft.com

Revision Summary
Author Date Version | Comments
Microsoft April 4, 0.1 Initial Availability

o\Q
.@

[MS-OXCNOTIF] - v0.1

Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

20f24



Table of Contents

1 Introduction 4
LT GLOSSAIY ettt ettt et s et s e s et a s s esesassesesanensesenenennes 4
1.2 REIEIEIICES .....cuiiiiiiieieee ettt ettt ettt et 5

1.2.1  Normative REfEIeNCES........c.eivurueuiiririeiiiieiee et
1.22  Informative REfErencCes.........coeueiirieieiirieieeieieec e
1.3 Protocol OVErVIEW (SYNOPSIS)...cveveuereruereriririeieinieieieertsieietsesiesesestsseseneseesesenessesesenessssens

1.3.1  Pending NOtIfICatioNnS.......cecerueueueiririeieeririeie it .

1.3.2  Notification Details ..........cccceeeeieeiririeeiieieieeieiereeieieeeeeeeseeeeseses fagese s senens
1.4 Relationship to Other Protocols............ccceoevrieerennneninneeneccnreee i
1.5 Prerequisites/Preconditions............cecevveeeieerreesieresreseeseseseseeeseeeenees )
1.6 Applicability Statement.............cccceevvvereeririereerieieieeinereeeenereeesfitsee e
1.7 Versioning and Capability Negotiation.............cceceeverereereeneeee e .
1.8 Vendor-Extensible FIelds ..........oveueeeeeeiiiiiiiiiiice s e st e itbenenenenene
1.9 Standards ASSIZNMENLS...........ceeerrerereririrrereirierereennesoliarsesens .. ... 8

2 Messages . A, 8
2.1 TranSport.......cccoeeveeererereneneninereeeeee ‘ ....................................................... 8
2.2 MeSSAZE SYNLAX ....cveurerererreeereeerereereneereeerene sl ceserensesessastaBhneeseneesensesesesensesessesesseneesenens 8

221 INOUTICALIONS ...eveeeeeeeeeeeeeeeeeeeeeeeeeeeeee e Saee e eeeeeeere e St e ceeveeeneeeneeesseeneesnsesnnennns 8
3 PrOTOCOI DOIAILS.annnenneeeeneeeeeeeeerrenesevesseesiboneessnnastineenes . 16
3.1  Notifications SErver DEtailS.......oooee bt e e tee et eeeeeteeseeeeeeeseeeeeeesnesnes 16

3.1.1 Abstract Data MOAEL ... e ettt e eteseneseneseneas 16

3.1.2 TITICTS w.vveunencncaenenesine fateeeeerenesssanalBic e seseneneaessaeneataeatteeetetesesesesesetesesesesenesenesenenens 16

3.1.3  INItAlZAtOM..........c.o iimiatheceeneeeneeeeeeramat B e teeeeetetenetesesenesenesesees e e e et eeseeeeseaeaenes 16

3.14 ing Eventsiand Sequencing Rules .........c.ccccoevviinenncnnnenene. 18
3.15 iy e

3.1.6  Other'Logal EVENtS.th......c.ccociiiiiiiieeeee et 19

................................................................................. 19

........................................................................................... 19

..................................................................................................... 19

................................................................................................... 19

lessage Progessing Events and Sequencing Rules ..........ccooeeeeeeeieeicccnnee. 21

Time S ettt ettt bt et h st s A Attt ettt A bbbt et s e s R e e ettt et es 22

Other Local EVENES........c.cuvveueieieieiciciciiicccecceceese ettt 22

22

! 22

.1 Security Considerations for IMplementers..............ccceceruruerecinirreeinisieeineeeerieeeeens 22

Appendix A: Office/Exchange Behavior 23

ndex 24

3of24

[MS-OXCNOTIF] - v0.1

Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



1 Introduction

This document specifies a protocol for transmitting notifications to a client about certain
events on a server. This protocol is commonly used to inform the client about changes that
occurred in folders and messages on the server.

1.1 Glossary

The following terms are defined in [MS-OXGLOS]:
change number (CN)
dynamic endpoint
endpoint (2)
GUID
Interface Definition Language (IDL)
Microsoft Interface Definition Language (MIDL)
Network Data Representation (NDR)
opnum ‘
remote procedure call (RPC)
ROP request buffer
ROP response buffer
Security Provider
universal unique identifier (U

The following terms are defined in

callback address: An ogect capsu
notificatior

address registered by a client for push

Internet datagram: it of changed between a pair of Internet modules (includes

eceives when a specific event occurs on the server.
equest to receive notifications from the server.

