

1 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

[MS-OXCFXICS]:
Bulk Data Transfer Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

04/04/2008 0.1 Initial Availability.

04/25/2008 0.2 Revised and updated property names and other
technical content.

06/27/2008 1.0 Initial Release.

08/06/2008 1.01 Revised and edited technical content.

09/03/2008 1.02 Revised and edited technical content.

12/03/2008 1.03 Revised and edited technical content.

02/04/2009 1.04 Revised and edited technical content.

03/04/2009 1.05 Editorial updates.

04/10/2009 2.0 Updated technical content and applicable product
releases.

07/15/2009 3.0 Major Revised and edited for technical content.

11/04/2009 4.0.0 Major Updated and revised the technical content.

02/10/2010 5.0.0 Major Updated and revised the technical content.

05/05/2010 6.0.0 Major Updated and revised the technical content.

08/04/2010 6.1 Minor Clarified the meaning of the technical content.

11/03/2010 7.0 Major Significantly changed the technical content.

03/18/2011 8.0 Major Significantly changed the technical content.

08/05/2011 9.0 Major Significantly changed the technical content.

10/07/2011 10.0 Major Significantly changed the technical content.

01/20/2012 11.0 Major Significantly changed the technical content.

04/27/2012 12.0 Major Significantly changed the technical content.

07/16/2012 12.0 No change No changes to the meaning, language, or formatting of
the technical content.

10/08/2012 13.0 Major Significantly changed the technical content.

02/11/2013 14.0 Major Significantly changed the technical content.

07/26/2013 15.0 Major Significantly changed the technical content.

11/18/2013 16.0 Major Significantly changed the technical content.

3 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Date

Revision

History

Revision

Class Comments

02/10/2014 16.0 No change No changes to the meaning, language, or formatting of
the technical content.

04/30/2014 16.1 Minor Clarified the meaning of the technical content.

07/31/2014 16.2 Minor Clarified the meaning of the technical content.

4 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Table of Contents

1 Introduction ... 11
1.1 Glossary ... 11
1.2 References .. 13

1.2.1 Normative References ... 13
1.2.2 Informative References ... 14

1.3 Overview .. 14
1.3.1 FastTransfer Copy Operations .. 15
1.3.2 Incremental Change Synchronization .. 15

1.3.2.1 Download Changes Using ICS ... 16
1.3.2.2 Upload Changes Using ICS ... 16

1.4 Relationship to Other Protocols .. 17
1.5 Prerequisites/Preconditions ... 17
1.6 Applicability Statement ... 17
1.7 Versioning and Capability Negotiation ... 17
1.8 Vendor-Extensible Fields ... 18
1.9 Standards Assignments .. 18

2 Messages.. 19
2.1 Transport .. 19
2.2 Message Syntax .. 19

2.2.1 Properties.. 20
2.2.1.1 ICS State Properties ... 20

2.2.1.1.1 MetaTagIdsetGiven ICS State Property .. 20
2.2.1.1.2 MetaTagCnsetSeen ICS State Property ... 21
2.2.1.1.3 MetaTagCnsetSeenFAI ICS State Property .. 21
2.2.1.1.4 MetaTagCnsetRead ICS State Property ... 21

2.2.1.2 Messaging Object Identification and Change Tracking Properties 21
2.2.1.2.1 PidTagMid Property.. 21
2.2.1.2.2 PidTagFolderId Property ... 22
2.2.1.2.3 PidTagChangeNumber Property ... 22
2.2.1.2.4 PidTagParentFolderId Property .. 22
2.2.1.2.5 PidTagSourceKey Property.. 22
2.2.1.2.6 PidTagParentSourceKey Property .. 22
2.2.1.2.7 PidTagChangeKey Property ... 22
2.2.1.2.8 PidTagPredecessorChangeList Property .. 23
2.2.1.2.9 PidTagOriginalEntryId Property ... 23

2.2.1.3 Meta-Properties for Encoding Differences in Replica Content 23
2.2.1.3.1 MetaTagIdsetDeleted Meta-Property .. 23
2.2.1.3.2 MetaTagIdsetNoLongerInScope Meta-Property .. 23
2.2.1.3.3 MetaTagIdsetExpired Meta-Property .. 24
2.2.1.3.4 MetaTagIdsetRead Meta-Property .. 24
2.2.1.3.5 MetaTagIdsetUnread Meta-Property ... 24

2.2.1.4 Conflict Resolution Properties ... 24
2.2.1.4.1 PidTagResolveMethod Property ... 24
2.2.1.4.2 PidTagConflictEntryId Property .. 25
2.2.1.4.3 PidTagInConflict Property ... 25

2.2.1.5 PidTagAssociated Property ... 25
2.2.1.6 PidTagMessageSize Property .. 25
2.2.1.7 Properties That Denote Subobjects ... 25

2.2.2 Structures ... 26

5 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.2.1 CN Structure .. 26
2.2.2.2 XID Structure ... 27
2.2.2.3 PredecessorChangeList Structure .. 27

2.2.2.3.1 SizedXid Structure ... 28
2.2.2.4 IDSET and CNSET Structures ... 28

2.2.2.4.1 Serialized IDSET Structure Containing a REPLID Structure 28
2.2.2.4.2 Serialized IDSET Structure Containing a REPLGUID Structure 29

2.2.2.5 GLOBCNT Structure .. 29
2.2.2.6 GLOBSET Structure ... 29

2.2.2.6.1 Push Command (0x01 – 0x06) .. 30
2.2.2.6.2 Pop Command (0x50) .. 30
2.2.2.6.3 Bitmask Command (0x42) .. 30
2.2.2.6.4 Range Command (0x52) .. 31
2.2.2.6.5 End Command (0x00) .. 31

2.2.2.7 ProgressInformation Structure ... 32
2.2.2.8 PropertyGroupInfo Structure .. 33

2.2.2.8.1 PropertyGroup Structure .. 33
2.2.2.8.1.1 GroupPropertyName Structure .. 34

2.2.2.9 FolderReplicaInfo Structure .. 35
2.2.2.10 ExtendedErrorInfo Structure... 36

2.2.3 ROPs .. 38
2.2.3.1 FastTransfer Copy Operations .. 40

2.2.3.1.1 Download ... 40
2.2.3.1.1.1 RopFastTransferSourceCopyTo ROP ... 40

2.2.3.1.1.1.1 RopFastTransferSourceCopyTo ROP Request Buffer 40
2.2.3.1.1.1.2 RopFastTransferSourceCopyTo ROP Response Buffer 42

2.2.3.1.1.2 RopFastTransferSourceCopyProperties ROP 42
2.2.3.1.1.2.1 RopFastTransferSourceCopyProperties ROP Request Buffer 43
2.2.3.1.1.2.2 RopFastTransferSourceCopyProperties ROP Response Buffer 44

2.2.3.1.1.3 RopFastTransferSourceCopyMessages ROP 44
2.2.3.1.1.3.1 RopFastTransferSourceCopyMessages ROP Request Buffer 44
2.2.3.1.1.3.2 RopFastTransferSourceCopyMessages ROP Response Buffer 45

2.2.3.1.1.4 RopFastTransferSourceCopyFolder ROP .. 45
2.2.3.1.1.4.1 RopFastTransferSourceCopyFolder ROP Request Buffer 46
2.2.3.1.1.4.2 RopFastTransferSourceCopyFolder ROP Response Buffer 46

2.2.3.1.1.5 RopFastTransferSourceGetBuffer ROP .. 47
2.2.3.1.1.5.1 RopFastTransferSourceGetBuffer ROP Request Buffer 47
2.2.3.1.1.5.2 RopFastTransferSourceGetBuffer ROP Response Buffer 47

2.2.3.1.1.6 RopTellVersion ROP ... 48
2.2.3.1.1.6.1 RopTellVersion ROP Request Buffer .. 48
2.2.3.1.1.6.2 RopTellVersion ROP Response Buffer .. 48

2.2.3.1.2 Upload ... 49
2.2.3.1.2.1 RopFastTransferDestinationConfigure ROP .. 49

2.2.3.1.2.1.1 RopFastTransferDestinationConfigure ROP Request Buffer 49
2.2.3.1.2.1.2 RopFastTransferDestinationConfigure ROP Response Buffer 50

2.2.3.1.2.2 RopFastTransferDestinationPutBuffer ROP .. 50
2.2.3.1.2.2.1 RopFastTransferDestinationPutBuffer ROP Request Buffer 51
2.2.3.1.2.2.2 RopFastTransferDestinationPutBuffer ROP Response Buffer 51

2.2.3.2 Incremental Change Synchronization .. 51
2.2.3.2.1 Download ... 51

2.2.3.2.1.1 RopSynchronizationConfigure ROP ... 51
2.2.3.2.1.1.1 RopSynchronizationConfigure ROP Request Buffer 52
2.2.3.2.1.1.2 RopSynchronizationConfigure ROP Response Buffer 55

6 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.3.2.2 Upload State .. 55
2.2.3.2.2.1 RopSynchronizationUploadStateStreamBegin ROP 55

2.2.3.2.2.1.1 RopSynchronizationUploadStateStreamBegin ROP Request Buffer .. 55
2.2.3.2.2.1.2 RopSynchronizationUploadStateStreamBegin ROP Response

Buffer .. 55
2.2.3.2.2.2 RopSynchronizationUploadStateStreamContinue ROP 55

2.2.3.2.2.2.1 RopSynchronizationUploadStateStreamContinue ROP Request
Buffer .. 56

2.2.3.2.2.2.2 RopSynchronizationUploadStateStreamContinue ROP Response
Buffer .. 56

2.2.3.2.2.3 RopSynchronizationUploadStateStreamEnd ROP 56
2.2.3.2.2.3.1 RopSynchronizationUploadStateStreamEnd ROP Request Buffer 56
2.2.3.2.2.3.2 RopSynchronizationUploadStateStreamEnd ROP Response Buffer ... 56

2.2.3.2.3 Download State .. 57
2.2.3.2.3.1 RopSynchronizationGetTransferState ROP .. 57

2.2.3.2.3.1.1 RopSynchronizationGetTransferState ROP Request Buffer 57
2.2.3.2.3.1.2 RopSynchronizationGetTransferState ROP Response Buffer 57

2.2.3.2.4 Upload ... 57
2.2.3.2.4.1 RopSynchronizationOpenCollector ROP ... 57

2.2.3.2.4.1.1 RopSynchronizationOpenCollector ROP Request Buffer 57
2.2.3.2.4.1.2 RopSynchronizationOpenCollector ROP Response Buffer 58

2.2.3.2.4.2 RopSynchronizationImportMessageChange ROP 58
2.2.3.2.4.2.1 RopSynchronizationImportMessageChange ROP Request Buffer 58
2.2.3.2.4.2.2 RopSynchronizationImportMessageChange ROP Response Buffer ... 59

2.2.3.2.4.3 RopSynchronizationImportHierarchyChange ROP 60
2.2.3.2.4.3.1 RopSynchronizationImportHierarchyChange ROP Request Buffer 60
2.2.3.2.4.3.2 RopSynchronizationImportHierarchyChange ROP Response Buffer .. 61

2.2.3.2.4.4 RopSynchronizationImportMessageMove ROP 61
2.2.3.2.4.4.1 RopSynchronizationImportMessageMove ROP Request Buffer 61
2.2.3.2.4.4.2 RopSynchronizationImportMessageMove ROP Response Buffer 62

2.2.3.2.4.5 RopSynchronizationImportDeletes ROP .. 63
2.2.3.2.4.5.1 RopSynchronizationImportDeletes ROP Request Buffer 63
2.2.3.2.4.5.2 RopSynchronizationImportDeletes ROP Response Buffer 63

2.2.3.2.4.6 RopSynchronizationImportReadStateChanges ROP 64
2.2.3.2.4.6.1 RopSynchronizationImportReadStateChanges ROP Request Buffer . 64
2.2.3.2.4.6.2 RopSynchronizationImportReadStateChanges ROP Response

Buffer .. 64
2.2.3.2.4.7 RopGetLocalReplicaIds ROP .. 65

2.2.3.2.4.7.1 RopGetLocalReplicaIds ROP Request Buffer 65
2.2.3.2.4.7.2 RopGetLocalReplicaIds ROP Response Buffer 65

2.2.3.2.4.8 RopSetLocalReplicaMidsetDeleted ROP ... 65
2.2.3.2.4.8.1 RopSetLocalReplicaMidsetDeleted ROP Request Buffer 66
2.2.3.2.4.8.2 RopSetLocalReplicaMidsetDeleted ROP Response Buffer 66

2.2.4 FastTransfer Stream ... 66
2.2.4.1 Lexical structure ... 67

2.2.4.1.1 fixedPropType, varPropType, mvPropType Property Types 68
2.2.4.1.1.1 Code Page Property Types .. 68

2.2.4.1.2 propValue Lexical Element .. 69
2.2.4.1.3 Serialization of Simple Types .. 69
2.2.4.1.4 Markers ... 69
2.2.4.1.5 Meta-Properties .. 71

2.2.4.1.5.1 MetaTagFXDelProp Meta-Property .. 71
2.2.4.1.5.2 MetaTagEcWarning Meta-Property ... 71

7 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.4.1.5.3 MetaTagNewFXFolder Meta-Property .. 72
2.2.4.1.5.4 MetaTagIncrSyncGroupId Meta-Property .. 72
2.2.4.1.5.5 MetaTagIncrementalSyncMessagePartial Meta-Property 72
2.2.4.1.5.6 MetaTagDnPrefix Meta-Property .. 72

2.2.4.2 Syntactical Structure ... 72
2.2.4.3 Semantics of Elements .. 74

2.2.4.3.1 attachmentContent Element ... 74
2.2.4.3.2 contentsSync Element ... 74
2.2.4.3.3 deletions Element .. 74
2.2.4.3.4 errorInfo Element .. 75
2.2.4.3.5 folderChange Element .. 76
2.2.4.3.6 folderContent Element ... 76
2.2.4.3.7 folderMessages Element ... 77
2.2.4.3.8 groupInfo Element .. 77
2.2.4.3.9 hierarchySync Element .. 78
2.2.4.3.10 message Element .. 78
2.2.4.3.11 messageChange Element .. 78
2.2.4.3.12 messageChildren Element... 79
2.2.4.3.13 messageChangeFull Element ... 79
2.2.4.3.14 messageChangeHeader Element .. 79
2.2.4.3.15 messageChangePartial Element ... 80
2.2.4.3.16 messageContent Element ... 81
2.2.4.3.17 messageList Element ... 81
2.2.4.3.18 progressPerMessage Element .. 81
2.2.4.3.19 progressTotal Element ... 82
2.2.4.3.20 propList Element ... 82
2.2.4.3.21 propValue Element .. 82
2.2.4.3.22 readStateChanges Element ... 83
2.2.4.3.23 recipient Element .. 83
2.2.4.3.24 root Element ... 83
2.2.4.3.25 state Element ... 84

2.2.4.4 FastTransfer Streams in ROPs .. 84

3 Protocol Details .. 86
3.1 Common Details .. 86

3.1.1 Abstract Data Model ... 86
3.1.1.1 Per Mailbox .. 87
3.1.1.2 Per Messaging Object .. 87
3.1.1.3 Per ICS State ... 87

3.1.2 Timers .. 88
3.1.3 Initialization .. 88
3.1.4 Higher-Layer Triggered Events ... 88
3.1.5 Message Processing Events and Sequencing Rules .. 88

3.1.5.1 Isolating Download and Upload Operations .. 88
3.1.5.2 Managing ICS State Properties ... 88

3.1.5.2.1 Sending and Receiving the PidTagIdsetGiven ICS State Property 89
3.1.5.3 Identifying Objects and Maintaining Change Numbers 89
3.1.5.4 Serializing an IDSET Structure ... 92

3.1.5.4.1 Formatted IDSET Structures ... 92
3.1.5.4.2 IDSET Serialization .. 93
3.1.5.4.3 GLOBSET Serialization ... 93

3.1.5.4.3.1 Encoding .. 94
3.1.5.4.3.1.1 Push Command (0x01 – 0x06) .. 94

8 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.1.5.4.3.1.2 Pop Command (0x50) ... 94
3.1.5.4.3.1.3 Bitmask Command (0x42) ... 94
3.1.5.4.3.1.4 Range Command (0x52) ... 95
3.1.5.4.3.1.5 End Command (0x00) ... 95

3.1.5.4.3.2 Decoding .. 95
3.1.5.4.3.2.1 Push Command (0x01 – 0x06) .. 96
3.1.5.4.3.2.2 Pop Command (0x50) ... 96
3.1.5.4.3.2.3 Bitmask Command (0x42) ... 96
3.1.5.4.3.2.4 Range Command (0x52) ... 96
3.1.5.4.3.2.5 End Command (0x00) ... 97

3.1.5.5 Creating Compact IDSET Structures .. 97
3.1.5.6 Conflict Handling .. 97

3.1.5.6.1 Detection ... 98
3.1.5.6.2 Resolution .. 99

3.1.5.6.2.1 Conflict Resolve Message ... 100
3.1.5.6.2.2 Last Writer Wins Algorithm .. 100

3.1.5.6.3 Reporting .. 101
3.1.5.6.3.1 Conflict Notification Message .. 101

3.1.6 Timer Events .. 101
3.1.7 Other Local Events .. 102

3.2 Server Details .. 102
3.2.1 Abstract Data Model .. 102
3.2.2 Timers ... 102
3.2.3 Initialization ... 102
3.2.4 Higher-Layer Triggered Events .. 102
3.2.5 Message Processing Events and Sequencing Rules ... 102

3.2.5.1 Isolating Download and Upload Operations ... 102
3.2.5.2 Managing the ICS State on the Server .. 102

3.2.5.2.1 Receiving the MetaTagIdsetGiven ICS State Property 103
3.2.5.3 Determining What Differences To Download .. 103
3.2.5.4 Calculating the PidTagMessageSize Property Value 105
3.2.5.5 Generating the PidTagSourceKey Value .. 105
3.2.5.6 Tracking Read State Changes .. 106
3.2.5.7 Working with Property Groups and Partial Changes 106
3.2.5.8 Receiving FastTransfer ROPs ... 107

3.2.5.8.1 Download .. 107
3.2.5.8.1.1 Receiving a RopFastTransferSourceCopyTo ROP Request 107
3.2.5.8.1.2 Receiving a RopFastTransferSourceCopyProperties ROP Request 108
3.2.5.8.1.3 Receiving a RopFastTransferSourceCopyMessages ROP Request 109
3.2.5.8.1.4 Receiving a RopFastTransferSourceCopyFolder ROP Request 109
3.2.5.8.1.5 Receiving a RopFastTransferSourceGetBuffer ROP Request 110
3.2.5.8.1.6 Receiving a RopTellVersion ROP Request ... 111

3.2.5.8.2 Upload .. 111
3.2.5.8.2.1 Receiving a RopFastTransferDestinationConfigure ROP Request 111
3.2.5.8.2.2 Receiving a RopFastTransferDestinationPutBuffer ROP Request 111

3.2.5.9 Receiving Incremental Change Synchronization ROPs 111
3.2.5.9.1 Download .. 111

3.2.5.9.1.1 Receiving a RopSynchronizationConfigure ROP Request 111
3.2.5.9.2 Upload State ... 114

3.2.5.9.2.1 Receiving a RopSynchronizationUploadStateStreamBegin ROP
Request .. 114

3.2.5.9.2.2 Receiving a RopSynchronizationUploadStateStreamContinue Request . 114
3.2.5.9.2.3 Receiving a RopSynchronizationUploadStateStreamEnd ROP Request .. 114

9 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.2.5.9.3 Download State ... 115
3.2.5.9.3.1 Receiving a RopSynchronizationGetTransferState ROP Request 115

3.2.5.9.4 Upload .. 115
3.2.5.9.4.1 Receiving a RopSynchronizationOpenCollector ROP Request 115
3.2.5.9.4.2 Receiving a RopSynchronizationImportMessageChange ROP Request .. 115
3.2.5.9.4.3 Receiving a RopSynchronizationImportHierarchyChange ROP Request . 116
3.2.5.9.4.4 Receiving a RopSynchronizationImportMessageMove ROP Request 116
3.2.5.9.4.5 Receiving a RopSynchronizationImportDeletes ROP Request 116
3.2.5.9.4.6 Receiving a RopSynchronizationImportReadStateChanges ROP

Request .. 117
3.2.5.9.4.7 Receiving a RopGetLocalReplicaIds ROP Request 117
3.2.5.9.4.8 Receiving a RopSetLocalReplicaMidsetDeleted ROP Request 118

3.2.5.10 Effect of Property and Subobject Filters on Download 118
3.2.5.11 Properties to Ignore on Upload .. 119
3.2.5.12 Properties to Ignore on Download .. 119

3.2.6 Timer Events .. 119
3.2.7 Other Local Events .. 119

3.3 Client Details .. 119
3.3.1 Abstract Data Model .. 119

3.3.1.1 Per Messaging Object ... 119
3.3.2 Timers ... 120
3.3.3 Initialization ... 120
3.3.4 Higher-Layer Triggered Events .. 120

3.3.4.1 Downloading Messaging Objects Using FastTransfer 120
3.3.4.2 Uploading Messaging Objects Using FastTransfer ... 120

3.3.4.2.1 Server-to-Client-to-Server Upload .. 121
3.3.4.3 Synchronizing Incremental Changes ... 121

3.3.4.3.1 Uploading the ICS State .. 122
3.3.4.3.2 Downloading Changes Using ICS .. 123
3.3.4.3.3 Uploading Changes Using ICS .. 124

3.3.4.3.3.1 Hierarchy Upload .. 125
3.3.4.3.3.1.1 Uploading Hierarchy Changes ... 126
3.3.4.3.3.1.2 Uploading Hierarchy Deletions .. 127

3.3.4.3.3.2 Content Upload .. 127
3.3.4.3.3.2.1 Uploading Moves ... 129

3.3.4.3.3.2.1.1 Moves and Modifications ... 129
3.3.4.3.3.2.1.2 Avoiding Duplicate Uploads ... 129

3.3.4.3.3.2.2 Uploading Modifications ... 129
3.3.4.3.3.2.2.1 Full Item Upload .. 129
3.3.4.3.3.2.2.2 Partial Item Upload .. 130

3.3.4.3.3.2.3 Uploading Deletes ... 130
3.3.4.3.3.2.4 Uploading Read/Unread State Changes 131

3.3.4.3.4 Downloading the ICS State .. 131
3.3.5 Message Processing Events and Sequencing Rules ... 131

3.3.5.1 Order of Operations ... 131
3.3.5.2 Creating Objects and Identifying Changes on the Local Replica 131

3.3.5.2.1 Client-Assigned Internal Identifiers ... 131
3.3.5.2.2 Use Online Mode ROPs .. 132
3.3.5.2.3 Foreign Identifiers .. 132

3.3.5.3 Back-in-Time Detection .. 133
3.3.5.4 Mailbox Validation .. 133
3.3.5.5 Determining the Synchronization Scope .. 133
3.3.5.6 Client Side Checkpointing ... 134

10 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.3.5.7 Sending FastTransfer ROPs ... 135
3.3.5.7.1 Sending a RopFastTransferSourceGetBuffer ROP Request 135
3.3.5.7.2 Sending a RopTellVersion ROP Request ... 135

3.3.5.8 Sending ICS ROPs ... 135
3.3.5.8.1 Sending a RopSynchronizationConfigure ROP Request 136
3.3.5.8.2 Sending a RopSynchronizationUploadStateStreamBegin ROP Request 136
3.3.5.8.3 Sending a RopSynchronizationUploadStateStreamContinue ROP Request .. 136
3.3.5.8.4 Sending a RopSynchronizationUploadStateStreamEnd ROP Request 136
3.3.5.8.5 Sending a RopSynchronizationGetTransferState ROP Request 136
3.3.5.8.6 Sending a RopSynchronizationOpenCollector ROP Request 136
3.3.5.8.7 Sending a RopSynchronizationImportMessageChange ROP Request 137
3.3.5.8.8 Sending a RopSynchronizationImportHierarchyChange ROP Request 137
3.3.5.8.9 Sending a RopSynchronizationImportMessageMove ROP Request 137
3.3.5.8.10 Sending a RopSynchronizationImportDeletes ROP Request 138
3.3.5.8.11 Sending a RopSynchronizationImportReadStateChanges ROP Request 138
3.3.5.8.12 Sending a RopGetLocalReplicaIds ROP Request 138
3.3.5.8.13 Sending a RopSetLocalReplicaMidsetDeleted ROP Request 139

3.3.5.9 Receiving FastTransfer and ICS ROP Responses ... 139
3.3.5.9.1 Receiving a RopFastTransferSourceGetBuffer ROP Response 139

3.3.5.10 Client Specific Handling .. 140
3.3.5.11 Client Conflict Resolution .. 140
3.3.5.12 Using the PidTagMessageSize Property Value .. 141
3.3.5.13 Sending the MetaTagIdsetGiven ICS State Property 141

3.3.6 Timer Events .. 141
3.3.7 Other Local Events .. 141

4 Protocol Examples .. 142
4.1 Hierarchy Synchronization Examples ... 142

4.1.1 Adding or Modifying a Folder ... 142
4.1.2 Deleting a Folder ... 143

4.2 Message Synchronization Upload Examples .. 144
4.2.1 Creating or Modifying a Message ... 144
4.2.2 Deleting a Message ... 146

4.3 Partial Item Examples ... 148
4.3.1 Uploading a Partial Item ... 148
4.3.2 Downloading a Partial Item ... 149

4.4 Serialization of an IDSET Structure Example .. 150
4.5 FastTransfer Stream Produced by a Content Synchronization Download Example 153
4.6 Conflict Detection and Conflict Resolution Examples .. 210

4.6.1 Comparing the PidTagPredecessorChangeList Property to Detect Conficts, No
Conflicts Found .. 210

4.6.2 Comparing the PidTagPredecessorChangeList Property to Detect Conflicts,
Conflicts Found .. 212

5 Security .. 214
5.1 Security Considerations for Implementers .. 214
5.2 Index of Security Parameters ... 214

6 Appendix A: Product Behavior .. 215

7 Change Tracking... 219

8 Index ... 221

11 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

1 Introduction

The Bulk Data Transfer Protocol enables the bulk transmission of mailbox data, represented by
folders and messages, between clients and servers. This protocol is commonly used for replicating,
exporting, or importing mailbox content between clients and servers.

This protocol describes the following:

How a client can configure a remote operation (ROP) to upload a set of folders or messages to

a server, or download a set of folders or messages from a server.

How a client or a server can receive and reconstitute folders and messages that are transmitted

from another client or another server.

How a client can upload changes made to local folders and message replicas to a server.

Semantics of ROPs that are used to fulfill the aforementioned operations.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also

normative but does not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

ASCII

Augmented Backus-Naur Form (ABNF)
code page
flags
GUID
handle

little-endian
property set

remote procedure call (RPC)
Unicode

The following terms are defined in [MS-OXGLOS]:

Attachment object
best body
change number
checkpoint ICS state

conflict detection
conflict reporting
conflict resolution
content synchronization
Deleted Items folder

Embedded Message object

enterprise/site/server distinguished name (ESSDN)
EntryID
external identifier
FastTransfer download context
FastTransfer stream
FastTransfer upload context

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=120869

12 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

final ICS state
folder associated information (FAI)

Folder object
foreign identifier

global identifier
hard delete
hierarchy synchronization
Incremental Change Synchronization (ICS)
initial ICS state
internal identifier
interpersonal messaging subtree

local replica
mailbox
marker
message body
Message object
message store

messaging object
meta-property
named property
normal message
offline
Outbox folder
Predecessor Change List (PCL)

property ID
property list restriction table
property tag
property type
public folder
recipient
Recipient object

remote operation (ROP)
replica

replica GUID (REPLGUID)
replica ID (REPLID)
Rich Text Format (RTF)
ROP request

ROP request buffer
ROP response
ROP response buffer
Sent Items folder
server replica
soft delete
synchronization context

synchronization download context
synchronization scope
synchronization type
synchronization upload context

top-level message

The following terms are specific to this document:

base property type: The type of the property, if the property is single-valued, or the type of an

element of the property, if the property is multi-valued.

13 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

camel-cased: The capitalization style applied to compound words or phrases when they are
joined without spaces and the first letter of each word, except the first word, is capitalized

within the compound. For example, displayName is camel-cased.

common byte stack: A list of arrays of bytes. Byte values of contained arrays, when together in

their natural order, represent common high-order bytes of GLOBCNT values. Common byte
stacks are used in a last-in first-out (LIFO) fashion during serialization or deserialization of
GLOBSETs.

conflict handling: One or more actions that are taken upon detection of a conflict between
versions of the same object. These actions include conflict reporting and conflict resolution.

deleted item list: An abstract repository of information about deleted items.

expired Message object: A Message object that was removed by a server due to the age of the

Message object.

FastTransfer context: Either a FastTransfer download context or a FastTransfer upload context.

partial completion: The outcome of a complex operation with independent steps, where some
steps succeeded and some steps failed.

Pascal-cased: The capitalization style applied to compound words or phrases when they are
joined without spaces and the first letter of each word (including the first word) is capitalized

within the compound. For example, DisplayName is a pascal-cased.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specification documents do not include a publishing year because links

are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information.

[MS-OXBBODY] Microsoft Corporation, "Best Body Retrieval Algorithm".

[MS-OXCDATA] Microsoft Corporation, "Data Structures".

[MS-OXCFOLD] Microsoft Corporation, "Folder Object Protocol".

[MS-OXCMAPIHTTP] Microsoft Corporation, "Messaging Application Programming Interface (MAPI)
Extensions for HTTP".

[MS-OXCMSG] Microsoft Corporation, "Message and Attachment Object Protocol".

[MS-OXCPERM] Microsoft Corporation, "Exchange Access and Operation Permissions Protocol".

[MS-OXCPRPT] Microsoft Corporation, "Property and Stream Object Protocol".

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
%5bMS-OXBBODY%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=120867
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCPERM%5d.pdf
%5bMS-OXCPRPT%5d.pdf

14 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

[MS-OXCROPS] Microsoft Corporation, "Remote Operations (ROP) List and Encoding Protocol".

[MS-OXCRPC] Microsoft Corporation, "Wire Format Protocol".

[MS-OXCSTOR] Microsoft Corporation, "Store Object Protocol".

[MS-OXOMSG] Microsoft Corporation, "Email Object Protocol".

[MS-OXPROPS] Microsoft Corporation, "Exchange Server Protocols Master Property List".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD
68, RFC 5234, January 2008, http://www.rfc-editor.org/rfc/rfc5234.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-OXCMAIL] Microsoft Corporation, "RFC 2822 and MIME to Email Object Conversion Algorithm".

[MS-OXCSPAM] Microsoft Corporation, "Spam Confidence Level Protocol".

[MS-OXGLOS] Microsoft Corporation, "Exchange Server Protocols Master Glossary".

[MS-OXOABK] Microsoft Corporation, "Address Book Object Protocol".

[MS-OXOCAL] Microsoft Corporation, "Appointment and Meeting Object Protocol".

[MS-OXOFLAG] Microsoft Corporation, "Informational Flagging Protocol".

[MS-OXORMDR] Microsoft Corporation, "Reminder Settings Protocol".

[MS-OXOTASK] Microsoft Corporation, "Task-Related Objects Protocol".

[MS-OXPROTO] Microsoft Corporation, "Exchange Server Protocols System Overview".

1.3 Overview

This protocol describes how clients and servers can efficiently exchange data that is represented as

folders and messages that are contained in private or public mailboxes.

Efficiency in the exchange of data is achieved through the following means:

Packaging data for several folders or messages into a single ROP response, which can be

compressed at the remote procedure call (RPC) level.

Reducing transmitted data to only changes that the user is interested in.

Reducing transmitted data to only changes that relate to a subset of folder or message data by

using Incremental Change Synchronization (ICS).

Performing optimizations on the server provided that the server knows the scope of the operation

ahead of time.

Minimizing the bandwidth required to copy message and folder content by efficiently packing data

by using FastTransfer streams.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCSTOR%5d.pdf
%5bMS-OXOMSG%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=165986
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=123096
%5bMS-GLOS%5d.pdf
%5bMS-OXCMAIL%5d.pdf
%5bMS-OXCSPAM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=120869
http://go.microsoft.com/fwlink/?LinkId=120870
%5bMS-OXOCAL%5d.pdf
%5bMS-OXOFLAG%5d.pdf
%5bMS-OXORMDR%5d.pdf
%5bMS-OXOTASK%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=254124
%5bMS-GLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

15 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

This protocol supports the transfer of data in scenarios that derive from the following semi-
independent variables:

1. Direction of data transmission: download or upload.

2. Type of messaging objects included in a transmission: folders, messages, or both.

3. Scope of the data that is transmitted for a messaging object. The scope might be one of the
following:

A full object or a subset of its data.

Changes since the last transmission.

Operations such as a read state change or a move.

4. Scope of the messaging objects that are included in a set. The scope might be one of the
following:

Identified directly by Folder object identifiers and Message object identifiers.

Identified by a combination of criteria and state information maintained by the client.

This specification is based on the following roles: one server, and one or more clients. The only
exception is the server-to-client-to-server upload scenario described in section 3.3.4.2.1.

1.3.1 FastTransfer Copy Operations

FastTransfer copy operations enable clients to efficiently copy the content of explicitly specified
folders, messages, and attachments between replicas (1) of the same or different mailboxes by
using a special binary format known as a FastTransfer stream as the medium. A FastTransfer stream
contains copies of folder, message, or attachment content in a predefined serialized format, as
described in section 2.2.4. The FastTransfer stream can be used to create copies of this folder,

message, or attachment content in any destination folder, on any mailbox, on any client, or on any

server.

Every FastTransfer operation is independent. After the operation is complete, no state has to be
maintained on the client or on the server.

FastTransfer download operations enable clients to download a copy of the explicitly specified
folders, messages, or attachments in the FastTransfer stream format. The resulting FastTransfer

stream can be either interpreted on the client, or used in a FastTransfer upload operation if the
intent is to copy messaging objects between mailboxes on different servers. FastTransfer download
operations are described in section 2.2.3.1.1.

FastTransfer upload operations enable a client to create new folders or modify content of existing
folders, messages, and attachments by encoding data into the FastTransfer stream format.
FastTransfer upload operations are described in section 2.2.3.1.2.

FastTransfer operations are used in the ICS download process to download changes and deletions to

mailbox data. FastTransfer operations are not used in the ICS upload process.

1.3.2 Incremental Change Synchronization

ICS enables servers and clients to keep synchronized versions of messages, folders, and their
related properties on both systems. Changes that are made to messages and folders on the client
are replicated to the server and vice versa. ICS can determine differences between two folder

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

16 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

hierarchies or two sets of content, and can upload or download information about the differences in
a single session.

Changes to folder properties, changes to the folder hierarchy, and folder creations and deletions are
included in hierarchy synchronization operations.

Changes to message properties, changes to read and unread message state, changes to recipients
(1) and attachment information, message creations, and message deletions are included in content
synchronization operations.

Hierarchy synchronization and content synchronization operations are the actual processes used to
implement ICS on the client and server.

1.3.2.1 Download Changes Using ICS

To download changes and deletions made to mailbox data on the server, the client first creates a
synchronization download context, as described in section 2.2.3.2.1. Once the synchronization
download context has been created, the client uploads a set of properties, the ICS state properties,

as described in section 2.2.1.1, that track the changes currently on the client. The server then uses
the data in the ICS state properties and the synchronization scope to determine the set of
differences to download to the client.

Once the state information has been uploaded and the server has determined the changes to
download, that information is downloaded to the client through one or more iterations of a single
Fast Transfer ROP, as described in section 2.2.3.1.1.5, whose response buffer can be efficiently
packed at the RPC level. The FastTransfer ROP is used in ICS download operations only.ICS upload
operations use an independent set of ICS ROPs, as described in section 2.2.3.2.4.

Performing a hierarchy synchronization download operation using a synchronization download
context that was opened on a folder produces information about all folder changes and folder

deletions of descendants of that folder that have happened since the last synchronization download,
as defined by the initial ICS state.

Performing a content synchronization download operation using a synchronization download context

that was opened on a folder produces information about all message changes and message
deletions in the folder that have occurred since the last synchronization download. ICS uses the ICS
state properties, as described in section 2.2.1.1, to determine the differences, as defined by the
initial ICS state.

1.3.2.2 Upload Changes Using ICS

Similar to the ICS process for downloading changes, the process for uploading changes using ICS
requires that the client first creates a synchronization upload context, as described in section
2.2.3.2.1. Once the synchronization upload context has been created, the client uploads a set of
properties, the ICS state properties, as described in section 2.2.1.1, that track the changes currently

on the client. The server then accepts the changes from the client and sends the final ICS state,
containing the updated ICS properties, to the client. The ICS state properties are updated to reflect
the items that were uploaded to the server so that server does not download the same changes to
the client the next time the ICS process occurs.

The process of uploading the mailbox changes from the client to the server resembles the ICS
download process, except that instead of streaming data through a single FastTransfer ROP,
multiple individual ICS ROPs are sent to upload changes to individual objects within a mailbox, as

described in section 2.2.3.2.4.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

17 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

This protocol supports the uploading of hierarchy differences, such as creation and deletion of
folders and changes to folder properties.

This specification also supports the uploading of differences in the contents of folders, such as
creation and deletion of messages, changes to message properties and read state, and the moving

of messages between folders.

1.4 Relationship to Other Protocols

This protocol provides a low-level explanation of bulk data transfer operations.

This protocol relies on the following:

An understanding of ROPs, as described in [MS-OXCROPS].

An understanding of folders and messages, as described in [MS-OXCFOLD] and [MS-OXCMSG],

respectively.

For conceptual background information and overviews of the relationships and interactions between
this and other protocols, see [MS-OXPROTO].

1.5 Prerequisites/Preconditions

When performing bulk data transfer operations, this protocol assumes that the client has previously
logged on to the server and has acquired a handle to the folder that contains the messages and
subfolders that will be uploaded or downloaded. For information about folders, see [MS-OXCFOLD].

1.6 Applicability Statement

This protocol was designed for the following uses:

To support the replication of mailbox content between clients and servers.

To support client-driven copying of data between multiple mailboxes on multiple servers.

To support exporting or importing of data to or from a mailbox.

This protocol provides high efficiency and complete preservation of data fidelity for the uses
described in this section. However, use of the protocol is not appropriate in the following scenarios:

For those copying data between folders in the same mailbox, or different mailboxes residing on

the same server. Consider using the RopCopyTo ROP, as described in [MS-OXCROPS] section
2.2.8.12, for maximum efficiency.

For those requiring detailed control over the set of information that has to be transferred for each

message. Consider using other ROPs described in [MS-OXCROPS] that provide access to
individual parts of messages.

For those that impose constraints on the amount of data that has to be passed over the wire or

stored on the client.

For those that do not allow for persistence of state information on the client between runs.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXPROTO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCROPS%5d.pdf

18 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Localization: Localization-related aspects of the protocol are described in section 2.2.3.1.1.1.2.

Capability Negotiation: This protocol performs explicit capability negotiation by using the

following ROPs, properties, and flags. Support of the following features is determined by the

versions of the client and server that are supplied either by the EcDoConnectEx method, as
described in [MS-OXCRPC], or by the X-ClientApplication and X-ServerApplication headers of
the Connect request type request and response, as described in [MS-OXCMAPIHTTP]. Both the
client and server limit their behavior to the capabilities supported by the other. For more
information, see [MS-OXCRPC] section 3.1.4.1.3.

Client version Description

11.0.0.4920
and above

The client supports receiving the 0x00000480 value in the ReturnValue field of the
RopFastTransferSourceGetBuffer ROP (section 2.2.3.1.1.5) response.

12.0.3730.0
and above

The client supports send optimization for ICS using the PidTagTargetEntryId
property ([MS-OXOMSG] section 2.2.1.76). For more information, see section
3.3.4.3.3.2.1.2.

Server

version Description

8.0.359.0 and
above

The server supports the PartialItem flag of the SendOptions field, as described in
section 2.2.3.2.1.1.1. Earlier server versions do not support this flag.

The RopTellVersion ROP is used to explicitly declare capabilities of the servers in the server-to-
client-to-server upload scenario. For more information, see section 3.3.4.2.1.

1.8 Vendor-Extensible Fields

This protocol provides no extensibility beyond what is specified in [MS-OXCMSG].

1.9 Standards Assignments

None.

%5bMS-GLOS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf

19 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2 Messages

2.1 Transport

The ROP request buffers and ROP response buffers specified by this protocol are sent to and
received by the server by using the underlying Remote Operations (ROP) List and Encoding Protocol,
as specified in [MS-OXCROPS].

2.2 Message Syntax

The following notations are used in this specification:

MetaTagCnset*. Refers to any of the following properties: MetaTagCnsetSeen (section

2.2.1.1.2), MetaTagCnsetSeenFAI (section 2.2.1.1.3), and MetaTagCnsetRead (section
2.2.1.1.4).

RopFastTransferSourceCopy*. Refers to any of the following ROPs:

RopFastTransferSourceCopyTo (section 2.2.3.1.1.1),

RopFastTransferSourceCopyProperties (section 2.2.3.1.1.2),
RopFastTransferSourceCopyMessages (section 2.2.3.1.1.3), and
RopFastTransferSourceCopyFolder (section 2.2.3.1.1.4).

RopSynchronizationImport*. Refers to any of the following ROPs:

RopSynchronizationImportMessageChange (section 2.2.3.2.4.2),
RopSynchronizationImportHierarchyChange (section 2.2.3.2.4.3),

RopSynchronizationImportMessageMove (section 2.2.3.2.4.4),
RopSynchronizationImportDeletes (section 2.2.3.2.4.5), and
RopSynchronizationImportReadStateChanges (section 2.2.3.2.4.6).

Section 2.2.3.2.4.2 through section 2.2.4.3.25 use property list restriction tables in the following
format to describe restrictions on arrays of property values:

Name Restrictions Comments

PidSomeProperty Conditional

Fixed
position

...

When the value of Restrictions column contains "Conditional", the
Comments column is specifying the condition of existence. When the
value of the Restrictions column does not contain "Conditional", the
Comments column can contain comments about the property value.

< other
properties >

Prohibited Comments.

Any property cannot exist in a property list restriction table more than once. All nonitalicized rows of
the table represent a restriction that is imposed on the property identified in the Name column. For
more information about all possible properties, see [MS-OXPROPS]. The Comments column contains
free-form comments that amend the meaning of the Name and Restrictions columns. The

Restrictions column specifies a subset of the following restrictions:

Optional [default]: The property can be present in the array.

Required: The property MUST be present in the array.

Fixed position: The position of the property within the array is fixed and MUST correspond to the

position of the corresponding restriction in the property list restriction table.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXPROPS%5d.pdf

20 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Conditional: The presence of the property in the array is conditional. See the Comments column

for conditions.

Prohibited: The property MUST NOT be present in the array. Italicized rows represent restrictions

that apply to special sets of properties. The special set < other properties > represents all
properties that are not mentioned in the property list restriction table explicitly.

No restrictions: There are no restrictions on the property in the array. The property does not

have a fixed position in the array, and by default, the property’s presence is optional in the array.

All undefined bits in flag structures and undefined values of enumerations that are defined in this
specification are reserved; clients MUST pass 0. Server behavior for undefined flags and

enumeration values is defined in section 3.2.

2.2.1 Properties

2.2.1.1 ICS State Properties

ICS uses a set of properties known as the ICS state properties to enable a server to narrow down
the set of data passed during an Incremental Change Synchronization (ICS) to the client. The ICS

state properties specify the state of the local replica, bounded by the synchronization scope that is
configured by the RopSynchronizationConfigure ROP (section 2.2.3.2.1.1). Details about the
ROPs used to upload the ICS state properties to the server are included in section 2.2.3.2.2. Details
about how the ICS state properties are used by the client and server are included in sections 3.3.5.2
and 3.2.5.2 respectively.

All ICS state properties are of the PtypBinary type ([MS-OXCDATA] section 2.11.1), and contain a
serialized IDSET structure in the replica GUID (REPLGUID)-based form, as specified in section

2.2.2.4.2. For details on serializing an IDSETs, see section 3.1.5.4. For details on creating a
compact IDSET, see section 3.1.5.5.

All properties specified in this section are part of the ICS state. Two of these properties are used for
hierarchy synchronization operations: MetaTagIdsetGiven (section 2.2.1.1.1) and

MetaTagCnsetSeen (section 2.2.1.1.2). All four properties are used for content synchronization
operations.

The ICS state specifies the state of the local replica bounded by the synchronization scope included
by the client in the RopSynchronizationConfigure ROP request (section 2.2.3.2.1.1).

2.2.1.1.1 MetaTagIdsetGiven ICS State Property

Property ID: 0x4017

Data type: PtypInteger32, 0x0003 ([MS-OXCDATA] section 2.11.1)

The MetaTagIdsetGiven property contains a serialization of REPLGUID-based IDSET structures,

as specified in section 2.2.2.4.2. The IDSETs contain Folder ID structures ([MS-OXCDATA] section
2.2.1.1) for hierarchy synchronization operations, or Message ID structures for content
synchronization operations, that exist in the local replica of the client. The IDSETs MUST NOT

include any IDs that are not in the local replica of the client. Because of this restriction on IDs, this
property often does not compress as well as the MetaTagCnset* properties, which makes the
MetaTagIdsetGiven property grow larger than the MetaTagCnset* properties. For more details
about compression of IDSETs, see section 3.1.5.5.

For more details about sending and receiving this property, see sections 3.2.5.2.1 and 3.3.5.13.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

21 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.1.1.2 MetaTagCnsetSeen ICS State Property

Property ID: 0x6796

Data type: PtypBinary, 0x0102 ([MS-OXCDATA] section 2.11.1)

The MetaTagCnsetSeen property contains a serialization of REPLGUID-based CNSET structures,
as specified in section 2.2.2.4. The CN structures, as specified in section 2.2.2.1, in the CNSET
track changes to folders (for hierarchy synchronization operations) or normal messages (for
content synchronization operations) in the current synchronization scope that have been previously
communicated to a client, and are reflected in its local replica.

2.2.1.1.3 MetaTagCnsetSeenFAI ICS State Property

Property ID: 0x67DA

Data type: PtypBinary, 0x0102 ([MS-OXCDATA] section 2.11.1)

The MetaTagCnsetSeenFAI property contains a serialization of REPLGUID-based IDSET
structures, as specified in section 2.2.2.4. The semantics of this property are identical to the
MetaTagCnsetSeen property (section 2.2.1.1.2), except that this property contains IDs for folder
associated information (FAI) messages and is therefore only used in content synchronization

operations.

2.2.1.1.4 MetaTagCnsetRead ICS State Property

Property ID: 0x67D2

Data type: PtypBinary, 0x0102 ([MS-OXCDATA] section 2.11.1)

The MetaTagCnsetRead property contains a serialization of REPLGUID-based CNSET structures,
as specified in section 2.2.2.4. The CN structures, as specified in section 2.2.2.1, in the CNSET

track changes to the read state for messages in the current synchronization scope that have been
previously communicated to the client and are reflected in its local replica. This property does not

track whether messages have been read, it only tracks changes to the read state of a message. For
more details about tracking read state changes, see section 3.2.5.6.

The read state of a message is determined by the PidTagMessageFlags property ([MS-OXCMSG]
section 2.2.1.6), which contains a bitmask of flags that indicate the origin and current state of the
message.

2.2.1.2 Messaging Object Identification and Change Tracking Properties

This section specifies details about the properties that are used by this protocol to identify
messages, folders, and track changes.

For details about how messaging object and change identification values are created and modified
by the protocol roles, see section 3.1.5.3.

2.2.1.2.1 PidTagMid Property

Data type: PtypInteger64 ([MS-OXCDATA] section 2.11.1)

The PidTagMid property ([MS-OXPROPS] section 2.790) contains the MID structure ([MS-
OXCDATA] section 2.2.1.2) of the message currently being synchronized.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

22 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

For details about the presence of the PidTagMid property in message change headers, see the
SynchronizationExtraFlags field in section 2.2.3.2.1.1.1.

2.2.1.2.2 PidTagFolderId Property

Data type: PtypInteger64 ([MS-OXCDATA] section 2.11.1)

The PidTagFolderId property ([MS-OXPROPS] section 2.691) contains the Folder ID structure
([MS-OXCDATA] section 2.2.1.1) of the folder currently being synchronized.

For details about the presence of the PidTagFolderId property in message change headers, see the
SynchronizationExtraFlags field in section 2.2.3.2.1.1.1.

2.2.1.2.3 PidTagChangeNumber Property

Data type: PtypInteger64 ([MS-OXCDATA] section 2.11.1)

The PidTagChangeNumber property ([MS-OXPROPS] section 2.623) contains the CN structure, as

specified in section 2.2.2.1, that identifies the last change to the message or folder that is currently
being synchronized.

For details about the presence of the PidTagChangeNumber property in message change headers,
see the SynchronizationExtraFlags field in section 2.2.3.2.1.1.1.

2.2.1.2.4 PidTagParentFolderId Property

Data type: PtypInteger64 ([MS-OXCDATA] section 2.11.1)

The PidTagParentFolderId property ([MS-OXPROPS] section 2.848) contains the Folder ID
structure ([MS-OXCDATA] section 2.2.1.1) that identifies the parent folder of the messaging object
being synchronized.

2.2.1.2.5 PidTagSourceKey Property

Data type: PtypBinary ([MS-OXCDATA] section 2.11.1)

The PidTagSourceKey property ([MS-OXPROPS] section 2.1010) contains a serialized XID
structure, as specified in section 2.2.2.2, that specifies the internal identifier (2) for the folder or
message.

For more details about how clients generate this property, see section 3.3.5.2.1. For more details
about how servers generate or output this property value, see section 3.2.5.5.

2.2.1.2.6 PidTagParentSourceKey Property

Data type: PtypBinary ([MS-OXCDATA] section 2.11.1)

The PidTagParentSourceKey property ([MS-OXPROPS] section 2.850) specifies the
PidTagSourceKey property (section 2.2.1.2.5) of the current folder's parent folder.

2.2.1.2.7 PidTagChangeKey Property

Data type: PtypBinary ([MS-OXCDATA] section 2.11.1)

The PidTagChangeKey property ([MS-OXPROPS] section 2.622) contains a serialized XID
structure, as specified in section 2.2.2.2, that identifies the last change to the messaging object.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf

23 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

If the last change to the messaging object was imported from the client by using the
RopSynchronizationImportMessageChange ROP (section 2.2.3.2.4.2), the value of the

PidTagChangeKey property that is saved to the message store by the server contains the value
for the PidTagChangeKey property that was passed in the PropertyValues field of the

RopSynchronizationImportMessageChange ROP request buffer.

If the last change to a messaging object was made by the server, the value of the
PidTagChangeKey property that is saved to the message store by the server contains an XID
generated from the PidTagChangeNumber property (section 2.2.1.2.3). For more details about
generating XIDs based on internal identifiers (2), see section 3.1.5.3.

2.2.1.2.8 PidTagPredecessorChangeList Property

Data type: PtypBinary ([MS-OXCDATA] section 2.11.1)

The PidTagPredecessorChangeList property ([MS-OXPROPS] section 2.856) contains
PredecessorChangeList structures, as specified in section 2.2.2.3. The
PidTagPredecessorChangeList property contains all the XID structures, as specified in section

2.2.2.2, from all replicas (1) that have been integrated into the current version of the messaging
object. This property is used in conflict detection by all protocol roles.

2.2.1.2.9 PidTagOriginalEntryId Property

Data type: PtypBinary ([MS-OXCDATA] section 2.11.1)

The PidTagOriginalEntryId property ([MS-OXPROPS] section 2.818) contains the original EntryID
of the message, which is used to associate the full message item being downloaded from the server
with the message header previously stored on the client.

2.2.1.3 Meta-Properties for Encoding Differences in Replica Content

Because servers do not maintain a per-client state, the following properties are not persisted on
servers and are only present as data in the FastTransfer streams.

All properties are of the PtypBinary ([MS-OXCDATA] section 2.11.1) type, and contain a serialized
IDSET in the replica ID (REPLID)-based form, as specified in section 2.2.2.4.1.

2.2.1.3.1 MetaTagIdsetDeleted Meta-Property

Property ID: 0x67E5

Data type: PtypBinary, 0x0102 ([MS-OXCDATA] section 2.11.1)

The MetaTagIdsetDeleted property contains a serialization of a REPLID-based IDSET structures,
as specified in section 2.2.2.4.1. The IDSETs contain the IDs of folders (for hierarchy
synchronization operations) or messages (for content synchronization operations) that were hard
deleted or soft deleted since the last synchronization identified by the initial ICS state. For more
details about how an IDSET is serialized, see section 3.1.5.4.

2.2.1.3.2 MetaTagIdsetNoLongerInScope Meta-Property

Property ID: 0x4021

Data type: PtypBinary, 0x0102 ([MS-OXCDATA] section 2.11.1)

%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf

24 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

The MetaTagIdsetNoLongerInScope property contains a serialization of a REPLID-based IDSET
structures, as specified in section 2.2.2.4.1. The IDSETs contain the IDs of messages that got out

of the synchronization scope since the last synchronization identified by the initial ICS state.
Messages that no longer match a restriction are considered out of synchronization scope. For more

details about how an IDSET is serialized, see section 3.1.5.4.

Note that messages moved to another folder are considered soft deleted in the source folder; hard
deleted and soft deleted messages are reported in the MetaTagIdsetDeleted property (section
2.2.1.3.1).

2.2.1.3.3 MetaTagIdsetExpired Meta-Property

Property ID: 0x6793

Data type: PtypBinary, 0x0102 ([MS-OXCDATA] section 2.11.1)

The MetaTagIdsetExpired property<1> contains a serialization of REPLID-based IDSET
structures. The IDSETs contain IDs of expired Message objects in a public folder that expired

since the last synchronization identified by the initial ICS state. For more details about how an
IDSET is serialized, see section 3.1.5.4.

2.2.1.3.4 MetaTagIdsetRead Meta-Property

Property ID: 0x402D

Data type: PtypBinary, 0x0102 ([MS-OXCDATA] section 2.11.1)

The MetaTagIdsetRead property contains a serialization of REPLID-based IDSET structures. The
IDSETs contain IDs of messages that were marked as read (as specified by the
PidTagMessageFlags property in [MS-OXCMSG] section 2.2.1.6) since the last synchronization, as
identified by the initial ICS state. For more details about how an IDSET is serialized, see section

3.1.5.4.

2.2.1.3.5 MetaTagIdsetUnread Meta-Property

Property ID: 0x402E

Data type: PtypBinary, 0x0102 ([MS-OXCDATA] section 2.11.1)

The MetaTagIdsetUnread property contains a serialization of REPLID-based IDSET structures.
The IDSETs contain IDs of messages that were marked as unread (as specified by the

PidTagMessageFlags property in [MS-OXCMSG] section 2.2.1.6) since the last synchronization, as
identified by the initial ICS state. For more details about how an IDSET is serialized, see section
3.1.5.4.

2.2.1.4 Conflict Resolution Properties

This section specifies details about the properties that are used in conflict resolution.

2.2.1.4.1 PidTagResolveMethod Property

Data type: PtypInteger32 ([MS-OXCDATA] section 2.11.1)

The PidTagResolveMethod property ([MS-OXPROPS] section 2.918) specifies how to resolve any
conflicts with the message. This property is not required.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf

25 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

The following table defines valid values for the PidTagResolveMethod property.

Flag name Value Description

RESOLVE_METHOD_DEFAULT 0x00000000 A conflict resolve message SHOULD be
generated.

RESOLVE_METHOD_LAST_WRITER_WINS 0x00000001 Overwrite the target message with the current
changes being applied.

RESOLVE_NO_CONFLICT_NOTIFICATION 0x00000002 Do not send a conflict notification message
when generating a conflict resolve message in
a public folder.

For more details about conflict resolution, see section 3.1.5.6.

2.2.1.4.2 PidTagConflictEntryId Property

Data type: PtypBinary ([MS-OXCDATA] section 2.11.1)

The PidTagConflictEntryId property ([MS-OXPROPS] section 2.632) contains the EntryID of the
conflict resolve message, as specified in section 3.1.5.6.2.1.

2.2.1.4.3 PidTagInConflict Property

Data type: PtypBoolean ([MS-OXCDATA] section 2.11.1)

The PidTagInConflict property ([MS-OXPROPS] section 2.728) specifies whether the attachment

represents an alternate replica.

2.2.1.5 PidTagAssociated Property

Data type: PtypBoolean ([MS-OXCDATA] section 2.11.1)

The PidTagAssociated property ([MS-OXPROPS] section 2.575) specifies whether the message
being synchronized is an FAI message.

2.2.1.6 PidTagMessageSize Property

Data type: PtypInteger32 ([MS-OXCDATA] section 2.11.1)

The PidTagMessageSize property ([MS-OXPROPS] section 2.785) identifies the size of the
message in bytes.

For details about the presence of the PidTagMessageSize property in message change headers,
see section 2.2.3.2.1.1.1.

2.2.1.7 Properties That Denote Subobjects

The properties in the following tables denote subobjects of the messaging objects and can be used
in the following:

The property inclusion and exclusion lists of ROPs that configure download operations. For

example, the RopSynchronizationConfigure ROP (section 2.2.3.2.1.1) and the
RopFastTransferSourceCopyTo ROP (section 2.2.3.1.1.1) both configure download operations.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf

26 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

As values of MetaTagFXDelProp meta-properties, as specified in section 2.2.4.1.5.1.

Folder properties Description

PidTagContainerContents ([MS-
OXPROPS] section 2.634)

Identifies all normal messages in the current folder.

PidTagFolderAssociatedContents ([MS-
OXPROPS] section 2.690)

Identifies all FAI messages in the current folder.

PidTagContainerHierarchy ([MS-
OXPROPS] section 2.636)

Identifies all subfolders of the current folder. Clients use
this property in inclusion and exclusion lists, but do not use
this property as a value of the MetaTagFXDelProp meta-
property.

Message properties Description

PidTagMessageRecipients ([MS-OXPROPS] section
2.784)

Identifies all recipients (1) of the current
message.

PidTagMessageAttachments ([MS-OXPROPS] section
2.774)

Identifies all attachments to the current
message.

Attachment properties Description

PidTagAttachDataObject ([MS-
OXCMSG] section 2.2.2.8)

Identifies the Embedded Message object of the current
attachment. Clients do not use this property as a value of the
MetaTagFXDelProp meta-property.

2.2.2 Structures

2.2.2.1 CN Structure

A CN structure contains a change number that identifies a version of a messaging object. CNs are
identical in format to Folder ID structures ([MS-OXCDATA] section 2.2.1.1) and Message ID
structures ([MS-OXCDATA] section 2.2.1.2), except the GlobalCounter field represents a change to
a messaging object rather than a messaging object itself.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReplicaId GlobalCounter

...

ReplicaId (2 bytes): A 16-bit unsigned integer identifying the server replica in which the
messaging object was last changed.

GlobalCounter (6 bytes): An unsigned 48-bit integer identifying the change to the messaging
object.

%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXGLOS%5d.pdf

27 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.2.2 XID Structure

An XID structure contains an external identifier for an entity within a message store.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NamespaceGuid

...

...

...

LocalId (variable)

...

NamespaceGuid (16 bytes): A 128-bit GUID. This field identifies the namespace of the LocalId

field.

LocalId (variable): A variable binary value. This field contains the ID of the entity in the
namespace specified by the NamespaceGuid field. This field has a minimum length of 1 byte and a
maximum length of 8 bytes.

For more details about GID structures, which are a subtype of an XID structure, see [MS-
OXCDATA] section 2.2.1.3. For GIDs, the DatabaseGuid field maps to the NamespaceGuid field,
and the GlobalCounter field maps to the LocalId field.

All XID structures that have the same value for their NamespaceGuid fields MUST have LocalId
fields of the same length. However, the size of the value specified by the LocalId field cannot be
determined by examining the value of the NamespaceGuid field and MUST be provided externally.
In most cases, XIDs are present within other structures that specify information about the size of
the XID, such as the SizedXid structure, as specified in section 2.2.2.3.1, or the propValue
element, as specified in section 2.2.4.3.21.

2.2.2.3 PredecessorChangeList Structure

The PredecessorChangeList structure contains a set of XID structures, as specified in section
2.2.2.2, that identify change numbers of messaging objects in different replicas (1). The order of
the XIDs does not have significance for interpretation, but is significant for serialization and
deserialization. The set of XIDs MUST be serialized without padding as an array of SizedXid
structures binary-sorted by the value of NamespaceGuid field of the XID structure in the

ascending order.

%5bMS-OXGLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

28 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.2.3.1 SizedXid Structure

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

XidSize XID (variable)

...

XidSize (1 byte): An unsigned 8-bit integer that specifies the length of the XID field, in bytes.

XID (variable): An XID structure, as specified in section 2.2.2.2, that contains the value of the

internal identifier (2) of an object, or internal or external identifier of a change number. The length
of this field is specified by the XidSize field, in bytes.

2.2.2.4 IDSET and CNSET Structures

An IDSET structure contains a set of ID values. The ID values are one of the following types:

Message ID structures ([MS-OXCDATA] section 2.2.1.2).

Folder ID structures ([MS-OXCDATA] section 2.2.1.1).

CN structures, as specified in section 2.2.2.1.

When an IDSET structure contains CNs, it is also known as a CNSET structure. In this section, the
term IDSET is used to refer to both IDSET and CNSET structures.

The IDSET serialization format specified in the following sections is optimized for data transfer, and
is not intended for in-memory operations. For details about the serialization and deserialization

process, see section 3.1.5.4.

2.2.2.4.1 Serialized IDSET Structure Containing a REPLID Structure

For every REPLID and GLOBSET structure pair represented in the formatted IDSET structure, add
the following values to the serialization buffer in lowest to highest REPLID structure order.
GLOBSET structures are defined in section 2.2.2.6.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

REPLID GLOBSET (variable)

...

REPLID (2 bytes): A REPLID structure that when combined with all GLOBCNT structures

contained in the GLOBSET field, produces a set of IDs.

GLOBSET (variable): A serialized GLOBSET structure.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

29 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.2.4.2 Serialized IDSET Structure Containing a REPLGUID Structure

For every REPLGUID and GLOBSET structure pair represented in the formatted IDSET structure,
add the following to the serialization buffer. REPLGUID-GLOBSET structure pairs MUST be

serialized by the value of the REPLGUID in the ascending order, using byte-to-byte comparison.
GLOBSET structures are defined in section 2.2.2.6.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

REPLGUID

...

...

...

GLOBSET (variable)

...

REPLGUID (16 bytes): A GUID that identifies a REPLGUID structure. When this GUID is
combined with the values of the GLOBCNT structures contained in the GLOBSET field, it produces a
set of GID structures ([MS-OXCDATA] section 2.2.1.3). The GUID value can also be converted into
a REPLID structure to produce a set of Message ID ([MS-OXCDATA] section 2.2.1.2) or Folder ID
([MS-OXCDATA] section 2.2.1.1) structures.

GLOBSET (variable): A serialized GLOBSET structure.

2.2.2.5 GLOBCNT Structure

A GLOBCNT structure is a 6-byte global namespace counter. If a GLOBCNT is paired with a
REPLID structure it forms a Message ID ([MS-OXCDATA] section 2.2.1.2), Folder ID ([MS-
OXCDATA] section 2.2.1.1), or CN structure as specified in section 2.2.2.1. If a GLOBCNT is paired

with a REPLGUID structure it forms a GID structure ([MS-OXCDATA] section 2.2.1.3).

2.2.2.6 GLOBSET Structure

A GLOBSET structure is a set of GLOBCNT structures, as specified in section 2.2.2.5, that are
reduced to one or more GLOBCNT ranges. A single GLOBCNT range identifies only the lowest and
highest values in a set of consecutive GLOBCNT values. A GLOBCNT range is created using any of
the commands in this section, with the exception of the Pop and End commands.

The serialization format specified in the following sections is optimized for data transfer, and is not

intended for in-memory operations.

A GLOBSET is serialized without padding as a set of commands. For details about how to encode or
decode a GLOBSET by using the commands in this section, see section 3.1.5.4.3.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

30 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.2.6.1 Push Command (0x01 – 0x06)

The Push command places high-order bytes onto the common byte stack.

For information on how a GLOBSET structure, as specified in section 2.2.2.6, is encoded using this

command, see section 3.1.5.4.3.1.1. For information on how a GLOBSET structure is decoded using
this command, see section 3.1.5.4.3.2.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Command CommonBytes (variable)

...

Command (1 byte): An integer that specifies the number of high-order bytes that the GLOBCNT

structures, as specified in section 2.2.2.5, share. This value MUST be in the range 0x01 through
0x06.

CommonBytes (variable): A byte array that contains the bytes shared by the GLOBCNT
structures, as specified in section 2.2.2.5, that are pushed onto the common byte stack. The length

of this field is specified by value of the Command field (0x01 through 0x06), in bytes.

2.2.2.6.2 Pop Command (0x50)

The Pop command removes bytes that were added to the common byte stack from the previous
Push command, as specified in section 2.2.2.6.1.

For information about how a GLOBSET structure, as specified in section 2.2.2.6, is encoded using

this command, see section 3.1.5.4.3.1.2. For information about how a GLOBSET structure is
decoded using this command, see section 3.1.5.4.3.2.2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Command

Command (1 byte): This value MUST be set to0x50.

2.2.2.6.3 Bitmask Command (0x42)

The Bitmask command compresses up to five GLOBCNT ranges, as specified in section 2.2.2.6,
into a single encoding command if they all have 5 high-order bytes in common and the low-order
bytes are all within eight values of each other.

For information about how a GLOBSET structure, as specified in section 2.2.2.6, is encoded using

this command, see section 3.1.5.4.3.1.3. For information about how a GLOBSET structure is
decoded using this command, see section 3.1.5.4.3.2.3.

31 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Command StartingValue Bitmask

Command (1 byte): This value MUST be set to 0x42.

StartingValue (1 byte): The low-order byte of the first GLOBCNT structure, as specified in section
2.2.2.5.

Bitmask (1 byte): A flag that identifies whether the GLOBCNT structure that exists in the
GLOBCNT range that starts with the value of the StartingValue field.

2.2.2.6.4 Range Command (0x52)

The Range command adds a GLOBCNT range to the GLOBSET structure, as specified in section

2.2.2.6. The range is determined by the GLOBCNT structure produced from the LowValue field and
the GLOBCNT structure produced from the HighValue field.

For more details about how a GLOBSET structure, as specified in section 2.2.2.6, is encoded using
this command, see section 3.1.5.4.3.1.4. For details about how a GLOBSET structure is decoded
using this command, see section 3.1.5.4.3.2.4.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Command LowValue (variable)

...

HighValue (variable)

...

Command (1 byte): This value MUST be set to 0x52.

LowValue (variable): A byte array of low-order values for GLOBCNT structure generation. The
number of bytes in this field is equal to 6 minus the number of high-order bytes in the common byte
stack. This value MUST be less than or equal to the value of the HighValue field.

HighValue (variable): A byte array of low-order values for GLOBCNT structure generation. The
number of bytes in this field is equal to 6 minus the number of high-order bytes in the common byte
stack. This value MUST be greater than or equal to the value of the LowValue field.

2.2.2.6.5 End Command (0x00)

The End command is used to signal the end of the GLOBSET structure encoding.

For information about how a GLOBSET structure, as specified in section 2.2.2.6, is encoded using
this command, see section 3.1.5.4.3.1.5. For information about how a GLOBSET structure is
decoded using this command, see section 3.1.5.4.3.2.5.

32 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Command

Command (1 byte): This value MUST be set to 0x00.

2.2.2.7 ProgressInformation Structure

The ProgressInformation structure is used by the progressTotal element, as specified in section
2.2.4.3.19, to describe the approximate size of all the messageChange elements, as specified in
section 2.2.4.3.11, that follow in the FastTransfer stream.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version padding

FAIMessageCount

FAIMessageTotalSize

...

NormalMessageCount

padding

NormalMessageTotalSize

...

Version (2 bytes): An unsigned 16-bit value that contains a number that identifies the binary

structure of the data that follows. The preceding packet diagram specifies the format for version
0x0000, which is the only version of this structure defined for this protocol.

padding (2 bytes): This value SHOULD be set to 0x0000 and MUST be ignored by clients.

FAIMessageCount (4 bytes): An unsigned 32-bit integer value that contains the total number of
changes to FAI messages that are scheduled for download during the current synchronization
operation.

FAIMessageTotalSize (8 bytes): An unsigned 64-bit integer value that contains the size in bytes

of all changes to FAI messages that are scheduled for download during the current synchronization
operation.

NormalMessageCount (4 bytes): An unsigned 32-bit integer value that contains the total number
of changes to normal messages that are scheduled for download during the current synchronization
operation.

33 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

padding (4 bytes): This value SHOULD be set to 0x00000000 and MUST be ignored by clients.

NormalMessageTotalSize (8 bytes): An unsigned 64-bit integer value that contains the size in
bytes of all changes to normal messages that are scheduled for download during the current
synchronization operation.

2.2.2.8 PropertyGroupInfo Structure

The PropertyGroupInfo structure specifies a mapping between a group index and property tags
within a property group. For more details about property groups, see section 3.2.5.7.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

GroupId

Reserved

GroupCount

Groups (variable)

...

GroupId (4 bytes): An unsigned 32-bit integer value that identifies a property mapping within the
current synchronization download context.

Reserved (4 bytes): This value MUST be set to 0x00000000.

GroupCount (4 bytes): An unsigned 32-bit integer value that specifies how many PropertyGroup

structures, as specified in section 2.2.2.8.1, are present in the Groups field. This field MUST NOT be
set to 0x00000000.

Groups (variable): An array of PropertyGroup structures, as specified in section 2.2.2.8.1. The
number of PropertyGroup structures in this value is specified by the value of the GroupCount
field.

2.2.2.8.1 PropertyGroup Structure

The PropertyGroup structure specifies the property tags that belong to the property group for use
in the PropertyGroupInfo structure, as specified in section 2.2.2.8.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PropertyTagCount

PropertyTags (variable)

...

%5bMS-OXGLOS%5d.pdf

34 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

PropertyTagCount (4 bytes): An unsigned 32-bit integer value that specifies how many
PropertyTag structures are present in the PropertyTags field. This value MUST NOT be set to

0x00000000.

PropertyTags (variable): An array of PropertyTag structures ([MS-OXCDATA] section 2.9). If a

PropertyTag structure identifies a named property, the PropertyTag is immediately followed by
a GroupPropertyName structure, as specified in section 2.2.2.8.1.1. Named properties are
identified by a PropertyId structure ([MS-OXCDATA] section 2.9) with a value greater than or
equal to 0x8000. The number of PropertyTag structures in this field is specified by the value of the
PropertyTagCount field.

2.2.2.8.1.1 GroupPropertyName Structure

The GroupPropertyName structure defines the named property included in the PropertyGroup
structure, as specified in section 2.2.2.8.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

GUID

...

...

...

Kind

LID (optional)

NameSize (optional)

Name (optional, variable)

...

GUID (16 bytes): The GUID that identifies the property set for the named properties.

Kind (4 bytes): A value that identifies the type of property. The following table lists the possible
values for the Kind field:

Name Value

0x00000000 The property is identified by the LID field.

0x00000001 The property is identified by the Name field.

LID (optional) (4 bytes): A value that identifies the named property within its property set. This

value is present only if the Kind field is set to 0x00000000.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-GLOS%5d.pdf

35 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

NameSize (optional) (4 bytes): A value that specifies the length of the Name field, in bytes. This
value is present only if the Kind field is set to 0x00000001.

Name (optional, variable): A Unicode (UTF-16) string that identifies the property within the
property set. This value is present only if the Kind field is set to 0x00000001. The length of this

field is specified by the value of the NameSize field, in bytes.

2.2.2.9 FolderReplicaInfo Structure

The FolderReplicaInfo structure contains information about server replicas of a public folder.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

Depth

FolderLongTermId

...

...

...

...

...

ServerDNCount

CheapServerDNCount

ServerDNArray (variable)

...

Flags (4 bytes): This value MUST be set to 0x00000000.

Depth (4 bytes): This value MUST be set to 0x00000000.

FolderLongTermId (24 bytes): A LongTermID structure ([MS-OXCDATA] section 2.2.1.3.1) that

identifies the folder for which the server replica information is being described.

ServerDNCount (4 bytes): An unsigned integer value that determines how many elements exist in
the ServerDNArray field. This value MUST NOT be 0x00000000.

CheapServerDNCount (4 bytes): An unsigned integer value that determines how many of the
leading elements in the ServerDNArray field have the same, lowest, network access cost. The

%5bMS-GLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf

36 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

value of the CheapServerDNCount field MUST be less than or equal to value of the
ServerDNCount field.

ServerDNArray (variable): An array of ASCII-encoded NULL-terminated strings. This value
contains an enterprise/site/server distinguished name (ESSDN) of servers that have a replica

(1) of the folder identified by the value of the FolderLongTermId field. The number of
ServerDNCount strings in this field is specified by the ServerDNCount field.

2.2.2.10 ExtendedErrorInfo Structure

The ExtendedErrorInfo structure contains extended and contextual information about an error
that occurred when producing a FastTransfer stream.

For details about how this structure is used in FastTransfer error recovery and reporting of partial

completion of download operations, see section 2.2.4.3.4.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version padding

ErrorCode

FolderGID

...

...

...

...

... padding

MessageGID

...

...

...

...

... padding

Reserved

%5bMS-GLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

37 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

...

...

...

...

...

AuxBytesCount

AuxBytesOffset

Reserved (variable)

...

AuxBytes (variable)

...

Version (2 bytes): An unsigned 16-bit integer that determines the format of the structure. The
format shown in the preceding packet diagram corresponds to version 0x00000000, which is the
only version defined for the protocol.

padding (2 bytes): This value SHOULD be set to 0x0000 and MUST be ignored by clients.

ErrorCode (4 bytes): An error codes from the Data Structures Protocol, as specified in [MS-
OXCDATA] section 2.4, that describes the reason for the failure.

FolderGID (22 bytes): A GID structure ([MS-OXCDATA] section 2.2.1.3) that identifies the folder
that was in context at the time the error occurred. This value MUST be set to zero, if no folders were
in context.

padding (2 bytes): This value SHOULD be set to 0x0000 and MUST be ignored by the clients.

MessageGID (22 bytes): A GID structure that identifies the message that was in context at the
time the error occurred. This value MUST be set to zero, if no messages were in context.

padding (2 bytes): This value SHOULD be set to 0x0000 and MUST be ignored by clients.

Reserved (24 bytes): This value SHOULD be set to 0x0000 and SHOULD be ignored by clients.

AuxBytesCount (4 bytes): An unsigned 32-bit integer value that specifies the size of the

AuxBytes field. If this value is set to 0x00000000, the AuxBytes field is missing.

AuxBytesOffset (4 bytes): An unsigned 32-bit integer value that specifies the offset in bytes of
the Auxbytes field from the beginning of the structure.

Reserved (optional, variable): This value SHOULD be set to zero and SHOULD be ignored by

clients.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

38 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

AuxBytes (optional, variable): A PtypBinary ([MS-OXCDATA] section 2.11.1) value that MUST
be present and located at the offset specified by the value of the AuxBytesOffset field from the

beginning of the structure, if and only if value of the AuxBytesCount field is greater than zero. If
this value is present, it consists of opaque diagnostic information returned from the server and MAY

be logged by the client.

2.2.3 ROPs

FastTransfer and ICS operations are performed by sending a specific set of ROP requests to the
server.

If a ROP name starts with RopSynchronization, it can only be used in ICS operations.

If a ROP name starts with RopFastTransfer, it can be used in FastTransfer operations, and can also

be used ICS operations. For more details, see the following table and the ROP details provided in
section 2.2.3.1 and section 2.2.3.2.

All FastTransfer and ICS operations can be separated into similar steps:

1. Initialization: Configure an operation and assign it a context, which is used to identify this
operation in all subsequent steps.

2. Data transmission: Transmit the messaging object data based on the context configuration.

3. Checkpointing: An optional step in which data that is required for initialization of the next
iteration of this operation is downloaded. For more details about checkpointing, see section
3.3.5.6.

4. Release of resources held on a server: Release the context by using the RopRelease ROP ([MS-
OXCROPS] section 2.2.15.3).

Note that the context in step 1 is not a messaging object, which means that it is not persisted in a
mailbox and its lifetime is limited to the lifetime of the handle that is opened for it.

The following table describes the applicability of ROPs for each step of every FastTransfer or ICS
operation. See the ROP details in section 2.2.3.1 and section 2.2.3.2 for usage directions.

Operat

ion Initialization Data transmission Checkpointing

FastTra
nsfer
downlo
ad

RopFastTransferSourceCopyTo
ROP (section 2.2.3.1.1.1)

RopFastTransferSourceCopyPr
operties ROP (section
2.2.3.1.1.2)

RopFastTransferSourceCopyM
essages ROP (section
2.2.3.1.1.3)

RopFastTransferSourceCopyFo
lder ROP (section 2.2.3.1.1.4)

RopTellVersion ROP (section
2.2.3.1.1.6)

RopFastTransferSourceGetB
uffer ROP (section 2.2.3.1.1.5)

Mailbox data is encoded into a
FastTransfer stream.

Not applicable.

FastTra
nsfer
upload

RopFastTransferDestinationCo
nfigure ROP (section
2.2.3.1.2.1)

RopTellVersion ROP (section

RopFastTransferDestination
PutBuffer ROP (section
2.2.3.1.2.2)

Mailbox data is encoded into a

Not applicable.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

39 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Operat

ion Initialization Data transmission Checkpointing

2.2.3.1.1.6) FastTransfer stream.

ICS
downlo
ad

RopSynchronizationConfigure
ROP (section 2.2.3.2.1.1)

RopSynchronizationUploadSta
teStreamBegin ROP (section
2.2.3.2.2.1)

RopSynchronizationUploadSta
teStreamContinue ROP (section
2.2.3.2.2.2)

RopSynchronizationUploadSta
teStreamEnd ROP (section
2.2.3.2.2.3)

RopFastTransferSourceGetB
uffer ROP (section 2.2.3.1.1.5)

Mailbox data is encoded into a
FastTransfer stream.

RopSynchronizationGet
TransferState ([MS-
OXCROPS] section
2.2.13.8) and the
RopFastTransferSource
GetBuffer ([MS-
OXCROPS] section
2.2.12.3) ROPs MAY<2>
be used

ICS
upload

RopSynchronizationOpenColle
ctor ROP (section 2.2.3.2.4.1)

RopSynchronizationUploadSta
teStreamBegin ROP (section
2.2.3.2.2.1)

RopSynchronizationUploadSta
teStreamContinue ROP (section
2.2.3.2.2.2)

RopSynchronizationUploadSta
teStreamEnd ROP (section
2.2.3.2.2.3)

RopSynchronizationImportM
essageChange ROP (section
2.2.3.2.4.2)

RopSynchronizationImportH
ierarchyChange ROP (section
2.2.3.2.4.3)

RopSynchronizationImportM
essageMove ROP (section
2.2.3.2.4.4)

RopSynchronizationImportD
eletes ROP (section
2.2.3.2.4.5)

RopSynchronizationImportR
eadStateChanges ROP
(section 2.2.3.2.4.6)

ROPs that operate on a
Message object.

RopSynchronizationGet
TransferState ROP
(section 2.2.3.2.3.1)

RopFastTransferSource
GetBuffer ROP (section
2.2.3.1.1.5)

Whenever the applicability of a ROP or protocol details are discussed in this specification, operations
to which an explanation applies are usually referenced by mentioning the type of the context, as
specified in the following table.

Context type Operations it applies to

Download context FastTransfer download, ICS download

FastTransfer context FastTransfer download, FastTransfer upload

FastTransfer download context FastTransfer download

FastTransfer upload context FastTransfer upload

Synchronization context ICS download, ICS upload

Synchronization download context ICS download

Synchronization upload context ICS upload

For details about the relationship between the InputHandleIndex fields defined in this specification
and the InputServerObject fields defined in the Remote Operation (ROP) List and Encoding

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

40 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Protocol, see [MS-OXCROPS] section 3.2.5.1. For details about the relationship between the
OutputHandleIndex fields defined in this specification and the OutputServerObject fields defined

in the ROP List and Encoding Protocol, see [MS-OXCROPS] section 3.2.5.2.

Common values for the ReturnValue field are included in ROP responses are specified in [MS-

OXCDATA] section 2.4.

2.2.3.1 FastTransfer Copy Operations

2.2.3.1.1 Download

2.2.3.1.1.1 RopFastTransferSourceCopyTo ROP

The RopFastTransferSourceCopyTo ROP ([MS-OXCROPS] section 2.2.12.6) initializes a
FastTransfer operation to download content from a given messaging object and its descendant
subobjects.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For details about client behaviors related to this ROP, see sections 3.3.4.1 and section 3.3.4.2.1. For

details about server behaviors related to this ROP, see sections 3.2.5.8.1 and 3.2.5.8.1.1.

2.2.3.1.1.1.1 RopFastTransferSourceCopyTo ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopFastTransferSourceCopyTo ROP ([MS-OXCROPS] section 2.2.12.6).

InputServerObject: The value of this field MUST be either an Attachment object, Message

object, or Folder object.

Level (1 byte): An unsigned 8-bit integer that indicates whether descendant subobjects are copied.

Set to 0x00 to copy descendant subobjects. Set to nonzero to exclude all descendant subobjects
from being copied. A nonzero value can only be passed if the InputServerObject field is a Message
object or Folder object. The Level field MUST be ignored and treated as if it is set to 0x00 if the
InputServerObject field is an Attachment object.

CopyFlags (4 byte): A 32-bit flags structure. This structure defines the parameters of the

FastTransfer download operation.

The following table defines valid flags for the CopyFlags field.

Flag

name Value Description

Move 0x00000001 This flag MUST only be passed if the value of the InputServerObject field is
a Folder object or a Message object.

If this flag is set, the FastTransfer operation is being configured as a logical
part of a larger object move operation, as opposed to a copy operation, and
the client will issue further operations such as deleting the moved messages
from the source.

If this flag is not set, the FastTransfer operation is not being configured as a
logical part of a larger object move operation. For more details, see section
3.2.5.8.1.1.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf

41 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Flag

name Value Description

Unused1 0x00000002 This flag MUST be ignored on receipt.

Unused2 0x00000004 This flag MUST be ignored on receipt.

Unused3 0x00000008 This flag MUST be ignored on receipt.

Unused4 0x00000200 This flag MUST be ignored on receipt.

Unused5 0x00000400 This flag MUST be ignored on receipt.

BestBody 0x00002000 This flag MUST only be passed if the value of the InputServerObject field is
a Message object. For more details, see section 3.2.5.8.1.1. Best body logic
is specified in [MS-OXBBODY].<3>

SendOptions (1 byte): An 8-bit flag structure. This field defines the data representation

parameters of the download operation.

The following table defines valid flags for the SendOptions field.

Flag name Value Description

Unicode 0x01 This flag indicates whether string properties are output in Unicode or in the
code page set on the current connection. For details about the Unicode and
ForceUnicode flags, and relationship between the two, see section
3.2.5.8.1.1.

When used with the RopSynchronizationConfigure ROP (section
2.2.3.2.1.1.1), the value of this flag MUST match the value of the Unicode
flag of the SynchronizationFlags field, as specified in section 2.2.3.2.1.1.1.

UseCpid 0x02 This flag indicates support for code page property types, as specified in section
2.2.4.1.1.1.

This flag MUST be set for server-to-client-to-server uploads only. For more
details about server-to-client-to-server uploads, see section 3.3.4.2.1.

If this flag is set, the Unicode flag MUST also be set.

ForUpload 0x03 This flag is the combination of the Unicode and UseCpid flags.

This flag indicates that the client is requesting the FastTransfer stream for
immediate upload to another destination server.

This flag MUST be set for server-to-client-to-server uploads only. For more
details about server-to-client-to-server uploads, see section 3.3.4.2.1.

The ROP that uses this flag MUST be followed by the RopTellVersion ROP. For
details about how this affects behaviors of servers and clients, see section
3.3.4.2.1.

RecoverMode 0x04 If this flag is set, it indicates that the client supports recovery mode. For more
details about server behavior when this flag is set, see section 3.2.5.8.1.1.

If this flag is not set, it indicates that the client does not support recovery
mode.

This flag MUST NOT be set when the ForUpload flag is set.

ForceUnicode 0x08 This flag indicates whether string properties are output in Unicode. For details
about the Unicode and ForceUnicode flags, and relationship between the
two, see section 3.2.5.8.1.1.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXBBODY%5d.pdf
%5bMS-GLOS%5d.pdf

42 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Flag name Value Description

PartialItem 0x10 This flag MUST only be set for content synchronization download operations.

This flag SHOULD<4> be set if the client supports partial item downloads.

Reserved1 0x20 This flag MUST be set to 0 when sent and MUST be ignored when received.

Reserved2 0x40 This flag MUST be set to 0 when sent and MUST be ignored when received.

PropertyTagCount (2 bytes): An unsigned 16-bit integer. This value specifies the number of
structures in the PropertyTags field. If the value of the PropertyTagCount field is set to 0x0000,
the PropertyTags field contains an empty array.

PropertyTags (variable): An array of PropertyTag structures ([MS-OXCDATA] section 2.9).

Specifies properties and subobjects, as specified in section 2.2.1.7, to be excluded when copying a
messaging object pointed to by the InputServerObject field. This field does not determine what
properties and subobjects the server copies for descendant subobjects of the InputServerObject

field. For more details about the effect of property and subobject filters on download operations, see
section 3.2.5.10.

Remarks:

If, for example, the InputServerObject field contains a folder that was opened to show soft

deleted messages (such as the Deleted Items folder), the scope of an operation that this ROP
initiates only includes soft deleted messages. Otherwise, only normal, nondeleted messages are
included. This applies to all valid values of the Level field.

2.2.3.1.1.1.2 RopFastTransferSourceCopyTo ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopFastTransferSourceCopyTo ROP ([MS-OXCROPS] section 2.2.12.6).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution

status.

OutputServerObject: The value of this field MUST be the FastTransfer download context. This
value MUST be present if and only if the value of the ReturnValue field equals Success
(0x00000000).

2.2.3.1.1.2 RopFastTransferSourceCopyProperties ROP

The RopFastTransferSourceCopyProperties ROP ([MS-OXCROPS] section 2.2.12.7) initializes a
FastTransfer operation to download content from a specified messaging object and its descendant
subobjects.

This ROP is very similar to the RopFastTransferSourceCopyTo ROP (section 2.2.3.1.1.1), with the
following exceptions:

The PropertyTags field specifies a list of properties and subobjects to include, as opposed to

exclude.

Best body logic, as indicated by the BestBody flag of the CopyFlag field specified in section

2.2.3.1.1.1.1, SHOULD NOT be used when copying messages.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

43 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully

specified in [MS-OXCROPS].

For details about client behaviors related to this ROP, see sections 3.3.4.1 and 3.3.4.2.1. For details

about server behaviors related to this ROP, see sections 3.2.5.8.1 and 3.2.5.8.1.2.

2.2.3.1.1.2.1 RopFastTransferSourceCopyProperties ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopFastTransferSourceCopyProperties ROP ([MS-OXCROPS] section 2.2.12.7).

InputServerObject: This value of this field MUST be either an Attachment object, Message object,
or Folder object.

Level (1 byte): An unsigned 8-bit integer. This value MUST be set to 0x00 to copy descendant
subobjects by using the property list specified by the PropertyTags field. This value MUST be set to
a nonzero value to exclude all descendant subobjects from being copied. A nonzero value can only

be passed when the value of the InputServerObject field is a Message object or Folder object. The
value of the Level field MUST be ignored and treated as if it is set to 0x00 if the value of the
InputServerObject field is an Attachment object.

CopyFlags (1 byte): An 8-bit flag structure. This field defines the parameters of the FastTransfer
download operation.

The following table defines valid flags for the CopyFlags field.

Flag

name Value Description

Move 0x01 This flag MUST only be set if the InputServerObject field is a Folder object or a
Message object.

If this flag is set, the FastTransfer operation is being configured as a logical part of
a larger object move operation, as opposed to a copy operation, and the client will
issue further operations such as deleting the moved messages from the source.

If this flag is not set, the FastTransfer operation is not being configured as a logical
part of a larger object move operation.

Unused1 0x02 This flag MUST be ignored on receipt.

Unused2 0x04 This flag MUST be ignored on receipt.

Unused3 0x08 This flag MUST be ignored on receipt.

SendOptions (1 byte): An 8-bit flag structure. The possible values for this structure are defined in
section 2.2.3.1.1.1.1.

PropertyTagCount (2 bytes): An unsigned 16-bit integer. This value specifies the number of
structures in the PropertyTags field. This value MUST NOT be set to 0x0000.

PropertyTags (variable): An array of PropertyTag structures ([MS-OXCDATA] section 2.9). This
array specifies the properties and subobjects, as specified in section 2.2.1.7, to copy from the

messaging object pointed to by the InputServerObject field. Note that this field MUST NOT be
considered when determining what properties and subobjects to copy for descendant subobjects of
the InputServerObject field. For more details about the effect of property and subobject filters on
download operations, see section 3.2.5.10.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf

44 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.3.1.1.2.2 RopFastTransferSourceCopyProperties ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopFastTransferSourceCopyProperties ROP ([MS-OXCROPS] section 2.2.12.7).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution
status.

OutputServerObject: The value of this field MUST be the FastTransfer download context. This
value MUST be present if and only if the value of the ReturnValue field equals Success
(0x00000000).

2.2.3.1.1.3 RopFastTransferSourceCopyMessages ROP

The RopFastTransferSourceCopyMessages ROP ([MS-OXCROPS] section 2.2.12.5) initializes a
FastTransfer operation on a folder for downloading content and descendant subobjects of messages
identified by a set of MID structures ([MS-OXCDATA] section 2.2.1.2).

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.1 and section
3.3.4.2.1. For more details about server behaviors related to this ROP, see sections 3.2.5.8.1 and
3.2.5.8.1.3.

2.2.3.1.1.3.1 RopFastTransferSourceCopyMessages ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopFastTransferSourceCopyMessages ROP ([MS-OXCROPS] section 2.2.12.5).

InputServerObject: The value of this field MUST be a Folder object.

MessageIdCount (2 bytes): An unsigned 16-bit integer. This value specifies the number of

identifiers in the MessageIds field. The value of this field MUST be greater than zero.

MessageIds (variable): An array of 64-bit identifiers. This list specifies the MID structures ([MS-
OXCDATA] section 2.2.1.2) of the messages to be copied. Messages MUST be contained by a folder
identified by the InputServerObject field.

CopyFlags (1 byte): An 8-bit flag structure. This field defines the parameters of the FastTransfer

download operation.

The following table defines valid bit flags for the CopyFlags field.

Flag name Value Description

Move 0x01 This bit flag MUST only be set if the value of the InputServerObject field is a
Folder object.

If this bit flag is set, the FastTransfer operation is being configured as a logical
part of a larger object move operation, as opposed to a copy operation, and the
client will issue further operations such as deleting the moved messages from
the source.

If this bit flag is not set, the FastTransfer operation is not being configured as a
logical part of a larger object move operation. For more details, see section
3.2.5.8.1.3.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

45 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Flag name Value Description

Unused1 0x02 This bit flag MUST be ignored on receipt.