C call: An asynchronous RPC call that has not yet been completed by the

AY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used
as described in [RFC2119]. All statements of optional behavior use either MAY,
SHOULD, or SHOULD NOT.

40f24
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



1.2 References

1.2.1 Normative References

[MS-OXCFXICS] Microsoft Corporation, "Bulk Data Transfer Protocol Specification", April
2008.

[MS-OXCMSG] Microsoft Corporation, "Message and Attachment Object Protocol
Specification", April 2008.

[MS-OXCROPS] Microsoft Corporation, "Remote Operations (ROP) List and En
Protocol Specification", April 2008.

[MS-OXGLOS] Microsoft Corporation, “Ofﬁc‘cehange
2008.

[RFC2119] Bradner, S., "Key words for use 1 i ement Levels", BCP
14, RFC 2119, March 1997, http://www.ietf.

ing client can register to receive notifications about certain events that can happen
ing server. When an event occurs on the server, and there is a client that has

ROP response buffer on the EcDoRpcExt2 calls as specified in [MS-OXCRPC] in the format
Jescribed by RopNotify as specified in [MS-OXCROPS].

otification protocol is logically divided into two parts: notifying a client about pending
notifications and transmitting the notifications. The following subsections detail the two parts
of the protocol.

Sof24
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008


http://www.ietf.org/rfc/rfc2119.txt
http://go.microsoft.com/fwlink/?LinkId=113730
http://go.microsoft.com/fwlink/?LinkID=113731

1.3.1 Pending Notifications

Because receiving notification details is only done through the ROP response buffer returned
from EcDoRpcExt2calls, the server needs a mechanism to inform the client of any pending
notifications on the session context on the server when the client is idle and not actively
calling EcDoRpcExt2. The server provides four different methods in which a client can
utilize to be notified of pending notifications.

The following subsections detail the four methods provided by the server.

1.3.1.1 RopPending

If there are pending notifications for the session, the server SHOULD send RopPending as
specified in [MS-OXCROPS] in the response buffer on EcDoRpcExt2 call.

1.3.1.2 Polling 4

If a client is idle and is not making EcDoRpcExt2calls, then it gdnnobreceive RopNetify. The
simplest way for a client to retrieve notification details is to make a EeDoRpeExt2 calls on
regular intervals. The server MUST allow the client to calldEeDoRpcExt2 with no ROP
request operations. This provides the client a means to retrieve any pending netifications.

The interval at which the client polls the server for notifications is refusned on the
EcDoConnectEx calls. The output parametenpemsPells Max,in both of these calls contains
the number of milliseconds the client SHOULD wait before polling the server for event
information. It is not recommended to pollthe server more frequently then what is returned by
the server. If the client wants to be very responsive to events on the server, it SHOULD NOT
use the polling method.

1.3.1.3 Push Noetification

Instead of polling the server at regular intervals to get notification details, the client can
register a callback addressiwith the'server. The server will send a datagram to the callback
address to informghe client that notifications are pending on the server for the session.

Clients connecting vid RPC/HT TP protocol SHOULD NOT use the Push Notification method
of beinggignaled of pending notifications. The client SHOULD either use the basic Polling
method or the Asynéhronods RPC Notification method detailed below.

1.3.1.4 ‘Asynchronous RPC Notification

Asyfichronous RPC Notification method allows the client to make an asynchronous RPC call
te'the server where the server MUST NOT complete the RPC call until there is a notification
for the session. This method SHOULD work through RPC/HTTP protocol connections with
the server where the Push Notification method will not. The client SHOULD determine if the
setves supports this notification method by examining the server version information that is
returned from the EcDoConnectEx call. See section 0 to determine which minimum server
version is required to utilize the Asynchronous RPC Notification method.

60f24
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



1.3.2 Notification Details

Once the client is notified of pending notifications by any of the methods described above, the
client SHOULD call EcDoRpcExt2 to retrieve the notification details. The server SHOULD
add any notification details in the ROP response buffer of the EcDoRpcExt2 using the
RopNotify response command. The server SHOULD return as many notification details
through multiple RopNotify response commands as the ROP response buffer allows. If the
server was not able to fit all pending notifications in the response buffer, the server SHOULD
also return RopPending response command to indicate that some notifications are still
pending.

1.4 Relationship to Other Protocols

The Core Notifications protocol specification provides a low-level explandtion of notifying a
client about events on the server. [MSDN-ENM] describes the application of this protocolin
MAPI provider.

This specification relies on understanding of [MS-OXCRPC] and [MS-O XCROPS].

1.5 Prerequisites/Preconditions

This specification assumes that the client has previouSly logged‘omto the server and created a
session context.

1.6 Applicability Statement

The Core Notifications protocol was dgsigned to be usedforthe following:
e Notifying clients@bout certain events on théserver.
¢ Notifying clients about notificationsipending for the client on the server.

This protocol provides basic information, high efficiency and complete preservation of data
fidelity for the usesamentioned earlier: Itunight not be appropriate for use in scenarios that do
the following:

e Require replication of mailbox content between clients and servers.

o' Require client-driven copying of data between different mailboxes on different
Servers.

® Require exporting or importing of data from/to a mailbox.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

e Supported Transports: This protocol uses [MS-OXCRPC], [MS-OXCROPS] and
Internet protocols as described in section 2.1.

7 0f 24
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



e Protocol Versions: This protocol has only one interface version.

e Capability Negotiation: The protocol does not require Asynchronous RPC
Notifications to be implemented. The client MUST examine the server version to
determine if Asynchronous RPC Notifications are supported. See [MS-OXCRPC] for
more details about how to determine server version. <1>

e Localization: This protocol passes text strings in notification details. Localization
considerations for such strings are specified in section 2.2.1.4.1.4.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments
None.

2 Messages PR
2.1 Transport

The commands specified by this protocol are se eived the server respectively
using the underlying ROP request buffers an uffers specified in [MS-
OXCROPS].

Asynchronous calls are made on the s emote procedure call (RPC) transport

specified in [MS-OXCR‘]

Datagrams are sent underlying networking protocols (for more

information, see [

pES

bes the events that happen on the server. Clients MAY register to
ations about these events
Description

A critical error has occurred on the server.

A new mail has been received by the server.

A new item has been created on the server

An existing item has been deleted from the server.

ObjectModified An existing item has been modified on the server.
ObjectMoved An existing item has been moved to another location on the server.
ObjectCopied An existing item has been copied on the server.

Sof 24

[MS-OXCNOTIF] - v0.1

Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



Name Description

SearchComplete A search operation has been completed on the server.
TableModified A table was modified on the server. See 2.2.1.1.1.
StatusObjectModified | An ICS state has been modified on the server.

2.2.1.1.1 TableModified Event Types

Name Description

TableChanged A table has been changed.

TableError An error occurred.

TableRowAdded A new row has been added to the table.
TableRowDeleted An existing row has been deleted from the
TableRowModified An existing row has been modified in theta
TableSortDone A table sort has been completed.
TableRestrictionChanged | A table restriction has been change
TableColumnsChanged Table columns have been chang
TableReload

A table has been rsloaded.

2.2.1.2 Subscription Management

2.2.1.2.1 RopRegisterNotification

RopRegisterNotification creates a sul notifications on the server and

Reserved

Name Description

InputHandle Handle of the Logon object. See [MS-
OXCROPS] for more details.

NotificationTypes A set of bits describing notifications

the client is interested to receive. See
22.1.2.1.1.

1 The field is reserved. The field value
MUST be zero. The behavior is
undefined if the value is not zero.

1 Set to TRUE (non-zero) if the scope
the scope for notifications is entire
database. Set to FALSE (zero)
otherwise.

8 ID of the folder to limit the scope of
notifications. This field is available
only if EntireDatabase is zero.

ScopeMessagelD

ID of the message inside the folder
referenced by ScopeFolderID to limit
the scope for notifications. This field is

9o0f24
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



Name Type Size Description
available only if EntireDatabase is

Zero.
Response:

Name Type Size Description

OutputHandle Handle | 4 Handle of the notification subscription object

created by this ROP. See [MS-OXCROPS] for
more details.

2.2.1.2.1.1 NotificationTypes

0x01 The server MUST send notifications to the client
events occur within the scope of interest.
0x02 The server MUST send notifications to the cli
events occur within the scope of interest
0x04 The server MUST send notifications
ObjectCreated events occur within t
0x08 The server MUST sen?)tiﬁcatl
ObjectDeleted events occur

0x10 The server MUST send no
ObjectModified even i of interest.
0x20 The server MUST

0x40 The server 1 to the client when ObjectCopied

0x80 ations to the client when

See section 2.2.1.

2.2.1.2.2 RopSynch
RopSynchroni [ lvisor creates an ICS Advisor object on the server and returns a

Size Description
4 Handle of the Logon object. See [MS-
OXCROPS] for more details.