Unused2 0x04 This bit flag MUST be ignored on receipt.

Unused3 0x08 The client MUST NOT set this flag.

BestBody 0x10 This bit flag MAY<5> identify whether the output message body (2) is in the
original format or compressed RTF format. For more details, see section
3.2.5.8.1.3.

SendEntryId 0x20 This bit flag indicates whether message change information is included in the
FastTransfer stream.

If this bit flag is set, the PidTagSourceKey (section 2.2.1.2.5),
PidTagChangeKey (section 2.2.1.2.7), PidTagLastModificationTime ([MS-
OXCMSG] section 2.2.2.2) and PidTagPredecessorChangeList (section
2.2.1.2.8) properties are included in the FastTransfer stream. In addition, the

value of the PidTagEntryId property ([MS-OXCPERM] section 2.2.4) is
assigned to the PidTagOriginalEntryId property (section 2.2.1.2.9).

If this bit flag is not set, the PidTagSourceKey, PidTagChangeKey,
PidTagLastModificationTime, PidTagPredecessorChangeList, and
PidTagOriginalEntryId properties are not included in the FastTransfer stream.

For more details, see section 3.2.5.8.1.3.

SendOptions (1 byte): An 8-bit flag structure. The possible values for this structure are defined in
section 2.2.3.1.1.1.1.

2.2.3.1.1.3.2 RopFastTransferSourceCopyMessages ROP Response Buffer

The following descriptions define valid fields for the response buffer of the

RopFastTransferSourceCopyMessages ROP ([MS-OXCROPS] section 2.2.12.5).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution

status.

OutputServerObject: The value of this field MUST be the FastTransfer download context. This
value MUST be present if and only if the value of the ReturnValue field equals Success
(0x00000000).

2.2.3.1.1.4 RopFastTransferSourceCopyFolder ROP

The RopFastTransferSourceCopyFolder ROP ([MS-OXCROPS] section 2.2.12.4) initializes a
FastTransfer operation to download properties and descendant subobjects for a specified folder.

This ROP is very similar to RopFastTransferSourceCopyTo, with the following exceptions:

The value of the InputServerObject field is limited to a Folder object.

The FastTransfer stream produced by an operation configured with this ROP wraps folder

properties and subobjects with the topFolder element (as specified in section 2.2.4.4).

All properties and contained messages are copied.

The CopySubfolders flag of the CopyFlag field indicates whether subfolders are to be copied.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCPERM%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

46 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Best body logic, as indicated by the BestBody flag of the CopyFlag field specified in section

2.2.3.1.1.1.1, SHOULD NOT be used when copying messages.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-

OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For details about client behaviors related to this ROP, see sections 3.3.4.1 and section 3.3.4.2.1. For
details about server behaviors related to this ROP, see sections 3.2.5.8.1 and 3.2.5.8.1.4.

2.2.3.1.1.4.1 RopFastTransferSourceCopyFolder ROP Request Buffer

The following descriptions define valid fields for the request buffer of the

RopFastTransferSourceCopyFolder ROP ([MS-OXCROPS] section 2.2.12.4).

InputServerObject: The value of this field MUST be a Folder object.

CopyFlags (1 byte): An 8-bit flag structure. This field defines the parameters of the FastTransfer

download operation.

The following table defines valid flags for the CopyFlags field.

Flag name Value Description

Move 0x01 This flag SHOULD<6> be ignored on receipt, or MAY<7> be set on a
download operation to indicate the following:

The FastTransfer operation is being configured as a logical part of a larger
object move operation, as opposed to a copy operation, and the client will
issue further operations such as deleting the moved messages from the
source.

The server does not output any objects in a FastTransfer stream that the
client does not have permissions to delete.

When the Move flag is not ignored, if the Move flag is not set, the
FastTransfer operation is not being configured as a logical part of a larger
object move operation.

Unused1 0x02 The client MUST NOT set this flag.

Unused2 0x04 The client MUST NOT set this flag.

Unused3 0x08 The client MUST NOT set this flag.

CopySubfolders 0x10 This flag identifies whether the subfolders of the folder specified in the
InputServerObject field are recursively included in the scope. For more
details, see section 3.2.5.8.1.4.

SendOptions (1 byte): An 8-bit flag structure. The possible values for this structure are defined in
section 2.2.3.1.1.1.1.

2.2.3.1.1.4.2 RopFastTransferSourceCopyFolder ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopFastTransferSourceCopyFolder ROP ([MS-OXCROPS] section 2.2.12.4).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution
status.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

47 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

OutputServerObject: The value of this field MUST be the FastTransfer download context. This
value MUST be present if and only if the value of the ReturnValue field equals Success

(0x00000000).

2.2.3.1.1.5 RopFastTransferSourceGetBuffer ROP

The RopFastTransferSourceGetBuffer ROP ([MS-OXCROPS] section 2.2.12.3) downloads the
next portion of a FastTransfer stream that is produced by a previously configured download
operation.

The RopFastTransferSourceGetBuffer ROP supports packed buffers, as specified in [MS-OXCRPC]
section 3.1.4.2.1.2.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-

OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.1 and 3.3.5.7.1. For

more details about server behaviors related to this ROP, see sections 3.2.5.8.1 and 3.2.5.8.1.5.

2.2.3.1.1.5.1 RopFastTransferSourceGetBuffer ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopFastTransferSourceGetBuffer ROP ([MS-OXCROPS] section 2.2.12.3).

InputServerObject: The value of this field MUST be the download context.

BufferSize (2 bytes): An unsigned 16-bit integer. This field specifies the maximum amount of data
(in bytes) to be output in by the TransferBuffer field. For more details, see sections 3.3.5.7.1 and
3.2.5.8.1.5.

MaximumBufferSize (2 bytes, optional): An unsigned 16-bit integer that specifies the maximum

size limit when the server determines the buffer size. This value MUST be present if and only if the
value of the BufferSize field is set to a sentinel value of 0xBABE.

2.2.3.1.1.5.2 RopFastTransferSourceGetBuffer ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopFastTransferSourceGetBuffer ROP ([MS-OXCROPS] section 2.2.12.3).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution

status. For more details, see sections 3.3.5.7.1 and 3.2.5.8.1.5.

TransferStatus (2 bytes): A 16-bit enumeration. This field represents the status of the download
operation after producing data for the TransferBuffer field.

The following table defines valid values for the TransferStatus field.

Value Bit Description

Error 0x0000 The download stopped because a nonrecoverable error has occurred when
producing a FastTransfer stream. The ReturnValue field of the ROP response
buffer contains a code for that error.

Partial 0x0001 The FastTransfer stream was split, and more data is available. TransferBuffer

contains incomplete data. For details about where to split FastTransfer streams,

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

48 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Value Bit Description

see section 2.2.4.1.

NoRoom 0x0002 The FastTransfer stream was split, more data is available, and the value of the
TransferBuffer field contains incomplete data. The server MAY<8> set this value.

Done 0x0003 This was the last portion of the FastTransfer stream.

InProgressCount (2 bytes): An unsigned 16-bit integer. The number of steps that have already
been completed in the current operation. This value is only usable for progress information display.

TotalStepCount (2 bytes): An unsigned 16-bit integer that contains the approximate total number
of steps to be completed in the current operation. This value MAY<9> contain accurate information

and is only usable for progress information display.

Reserved (1 byte): The value of this field MUST be set to 0x00 when sending and ignored on
receipt.

TransferBufferSize (2 bytes): An unsigned 16-bit integer. This value specifies the size of the
TransferBuffer field.

TransferBuffer (variable, optional): An array of bytes that contains the next portion of a
FastTransfer stream. The syntax of the FastTransfer stream is specified in section 2.2.4. This field

SHOULD only exist if the value of the ReturnValue field is Success (0x00000000).

BackoffTime (4 bytes, optional): An unsigned 32-bit integer that contains the time, in
milliseconds, that a client waits before retrying the ROP. This field MUST be present if and only if the
value of the ReturnValue field is 0x00000480, as specified in [MS-OXCDATA] section 2.4.

2.2.3.1.1.6 RopTellVersion ROP

The RopTellVersion ROP ([MS-OXCROPS] section 2.2.12.8) is used to provide the version of one

server to another server that is participating in the server-to-client-to-server upload, as specified in

section 3.3.4.2.1.

For more details about client behaviors related to this ROP, see sections 3.3.4.1 and 3.3.5.7.2. For
more details about server behaviors related to this ROP, see sections 3.2.5.8.1 and 3.2.5.8.1.6.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

2.2.3.1.1.6.1 RopTellVersion ROP Request Buffer

The following descriptions define valid fields for the request buffer of the RopTellVersion ROP
([MS-OXCROPS] section 2.2.12.8).

Version (6 bytes): An array of three unsigned 16-bit integers. This array contains the version
information for another server that is participating in the server-to-client-to-server upload. The

format of this structure is the same as that specified in [MS-OXCRPC] section 3.1.4.1.3.1.

2.2.3.1.1.6.2 RopTellVersion ROP Response Buffer

The following descriptions define valid fields for the response buffer of the RopTellVersion ROP
([MS-OXCROPS] section 2.2.12.8).

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCROPS%5d.pdf

49 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution
status.

2.2.3.1.2 Upload

2.2.3.1.2.1 RopFastTransferDestinationConfigure ROP

The RopFastTransferDestinationConfigure ROP ([MS-OXCROPS] section 2.2.12.1) initializes a
FastTransfer operation for uploading content encoded in a client-provided FastTransfer stream into a
mailbox.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully

specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.2 and section
3.3.4.2.1. For more details about server behaviors related to this ROP, see section 3.2.5.8.2.1.

2.2.3.1.2.1.1 RopFastTransferDestinationConfigure ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopFastTransferDestinationConfigure ROP ([MS-OXCROPS] section 2.2.12.1).

InputServerObject: The value of this field MUST be either an Attachment object, Message object,
or Folder object.

SourceOperation (1 byte): An 8-bit enumeration. This enumeration is used to specify the type of
data in a FastTransfer stream that is uploaded by using the
RopFastTransferDestinationPutBuffer ROP (section 2.2.3.1.2.2) on the FastTransfer upload
context that is returned in the OutputServerObject field.

The following table defines the SourceOperation enumeration values and the associated root
elements in the FastTransfer stream.

SourceOperation

enumeration value

Root element in

FastTransfer stream Conditions

CopyTo

CopyProperties

folderContent element The value of the InputServerObject field
is a Folder object.

 messageContent element The value of the InputServerObject field
is a Message object.

 attachmentContent
element

The value of the InputServerObject field
is an Attachment object.

CopyMessages messageList element Always.

CopyFolder topFolder element Always.

The following table defines the SourceOperation ordinal values.

SourceOperation

enumeration value

Ordinal

value Corresponding ROP of the FastTransfer download*

CopyTo 0x01 RopFastTransferSourceCopyTo ROP (section

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

50 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

SourceOperation

enumeration value

Ordinal

value Corresponding ROP of the FastTransfer download*

2.2.3.1.1.1)

CopyProperties 0x02 RopFastTransferSourceCopyProperties ROP (section
2.2.3.1.1.2)

CopyMessages 0x03 RopFastTransferSourceCopyMessages ROP (section
2.2.3.1.1.3)

CopyFolder 0x04 RopFastTransferSourceCopyFolder ROP (section
2.2.3.1.1.4)

*If the FastTransfer stream to be uploaded was produced by a FastTransfer download operation, the
value of the SourceOperation field MUST correspond to the RopFastTransferSourceCopy* ROP
that was used to configure the download operation.

CopyFlags (1 byte): An 8-bit flag structure. This field defines the parameters of the FastTransfer
upload operation.

The following table defines valid flags for the CopyFlags field.

Flag

name Value Description

Move 0x01 This flag MUST only be set if the value of the InputServerObject field is a Folder
object or Message object.

If this flag is set, the FastTransfer operation is being configured as a logical part of a
larger object move operation, as opposed to a copy operation, and the client will issue
further operations such as deleting the moved messages from the source.

If this flag is not set, the FastTransfer operation is not being configured as a logical
part of a larger object move operation.

2.2.3.1.2.1.2 RopFastTransferDestinationConfigure ROP Response Buffer

The following descriptions define valid fields for the response buffer of the

RopFastTransferDestinationConfigure ROP ([MS-OXCROPS] section 2.2.12.1).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution
status.

OutputServerObject: The value of this field MUST be the FastTransfer upload context. This field
MUST be present if and only if the value of the ReturnValue field equals Success (0x00000000).

2.2.3.1.2.2 RopFastTransferDestinationPutBuffer ROP

The RopFastTransferDestinationPutBuffer ROP ([MS-OXCROPS] section 2.2.12.2) uploads the
next portion of an input FastTransfer stream for a previously configured FastTransfer upload

operation.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

51 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.3.1.2.2.1 RopFastTransferDestinationPutBuffer ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopFastTransferDestinationPutBuffer ROP ([MS-OXCROPS] section 2.2.12.2).

InputServerObject: The value of this field MUST be the FastTransfer upload context.

TransferDataSize (2 bytes): An unsigned 16-bit integer. This value specifies the size of the
TransferData field. The value MUST NOT be set to 0x0000. The maximum data size is limited to
the available space allowed by the underlying transport used by the EcDoRpcExt2 method ([MS-
OXCRPC] section 3.1.4.2) or by the Execute request type<10> ([MS-OXCMAPIHTTP] section
2.2.4.2).

TransferData (variable): An array of bytes. This array contains the data to be uploaded to the

destination FastTransfer object and contains the next portion of a FastTransfer stream. The syntax
of the FastTransfer stream is specified in section 2.2.4.

2.2.3.1.2.2.2 RopFastTransferDestinationPutBuffer ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopFastTransferDestinationPutBuffer ROP ([MS-OXCROPS] section 2.2.12.2).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution
status.

TransferStatus (2 bytes): A 16-bit enumeration. Clients MUST ignore the value of this field.

InProgressCount (2 bytes): An unsigned 16-bit integer. This value specifies the number of steps
that have been completed in the current operation. The server SHOULD set this field to 0x0000. This
field is usable only for progress information display.

TotalStepCount (2 bytes): An unsigned 16-bit integer. This field contains the approximate total

number of steps to be completed in the current operation. This field is used only to display progress
information. However, the value is implementation-specific<11> and not required for

interoperability.

Reserved (1 byte): The field MUST be set to 0x00 when sending, and MUST be ignored on receipt.

BufferUsedSize (2 bytes): An unsigned 16-bit integer. The value SHOULD<12> be the same size
as the value of TransferDataSize field if the value of the ReturnValue field is equal to Success
(0x00000000), otherwise it can be equal to or less than the value of the TransferDataSize field on

failure when the value of the ReturnValue field is not equal to Success (0x00000000).

2.2.3.2 Incremental Change Synchronization

2.2.3.2.1 Download

2.2.3.2.1.1 RopSynchronizationConfigure ROP

The RopSynchronizationConfigure ROP ([MS-OXCROPS] section 2.2.13.1) is used to define the
synchronization scope and parameters of the synchronization download operation.

The synchronization scope determines the boundaries of a synchronization operation, and is defined
by the following:

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

52 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

The type of objects considered for synchronization (folders for hierarchy synchronization

operations, and messages for content synchronization operations).

The folder that contains these objects as children (contents) or descendants (hierarchy).

The restriction on messages within that folder (contents).

For more details about determining the synchronization scope, see section 3.3.5.5.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.3.2 and 3.3.5.8.1. For

more details about server behaviors related to this ROP, see section 3.2.5.9.1.1.

2.2.3.2.1.1.1 RopSynchronizationConfigure ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopSynchronizationConfigure ROP ([MS-OXCROPS] section 2.2.13.1).

InputServerObject: The value of this field MUST be a Folder object that contributes to the
synchronization scope.

SynchronizationType (1 byte): An 8-bit enumeration that defines the type of synchronization
requested: contents or hierarchy. This field contributes to the synchronization scope.

The following table defines valid values for the SynchronizationType field.

Value Bit Description

Contents 0x01 Indicates a content synchronization operation.

Hierarchy 0x02 Indicates a hierarchy synchronization operation.

SendOptions (1 byte): An 8-bit enumeration that identifies options for sending the data. For
details about the possible values for this enumeration, see section 2.2.3.1.1.1.1.

SynchronizationFlags (2 bytes): A 16-bit flag structure that defines the parameters of the
synchronization operation.

The following table defines valid flags for the SynchronizationFlags field.

Flag name Value Description

Unicode 0x0001 Indicates whether the client supports Unicode. For more details,
see section 3.2.5.9.1.1.

This flag MUST match the value of the Unicode flag from the
SendOptions field.

NoDeletions 0x0002 Indicates how the server downloads information about item
deletions. For more details, see section 3.2.5.9.1.1.

The client MAY implement this flag.

IgnoreNoLongerInScope 0x0004 Indicates whether the server downloads information about
messages that went out of scope. For more details, see section
3.2.5.9.1.1.

%5bMS-OXCROPS%5d.pdf

53 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Flag name Value Description

This flag MUST only be set for a content synchronization
download operation.

The client MAY implement this flag.

ReadState 0x0008 Indicates whether the server downloads information about
changes to the read state of messages. For more details, see
section 3.2.5.9.1.1.

This flag MUST only be set for a content synchronization
download operation.

FAI 0x0010 Indicates whether the server downloads information about
changes to FAI messages. For more details, see section
3.2.5.9.1.1.

This flag MUST only be set for a content synchronization
download operation.

Normal 0x0020 Indicates whether the server downloads information about
changes to normal messages. For more details, see section
3.2.5.9.1.1.

This flag MUST only be passed for a content synchronization
download operation.

OnlySpecifiedProperties 0x0080 Indicates whether the server limits or excludes properties and
subobjects output to the properties listed in PropertyTags. For
more details, see section 3.2.5.9.1.1.

This flag MUST only be passed for a content synchronization
download operation.

NoForeignIdentifiers 0x0100 Identifies whether the server ignores any persisted values for the
PidTagSourceKey property (section 2.2.1.2.5) and
PidTagParentSourceKey property (section 2.2.1.2.6) when
producing output for folder and message changes. For more
details, see section 3.2.5.9.1.1.

Clients SHOULD set this flag. For more details about possible
issues if this flag is not set, see section 3.3.5.2.3.

Reserved 0x1000 This flag MUST be set to 0 when sending.

BestBody 0x2000 Identifies whether the server outputs message bodies (2) in their
original format or in RTF.<13> For more details, see section
3.2.5.9.1.1.

This flag MUST only be passed a content synchronization
download operation.

IgnoreSpecifiedOnFAI 0x4000 Indicates whether the server outputs properties and subobjects
of FAI messages. For more details, see section 3.2.5.9.1.1.

This flag MUST only be passed for a content synchronization
download operation.

Progress 0x8000 Indicates whether the server injects progress information into the
output FastTransfer stream. For more details, see section
3.2.5.9.1.1.

This flag MUST only be passed for a content synchronization
download operation.

This flag is in addition to the means of progress reporting
available through the RopFastTransferSourceGetBuffer ROP

54 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Flag name Value Description

results.

RestrictionDataSize (2 bytes): An unsigned 16-bit integer that specifies the length of the
RestrictionData field. This value MUST be set to 0x0000 if the SynchronizationType field is set
to Hierarchy ("0x02").

RestrictionData (variable): The variable-length restriction structure that is used to limit the data
to be synchronized. This value contributes to the synchronization scope. This field is used in content
synchronization operations only. This field is not applicable if the value of the
SynchronizationType field is set to Hierarchy (0x02) as the RestrictionDataSize field MUST be
set to 0x0000. For more details about restrictions, see [MS-OXCDATA] section 2.12.

SynchronizationExtraFlags (4 bytes): A 32-bit flag structure that defines additional parameters

of the synchronization operation.

The following table defines valid bit flags for the SynchronizationExtraFlags field.

Flag name Value Description

Eid 0x00000001 Indicates whether the server includes the PidTagFolderId
(section 2.2.1.2.2) or PidTagMid (section 2.2.1.2.1) properties
in the folder change or message change header. For more
details, see section 3.2.5.9.1.1.

MessageSize 0x00000002 Indicates whether the server includes the PidTagMessageSize
property (section 2.2.1.6) in the message change header. For
more details, see section 3.2.5.9.1.1.

This flag MUST only be set for a content synchronization
download operation.

CN 0x00000004 Indicates whether the server includes the
PidTagChangeNumber property (section 2.2.1.2.3) in the
message change header. For more details, see section
3.2.5.9.1.1.

This flag MUST only be set for a content synchronization
download operation.

OrderByDeliveryTime 0x00000008 Indicates whether the server sorts messages by their delivery
time. For more details, see section 3.2.5.9.1.1.

This flag MUST only be set for a content synchronization
download operation.

PropertyTagCount (2 bytes): An unsigned 16-bit integer that specifies the number of

PropertyTag structures in the value of the PropertyTags field. The value of the
PropertyTagCount field is set to 0x0000 if the value of the PropertyTags field is an empty array.

PropertyTags (variable): An array of PropertyTag structures that contains property tags for
regular properties and properties that denote message subobjects, as specified in section 2.2.1.7, to

exclude or include in the synchronization scope. The behavior of this field is dependent on the
OnlySpecifiedProperties flag of the SynchronizationFlags field.

For more details about this field, see section 3.2.5.9.1.1.

%5bMS-OXCDATA%5d.pdf

55 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.3.2.1.1.2 RopSynchronizationConfigure ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopSynchronizationConfigure ROP ([MS-OXCROPS] section 2.2.13.1).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the status of the ROP
execution.

OutputServerObject: This value MUST be the synchronization download context. This value MUST
be present if and only if ReturnValue is Success (0x00000000).

2.2.3.2.2 Upload State

2.2.3.2.2.1 RopSynchronizationUploadStateStreamBegin ROP

The RopSynchronizationUploadStateStreamBegin ROP ([MS-OXCROPS] section 2.2.13.9)
initiates the upload of an ICS state property into the synchronization context.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.3.1 and 3.3.5.8.2. For

more details about server behaviors related to this ROP, see section 3.2.5.9.2.1.

2.2.3.2.2.1.1 RopSynchronizationUploadStateStreamBegin ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopSynchronizationUploadStateStreamBegin ROP ([MS-OXCROPS] section 2.2.13.9).

InputServerObject: The value of this field MUST be a synchronization context.

StateProperty (4 bytes): A 32-bit PropertyTag structure. Valid input is restricted to the property

tags of the ICS state properties: MetaTagIdsetGiven (section 2.2.1.1.1), MetaTagCnsetSeen
(section 2.2.1.1.2), MetaTagCnsetSeenFAI (section 2.2.1.1.3), and MetaTagCnsetRead (section
2.2.1.1.4).

TransferBufferSize (4 bytes): An unsigned 32-bit integer. This value specifies the size of the
stream to be uploaded by the RopSynchronizationUploadStateStreamContinue ROP.

2.2.3.2.2.1.2 RopSynchronizationUploadStateStreamBegin ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopSynchronizationUploadStateStreamBegin ROP ([MS-OXCROPS] section 2.2.13.9).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution
status.

2.2.3.2.2.2 RopSynchronizationUploadStateStreamContinue ROP

The RopSynchronizationUploadStateStreamContinue ROP ([MS-OXCROPS] section 2.2.13.10)
continues to upload an ICS state property value into the synchronization context.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

56 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

For more details about client behaviors related to this ROP, see sections 3.3.4.3.1 and 3.3.5.8.3. For
more details about server behaviors related to this ROP, see section 3.2.5.9.2.2.

2.2.3.2.2.2.1 RopSynchronizationUploadStateStreamContinue ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopSynchronizationUploadStateStreamContinue ROP ([MS-OXCROPS] section 2.2.13.10).

InputServerObject: The value of this field MUST be a synchronization context.

StreamDataSize (4 bytes): An unsigned 32-bit integer. This value specifies the size of the
StreamData field. The value of this field MUST NOT be set to 0x00000000.

StreamData (variable): This array contains the state stream data to be uploaded.

2.2.3.2.2.2.2 RopSynchronizationUploadStateStreamContinue ROP Response

Buffer

The following descriptions define valid fields for the response buffer of the
RopSynchronizationUploadStateStreamContinue ROP ([MS-OXCROPS] section 2.2.13.10).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution
status.

2.2.3.2.2.3 RopSynchronizationUploadStateStreamEnd ROP

The RopSynchronizationUploadStateStreamEnd ROP ([MS-OXCROPS] section 2.2.13.11)
concludes the upload of an ICS state property value into the synchronization context.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully

specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.3.1 and 3.3.5.8.4. For
more details about server behaviors related to this ROP, see section 3.2.5.9.2.3.

2.2.3.2.2.3.1 RopSynchronizationUploadStateStreamEnd ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopSynchronizationUploadStateStreamEnd ROP ([MS-OXCROPS] section 2.2.13.11).

InputServerObject: The value of this field MUST be a synchronization context.

2.2.3.2.2.3.2 RopSynchronizationUploadStateStreamEnd ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopSynchronizationUploadStateStreamEnd ROP ([MS-OXCROPS] section 2.2.13.11).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution

status.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

57 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.3.2.3 Download State

2.2.3.2.3.1 RopSynchronizationGetTransferState ROP

The RopSynchronizationGetTransferState ROP ([MS-OXCROPS] section 2.2.13.8) creates a
FastTransfer download context for the checkpoint ICS state of the operation identified by the
given synchronization download context or synchronization upload context at the current moment in
time.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.3.4 and 3.3.5.8.5. For
more details about server behaviors related to this ROP, see section 3.2.5.9.3.1.

2.2.3.2.3.1.1 RopSynchronizationGetTransferState ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopSynchronizationGetTransferState ([MS-OXCROPS] section 2.2.13.8).

InputServerObject: The value of this field MUST be either a synchronization download context or

synchronization upload context.

2.2.3.2.3.1.2 RopSynchronizationGetTransferState ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopSynchronizationGetTransferState ([MS-OXCROPS] section 2.2.13.8).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution

status.

OutputServerObject: The value of this field MUST be the FastTransfer download context for the

ICS state. This value MUST be present if and only if the value of the ReturnValue field equals
Success (0x00000000).

2.2.3.2.4 Upload

2.2.3.2.4.1 RopSynchronizationOpenCollector ROP

The RopSynchronizationOpenCollector ROP ([MS-OXCROPS] section 2.2.13.7) configures the
synchronization upload operation and returns a handle to a synchronization upload context.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.3.3 and 3.3.5.8.6. For

more details about server behaviors related to this ROP, see section 3.2.5.9.4.1.

2.2.3.2.4.1.1 RopSynchronizationOpenCollector ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopSynchronizationOpenCollector ROP ([MS-OXCROPS] section 2.2.13.7).

%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

58 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

InputServerObject: The value of this field MUST be a Folder object that contributed to the
synchronization scope that corresponds to the initial ICS state to be uploaded, as specified in section

3.3.5.5.

IsContentsCollector (1 byte): An 8-bit PtypBoolean ([MS-OXCDATA] section 2.11.1) value. This

value is 0x01 (nonzero) if a synchronization upload is requested for contents of folders, or 0x00 if a
synchronization upload is requested for the hierarchy of the folder contents.

2.2.3.2.4.1.2 RopSynchronizationOpenCollector ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopSynchronizationOpenCollector ROP ([MS-OXCROPS] section 2.2.13.7).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution

status.

OutputServerObject: The value of this field MUST be the synchronization upload context. This
value MUST be present if and only if the value of the ReturnValue field equals Success

(0x00000000).

2.2.3.2.4.2 RopSynchronizationImportMessageChange ROP

The RopSynchronizationImportMessageChange ROP ([MS-OXCROPS] section 2.2.13.2) is used
to import new messages or changes to existing messages into the server replica. When there are
changes to existing messages, the entire changed message MUST be uploaded.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.3.3 and 3.3.5.8.7. For

more details about server behaviors related to this ROP, see section 3.2.5.9.4.2.

2.2.3.2.4.2.1 RopSynchronizationImportMessageChange ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopSynchronizationImportMessageChange ROP ([MS-OXCROPS] section 2.2.13.2).

InputServerObject: The value of this field MUST be the synchronization upload context configured
for the collection of changes to content.

ImportFlag (1 byte): An 8-bit flag structure that defines the parameters of the import operation.

The following table defines valid flags for the ImportFlag field.

Flag name Value Description

Associated 0x10 If this flag is set, the message being imported is an FAI message.

If this flag is not set, the message being imported is a normal message.

FailOnConflict 0x40 The server SHOULD<14> support this flag.

If this flag is set, the server accepts conflicting versions of a particular
message.

If this flag is not set, the server does not accept conflicting versions of a
particular message.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

59 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Flag name Value Description

For more details, see section 3.2.5.9.4.2.

PropertyValueCount (2 bytes): An unsigned 16-bit integer. This value specifies the number of
structures in the PropertyValues field. This value MUST NOT be set to 0x0000.

PropertyValues (variable): An array of TaggedPropertyValue structures ([MS-OXCDATA]

section 2.11.4). These values are used to specify extra properties on the message; these are
properties that cannot be set by using the RopSetProperties ROP.

The following table lists the restrictions that exist for properties passed in the PropertyValues field.

Property Restrictions Comments

PidTagSourceKey (section 2.2.1.2.5) Required

Fixed
position

A GID structure ([MS-OXCDATA] section
2.2.1.3) that identifies the message being
uploaded in the local replica.

PidTagLastModificationTime ([MS-
OXPROPS] section 2.753)

Required

Fixed
position

None.

PidTagChangeKey (section 2.2.1.2.7) Required

Fixed
position

An XID structure, as specified in section
2.2.2.2, that identifies a change to a message
being uploaded in a local replica. For details
about how clients can generate this value, see
section 3.1.5.3.

PidTagPredecessorChangeList
(section 2.2.1.2.8)

Required

Fixed
position

None.

< other properties > Prohibited None.

2.2.3.2.4.2.2 RopSynchronizationImportMessageChange ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopSynchronizationImportMessageChange ROP ([MS-OXCROPS] section 2.2.13.2).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution

status. For details about the common return values for RopSynchronizationImport* ROPs that
require special processing, see section 3.3.4.3.3. The following table contains one additional return
value.

Return value

name Value Description

SyncConflict 0x80040802 A conflict has occurred and conflict resolution failed. No data was
imported.

OutputServerObject: The value of this field MUST be the Message object into which the client will
upload the rest of the message changes. This value MUST be present if and only if ReturnValue
equals Success (0x00000000).

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

60 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

MessageId (8 bytes): A 64-bit identifier that specifies the MID structure ([MS-OXCDATA] section
2.2.1.2) of the message that was imported. This value MUST be set to 0x0000000000000000. This

value MUST be present if and only if ReturnValue equals Success (0x00000000).

2.2.3.2.4.3 RopSynchronizationImportHierarchyChange ROP

The RopSynchronizationImportHierarchyChange ROP ([MS-OXCROPS] section 2.2.13.4) is used
to import new folders, or changes to existing folders, into the server replica.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.3.3 and 3.3.5.8.8. For

more details about server behaviors related to this ROP, see section 3.2.5.9.4.3.

2.2.3.2.4.3.1 RopSynchronizationImportHierarchyChange ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopSynchronizationImportHierarchyChange ROP ([MS-OXCROPS] section 2.2.13.4).

InputServerObject: The value of this field MUST be the synchronization upload context configured

to collect changes to the hierarchy.

HierarchyValueCount (2 bytes): An unsigned 16-bit integer. This value specifies the number of
structures in the HierarchyValues field. This value MUST NOT be set to 0x0000.

HierarchyValues (variable): An array of TaggedPropertyValue structures ([MS-OXCDATA]
section 2.11.4). These values are used to specify folder hierarchy properties, which determine the
location of the folder within the hierarchy. The following table lists the restrictions that exist on the
array of values of the HierarchyValues field.

Property Restrictions Comments

PidTagParentSourceKey (section
2.2.1.2.6)

Required

Fixed

position

SHOULD<15> be zero-length to identify a folder
for which a synchronization upload context was

opened.

PidTagSourceKey (section
2.2.1.2.5)

Required

Fixed
position

A GID structure ([MS-OXCDATA] section
2.2.1.3) that identifies the folder being uploaded
in the local replica.

PidTagLastModificationTime ([MS-
OXPROPS] section 2.753)

Required

Fixed
position

None.

PidTagChangeKey (section
2.2.1.2.7)

Required

Fixed
position

An XID structure, as specified in section 2.2.2.2,
that identifies the change being uploaded in the
local replica. For details about how clients can
generate the PidTagChangeKey value, see
section 3.1.5.3.

PidTagPredecessorChangeList
(section 2.2.1.2.8)

Required

Fixed
position

None.

PidTagDisplayName ([MS- Required This value MUST be a nonempty string.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCFOLD%5d.pdf

61 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Property Restrictions Comments

OXCFOLD] section 2.2.2.2.2.5) Fixed
position

< other properties > Prohibited None.

PropertyValueCount (2 bytes): An unsigned 16-bit integer. This value specifies the number of
structures in the PropertyValues field. The value of this field MUST NOT be set to 0x0000.

PropertyValues (variable): An array of TaggedPropertyValue structures ([MS-OXCDATA]
section 2.11.1) that contains the changed folder properties.

2.2.3.2.4.3.2 RopSynchronizationImportHierarchyChange ROP Response Buffer

The following descriptions define valid fields for the response buffer of the

RopSynchronizationImportHierarchyChange ROP ([MS-OXCROPS] section 2.2.13.4).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution
status. For details about common return values of the RopSynchronizationImport* ROPs that
require special processing, see section 3.3.4.3.3.

FolderId (8 bytes): A 64-bit identifier that contains the Folder ID structure ([MS-OXCDATA]
section 2.2.1.1) of the folder that was imported. This value of this field MUST be set to
0x0000000000000000. This value MUST be present if and only if the value of the ReturnValue field

equals Success (0x00000000).

2.2.3.2.4.4 RopSynchronizationImportMessageMove ROP

The RopSynchronizationImportMessageMove ROP ([MS-OXCROPS] section 2.2.13.6) imports
information about moving a message between two existing folders within the same mailbox.

To move folders within a mailbox, use the RopSynchronizationImportHierarchyChange ROP.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.3.3 and 3.3.5.8.9. For
more details about server behaviors related to this ROP, see section 3.2.5.9.4.4.

2.2.3.2.4.4.1 RopSynchronizationImportMessageMove ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopSynchronizationImportMessageMove ROP ([MS-OXCROPS] section 2.2.13.6).

InputServerObject: The value of this field MUST be the synchronization upload context configured
for collecting changes to the contents of the message move destination folder.

SourceFolderIdSize (4 bytes): An unsigned 32-bit integer. This value specifies the size of the
SourceFolderId field. This value of this field MUST NOT be set to 0x00000000.

SourceFolderId (variable): An array of bytes. This value contains a serialized representation of

the GID structure ([MS-OXCDATA] section 2.2.1.3) that represents the PidTagSourceKey property
(section 2.2.1.2.5) value of the source folder. The source folder MUST be in the same mailbox as the
destination folder specified in InputServerObject.

%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf

62 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

SourceMessageIdSize (4 bytes): An unsigned 32-bit integer. This value specifies the size of the
SourceMessageId field. This value of this field MUST NOT be set to 0x00000000.

SourceMessageId (variable): An array of bytes. This value contains a serialized representation of
the GID structure that represents the PidTagSourceKey property of the message in the source

folder, identified by SourceFolderId field.

PredecessorChangeListSize (4 bytes): An unsigned 32-bit integer. This value specifies the size
of the PredecessorChangeList field. This value of this field MUST NOT be set to 0x00000000.

PredecessorChangeList (variable): An array of bytes. This value contains a serialized
representation of the PredecessorChangeList structure, as specified in section 2.2.2.3, in the local
replica of the message being moved.

DestinationMessageIdSize (4 bytes): An unsigned 32-bit integer. This value specifies the size of

the DestinationMessageId field. This value of this field MUST NOT be set to 0x00000000.

DestinationMessageId (variable): An array of bytes. This value contains a serialized

representation of the GID structure that represents the PidTagSourceKey property of the message
in the destination folder. For details about why the value of the DestinationMessageId field is
different from the value of the SourceMessageId field, see section 3.1.5.3.

ChangeNumberSize (4 bytes): An unsigned 32-bit integer. This value specifies the size of the

ChangeNumber field. This value of this field MUST NOT be set to 0x00000000.

ChangeNumber (variable): An array of bytes. This value contains a serialized representation of
an XID structure, as specified in section 2.2.2.2, that represents the PidTagChangeKey property
(section 2.2.1.2.7) of the message in the destination folder.

2.2.3.2.4.4.2 RopSynchronizationImportMessageMove ROP Response Buffer

The following descriptions define valid fields for the response buffer of the

RopSynchronizationImportMessageMove ROP ([MS-OXCROPS] section 2.2.13.6).

Return value (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution
status. For details about the common return values of the RopSynchronizationImport* ROPs that
require special processing, see section 3.3.4.3.3. The following table contains one additional return
value.

Return value name Value Description

NewerClientChange 0x00040821 The ROP succeeded, but the server replica had an older version of
a message than the local replica. The values of the
ChangeNumber and PredecessorChangeList fields, specified
in section 2.2.3.2.4.4.1, were not applied to the destination
message.

The complete list of error codes is specified in [MS-OXCDATA] section 2.4.

MessageId (8 bytes): A 64-bit identifier. The MID structure ([MS-OXCDATA] section 2.2.1.2) of

the moved message in a destination folder. This value MUST be set to 0x0000000000000000. This
value MUST be present if and only if ReturnValue equals Success (0x00000000).

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

63 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.3.2.4.5 RopSynchronizationImportDeletes ROP

The RopSynchronizationImportDeletes ROP ([MS-OXCROPS] section 2.2.13.5) imports deletions
of messages or folders into the server replica.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.3.3 and 3.3.5.8.10.
For more details about server behaviors related to this ROP, see section 3.2.5.9.4.5.

2.2.3.2.4.5.1 RopSynchronizationImportDeletes ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopSynchronizationImportDeletes ROP ([MS-OXCROPS] section 2.2.13.5).

InputServerObject: The value of this field MUST be the synchronization upload context. The type

of synchronization upload context MUST correspond to the ImportDeleteFlags field.

ImportDeleteFlags (1 byte): An 8-bit flag structure that defines the parameters of the import
operation.

The following table defines valid flags for the ImportDeleteFlags field.

Flag name Value Description

Hierarchy 0x01 If this flag is set, folder deletions are being imported.

If this flag is not set, message deletions are being imported.

HardDelete 0x02 The server SHOULD<16> support this flag.

If this flag is set, hard deletions are being imported.

If this flag is not set, hard deletions are not being imported.

PropertyValueCount (2 bytes): An unsigned 16-bit integer. This value specifies the number of
structures present in the PropertyValues field.

PropertyValues (variable): An array of TaggedPropertyValue structures ([MS-OXCDATA]
section 2.11.4). This value MUST NOT be NULL. The value of this field is used to specify the folders
or messages to be deleted.

The following table defines the restrictions that exist on the PropertyValues field.

Property Restrictions Comments

[PtypMultipleBinary] ([MS-
OXCDATA] section 2.11.1)

0x00001102

Required

Fixed
position

An array of serialized GID structures ([MS-
OXCDATA] section 2.2.1.3) that represents the
objects to be deleted.

< other properties > Prohibited None.

2.2.3.2.4.5.2 RopSynchronizationImportDeletes ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopSynchronizationImportDeletes ROP ([MS-OXCROPS] section 2.2.13.5).

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf

64 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution
status. For details about common return values for RopSynchronizationImport* ROPs that

require special processing, see section 3.3.4.3.3.

2.2.3.2.4.6 RopSynchronizationImportReadStateChanges ROP

The RopSynchronizationImportReadStateChanges ROP ([MS-OXCROPS] section 2.2.13.3)
imports message read state changes into the server replica.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.3.3 and 3.3.5.8.11.

For more details about server behaviors related to this ROP, see section 3.2.5.9.4.6.

2.2.3.2.4.6.1 RopSynchronizationImportReadStateChanges ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopSynchronizationImportReadStateChanges ROP ([MS-OXCROPS] section 2.2.13.3).

InputServerObject: The value of this field MUST be the synchronization upload context configured

to collect changes to content.

MessageReadStateSize (2 bytes): An unsigned 16-bit integer. This value specifies the size in
bytes of the MessageReadStates field. The value MUST NOT be set to 0x0000.

MessageReadStates (variable): An array of MessageReadState structures ([MS-OXCROPS]
section 2.2.13.3.1.1) — one per each message that is changing its read state — that consist of the
following:

MessageIdSize (2 bytes): An unsigned 16-bit integer. This value specifies the size of the

MessageId field. This value MUST NOT be set to 0x0000.

MessageId (variable): An array of bytes. Contains the XID structure, as specified in section

2.2.2.2, that represents the PidTagSourceKey property (section 2.2.1.2.5) for a message that
is changing its read state.

MarkAsRead (1 byte): An 8-bit PtypBoolean ([MS-OXCDATA] section 2.11.1). This value

specifies whether to mark the message as read (0x01) or unread (0x00).

MID structures ([MS-OXCDATA] section 2.2.1.2) identifying FAI messages in the value of the
MessageReadStates field are ignored.

2.2.3.2.4.6.2 RopSynchronizationImportReadStateChanges ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopSynchronizationImportReadStateChanges ROP ([MS-OXCROPS] section 2.2.13.3).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution
status. For details about common return values for the RopSynchronizationImport* ROPs that
require special processing, see section 3.3.4.3.3.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf

65 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.3.2.4.7 RopGetLocalReplicaIds ROP

The RopGetLocalReplicaIds ROP ([MS-OXCROPS] section 2.2.13.13) allocates a range of internal
identifiers (2) for the purpose of assigning them to client-originated objects in a local replica. For

more details about client-assigned internal identifiers (2), see section 3.3.5.2.1.

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

For more details about client behaviors related to this ROP, see sections 3.3.4.3.3 and 3.3.5.8.12.
For more details about server behaviors related to this ROP, see section 3.2.5.9.4.7.

2.2.3.2.4.7.1 RopGetLocalReplicaIds ROP Request Buffer

The following descriptions define valid fields for the request buffer of the RopGetLocalReplicaIds
ROP ([MS-OXCROPS] section 2.2.13.13).

InputServerObject: The value of this field MUST be a Logon object.

IdCount (4 bytes): An unsigned 32-bit integer. This value specifies the number of IDs to be
allocated.

2.2.3.2.4.7.2 RopGetLocalReplicaIds ROP Response Buffer

The following descriptions define valid fields for the response buffer of the RopGetLocalReplicaIds
ROP ([MS-OXCROPS] section 2.2.13.13).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution
status.

REPLGUID (16 bytes): A GUID value that specifies the REPLGUID structure shared by all

allocated IDs. This value MUST be present if and only if value of the ReturnValue field equals
Success (0x00000000).

GlobalCount (6 bytes): An array of bytes. This array and the value of the REPLGUID field are
combined to produce the first GID structure ([MS-OXCDATA] section 2.2.1.3) in the allocated range
of IDs, which is defined as [GlobalCount, GlobalCount + IdCount – 1]. This value MUST be
present if and only if the value of the ReturnValue field equals Success (0x00000000).

2.2.3.2.4.8 RopSetLocalReplicaMidsetDeleted ROP

The RopSetLocalReplicaMidsetDeleted ROP ([MS-OXCROPS] section 2.2.13.12) identifies that a
set of IDs either belongs to deleted messages in the specified folder or will never be used for any
messages in the specified folder. This ROP is intended for use on IDs that were used on the client
and never uploaded to the server, or were never used on the client.

The RopSetLocalReplicaMidsetDeleted ROP does not delete IDs from the server; it only reports
that they cannot be used within a given folder. To delete IDs and messaging objects from the

server, use the RopSynchronizationImportDeletes ROP (section 2.2.3.2.4.5).

The complete syntax of the ROP request and response buffers for this ROP are specified in [MS-
OXCROPS]. This section specifies the syntax and semantics of various fields that are not fully
specified in [MS-OXCROPS].

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf

66 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

For more details about client behaviors related to this ROP, see sections 3.3.4.3.3 and 3.3.5.8.13.
For more details about server behaviors related to this ROP, see section 3.2.5.9.4.8.

2.2.3.2.4.8.1 RopSetLocalReplicaMidsetDeleted ROP Request Buffer

The following descriptions define valid fields for the request buffer of the
RopSetLocalReplicaMidsetDeleted ROP ([MS-OXCROPS] section 2.2.13.12).

InputServerObject: The value of this field MUST be a Folder object.

DataSize (2 bytes): An unsigned 16-bit integer. This value specifies the size of both the
LongTermIdRangeCount and LongTermIdRanges fields. This value MUST NOT be set to
0x0000.

LongTermIdRangeCount (4 bytes): An unsigned 32-bit integer. This value specifies the number

of structures in the LongTermIdRanges field. This value MUST NOT be set to 0x00000000.

LongTermIdRanges (variable): An array of LongTermIdRange structures. All of the IDs in this

field MUST have been obtained previously by using the RopGetLocalReplicaIds ROP (section
2.2.3.2.4.7). Each LongTermIdRange structure defines a range of IDs, which are reported as
unused or deleted on the client. This value consists of the following:

MinLongTermId (24 bytes): A LongTermID structure ([MS-OXCDATA] section 2.2.1.3.1) that

defines the ID by using the minimum value of the GLOBCNT structure, as specified in section
2.2.2.5, that belongs to a range.

MaxLongTermId (24 bytes): A LongTermID structure that defines the ID by using the

maximum value of the GLOBCNT structure that belongs to a range.

The MinLongTermId and MaxLongTermId fields MUST have the same values for their
REPLGUID structures.