Description
Handle of the ICS Advisor object created by this
ROP. See [MS-OXCROPS] for more details.

| OutputHandle

2.2.1.2.3 RopRegisterSynchronizationNotifications

RopRegisterSynchronizationNotifications creates a subscription for StatusObjectModified

notifications on the server.
100f24
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



Name Type Size Description
InputHandle Handle |4 Handle of the ICS Advisor object.
NumberOfFolderIDs Short |2 Number of folder IDs that limit the
scope of the notification subscription.

FolderIDs ID[] Number | List of folder IDs that limit the scope

OfFolder | of the notification subscription.

IDs
ChangeNumbers ULong | Number | List of folder CNs.

[] OfFolder
IDs

For details about the response, see [MS-OXCROPS].

2.2.1.2.4 RopSetSynchronizationNotificationGuid

RopSetSynchronizationNotificationGuid assigns a notificati
object on the server.

Name Type
InputHandle Handle CS Advisor object. See
] for more details.

NotificationGuid GUID

For details about the res%lse, see
2.2.1.3 Pending i ions

2.2.1.3.1 RopPena

RopPending notifies;the clie re pending notifications on the server for the client.
’ n response buffers of EcDoRpcExt2. See [MS-OXCROPS]

ation is an RPC method used to register a callback address of a
Server. See [MS-OXCRPC] for more details.

AsyncConnectEx

DoAsyncConnectEx is an RPC method used to acquire ACXH context handle on the
er to use in subsequent EcDoAsyncWaitEx calls. See [MS-OXCRPC] for more details.

.1.3.4 EcDoAsyncWaitEx

EcDoAsyncWaitEx is an asynchronous RPC method used to inform a client about pending
notifications on the server. See [MS-OXCRPC] for more details.

110f24
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



2.2.1.4 Notification Details

2.2.1.4.1 RopNotify

RopNotify provides the client with the details of notifications sent by server. This ROP
MUST appear only in response buffers of EcDoRpcExt2.

Response:
Name Type Size Description
NotificationHandle Handle |4 Handle of the target object fo
notification. The target object €an be
NotificationFlags Short 2
TableEventType Byte 1
TableRowFolderID ID 8 of the'ttem triggering this
. This field is only available if
ype field is available and is
0x03, 0x04 or 0x05.
TableRowMessagelD ID MessagelD of the item triggering this
‘ tification. This field is only available if
bit 0x8000 is set in NotificationFlags and
TableEventType is available and is qeual
to 0x03, 0x04 or 0x05.
TableRowPreviou: An identifier of the instance of the

previous row in the table. See [MS-
OXCTABL] for more details. This field
is only available if bit 0x8000 is set in
NotificationFlags and TableEventType is
available and is equal to 0x03, 0x04 or
0x05.
Old folder ID of the item triggering this
notification. This field is only available if
TableEventType field is available and is
equal to 0x03 or 0x05.
eRowOldMessagelD | ID 8 Old message ID of the item triggering
this notification. This field is only
available if bit 0x8000 is set in
NotificationFlags and TableEventType is
available and is equal to 0x03 or 0x05.
120f24

[MS-OXCNOTIF] - v0.1

Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



Name Type Size Description
TableRowDataSize Short 2 Length of table row data. This field is
only available if bit 0x8000 is set in
NotificationFlags and TableEventType is
available and is equal to 0x03 or 0x05.
TableRowData String TableRow | Table row data. This field is only
DataSize | available if bit 0x8000 is set in
NotificationFlags and TableEventType is
available and is equal to 0x03
HierarchyChanged Byte 1 Set to TRUE (non-zero) if folder
hierarchy has changed. S ALSE
(zero) otherwise. Thi ilable
only if Notificatio e V.
NotificationFlags(18 0x0
FolderIDNumber ULong |4 Number of folder IDs. Ahis fie
available tificationType value
in Notifieation .
FolderIDs GID[] F olderQ Fold . This fie vailable only if
Number )pe value
s 1s 0x0200.
ICSChangeNumbers ULong[] | Folde ield is available only
nType value in
Flags 1s 0x0200
Folderld ID of the item triggering the

his field is available only if
otificationType value in
otificationFlags is not 0x0100, 0x0200
or 0x0400.

Messageld

Message ID of the item triggering the
event. This field is available only if
NotificationType value in
NotificationFlags is not 0x0100, 0x0200
or 0x0400and bit 0x8000 is set in
NotificationFlags.

Folder ID of the parent folder of the item
triggering the event. This field is
available only if NotificationType value
in NotificationFlags is 0x0004, 0x0008,
0x0020 or 0x0040 and bit 0x4000 is set
or bit 0x8000 is not set in
NotificationFlags.

Old folder ID of the item triggering the
event. This field is available only if

NotificationType value in
NotificationFlags is 0x0020 or 0x0040.

[MS-OXCNOTIF] - v0.1

Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

13024




Name

Type

Description

OldMessageld

Old message ID of the item triggering
the event. This field is available only if
This field is available only if
NotificationType value in
NotificationFlags is 0x0020 or 0x0040
and bit 0x8000 is set in
NotificationFlags.

OldParentFolderld

Old parent folder ID of the item
triggering the event. This fie
available only if This field
only if NotificationTypewa
NotificationFlags 18 0x
and bit 0x8000 is

TagCount

Short

Tags

ULong(]

TotalMessageCount

\ 4

ULong

mber of items in a folder
triggering this event. This field is

vailable only if bit 0x1000 is set in
otificationFlags.

UnreadMessage

MessageFlags

Number of unread items in a folder
triggering this event. This field is
available only if bit 0x2000 is set in
NotificationFlags.

Message flags of new mail that has been
received. This field is available only if
This field is available only if
NotificationType value in
NotificationFlags is 0x0002.

Set to TRUE (non-zero) if
MessageClass is in UNICODE. Set to
FALSE (zero) otherwise. This field is
available only if This field is available
only if NotificationType value in
NotificationFlags 1s 0x0002.

MessageClass

Null-terminated string containing
message class of the new mail. The
string is in UNICODE if UnicodeFlag is

[MS-OXCNOTIF] - v0.1

Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.

Release: Friday, April 4, 2008

140f24




Name Type Size Description
TRUE (non-zero). The string is in
ASCIL if UnicodeFlag is FALSE (zero).
This field is available only if
NotificationType value in
NotificationFlags is 0x0002

2.2.14.1.1 NotificationFlags

NotificationFlags is a 16 bit combination of an enumeration and flags. The layout is,0u
in the following table.

[

0(1({2(3]|4|5(6]7|8|9(0(1|2|3(4|5|6(7|8|9

NotificationType T|U|S M

NotificationType is a 12 bit enumeration deﬁn‘the typ e notifica The possible
values are outlined in the following table.

0x0001 The notification is for CriticalErr
0x0002 The notification is for NewMail
0x0004 The notification is for Obje
0x0008 The notification is for O
0x0010 The notification is fo
0x0020 The notiﬁc&n is for
0x0040 The notificatio
0x0080 The 1 i
0x0100 The notif
0x0200 i
0x0400

000 ‘ T bit. 1cation contains information about a change in total number of
essages in a folder triggering the event. If this bit is set, then NotificationType
JUST be 0x0010.

. The notification contains information about a change in number of unread
messages in a folder triggering the event. If this bit is set, then NotificationType
MUST be 0x0010.

S bit. The notification is caused by an event in a search folder. If this bit is set,
then bit 0x8000 MUST be set.

0x8000 M bit. The notification is caused by an event on a message.

2.2.14.1.2 TableEventType

15024
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



0x01 The notification is for TableChanged events.

0x02 The notification is for TableError events.

0x03 The notification is for TableRowAdded event.

0x04 The notification is for TableRowDeleted events.

0x05 The notification is for TableRowModlified event.

0x06 The notification is for TableSortDone event.

0x07 The notification is for TableRestrictionChangedevent.
0x08 The notification is for TableColumnsChanged event.
0x09 The notification is for TableReloaded event.

2.2.14.1.3 MessageFlags
See [MS-OXCMSG] for more details.

2.2.14.14 MessageClass 'S
See [MS-OXCMSG] for more details.

3 Protocol Details

3.1 Notifications Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possibledata organization that an
implementation maintains to participatedn this,protocol.“The described organization is
provided to facilitate the explanation of how the'protocol behaves. This document does not
mandate that implementations adhéteito this modelas long as their external behavior is
consistent with that described in this doctument.

3.1.2 Timers
None.

3.1.3 Initialization
3.1.3.1 sSSubseribing for: Notifications

3.1.3.1.1 \Receiving RopRegister Notification

When RopRegisterNotification message is received by the server, the server SHOULD
creaté a new notification subscription object and associate it with the session context. The
sefver SHOULD save the information provided in various fields of the
RopRegisterNotification for future use.

Theserver SHOULD allow multiple notification subscriptions to be created and associated
with'the same session context.

3.1.3.1.2 Receiving RopSynchronizationOpenAdvisor

16 of 24
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008




When RopSynchronizationOpenAdvisor message is received by the server, the server
SHOULD create a new ICS Advisor object and associate it with the session context.

The server SHOULD allow multiple ICS Advisors to be created and associated with the same
session context.