2.2.3.2.4.8.2 RopSetLocalReplicaMidsetDeleted ROP Response Buffer

The following descriptions define valid fields for the response buffer of the
RopSetLocalReplicaMidsetDeleted ROP ([MS-OXCROPS] section 2.2.13.12).

ReturnValue (4 bytes): An unsigned 32-bit integer. This value represents the ROP execution
status.

2.2.4 FastTransfer Stream

The information set encoded in a FastTransfer stream depends on the type and parameters of the
operation that produces it, as specified in section 2.2.4.4. Parsing (syntactic analysis) of the stream
can be done without knowing what operation produced it.

At a high level, the FastTransfer stream contains serialized mailbox data and markers. Note that
markers are not properties and can never have a value, although they are specified in [MS-
OXPROPS] and have the same syntax as property tags. The complete list of markers is specified in

section 2.2.4.1.4.

Section 2.2.4.1 and section 2.2.4.2 contain an Augmented Backus-Naur Form (ABNF) like
description of the tokenized FastTransfer stream structure. The description uses the conventions
specified in [RFC5234], except for the following:

For display purposes, indented lines represent a continuation of the lines that precede them.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113442

67 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Despite their name, FastTransfer streams are not represented as Stream objects, and they can only
be manipulated by using the RopFastTransferSourceGetBuffer ROP (section 2.2.3.1.1.5) for

download operations and RopFastTransferDestinationPutBuffer ROP (section 2.2.3.1.2.2) for
upload operations. For more details about how FastTransfer streams are produced and processed by

ROPs, see section 2.2.4.4.

2.2.4.1 Lexical structure

The lexical structure of the FastTransfer stream is essential to let its producers and consumers agree
on rules that govern splitting of the stream into sequential buffers retrieved by using the
RopFastTransferSourceGetBuffer ROP (section 2.2.3.1.1.5) or supplied through the
RopFastTransferDestinationPutBuffer ROP (section 2.2.3.1.2.2). It is also beneficial for an

explanation of the protocol, as it separates matters of data serialization and deserialization (lexical
analysis) from data and data organization (syntactical analysis), and from its mapping to mailbox
concepts (semantics).

The lexical structure of a FastTransfer stream is as follows:

stream = 1*element

element = marker / propValue

marker = PtypInteger32 <from the table in 2.2.4.1.4>

propValue = fixedPropType propInfo fixedSizeValue

propValue =/ varPropType propInfo length varSizeValue

propValue =/ mvPropType

 propInfo

 length

 *(fixedSizeValue / length varSizeValue)

propInfo = taggedPropId / (namedPropId namedPropInfo)

fixedSizeValue = PtypInteger16 / PtypInteger32 / PtypFloating32

 / PtypFloating64 / PtypCurrency / PtypFloatingTime

 / PtypBoolean / PtypInteger64 / PtypTime

 / PtypGuid

varSizeValue = PtypString / PtypString8 / PtypServerId

 / PtypBinary / PtypObject

namedPropInfo = propertySet

 ((%x00 dispid)

 / (%x01 name))

propertySet = PtypGuid

dispid = PtypInteger32

name = PtypString

namedPropId = propertyId

 <Greater or equal to 0x8000>

propertyId = PtypInteger16

taggedPropId = propertyId

 <less than 0x8000>

length = PtypInteger32 <MUST be greater than 0>

propType = fixedPropType / varPropType / mvPropType

fixedPropType = PtypInteger16

varPropType = PtypInteger16

mvPropType = PtypInteger16

For more details about the fixedPropType, varPropType, and mvPropType property types, see

section 2.2.4.1.1.

The lexical structure of the FastTransfer adheres to the following guidelines:

%5bMS-OXGLOS%5d.pdf

68 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Camel-cased names are nonterminal syntactic elements, as specified in [RFC5234] section 2.3.

Pascal-cased names with a Ptyp prefix are any value of that type serialized as specified in

section 2.2.4.1.3.

A FastTransfer stream can be larger than a single buffer. The server MUST split the stream when it
cannot fit into a single buffer. If a split is required, the stream MUST be split either between two
atoms or at any point inside a varSizeValue lexeme. A stream MUST NOT be split within a single
atom. The lexical structure of an atom is as follows:

atom = marker

 / propDef

 / fixedSizeValue

 / length

propDef = (propType propInfo)

2.2.4.1.1 fixedPropType, varPropType, mvPropType Property Types

Property types supported in FastTransfer streams are a subset of those defined in [MS-OXCDATA]

section 2.11.1.

Property type Description

fixedPropType Property type value of any type that has a fixed length, as specified in [MS-OXCDATA]
section 2.11.1.

varPropType Property type value of PtypString, PtypString8, PtypBinary, PtypServerId,
PtypObject ([MS-OXCDATA] section 2.11.1), or a code page string property type, as
specified in section 2.2.4.1.1.1.

mvPropType Property type value of any multi-valued property type (starts with PtypMultiple ([MS-
OXCDATA] section 2.11.1)), whose base type is either a valid fixedPropType or a
valid varPropType.

2.2.4.1.1.1 Code Page Property Types

Code page property types are a 2-byte value used to transmit string properties using the code page
format of the string as stored on the server, in server-to-client-to-server scenarios. For example, a
code page property type of 0x84B0 specifies the Unicode (1200) code page and a code page
property type of 0x84E2 specifies the Western European (1250) code page.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

A CodePageId

A (1 bit): 1-bit flag (mask 0x8000). This bit MUST be set to 1 to indicate the property is an internal
code page string.

CodePageId (15 bit): The decimal value of the code page identifier for the code page used to

encode the string property.

http://go.microsoft.com/fwlink/?LinkId=113442
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

69 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.4.1.2 propValue Lexical Element

The propValue element represents the identification and the value of a property or a meta-
property.

The fixedSizeValue or varSizeValue lexemes contained in a propValue element represent the
value of the property and MUST be serializations of a base property type for a property type
specified with contained fixedPropType, varPropType, or mvPropType property type values.

2.2.4.1.3 Serialization of Simple Types

Serialization of simple types in FastTransfer streams is identical to serialization of property values as
specified [MS-OXCDATA], with the following exceptions:

Property type name Difference in serialization

PtypBoolean ([MS-
OXCDATA] section
2.11.1)

2-bytes in FastTransfer streams, instead of 1-byte as specified in [MS-
OXCDATA].

Using little-endian byte ordering, "01 00" for TRUE and "00 00" for FALSE.

PtypString

PtypString8 ([MS-
OXCDATA] section
2.11.1)

Serialization MUST be performed, as specified in [MS-OXCDATA].

The server SHOULD<17> output string values with the terminating nulls.
FastTransfer stream readers MUST check that the last 1 (for PtypString8) or 2
(for PtypString) bytes of a stream are indeed zeros before truncating them.

Note that little-endian byte ordering MUST be used. The data type of simple type elements
determine how bytes are serialized on the wire. For example, Int16 value 0x1234 is encoded as "34

12" on the wire.

2.2.4.1.4 Markers

The following table shows the complete list of markers used in FastTransfer streams. The PidTag
prefix is omitted in the ABNF specified in section 2.2.4.2 to emphasize their difference from

properties.

Start/stand-alone marker name and its

numeric value

Corresponding end marker , if applicable, and

its numeric value

Folders

StartTopFld 0x40090003 EndFolder 0x400B0003

StartSubFld 0x400A0003

Messages and their parts

StartMessage 0x400C0003 EndMessage 0x400D0003

StartFAIMsg 0x40100003

StartEmbed 0x40010003 EndEmbed 0x40020003

StartRecip 0x40030003 EndToRecip 0x40040003

NewAttach 0x40000003 EndAttach 0x400E0003

Synchronization download

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

70 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Start/stand-alone marker name and its

numeric value

Corresponding end marker , if applicable, and

its numeric value

IncrSyncChg 0x40120003 None.

IncrSyncChgPartial 0x407D0003 None.

IncrSyncDel 0x40130003 None.

IncrSyncEnd 0x40140003 None.

IncrSyncRead 0x402F0003 None.

IncrSyncStateBegin 0x403A0003 IncrSyncStateEnd 0x403B0003

IncrSyncProgressMode 0x4074000B None.

IncrSyncProgressPerMsg 0x4075000B None.

IncrSyncMessage 0x40150003 None.

IncrSyncGroupInfo 0x407B0102 None.

Special

FXErrorInfo 0x40180003 None.

The StartTopFld marker signifies the start of data that describes a folder.

The StartSubFld marker signifies the start of serialized data that describes a mailbox subfolder.

The EndFolder marker signifies the end of serialized data that describes a mailbox folder or
subfolder.

The StartMessage marker signifies the start of serialized data that describes an e-mail message.

The StartFAIMsg marker signifies the start of serialized data that describes an FAI message.

The EndMessage marker signifies the end of serialized data that describes an e-mail message.

The StartEmbed marker signifies the start of an embedded e-mail message.

The EndEmbed marker signifies the end of an embedded e-mail message.

The StartRecip marker signifies the start of recipient (1) data.

The EndToRecip marker signifies the end of recipient (1) data.

The NewAttach marker signifies the start of an attachment.

The EndAttach marker signifies the end of an attachment.

The IncrSyncChg marker signifies the start of ICS information pertaining to the message.

The IncrSyncChgPartial marker signifies the start of data that describes the property group
mapping for properties that have changed in a partial message.

The IncrSyncDel marker signifies the start of deleted message data in the stream.

The IncrSyncEnd marker signifies the end of serialized ICS data.

71 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

The IncrSyncRead marker signifies the start of serialized data that describes which messages are
to be marked as read or unread.

The IncrSyncStateBegin marker signifies the start of data that describes the synchronization state
after ICS finishes.

The IncrSyncStateEnd marker signifies the end of serialized data that describes the
synchronization state after ICS finishes.

The IncrSyncProgressMode marker signifies the start of serialized data that describes the size of
all the ICS data to be transmitted.

The IncrSyncProgressPerMsg marker signifies the start of the serialized data that describes the
size of the next message in the stream.

The IncrSyncMessage marker signifies the start of e-mail data for ICS.

The IncrSyncGroupInfo marker signifies the start of data that describes property group mapping

information.

The FXErrorInfo marker signifies the start of error data.

2.2.4.1.5 Meta-Properties

Meta-properties contain information about how to process data, instead of containing data to be

processed. Use of meta-properties specified in this section is restricted to specific occasions in
FastTransfer streams; therefore, values for these meta-properties are serialized according to
FastTransfer stream rules, as specified in section 2.2.4.1.3.

2.2.4.1.5.1 MetaTagFXDelProp Meta-Property

Property ID: 0x4016

Data type: PtypInteger32, 0x0003 ([MS-OXCDATA] section 2.11.1)

The MetaTagFXDelProp meta-property represents a directive to a client to delete specific
subobjects of the object in context. The type of subobjects to delete is determined by the value of
the meta-property, which can be any of the property tags specified in section 2.2.1.7.

2.2.4.1.5.2 MetaTagEcWarning Meta-Property

Property ID: 0x400F

Data type: PtypInteger32, 0x0003 ([MS-OXCDATA] section 2.11.1)

The MetaTagEcWarning meta-property contains a warning that occurred when producing output
for an element in context.

The following error code requires special processing when passed as a value of the
MetaTagEcWarning meta-property:

Error code name Description

PartiallyComplete The client SHOULD verify that properties and subobjects of the object represented
by an element in context were output completely.

The complete list of error codes is specified in [MS-OXCDATA] section 2.4.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

72 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.4.1.5.3 MetaTagNewFXFolder Meta-Property

Property ID: 0x4011

Data type: PtypBinary, 0x0102 ([MS-OXCDATA] section 2.11.1)

The MetaTagNewFXFolder meta-property provides information about alternative replicas (1) for a
public folder in context. This meta-property represents a serialized FolderReplicaInfo structure, as
specified in section 2.2.2.9.

2.2.4.1.5.4 MetaTagIncrSyncGroupId Meta-Property

Property ID: 0x407C

Data type: PtypInteger32, 0x0003 ([MS-OXCDATA] section 2.11.1)

The MetaTagIncrSyncGroupId meta-property specifies an identifier of a property group mapping.
This value directs the client to use the specified property group mapping where applicable, until the

value is reset with another instance of the MetaTagIncrSyncGroupId meta-property.

For more details about property groups, see section 3.2.5.7.

2.2.4.1.5.5 MetaTagIncrementalSyncMessagePartial Meta-Property

Property ID: 0x407A

Data type: PtypInteger32, 0x0003 ([MS-OXCDATA] section 2.11.1)

The MetaTagIncrementalSyncMessagePartial meta-property specifies an index of a property
group within a property group mapping currently in context, to be used for partial item downloads.
This meta-property instructs the client to read all forthcoming property values as a part of the
specified group, where applicable, until reset with another instance of the
MetaTagIncrementalSyncMessagePartial meta-property.

For more details about property groups, see section 3.2.5.7.

2.2.4.1.5.6 MetaTagDnPrefix Meta-Property

Property ID: 0x4008

Data type: PtypString8, 0x001E ([MS-OXCDATA] section 2.11.1)

The MetaTagDnPrefix meta-property MUST be ignored when received.

2.2.4.2 Syntactical Structure

The syntactical structure of the FastTransfer adheres to the following guidelines:

Camel-cased names are nonterminal syntactic elements, as specified in [RFC5234] section 2.3.

Pascal-cased names without a PidTag prefix are markers. Markers are specified in section

2.2.4.1.4.

Pascal-cased names with a PidTag prefix are properties and are defined in [MS-OXPROPS].

Pascal-cased names with a MetaTag prefix are meta-properties. Meta-properties are specified

in section 2.2.4.1.5.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113442
%5bMS-OXPROPS%5d.pdf

73 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Note that markers never have a value, and meta-properties, just as regular properties, always have
a value when serialized into a FastTransfer stream. Therefore, wherever a marker exists, it is

serialized as 4 bytes. Meta-properties, on the other hand, are serialized the same as propValue
elements.

The syntactical structure of a FastTransfer stream is as follows:

root = contentsSync

 / hierarchySync

 / state

 / folderContent

 / messageContent

 / attachmentContent

 / messageList

 / topFolder

propValue = <see lexical structure in 2.2.4.1>

errorInfo = FXErrorInfo propList

propList = *propValue

subFolder = StartSubFld folderContent EndFolder

subFolderNoDelProps = StartSubFld folderContentNoDelProps EndFolder

topFolder = StartTopFld folderContentNoDelProps EndFolder

folderContent = propList

 (MetaTagNewFXFolder / folderMessages)

 [MetaTagFXDelProp *subFolder]

folderContentNoDelProps = propList

 (MetaTagNewFXFolder / folderMessagesNoDelProps)

 [*subFolderNoDelProps]

folderMessages = *2(MetaTagFXDelProp messageList)

folderMessagesNoDelProps = *2(messageList)

message = (StartMessage / StartFAIMsg)

 messageContent

 EndMessage

messageChildren = [MetaTagFXDelProp] [*recipient]

 [MetaTagFXDelProp] [*attachment]

messageContent = propList messageChildren

messageList = *([MetaTagEcWarning] message)

recipient = StartRecip propList EndToRecip

attachment = NewAttach PidTagAttachNumber attachmentContent EndAttach

attachmentContent = propList [embeddedMessage]

embeddedMessage = StartEmbed messageContent EndEmbed

contentsSync = [progressTotal]

 *([progressPerMessage] messageChange)

 [deletions]

 [readStateChanges]

 state

 IncrSyncEnd

hierarchySync = *folderChange

 [deletions]

 state

 IncrSyncEnd

deletions = IncrSyncDel propList

folderChange = IncrSyncChg propList

groupInfo = IncrSyncGroupInfo propList

messageChange = messageChangeFull / messageChangePartial

messageChangeFull = IncrSyncChg messageChangeHeader

74 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

 IncrSyncMessage propList

 messageChildren

messageChangeHeader = propList

messageChangePartial = groupInfo MetaTagIncrSyncGroupId

 IncrSyncChgPartial messageChangeHeader

 *(MetaTagIncrementalSyncMessagePartial propList)

 messageChildren

progressPerMessage = IncrSyncProgressPerMsg propList

progressTotal = IncrSyncProgressMode propList

readStateChanges = IncrSyncRead propList

state = IncrSyncStateBegin propList IncrSyncStateEnd

2.2.4.3 Semantics of Elements

2.2.4.3.1 attachmentContent Element

The attachmentContent element contains the properties and the Embedded Message object of an

Attachment object, if present.

Property filters, as specified in section 3.2.5.10, can affect the Attachment object properties
contained in the propList element, as specified in section 2.2.4.3.20.

2.2.4.3.2 contentsSync Element

The contentsSync element contains the result of the content synchronization download operation.

For details about how servers determine the set of differences to be downloaded to clients, see
section 3.2.5.3.

2.2.4.3.3 deletions Element

The deletions element contains information about IDs of messaging objects that have been

deleted, expired, or moved out of the synchronization scope since the last synchronization, as

specified in the initial ICS state. For details about how servers determine the set of IDs to be
reported by using this element, which is a subset of the IDs in the deleted item list, see section
3.2.5.3.

Deletions SHOULD NOT be present if the NoDeletions flag of the SynchronizationFlags field, as
specified in section 2.2.3.2.1.1.1, was set when the synchronization download operation was
configured.

The following restrictions exist on the contained propList element, as specified in section

2.2.4.3.20:

MUST contain at least one property.

MUST adhere to the following restrictions:

Property name Restrictions Comments

MetaTagIdsetDeleted (section
2.2.1.3.1)

No
restrictions

None.

MetaTagIdsetNoLongerInScope
(section 2.2.1.3.2)

Conditional MUST be present if the Contents value of the
SynchronizationType field is set and there are

75 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Property name Restrictions Comments

Message objects that moved out of the
synchronization scope since the last
synchronization.

MUST NOT be present if the Hierarchy value of
the SynchronizationType field is set, as
specified in section 2.2.3.2.1.1.1.

MUST NOT be present if the
IgnoreNoLongerInScope flag of the
SynchronizationFlags field is set.

MetaTagIdsetExpired (section
2.2.1.3.3)

Conditional MUST be present if the Contents value of the
SynchronizationType field is set and the
Message objects in a public folder expired since

the last synchronization.

MUST NOT be present if the Hierarchy value of
the SynchronizationType field is set.

< other properties > Prohibited None.

2.2.4.3.4 errorInfo Element

The errorInfo element provides out-of-band error reporting and recovery. It is used to provide

support for partial completion of the operations by scoping the failures down to the failing object,
rather than the entire operation.

The errorInfo element is inserted into the stream whenever the server internally encounters an
error retrieving information or building the necessary information to serialize the messaging object.
The errorInfo element can be inserted wherever a lexical structure, specified in section 2.2.4.1,
allows a marker or a propValue element.

This element SHOULD be used if and only if the RecoverMode flag of the SendOptions field is set.
Note that by the time a server encounters an error that requires failing the download of a messaging

object in context, it might have already output some part of the data pertaining to that object in the
previous buffer.

Clients MUST support parsing of this element if the client set the RecoverMode flag in the
SendOptions field.

Whenever a server or a client produces or parses this element, it MUST unwind its producing or

parsing stack up to, but not including, the closest element that supports recovery. The current
version of the protocol defines two such elements: contentsSync, as specified in section 2.2.4.3.2,
and messageList, as specified in section 2.2.4.3.17. Upon receiving this element, clients can
perform additional steps to remove a faulty object from future synchronizations, as described in
section 3.3.5.10.

The following table lists the restrictions that exist on the contained propList element, as specified in
section 2.2.4.3.20.

Property type name Restrictions Comments

[PtypBinary] ([MS-OXCDATA]
section 2.11.1)

0x00000102

Required

Fixed
position

Serialized ExtendedErrorInfo structure, as
specified in section 2.2.2.10.

%5bMS-OXCDATA%5d.pdf

76 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Property type name Restrictions Comments

< other properties > Prohibited None.

2.2.4.3.5 folderChange Element

The folderChange element contains a new or changed folder in the hierarchy synchronization.

The propList element, as specified in section 2.2.4.3.20, that is contained in the folderChange
element includes the properties of the Folder object, possibly affected by property filters (as
specified in section 3.2.5.10) and combined with additional mandatory properties that are required
for object identification and conflict detection.

The following table lists the restrictions that exist on the contained propList element, as specified in
section 2.2.4.3.20.

Property name Restrictions Comments

PidTagParentSourceKey (section
2.2.1.2.6)

Required None.

PidTagSourceKey (section
2.2.1.2.5)

Required None.

PidTagLastModificationTime
([MS-OXPROPS] section 2.753)

Required None.

PidTagChangeKey (section
2.2.1.2.7)

Required None.

PidTagPredecessorChangeList
(section 2.2.1.2.8)

Required None.

PidTagDisplayName ([MS-
OXCFOLD] section 2.2.2.2.2.5)

Required None.

PidTagFolderId (section 2.2.1.2.2) Conditional MUST be present if and only if the Eid flag of the
SynchronizationExtraFlags field is set.

PidTagParentFolderId (section
2.2.1.2.4)

Conditional MUST be present if the NoForeignIdentifiers
flag of the SynchronizationFlags field is set.
SHOULD<18> be present if the Eid flag of the
SynchronizationExtraFlags field is set.

< other properties > No

restrictions

None.

2.2.4.3.6 folderContent Element

The folderContent element contains the content of a folder: its properties, messages, and

subfolders.

The propList element, as specified in section 2.2.4.3.20, contains the properties of the Folder

object, which are possibly affected by property filters, as specified in section 3.2.5.10.

The following table lists the restrictions that exist on the contained propList element.

%5bMS-OXPROPS%5d.pdf
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCFOLD%5d.pdf

77 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Property name Restrictions Comments

PidTagFolderId (section
2.2.1.2.2)

Conditional

Fixed
position

MUST be present if and only if the first marker in the
folder element is not the StartTopFld marker, as
specified in section 2.2.4.1.4.

PidTagDisplayName ([MS-
OXCFOLD] section 2.2.2.2.2.5)

Conditional

Fixed
position

MUST be present if and only if the first marker in the
folder element is not the StartTopFld marker

PidTagComment ([MS-
OXCFOLD] section 2.2.2.2.2.2)

Conditional

Fixed
position

MUST be present if and only if the first marker in the
folder element is not the StartTopFld marker

MetaTagEcWarning (section
2.2.4.1.5.2)

Conditional

Fixed
position

MAY<19> be output by the server if the client set the
Move flag of the CopyFlags field and the user does
not have permissions to delete the source folder.

< other properties > No
restrictions

None.

For more details about the impact of property and subobject filters that are specified when
configuring an operation on the content of this element, see section 3.2.5.10.

The MetaTagNewFXFolder meta-property (section 2.2.4.1.5.3) MUST be output instead of
message elements when outputting a public folder whose contents do not exist on the server
because the content is ghosted. If there is a valid replica (1) of the public folder on the server and

the folder content has not replicated to the server yet, the folder content is not included in the
FastTransfer stream as part of the folderContent element. The server SHOULD NOT include any
data following the MetaTagNewFXFolder meta-property in the buffer returned by the
RopFastTransferSourceGetBuffer ROP (section 2.2.3.1.1.5), although additional data can be
included in the FastTransfer stream. Any data included after this property in the buffer returned by
the RopFastTransferSourceGetBuffer ROP is ignored by the client, which results in a parsing

failure when the client attempts to parse the next buffer.

Under conditions specified in section 3.2.5.10, the PidTagContainerHierarchy property ([MS-
OXPROPS] section 2.636) included in a subFolder element MUST be preceded by a
MetaTagFXDelProp meta-property (section 2.2.4.1.5.1).

2.2.4.3.7 folderMessages Element

The folderMessages element contains the messages contained in a folder.

Under conditions specified in section 3.2.5.10, when included in the folderMessages element, the

PidTagFolderAssociatedContents ([MS-OXPROPS] section 2.690) and
PidTagContainerContents ([MS-OXPROPS] section 2.634) properties MUST be preceded by a
MetaTagFXDelProp meta-property (section 2.2.4.1.5.1).

2.2.4.3.8 groupInfo Element

The groupInfo element provides a definition for the property group mapping, as specified in section

3.2.5.7. Property group mappings, after they are defined by using the groupInfo element, can be
referenced with the MetaTagIncrSyncGroupId meta-property further in the stream by its group
ID.

%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf

78 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

The following table lists the restrictions that exist on the contained propList element, as specified in
section 2.2.4.3.20.

Property type name Restrictions Comments

[PtypBinary] ([MS-OXCDATA]
section 2.11.1)

0x00000102

Required

Fixed
position

Serialized PropertyGroupInfo structure, as
specified in section 2.2.2.8.

< other properties > Prohibited None.

2.2.4.3.9 hierarchySync Element

The hierarchySync element contains the result of the hierarchy synchronization download
operation.

There MUST be exactly one folderChange element for each descendant folder of the root of the

synchronization operation (that is the folder that was passed to the
RopSynchronizationConfigure ROP, as specified in section 2.2.3.2.1.1) that is new or has been
changed since the last synchronization. The folderChange elements for the parent folders MUST be
output before any of their child folders.

The parent-child relationship is determined by comparing the PidTagSourceKey property (section
2.2.1.2.5) of a prospective parent folder and a PidTagParentSourceKey property (section

2.2.1.2.6) of a prospective child folder. The folderChange elements that have a
PidTagParentSourceKey property with a zero-length value are children of the root of the
synchronization operation.

For details about how servers determine the set of differences to be downloaded to clients, see
section 3.2.5.3.

2.2.4.3.10 message Element

The message element represents a Message object.

The type of the starting marker to use depends on whether the message is a normal message or an
FAI message. Normal messages use the StartMessage marker; FAI messages use the
StartFAIMsg marker. For more details about markers, see section 2.2.4.1.4.

2.2.4.3.11 messageChange Element

The messageChange element represents a change to a Message object.

A server MUST use the messageChangeFull element, instead of the messageChangePartial
element, if any of the following are true:

The PartialItem flag of the SendOptions field was not set, as specified in section 2.2.3.2.1.1.

The Message ID structure ([MS-OXCDATA] section 2.2.1.2) of the message to be output is not

in the MetaTagIdsetGiven property (section 2.2.1.1.1) from the initial ICS state.

The message is an FAI message.

The message is a conflicting version contained in a conflict resolve message. For more details,

see section 3.1.5.6.2.1.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

79 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Otherwise, the server determines the most efficient way to communicate the message change on a
case-by-case basis.

2.2.4.3.12 messageChildren Element

The messageChildren element represents child objects of the Message objects: Recipient objects
and Attachment objects.

For details about the impact of property and subobject filters that are specified when configuring an
operation on the content of this element, see section 3.2.5.10.

Under the conditions specified in section 3.2.5.10, the PidTagMessageRecipients ([MS-OXPROPS]
section 2.784) property included in a recipient element and the PidTagMessageAttachments
([MS-OXPROPS] section 2.774) property included in an attachment element MUST be preceded by

a MetaTagFXDelProp meta-property (section 2.2.4.1.5.1)and .

2.2.4.3.13 messageChangeFull Element

The messageChangeFull element contains the complete content of a new or changed message:
the message properties, the recipients (1), and the attachments.

Property filters, as specified in section 3.2.5.10, can affect the Message object properties in the

contained propList element, as specified in section 2.2.4.3.20.

2.2.4.3.14 messageChangeHeader Element

The messageChangeHeader element contains a fixed set of information about the message
change that follows this element in the FastTransfer stream. The information in the header is
sufficient for message identification and conflict detection.

The following table lists the restrictions that exist on the contained propList element, as specified in

section 2.2.4.3.20.

Property name Restrictions Comments

PidTagSourceKey (section 2.2.1.2.5) Required

Fixed
position

None.

PidTagLastModificationTime ([MS-
OXPROPS] section 2.753)

Required

Fixed
position

None.

PidTagChangeKey (section
2.2.1.2.7)

Required

Fixed
position

None.

PidTagPredecessorChangeList
(section 2.2.1.2.8)

Required

Fixed
position

None.

PidTagAssociated (section 2.2.1.5) Required

Fixed
position

None.

PidTagMid (section 2.2.1.2.1) Conditional MUST be present if and only if the Eid flag of

%5bMS-OXGLOS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf

80 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Property name Restrictions Comments

the SynchronizationExtraFlags field is set, as
specified in section 2.2.3.2.1.1.1.

PidTagMessageSize (section 2.2.1.6) Conditional MUST be present if and only if the
MessageSize flag of the
SynchronizationExtraFlags field is set.

PidTagChangeNumber (section
2.2.1.2.3)

Conditional MUST be present if and only if the CN flag of
the SynchronizationExtraFlags field is set.

< other properties > Prohibited None.

2.2.4.3.15 messageChangePartial Element

The messageChangePartial element represents the difference in message content since the last
download, as identified by the initial ICS state. Servers SHOULD<20> support partial item

downloads. Changes to a message are output based on the granularity of the property group, as
specified in section 3.2.5.7. The value of the last encountered MetaTagIncrSyncGroupId meta-
property (section 2.2.4.1.5.4) in the stream determines which property group mapping MUST be
used to make partial updates to the messaging object. The MetaTagIncrSyncGroupId meta-

property identifies the groupInfo element in the messageChangePartial element that organizes
properties into property groups for the messaging object in context.

The groupInfo element, as specified in section 2.2.4.3.8, when included in the
messageChangePartial element is not required to be the property group definition of the message
that follows or the definition indicated by the MetaTagIncrSyncGroupId meta-property.

Clients MUST treat every contained propList element, as specified in section 2.2.4.3.20, as the
complete content of a property group denoted by the MetaTagIncrementalSyncMessagePartial

meta-property (section 2.2.4.1.5.5) that preceded it. That is, all properties missing from the
propList element, but defined for this group in the corresponding property group mapping, MUST
be deleted from the Message object. For example, if the value for the preceding

MetaTagIncrementalSyncMessagePartial meta-property is 5, the propList element for the
messageChangePartial element contains all the values of for the properties in group 5. Any
properties in group 5 that are not in the propList of the messageChangePartial element are
deleted from the Message object.

The following table lists the restrictions that exist on the contained propList elements.

Property type name Restrictions Comments

[PtypInteger32] ([MS-
OXCDATA] section 2.11.1)
0x00000003

Conditional MUST be present if and only if a property group is
empty, but was still marked as changed since the
last download.

MUST be 0. MUST be ignored by clients.

[PtypInteger32]

0xFFFFFFFF

Conditional MUST be present if the properties in the properties
that follow don’t exist in any specific property group
in the property group mapping.

< other properties > No
restrictions

None.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

81 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.4.3.16 messageContent Element

The messageContent element represents the content of a message: its properties, the recipients
(1), and the attachments.

Property filters, as specified in section 3.2.5.10, can affect the Message object properties in the
contained propList element, as specified in section 2.2.4.3.20.

Property

name Restrictions Comments

PidTagMid
(section
2.2.1.2.1)

Conditional

Fixed
position

MUST be present in FastTransfer streams created by the
RopFastTransferSourceCopyMessages (section 2.2.3.1.1.3) and
RopFastTransferSourceCopyFolder (section 2.2.3.1.1.4) ROPs.

Clients MUST ignore the value of this property for Embedded Message
objects.

< other
properties >

No
restrictions

None.

2.2.4.3.17 messageList Element

The messageList element contains a list of messages, which is determined by the scope of the
operation.

For each message in the messageList, the server SHOULD output MetaTagEcWarning meta-

property (section 2.2.4.1.5.2) if a client does not have the permissions necessary to access it, as
specified in section 3.2.5.8.1. The warning is necessary to make it possible for a client to tell this
case from a missing message.

2.2.4.3.18 progressPerMessage Element

The progressPerMessage element contains data that describes the approximate size of message

change data that follows.

MUST be present if and only if the progessTotal element, as specified in section 2.2.4.3.18, was
output within the same ancestor contentsSync element, as specified in section 2.2.4.3.2.

MUST NOT be present if the Progress flag of the SynchronizationFlags field was not set when
configuring the synchronization download operation.

The following table lists the restrictions that exist on the contained propList element, as specified in
section 2.2.4.3.20.

Property type name Restrictions Comments

[PtypInteger32]
([MS-OXCDATA] section
2.11.1)

0x00000003

Required

Fixed
position

Size of the message to be follow. Servers can supply the same
value as the PidTagMessageSize property (section 2.2.1.6)
in the messageChangeHeader element, or use a different
approximation.

[PtypBoolean] ([MS-
OXCDATA] section
2.11.1)

0x0000000B

Required

Fixed
position

TRUE (0x0001 or any non-zero value) if the Message object
that follows is FAI; otherwise, FALSE (0x0000). For more
details about the serialization of PtypBoolean values in
FastTransfer streams, see section 2.2.4.1.3.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

82 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Property type name Restrictions Comments

< other properties > Prohibited None.

2.2.4.3.19 progressTotal Element

The progressTotal element contains data that describes the approximate size of all the

messageChange elements, as specified in section 2.2.4.3.11, that will follow in this stream. This
element can be used by clients to display progress information. Servers can use a sum of message
sizes (PidTagMessageSize property (section 2.2.1.6)) for all message changes downloaded in the
current operation, or servers can use a different approximation.

Note that this method of reporting progress is provided in addition to what is available in the
RopFastTransferSourceGetBuffer ROP response, as specified in section 2.2.3.1.1.5. This method

of reporting is supposed to reflect the amount of work more precisely, as it is based on message
sizes, rather than object count.

This element MUST be present if the Progress flag of the SynchronizationFlags field, as specified
in section 2.2.3.2.1.1.1, was set when configuring the synchronization download operation and a
server supports progress reporting.

This element MUST NOT be present if the Progress flag of the SynchronizationFlags field was not
set when configuring the synchronization download operation.

The following table lists the restrictions that exist on the contained propList element, as specified in
section 2.2.4.3.20.

Property type name Restrictions Comments

[PtypBinary] ([MS-OXCDATA]
section 2.11.1)

0x00000102

Required

Fixed
position

Serialized ProgressInformation structure. For more
details, see section 2.2.2.7.

< other properties > Prohibited None.

2.2.4.3.20 propList Element

The propList elements SHOULD NOT<21> contain propValue elements for meta-properties. All
instances in which meta-properties, as specified in section 2.2.4.1.5, can be encountered in a
document are mentioned explicitly in the syntax ABNF specified in section 2.2.4.2.

Syntactic elements that contain a propList element can express restrictions on a set of properties
and/or the position of properties within a list by using property list restriction table syntax, as
specified in section 2.2.

Properties that contain an error (have the PtypErrorCode type, as specified in [MS-OXCDATA]
section 2.11.1) instead of an actual value MUST be omitted from the propList element.

2.2.4.3.21 propValue Element

The propValue element represents identification information and the value of the property.

Note that the protocol imposes no limit on the size of data that can be encoded using this element,

unlike the response buffers of the RopQueryRows ROP ([MS-OXCROPS] section 2.2.5.4) and the
RopGetPropertiesSpecific ROP ([MS-OXCROPS] section 2.2.8.3). Clients and servers MUST fail

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

83 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

the operation if the size of data being sent or received is larger than the maximum size imposed by
an implementation, rather than truncating the data. For details about the maximum size of a

FastTransfer stream for upload, see section 2.2.3.1.2.2.1. For details about the maximum size of a
FastTransfer stream for download, see section 3.2.5.8.1.5.

2.2.4.3.22 readStateChanges Element

The readStateChanges element contains information about Message ID structures ([MS-
OXCDATA] section 2.2.1.2) of Message objects that had their read state changed since the last
synchronization, as specified by the initial ICS state. For details about how servers determine the
set of IDs to be reported by using this element, see section 3.2.5.3.

This element MUST be present if there are changes to the read state of messages This element

SHOULD NOT be present if the ReadState flag of the SynchronizationFlags field was not set
when configuring the synchronization download operation.

The following restrictions exist on the contained propList element, as specified in section
2.2.4.3.20:

MUST contain at least one property.

MUST adhere to the following restrictions:

Property name Restrictions Comments

MetaTagIdsetRead (section 2.2.1.3.4) No restrictions None.

MetaTagIdsetUnread (section 2.2.1.3.5) No restrictions None.

< other properties > Prohibited None.

2.2.4.3.23 recipient Element

The recipient element represents a Recipient object, which is a subobject of the Message object.

The propList child element, as specified in section 2.2.4.3.20, contains the properties of the
Recipient object.

The following table lists the restrictions that exist on the contained propList element.

Property name Restrictions Comments

PidTagRowid ([MS-OXPROPS] section 2.928) Required

Fixed position

None.

< other properties > No restrictions None.

2.2.4.3.24 root Element

The root element contains the root element of FastTransfer streams.

Producers of the FastTransfer stream MUST choose a contained element to generate depending on

the Bulk Data Transfer operation in effect. For more details, see the mapping specified in section
2.2.4.4 and section 2.2.3.1.2.1.1.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXPROPS%5d.pdf

84 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.4.3.25 state Element

The state element contains the final ICS state of the synchronization download operation. For
details about how servers construct the final ICS state, see sections 3.1.5.3 and 3.2.5.3.

The following table lists the restrictions that exist on the contained propList element, as specified in
section 2.2.4.3.20.

Property name Restrictions Comments

MetaTagIdsetGiven (section
2.2.1.1.1)

No
restrictions

None.

MetaTagCnsetSeen (section
2.2.1.1.2)

No
restrictions

None.

MetaTagCnsetSeenFAI
(section 2.2.1.1.3)

Conditional MUST NOT be present if the SynchronizationType
field is set to Hierarchy (0x02), as specified in section
2.2.3.2.1.1.1.

MetaTagCnsetRead (section
2.2.1.1.4)

Conditional MUST NOT be present if the SynchronizationType
field is set to Hierarchy (0x02).

< other properties > Prohibited None.

2.2.4.4 FastTransfer Streams in ROPs

The following table describes how possible root elements in the FastTransfer stream correspond to
Bulk Data Transfer operations defined in section 2.2.3. Every download operation has to be
configured prior to being able to produce a FastTransfer stream. Configuration starts by sending one
of the ROPs in the following table and then performing the additional ROP specific configuration
steps, as specified in sections 3.3.4.1 and 3.3.4.3.2.

ROP that initiates an operation

Root element in the

produced FastTransfer

stream

ROP request buffer field

conditions

RopSynchronizationConfigure contentsSync The SynchronizationType
field is set to Contents
(0x01).

 hierarchySync The SynchronizationType
field is set to Hierarchy
(0x02).

RopSynchronizationGetTransferState state Always.

RopFastTranserSourceCopyTo

RopFastTranserSourceCopyProperties

folderContent The InputServerObject field
is a Folder object.<22>

 messageContent The InputServerObject field
is a Message object.

 attachmentContent The InputServerObject field
is an Attachment object.<23>

RopFastTranserSourceCopyMessages messageList Always.

85 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

ROP that initiates an operation

Root element in the

produced FastTransfer

stream

ROP request buffer field

conditions

RopFastTranserSourceCopyFolder topFolder Always.

FastTransfer streams produced by operations initiated by the RopSynchronizationConfigure ROP
are intended for processing on the client only.

FastTransfer streams produced by operations initiated with the RopFastTransferSource* ROPs
can either be processed by the client or uploaded to the server through an operation initiated by the
RopFastTransferDestinationConfigure ROP. For details about the applicability of FastTransfer

streams to FastTransfer upload operations, see section 2.2.3.1.2.1.1.

86 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3 Protocol Details

3.1 Common Details

The protocol details in this section contain formulas operating on sets of elements, which include the
operators and special identifiers listed in the following table.

Operator or special

identifier Example Definition

∪ A ∪ B A union of two sets. Every element in the resulting set belongs to
either A, or B, or both.

∩ A ∩ B An intersection of two sets. Every element in the resulting set
belongs to both A and B.

{ } {A1,..., An} A set consisting of elements A1 through An.

⊆

⊇

B ⊆ A

A ⊇ B

B is a subset of or equal to A: every element of B is also an
element of A.

+= Set +=
element

An instruction to include an element into a set. The Set is assigned
to

Set {element}.

ø A = ø An empty set: a set that contains no elements. Set A is asserted
to be an empty set, it has no elements.

\ C =A \ B A relative compliment: the elements belonging to A that are not in
B. Set C is the relative compliment of sets A and B.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

This protocol includes the following abstract data model (ADM) types and elements:

Global.Handle, as specified in [MS-OXCRPC] section 3.1.1.

Session context cookie<24>, as specified in [MS-OXCMAPIHTTP] section 3.1.1.

Mailbox, as specified in [MS-OXCMSG] section 3.1.1.2. Additional elements for the Mailbox

ADM type are defined in section 3.1.1.1.

The following ADM types are defined in this section:

MessagingObject, as specified in section 3.1.1.2.

ICSState, as specified in section 3.1.1.3.

%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCMSG%5d.pdf

87 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.1.1.1 Per Mailbox

Mailboxes are represented by the Mailbox ADM type. The following ADM element is maintained by
the client for each Mailbox ADM type:

Mailbox.MessagingObject: A Folder object, Attachment object, or Message object only.

3.1.1.2 Per Messaging Object

Messaging objects are represented by the MessagingObject ADM type. The following ADM
elements are maintained by the client for each MessagingObject ADM type:

MessagingObject.Mid: An identifier for a Mailbox.MessagingObject ADM type that is a Message
or Attachment object, as specified in section 2.2.1.2.1.

MessagingObject.FolderId: An identifier for a Mailbox.MessagingObject ADM type that is a
Folder object, as specified in section 2.2.1.2.2.

MessagingObject.ParentFolderId: An identifier for a Mailbox.MessagingObject ADM type that
is a Folder object containing another Folder object, as specified in section 2.2.1.2.4.

MessagingObject.ChangeNumber: An identifier for a version of a Mailbox.MessagingObject
ADM type, as specified in section 2.2.1.2.3.

3.1.1.3 Per ICS State

ICS states are represented by the ICSState ADM type. Each ICSState ADM type represents the
state of either a content synchronization or a hierarchy synchronization operation. The following
abstract data elements are maintained for each ICSState ADM type:

ICSState.State: A state that identifies the Mailbox.MessagingObject ADM types that have been
communicated to the client at a particular point in time. The following ICSState.State ADM element

values identify the point in time the ICSState.State ADM element represents:

Initial. The ICS state provided by the client at the beginning of the ICS operation. The server

compares the values of the initial ICS state properties to its version, and downloads the
differences.

Checkpoint. The ICS state provided by the server during the ICS operation.

Final. The ICS state provided by the server at the end of the ICS operation.

ICSState.SeenNormal: Contains a set of Mailbox.MessagingObject.ChangeNumber ADM
element values that identify changes to normal messages that have been communicated to the
client, as specified in section 2.2.1.1.2.

ICSState.SeenFAI: Contains a set of Mailbox.MessagingObject.ChangeNumber ADM element
values that identify changes to FAI messages that have been communicated to the client, as
specified in section 2.2.1.1.3.

ICSState.Read: Contains a set of Mailbox.MessagingObject.ChangeNumber ADM element
values that identify the read state changes of messages that have been communicated to the client,
as specified in section 2.2.1.1.4.

ICSState.IdsetGiven: Contains a set of Mailbox.MessagingObject.Mid or
Mailbox.MessagingObject.FolderId ADM element values that exist on the client, as specified in
section 2.2.1.1.1.

88 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

ROPs discussed in this document are synchronous and MUST be executed in the order outlined for
each operation specified in sections 3.3.4.1, 3.3.4.2, 3.3.4.2.1, 3.3.4.3.2, and 3.3.4.3.3. Otherwise,
the client and server behavior remains undefined.

3.1.5.1 Isolating Download and Upload Operations

Upload and download operations are not always isolated transactions. Upload and download
operations can be affected by other operations on messaging objects.

To counteract the lack of transaction isolation between ICS download operations and the rest of
operations that occur on messaging objects at the same time, servers MUST guarantee that the final
ICS state does not reflect the state of the server replica at the end of the operation, but instead
reflects the actual differences downloaded to a client, combined with the initial ICS state.

3.1.5.2 Managing ICS State Properties

By using the ICS state properties specified in section 2.2.1.1, only differences that are relevant to a

client are downloaded and the same information is only downloaded once. The ICS state is produced
by the server, optionally modified by the client, and persisted exclusively on the client. The client

passes the ICS state to the server immediately after configuring a synchronization context for
download or upload. The server uses the ICS state and the synchronization scope, as defined during
initialization of the synchronization download context, to determine the set of differences to
download to the client. At the end of the synchronization operation, the client is given a new ICS

state, commonly referred to as the final ICS state.

ICS state properties are not persisted on the server and are only present as data in the FastTransfer
stream and in the fields of ROPs that support synchronization. The server uses the synchronization
scope and ICS state to determine what differences to download to the client. For more server-
specific details, see section 3.2.5.3. Ordinarily, the server modifies the ICS state properties and
sends them back to the client in the FastTransfer stream or ROP responses. Another method of
sending state information back to the client is checkpointing, as specified in section 3.3.5.6.

Note that for the purposes of reducing the wire size of the ICS state by enabling compacting of
regions, as specified in section 3.1.5.5, and optimizing for performance of determining a set of

differences to be downloaded to clients, servers can include extra IDs in IDSETs that represent
CNSETs, as specified in section 2.2.2.4, as long as that will never affect the sets of differences that
are downloaded to clients.

During the first synchronization of a synchronization scope, a client MUST send the relevant ICS
state properties as zero-length byte arrays. The server assumes that the ICS state properties are

zero-length byte arrays if a client fails to send them when setting up a content synchronization

89 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

download operation. It is recommended that clients always send all ICS state properties that are
relevant to a selected synchronization mode, defaulting them to zero-length byte arrays.

3.1.5.2.1 Sending and Receiving the PidTagIdsetGiven ICS State Property

The property tag for this property suggests that it is of type PtypInteger32 ([MS-OXCDATA]
section 2.11.1), but the data MUST be handled as PtypBinary ([MS-OXCDATA] section 2.11.1) data
by both clients and servers. Clients and servers SHOULD send the PidTagIdsetGiven property
(section 2.2.1.1.1) with a property tag that defines it as PtypInteger32; however, servers SHOULD
accept this property when the property tag identifies it as PtypInteger32 or PtypBinary.

This property is ignored for synchronization upload operations and is not downloaded back to the
client in the final ICS state obtained for them through the RopSynchronizationGetTransferState

ROP. Clients SHOULD remove this property before uploading the initial ICS state on synchronization
upload contexts and clients MUST merge this property back in when receiving the final ICS state
from the server. However, if the client does not remove this property before uploading the initial ICS
state, there is no server impact. Clients MUST add IDs of messaging objects created in or originating

from a local replica to this property by using a process called checkpointing, as specified in section
3.3.5.6.

3.1.5.3 Identifying Objects and Maintaining Change Numbers

On creation, objects in the mailbox are assigned internal identifiers (2), commonly known as Folder
ID structures ([MS-OXCDATA] section 2.2.1.1) for folders and Message ID structures ([MS-
OXCDATA] section 2.2.1.2) for messages. After internal identifiers (2) are assigned to an object,
they MUST never be reused, even if the object it was first assigned to no longer exists. Copying of
messaging objects within a mailbox or moving messages between folders of the same mailbox

translates into creation of new messaging objects and therefore, new internal identifiers (2) MUST
be assigned to new copies. All communications with the server MUST be based on these server-
compatible internal identifiers (2). All other observed behavior is an implementation detail, and not
a part of the protocol, and therefore MUST NOT be relied upon.

In most cases, the server is responsible for assigning internal identifiers (2) to mailbox objects,

which happens during execution of ROPs, such as RopSaveChangesMessage ([MS-OXCROPS]
section 2.2.6.3) and RopCopyTo ([MS-OXCROPS] section 2.2.8.12), or while processing events not

controlled by the client (such as Message object delivery).

Messaging objects also maintain a change number by using the CN structure, as specified in section
2.2.2.1, which identifies a version of an object and adheres to the same rules as internal identifiers
(2) for messaging objects. When a new object is created, it is assigned a change number. A new
change number is assigned to a messaging object each time it is modified. For messages, in addition
to a change number for the entire message, there are additional mechanisms for tracking changes

to their elements, such as the read state, as specified in section 3.2.5.6, and properties and
subobjects arranged into groups, as specified in section 3.2.5.7.

For folders, a change number indicates whether the folder itself has changed, it does not indicate
whether the contained messages or aggregated folder properties have changed. If a message within
a folder changes, the change number is not updated; however, the aggregated property

PidTagLocalCommitTimeMax property ([MS-OXCFOLD] section 2.2.2.2.1.12) is modified to reflect
that something within the folder has been changed. Also, if a message is deleted within the folder,

the value of the folder change number does not change, but the aggregated
PidTagDeletedCountTotal property ([MS-OXCFOLD] section 2.2.2.2.1.13) is updated to reflect the
change. A client can monitor these aggregated properties on a folder to determine whether the
folder has changed and whether the client needs to synchronize the contents of the folder.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCFOLD%5d.pdf

90 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

A protocol role that generates internal identifiers (2) for messaging objects and changes MUST
ensure that the GLOBCNT structure portions, as specified in section 2.2.2.5, of the internal

identifiers (2) that share the same REPLGUID structure, as specified in the XID structure in section
2.2.2.2, only increase with time, when compared byte to byte.

Whenever a change number is changed on a messaging object as the result of the direct
modification of the object in a replica (1), as opposed to synchronization, its Predecessor Change
List (PCL) MUST be merged with the XID value that represents the new change number.

Clients that use ICS upload to synchronize their local replica with a server replica MUST assign
identifiers to client-originated objects in a local replica by using one of the mechanisms specified in
section 3.3.5.2.1. Clients MUST generate foreign identifiers, as specified in section 3.3.5.2.3, to
identify client-side changes to objects that they export through ICS upload.

Upon successful import of a new or changed object using ICS upload, the server MUST do the
following when receiving the RopSaveChangesMessage ROP:

Assign the object a new internal change number (PidTagChangeNumber property (section

2.2.1.2.3)). This is necessary because the server MUST be able to represent the imported version
in the MetaTagCnsetSeen (section 2.2.1.1.2) or MetaTagCnsetSeenFAI (section 2.2.1.1.3)
properties, and these properties cannot operate on foreign identifiers for change numbers that

a client passes.

Assign the object an internal identifier (2). If the object is a folder, the PidTagFolderId property

(section 2.2.1.2.2) is assigned. If the object is a message, the PidTagMid property (section
2.2.1.2.1) is assigned.

Convert the GID structure ([MS-OXCDATA] section 2.2.1.3) to a short-term internal identifier

(2) and assign it to an imported object, if the external identifier is a GID value.

Assign the object the given PidTagChangeKey property value (section 2.2.1.2.7) and

PidTagPredecessorChangeList (section 2.2.1.2.8) that equals PCL {PidTagChangeKey}.

If the import of the object triggered detection of a conflict, the server MUST follow the previous

steps for a version of the object resulting from the conflict resolution. For details about handling
conflict, see section 3.1.5.6.

Foreign identifiers supplied by clients for change identification (such as the PidTagChangeKey

property) are replaced whenever their corresponding internal identifiers (2) change. Examples are
provided in the following table. The table uses the following notation:

Equals sign (=) to specify that a property is set to the value specified and uses the equals and p.

For example, PidTagSourceKey = GID(ID1) means that the PidTagSourceKey property
(section 2.2.1.2.5) is set to the value of the initial global identifier.

Plus sign followed by equals sign (+=) to specify that the value has been incremented. For

example, an initial change number of 1 (CN1) increments to 2 (CN2) as changes are made to the
message or folder.

Sequence of client action Updates made on the server

RopSynchronizationImportMessageChange ROP (section
2.2.3.2.4.2) for a new message:

PidTagSourceKey = GID(ID1)

PidTagSourceKey = GID(ID1)

PidTagMid= ID1

PidTagChangeKey = XCN1

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXGLOS%5d.pdf

91 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Sequence of client action Updates made on the server

PidTagChangeKey = XCN1

Client checkpoints the stored initial ICS state:

MetaTagIdsetGiven += ID2

PidTagChangeNumber = CN2

Final ICS state: MetaTagCnsetSeen

+= CN2

RopSynchronizationImportMessageChange ROP

PidTagSourceKey = GID(ID1)

PidTagChangeKey = XCN3

PidTagChangeKey = XCN3

PidTagChangeNumber = CN4

Final ICS state: MetaTagCnsetSeen

+= CN4

ICS download of contents
PidTagSourceKey = GID(ID1)

PidTagMid = ID1

PidTagChangeKey = XCN3

PidTagChangeNumber = CN4

RopOpenMessage ROP ([MS-OXCROPS] section 2.2.6.1)

RopSetProperties ROP ([MS-OXCROPS] section 2.2.8.6)

RopSaveChangesMessage ROP

PidTagChangeNumber = CN5

ICS download
Changes to a message:

PidTagSourceKey = GID(ID1)

PidTagMid = ID1

PidTagChangeKey = GID(CN5)

PidTagChangeNumber = CN5

Final ICS state: MetaTagCnsetSeen

+= CN5

RopSynchronizationImportMessageMove ROP (section
2.2.3.2.4.4) Message is hard deleted in the source

folder A.

A copy of the message is created in

destination folder B with:

PidTagMid = ID2

PidTagChangeNumber = CN6

ICS download of contents for folder A
Deletions: ID1

Final ICS state: MetaTagIdsetGiven

-= ID1

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

92 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Sequence of client action Updates made on the server

ICS download of contents for folder B
New message:

PidTagSourceKey = GID(ID2)

PidTagMid = ID2

PidTagChangeKey = GID(CN6)

PidTagChangeNumber = CN6

Final ICS state:

MetaTagIdsetGiven -= ID2

MetaTagCnsetSeen += CN6

RopSynchronizationImportMessageChange ROP

PidTagSourceKey = GID(ID2)

PidTagChangeKey = XCN7

PidTagChangeKey = XCN7

PidTagChangeNumber = CN8

3.1.5.4 Serializing an IDSET Structure

When an IDSET structure, as specified in section 2.2.2.4, has to be transmitted from a client to a
server or from a server to a client, it has to be serialized. This section specifies details about how to
serialize an IDSET.

3.1.5.4.1 Formatted IDSET Structures

Before serialization, the contents of an IDSET structure, as specified in section 2.2.2.4, have to be

arranged in such a way as to allow it to be properly encoded. The ID values MUST be arranged by
REPLID structure value and all IDs for each REPLID MUST be reduced into a GLOBSET, as
specified in section 2.2.2.6, of GLOBCNTs, as specified in section 2.2.2.5. Each GLOBSET MUST be

arranged from lowest to highest GLOBCNT value where all duplicate GLOBCNT values are
removed. The remaining GLOBCNT values MUST be grouped into consecutive ranges with a low
GLOBCNT value and a high GLOBCNT value. If a GLOBCNT value is disjoint it MUST be made into
a singleton range with the low and high GLOBCNT values being the same. The following figure
shows what a properly formatted IDSET looks like for serialization.

93 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Figure 1: Formatted IDSET structure

3.1.5.4.2 IDSET Serialization

There are two different formats in which a serialized IDSET structure, as specified in section
2.2.2.4, can exist on the wire. The only difference is how the REPLID structure is represented in the
serialization buffer. The first format contains the REPLID followed by the GLOBSET, as specified in
section 2.2.2.6, and is used by the following properties: MetaTagIdsetDeleted (section 2.2.1.3.1),
MetaTagIdsetNoLongerInScope (section 2.2.1.3.2), MetaTagIdsetExpired (section 2.2.1.3.3),

MetaTagIdsetRead (section 2.2.1.3.4), and MetaTagIdsetUnread (section 2.2.1.3.5). The
second format contains, instead of the REPLID, the REPLGUID that is associated with the

REPLID, followed by the GLOBSET, and it is used by the following properties:
MetaTagIdsetGiven (section 2.2.1.1.1), MetaTagCnsetSeen (section 2.2.1.1.2),
MetaTagCnsetSeenFAI (section 2.2.1.1.3), MetaTagCnsetRead (section 2.2.1.1.4). No
information contained in the serialized buffer identifies which format is being used. The context in
which the serialized IDSET structure is being used on the wire dictates which format MUST be used:

if an IDSET was persisted or is intended to be persisted across sessions, such as when it represents
a portion of an ICS state, as specified in section 2.2.1.1, it MUST be transmitted in the REPLGUID-
based form. If it's only a part of a transient set of data, like IDs of items that were deleted since the
last synchronization, as specified in section 2.2.1.3.1, it MUST be transmitted in a REPLID-based
form. Sections 3.1.5.4.3 through section 3.1.5.4.3.2.5 specify the layout of both formats on the
wire. REPLID-based format can be converted to REPLGUID-based format by using mapping
operations, as specified in [MS-OXCSTOR].

For more details about the format of each serialized IDSET structure, see section 2.2.2.4.

3.1.5.4.3 GLOBSET Serialization

The serialization of IDSET structures, as specified in section 3.1.5.4.2, requires each GLOBSET
structure, as specified in section 2.2.2.6, within the IDSET, as specified in section 2.2.2.4, to be
serialized. The GLOBCNT ranges, as specified in section 2.2.2.5, within the GLOBSET structure are
serialized by using special encoding commands to compress the amount of data for each GLOBCNT

pair. This section specifies details about how to encode and decode a GLOBSET during IDSET
serialization.

%5bMS-OXCSTOR%5d.pdf

94 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Because compression is achieved by using a common byte stack to encode or decode the high order
bytes of all GLOBCNT values, the encoder or decoder MUST construct a byte stack before

implementing any of these commands.

3.1.5.4.3.1 Encoding

The commands specified in the following sections can be used to encode a GLOBSET structure, as
specified in section 2.2.2.6.

Aside from the requirements set forth in this section, this specification does not mandate how the
encoding and decoding commands are used. When more than one command can be used to achieve
the same result set, the choice of command used is an implementation decision.

3.1.5.4.3.1.1 Push Command (0x01 – 0x06)

The Push command, as specified in section 2.2.2.6.1, SHOULD be used when multiple GLOBCNT
structure values, as specified in section 2.2.2.5, share the same high-order values. For example, if

all GLOBCNT values have the same two high-order bytes, use the Push command (0x02) to push
two bytes onto the common byte stack. These two bytes are used to create GLOBCNT value pairs
during decoding.

The Push command can also be used to generate an encoding for a singleton range where the low
value and the high value are the same. When a Push command places a sixth byte onto the
common byte stack, it tells the decoder the next GLOBCNT pair has all six bytes in common. This
places a singleton GLOBCNT range into the GLOBSET structure, as specified in section 2.2.2.6,
when decoded. The values added to the common byte stack on the last Push command are
removed automatically and do not require a Pop command.

For more details about the format of the Push command, see section 2.2.2.6.1.

3.1.5.4.3.1.2 Pop Command (0x50)

Bytes that have been pushed onto the common byte stack with a Push command, as specified in

section 2.2.2.6.1, can be removed using the Pop command, as specified in section 2.2.2.6.2. The
Push and Pop commands are used together to adjust the bytes that are stored on the common
byte stack. The common byte stack is used to reduce the amount of serialized data if the GLOBCNT
structures, as specified in section 2.2.2.5, all share common high-order bytes. This allows for those

common high-order bytes to be encoded and placed into the serialization buffer only once and not
repeated with every GLOBCNT. The Pop command MUST NOT be used if no bytes are currently on
the common byte stack.

For more details about the format of the Pop command, see section 2.2.2.6.2.

3.1.5.4.3.1.3 Bitmask Command (0x42)

The Bitmask command, as specified in section 2.2.2.6.3, is used when there are multiple

GLOBCNT ranges, as specified in section 2.2.2.5, that share five high-order bytes in common and
the low-order bytes are all within 8 values of each other. Each GLOBCNT range is represented by

one or more bits in a bitmask. There MUST already be five high-order bytes in the common byte
stack to use this command. The Bitmask command can only represent at most five GLOBCNT
ranges.

For more details about the format of the Bitmask command and its fields, see section 2.2.2.6.3.

The StartingValue field, as specified in section 2.2.2.6.3, MUST be set to the low-order byte of the
low value of the first GLOBCNT range. The Bitmask field, specified in section 2.2.2.6.3, MUST have

95 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

one bit set for each value within a range, excluding the low value of the first GLOBCNT range. The
bit to set for each value within a range is determined by subtracting the low-order byte of the

GLOBCNT from one more than the value of the StartingValue field. This produces a 0 based bit
number value, where zero (0) is the lowest order bit and 7 is the highest order bit in the Bitmask

field. For all GLOBCNTs between ranges, the bit associated with the value is not set in the bitmask.

For example, given a set of ranges where all have the same five high-order bytes in common and
the low-order bytes are the values {0x01-0x03, 0x05-0x05, 0x07-0x09}, it would be encoded with
a value for the StartingValue field of 0x01 and the value of the Bitmask field would be 0xEB. The
value of the Bitmask field is broken down in the following table.

Low-Order Byte Value 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02

Bit Number 7 6 5 4 3 2 1 0

Bit Value 1 1 1 0 1 0 1 1

If you take the value of the StartingValue field and each low-order byte value corresponding to a
bit that is set in the Bitmask field, you end up with the low-order byte values {0x01, 0x02, 0x03,
0x05, 0x07, 0x08, 0x09}. If you collapse these into ranges, you have {0x01-0x03, 0x05-0x05,
0x07-0x09}.

3.1.5.4.3.1.4 Range Command (0x52)

The Range command, as specified in section 2.2.2.6.4, is used to generate a single GLOBCNT
structure range, as specified in section 2.2.2.5. If the low and high value of the GLOBCNT range are
not the same, or the range has values that are more than 8 bytes from each other or the low and
high value do not share five high-order bytes in common, the Range command MUST be used.

If the low and high GLOBCNT values share common high-order bytes, these SHOULD be pushed

onto the common byte stack by using the Push command, as specified in section 2.2.2.6.1, prior to
using the Range command. The low-order bytes that are not in common are used to build the
Range command.

For more details about the format of the Range command and its fields, see section 2.2.2.6.4.

3.1.5.4.3.1.5 End Command (0x00)

The End command, as specified in section 2.2.2.6.5, is used to signal the end of the GLOBSET

structure encoding, as specified in section 2.2.2.6. This command MUST be added after all
GLOBCNT structure ranges, as specified in section 2.2.2.5, within the GLOBSET have been
encoded. The End command can only be used if the common byte stack is empty. If after all
GLOBCNT ranges have been encoded, there are still bytes on the common byte stack, they MUST
be removed with one or more Pop commands, as specified in section 2.2.2.6.1, before the End
command can be used.

For more details about the format of the End command, see section 2.2.2.6.5.

3.1.5.4.3.2 Decoding

The commands specified in this section can exist in a serialized GLOBSET structure. The server
SHOULD send the client an RpcFormat error (0x000004B6), or MAY send a FormatError error
(0x000004ED)<25>, as specified in [MS-OXCDATA] section 2.4.1, if it encounters an unsupported
command or any other decoding failures.

%5bMS-OXCDATA%5d.pdf

96 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.1.5.4.3.2.1 Push Command (0x01 – 0x06)

The Push command, as specified in section 2.2.2.6.1, can add 2 to 6 bytes of high-order bytes to a
common byte stack. When a decoding role encounters a Push command during the decoding

process, the decoder adds the number of bytes indicated by the Push command to a common byte
stack from highest to lowest byte order. The common byte stack is used in conjunction with
subsequent encoding commands to build GLOBCNT structure value pairs, as specified in section
2.2.2.5, that represent GLOBCNT ranges within the GLOBSET structure. When building a
GLOBCNT, all the bytes on the common byte stack are used and any remaining bytes required for a
complete GLOBCNT have to come from the next encoding command in the stream.

For more details about the format of the Push command in the serialization buffer, see section

2.2.2.6.1.

3.1.5.4.3.2.2 Pop Command (0x50)

The Pop command, as specified in section 2.2.2.6.1, removes the bytes that were previously

pushed onto the common byte stack from the last Push command, as specified in section 2.2.2.6.1.
The Pop command unwinds the stack in the reverse order in which the bytes where pushed.

For more details about the format of the Pop command in the serialization buffer, see section
2.2.2.6.2.

3.1.5.4.3.2.3 Bitmask Command (0x42)

The decoder only encounters the Bitmask command, as specified in section 2.2.2.6.3, when there
are five bytes in the common byte stack. The server SHOULD send the client an RpcFormat error
(0x000004B6), and MAY send the client a FormatError error (0x000004ED)<26>, as specified in

[MS-OXCDATA] section 2.4.1, if the decoder encounters the Bitmask command when there are
more or fewer than five bytes in the common byte stack.

For more details about the format of the Bitmask command and its fields, see section 2.2.2.6.3.

Using the StartingValue and the Bitmask fields, as specified in section 2.2.2.6.3, a set of low-
order bytes can be produced. For more details about decoding the Bitmask field to produce
individual low-order values, see section 3.1.5.4.3.1.3. Each low-order byte MUST be combined with
the required five high-order bytes on the common byte stack to form a complete 6-byte GLOBCNT

structure, as specified in section 2.2.2.5, which MUST be added to the GLOBSET structure.

3.1.5.4.3.2.4 Range Command (0x52)

The Range command, as specified in section 2.2.2.6.4, generates a GLOBCNT structure range, as
specified in section 2.2.2.5. The GLOBCNT structure range MUST be added to the GLOBSET
structure.

For details about the format of the Range command and its fields, see section 2.2.2.6.4.

The Range command contains two byte array fields, the LowValue and HighValue as specified in
section 2.2.2.6.4. Each of these fields MUST be combined with any high-order bytes in the common

byte stack to produce a 6-byte GLOBCNT structure. The two GLOBCNT structures are the low and
high value of the GLOBCNT range.

The server SHOULD send the client an RpcFormat error (0x000004B6), and MAY send the client a
FormatError error (0x000004ED)<27>, as specified in [MS-OXCDATA] section 2.4.1, if the high

value of the range is larger than the low value of the range.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

97 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.1.5.4.3.2.5 End Command (0x00)

When the End command, as specified in section 2.2.2.6.5, is encountered, the GLOBSET structure
MUST be complete based on the GLOBCNT structure values, as specified in section 2.2.2.5,

generated from any previous encoding commands.

3.1.5.5 Creating Compact IDSET Structures

As the number of changes that happen to a folder grows over time, the sets of Message ID ([MS-
OXCDATA] section 2.2.1.2) and CN structures, as specified in section 2.2.2.1, that are kept in an
IDSET structure, as specified in section 2.2.2.4, grow as well. The size of the IDSET is rarely a
problem for hierarchy synchronization operations due to the small number of folders commonly

present in mailboxes. Therefore, this discussion focuses on content synchronization operations. In
this section, the term IDSET is used to refer to both IDSET and CNSET structures.

The following mechanisms are available to help optimize IDSET structures for performance:

1. IDSET compression: The wire format of IDSET structures is optimized for consecutive ranges

and sets of nonconsecutive IDs that have close values.

2. Clustering of IDs: Clients and servers SHOULD allocate IDs of messages within a folder from

contiguous sets of IDs. This optimization is based on an assumption that with time, all old
messages are either deleted or moved to another folder, and so all of their IDs could be
represented as one range. For more details, see section 3.3.5.2.1.

3. Collapsing of ranges: If an IDSET structure is never iterated over and is only used in operations
like "not in", it is possible to add ranges of IDs to the IDSET structure to help collapse its
regions, if that would not affect the results of operations it is used in.

Note that because the synchronization scope limits synchronization to one folder, and the algorithm

for determining the difference between replicas (1), as specified in section 3.2.5.3, only checks that
a certain ID is not in the MetaTagCnset * properties, it is possible to add CN structures that were
either never used or used on objects outside the synchronization scope to these IDSET structures

without affecting the outcome. Note that this MUST NOT be done for IDSET structures that are ever
iterated over, such as the MetaTagIdsetGiven property (section 2.2.1.1.1), as it will change the
outcome.

For example, an IDSET structure contains [10; 20] and [30; 40] for some REPLGUID. Because

every internal change number within the same REPLGUID structure MUST be greater than any
previous one, and the change numbers [21; 29] do not belong to any messages in the current
folder, the two regions can be safely collapsed into [10; 40].

3.1.5.6 Conflict Handling

The properties that are associated with a message or a folder can be modified by the server or client
at any time. Synchronizing these changes can result in conflicts in which a server or a client has to

determine which set of message properties or folder properties to use: the local copy, or the copy
being replicated.

This specification does not mandate that clients implement any conflict handling. However, if
clients do implement conflict handling, their conflict handling logic MUST use an algorithm that
provides the same output as the one mandated for servers, as specified in this section, to ensure
the consistency of user experience regardless of the protocol role performing the conflict handling.

When referring to synchronization in this specification, both download and upload are considered,
unless specified otherwise.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

98 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.1.5.6.1 Detection

Servers MUST implement conflict detection using an algorithm that provides the same output as the
one described in this section.

Servers MUST perform conflict detection on ICS uploads for versions of messaging objects stored in
a server replica and passed by the client through the RopSynchronizationImport* ROPs.

Conflict detection is performed by examining the PidTagPredecessorChangeList properties
(section 2.2.1.2.8) for objects that have the same value for the PidTagSourceKey property
(section 2.2.1.2.5).

Clients can perform conflict detection during ICS download for versions of objects stored in a local
replica and passed by the server in a FastTransfer stream.

To illustrate the use of PCLs in conflict detection, the following algorithm uses sample PCLs (PCLA
and PCLB) to detect a conflict between two versions of the same messaging object.

Conflict Detection Algorithm

PCLA includes PCLB if and only if for every XID structure, as specified in section 2.2.2.2, in PCLB
there is an XID structure in PCLA that has a NamespaceGuid field with the same value, and the
same or greater value for the LocalId field. The notation PCLA ≥ PCLB is used if PCLA includes or is

equal to PCLB.

If a change to a messaging object is being synchronized from replica A to replica B, use the
following statements to identify the conflict and the version to replicate:

1. If PCLA includes PCLB, then the version from replica A is newer and replaces the version in
replica B.

2. If PCLB includes or is equal to PCLA, then the version from replica A is older, and is ignored. The
version in replica B remains intact.

3. If neither 1 nor 2 is true, then versions from replicas A and B are in conflict.

Servers can create and implement additional conflict detection mechanisms, as long as PCLs for
object versions that do and do not conflict adhere to these criteria.

The following figure shows how to detect a synchronization conflict when comparing the
PidTagPredecessorChangeList property (section 2.2.1.2.8).

99 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Figure 2: Conflict details

The figure simplifies the contents of the PCL to focus on the comparison. Each CN structure, as
specified in section 2.2.2.1, within the PCL in the figure is represented by a letter (A for server
changes, and B for client changes) and an increasing number.

The server-side PCL is missing a B2 change, while the client side PCL is missing A2; therefore, each

has changes the other has not seen, and thus these modifications are conflicting.

The following sections describe the details of synchronization when detecting conflicting changes.

3.1.5.6.2 Resolution

At a minimum, servers MUST implement conflict resolution to the extent specified in this section.
Servers can implement additional resolution algorithms. Any additional resolution algorithms MUST
NOT result in the creation of conflict resolve messages, as specified in section 3.1.5.6.2.1.

A version that results from conflict resolution MUST have a PCL that makes it a successor of all
conflicting versions. To achieve that, protocol roles SHOULD assign the successor a PCL created by
merging the PCLs of all conflicting versions.

Version X is a successor of versions A and B if and only if the conflict detection algorithm specified in
section 3.1.5.6.1 would determine that X is not in conflict and is newer than both A and B.

PCLX is a merge of PCLA and PCLB if and only if all of the following statements are true:

PCLX ⊆ (PCLA ∪ PCLB)

PCLX ≥ PCLA

PCLX ≥ PCLB

100 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.1.5.6.2.1 Conflict Resolve Message

A conflict resolve message provides a way to encapsulate conflicting versions of a Message object
into a single Message object, by storing all the versions of the Message object as individual

attachments to the new Message object and choosing a temporary winning message and copying it
as the message contents. The contents of the conflict resolve message include all properties and
subobjects of the winning version; therefore the conflict resolve message can be used in place of the
winning version whenever required. The winner MUST be determined by the last writer wins
algorithm, as specified in section 3.1.5.6.2.2. Because the conflict resolve message is a successor of
all the conflicting versions it represents, its PCL MUST be the merge of the PCLs of the conflicting
versions.

Conflict resolve messages MUST NOT be synchronized as Message objects. Instead, each
attachment that represents a version in conflict MUST be synchronized as a separate Message
object. The protocol role that is receiving the conflicting Message objects MUST detect the conflict
during synchronization, generate a conflict resolve message locally, and resolve the conflict while
considering all (possibly, more than two) conflicting versions.

A conflict resolve message MUST contain the msInConflict flag in the PidTagMessageStatus

property ([MS-OXCMSG] section 2.2.1.8). Each attachment that represents an alternate replica
MUST have the value of the PidTagInConflict property set to TRUE. This allows them to be
distinguished from other "regular" attachments on the message.

The client and server MUST generate a conflict resolve message when detecting a conflict against
the current version of a message in the replica during synchronization. It is important to understand
that it is possible that the current version of the message in the local replica was transmitted during
the current synchronization operation. This happens when the conflict already exists on the server

before any of the conflicting messages were downloaded to the local replica.

A client or server MUST NOT generate conflict resolve messages for FAI messages. These messages
MUST be resolved by using RESOLVE_METHOD_LAST_WRITER_WINS semantics, as specified in
section 3.1.5.6.2.2.

3.1.5.6.2.2 Last Writer Wins Algorithm

The last writer wins algorithm uses the PidTagLastModificationTime ([MS-OXPROPS] section

2.753) property to determine the winning version of the folder or message, as specified in the
following steps:

1. The version with the most recent PidTagLastModificationTime wins.

2. For messages, if the value of the PidTagLastModificationTime property is equal on both
objects, the tie-breaking winner is determined by comparing byte-to-byte values of the
NamespaceGuid field for XID structures, as specified in section 2.2.2.2, in the

PidTagChangeKey properties (section 2.2.1.2.7). The message with the larger
NamespaceGuid field wins. For folders, if the value of the PidTagLastModificationTime
property is equal on both objects, the server version is kept.

3. If the byte-to-byte comparison in step 2 determines that the NamespaceGuid fields are equal,

the version being imported wins.

The last writer wins algorithm MUST be used for conflicts detected during hierarchy synchronization
and content synchronization operations on normal messages (unless the

RESOLVE_NO_CONFLICT_NOTIFICATION flag is set in the PidTagResolveMethod property
(section 2.2.1.4.1) set on the folder) as well as FAI messages, and folders.

%5bMS-OXCMSG%5d.pdf
%5bMS-OXPROPS%5d.pdf

101 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.1.5.6.3 Reporting

Conflict reporting, if deemed necessary by the value of the PidTagResolveMethod property
(section 2.2.1.4.1) of the folder, SHOULD be done through a combination of the following methods:

1. Failing the ROP that detected the conflict.

2. Creating a conflict resolve message.

3. Creating a conflict notification message, as specified in section 3.1.5.6.3.1.

Servers MUST implement conflict reporting by failing ROPs and creating conflict resolve messages.
Servers MAY implement other means of conflict reporting.

The use of the conflict resolve message combines semi-automatic conflict resolution with conflict
reporting: the message has all properties of the winning version, while at the same time it contains

all conflicting versions as attachments, which clients can use to offer manual conflict resolution.

Determining whether to perform conflict reporting, and what method of conflict reporting to use, is
dependent on the operation that triggered the conflict detection, as specified in section 3.1.5.6.1,
and on the value of the PidTagResolveMethod property on the folder, whose values are specified
in section 2.2.1.4.1.

This controls whether the RopSynchronizationImportMessageChange ROP (section 2.2.3.2.4.2)

is required to perform conflict reporting by failing the ROP or by creating a conflict notification
message. However, the RopSynchronizationImportHierarchyChange ROP (section 2.2.3.2.4.2)
MUST detect and resolve, and SHOULD report, possible conflicts by using a conflict notification
message.

3.1.5.6.3.1 Conflict Notification Message

A conflict notification message is a special message used to notify the owner of a public folder that a

conflict was resolved. This message is identified by setting the value of the PidTagMessageClass
property ([MS-OXCMSG] section 2.2.1.3) to "IPM.Conflict.Message" which is used to notify a user

that a conflict resolve note has been created. This notification MUST NOT be generated for public
folder conflicts if the RESOLVE_NO_CONFLICT_NOTIFICATION flag is present in the
PidTagResolveMethod property (section 2.2.1.4.1) for the public folder. The notification SHOULD
be generated for a public folder if the RESOLVE_NO_CONFLICT_NOTIFICATION flag is not present in
the PidTagResolveMethod property.

A conflict notification message MUST include the properties in the following table.

Property Description

PidTagSenderName ([MS-OXOMSG] section
2.2.1.51)

Name of the folder that contains the conflict resolve
message.

PidTagOriginalSubject ([MS-OXOMSG] section
2.2.2.16)

Original subject of the message.

PidTagConflictEntryId ([MS-OXPROPS] section
2.632)

EntryID of the conflict resolve message.

3.1.6 Timer Events

None.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXPROPS%5d.pdf

102 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.1.7 Other Local Events

None.

3.2 Server Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

This protocol includes the following ADM element:

Global.Handle, as specified in [MS-OXCRPC] section 3.1.1.

Session context cookie<28>, as specified in [MS-OXCMAPIHTTP] section 3.1.1.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Isolating Download and Upload Operations

Upload and download operations are not always isolated transactions. Upload and download
operations can be affected by other operations on messaging objects.

To counteract the lack of transaction isolation between ICS download operations and the rest of

operations that occur on messaging objects at the same time, servers MUST confirm that the final
ICS state does not reflect the state of the server replica at the end of the operation, but instead
reflects the actual differences downloaded to a client, combined with the initial ICS state.

3.2.5.2 Managing the ICS State on the Server

By using the ICS state properties specified in section 2.2.1.1, the server only downloads information
that is relevant to the client, and the same information is only downloaded once. The ICS state is

produced by the server, and sent to the client as part of the final ICS state, but the ICS state
properties are not persisted on the server.

The server receives the ICS state properties from the client using the ROPs specified in section
2.2.3.2.2 immediately after the client configures the synchronization context for download or
upload. The server uses the ICS state properties and the synchronization scope, as defined during
initialization of the synchronization download context, to determine the set of differences to

%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf

103 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

download to the client. At the end of the synchronization operation, the server sends the client a
new ICS state, commonly referred to as the final ICS state, using the state element, as specified in

section 2.2.4.3.25. For more details about how the server determines what data to download, see
section 3.2.5.3.

ICS state properties are not persisted on the server and are only present as data in the FastTransfer
stream and in the fields of ROPs that support synchronization. Typically, the server modifies the ICS
state properties and sends them back to the client in the FastTransfer stream or ROP responses.
Another method of sending state information back to the client is client side checkpointing, as
specified in section 3.3.5.6.

Note that for the purposes of reducing the wire size of the ICS state by enabling compacting of
regions, as specified in section 3.1.5.5, and optimizing for performance of determining a set of

differences to be downloaded to clients, servers can include extra IDs in IDSET structures that
represent CNSET structures, as specified in section 2.2.2.4, as long as that never affects the sets of
differences that are downloaded to clients.

3.2.5.2.1 Receiving the MetaTagIdsetGiven ICS State Property

The property tag for this property suggests that it is of type PtypInteger32 ([MS-OXCDATA]

section 2.11.1), but the data MUST be handled as PtypBinary ([MS-OXCDATA] section 2.11.1) data
by servers. Servers SHOULD send the MetaTagIdsetGiven property (section 2.2.1.1.1) with a
property tag that defines it as PtypInteger32; however, servers SHOULD accept this property
when the property tag identifies it as PtypInteger32 or PtypBinary.

The server ignores this property in synchronization upload operations and does not download it back
to the client in the final ICS state obtained for them through the
RopSynchronizationGetTransferState ROP (section 2.2.3.2.3.1).If the client failed to remove

this property before uploading the initial ICS state, there is no effect on the server.

3.2.5.3 Determining What Differences To Download

In this section, all references to the ICS state properties refer to values uploaded in the initial ICS

state.

For every object in the synchronization scope, servers MUST do the following:

Include the following syntactical elements in the FastTransfer stream of the

OutputServerObject field of the FastTransfer download ROPs, as specified in section 2.2.3.1.1,
if one of the following applies:

Include the folderChange element, as specified in section 2.2.4.3.5, if the object specified by

the InputServerObject field of the FastTransfer download ROP request is a Folder object

And the change number is not included in the value of the MetaTagCnsetSeen property

(section 2.2.1.1.2).

Include the messageChange element, as specified in section 2.2.4.3.11, if the object specified

by the InputServerObject field is a normal message

And the Normal flag of the SynchronizationFlags field was set, as specified in section

2.2.3.2.1.1.1

And the change number is not included in the value of the MetaTagCnsetSeen property.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

104 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Include the messageChangeFull element, as specified in section 2.2.4.3.13, if the object

specified by the InputServerObject field is an FAI message, meaning the

PidTagAssociated property (section 2.2.1.5) is set to TRUE

And the FAI flag of the SynchronizationFlags field was set

And the change number is not included in the value of the MetaTagCnsetSeenFAI

property (section 2.2.1.1.3).

If the NoDeletions flag of the SynchronizationFlags field is not set, include the deletions

element, as specified in section 2.2.4.3.3, for objects that either:

Have their internal identifiers (2) present in the value of the MetaTagIdsetGiven property

(section 2.2.1.1.1) and are missing from the server replica.

Are folders that have never been reported as deleted folders.

If the NoDeletion and IgnoreNoLongerInScope flags are not set in the

SynchronizationFlags field, include the deletions element for messages that went out of scope
that:

Have their internal identifiers (2) present in the value of the MetaTagIdsetGiven property

And exist in a server replica and belong to a folder that defines the synchronization scope

And do not match the restriction that defines the synchronization scope.

If the ReadState flag of the SynchronizationFlags field is set, include the readStateChanges

element, as specified in section 2.2.4.3.22, for messages that:

Do not have their change numbers for read and unread state in the MetaTagCnsetRead

property (section 2.2.1.1.4)

And are not FAI messages and have not had change information downloaded for them in

this session.

The server MAY<29> confirm that the FastTransfer context that is returned by the

RopSynchronizationGetTransferState ROP (section 2.2.3.2.3.1), which is sent before the
subsequent RopFastTransferSourceGetBuffer ROP (section 2.2.3.1.1.5), contains only the
differences that have been downloaded to the client in the current synchronization download
operation, in addition to what was reflected in the initial ICS state. Note that the final ICS state that
has to be downloaded in the FastTransfer stream as the last portion of the payload is exactly the
same as the checkpoint ICS state that corresponds to the end of the operation.

The following invariants define the relationship between the initial ICS state, the checkpoint ICS

state, and differences downloaded at the time of checkpointing. The server does not maintain a per-
client state or store the values of these ICS state properties, but it does include the final ICS state
at the end of the FastTransfer stream. The server does not persist the ICS state properties on the
server; they are only present as data in the FastTransfer stream and in the fields of ROPs that
support synchronization. The following table contains the nomenclature used to describe the

invariants. For more details about checkpointing, see section 3.3.5.6.

Nomenclature Description

PropIndex Property Prop of the ICS state, as specified in section 2.2.1.1.
Index can be I for initial and C for checkpoint.

105 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Nomenclature Description

PropD Property Prop that contains a particular set of differences that
have been downloaded in the current operation, as specified in
section 2.2.1.3.

{changeSubset.Id}

{changeSubset.CN}

Internal identifiers (2) (Id) or change numbers of all changes that
have been downloaded in the current operation. The Subset can
be one of the following:

Omitted to denote all changes.

Normal for normal messages.

FAI for FAI messages.

Partial for normal messages downloaded as partial changes.

{readStateChange.Id}

{readStateChange.ReadStateCn}

Internal identifiers (2) or read state change numbers of all normal
messages, with only the read state changed, which have been
downloaded in the current operation.

Servers MUST ensure that the following invariants are true:

AllDeleted = (IdsetDeletedD ∪ IdsetNoLongerInScopeD ∪ IdsetExpiredD)

IdsetGivenC = (IdsetGivenI ∪ {change.Id}) \ AllDeleted

CnsetSeenC = CnsetSeenI ∪ {changeNormal.Cn}

CnsetSeenFAIC = CnsetSeenFAII ∪ {changeFAI.Cn}

CnsetReadC = CnsetReadI ∪ {readStateChange.ReadCn}

IdsetGivenI ⊇ {changesPartial.Id}

IdsetGivenI ⊇ (IdsetReadD ∪ IdsetUnreadD)

{readStateChange.Id} = IdsetReadD ∪ IdsetUnreadD

{change.Id} ∩ AllDeleted = ø

{change.Cn} ∩ (CnsetSeenI ∪ CnsetSeenFAII) = ø

{readStateChange.Id} ∩ AllDeleted = ø

{readStateChange.Id} ∩ {change.Id} = ø

3.2.5.4 Calculating the PidTagMessageSize Property Value

The server SHOULD make the best effort to calculate this property, but because values for

properties can change before the client downloads the message, and because the client specifies
what data it does and does not require, it MUST be used only as an estimate by the client.

3.2.5.5 Generating the PidTagSourceKey Value

When requested by the client, the server MUST output the PidTagSourceKey property (section
2.2.1.2.5) value if it is persisted, or generate it if it is missing. If the value of the

106 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

PidTagSourceKey property is missing, the server MUST generate it by producing a GID structure
([MS-OXCDATA] section 2.2.1.3) from the internal identifier (2) (Message ID structure ([MS-

OXCDATA] section 2.2.1.2) or Folder ID structure ([MS-OXCDATA] section 2.2.1.1)) of the object
by using the same mapping algorithm as described for the RopLongTermIdFromId ROP ([MS-

OXCROPS] section 2.2.3.8).

The only exception is when a server is required to generate this property for a folder, which is a root
of the current hierarchy synchronization download operation (that is, it is the folder that was passed
to the RopSynchronizationConfigure ROP (section 2.2.3.2.1.1)). In this case, the
PidTagSourceKey property MUST be output as a zero-length PtypBinary, as specified in [MS-
OXCDATA] section 2.11.1.

3.2.5.6 Tracking Read State Changes

To conserve the bandwidth between clients and servers, the read state of the messages SHOULD be
tracked separately from other changes.

Whenever the read state of a message changes on the server, a separate change number (the read

state change number) on the message SHOULD be assigned a new value on the server. The change
number of the message SHOULD NOT be modified unless other changes to a message were made at

the same time. This allows the read state change to be efficiently downloaded to a client as an
Message ID structure ([MS-OXCDATA] section 2.2.1.2) in the MetaTagIdsetRead property
(section 2.2.1.3.4) IDSET structure or the MetaTagIdsetUnread property (section 2.2.1.3.5),
compressed together with read state changes to other messages in the synchronization scope. An
individual read state change number is never sent across the wire independently. An IDSET
structure of change numbers associated with message read state transitions, either from read to
unread, or unread to read (as determined by the PidTagMessageFlags property in [MS-OXCMSG]

section 2.2.1.6) are included in the MetaTagCnsetRead property (section 2.2.1.1.4), which is part
of the ICS state and is never directly set on any objects.

3.2.5.7 Working with Property Groups and Partial Changes

Property groups are defined by the PropertyGroup structure, as specified in section 2.2.2.8.1. The

PropertyGroup structure contains an array of properties, referred to as a property group. One or
more PropertyGroup structures are contained in each PropertyGroupInfo structure, as specified

in section 2.2.2.8. Each PropertyGroupInfo structure is referred to as a property group mapping,
as it maps the properties in the messaging object to a collection of property groups. The property
group mapping is included in the FastTransfer stream in the groupInfo element, as specified in
section 2.2.4.3.8. The MetaTagIncrSyncGroupId meta-property (section 2.2.4.1.5.4) is used to
identify the property group mapping used on a particular messaging object, and the
MetaTagIncrementalSyncMessagePartial meta-property (section 2.2.4.1.5.5) informs the client

of the property group mapping to use when interpreting the partial item data that follows the meta-
property in the FastTransfer stream.

ICS is optimized for reporting partial changes to messages using these property groups. The
simplest approach for servers to provide information about partial changes is to track changes made
within groups of properties. A group is considered changed if any of the properties in the group are
modified or deleted. It is up to the server to define a property group mapping by adding properties

to a PropertyGroup structure. ICS offers a way to communicate property group mapping

information per-message, so every message can use its own property group mapping. However, to
minimize overhead, it is recommended that the number of different mappings is kept to a minimum.

For example, a change to any property in the group of server-defined properties that track changes
to message attachments would mean that all the properties in that property group are updated
during the next synchronization. Likewise, a change to any property in the group of server defined

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCMSG%5d.pdf

107 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

properties that track changes to the body of the message would mean that all the properties in that
property group are updated during the next synchronization.

To track changes to property groups on a message, servers SHOULD keep change numbers for each
property group, and assign a new change number to both the group and the message whenever a

change is made to a property that belongs to the group. Note that marking a message as read or
unread is the most common type of message modification, and there is a specific mechanism to
support just that change, as specified in section 3.2.5.6.

One message in a mailbox can have a different property group mapping than another message,
which means that the properties in group N on one message can be different than the properties in
group N in another message. Property group mappings do not change frequently, but they do
change with server upgrades. When a message is modified and the default mapping has changed

after an upgrade, the property group mapping of the message is updated.

Servers that are implemented to support<30> partial message change synchronization MUST either
use a mechanism described in this section, or use an alternative mechanism that localizes changes
to a message to a set of properties and subobjects, which can be unambiguously expressed by using

the messageChangePartial element, as specified in section 2.2.4.3.15, of the FastTransfer
stream. Servers that are not implemented to support partial message change synchronization ignore

the PartialItem flat of the SendOptions field, as specified in section 2.2.3.1.1.1.2, and download
the item as a full item by using the messageChangeFull element, as specified in section
2.2.4.3.13, of the FastTransfer stream.

3.2.5.8 Receiving FastTransfer ROPs

3.2.5.8.1 Download

When producing FastTransfer streams for operations configured with
RopFastTransferSourceCopy* ROPs, servers SHOULD skip over objects that the client does not
have adequate permissions for. For example, if the Move flag of the CopyFlags field, as specified in
section 2.2.3.1.1.1.1, is set, an additional permission to delete an object is required for the object to
be included in the output FastTransfer stream. If a permission check for an object fails, the

MetaTagEcWarning meta-property (section 2.2.4.1.5.2) SHOULD be output in a FastTransfer
stream, wherever allowed by its syntactical structure, to signal a client about incomplete content.

3.2.5.8.1.1 Receiving a RopFastTransferSourceCopyTo ROP Request

When the client sends the server a RopFastTransferSourceCopyTo ROP request (section
2.2.3.1.1.1), the server MUST parse the request, as specified in [MS-OXCROPS] section 2.2.13.6.1
and section 2.2.3.1.1.1 of this specification. The server MUST respond with a
RopFastTransferSourceCopyTo ROP response, as specified in [MS-OXCROPS] section 2.2.13.6.2
and section 2.2.3.1.1.1 of this specification.

If the Level field is set to 0x00, the server MUST copy descendant subobjects by using the property
list specified by the PropertyTags field. Subobjects are only copied when they are not listed in the
value of the PropertyTags field.

If the Level field is set to a nonzero value, the server MUST exclude all descendant subobjects from
being copied.

If the Move flag of the CopyFlags field is set, the server SHOULD NOT output any objects in a

FastTransfer stream that the client does not have permissions to delete.