3.1.3.1.3 Receiving RopRegisterSynchronizationNotifications

When RopRegisterSynchronizationNotifications message is received by the server,
InputHandle MUST be a valid handle of ICS Advisor object.

The server SHOULD allow multiple RopRegisterSynchronizationNotifications messages to
be received for the same ICS Advisor object.

The server SHOULD adjust the scope of notification subscription with(the details provided by
the last RopRegisterSynchronizationNotifications message that was successfully proeessed.

3.1.3.1.4 Receiving RopSetSynchronizationNotificationGuid

When RopSetSynchronizationNotificationGuidmessageis received by théserver, the
InputHandle MUST be a valid handle of ICS Advisor,object.

The server SHOULD allow multiple RopSetSyfi€hronizationNotificationGuid messages to
be received for the same ICS Advisor object.

The server SHOULD assign the ICS Aldvisor amotification GUID provided by the last
RopSetSynchronizationNotificationGuid message that was successfully processed.

The server MUST NOT sendéany StarusQbjectModified notifications to the client, if these
notifications wereftriggered by-a elient Logomithat has the value of
PidTagChangeNotificationGuid property that matches the GUID assigned to the ICS
Advisor object by RopSetSynchronizationNotificationGuid. See [MS-OXCSTOR] for
more details.

3.1.3.1.5_Subscribing forTable Notifications

The server SHOULD NOT sequire any special actions to register for notifications on table
gvents. The server SHOWLD create a subscription to table notifications for every table created
on theserver. The server MUST NOT create a subscription to table notifications for the tables
that were created with NoNotifications flag.

3:1.3.2 Initializing Pending Notifications

3.1.3.2.1 Receiving EcRRegisterPushNotification

When a call to EcRRegisterPushNotification is received by the server, a valid callback
address in rgbCallbackAddress field and buffer with opaque client data in rgbContext field
MUST be present. The server MUST fail the call and MUST NOT take any actions if the

17 of 24
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



callback address is not a valid SOCKADDR structure. See [MSDN-WS2] for more
information.

The server SHOULD support a variety of different callback address types. The server
SHOULD support at minimum the AF_INET address type for IP support and AF_INET6
address type for IPv6 support.

The server MUST save the callback address and opaque context data on the session context
for future use.

After the callback address has been successfully registered with the server, the server
SHOULD immediately send a datagram containing the client’s opaque datas

3.1.3.2.2 Receiving EcDoAsyncConnectEx

When a call to EcDoAsyncConnectEx is received by the server, the server MUST create an
Asynchronous Context Handle (ACXH) and MUST bind it to the"Session Context Handle
(CXH) used to make the call.

3.1.4 Message Processing Events and Sequencing Rules
3.1.4.1 Notifying Client About PendingsNotifiéations

3.1.4.1.1 Sending RopPending

The server SHOULD send RopPending response commandto the client whenever there are
pending notifications on the sessionfeontext associated with the client and any linked session
contexts.

3.1.4.1.2 SendingPush Notification Datagram

The server MUST NOTtake any ‘actions if the client has not previously registered a callback
address using EcRRegisterPushNotification.

The server MUST sendfa datagram to the callback address when a notification is available for
the client, . Thedatagfam sent{by the server MUST contain the opaque data that was provided
by the client when callback address was registered.

Theserver MUST continue sending a datagram to the callback address at periodic intervals if
event details are still queued for the client. The server SHOULD only stop sending datagrams
when all of themetifications have been retrieved from the server through EcDoRpcExt?2 calls.
The server SHOULD allow for certain time interval between datagrams until the client has
retrieved all event information for the session. The server MAY provide a server
administrators means to configure the time interval between the datagrams.

3.1.4.1.3 Receiving and Completing Asynchronous RPC call

Whenever an asynchronous call to EcDoAsyncWaitEx on interface AsyncEMSMDB is

received by the server, the server MUST validate that the ACXH provided is a valid ACXH
18 of 24

[MS-OXCNOTIF] - v0.1

Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



returned from EcDoAsyncConnectEx. The server SHOULD NOT complete the call until
there is a notification for the client session, or the call has been outstanding on the server for a
certain time. If the server already has a call outstanding for the same session context handle,
the server SHOULD immediately complete the new call.

If the server completes the outstanding call when there is a notification for the client session,
the server MUST return value NotificationPending in the output field pul/FlagsOut. The
server MUST return zero in pulFlagsOut if the call was completed for any other reasons.