The server MAY<31> support the Move flag of the CopyFlags field, or alternatively the server can
set the value of the ReturnValue field to InvalidParameter (0x80070057) if it receives this flag.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

108 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

If the BestBody flag of the CopyFlags field is set, the server SHOULD output the message body
(2), and the body of the Embedded Message object, in their original format. If this flag is not set,

the server MAY<32> output the message body (2) in the compressed Rich Text Format (RTF).

Servers SHOULD fail the ROP if unknown flags in the CopyFlags field are set.

The following table lists the server behavior for valid combinations of the Unicode, ForceUnicode,
and UseCpid flags of the SendOptions field.

Flag name Description

None of the three
flags are set

String properties MUST be output in the code page set on the current connection
with a property type of PtypString8 ([MS-OXCDATA] section 2.11.1).

Unicode only String properties MUST be output either in Unicode with a property type of
PtypUnicode ([MS-OXCDATA] section 2.11.1), or in the code page set on the
current connection with a property type of PtypString8. If the properties are
stored in Unicode on the server, the server MUST return the properties in Unicode.
If the properties are not stored in Unicode on the server, the server MUST return
the properties in the code page set on the current connection.

ForceUnicode
only

String properties MUST be output in Unicode with a property type of PtypUnicode.

UseCpid only String properties MUST be output using code page property types, as specified in
section 2.2.4.1.1.1. If the properties are stored in Unicode on the server, the server
MUST return the properties using the Unicode code page (code page property type
0x84B0), otherwise the server MUST send the string using the code page property
type of the code page in which the property is stored on the server.

Unicode and
ForceUnicode

String properties MUST be output in Unicode with a property type of PtypUnicode.

UseCpid and
Unicode

String properties MUST be output using code page property types, as specified in
section 2.2.4.1.1.1. If the properties are stored in Unicode on the server, the server
MUST return the properties using the Unicode code page (code page property type
0x84B0); otherwise the server MUST send the string using the code page property
type of the code page in which the property is stored on the server.

The combination of the UseCpid and Unicode flags is the ForUpload flag.

UseCpid and
ForceUnicode

String properties MUST be output using the Unicode code page (code page property
type 0x84B0).

UseCpid,
Unicode, and
ForceUnicode

The combination of the UseCpid and Unicode flags is the ForUpload flag.

String properties MUST be output using the Unicode code page (code page property
type 0x84B0).

The server MUST attempt to recover from failures when downloading changes for individual
messages, when the RecoverMode flag of the SendOptions field is set.

Servers SHOULD fail the ROP if any unknown flags in the SendOptions field are set.

3.2.5.8.1.2 Receiving a RopFastTransferSourceCopyProperties ROP Request

When the client sends the server a RopFastTransferSourceCopyProperties ROP (section
2.2.3.1.1.2) request, the server MUST parse the request as specified in [MS-OXCROPS] section
2.2.12.7.1 and section 2.2.3.1.1.2 of this specification. The server MUST respond with a

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf

109 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

RopFastTransferSourceCopyProperties ROP response, as specified in [MS-OXCROPS] section
2.2.12.7.2 and section 2.2.3.1.1.2 of this specification.

If the Level field is set to 0x00, the server MUST copy descendant subobjects by using the property
list specified by the PropertyTags field. Subobjects are not copied unless listed in the value of the

PropertyTags field.

If the Level field is set to a nonzero value, the server MUST exclude all descendant subobjects from
being copied.

If the Move flag of the CopyFlags field is specified for a download operation, the server SHOULD
NOT output any objects in a FastTransfer stream that the client does not have permissions to delete.

Servers SHOULD fail the ROP if unknown flags in the CopyFlag field are set.

For details about server behavior related to the Unicode, ForceUnicode, and UseCpid flags of the

SendOptions field, see section 3.2.5.8.1.1.

Servers SHOULD fail the ROP if any unknown flags in the SendOptions field are set.

3.2.5.8.1.3 Receiving a RopFastTransferSourceCopyMessages ROP Request

When the client sends the server a RopFastTransferSourceCopyMessages ROP (section
2.2.3.1.1.3) request, the server MUST parse the request, as specified in [MS-OXCROPS] section

2.2.12.5.1 and section 2.2.3.1.1.3 of this specification. The server MUST respond with a
RopFastTransferSourceCopyMessages ROP response, as specified in [MS-OXCROPS] section
2.2.12.5.2 and section 2.2.3.1.1.3 of this specification.

If the Move flag of the CopyFlags field is set for a download operation, the server SHOULD NOT
output any objects in a FastTransfer stream that the client does not have permissions to delete.

If the BestBody flag of the CopyFlags field is set, the server SHOULD output the message body
(2), and the body of the Embedded Message object, in their original format. The original format of

the message is determined by using the best body algorithm, as specified in [MS-OXBBODY] section

2.1.3.1.

If the BestBody flag of the CopyFlags field is not set, the server MAY<33> output message bodies
(2) in the compressed RTF.

If the SendEntryId flag of the CopyFlags field is set, the server does not remove message and
change identification information from the output.

If the SendEntryId flag of the CopyFlags field is not set, the server removes message and change

identification information from the output.

For details about server behavior related to the Unicode, ForceUnicode, and UseCpid flags of the
SendOptions field, see section 3.2.5.8.1.1.

Servers SHOULD fail the ROP if any unknown flags in the SendOptions field are set.

3.2.5.8.1.4 Receiving a RopFastTransferSourceCopyFolder ROP Request

When the client sends the server a RopFastTransferSourceCopyFolder ROP (section 2.2.3.1.1.4)
request, the server MUST parse the request, as specified in [MS-OXCROPS] section 2.2.12.4.1 and
section 2.2.3.1.1.4 of this specification. The server MUST respond with a
RopFastTransferSourceCopyFolder ROP response, as specified in [MS-OXCROPS] section
2.2.12.4.2 and section 2.2.3.1.1.4 of this specification.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXBBODY%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

110 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

If the CopySubfolders flag of the CopyFlags field is set, the server MUST recursively include the
subfolders of the folder specified in the InputServerObject field in the scope.

If the Move flag of the CopyFlags field is set and the CopySubfolders flag is not set, the server
MUST recursively include the subfolders of the folder specified in the InputServerObject field in

the scope.

If the Move flag of the CopyFlags field is not set and the CopySubfolders flag is not set, the
server MUST NOT recursively include the subfolders of the folder specified in the
InputServerObject field in the scope.

Servers SHOULD fail the ROP if unknown flags on the CopyFlags field are set.

For details about server behavior related to the Unicode, ForceUnicode, and UseCpid flags of the
SendOptions field, see section 3.2.5.8.1.1.

Servers SHOULD fail the ROP if any unknown flags in the SendOptions field are set.

3.2.5.8.1.5 Receiving a RopFastTransferSourceGetBuffer ROP Request

When the client sends the server a RopFastTransferSourceGetBuffer ROP (section 2.2.3.1.1.5)
request, the server MUST parse the request as specified in [MS-OXCROPS] section 2.2.12.6.1 and
section 2.2.3.1.1.1 of this specification. The server MUST respond with a

RopFastTransferSourceGetBuffer ROP response, as specified in [MS-OXCROPS] section
2.2.12.6.2 and section 2.2.3.1.1.1 of this specification.

If the value of the BufferSize field in the ROP request is 0xBABE, the server determines the buffer
size based on the residual size of the rgbOut field of the EcDoRpcExt2 method, as specified in
[MS-OXCRPC] section 3.1.4.2, or the rgbRopOut field of the Execute request type response<34>,
as specified in [MS-OXCMAPIHTTP] section 2.2.4.2.2.

If the value of the BufferSize field in the ROP request is set to 0xBABE, the server MUST limit the

amount of data returned in TransferBuffer field to the residual size of the output buffer minus
result structure overhead, or limit the amount of data returned in the TransferBuffer field to

MaximumBufferSize, whichever is smaller.

If the value of BufferSize field in the ROP request is set to a value other than 0xBABE, the following
semantics apply:

The server MUST fail the command before processing the ROP by doing the following:

The server MUST return the RopBufferTooSmall ROP ([MS-OXCROPS] section 2.2.15.1) if the

resulting BufferSize bytes in the TransferBuffer field are larger than the residual rgbOut field
of the EcDoRpcExt2 method, as specified in [MS-OXCRPC] section 3.1.4.2, or the rgbRopOut
field of the Execute request type response<35>, as specified in [MS-OXCMAPIHTTP] section
2.2.4.2.2.

The server MUST output, at most, the number of bytes specified by the BufferSize field in the

TransferBuffer field even if more data is available.

The server returns less bytes than the value specified by the BufferSize field, or the server

returns the number of bytes specified by the BufferSize field in the TransferBuffer field.

The ReturnValue field is set to 0x00000480 only when the client is version 11.0.0.4920 or higher.
For more details about version checking, see [MS-OXCRPC] section 3.2.4.1.3.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf

111 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Servers SHOULD fail any successive calls to the RopFastTransferSourceGetBuffer ROP if the
previous iteration returns a value other than of Success or 0x00000480 in the ReturnValue field.

Successive calls should fail with the same error as previous failed operations. The server MUST
serialize each portion of the FastTransfer stream using the syntax specified in section 2.2.4 and

output it using the TransferBuffer field.

3.2.5.8.1.6 Receiving a RopTellVersion ROP Request

When the client sends the server a RopTellVersion ROP (section 2.2.3.1.1.6) request, the server
MUST parse the request, as specified in [MS-OXCROPS] section 2.2.12.8.1 and section 2.2.3.1.1.6
of this specification. The server MUST respond with a RopTellVersion ROP response, as specified in
[MS-OXCROPS] section 2.2.12.8.2 and section 2.2.3.1.1.6 of this specification.

3.2.5.8.2 Upload

3.2.5.8.2.1 Receiving a RopFastTransferDestinationConfigure ROP Request

When the client sends the server a RopFastTransferDestinationConfigure ROP (section
2.2.3.1.2.1) request, the server MUST parse the request, as specified in [MS-OXCROPS] section
2.2.12.1.1 and section 2.2.3.1.2.1 of this specification. The server MUST respond with a

RopFastTransferDestinationConfigure ROP response, as specified in [MS-OXCROPS] section
2.2.12.1.2 and section 2.2.3.1.2.1 of this specification.

Any changes to an object identified by InputServerObject in the ROP request are not persisted
until the RopSaveChangesMessage ROP ([MS-OXCROPS] section 2.2.6.3) is called.

The server MUST stop execution of the ROP if the value of the SourceOperation field is unknown.

The server SHOULD<36> fail the ROP if unknown flags in the CopyFlags field are set, or the server

MAY<37> ignore the unknown value of the CopyFlags field.

3.2.5.8.2.2 Receiving a RopFastTransferDestinationPutBuffer ROP Request

When the client sends the server a RopFastTransferDestinationPutBuffer ROP ([MS-OXCROPS]
section 2.2.12.2) request, the server MUST parse the request, as specified in [MS-OXCROPS]
section 2.2.12.2.1 and section 2.2.3.1.2.2 of this specification. The server MUST respond with a
RopFastTransferDestinationPutBuffer ROP response, as specified in [MS-OXCROPS] section

2.2.12.2.2 and section 2.2.3.1.2.2 of this specification.

3.2.5.9 Receiving Incremental Change Synchronization ROPs

3.2.5.9.1 Download

3.2.5.9.1.1 Receiving a RopSynchronizationConfigure ROP Request

When the client sends the server a RopSynchronizationConfigure ROP (section 2.2.3.2.1.1)
request, the server MUST parse the request, as specified in [MS-OXCROPS] section 2.2.13.1.1 and
section 2.2.3.2.1.1 of this specification. The server MUST respond with a

RopSynchronizationConfigure ROP response, as specified in [MS-OXCROPS] section 2.2.13.1.2
and section 2.2.3.2.1.1 of this specification.

SynchronizationType Constraints

The following constraints apply to the SynchronizationType field.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

112 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Servers MUST fail the ROP if the value of the SynchronizationType field is unknown.

If the Unicode flag of the SynchronizationFlags field is set, the client supports Unicode and the
server MUST write the values of the string properties to the FastTransfer stream as they are stored.
The Unicode flag does not specify that the server writes the value in Unicode format. The server

writes the values in Unicode or non-Unicode format depending on how they are stored.

If the Unicode flag of the SynchronizationFlags field is not set, the client does not support
Unicode and the server MUST write the values of string properties to the FastTransfer stream in the
code page set on connection.

If the NoDeletions flag of the SynchronizationFlags field is set, the server MUST NOT download
information about item deletions, as specified in section 2.2.4.3.3, and the server MUST respond as
if the IgnoreNoLongerInScope flag was set.

If the NoDeletions flag of the SynchronizationFlags field is not set, the server MUST download
information about item deletions, as specified in section 2.2.4.3.3.

If the IgnoreNoLongerInScope flag of the SynchronizationFlags field is set, the server MUST
NOT download information about messages that went out of scope as deletions, as specified in
section 2.2.4.3.3.

If the IgnoreNoLongerInScope flag of the SynchronizationFlags field is not set, the server

MUST download information about messages that went out of scope as deletions, as specified in
section 2.2.4.3.3.

If the ReadState flag of the SynchronizationFlags field is set, the server MUST also download
information about changes to the read state of messages, as specified in section 2.2.4.3.22.

If the ReadState flag of the SynchronizationFlags field is not set, the server MUST NOT download
information about changes to the read state of messages, as specified in section 2.2.4.3.22.

If the FAI flag of the SynchronizationFlags field is set, the server MUST download information

about changes to FAI messages, as specified by the folderContents element in section 2.2.4.3.7.

If the FAI flag of the SynchronizationFlags field is not set, the server MUST NOT download
information about changes to FAI messages, as specified by the folderContents element in section
2.2.4.3.7.

If the Normal flag of the SynchronizationFlags flag is set, the server MUST download information
about changes to normal messages, as specified in section 2.2.4.3.11.

If the Normal flag of the SynchronizationFlags field is not set, the server MUST NOT download

information about changes to normal messages, as specified in section 2.2.4.3.11.

If the OnlySpecifiedProperties flag of the SynchronizationFlags field is set, the server SHOULD
limit properties and subobjects written to the FastTransfer stream for top-level messages to the
properties listed in the PropertyTags field.

If the OnlySpecifiedProperties flag of the SynchronizationFlags field is not set, the server

SHOULD exclude properties and subobjects from the FastTransfer stream for folders and top-level

messages, if they are listed in the PropertyTags field.

If the NoForeignIdentifiers flag of the SynchronizationFlags field is set, the server MUST ignore
any persisted values for the PidTagSourceKey property (section 2.2.1.2.5) and
PidTagParentSourceKey (section 2.2.1.2.6) properties when producing the FastTransfer stream
for folder and message changes.

%5bMS-OXGLOS%5d.pdf

113 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

If the NoForeignIdentifiers flag of the SynchronizationFlags field is not set, the server MUST
NOT ignore any persisted values for the PidTagSourceKey and PidTagParentSourceKey

properties when producing the FastTransfer stream for folder and message changes.

The server MUST fail the ROP request if the Reserved flag of the SynchronizationFlags field is

set.

If the BestBody flag of the SynchronizationFlags field is set, the server SHOULD write message
bodies (2) to the FastTransfer stream in their original format. An exception is embedded messages,
the server MAY honor this flag for embedded messages.

If the BestBody flag of the SynchronizationFlags field is not set, the server MAY<38> write
message bodies (2) to the FastTransfer stream in the compressed RTF format.

The IgnoreSpecifiedOnFAI flag is only used in conjunction with the OnlySpecifiedProperties

flag being set. Both flags are defined as part of the SynchronizationFlags field. If the
OnlySpecifiedProperties flag is not set, the server MUST ignore the IgnoreSpecifiedOnFAI flag.

If the OnlySpecifiedProperties flag is set and the IgnoreSpecifiedOnFAI flag is not set, the
server writes only the specified properties and subobjects for all messages to the FastTransfer
stream.

If the OnlySpecifiedProperties flag is set and the IgnoreSpecifiedOnFAI flag is also set, the

server MUST write only the specified properties and subobjects for all non-FAI messages to the
FastTransfer stream. For FAI messages, the server MUST write all properties and subobjects to the
FastTransfer stream.

If the Progress flag of the SynchronizationFlags field is set, the server SHOULD inject the
progressTotal element, as specified in section 2.2.4.3.19, into the FastTransfer stream.

If the Progress flag of the SynchronizationFlags field is not set, the server MUST not inject the
progressTotal element into the FastTransfer stream.

Servers SHOULD fail the ROP if unknown flag bits are set, or MAY fail the ROP if additional flags,

used only in server-to-server communications are set.

SynchronizationExtraFlags Constraints

The following constraints apply to the SynchronizationExtraFlags field, as specified in section
2.2.3.2.1.1.1.

The server MUST include either the PidTagFolderId property (section 2.2.1.2.2) or the PidTagMid
property (section 2.2.1.2.1) in a folder change or message change header if and only if the Eid flag

of the SynchronizationExtraFlags field is set. The server MUST include the PidTagFolderId
property in the folder change header if the SynchronizationType field is set to Hierarchy (0x02),
as specified in section 2.2.3.2.1.1.1. The server MUST include the PidTagMid property in the
message change header if the SynchronizationType field is set Contents (0x01), as specified in
section 2.2.3.2.1.1.1.

The server MUST include the PidTagMessageSize property (section 2.2.1.6) in the message

change header if and only if the MessageSize flag of the SynchronizationExtraFlags field is set.

The server MUST include the PidTagChangeNumber property (section 2.2.1.2.3) in the message
change header if and only if the CN flag of the SynchronizationExtraFlags field is set.

The server MUST NOT include the PidTagChangeNumber property in the message change header
if and only if the CN flag of the SynchronizationExtraFlags field is not set.

114 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

If the OrderByDeliveryTime flag of the SynchronizationExtraFlags field is set, the server MUST
sort messages by the value of their PidTagMessageDeliveryTime property ([MS-OXOMSG]

section 2.2.3.9), or by the PidTagLastModificationTime property ([MS-OXPROPS] section 2.753)
if the former is missing, when generating a sequence of messageChange elements for the

FastTransfer stream, as specified in section 2.2.4.2. The server adds messages in the FastTransfer
stream from newest to oldest, so the client receives the newest messages first.

If the OrderByDeliveryTime flag of the SynchronizationExtraFlags field is not set, there is no
requirement on the server to return items in a specific order.

Servers MUST ignore any unknown flags in the SynchronizationExtraFlags field.

PropertyTags Constraints

The following constraints apply to the PropertyTags field.

This field has different semantics, depending on the value of the OnlySpecifiedProperties flag of
the SynchronizationFlags field, as follows:

If the OnlySpecifiedProperties flag is not set, the server SHOULD exclude properties and

subobjects from the FastTransfer stream for folders and top-level messages, if the property is
listed in the PropertyTags field.

If the OnlySpecifiedProperties flag is set, the server SHOULD limit properties and subobjects

written to the FastTransfer stream for top-level messages to properties listed in the
PropertyTags field.

Inclusion of properties that denote message subobjects in the PropertyTags field means that the
server SHOULD include or exclude these special parts from the FastTransfer stream for top-level
messages.

3.2.5.9.2 Upload State

3.2.5.9.2.1 Receiving a RopSynchronizationUploadStateStreamBegin ROP Request

When the client sends the server a RopSynchronizationUploadStateStreamBegin ROP (section
2.2.3.2.2.1) request, the server MUST parse the request, as specified in [MS-OXCROPS] section
2.2.13.9.1 and section 2.2.3.2.2.1 of this specification. The server MUST respond with a
RopSynchronizationUploadStateStreamBegin ROP response, as specified in [MS-OXCROPS]

section 2.2.13.9.2 and section 2.2.3.2.2.1 of this specification.

3.2.5.9.2.2 Receiving a RopSynchronizationUploadStateStreamContinue Request

When the client sends the server a RopSynchronizationUploadStateStreamContinue ROP
(section 2.2.3.2.2.2) request, the server MUST parse the request, as specified in [MS-OXCROPS]
section 2.2.13.10.1 and section 2.2.3.2.2.2 of this specification. The server MUST respond with a
RopSynchronizationUploadStateStreamContinue ROP response, as specified in [MS-OXCROPS]

section 2.2.13.10.2 and section 2.2.3.2.2.2 of this specification.

Servers concatenate StreamData from all received
RopSynchronizationUploadStateStreamContinue ROP requests for a given ICS state property.

3.2.5.9.2.3 Receiving a RopSynchronizationUploadStateStreamEnd ROP Request

When the client sends the server a RopSynchronizationUploadStateStreamEnd ROP (section

2.2.3.2.2.3) request, the server MUST parse the request, as specified in [MS-OXCROPS] section

%5bMS-OXOMSG%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

115 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.13.11.1 and section 2.2.3.2.2.3 of this specification. The server MUST respond with a
RopSynchronizationUploadStateStreamEnd ROP response, as specified in [MS-OXCROPS]

section 2.2.13.11.2 and section 2.2.3.2.2.3 of this specification.

3.2.5.9.3 Download State

3.2.5.9.3.1 Receiving a RopSynchronizationGetTransferState ROP Request

When the client sends the server a RopSynchronizationGetTransferState ROP (section
2.2.3.2.3.1) request, the server MUST parse the request, as specified in [MS-OXCROPS] section
2.2.13.8.1 and section 2.2.3.2.3.1 of this specification. The server MUST respond with a
RopSynchronizationGetTransferState ROP response, as specified in [MS-OXCROPS] section

2.2.13.8.2 and section 2.2.3.2.3.1 of this specification.

The server MUST ensure that changes to the state of the synchronization context that occur after
this ROP do not affect the ICS state that is downloaded through the FastTransfer download context
that is returned from this ROP.

The FastTransfer stream in the RopFastTransferSourceGetBuffer ROP response buffer associated
with the RopSynchronizationGetTransferState ROP SHOULD<39> return the initial ICS state for

the download context until the end of the FastTransfer stream has been downloaded, or MAY<40>
return the checkpoint ICS state that is reflective of the current status. For upload contexts, the
FastTransfer stream contains the checkpoint ICS state that is reflective of the current status. After
the download is complete, the FastTransfer stream contains the final ICS state.

3.2.5.9.4 Upload

3.2.5.9.4.1 Receiving a RopSynchronizationOpenCollector ROP Request

When the client sends the server a RopSynchronizationOpenCollector ROP (section 2.2.3.2.4.1)
request, the server MUST parse the request, as specified in [MS-OXCROPS] section 2.2.13.7.1 and
section 2.2.3.2.4.1 of this specification. The server MUST respond with a

RopSynchronizationOpenCollector ROP response, as specified in [MS-OXCROPS] section
2.2.13.7.2 and section 2.2.3.2.4.1 of this specification.

3.2.5.9.4.2 Receiving a RopSynchronizationImportMessageChange ROP Request

When the client sends the server a RopSynchronizationImportMessageChange ROP (section
2.2.3.2.4.2) request, the server MUST parse the request, as specified in [MS-OXCROPS] section
2.2.13.2.1 and section 2.2.3.2.4.2 of this specification. The server MUST respond with a
RopSynchronizationImportMessageChange ROP response, as specified in [MS-OXCROPS]
section 2.2.13.2.2 or 2.2.13.2.3, and in section 2.2.3.2.4.2 of this specification.

When the server receives a RopSynchronizationImportMessageChange ROP request, the server

MUST perform conflict detection on the message, as specified in section 3.1.5.6. The server
becomes responsible for performing conflict resolution on the RopSaveChangesMessage ROP
([MS-OXCROPS] section 2.2.6.3), as specified in section 3.1.5.6.2.

The server MUST purge all client-settable properties and subobjects of the Message object prior to
returning it in the OutputServerObject. Note that any changes to this message made by this ROP
or any other ROP that operates on it MUST NOT be persisted until RopSaveChangesMessage ROP
is called.

ImportFlag Constraints

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

116 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

If the FailOnConflict flag of the ImportFlag field is set, the server MUST NOT accept conflicting
versions of messages.

If the FailOnConflict flag of the ImportFlag field is not set, the server MUST accept conflicting
versions of messages.

Servers SHOULD<41> fail the ROP if unknown flags are set.

3.2.5.9.4.3 Receiving a RopSynchronizationImportHierarchyChange ROP Request

When the client sends the server a RopSynchronizationImportHierarchyChange ROP (section
2.2.3.2.4.3) request, the server MUST parse the request, as specified in [MS-OXCROPS] section
2.2.13.4.1 and section 2.2.3.2.4.3 of this specification. The server MUST respond with a
RopSynchronizationImportHierarchyChange ROP response, as specified in [MS-OXCROPS]

section 2.2.13.4.2 or 2.2.13.4.3, and section 2.2.3.2.4.3 of this specification.

Upon successful completion of this ROP, the ICS state on the synchronization context MUST be
updated to include a new change number in the MetaTagCnsetSeen property (section 2.2.1.1.2).

The server is responsible for conflict detection and resolution, as specified in section 3.1.5.6.

If a conflict is detected, the server MUST resolve it as specified in section 3.1.5.6.2 and return
Success. A server can report a conflict using a conflict notification message.

If a conflict has occurred, the server:

SHOULD NOT update the MetaTagCnsetSeen property, and let the clients download a result of

conflict resolution.

MAY generate a conflict notification message. For more details, see section 3.1.5.6.3.

MUST return a value of Success in the ReturnValue field.

The server MUST ignore the properties in the PropertyValues field, which are also present in the

HierarchyValues field.

3.2.5.9.4.4 Receiving a RopSynchronizationImportMessageMove ROP Request

When the client sends the server a RopSynchronizationImportMessageMove ROP (section
2.2.3.2.4.4) request, the server MUST parse the request, as specified in [MS-OXCROPS] section
2.2.13.6.1 and section 2.2.3.2.4.4 of this specification. The server MUST respond with a

RopSynchronizationImportMessageMove ROP response, as specified in [MS-OXCROPS] section
2.2.13.6.2 or 2.2.13.6.3, and section 2.2.3.2.4.4 of this specification.

Upon successful completion of this ROP, the ICS state on the synchronization context MUST be
updated to include change numbers of messages in the destination folder in either the
MetaTagCnsetSeen (section 2.2.1.1.2) or MetaTagCnsetSeenFAI (section 2.2.1.1.3) property,
depending on whether the message is a normal message or an FAI message.

3.2.5.9.4.5 Receiving a RopSynchronizationImportDeletes ROP Request

When the client sends the server a RopSynchronizationImportDeletes ROP (section 2.2.3.2.4.5)
request, the server MUST parse the request, as specified in [MS-OXCROPS] section 2.2.13.5.1 and
section 2.2.3.2.4.5 of this specification. The server MUST respond with a
RopSynchronizationImportDeletes ROP response, as specified in [MS-OXCROPS] section
2.2.13.5.2 and section 2.2.3.2.4.5 of this specification.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

117 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

The server MUST ignore requests to delete objects that have already been deleted and SHOULD
record deletions of objects that never existed in the server replica, in order to prevent the

RopSynchronizationImportHierarchyChange (section 2.2.3.2.4.3) or
RopSynchronizationImportMessageChange (section 2.2.3.2.4.2) ROPs from restoring them

back.

To minimize the possibility of putting replicas into a desynchronized state and because the protocol
does not notify clients as to what part of an operation has succeeded, servers are responsible for
making a reasonable prediction as to whether all deletions will succeed. And, if a deletion will not
succeed, the server SHOULD fail the ROP before performing any deletions, as opposed to partially
completing the ROP.

Servers SHOULD fail the ROP if unknown ImportDeleteFlags flag bits are set.

3.2.5.9.4.6 Receiving a RopSynchronizationImportReadStateChanges ROP

Request

When the client sends the server a RopSynchronizationImportReadStateChanges ROP (section
2.2.3.2.4.6) request, the server MUST parse the request, as specified in [MS-OXCROPS] section

2.2.13.3.1 and section 2.2.3.2.4.6 of this specification. The server MUST respond with a
RopSynchronizationImportReadStateChanges response, as specified in [MS-OXCROPS] section
2.2.13.3.2 and section 2.2.3.2.4.6 of this specification.

The RopSynchronizationImportReadStateChanges ROP is a batch variant of the
RopSetMessageReadFlag ROP ([MS-OXCROPS] section 2.2.6.11), which updates the ICS state as
well. The result of changing the read state message by message by using the
RopSetMessageReadFlag ROP MUST be identical to changing the read state in bulk by using the

RopSynchronizationImportReadStateChanges ROP.

Requests to change the read state of FAI messages MUST be ignored. Upon successful completion of
this ROP, the ICS state on the synchronization context MUST be updated by adding the new change
number to the MetaTagCnsetRead property (section 2.2.1.1.4).

To minimize the possibility of putting replicas into a desynchronized state and because the protocol
does not notify clients as to what part of an operation has succeeded, servers are responsible for
making a reasonable prediction as to whether all read state changes will succeed. And, if a read

state change will not succeed, the server SHOULD fail the ROP before performing any read state
changes, as opposed to partially completing the ROP.

3.2.5.9.4.7 Receiving a RopGetLocalReplicaIds ROP Request

When the client sends the server a RopGetLocalReplicaIds ROP (section 2.2.3.2.4.7) request, the
server MUST parse the request, as specified in [MS-OXCROPS] section 2.2.13.13.1 and section
2.2.3.2.4.7 of this specification. The server MUST respond with a RopGetLocalReplicaIds ROP

response, as specified in [MS-OXCROPS] section 2.2.13.13.2 or 2.2.13.13.3, and section 2.2.3.2.4.7
of this specification.

A server can limit the number of IDs that can be allocated in one batch to prevent malicious clients
from reserving too many IDs with the intent of causing a denial-of-service attack by depleting the

set of available IDs. A server can limit the maximum number of IDs that can be allocated in one
batch to the upper limit of the range recommended to clients, as specified in section 3.3.5.8.12.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

118 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.2.5.9.4.8 Receiving a RopSetLocalReplicaMidsetDeleted ROP Request

When the client sends the server a RopSetLocalReplicaMidsetDeleted ROP (section 2.2.3.2.4.8)
request, the server MUST parse the request, as specified in [MS-OXCROPS] section 2.2.13.12.1 and

section 2.2.3.2.4.8 of this specification. The server MUST respond with a
RopSetLocalReplicaMidsetDeleted ROP response, as specified in [MS-OXCROPS] section
2.2.13.12.2 and section 2.2.3.2.4.8 of this specification.

A server MUST add ranges of IDs supplied through this ROP to the deleted item list. By adding
ranges of IDs to the deleted item list, the server is able to compress the deleted item list by using
the IDSET structure optimization algorithm specified in section 3.1.5.5.

3.2.5.10 Effect of Property and Subobject Filters on Download

Property and subobject filters specified during the configuration of a download operation only have
an effect on the objects that are directly included in the scope of the operation. For example:

Specifying a property in the PropertyTags field of the request buffer of a

RopFastTransferSourceCopyProperties ROP (section 2.2.3.1.1.2)whose InputServerObject
field contains an Attachment object affects the set of properties copied for this attachment, but

not its embedded message or any attachments that it might contain.

Specifying the PidTagFolderAssociatedContents property ([MS-OXPROPS] section 2.690) in

the PropertyTags field of the request buffer of a RopFastTransferSourceCopyTo ROP (section
2.2.3.1.1.1)whose InputServerObject field contains a Folder object only excludes FAI Message
objects from copying this specific folder, but not any of its descendant folders.

Specifying the PidTagMessageRecipients property ([MS-OXPROPS] section 2.784) in the

PropertyTags fields of the request buffer of a RopSynchronizationConfigure ROP (section
2.2.3.2.1.1) excludes recipient subobjects from all message changes downloaded in that
operation, but it does not affect recipients (1) of embedded messages that their attachments
might have.

Regardless of property filters specified at operation configuration time, certain properties MUST
always be excluded from output. For details about the properties to exclude from output, see section

3.2.5.12.

At the same time, directives to include or exclude properties and subobjects supplied through flags
do have an effect on downloaded objects at all levels. For example:

Specifying the CopySubfolders flag of the CopyFlag field, as specified in section 2.2.3.1.1.4.1,

includes all subfolders of the current folder into the operation scope.

Specifying the SendEntryId flag of the CopyFlag field includes all identification properties for all

objects being downloaded.

Whenever subobject filters have an effect, servers MUST output a MetaTagFXDelProp meta-
property (section 2.2.4.1.5.1) immediately before outputting subobjects of a particular type, to
differentiate between the cases where a set of subobjects (such as attachments or recipients (1))

was filtered in, but was empty, and where it was filtered out. For example:

Specifying the PidTagMessageRecipients meta-property ([MS-OXPROPS] section 2.784) in the

PropertyTags field of the request buffer of the RopFastTransferSourceCopyProperties ROP
(section 2.2.3.1.1.2) where the InputServerObject field contains a Message object, directs the
server to output the MetaTagFXDelProp (section 2.2.4.1.5.1) and PidTagMessageRecipients
properties before outputting recipients (1) of that message, even if there are no recipients (1).

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf

119 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

The protocol does not support incremental download of subobjects. Subobjects of a particular type
are either filtered out, in which case the MetaTagFXDelProp meta-property MUST NOT be output,

or are filtered in; that is, they MUST be output one after another, prefixed by the
MetaTagFXDelProp meta-property.

3.2.5.11 Properties to Ignore on Upload

Unless specified otherwise in property list restriction tables, properties that belong to the provider-
defined internal nontransmittable range, as specified in [MS-OXPROPS] section 1.3.3, MUST be
ignored on upload.

3.2.5.12 Properties to Ignore on Download

Unless specified otherwise in property list restriction tables, propValue elements of FastTransfer
streams, as specified in section 2.2.4.3.21, that belong to the provider-defined internal
nontransmittable range, as specified in [MS-OXPROPS] section 1.3.3, MUST be excluded from
download.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.3 Client Details

This section provides client-specific details related to bulk data transfer. When participating in
synchronization, the client has several responsibilities in addition to the actual act of

synchronization. These include: ID assignment, change tracking, conflict resolution, and ICS state
storage.

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

This protocol includes the following ADM types and elements:

Global.Handle, as specified in [MS-OXCRPC] section 3.1.1.

Session context cookie<42>, as specified in [MS-OXCMAPIHTTP] section 3.1.1.

MessagingObject, as specified in section 3.1.1.2. Additional elements for the

MessagingObject ADM type are defined in section 3.3.1.1.

3.3.1.1 Per Messaging Object

Messaging objects are represented by the MessagingObject ADM type. The following abstract
object elements are maintained by the client for each MessagingObject ADM type:

%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf

120 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Client.MessagingObject.ForeignIdentifier: An XID structure, as specified in section 2.2.2.2,
that identifies changes to objects in the local replica. For more details about foreign identifiers, see

section 3.3.5.2.3.

3.3.2 Timers

None.

3.3.3 Initialization

None.

3.3.4 Higher-Layer Triggered Events

3.3.4.1 Downloading Messaging Objects Using FastTransfer

Clients can efficiently download copies of specified folders, messages or attachments using the

binary format known as a FastTransfer stream. The following steps MUST be taken by a client to
download copies of these messaging objects from the server using FastTransfer ROPs and
FastTransfer streams:

1. Obtain a handle to a messaging object whose contents are requested, or obtain a handle to a

messaging object that the client will download a copy of. To obtain the handle of a new
messaging object, use the OutputHandleIndex field from the RopCreateMessage ROP ([MS-
OXCROPS] section 2.2.6.2) response buffer. For more details about obtaining a handle to an
existing messaging object, see [MS-OXCMSG] section 3.1.4.1.

2. Send the RopFastTransferSourceCopy* ROP request to create the FastTransfer download
context on the server and define the parameters and the scope of the operation. The

RopFastTransferSourceCopy* ROPs are specified in section 2.2.3.1.1.

3. Optionally, send a RopTellVersion ROP (section 2.2.3.1.1.6) request, if performing a server-to-
client-to-server upload, as specified in section 3.3.4.2.1. Additional details about sending a

RopTellVersion ROP request are specified in section 3.3.5.7.2.

4. Iteratively send RopFastTransferSourceGetBuffer ROP (section 2.2.3.1.1.5) requests on the
FastTransfer context to retrieve the FastTransfer stream with serialized messaging objects.
Additional details about sending a RopFastTransferSourceGetBuffer ROP request are specified

in section 3.3.5.7.1.

5. Send a RopRelease ROP ([MS-OXCROPS] section 2.2.15.3) request to release the messaging
object and FastTransfer context obtained in steps 1 and 2.

3.3.4.2 Uploading Messaging Objects Using FastTransfer

Clients not only can download copies of specified folders, messages or attachments using
FastTransfer ROPs and FastTransfer streams, clients can also upload copies of these messaging

objects as well. The following steps MUST be taken by a client to upload copies of messaging objects

to the server using FastTransfer ROPs and FastTransfer streams:

1. Obtain a handle to a messaging object, for which appending or replacing properties and/or
subobjects is requested. To obtain a handle to a new messaging object, use the
OutputHandleIndex field from the RopCreateMessage ROP ([MS-OXCROPS] section 2.2.6.2)
response buffer. For more details about obtaining a handle to an existing messaging object, see
[MS-OXCMSG] section 3.1.4.1.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCMSG%5d.pdf

121 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2. Send the RopFastTransferDestinationConfigure ROP (section 2.2.3.1.2.1) to create a
FastTransfer upload context on the server and define the parameters of the operation.

3. Optionally, send the RopTellVersion ROP (section 2.2.3.1.1.6) if performing a server-to-client-
to-server upload, as specified in section 3.3.4.2.1. Additional details about sending a

RopTellVersion ROP request are specified in section 3.3.5.7.2.

4. Iteratively send the RopFastTransferDestinationPutBuffer ROP (section 2.2.3.1.2.2) on the
FastTransfer context to upload the FastTransfer stream with the serialized messaging objects.

5. Send the RopRelease ROP ([MS-OXCROPS] section 2.2.15.3) to release the messaging object
and the FastTransfer context obtained in steps 1 and 2.

In step 4, if a client simply resends the stream that it is getting through the FastTransfer download,
it can consider using an optimized server-to-client-to-server upload process, as specified in section

3.3.4.2.1.

3.3.4.2.1 Server-to-Client-to-Server Upload

To optimize copying messaging objects between two different mailboxes on two different servers by
using FastTransfer upload paired with FastTransfer download, a client can specify the ForUpload
flag in the SendOptions field of the RopFastTransferSourceCopy* ROPs, as specified in section

2.2.3.1.1, which instructs the source server to produce a FastTransfer stream that is optimized for
the destination server. By setting the ForUpload flag, the client instructs the server to transmit all
string properties in an untranslated format to preserve full fidelity on the destination server.

Clients MUST NOT parse the FastTransfer stream produced by the source server, as it can contain
optimizations and not adhere to the grammar specified in section 2.2.4.

Clients MUST use the following steps to execute server-to-client-to-server copying:

1. Send one of the RopFastTransferSourceCopy* ROP requests to server A to configure a

FastTransfer download context, while setting the ForUpload flag in the SendOptions field.

2. Send the RopFastTransferDestinationConfigure ROP (section 2.2.3.1.2.1) request to server B
to configure a FastTransfer upload context.

3. Send the RopTellVersion ROP (section 2.2.3.1.1.6) request on the FastTransfer download
context with a version of server B.

4. Send the RopTellVersion ROP request on the FastTransfer upload context with a version of
server A.

5. Iteratively send the RopFastTransferSourceGetBuffer ROP (section 2.2.3.1.1.5) requests on
the FastTransfer download context, followed by the RopFastTransferDestinationPutBuffer
ROP (section 2.2.3.1.2.2) requests on the FastTransfer upload context, until there is no more
data.

6. Release both FastTransfer contexts.

3.3.4.3 Synchronizing Incremental Changes

ICS is used to determine differences between two folder hierarchies or two sets of content, and can
upload or download information about the differences in a single session. The following figure shows
the high-level steps involved in ICS.

%5bMS-OXCROPS%5d.pdf

122 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Figure 3: Steps in Incremental Change Synchronization

1. The client acquires the synchronization object by using the RopSynchronizationConfigure ROP
(section 2.2.3.2.1.1) for download operations, or the RopSynchronizationOpenCollector ROP
(section 2.2.3.2.4.1) for upload operations.

2. The client initializes the synchronization object by uploading the ICS state properties, as specified

in section 3.3.4.3.1.

3. To upload content changes to the server, the client sends data using the steps specified in

section 3.3.4.3.3.2.2. To upload hierarchy changes to the server, the client sends data using the
steps specified in section 3.3.4.3.3.1. To download content or hierarchy changes from the server,
the client uses the steps specified in section 3.3.4.3.2.

4. After the content synchronization is complete, the client receives the final ICS state properties,
which it persists locally.

3.3.4.3.1 Uploading the ICS State

The ICS state properties, as specified in section 2.2.1.1, are used to determine the differences
between the messaging objects on the client and the server. By using the ICS state properties, only
differences that are relevant to a client are downloaded and the same information is only
downloaded once.

The client passes the ICS state properties to the server immediately after configuring a
synchronization context for download or upload by sending the RopSynchronizationConfigure

ROP (section 2.2.3.2.1.1) or the RopSynchronizationOpenCollector ROP (section 2.2.3.2.4.1),
respectively.

123 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

After the synchronization context is acquired, the client MUST send the initial ICS state properties,
as specified in section 2.2.1.1, to the server before executing any other ROPs on the synchronization

context.

During the first synchronization of a synchronization scope, the client MUST send the initial ICS

state properties as zero-length byte arrays.

The following table summarizes the requirements for including the ICS state properties depending
on the synchronization context of the operation.

ICS state property

Hierarchy

download

Contents

download

Hierarchy

upload

Contents

upload

MetaTagIdsetGiven (section
2.2.1.1.1)

MUST MUST Not applicable Not
applicable

MetaTagCnsetSeen (section
2.2.1.1.2)

MUST MUST SHOULD SHOULD

MetaTagCnsetSeenFAI (section
2.2.1.1.3)

Not applicable MUST Not applicable SHOULD

MetaTagCnsetRead (section
2.2.1.1.4)

Not applicable MUST Not applicable SHOULD

Uploading the ICS state properties is done sequentially, property by property. The order in which
properties are uploaded does not matter. The upload of each property MUST be initiated by sending
the RopSynchronizationUploadStateStreamBegin ROP (section 2.2.3.2.2.1) request, followed
by one or more RopSynchronizationUploadStateStreamContinue ROP (section 2.2.3.2.2.2)
requests. The upload is finished with the RopSynchronizationUploadStateStreamEnd ROP
(section 2.2.3.2.2.3).

At the end of the synchronization operation, the client receives a new ICS state from the server,
commonly referred to as the final ICS state. Updated ICS state properties can also be returned to

the client in ROP responses, or through the checkpointing process, as specified in section 3.3.5.6. It
is the responsibility of the client to persist the ICS state properties.

3.3.4.3.2 Downloading Changes Using ICS

The following steps MUST be taken by a client when downloading mailbox differences from a server

using ICS:

1. Obtain a handle to a Folder object, for which synchronization is being requested. For details
about obtaining a folder handle, see [MS-OXCFOLD].

2. Send the RopSynchronizationConfigure ROP (section 2.2.3.2.1.1) request to create a
synchronization download context on the server and define the parameters and the scope of the
operation.

3. Send the RopSynchronizationUploadStateStreamBegin (section 2.2.3.2.2.1),

RopSynchronizationUploadStateStreamContinue (section 2.2.3.2.2.2), and
RopSynchronizationUploadStateStreamEnd ROP (section 2.2.3.2.2.3) requests to upload the
initial ICS state information to the synchronization context.

4. Iteratively send the RopFastTransferSourceGetBuffer ROP (section 2.2.3.1.1.5) request on
the synchronization download context to retrieve the FastTransfer stream of the mailbox
differences and the final ICS state.

%5bMS-OXCFOLD%5d.pdf

124 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

5. Persist the ICS state.

6. Send the RopRelease ROP ([MS-OXCROPS] section 2.2.15.3) request to release the Folder
object and the synchronization download context obtained in steps 1 and 2.

3.3.4.3.3 Uploading Changes Using ICS

The client uploads the initial ICS state and downloads the final/checkpoint ICS state when
performing a synchronization upload. Clients can perform a synchronization upload without
uploading the initial ICS state properties into a synchronization upload context, because the
behavior of the RopSynchronizationImport* ROPs do not depend on the initial ICS state. In that
case, a server can download the changes uploaded in this session during the subsequent ICS
downloads.

The following figure shows the primary processes taking place during an upload operation. The
sections that follow describe the details within the Send Data process.

Figure 4: Upload operation

The following steps elaborate on the steps in the figure and MUST be taken by a client when

uploading mailbox differences to a server:

1. Obtain a handle to the Folder object, as specified in [MS-OXCFOLD], that will be synchronized.

2. Send a RopSynchronizationOpenCollector ROP request (section 2.2.3.2.4.1) to create a

synchronization upload context on the server and to define parameters and the scope of an
operation.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCFOLD%5d.pdf

125 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3. The client SHOULD send the RopSynchronizationUploadStateStreamBegin ROP (section
2.2.3.2.2.1), the RopSynchronizationUploadStateStreamContinue ROP (section

2.2.3.2.2.2), and the RopSynchronizationUploadStateStreamEnd ROP (section 2.2.3.2.2.3)
request to upload the initial ICS state information to the synchronization context.

4. Upload changes, moves, and deletes of individual objects within the synchronized Folder object
through RopSynchronizationImport* ROPs, while passing the synchronization upload context
obtained in step 2. Uploading hierarchy changes is specified in section 3.3.4.3.3.1. Uploading
content changes is specified in section 3.3.4.3.3.2.

5. The client SHOULD obtain the final ICS state by doing the following:

Acquire a separate FastTransfer download context for a checkpoint ICS state by using the

RopSynchronizationGetTransferState ROP (section 2.2.3.2.3.1) and passing the
synchronization upload context obtained in step 2 in the request buffer.

Perform FastTransfer download step 4, as specified in section 2.2.3.1.1, on the FastTransfer

download context acquired in the first bullet point.

Release the FastTransfer download context obtained in the first bullet point.

6. Persist the ICS state.

7. Send the RopRelease ROP ([MS-OXCROPS] section 2.2.15.3) request to release the Folder
object and the synchronization upload context obtained in steps 1 and 2.

The client can elect not to upload/download the ICS states in steps 3 and 5. For details on how that
would affect responsibilities of the protocol roles, see section 3.3.4.3.3.

The following table lists the common return values from the RopSynchronizationImport* ROPs
that clients SHOULD have special processing for.

Value Description

Success No error occurred, or a conflict has been resolved.

NoParentFolder An attempt is being made to upload a hierarchy change for a folder whose parent
folder does not yet exist.

ObjectDeleted An attempt is being made to import a message change to a message that has been
deleted. The client SHOULD subsequently ignore the failure because it is just a
warning.

IgnoreFailure An attempt is being made to import a change that the server already has. For
example, if the client calls the RopSynchronizationImportMessageChange ROP,
as specified in section 2.2.3.2.4.2, and uploads a change and then issues the exact
same RopSynchronizationImportMessageChange ROP request to the server
with the exact same message with the exact same change, the server returns this
value because it either already has the change or has a version of the message that
supersedes that change, so it does not need the change.

The complete list of error codes is specified in [MS-OXCDATA] section 2.4.

3.3.4.3.3.1 Hierarchy Upload

The following sections specify best practices for uploading hierarchy modifications and deletions that

were tracked by the client while the client was offline.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXGLOS%5d.pdf

126 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

The Send Data process (as shown in Figure 4) is illustrated in Figure 5.

Figure 5: Send Data process

When uploading hierarchy differences, the client sends the following ROP requests:

RopSynchronizationImportHierarchyChange ROP (section 2.2.3.2.4.3)

RopSynchronizationImportDeletes ROP (section 2.2.3.2.4.5)

3.3.4.3.3.1.1 Uploading Hierarchy Changes

New and modified folders are uploaded in the same manner. A client MUST collect all properties that
are stored on the local replica, and use the synchronization upload context and the
RopSynchronizationImportHierarchyChange ROP (section 2.2.3.2.4.3), to transmit this
information to the server. When public folders are uploaded, the synchronization upload context is
opened by using the folder that is being synchronized. When this happens, a
PidTagParentSourceKey property (section 2.2.1.2.6) with a zero-length value is used to denote

that the folder properties belong to the folder from which the synchronization upload context was
opened. A move of a folder from one parent to another is modeled as a modification of a folder,
where the value of the PidTagParentSourceKey property of the folder changes to reflect the new
parent.

There is no mechanism to represent conflicts on hierarchy. As such, the server MUST apply "last
writer wins" semantics to hierarchy change uploads. The last writer wins algorithm is specified in

section 3.1.5.6.2.2.

Clients SHOULD ignore the following errors, which indicate that the server did not apply the
changes:

127 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Value Description

ObjectDeleted An object or its parent folder has already been deleted.

IgnoreFailure The change was ignored, as it has been superseded by another change.

The complete list of error codes is specified in [MS-OXCDATA] section 2.4.

3.3.4.3.3.1.2 Uploading Hierarchy Deletions

Folder deletions are performed by transmitting the PidTagSourceKey property (section 2.2.1.2.5)
for the folder to be removed by using the synchronization upload context and the
RopSynchronizationImportDeletes ROP (section 3.3.5.8.10).

The server MUST stop processing deletion operations upon encountering the first error; therefore, a

client MUST be prepared to retry the operations on a newly initialized synchronization upload
context if a failure is encountered.

Errors can occur during bulk operations that require additional effort to disambiguate and rectify.
These errors can occur more often when the user is not the owner of the mailbox.

3.3.4.3.3.2 Content Upload

The following sections specify best practices for uploading content modifications, read/unread state

changes, deletions, and move operations that were performed while the client was offline. The
following figure shows this process.

%5bMS-OXCDATA%5d.pdf

128 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Figure 6: Best practices for Message Changes

When uploading content differences, the client can send any combination of the following ROP
requests:

RopSynchronizationImportMessageChange (section 2.2.3.2.4.2). Imports new messages or

changes to existing messages.

RopSynchronizationImportMessageMove (section 2.2.3.2.4.4). Communicates the

movement of messages between folders within the same mailbox.

RopSynchronizationImportDeletes (section 2.2.3.2.4.5). Imports deletions of messages.

129 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

RopSynchronizationImportReadStateChanges (section 2.2.3.2.4.6). Imports changes to the

read state of messages.

These ROPs do not have to be sent in any specific order and can be mixed together. For example, all

the deletions do not have to be uploaded before all the message moves, and all the message
changes do not have to be uploaded before all the deletions.

3.3.4.3.3.2.1 Uploading Moves

3.3.4.3.3.2.1.1 Moves and Modifications

Message moves MUST be performed using a synchronization upload context of the folder to which

the message was moved (the destination folder). To synchronize a message move, use the
RopSynchronizationImportMessageMove ROP (section 2.2.3.2.4.4). The client specifies the
source folder information.

3.3.4.3.3.2.1.2 Avoiding Duplicate Uploads

When a client that is using a local replica sends a message by using a server with a major version of
less than eight (8), a new message is created in a server folder, the contents of the local message

are copied into the server message, and the message is submitted (on the first upload). After the
submission is complete, the item is moved into the Sent Items folder in the local replica.
Sometime later, the Sent Items folder is synchronized. The item is then uploaded as it is a new item
in the replica (on the second upload) due to the fact that the folder to which the message was
originally submitted is not within the user's mailbox (and therefore not part of the replica).

Servers with a major version of 8 and above implement the following alternative method to diminish
the impact of the second upload. For details about determining server version, see section 1.7.

Because the client assigns server IDs to all items it creates in the local replica, the message in the
Outbox folder has a valid server ID. When the client is uploading the message for sending, it adds
an additional property to the message, PidTagTargetEntryId ([MS-OXOMSG] section 2.2.1.76).
When a version 8 (or later) server observes this property, it places a mirror copy of the message in
the user's server Outbox and gives it the ID specified in the PidTagTargetEntryId property. In this

way, when the client synchronizes the folder holding sent items, it can be synchronized as a move

(from the Outbox folder to the folder holding sent items) as opposed to a new item (in the folder
holding sent items).

3.3.4.3.3.2.2 Uploading Modifications

The following sections specify the processes for uploading message modifications. Conflict detection
is defined in section 3.1.5.6.1.

When a message has been moved and modified in the offline message store, a client MUST apply

modifications after moving the message, as specified in section 3.3.4.3.3.2.1.1.

3.3.4.3.3.2.2.1 Full Item Upload

Message changes are uploaded by using the RopSynchronizationImportMessageChange ROP

(section 2.2.3.2.4.2), followed by copying all properties to the message by using the
RopSetProperties ROP ([MS-OXCROPS] section 2.2.8.6), as specified in [MS-OXCPRPT] section
2.2.5, and persisting the changes using the RopSaveChangesMessage ROP, as specified in [MS-

OXCMSG] section 2.2.3.3.

%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCPRPT%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf

130 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Clients SHOULD ignore the following errors (returned from the
RopSynchronizationImportMessageChange ROP and the RopSaveChangesMessage ROP, or

both), which indicate that the server did not apply the changes.

Value Description

ObjectDeleted An object or its parent folder has already been deleted.

IgnoreFailure The change was ignored, as it has been superseded by another change.

The complete list of error codes is specified in [MS-OXCDATA] section 2.3.

A client SHOULD have a strategy to deal with non-transient errors to prevent them from occurring in
subsequent synchronization attempts. That strategy can be to move items that fail to upload to a
local folder that is not synchronized. In addition, for non-new items, the client can attempt to bring

down the previous version of the item in order to get a good version of the item back in the user's
offline message store.

When detecting conflicting changes, a server MUST perform conflict resolution as defined in section
2.2.1.4.1.

3.3.4.3.3.2.2.2 Partial Item Upload

To improve wire efficiency, a client SHOULD track offline changes in such a way that these can be

uploaded individually without having to transmit the full item. One strategy is for a client to apply
the changes by using standard Message object and Attachment object protocol calls, as specified in
[MS-OXCMSG], such as the RopGetPropertiesSpecific ROP ([MS-OXCROPS] section 2.2.8.3), the
RopSetProperties ROP ([MS-OXCROPS] section 2.2.8.6), the RopSetReadFlags ROP ([MS-
OXCROPS] section 2.2.6.10), and the RopDeleteProperties ROP ([MS-OXCROPS] section 2.2.8.8),
to apply changes directly to the server replica. Then, the client uses the

RopSaveChangesMessage ROP ([MS-OXCROPS] section 2.2.6.3) together with the
RopGetPropertiesSpecific ROP ([MS-OXCROPS] section 2.2.8.3) to get the new PCL and change
number values for the message, as specified in sections 2.2.2.3 and 2.2.2.1, respectively. The client

SHOULD then modify the message PCL, message change number, and ICS state on the client in a
way that would prevent the item from being downloaded, as specified in section 3.1.5.6.

3.3.4.3.3.2.3 Uploading Deletes

Message deletions are performed by transmitting the PidTagSourceKey property (section
2.2.1.2.5) for the messages to be removed by using the RopSynchronizationImportDeletes ROP
(section 2.2.3.2.4.5) on a synchronization upload context of the folder that contains those
messages.

A client SHOULD batch multiple PidTagSourceKey property entries in the PropertyValues field of
the RopSynchronizationImportDeletes ROP when deleting multiple messages to improve wire
efficiency.

The server MUST stop processing deletion operations upon encountering the first NotFound error, as

specified in [MS-OXCDATA] section 2.4, so a client MUST be prepared to retry the operations on a
newly initialized synchronization upload context if a failure is encountered.

Errors can occur during bulk operations that require additional effort to disambiguate and rectify.
These errors occur more often when the user is not the owner of the mailbox.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf

131 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.3.4.3.3.2.4 Uploading Read/Unread State Changes

Message read/unread state is uploaded by transmitting one MessageReadState structure ([MS-
OXCROPS] section 2.2.13.3.1.1) per message, which changes the status by using the

synchronization upload context and the RopSynchronizationImportReadStateChanges ROP
(section 2.2.3.2.4.6).

For each message that has a read state change, the client MUST specify the MessageId field that
represents the PidTagSourceKey property (section 2.2.1.2.5) for the message, as well as the
MarkAsRead field, indicating the updated read state, as specified in section 2.2.3.2.4.6.1.

Errors can occur during bulk operations that require additional effort to disambiguate and rectify.
These errors occur more often when the user is not the owner of the mailbox.

3.3.4.3.4 Downloading the ICS State

The client can download the ICS state of the server using the following methods:

Sending the RopSynchronizationGetTransferState ROP (section 2.2.3.2.3.1) to retrieve the

current ICS state of the server.

Parsing the final ICS state of the server from the state element of the FastTransfer stream, as

specified in section 2.2.4.3.25.

Using client side checkpointing, as specified in section 3.3.5.6.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Order of Operations

When performing synchronization, whether to perform upload operations before download
operations is implementation-dependent and external to the Bulk Data Transfer Protocol.<43>
However, performing upload before download allows conflicts to be resolved before data is received

by the client. In this way, wire efficiency can be increased, as an additional post-resolution upload is
not required.

3.3.5.2 Creating Objects and Identifying Changes on the Local Replica

The following three alternative mechanisms are available to clients that require the ability to create
objects in their local replica without having immediate contact with the server to upload the
differences. This is also known as working offline.

3.3.5.2.1 Client-Assigned Internal Identifiers

When using this most preferred approach, clients MUST send a request to a server to allocate a
range of internal identifiers (2) for their exclusive use by using RopGetLocalReplicaIds ROP. Once

the range is allocated, a client can stay offline and use identifiers from that range until the range is
exhausted, at which point the client would have to allocate a new range by connecting to the server

and executing the RopGetLocalReplicaIds ROP before being able to assign new client-assigned
internal identifiers (2). Clients can then assign these IDs to any new folders or messages within their
local replica and communicate these assignments back when performing ICS upload by using the
RopSynchronizationImportHierarchyChange ROP (section 2.2.3.2.4.3) or the

RopSynchronizationImportMessageChange ROP (section 2.2.3.2.4.2). Note that these IDs
MUST NOT be used for change numbers as it would result in change numbers that did not increase

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

132 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

per namespace replica, or clients having different ranges from the same namespace, leading to
undefined server behavior.

Clients MUST generate foreign identifiers to identify changes to objects in the local replica, as
specified in section 3.3.5.2.3.

This mechanism is being serviced by two ROPs, RopGetLocalReplicaIds (section 2.2.3.2.4.7) and
RopSetLocalReplicaMidsetDeleted (section 2.2.3.2.4.8).

To help compression of IDSET structures and to alleviate fragmentation of the deleted item list, if a
server maintains an IDSET for a folder, clients SHOULD assign consecutive IDs from the allocated
range to messages within the same folder. This can be achieved by allocating a contiguous subset of
allocated IDs to each folder.

Clients MUST report IDs assigned to objects in a client replica that were deleted without ever being

uploaded through the RopSynchronizationImportDeletes ROP.

Clients MUST report ranges of server-allocated IDs, which will never be used for any messages in a

folder, through the RopSetLocalReplicaMidsetDeleted ROP. For more details, see section
3.3.5.8.13.

3.3.5.2.2 Use Online Mode ROPs

In this approach, clients upload objects created in their local replica by using the regular, non-
synchronization ROPs, such as RopCreateFolder or RopCreateMessage, as specified in [MS-
OXCROPS], which makes servers assign internal identifiers (2) as usual. The following are the
limitations of this mode:

Clients do not have server-accepted identifiers for objects until after they are uploaded to a

server.

Clients do not control internal identifiers (2) assigned to objects and changes by a server.

Clients cannot set values of special properties, such as the PidTagLastModificationTime

property ([MS-OXPROPS] section 2.753).

Clients are entirely responsible for updating the ICS state to prevent uploaded objects from being

downloaded during a subsequent synchronization download operation.

3.3.5.2.3 Foreign Identifiers

Clients MUST generate foreign identifiers to identify changes to objects in the local replica. Foreign
identifiers are represented as XID structures, as specified in section 2.2.2.2, and MUST NOT have
the same byte length as GID structures ([MS-OXCDATA] section 2.2.1.3); that is, the number of
bytes in the LocalId field that follows a NamespaceGuid field in the XID structure MUST be
different from the size of GLOBCNT structure, as specified in section 2.2.2.5, which is 6 bytes. At
the same time, foreign identifiers that share values for the NamespaceGuid field MUST have

LocalId fields of the same length.

Clients MUST create foreign identifiers within the values of the NamespaceGuid fields they

generated, and MUST NOT use any REPLGUID structures returned by a server for that purpose.

Foreign identifiers MUST have the same qualities as internal identifiers (2): they MUST be unique,
MUST NOT ever be reused and MUST be guaranteed to increase for any new change, or use a
different GUID. This is important for conflict detection, as specified in section 3.1.5.6.1.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf

133 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.3.5.3 Back-in-Time Detection

Due to the internal identifier (2) allocation specified in section 3.3.5.2.1 and section 3.3.5.2.2 and
the fact that a client MUST NOT reuse internal identifiers (2), the client MUST implement some

mechanism to detect server rollback. One possible source of rollback is when a mailbox database is
restored from a backup to a previous state.

A sample implementation is a property on both the local replica and the server that stores a counter
specific to each replica (2). When the replica (2) connects to the server, it verifies that the counter
is greater than or equal to the server counter. If the client counter is ever less than the server
counter, rollback has occurred and that client replica (2) is abandoned.

3.3.5.4 Mailbox Validation

A client MUST NOT let a replica (2) of one mailbox synchronize with a different mailbox. For this
reason, a client MUST identify the mailbox associated with any given replica (2). This can be
accomplished by using the mailbox instance GUID, which is returned by the RopLogon ROP ([MS-

OXCROPS] section 2.2.3.1). The mailbox is associated with the local replica and compared to the
mailbox GUID after the RopLogon ROP completed.

Mailbox validation is particularly important in a disaster recovery scenario. For example, assume a
database is lost and an interim mailbox is created while database recovery is in progress. In this
scenario, the client receives a new mailbox instance GUID in the RopLogon ROP response while
connecting to the interim mailbox. In a possible implementation, this causes the client to switch to
online mode to keep the replica (2) from synchronizing with more than one mailbox. Once the
database recovery is complete, the original mailbox instance GUID is returned in the RopLogon
ROP response, and the client can switch back to cached mode.

3.3.5.5 Determining the Synchronization Scope

To be able to perform an ICS download of mailbox data, a client MUST subdivide all necessary
synchronization work into smaller pieces, which clearly define boundaries of synchronization
operations in the terms supported by the ICS protocol (see the RopSynchronizationConfigure

ROP, as specified in section 2.2.3.2.1.1). Synchronization scope is determined by using the following
variables:

Synchronization type (Hierarchy or Contents), as indicated by the SynchronizationType

enumeration of the RopSynchronizationConfigure ROP request buffer.

Folder within the mailbox, as indicated by the InputServerObject field of the

RopSynchronizationConfigure ROP request.

Restrictions on messages within the folder that are included in the scope (for content

synchronization operations only), as indicated by the RestrictionData field of the
RopSynchronizationConfigure ROP request.

Synchronization for each of the scopes can be performed independently. For each synchronization
scope, a client MUST persist the corresponding ICS state and pass it along when configuring a
synchronization operation, as specified in section 2.2.3. ICS state does not reflect the

synchronization scope it belongs to. Therefore, a client MUST ensure that the ICS state it passes to
a server corresponds to the synchronization scope that it was originally obtained for.

Examples of synchronization scopes include the following:

Folder hierarchy that starts with folder X

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXGLOS%5d.pdf

134 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

All contents of folder Z

All unread messages in folder Y that were received within the last three days

Note that the set of messaging objects that are considered for ICS operation can be further limited

with flags, such as Normal or FAI set in the SynchronizationFlags field of the
RopSynchronizationConfigure ROP. However, these flags do not modify the synchronization
scope; they just filter the output produced by an operation.

For example, consider the following ICS operation:

IcsDownload(icsStateX, Normal | FAI) => (diffNormal diffFAI, icsStateZ)

This operation outputs differences for all the messages in a folder. Compare it with the following

sequence of ICS operations:

1. IcsDownload(icsStateX, Normal) => (diffNormal, icsStateY)

2. IcsDownload(icsStateY, FAI) => (diffFAI, icsStateZ)

This sequence is correct and it produces the same result as the previous single step operation.

The following sequence, however, is incorrect, because it uses a different synchronization scope (by
supplying a different value for the restriction field) for the same ICS state:

IcsDownload(icsStateX, Normal | FAI, {PidTagAssociated (section 2.2.1.5) equals FALSE})

=> (diff1, icsStateA)

IcsDownload(icsStateA, Normal | FAI, {PidTagAssociated equals TRUE})

=> (diff2, icsStateB)

As a result, this sequence does not yield the same result:

diff1 contains soft deletion notifications for any previously downloaded messaging objects

mentioned in icsStateX. The MetaTagIdsetGiven property (section 2.2.1.1.1), which does not
have a PidTagAssociated property value equals FALSE.

diff2 contains soft deletions for all messaging objects mentioned in

icsStateA.MetaTagIdsetGiven.

icsStateB.MetaTagIdsetGiven only contains IDs of FAI messages.

3.3.5.6 Client Side Checkpointing

Checkpointing is a method of ICS state management that is used for upload and download
operations to provide updated state information on an object-by-object basis. If a client has to abort
synchronizations regularly, or if mitigating the effects of application or connection termination is a
priority, the client can implement an ICS state checkpointing strategy. This is made possible by
setting the Eid and CN flags in the SynchronizationExtraFlags field in the ulExtra field of the

RopSynchronizationConfigure ROP request (section 2.2.3.2.1.1) that is made when initializing a
download. As specified in section 3.2.5.9.1.1, setting the Eid and CN flags causes the server to send
the PidTagMid property (section 2.2.1.2.1) and the PidTagChangeNumber property (section
2.2.1.2.3) in the ICS header for each messaging object. Using the PidTagChangeNumber property
and the item's PidTagMid property, the ICS state can be maintained on the client by updating its
MetaTagIdsetGiven (section 2.2.1.1.1) and MetaTagCnsetSeen (section 2.2.1.1.2) (or
MetaTagCnsetSeenFAI (section 2.2.1.1.3), for folder associated information (FAI) messages)

135 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

properties by using the PidTagMid and PidTagChangeNumber properties, respectively. Each of
these properties is specified in section 2.2.1.1 or section 2.2.1.2.

If this updated ICS state is then persisted periodically, the client does not have to redownload all
items in the event of a cancellation or other abnormal termination. It is recommended that the client

persist the state downloaded at the end of the current (or a subsequent) ICS download process,
after the download is complete. This is because the ICS state provided by the server is a much more
efficient version than the version obtained by using checkpointing alone.

Note Checkpointing for synchronization download operations functions differently than
checkpointing for synchronization upload operations. During a synchronization upload operation, the
server returns checkpoint ICS states that are accurate to the time at which the checkpoint was
requested. During a synchronization download operation, the server SHOULD<44> return the initial

ICS state, or MAY<45> return the checkpoint ICS state that is accurate to the time at which the
checkpoint was requested, until the download is complete, at which time it returns the final ICS
state.

3.3.5.7 Sending FastTransfer ROPs

3.3.5.7.1 Sending a RopFastTransferSourceGetBuffer ROP Request

To obtain all data output by an operation, the RopFastTransferSourceGetBuffer ROP (section
2.2.3.1.1.5) MUST be sent iteratively, because the amount of data that can be passed in one RPC is
limited by its maximum size. A client MUST stop sending this ROP on a download context as soon as
it receives TransferStatus field values of Done or Error.

Clients SHOULD<46> set the value of the BufferSize field in the ROP request to a sentinel value of
0xBABE to achieve maximum efficiency. If this field is not set to 0xBABE, then clients MUST pass a

value equal to or greater than 15480 or MUST be prepared to increase this number in future
requests if they passed a smaller value and the RopBufferTooSmall ROP response ([MS-
OXCROPS] section 2.2.15.1) was returned.

Clients MAY set the value of the MaximumBufferSize field to at least the size of the output RPC

buffer to achieve maximum efficiency.

For details about the client behavior when receiving a RopFastTransferSourceGetBuffer ROP
response, see section 3.3.5.9.1.

3.3.5.7.2 Sending a RopTellVersion ROP Request

Clients MUST pass the server version exactly as it was obtained either from the EcDoConnectEx
method response, as specified in [MS-OXCRPC], or from the X-ServerApplication header of the
Connect request type response, as specified in [MS-OXCMAPIHTTP]. For more details about the
only application scenario for this ROP, server-to-client-to-server upload, see section 3.3.4.2.1.

If the client sends the RopTellVersion ROP (section 2.2.3.1.1.6), the request MUST be sent before

the first RopFastTransferSourceGetBuffer (section 2.2.3.1.1.5) or
RopFastTransferDestinationPutBuffer ROP (section 2.2.3.1.2.2).

3.3.5.8 Sending ICS ROPs

This section specifies client requirements when sending ICS ROP requests to synchronize messaging
objects with the server.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCRPC%5d.pdf
%5bMS-OXCMAPIHTTP%5d.pdf

136 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

3.3.5.8.1 Sending a RopSynchronizationConfigure ROP Request

The client MUST upload the last remaining piece of configuration data, the initial ICS state, as
specified in section 3.3.4.3.1, before it can request a FastTransfer stream that contains differences

from the server.

For details about the client behavior when receiving a response to this ROP, see section 3.3.5.9.

3.3.5.8.2 Sending a RopSynchronizationUploadStateStreamBegin ROP Request

When the RopSynchronizationUploadStateStreamBegin ROP request (section 2.2.3.2.2.1) is
sent to the server, no other property upload MUST be in progress for this synchronization context,
and any property that is being specified in this ROP SHOULD NOT have been previously uploaded

into this synchronization context.

This ROP MUST be followed by the RopSynchronizationUploadStateStreamContinue ROP
(section 2.2.3.2.2.2) or the RopSynchronizationUploadStateStreamEnd ROP (section
2.2.3.2.2.3).

3.3.5.8.3 Sending a RopSynchronizationUploadStateStreamContinue ROP Request

This ROP MUST be followed by the RopSynchronizationUploadStateStreamContinue ROP

(section 2.2.3.2.2.2) or the RopSynchronizationUploadStateStreamEnd ROP (section
2.2.3.2.2.3).

Uploading the ICS state properties MUST be initiated by sending the
RopSynchronizationUploadStateStreamBegin ROP (section 2.2.3.2.2.1).

Clients SHOULD skip this ROP if the size of the remaining data specified in the StreamDataSize
field is 0.

3.3.5.8.4 Sending a RopSynchronizationUploadStateStreamEnd ROP Request

Uploading the ICS state properties MUST be initiated by sending the
RopSynchronizationUploadStateStreamBegin ROP request (section 2.2.3.2.2.1) followed by
zero or more iterations of the RopSynchronizationUploadStateStreamContinue ROP (section
2.2.3.2.2.2).

3.3.5.8.5 Sending a RopSynchronizationGetTransferState ROP Request

Clients are only required to use the RopSynchronizationGetTransferState ROP (section
2.2.3.2.3.1) when performing synchronization uploads, as it is the only way to obtain the ICS state
maintained on the synchronization upload context.

For details about the client behavior when receiving a response to this ROP, see section 3.3.5.9.

3.3.5.8.6 Sending a RopSynchronizationOpenCollector ROP Request

A client SHOULD upload the initial ICS state, as specified in section 2.2.3.2.2, into the

synchronization context returned in the RopSynchronizationOpenCollector ROP (section
2.2.3.2.4.1) response prior to using any RopSynchronizationImport* ROPs. However, the client
can elect not to upload the initial ICS state. For details about how that would affect the
responsibilities of the protocol roles, see section 3.3.4.3.3.

Be sure to update the stored MetaTagIdsetGiven property (section 2.2.1.1.1) value with internal
identifiers (2) of the objects that were imported into the server replica. These identifiers either are

137 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

returned in the RopSynchronizationImport* ROP responses or can be extracted from GID
structures ([MS-OXCDATA] section 2.2.1.3) sent as the input PidTagSourceKey property (section

2.2.1.2.5) values.

For details about the client behavior when receiving a response to this ROP, see section 3.3.5.9.

3.3.5.8.7 Sending a RopSynchronizationImportMessageChange ROP Request

When uploading new messages, clients SHOULD add their Message ID structures ([MS-OXCDATA]
section 2.2.1.2) to the MetaTagIdsetGiven property (section 2.2.1.1.1) value upon successful
completion of this ROP.

Note that because a server returns an empty message from the
RopSynchronizationImportMessageChange ROP ([MS-OXCROPS] section 2.2.13.2), even when

uploading changes to an existing message, this ROP can only be used to perform upload of full
message changes or new messages. In order for the client to upload partial message changes, it
SHOULD take them outside the synchronization upload operation, by initiating an upload by using
the RopOpenMessage ROP ([MS-OXCROPS] section 2.2.6.1) followed by other ROPs discussed in

[MS-OXCMSG], such as the RopSetProperties ROP ([MS-OXCROPS] section 2.2.8.6) and the
RopModifyRecipients ROP ([MS-OXCROPS] section 2.2.6.5). However, these ROPs do not let the

client set values to any of the properties that the RopSynchronizationImportMessageChange
ROP accepts.

The RopSynchronizationImportMessageChange ROP returns the handle of a Message object,
which the client MUST populate with the contents of the message. The client populates the Message
object by sending the ROPSetProperties ROP, the ROPCreateAttachment ROP ([MS-OXCROPS]
section 2.2.6.13), and other ROPs required to populate the message contents, as specified in [MS-
OXCMSG] section 3.1.4, followed by the ROPSaveChangesMessage ROP ([MS-OXCROPS] section

2.2.6.3).

For details about the client behavior when receiving a response to this ROP, see section 3.3.5.9.

3.3.5.8.8 Sending a RopSynchronizationImportHierarchyChange ROP Request

When uploading new folders, clients SHOULD update the ICS state that corresponds to the chosen
synchronization scope by adding the Folder ID structures ([MS-OXCDATA] section 2.2.1.1) of new
folders to the MetaTagIdsetGiven property (section 2.2.1.1.1) upon successful completion of this

ROP.

Changes to parent folders MUST be made before changes to child folders. For example, the client
cannot send the RopSynchronizationImportHierarchyChange ROP (section 2.2.3.2.4.3) with a
subfolder change before informing the server of the existence of the parent folder.

To move a folder to a different subfolder within the same private mailbox, the client MUST pass the
PidTagSourceKey property (section 2.2.1.2.5) of a destination parent folder in the

PidTagParentSourceKey property (section 2.2.1.2.6) in the HierarchyValues field while passing
the value of the PidTagSourceKey property of the folder being moved in the PidTagSourceKey
property. Moving folders within a public mailbox is not supported.

3.3.5.8.9 Sending a RopSynchronizationImportMessageMove ROP Request

When uploading new messages, clients SHOULD update the ICS state of the source folder by
removing the Message ID structure ([MS-OXCDATA] section 2.2.1.2) of moved the messages from

its MetaTagIdsetGiven property (section 2.2.1.1.1). Otherwise, the client MUST be prepared to
receive deletion notifications for these messages in the source folder during the next ICS download.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

138 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Clients MUST only pass folders from private mailboxes in the InputServerObject field.

3.3.5.8.10 Sending a RopSynchronizationImportDeletes ROP Request

Clients SHOULD update the ICS state of the chosen synchronization scope by removing internal

identifiers (2) of deleted objects from its MetaTagIdsetGiven property (section 2.2.1.1.1).
Otherwise, the client will receive deletion notifications for these messages during the next ICS
download.

Clients SHOULD expect this ROP to fail if deletion of any of the objects passed in the request buffer
fails, except for the common cases specified in section 2.2.3.2.4.5. The possibility of a failure is
higher when the user has lower privileges to a mailbox—this is especially a consideration for
delegate and public folder access. It is recommended that clients that use this ROP have a strategy

to retry this operation, which can be a combination of the following steps:

1. Retry the ROP with the same arguments on a new synchronization upload context.

2. Retry the ROP, passing one ID at a time.

3. Retry the ROP by using online mode ROPs, such as RopDeleteFolder and
RopDeleteMessages, as specified in [MS-OXCFOLD] section 2.2.1.3 and 2.2.1.11, respectively.

4. Perform the ICS download, resolving server changes against their own pending synchronization

upload context.

5. Skip an object and undo the operation in the local replica.

3.3.5.8.11 Sending a RopSynchronizationImportReadStateChanges ROP Request

Clients SHOULD expect this ROP to fail if any read state changes on the objects passed in the
request buffer fail. The possibility of a failure is higher when the user has lower privileges to a
mailbox; this is especially a consideration for delegate and public folder access. Clients that use this

ROP SHOULD have a strategy to retry this operation, which can be a combination of the following
steps:

Retry the ROP with the same arguments on a new synchronization upload context.

Retry the ROP, passing one ID at a time.

Retry the ROP by using online mode ROPs, such as the RopSetMessageReadFlag ROP ([MS-

OXCROPS] section 2.2.6.11).

Perform the ICS download, resolving server changes against their own pending synchronization

upload context.

Skip an object and undo the operation in the local replica.

3.3.5.8.12 Sending a RopGetLocalReplicaIds ROP Request

Clients SHOULD NOT allocate another batch of IDs until the one they allocated before is used up.

Allocating IDs in batches of moderate size, between 0x00000200 and 0x0000FFFF, is recommended.
Note that servers are responsible for enforcing restrictions on the number of IDs that can be
allocated at one time.

The client can reconstruct all allocated GID structures ([MS-OXCDATA] section 2.2.1.3) by
combining the returned REPLGUID structure with any GLOBCNT structure values, as specified in
section 2.2.2.5, from the [GlobalCount, GlobalCount + IdCount – 1] range.

%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf

139 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

The client SHOULD use the obtained IDs whenever creating new folders or new messages in any
folder within its local replica. For more details about how clients can assign identifiers to objects

created in a local replica, see section 3.3.5.2.

3.3.5.8.13 Sending a RopSetLocalReplicaMidsetDeleted ROP Request

The client MUST ensure that ranges supplied as request fields to the
RopSetLocalReplicaMidsetDeleted ROP (section 2.2.3.2.4.8) are allocated by using the
RopGetLocalReplicaIds ROP (section 2.2.3.2.4.7).

The value of the LongTermIdRanges field MUST only identify IDs that were assigned to an item on
the client but never uploaded to the server, as well as IDs that the client will never use in the
future. The value of the LongTermIdRanges field MUST NOT identify IDs that exist on the server;

failure to comply with this requirement results in an inconsistent state between the client and server
as the server adds the ID to the deleted items list and the item will be deleted from the client during
the next synchronization while the item will still exist on the server.

The following example shows a possible implementation of the client with regards to assignment of

server-allocated IDs, as specified in section 3.3.5.2.1, to objects in a local replica. Clients do not
have to follow the example specified in this section; it is only used to show the applicability of the

RopSetLocalReplicaMidsetDeleted ROP (section 2.2.3.2.4.8):

1. Initially, a client has no server-allocated IDs that it can assign to objects that are created when
working offline, so it is required to ask the server to allocate a block of IDs by sending the
RopGetLocalReplicaIds ROP (section 2.2.3.2.4.7). The server responds with a block of IDs that
the client stores in a local replica.

2. The client requires the server-allocated ID whenever it has to create a message in a folder in a
local replica. For that purpose, the client associates a range of IDs previously allocated with the

RopGetLocalReplicaIds ROP with a folder, so that IDs from that range can be used for new or
moved items in that folder.

3. The client creates a message in the local replica and assigns it a server-allocated ID from the set

of IDs previously allocated to the folder from a call to the RopGetLocalReplicaIds ROP in step
2.

4. The client then deletes the message from the local replica before the message is uploaded to the
server, because, for example, the client is offline.

5. The client issues the RopSetLocalReplicaMidsetDeleted ROP for the ID that was consumed by
the client, but never passed to the server.

3.3.5.9 Receiving FastTransfer and ICS ROP Responses

The object output in the OutputServerObject field MUST be released using the RopRelease ROP
([MS-OXCROPS] section 2.2.15.3) as soon as the client no longer requires it.

3.3.5.9.1 Receiving a RopFastTransferSourceGetBuffer ROP Response

The FastTransfer stream on download is read-only and non-seekable, and is usually generated by
the server when requested by the client. Once it is obtained, data cannot be requeried, unless the
operation is reconfigured from the beginning. Even then, there is no guarantee that the content of
the stream will be the same as during the previous attempt.

As streams can be very large, clients SHOULD decode portions of the FastTransfer stream as they

arrive in the RopFastTransferSourceGetBuffer ROP response buffers.

%5bMS-OXCROPS%5d.pdf

140 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Clients that have not performed version detection on the server and have leveraged the server's
flexibility to ignore unknown flags in the SynchronizationExtraFlags field of the

RopSynchronizationConfigure ROP ([MS-OXCROPS] section 2.2.13.1) MUST parse the
FastTransfer stream to detect whether the server honored each of the requested behavior flags. This

enables the client to request behavior from an older server that does not support newer behaviors
without having to strictly check the version of the server.

If the client receives a value of 0x00000480 in the ReturnValue field, the client SHOULD<47> wait
at least the period of time specified in BackoffTime before retrying the ROP. The complete list of
error codes is specified in [MS-OXCDATA] section 2.4.

If a cancellation occurs on a download and there is any data left unprocessed from the result of the
RopFastTransferSourceGetBuffer ROP ([MS-OXCROPS] section 2.2.12.3), the client SHOULD

NOT update the ICS state by using the RopSynchronizationGetTransferState ROP ([MS-
OXCROPS] section 2.2.13.8). This is because the server does not know if the client successfully
committed all items. It is possible to miss items if the RopSynchronizationGetTransferState ROP
is used at a time when synchronization buffers are only partially processed.

3.3.5.10 Client Specific Handling

Clients can choose to handle pieces of the data stream in specific ways to improve the efficiency or
user experience. Examples of this are progress information, as specified in section 2.2.2.7, and error
information, as specified by the ExtendedErrorInfo structure in section 2.2.2.10, and the
FxErrorInfo marker in section 2.2.4.1.4. A possible implementation uses progress information to
compute and inform the end user how much time is left in the ICS process. Another possible
implementation to handle errors is to use the Folder ID, as specified in [MS-OXCDATA] section
2.2.1.1, and Message ID, as specified in [MS-OXCDATA] section 2.2.1.2, following the

FxErrorInfo marker and move the items into a folder that is not synchronized. By moving the items
to another folder, the error does not continue to occur during each subsequent synchronization.
Error information can be used to move the problem items to another folder to avoid repeated errors
during the next ICS upload or download.

3.3.5.11 Client Conflict Resolution

A client SHOULD avoid conflicts by detecting them and trying to run logic to resolve the conflict.

A possible implementation of client conflict detection is to use the RopOpenMessage ROP ([MS-
OXCROPS] section 2.2.6.1) to open the message and then call the RopGetPropertiesSpecific ROP
([MS-OXCROPS] section 2.2.8.3) to retrieve the message state properties (PidTagChangeKey
(section 2.2.1.2.7), PidTagPredecessorChangeList (section 2.2.1.2.8), and
PidTagLastModificationTime ([MS-OXCMSG] section 2.2.2.2)). The values of the properties are
then compared using the logic specified in section 3.1.5.6.1 to determine whether the message is

different on the server and whether the message is in conflict. If the messages are the same, the
client can apply the local change and save the message.

If the client detects a conflict, the client can use standard message and folder ROPs, such as the
RopGetPropertiesSpecific ROP ([MS-OXCROPS] section 2.2.8.3), the RopSetProperties ROP
([MS-OXCROPS] section 2.2.8.6), the RopSetReadFlags ROP ([MS-OXCROPS] section 2.2.6.10),

and the RopDeleteProperties ROP ([MS-OXCROPS] section 2.2.8.8), to apply changes to the
server replica, therefore making it a nonconflicting version.

Then, regardless of whether the client detected a conflict or not, the client then modifies the local
client item and local client ICS state in a way that would either prevent the item from being
downloaded (local wins), or force (resolved or server wins) the item to be downloaded, as specified
in section 3.1.5.6. The client then calls RopSaveMessageChanges ROP ([MS-OXCROPS] section

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

141 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

2.2.6.3) requesting that the message remain open following the save, and then calls
RopGetPropertiesSpecific ROP to retrieve the new PidTagChangeKey (section 2.2.1.2.7),

PidTagLastModificationTime ([MS-OXCMSG] section 2.2.2.2) and
PidTagPredecessorChangeList (section 2.2.1.2.8) property. The client then updates the message

state properties on the local item and modifies the ICS state properties to reflect those changes.

When a client is unable to automatically resolve all conflicting changes, a possible implementation
would preserve alternate versions of messages, which can be made accessible to the user in case
they prefer the alternate version.

A client can, for example, pick a "winning" message based on the PidTagLastModificationTime
property ([MS-OXCMSG] section 2.2.2.2) and leave this in place of the modified item. The other
version of the message, deemed the "loser," can be moved to a folder that contains previous

versions of conflicting messages.

3.3.5.12 Using the PidTagMessageSize Property Value

The value for the PidTagMessageSize property MUST be treated only as an estimate by the client.

For more details, see section 3.2.5.4.

3.3.5.13 Sending the MetaTagIdsetGiven ICS State Property

The property tag for this property suggests that it is of type PtypInteger32 ([MS-OXCDATA]
section 2.11.1), but the data MUST be handled as PtypBinary ([MS-OXCDATA] section 2.11.1) data
by clients. Clients SHOULD send the MetaTagIdsetGiven property (section 2.2.1.1.1) with a
property tag that defines it as PtypInteger32.

This property is not downloaded back to the client in the final ICS state obtained for them through
the RopSynchronizationGetTransferState ROP (section 2.2.3.2.3.1). Clients SHOULD remove

this property before uploading the initial ICS state on synchronization upload contexts and clients
MUST merge this property back in when receiving the final ICS state from the server. Clients MUST
add IDs of messaging objects created in or originating from a local replica to this property by using
a process called checkpointing, as specified in section 3.3.5.6.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

142 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

4 Protocol Examples

4.1 Hierarchy Synchronization Examples

4.1.1 Adding or Modifying a Folder

The following example shows the ROPs involved in synchronizing changes between the client and
server when adding or modifying a folder. The user has previously created or modified a folder on
both the client and the server and has just connected to the server to synchronize the changes.

1. RopLogon ROP ([MS-OXCROPS] section 2.2.3.1) – The server returns the ID of the
interpersonal messaging subtree folder in this call.

2. RopOpenFolder ROP ([MS-OXCROPS] section 2.2.4.1) – Open the interpersonal messaging
subtree folder.

3. RopSynchronizationOpenCollector ROP (section 2.2.3.2.4.1) – Open the hierarchy

synchronization upload context by using the handle of the interpersonal messaging subtree
folder.

4. RopSynchronizationUploadStateStreamBegin ROP (section 2.2.3.2.2.1) – Upload the ICS
state property MetaTagCnsetSeen (section 2.2.1.1.2) by using the synchronization upload
context.

5. RopSynchronizationUploadStateStreamContinue ROP (section 2.2.3.2.2.2) – Upload the ICS
state property MetaTagCnsetSeen by using the synchronization upload context.

6. RopSynchronizationUploadStateStreamEnd ROP (section 2.2.3.2.2.3) – Upload the ICS state
property MetaTagCnsetSeen by using the synchronization upload context.

7. RopSynchronizationImportHierarchyChange ROP (section 2.2.3.2.4.3) – Send the folder
properties by using the synchronization upload context.

8. RopSynchronizationGetTransferState ROP (section 2.2.3.2.3.1) – Get the updated ICS state
by using the synchronization upload context. This call returns a handle to a synchronization
download context.

9. RopFastTransferSourceGetBuffer ROP (section 2.2.3.1.1.5) – Retrieve the ICS state data by

using the synchronization download context.

10.RopRelease ROP ([MS-OXCROPS] section 2.2.15.3) – Release the synchronization download
context.

11.RopRelease – Release the synchronization upload context.

12.RopSynchronizationConfigure ROP (section 2.2.3.2.1.1) – Open the hierarchy synchronization
download context by using the handle of the interpersonal messaging subtree folder.

13.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property

MetaTagIdsetGiven (section 2.2.1.1.1) by using the synchronization download context.

14.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagIdsetGiven by using the synchronization download context.

15.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagIdsetGiven by using the synchronization download context.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXGLOS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

143 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

16.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetSeen by using the synchronization download context.

17.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagCnsetSeen by using the synchronization download context.

18.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetSeen by using the synchronization download context.

19.RopFastTransferSourceGetBuffer ROP – Receive the folder properties and updated ICS state
by using the synchronization download context.

20.RopRelease ROP – Release the synchronization download context.

21.RopRelease ROP – Release the interpersonal messaging subtree folder.

22.RopRelease ROP – Release the message store.

4.1.2 Deleting a Folder

The following example shows the ROPs involved in synchronizing changes between the client and
server when deleting a folder. The user has previously deleted a folder on both the client and the
server, and has just connected to the server to synchronize the changes.

1. RopLogon ROP ([MS-OXCROPS] section 2.2.3.1) – The server returns the ID of the interpersonal

messaging subtree folder in this call.

2. RopOpenFolder ROP ([MS-OXCROPS] section 2.2.4.1) – Open the interpersonal messaging
subtree folder.

3. RopSynchronizationOpenCollector ROP (section 2.2.3.2.4.1) – Open the hierarchy
synchronization upload context by using the handle of the interpersonal messaging subtree
folder.

4. RopSynchronizationUploadStateStreamBegin ROP (section 2.2.3.2.2.1) – Upload the ICS

state property MetaTagCnsetSeen (section 2.2.1.1.2) by using the synchronization upload
context.

5. RopSynchronizationUploadStateStreamContinue ROP (section 2.2.3.2.2.2) – Upload the ICS
state property MetaTagCnsetSeen by using the synchronization upload context.

6. RopSynchronizationUploadStateStreamEnd ROP (section 2.2.3.2.2.2) – Upload the ICS state
property MetaTagCnsetSeen by using the synchronization upload context.

7. RopSynchronizationImportDeletes ROP (section 2.2.3.2.4.5) – Send the information about

the deleted folder by using the synchronization upload context.

8. RopSynchronizationGetTransferState ROP (section 2.2.3.2.3.1) – Get the updated ICS state
by using the synchronization upload context. This call returns a handle to a synchronization
download context.

9. RopFastTransferSourceGetBuffer ROP (section 2.2.3.1.1.5) – Retrieve the ICS state data by
using the synchronization download context.

10.RopRelease ROP ([MS-OXCROPS] section 2.2.15.3) – Release the synchronization download
context.

11.RopRelease ROP – Release the synchronization upload context.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

144 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

12.RopSynchronizationConfigure ROP (section 2.2.3.2.1.1) – Open the hierarchy synchronization
download context by using the handle of the interpersonal messaging subtree folder.

13.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagIdsetGiven (section 2.2.1.1.1) by using the synchronization download context.

14.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagIdsetGiven by using the synchronization download context.

15.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagIdsetGiven by using the synchronization download context.

16.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetSeen by using the synchronization download context.

17.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property

MetaTagCnsetSeen by using the synchronization download context.

18.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetSeen by using the synchronization download context.