3.1.4.2 Sending Notification Details

3.1.4.2.1 Sending RopNotify

The server SHOULD send RopNotify response command to the client @henever there ate
pending notifications on the session context associated with the client. The senfer SHO

send as many notification details through multiple RopNotify response comimnands as the ROP
response buffer allows. If the server was not able to fit the details for all,pending notifications
into the ROP response buffer, it SHOULD also send RopPending response command if the
response buffer allows.

3.1.5 Timer Events
None.

3.1.6 Other Local Events
None.

3.2 Notifications Client Details

3.2.1 AbstractData Model

This section describes‘a €enceptualmedel of possible data organization that an
implementation maintains to,participate in this protocol. The described organization is
provided to facilitate the explanation of how the protocol behaves. This document does not
mandate that implementations adhere to this model as long as their external behavior is
consistentywith thatdescribed in this document.

3.2:2° Timers
None.

3.2.3 Initialization
3.2.3.1 Subscribing for Notifications

3.2.3.1.1 Sending RopRegisterNotification

If the client needs to receive notifications from the server, the client SHOULD send
RopRegisterNotification to the server. The client MUST provide specific details about

19024
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



notifications it needs to receive and the scope of the notification as described in 2.2.1.2.1.
Upon receiving the response from the server, the client MUST save the returned handle to the
subscription object. When the client no longer needs to receive notifications, the handle of the
notification subscription object MUST be release using RopRelease.

The client MAY send RopRegisterNotification multiple times to the server.

3.2.3.1.2 Sending RopSynchronizationOpenAdvisor

If the client needs to receive StatusObjectModified notifications, it MUST first create I€S
Advisor object by sending RopSynchronizationOpenAdyvisor. The client MUST save the
returned handle to the ICS Advisor object. When the client no longer needs to receive
Status ObjectModified notifications, the handle of the ICS Advisor object MUSTbe released
using RopRelease.

The client MAY send RopSynchronizationOpenAdvisor multiple times tg the sever:

3.2.3.1.3 Sending RopRegisterSynchronizationNotificafions

Once the ICS Advisor object has been created using RopSynchronizationOpenAdvisor, the
client SHOULD define the scope of notifications using
RopRegisterSynchronizationNotifications. The clientMAY send
RopRegisterSynchronizationNotifications mulfiple times,to the server.

3.2.3.1.4 Sending RopSetSynchronizationNotification Guid

If the client needs to suppress StatusObjectMadified notifications on certain operations, it
SHOULD assign an ICS Advisor ebject with a spéeial GUID via
RopSetSynchronizationNotificationGuid. If the elient has assigned a GUID to the ICS
Advisor object, the client MUST set the value of PidTagChangeNotificationGuid property
to the Logon object to,suppress StatusObjectModified notifications for the operations made
using that Logon.

3.2.3.1.5 Subséribing for Table Notifications

The client MUST NOZT take any detions to subscribe to table notifications. The subscription is
created automaticallyy when the client creates a Table object on the server.

3.2:3.2 Initializing Push Notifications

3.2.3.2.1 Sending EcRRegisterPushNotifications

Thé client calls'EcRRegister PushNotification to register a callback address for the session
context. In addition to the callback address the client MUST provide a buffer of opaque data to
the server.

Theelient MAY register a variety of different callback address types if the server supports the
address type. It is not required, but recommended that a client register a callback address using
an address type which corresponds to the protocol being used to communicate with the server.

20 0f 24
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



For instance, if the client makes an RPC call to EcDoConnectEx using the TCP/IP protocol, it
SHOULD register an AF _INET callback address in call EcRRegisterPushNotification.

Clients connecting via RPC/HTTP protocol SHOULD NOT use the Push Notification method
of being signaled of pending event information. The client SHOULD either use the basic
Polling method or the Asynchronous RPC Notification method outlined in sections 1.3.1.2
and 1.3.1.4.

Because of network conditions, such as firewalls or the client using RPC/HTTP connéctions,
it isn’t always possible for the datagram sent from the server to the client’s callback address to
be successful. In order to overcome this problem the client SHOULD poll the sérver using the
polling method even after registering a callback address with the server through
EcRRegisterPushNotification up until it receives a datagram from the server. When the
client receives a datagram from the server at the callback address it SHOULD stop pollin%the
server and rely on datagrams pushed from the server to know when to call E€DoRpcExt2 to
retrieve event information.

3.2.3.2.2 Sending EcDoAsyncConnectEx

The client SHOULD determine if the server supports EcDoAsyneConnectEX by examining
the server version information that is returned from the EcDoConnéctEx call. See the Version
Checking section to determine which minimumgsenver version is required to utilize the
Asynchronous RPC Notification method.

The client MAY call EcDoAsyncConsiectEx after a successful EcDoConnectEx call. The
client MUST save the returned Asynchronous Context Handle (ACXH) after
EcDoAsyncConnectExécall completesi The client MUST use the ACXH in the subsequent
EcDoAsyncWaitEx calls to the server:

3.2.4 Message Processing Events and Sequencing Rules
3.2.4.1 Receiying Notification About Pending Notifications

3.2.4.1.1 Receiving RopPending

Upon recetving RopPending in the response buffer of EcDoRpcExt2, the client MUST
deterting if the sessiomgindex provided in the RopPending matches any of the sessions
created by the client. If the session index matches, then the client SHOULD make
EcDoRpcExt2 calls to receive notification details from the sever using the CXH associated
with'the session specified by the session index. If the session index in RopPending does not
match the index of any of the sessions created by the client, the client MUST NOT take any
actions.

3.2.4.1.2 Receiving Push Notification Datagram

Upon receiving a datagram on the callback address that was previously registered by the client
via EcRRegisterPushNotification, the client MUST verify that the content of the datagram is
valid by matching it with the content of the opaque data blob that was provided to the server

21 of 24
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



via EcRRegisterPushNotification. If the content of the datagram is valid, the client
SHOULD make EcDoRpcExt2 calls to receive notification details from the sever. Otherwise
the client MUST NOT take any actions on the datagram.

3.2.4.1.3 Sending and Receiving EcDoAsyncWaitEx

If the server supports Asynchronous RPC Notifications, and the client successfully created
ACXH by calling EcDoAsyncConnectEx, the client SHOULD call EcDoAsyncWaitEx in
order to identify if notifications are pending in the server.

When a call to EcDoAsyncWaitEx completes, the client MUST examine its returfi value and
the value of the pulFlagsOut output parameter. If the return value is 0x00000000 and bit
0x00000001 is set in the pulFlagsOut output parameter, the client SHOULDmake
EcDoRpcExt2 calls to receive notification details from the sever.

After the results of EcDoAsyncWaitEx are processed, the client SHOULD £all
EcDoAsyncWaitEx again to continue listening for more notifications:

3.2.4.2 Receiving Notification Details

3.2.4.2.1 Receiving RopNotify

Upon receiving RopNotify, the client MUST yétifipthat Notificationtlandle is a valid handle
to a notification subscription, an ICS Advisof or a Table objects which were previously
created by the client. If the NotificationHandle is valid, the.client MAY update its internal
state using the details provided in the RopNetify. Otherwisethe client MUST ignore the
RopNotify.

3.2.5 Timer Events
None.

3.2.6 Other Local Events
None.

4 Protocol Examples
Nones

5 Security

5 Security Considerations for Implementers

There are no special security considerations specific to this protocol. General security
considerations pertaining to the underlying ROP transport protocol defined in [MS-
OXCROPS] do apply.

220f24
[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008



6 Appendix A: Office/Exchange Behavior

The information in this specification is applicable to the following versions of

Office/Exchange:
e Office 2003 with Service Pack 3 applied
e Exchange 2003 with Service Pack 2 applied
e Office 2007 with Service Pack 1 applied
e Exchange 2007 with Service Pack 1 applied

Exceptions, if any, are noted below. Unless otherwise specified, any state
optional behavior in this specification prescribed using the terms SHOU
NOT implies Office/Exchange behavior in accordance with the SHO,
NOT prescription. Unless otherwise specified, the term MAY imp
does not follow the prescription.

<1> Section 1.7: Microsoft Office 2007 SP1 and Microsoft EX¢hang
support Asynchronous RPC Notifications. ‘

[MS-OXCNOTIF] - v0.1
Core Notifications Protocol Specification

Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008

230f24



7 Index

Applicability statement, 7
Examples, 22
Fields, vendor-extensible, 8
Glossary, 4
Informative References, 5
Introduction, 4
Message syntax, 8
Messages, 8
Message Syntax, 8
Transport, 8
Normative references, 5
Notifications client details, 19
Notifications server details, 16
Office/Exchange behavior, 23
Overview, 5
Preconditions, 7
Prerequisites, 7
Protocol details, 16
Notifications client details, 19
Notifications server details, 16
References, 5
Informative referenc
Normative references, 5

Security, 22

Considerations for i
Security conside
Standards assi
Transport, 8

24 0f24

[MS-OXCNOTIF] - v0.1

Core Notifications Protocol Specification
Copyright © 2008 Microsoft Corporation.
Release: Friday, April 4, 2008