19.RopFastTransferSourceGetBuffer ROP – Receive the information about the deleted folder and
updated ICS state by using the synchronization download context.

20.RopRelease ROP – Release the synchronization download context.

21.RopRelease ROP – Release the interpersonal messaging subtree folder.

22.RopRelease ROP – Release the message store.

4.2 Message Synchronization Upload Examples

4.2.1 Creating or Modifying a Message

The following example shows the ROPs involved in synchronizing changes between the client and

server when creating or modifying a message. The user has previously created or modified a
message on both the client and the server, and has just connected to the server to synchronize the
changes.

1. RopLogon ROP ([MS-OXCROPS] section 2.2.3.1) – Open the message store.

2. RopOpenFolder ROP ([MS-OXCROPS] section 2.2.4.1) – Open the folder being synchronized.

3. RopSynchronizationOpenCollector ROP (section 2.2.3.2.4.1) – Open the content
synchronization upload context by using the handle of the folder being synchronized.

4. RopSynchronizationUploadStateStreamBegin ROP (section 2.2.3.2.4.1) – Upload the ICS
state property MetaTagCnsetSeen (section 2.2.1.1.2) by using the synchronization upload
context.

5. RopSynchronizationUploadStateStreamContinue ROP (section 2.2.3.2.4.1) – Upload the ICS
state property MetaTagCnsetSeen by using the synchronization upload context.

6. RopSynchronizationUploadStateStreamEnd ROP (section 2.2.3.2.4.1) – Upload the ICS state

property MetaTagCnsetSeen by using the synchronization upload context.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

145 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

7. RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetSeenFAI (section 2.2.1.1.3) by using the synchronization upload context.

8. RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagCnsetSeenFAI by using the synchronization upload context.

9. RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetSeenFAI by using the synchronization upload context.

10.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetRead (section 2.2.1.1.4) by using the synchronization upload context.

11.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagCnsetRead by using the synchronization upload context.

12.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property

MetaTagCnsetRead by using the synchronization upload context.

13.RopSynchronizationImportMessageChange ROP (section 2.2.3.2.4.2) – Acquire a Message
object (with a specified ID) by using the synchronization upload context. If the message does not
yet exist, it will be created. This call returns a handle to a Message object.

14.RopSetProperties ROP ([MS-OXCROPS] section 2.2.8.6) – Set the message properties by using
the message handle.

15.RopSaveChangesMessage ROP ([MS-OXCROPS] section 2.2.6.3) – Save the message by using
the message handle.

16.RopRelease ROP ([MS-OXCROPS] section 2.2.15.3) – Release the message.

17.RopSynchronizationGetTransferState ROP (section 2.2.3.2.3.1) – Get the updated ICS state
by using the upload context. This call returns a handle to a synchronization download context.

18.RopFastTransferSourceGetBuffer ROP (section 2.2.3.2.3.1) – Retrieve the ICS state data by

using the synchronization download context.

19.RopRelease ROP – Release the synchronization download context.

20.RopRelease ROP – Release the synchronization upload context.

21.RopSynchronizationConfigure ROP (section 2.2.3.2.3.1) – Open the content synchronization
download context by using the handle of the folder being synchronized.

22.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagIdsetGiven (section 2.2.1.1.1) by using the synchronization download context.

23.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property

MetaTagIdsetGiven by using the synchronization download context.

24.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagIdsetGiven by using the synchronization download context.

25.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetSeen by using the synchronization download context.

26.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property

MetaTagCnsetSeen by using the synchronization download context.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

146 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

27.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetSeen by using the synchronization download context.

28.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetSeenFAI by using the synchronization download context.

29.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagCnsetSeenFAI by using the synchronization download context.

30.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetSeenFAI by using the synchronization download context.

31.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetRead by using the synchronization download context.

32.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property

MetaTagCnsetRead by using the synchronization download context.

33.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetRead by using the synchronization download context.

34.RopFastTransferSourceGetBuffer ROP – Receive the folder properties and updated ICS state
by using the synchronization download context.

35.RopRelease ROP – Release the synchronization download context.

36.RopRelease ROP – Release the folder.

37.RopRelease ROP – Release the message store.

4.2.2 Deleting a Message

The following example shows the ROPs involved in synchronizing changes between the client and
server when deleting a message. The user has previously deleted a message on both the client and

the server and has just connected to the server to synchronize the changes.

1. RopLogon ROP ([MS-OXCROPS] section 2.2.3.1) – Open the message store.

2. RopOpenFolder ROP ([MS-OXCFOLD] section 2.2.1.1) – Open the folder that is being
synchronized.

3. RopSynchronizationOpenCollector ROP (section 2.2.3.2.4.1) – Open the content
synchronization upload context by using the handle of the folder that is being synchronized.

4. RopSynchronizationUploadStateStreamBegin ROP (section 2.2.3.2.2.1) – Upload the ICS
state property MetaTagCnsetSeen (section 2.2.3.2.1.1) by using the synchronization upload

context.

5. RopSynchronizationUploadStateStreamContinue ROP (section 2.2.3.2.2.2) – Upload the ICS
state property MetaTagCnsetSeen by using the synchronization upload context.

6. RopSynchronizationUploadStateStreamEnd ROP (section 2.2.3.2.2.3) – Upload the ICS state
property MetaTagCnsetSeen by using the synchronization upload context.

7. RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property

MetaTagCnsetSeenFAI (section 2.2.1.1.3) by using the synchronization upload context.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCFOLD%5d.pdf

147 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

8. RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagCnsetSeenFAI by using the synchronization upload context.

9. RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetSeenFAI by using the synchronization upload context.

10.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetRead (section 2.2.1.1.4) by using the synchronization upload context.

11.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagCnsetRead by using the synchronization upload context.

12.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetRead by using the synchronization upload context.

13.RopSynchronizationImportDeletes ROP (section 2.2.3.2.4.5) – Send the information about

the deleted message by using the synchronization upload context.

14.RopSynchronizationGetTransferState ROP (section 2.2.3.2.3.1) – Get the updated ICS state
by using the synchronization upload context. This call returns a handle to a synchronization
download context.

15.RopFastTransferSourceGetBuffer ROP (section 2.2.3.1.1.5) – Retrieve the ICS state data by
using the synchronization download context.

16.RopRelease ROP ([MS-OXCROPS] section 2.2.15.3) – Release the synchronization download
context.

17.RopRelease ROP – Release the synchronization upload context.

18.RopSynchronizationConfigure (section 2.2.3.2.1.1) – Open the content synchronization
download context by using the handle of the folder that is being synchronized.

19.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property

MetaTagIdsetGiven (section 2.2.1.1.1) by using the synchronization download context.

20.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagIdsetGiven by using the synchronization download context.

21.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagIdsetGiven by using the synchronization download context.

22.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetSeen by using the synchronization download context.

23.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property

MetaTagCnsetSeen by using the synchronization download context.

24.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetSeen by using the synchronization download context.

25.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetSeenFAI by using the synchronization download context.

26.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property

MetaTagCnsetSeenFAI by using the synchronization download context.

%5bMS-OXCROPS%5d.pdf

148 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

27.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetSeenFAI by using the synchronization download context.

28.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetRead by using the synchronization download context.

29.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagCnsetRead by using the synchronization download context.

30.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetRead by using the synchronization download context.

31.RopFastTransferSourceGetBuffer ROP – Receive the information about the deleted message
and updated ICS state by using the synchronization download context.

32.RopRelease ROP – Release the synchronization download context.

33.RopRelease ROP – Release the folder.

34.RopRelease ROP – Release the message store.

4.3 Partial Item Examples

4.3.1 Uploading a Partial Item

The following example shows the ROPs involved in synchronizing changes between the client and
server when uploading a partial message to the server. The user has previously modified a message
on the client and has just connected to the server to synchronize the change. This partial upload
occurs without using the RopSynchronizationImportMessageChange ROP (section 2.2.3.2.4.2).

1. RopLogon ROP ([MS-OXCSTOR] section 2.2.1.1) – Open the message store.

2. RopOpenFolder ROP ([MS-OXCFOLD] section 2.2.1.1) – Open the folder being synchronized.

3. RopSynchronizationOpenCollector ROP (section 2.2.3.2.4.1) – Open the content

synchronization upload context by using the handle of the folder being synchronized.

4. RopSynchronizationUploadStateStreamBegin ROP (section 2.2.3.2.2.1) – Upload the ICS
state property MetaTagCnsetSeen ROP (section 2.2.1.1.2) by using the synchronization upload
context.

5. RopSynchronizationUploadStateStreamContinue ROP (section 2.2.3.2.2.1) – Upload the ICS
state property MetaTagCnsetSeen by using the synchronization upload context.

6. RopSynchronizationUploadStateStreamEnd ROP (section 2.2.3.2.2.3) – Upload the ICS state

property MetaTagCnsetSeen by using the synchronization upload context.

7. RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetSeenFAI (section 2.2.1.1.3) by using the synchronization upload context.

8. RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagCnsetSeenFAI by using the synchronization upload context.

9. RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property

MetaTagCnsetSeenFAI by using the synchronization upload context.

%5bMS-OXCSTOR%5d.pdf
%5bMS-OXCFOLD%5d.pdf

149 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

10.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetRead (section 2.2.1.1.4) by using the synchronization upload context.

11.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagCnsetRead by using the synchronization upload context.

12.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetRead by using the synchronization upload context.

13.RopOpenMessage ROP ([MS-OXCMSG] section 2.2.3.1) – Acquire a Message object with a
specified ID. This call returns a handle to a Message object.

14.RopGetPropertiesSpecific ROP ([MS-OXCPRPT] section 2.2.2) – Get the values of
PidTagPredecessorChangeList (section 2.2.1.2.8) and PidTagChangeKey (section 2.2.1.2.7)
properties by using the message handle.

15.RopDeletePropertiesNoReplicate ROP ([MS-OXCPRPT] section 2.2.8) – Delete properties that
were deleted on the local message.

16.RopSetProperties ROP ([MS-OXCPRPT] section 2.2.5) – Set new/updated message properties
by using the message handle. In addition, also set an updated value of the
PidTagPredecessorChangeList property to avoid having this change redownloaded to the
client.

17.RopSaveChangesMessage ROP ([MS-OXCMSG] section 2.2.3.3) – Save the message by using
the message handle.

18.RopRelease ROP ([MS-OXCROPS] section 2.2.15.3) – Release the message.

19.RopSynchronizationGetTransferState ROP (section 2.2.3.2.3.1) – Get the updated ICS state
by using the synchronization upload context. This call returns a handle to a synchronization
download context.

20.RopFastTransferSourceGetBuffer ROP (section 2.2.3.1.1.5) – Retrieve the ICS state data by

using the synchronization download context.

21.RopRelease ROP – Release the synchronization download context.

22.RopRelease ROP – Release the synchronization upload context.

23.RopRelease ROP – Release the folder.

24.RopRelease ROP – Release the message store.

4.3.2 Downloading a Partial Item

The following example shows the ROPs involved in synchronizing changes between the client and
server when downloading a partial message to the client. The user has previously modified a
message on the server and has just connected to the server to synchronize the changes by using
the PartialItem download flag.

1. RopLogon ROP ([MS-OXCSTOR] section 2.2.1.1) – Open the message store.

2. RopOpenFolder ROP ([MS-OXCROPS] section 2.2.4.1) – Open the folder being synchronized.

3. RopSynchronizationConfigure ROP (section 2.2.3.2.1.1) – Open the content synchronization
download context by using the handle of the folder being synchronized. Specify the PartialItem
flag in the SendOptions field (section 2.2.3.1.1.1.2) when using this ROP.

%5bMS-OXCMSG%5d.pdf
%5bMS-OXCPRPT%5d.pdf
%5bMS-OXCPRPT%5d.pdf
%5bMS-OXCPRPT%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCROPS%5d.pdf
%5bMS-OXCSTOR%5d.pdf
%5bMS-OXCROPS%5d.pdf

150 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

4. RopSynchronizationUploadStateStreamBegin ROP (section 2.2.3.2.2.1) – Upload the ICS
state property MetaTagIdsetGiven (section 2.2.1.1.1) by using the synchronization download

context.

5. RopSynchronizationUploadStateStreamContinue ROP (section 2.2.3.2.2.2) – Upload the ICS

state property MetaTagIdsetGiven by using the synchronization download context.

6. RopSynchronizationUploadStateStreamEnd ROP (section 2.2.3.2.2.3) – Upload the ICS state
property MetaTagIdsetGiven by using the synchronization download context.

7. RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetSeen (section 2.2.1.1.2) by using the synchronization download context.

8. RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagCnsetSeen by using the synchronization download context.

9. RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetSeen by using the synchronization download context.

10.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetSeenFAI (section 2.2.1.1.3) by using the synchronization download context.

11.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagCnsetSeenFAI by using the synchronization download context.

12.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property
MetaTagCnsetSeenFAI by using the synchronization download context.

13.RopSynchronizationUploadStateStreamBegin ROP – Upload the ICS state property
MetaTagCnsetRead (section 2.2.1.1.4) by using the synchronization download context.

14.RopSynchronizationUploadStateStreamContinue ROP – Upload the ICS state property
MetaTagCnsetRead by using the synchronization download context.

15.RopSynchronizationUploadStateStreamEnd ROP – Upload the ICS state property

MetaTagCnsetRead by using the synchronization download context.

16.RopFastTransferSourceGetBuffer ROP (section 2.2.3.2.2.3) – Receive the folder properties
and updated ICS state by using the synchronization download context. These buffers contain
partial items as appropriate.

17.RopRelease ROP ([MS-OXCROPS] section 2.2.15.3) – Release the synchronization download
context.

18.RopRelease ROP – Release the folder.

19.RopRelease ROP – Release the message store.

4.4 Serialization of an IDSET Structure Example

To efficiently transfer large numbers of Message ID structures ([MS-OXCDATA] section 2.2.1.2)
and Folder ID structures ([MS-OXCDATA] section 2.2.1.1) that identify changed or new messaging
objects, the Message ID values and the Folder ID values are serialized into an IDSET structure

for transfer across the wire. The following example shows how to format and serialize an IDSET.
Because of the variability of the GLOBSET structure encoding commands that are used within the
serialization of an IDSET, an IDSET can be encoded in many different ways. There is no single
correct way to encode a GLOBSET as long as the GLOBSET, when decoded, contains the same set

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

151 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

of GLOBCNT values, as specified in section 2.2.2.5. The following is just one way to encode an
IDSET.

This example uses an IDSET with the four following Message ID values:

IDSET Structure

Message name Value REPLID GLOBCNT

MessageID1 01 00 00 00 00 00 00 05 0001 000000000005

MessageID2 01 00 00 00 00 00 00 06 0001 000000000006

MessageID3 01 00 00 00 00 00 00 10 0001 000000000010

MessageID4 02 00 00 00 00 00 00 09 0002 000000000009

The IDSET has to be properly formatted for serializations. For more details about how to format an

IDSET, see section 3.1.5.4.1.

The following diagram represents how the IDSET has to be arranged for serialization. The individual
ID values have been arranged by REPLID and the GLOBCNT values have been reduced to a
GLOBSET for each REPLID. Within the GLOBSET, the GLOBCNT values are placed into contiguous

ranges.

Figure 7: Arranging the IDSET structure for serialization

This example serializes the IDSET by using the REPLID format. For more details about the different
serialization formats of an IDSET, see section 2.2.2.4.

For each REPLID/GLOBSET pair, the REPLID has to be added to the serialization buffer before the
encoded GLOBSET. They have to be ordered based on the REPLID value where they are ordered
from lowest to highest value.

The serialization buffer resembles the following:

Serialization Buffer

01 00 <encoded GLOBSET 1> 02 00 <encoded GLOBSET 2>

152 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

GLOBSET 1 contains four GLOBCNT values; two in each GLOBCNT range. The encoding has to be
performed based on the same order in which they are arranged in GLOBCNT ranges: from lowest to

highest value. The following table is a list of all the GLOBCNT values in the order in which they have
to be encoded.

GLOBCNT

1 00 00 00 00 00 05

2 00 00 00 00 00 06

3 00 00 00 00 00 10

4 00 00 00 00 00 10

Because all values have the same five bytes in common, the Push command can be used to push
the five common bytes onto the common byte stack.

Current Encoding Buffer

05 00 00 00 00 00

Low and high GLOBCNT values in all ranges have to be evaluated in pairs. Because value 1 is close
to value 2, it is possible to continue to evaluate subsequent ranges of GLOBCNT values to see if the

Bitmask command can be used. However, values 3 and 4 are not close enough to value 1 to use
the Bitmask command. Because only one GLOBCNT range is put into a Bitmask command, either
the Bitmask command or the Range command could be used. Because they both occupy the same
number of bytes in the encoded buffer, whether to use a Bitmask or Range command is an
implementation decision. Both methods when decoded result in the same GLOBCNT range. In this
example, the Range command is used with the values 0x05 and 0x06 following it.

Current Encoding Buffer

05 00 00 00 00 00 52 05 06

This results in encodings to generate GLOBCNT values 1 and 2 if decoded. For GLOBCNT value 3
and 4, because they both have five bytes in common that are already in the common byte stack, no
Pop or Push command has to be used. Because values 3 and 4 are close in value (in this particular
case, they are identical), the Bitmask command could be used. Because there are no more
GLOBCNT ranges to encode, the Bitmask command only contains one range that takes 3 bytes of
encoding. This is the same size a Range command would be to encode the same range. However,

because the range is a singleton, it is more efficient to use the Push command to fill in the common
byte stack. This generates two identical GLOBCNT values when decoded.

Current Encoding Buffer

05 00 00 00 00 00 52 05 06 01 10

This results in encodings in the encoding buffer to generate all GLOBCNT values in the GLOBSET.
To complete the encoding, an End command has to be added. Before the End command can be
added, any bytes on the common byte stack have to be removed. Because all bytes on the common

byte stack were pushed with a single Push command, only one Pop command is required to
remove them.

153 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Current Encoding Buffer

05 00 00 00 00 00 52 05 06 01 10 50

The End command can now be added.

Current Encoding Buffer

05 00 00 00 00 00 52 05 06 01 10 50 00

The GLOBSET 1 encoding can be added to the serialization buffer to produce the following:

Serialization Buffer

01 00 05 00 00 00 00 00 52 05 06 01 10 50 00 02 00 <encoded GLOBSET 2>

The last step is to encode GLOBSET 2. GLOBSET 2 contains two GLOBCNT values. The following
table is a list of all the GLOBCNT values in the order in which they have to be encoded.

GLOBCNT

1 00 00 00 00 00 09

2 00 00 00 00 00 09

Because both GLOBCNT values 1 and 2 are identical, the Push command can be used, followed by
the full 6 bytes to add to the common byte stack. Because this fills the common array, it generates
two identical GLOBCNT values when decoded, producing a singleton GLOBCNT range.

Current Encoding Buffer

06 00 00 00 00 00 09

Encodings in the encoding buffer now exist to generate all GLOBCNT values in the GLOBSET. To
complete the encoding, an End command has to be added.

Current Encoding Buffer

06 00 00 00 00 00 09 00

The GLOBSET 2 encoding can be added to the serialization buffer to produce the following:

Serialization Buffer

01 00 05 00 00 00 00 00 52 05 06 01 10 50 00 02 00 06 00 00 00 00 00 09 00

This completes the serialization of the IDSET.

4.5 FastTransfer Stream Produced by a Content Synchronization Download

Example

The following example shows the sample output of a FastTransfer stream that is downloaded to a
client during a content synchronization operation. The download operation was configured by using

154 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

the RopSynchronizationConfigure ROP (section 2.2.3.2.1.1) with the following fields specified in
the request buffer:

Request buffer field Value

SynchronizationType Contents

SendOptions Unicode, RecoverMode, ForceUnicode, and PartialItem flags

SynchronizationFlags Unicode, ReadState, FAI, Normal, NoForeignIdentifiers, BestBody,
and Progress flags

RestrictionDataSize 0

RestrictionData < missing >

SynchronizationExtraFlags Eid, CN, OrderByDeliveryTime flags

The FastTransfer stream contains the full message change for one message, message deletions,
message read state changes, and the final ICS state. The following list shows the structure of the

data included in this FastTransfer stream. The list shows the markers that occur in this stream in the
order of their appearance. The nesting structure shows the logical relationship of the data delimited
by the markers.

IncrSyncProgressMode

 IncrSyncProgressPerMsg

 IncrSyncChg

 IncrSyncMessage

 StartRecip

 EndToRecip

 NewAttach

 StartEmbed

 StartRecip

 EndToRecip

 EndEmbed

 EndAttach

 IncrSyncDel

 IncrSyncRead

 IncrSyncStateBegin

 IncrSyncStateEnd

IncrSyncEnd

In the following table, certain property tags are identified as special property tags, which means that
they contain 0000 for a property ID, and the meaning of the property is determined by the context

of the property in the stream.

Bytes on

the wire Value/description

0B 00 74 40 marker

IncrSyncProgressMode marker (section 2.2.4.1.4) (4074000B [Bool])

02 01 00 00 propDef

ProgressInformation (special) (00000102 [Binary])

20 00 00 00 length

%5bMS-OXGLOS%5d.pdf

155 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

32 (0x20)

26 00 00 00-
32 54 76 98

BE BA BE
BA-BE BA BE
BA

EF CD AB 00-
00 00 00 00

EF CD AB 90-
78 56 34 12

varSizeValue

0B 00 75 40 marker

IncrSyncProgressPerMsg marker (section 2.2.4.1.4) (4075000B [Bool])

03 00 00 00 propDef

MessageSize (special) (00000003 [Int32])

38 00 00 00 fixedSizeValue

[Int32] 56

0B 00 00 00 propDef

IsAssociated (special) (0000000B [Bool])

00 00 fixedSizeValue

[Bool] FALSE

03 00 12 40 marker

IncrSyncChg marker (section 2.2.4.1.4) (40120003 [Int32])

02 01 E0 65 propDef

PidTagSourceKey property (section 2.2.1.2.5) (65E00102 [Binary])

16 00 00 00 length

22 (0x16)

19 D7 FB 0F-
06 16 A1 41

BF F6 91 C7-
63 DA A8 66

00 00 00 78-
2E 21

varSizeValue

.......A

....c..f

...x.!

40 00 08 30 propDef

PidTagLastModificationTime property ([MS-OXPROPS] section 2.753) (30080040
[SysTime])

FC 65 69 CF-
C0 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T04:15:02.8437500

02 01 E2 65 propDef

PidTagChangeKey property (section 2.2.1.2.7) (65E20102 [Binary])

%5bMS-OXPROPS%5d.pdf

156 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

16 00 00 00 length

22 (0x16)

19 D7 FB 0F-
06 16 A1 41

BF F6 91 C7-
63 DA A8 66

00 00 00 78-
4D 1C

varSizeValue

.......A

....c..f

...xM.

02 01 E3 65 propDef

PidTagPredecessorChangeList property (section 2.2.1.2.8) (65E30102 [Binary])

17 00 00 00 length

23 (0x17)

16 19 D7 FB-
0F 06 16 A1

41 BF F6 91-
C7 63 DA A8

66 00 00 00-
78 4D 1C

varSizeValue

........

A....c..

f...xM.

0B 00 AA 67 propDef

PidTagAssociated property (section 2.2.1.5) (67AA000B [Bool])

00 00 fixedSizeValue

[Bool] FALSE

14 00 4A 67 propDef

PidTagMid property (section 2.2.1.2.1) (674A0014 [Int64])

01 00 00 00-
00 78 2E 21

fixedSizeValue

[Int64] 2390980393575645185

14 00 A4 67 propDef

PidTagChangeNumber property (section 2.2.1.2.3) (67A40014 [Int64])

01 00 00 00-
00 78 4D 1C

fixedSizeValue

[Int64] 2039418147664035841

03 00 15 40 marker

IncrSyncMessage marker (section 2.2.4.1.4) (40150003 [Int32])

0B 00 02 00 propDef

PidTagAlternateRecipientAllowed property ([MS-OXPROPS] section 2.568) (0002000B
[Bool])

01 00 fixedSizeValue

[Bool] TRUE

03 00 17 00 propDef

PidTagImportance property ([MS-OXCMSG] section 2.2.1.11) (00170003 [Int32])

%5bMS-OXPROPS%5d.pdf
%5bMS-OXCMSG%5d.pdf

157 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

01 00 00 00 fixedSizeValue

[Int32] 1

1F 00 1A 00 propDef

PidTagMessageClass property ([MS-OXCMSG] section 2.2.1.3) (001A001F [Unicode])

12 00 00 00 length

18 (0x12)

49 00 50 00-
4D 00 2E 00

4E 00 6F 00-
74 00 65 00

00 00

varSizeValue

I.P.M...

N.o.t.e.

..

0B 00 23 00 propDef

PidTagOriginatorDeliveryReportRequested property ([MS-OXOMSG] section 2.2.1.20)
(0023000B [Bool])

00 00 fixedSizeValue

[Bool] FALSE

03 00 26 00 propDef

PidTagPriority property ([MS-OXCMSG] section 2.2.1.12) (00260003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

0B 00 29 00 propDef

PidTagReadReceiptRequested property ([MS-OXOMSG] section 2.2.1.29) (0029000B
[Bool])

00 00 fixedSizeValue

[Bool] FALSE

03 00 36 00 propDef

PidTagSensitivity property ([MS-OXCMSG] section 2.2.1.13) (00360003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

1F 00 37 00 propDef

PidTagSubject property ([MS-OXPROPS] section 2.1021) (0037001F [Unicode])

26 00 00 00 length

38 (0x26)

54 00 65 00-
73 00 74 00

20 00 77 00-
69 00 74 00

68 00 20 00-
65 00 6D 00

varSizeValue

T.e.s.t.

.w.i.t.

h..e.m.

b.e.d.d.

%5bMS-OXCMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXPROPS%5d.pdf

158 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

62 00 65 00-
64 00 64 00

65 00 64 00-
00 00

e.d...

... value truncated...

40 00 39 00 propDef

PidTagClientSubmitTime property ([MS-OXOMSG] section 2.2.3.11) (00390040
[SysTime])

80 BA A7 B7-
BC 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T03:45:45.0000000

02 01 3B 00 propDef

PidTagSentRepresentingSearchKey property ([MS-OXOMSG] section 2.2.1.58)
(003B0102 [Binary])

60 00 00 00 length

96 (0x60)

45 58 3A 2F-
4F 3D 46 49

52 53 54 20-
4F 52 47 41

4E 49 5A 41-
54 49 4F 4E

2F 4F 55 3D-
45 58 43 48

41 4E 47 45-
20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated...

1F 00 3D 00 propDef

PidTagSubjectPrefix property ([MS-OXCMSG] section 2.2.1.9) (003D001F [Unicode])

02 00 00 00 length

2 (0x2)

00 00 varSizeValue

..

02 01 3F 00 propDef

PidTagReceivedByEntryId property ([MS-OXOMSG] section 2.2.1.38) (003F0102
[Binary])

79 00 00 00 length

121 (0x79)

00 00 00 00-
DC A7 40 C8

C0 42 10 1A-
B4 B9 08 00

varSizeValue

......@.

.B......

%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf

159 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

2B 2F E1 82-
01 00 00 00

00 00 00 00-
2F 4F 3D 46

49 52 53 54-
20 4F 52 47

+/......

..../O=F

IRST ORG

... value truncated...

1F 00 40 00 propDef

PidTagReceivedByName property ([MS-OXOMSG] section 2.2.1.39) (0040001F
[Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

02 01 41 00 propDef

PidTagSentRepresentingEntryId property ([MS-OXOMSG] section 2.2.1.56)
(00410102 [Binary])

79 00 00 00 length

121 (0x79)

00 00 00 00-
DC A7 40 C8

C0 42 10 1A-
B4 B9 08 00

2B 2F E1 82-
01 00 00 00

00 00 00 00-
2F 4F 3D 46

49 52 53 54-
20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated...

1F 00 42 00 propDef

PidTagSentRepresentingName property ([MS-OXOMSG] section 2.2.1.57) (0042001F
[Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

02 01 43 00 propDef

PidTagReceivedRepresentingEntryId property ([MS-OXOMSG] section 2.2.1.56)
(00430102 [Binary])

79 00 00 00 length

%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf

160 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

121 (0x79)

00 00 00 00-
DC A7 40 C8

C0 42 10 1A-
B4 B9 08 00

2B 2F E1 82-
01 00 00 00

00 00 00 00-
2F 4F 3D 46

49 52 53 54-
20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated...

1F 00 44 00 propDef

PidTagReceivedRepresentingName property ([MS-OXOMSG] section 2.2.1.57)
(0044001F [Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

02 01 51 00 propDef

PidTagReceivedBySearchKey property ([MS-OXOMSG] section 2.2.1.40) (00510102
[Binary])

60 00 00 00 length

96 (0x60)

45 58 3A 2F-
4F 3D 46 49

52 53 54 20-

4F 52 47 41

4E 49 5A 41-
54 49 4F 4E

2F 4F 55 3D-
45 58 43 48

41 4E 47 45-
20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated...

02 01 52 00 propDef

PidTagReceivedRepresentingSearchKey property ([MS-OXOMSG] section 2.2.1.27)
(00520102 [Binary])

60 00 00 00 length

96 (0x60)

45 58 3A 2F-
4F 3D 46 49

varSizeValue

%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf

161 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

52 53 54 20-
4F 52 47 41

4E 49 5A 41-
54 49 4F 4E

2F 4F 55 3D-
45 58 43 48

41 4E 47 45-
20 41 44 4D

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated...

1F 00 64 00 propDef

PidTagSentRepresentingAddressType property ([MS-OXOMSG] section 2.2.1.54)
(0064001F [Unicode])

06 00 00 00 length

6 (0x6)

45 00 58 00-
00 00

varSizeValue

E.X...

1F 00 65 00 propDef

PidTagSentRepresentingEmailAddress ([MS-OXOMSG] section 2.2.1.55) (0065001F
[Unicode])

BA 00 00 00 length

186 (0xBA)

2F 00 4F 00-
3D 00 46 00

49 00 52 00-
53 00 54 00

20 00 4F 00-
52 00 47 00

41 00 4E 00-
49 00 5A 00

41 00 54 00-
49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated...

1F 00 70 00 propDef

PidTagConversationTopic property ([MS-OXOMSG] section 2.2.1.5) (0070001F
[Unicode])

26 00 00 00 length

38 (0x26)

54 00 65 00-
73 00 74 00

20 00 77 00-
69 00 74 00

68 00 20 00-

varSizeValue

T.e.s.t.

.w.i.t.

h..e.m.

b.e.d.d.

%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf

162 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

65 00 6D 00

62 00 65 00-
64 00 64 00

65 00 64 00-
00 00

e.d...

... value truncated...

02 01 71 00 propDef

PidTagConversationIndex property ([MS-OXOMSG] section 2.2.1.3) (00710102
[Binary])

16 00 00 00 length

22 (0x16)

01 C8 84 BC-
B6 CB 8A CC

1E B8 32 77-
43 2B A1 C6

83 9A 4A F4-
BC 14

varSizeValue

........

..2wC+..

..J...

1F 00 75 00 propDef

PidTagReceivedByAddressType ([MS-OXOMSG] section 2.2.1.36) (0075001F
[Unicode])

06 00 00 00 length

6 (0x6)

45 00 58 00-
00 00

varSizeValue

E.X...

1F 00 76 00 propDef

PidTagReceivedByEmailAddress property ([MS-OXOMSG] section 2.2.1.37) (0076001F
[Unicode])

BA 00 00 00 length

186 (0xBA)

2F 00 4F 00-
3D 00 46 00

49 00 52 00-
53 00 54 00

20 00 4F 00-
52 00 47 00

41 00 4E 00-
49 00 5A 00

41 00 54 00-
49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated...

1F 00 77 00 propDef

PidTagReceivedRepresentingAddressType property ([MS-OXOMSG] section 2.2.1.23)

%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf

163 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

(0077001F [Unicode])

06 00 00 00 length

6 (0x6)

45 00 58 00-
00 00

varSizeValue

E.X...

1F 00 78 00 propDef

PidTagReceivedRepresentingEmailAddress property ([MS-OXOMSG] section
2.2.1.24) (0078001F [Unicode])

BA 00 00 00 length

186 (0xBA)

2F 00 4F 00-
3D 00 46 00

49 00 52 00-
53 00 54 00

20 00 4F 00-
52 00 47 00

41 00 4E 00-
49 00 5A 00

41 00 54 00-
49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated...

1F 00 7D 00 propDef

PidTagTransportMessageHeaders property ([MS-OXOMSG] section 2.2.1.61)
(007D001F [Unicode])

E8 06 00 00 length

1768 (0x6E8)

52 00 65 00-
63 00 65 00

69 00 76 00-
65 00 64 00

3A 00 20 00-
66 00 72 00

6F 00 6D 00-
20 00 45 00

58 00 43 00-
48 00 2D 00

varSizeValue

R.e.c.e.

i.v.e.d.

:..f.r.

o.m..E.

X.C.H.-.

... value truncated...

02 01 7F 00 propDef

PidTagTnefCorrelationKey property ([MS-OXPROPS] section 2.1035) (007F0102
[Binary])

56 00 00 00 length

%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXPROPS%5d.pdf

164 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

86 (0x56)

3C 31 39 44-
37 46 42 30

46 30 36 31-
36 41 31 34

31 42 46 46-
36 39 31 43

37 36 33 44-
41 41 38 36

36 37 38 34-
34 42 37 40

varSizeValue

<19D7FB0

F0616A14

1BFF691C

763DAA86

67844B7@

... value truncated...

02 01 19 0C propDef

PidTagSenderEntryId property ([MS-OXOMSG] section 2.2.1.50) (0C190102 [Binary])

79 00 00 00 length

121 (0x79)

00 00 00 00-
DC A7 40 C8

C0 42 10 1A-
B4 B9 08 00

2B 2F E1 82-
01 00 00 00

00 00 00 00-
2F 4F 3D 46

49 52 53 54-
20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated...

1F 00 1A 0C propDef

PidTagSenderName property ([MS-OXOMSG] section 2.2.1.51) (0C1A001F [Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

02 01 1D 0C propDef

PidTagSenderSearchKey property ([MS-OXOMSG] section 2.2.1.52) (0C1D0102
[Binary])

60 00 00 00 Length

96 (0x60)

45 58 3A 2F-
4F 3D 46 49

52 53 54 20-

varSizeValue

EX:/O=FI

RST ORGA

%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf

165 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

4F 52 47 41

4E 49 5A 41-
54 49 4F 4E

2F 4F 55 3D-
45 58 43 48

41 4E 47 45-
20 41 44 4D

NIZATION

/OU=EXCH

ANGE ADM

... value truncated...

1F 00 1E 0C propDef

PidTagSenderAddressType property ([MS-OXOMSG] section 2.2.1.48) (0C1E001F
[Unicode])

06 00 00 00 length

6 (0x6)

45 00 58 00-
00 00

varSizeValue

E.X...

1F 00 1F 0C propDef

PidTagSenderEmailAddress property ([MS-OXOMSG] section 2.2.1.49) (0C1F001F
[Unicode])

BA 00 00 00 length

186 (0xBA)

2F 00 4F 00-
3D 00 46 00

49 00 52 00-
53 00 54 00

20 00 4F 00-
52 00 47 00

41 00 4E 00-
49 00 5A 00

41 00 54 00-
49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated...

03 00 D3 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 2A 81 00

00

propDef

PidLidTaskAcceptanceState property ([MS-OXOTASK] section 2.2.2.2.30) (0x812A
[PSETID_Task]) [Int32]

00 00 00 00 fixedSizeValue

[Int32] 0

0B 00 D2 83-
03 20 06 00

propDef

PidLidTaskFFixOffline property ([MS-OXOTASK] section 2.2.2.2.31) (0x812C

%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXOTASK%5d.pdf
%5bMS-OXOTASK%5d.pdf

166 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 2C 81 00

00

[PSETID_Task]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

0B 00 D1 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 24 81 00

00

propDef

PidLidTaskNoCompute property ([MS-OXOTASK] section 2.2.2.2.35) (0x8124
[PSETID_Task]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

40 00 06 0E propDef

PidTagMessageDeliveryTime property ([MS-OXOMSG] section 2.2.3.9) (0E060040
[SysTime])

80 E7 D8 B8-
BC 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T03:45:47.0000000

03 00 07 0E propDef

PidTagMessageFlags property ([MS-OXCMSG] section 2.2.1.6) (0E070003 [Int32])

31 00 00 00 fixedSizeValue

[Int32] 49

03 00 CE 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 29 81 00

00

propDef

PidLidTaskOwnership property ([MS-OXOTASK] section 2.2.2.2.29) (0x8129

[PSETID_Task]) [Int32]

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 17 0E propDef

PidTagMessageStatus property ([MS-OXCMSG] section 2.2.1.8) (0E170003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 D0 83-
03 20 06 00

00 00 00 00-

propDef

PidLidTaskEstimatedEffort property ([MS-OXOTASK] section 2.2.2.2.12) (0x8111
[PSETID_Task]) [Int32]

%5bMS-OXOTASK%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXOTASK%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXOTASK%5d.pdf

167 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

C0 00 00 00

00 00 00 46-
00 11 81 00

00

00 00 00 00 fixedSizeValue

[Int32] 0

1F 00 1D 0E propDef

PidTagNormalizedSubject property ([MS-OXCMSG] section 2.2.1.10) (0E1D001F
[Unicode])

26 00 00 00 length

38 (0x26)

54 00 65 00-
73 00 74 00

20 00 77 00-
69 00 74 00

68 00 20 00-
65 00 6D 00

62 00 65 00-
64 00 64 00

65 00 64 00-
00 00

varSizeValue

T.e.s.t.

.w.i.t.

h..e.m.

b.e.d.d.

e.d...

... value truncated...

0B 00 1F 0E propDef

PidTagRtfInSync property ([MS-OXCMSG] section 2.2.1.56.5) (0E1F000B [Bool])

01 00 fixedSizeValue

[Bool] TRUE

03 00 23 0E propDef

Unspecified property (0E230003 [Int32])

26 00 00 00 fixedSizeValue

[Int32] 38

03 00 79 0E propDef

PidTagTrustSender property ([MS-OXPROPS] section 2.1039) (0E790003 [Int32])

01 00 00 00 fixedSizeValue

[Int32] 1

03 00 CF 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 10 81 00

00

propDef

PidLidTaskActualEffort property ([MS-OXOTASK] section 2.2.2.2.11) (0x8110
[PSETID_Task]) [Int32]

%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXOTASK%5d.pdf

168 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 F7 0F propDef

PidTagAccessLevel property ([MS-OXCPRPT] section 2.2.1.2) (0FF70003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

1F 00 CD 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 21 81 00

00

propDef

PidLidTaskAssigner property ([MS-OXOTASK] section 2.2.2.2.24) (0x8121
[PSETID_Task]) [Unicode]

02 00 00 00 length

2 (0x2)

00 00 varSizeValue

..

03 00 CC 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 23 81 00

00

propDef

PidLidTaskOrdinal property ([MS-OXOTASK] section 2.2.2.2.26) (0x8123
[PSETID_Task]) [Int32]

FF FF FF 7F fixedSizeValue

[Int32] 2147483647

1F 00 35 10 propDef

PidTagInternetMessageId property ([MS-OXOMSG] section 2.2.1.12) (1035001F
[Unicode])

AC 00 00 00 length

172 (0xAC)

3C 00 31 00-
39 00 44 00

37 00 46 00-
42 00 30 00

46 00 30 00-
36 00 31 00

36 00 41 00-
31 00 34 00

31 00 42 00-
46 00 46 00

varSizeValue

<.1.9.D.

7.F.B.0.

F.0.6.1.

6.A.1.4.

1.B.F.F.

%5bMS-OXCPRPT%5d.pdf
%5bMS-OXOTASK%5d.pdf
%5bMS-OXOTASK%5d.pdf
%5bMS-OXOMSG%5d.pdf

169 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

... value truncated...

03 00 80 10 propDef

PidTagIconIndex property ([MS-OXOMSG] section 2.2.1.10) (10800003 [Int32])

FF FF FF FF fixedSizeValue

[Int32] -1

40 00 07 30 propDef

PidTagCreationTime property ([MS-OXCMSG] section 2.2.2.3) (30070040 [SysTime])

A2 DA EF B9-
BC 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T03:45:48.8281250

40 00 08 30 propDef

PidTagLastModificationTime property (30080040 [SysTime])

FC 65 69 CF-

C0 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T04:15:02.8437500

02 01 0B 30 propDef

PidTagSearchKey property ([MS-OXCPRPT] section 2.2.1.9) (300B0102 [Binary])

10 00 00 00 length

16 (0x10)

6B 3B AA
B8-C7 83 78
4E

80 8E F2 DE-
04 82 C8 EB

varSizeValue

k;....xN

........

0B 00 40 3A propDef

PidTagSendRichInfo property ([MS-OXOMSG] section 2.2.1.47) (3A40000B [Bool])

01 00 fixedSizeValue

[Bool] TRUE

03 00 DE 3F propDef

PidTagInternetCodepage property ([MS-OXCMSG] section 2.2.1.56.6) (3FDE0003
[Int32])

9F 4E 00 00 fixedSizeValue

[Int32] 20127

03 00 F1 3F propDef

PidTagMessageLocaleId property ([MS-OXCMSG] section 2.2.1.5) (3FF10003 [Int32])

09 04 00 00 fixedSizeValue

[Int32] 1033

03 00 FD 3F propDef

PidTagMessageCodepage property ([MS-OXCMSG] section 2.2.1.4) (3FFD0003 [Int32])

%5bMS-OXOMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCPRPT%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf

170 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

E3 04 00 00 fixedSizeValue

[Int32] 1251

03 00 19 40 propDef

Unspecified property (40190003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 1A 40 propDef

PidTagSentRepresentingFlags property ([MS-OXPROPS] section 2.1004) (401A0003
[Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 1B 40 propDef

Unspecified property (401B0003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 1C 40 propDef

Unspecified property (401C0003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 76 40 propDef

PidTagContentFilterSpamConfidenceLevel property ([MS-OXCSPAM] section 2.2.1.3)
(40760003 [Int32])

FF FF FF FF fixedSizeValue

[Int32] -1

03 00 02 59 propDef

PidTagInternetMailOverrideFormat property ([MS-OXOMSG] section 2.2.1.11)
(59020003 [Int32])

00 00 16 00 fixedSizeValue

[Int32] 1441792

03 00 09 59 propDef

PidTagMessageEditorFormat property ([MS-OXPROPS] section 2.779) (59090003
[Int32])

02 00 00 00 fixedSizeValue

[Int32] 2

03 00 C6 65 propDef

Unspecified property (65C60003 [Int32])

02 00 00 00 fixedSizeValue

%5bMS-OXPROPS%5d.pdf
%5bMS-OXCSPAM%5d.pdf
%5bMS-OXOMSG%5d.pdf
%5bMS-OXPROPS%5d.pdf

171 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

[Int32] 2

1F 00 D4 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 27 81 00

00

propDef

PidLidTaskRole property ([MS-OXPROPS] section 2.332) (0x8127 [PSETID_Task])
[Unicode]

02 00 00 00 length

2 (0x2)

00 00 varSizeValue

..

0B 00 D5 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 03 81 00

00

propDef

PidLidTeamTask property ([MS-OXOTASK] section 2.2.2.2.36) (0x8103 [PSETID_Task])
[Bool]

00 00 fixedSizeValue

[Bool] FALSE

0B 00 D6 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 26 81 00

00

propDef

PidLidTaskFRecurring property ([MS-OXOTASK] section 2.2.2.2.28) (0x8126
[PSETID_Task]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

03 00 00 80-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 52 85 00

00

propDef

PidLidCurrentVersion property ([MS-OXPROPS] section 2.88) (0x8552
[PSETID_Common]) [Int32]

04 ED 01 00 fixedSizeValue

[Int32] 126212

1F 00 01 80-
08 20 06 00

00 00 00 00-

C0 00 00 00

propDef

PidLidCurrentVersionName property ([MS-OXPROPS] section 2.89) (0x8554
[PSETID_Common]) [Unicode]

%5bMS-OXPROPS%5d.pdf
%5bMS-OXOTASK%5d.pdf
%5bMS-OXOTASK%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf

172 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

00 00 00 46-
00 54 85 00

00

0A 00 00 00 length

10 (0xA)

31 00 32 00-
2E 00 30 00

00 00

varSizeValue

1.2...0.

..

03 00 02 80-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 10 85 00

00

propDef

PidLidSideEffects property ([MS-OXCMSG] section 2.2.1.16) (0x8510
[PSETID_Common]) [Int32]

00 00 00 00 fixedSizeValue

[Int32] 0

0B 00 08 80-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 03 85 00

00

propDef

PidLidReminderSet property ([MS-OXORMDR] section 2.2.1.1) (0x8503
[PSETID_Common]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

1F 10 0C 80-
29 03 02 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
01 4B 00 65

00 79 00 77-
00 6F 00 72

00 64 00 73-
00 00 00

propDef

PidNameKeywords property ([MS-OXCMSG] section 2.2.1.17) (Keywords
[PS_PUBLIC_STRINGS]) [MultiValueUnicode]

02 00 00 00 length

2 (0x2)

1C 00 00 00 length

28 (0x1C)

42 00 6C 00-
75 00 65 00

20 00 43 00-

varSizeValue

B.l.u.e.

%5bMS-OXCMSG%5d.pdf
%5bMS-OXORMDR%5d.pdf
%5bMS-OXCMSG%5d.pdf

173 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

61 00 74 00

65 00 67 00-
6F 00 72 00

79 00 00 00

.C.a.t.

e.g.o.r.

y...

20 00 00 00 length

32 (0x20)

59 00 65 00-
6C 00 6C 00

6F 00 77 00-
20 00 43 00

61 00 74 00-
65 00 67 00

6F 00 72 00-
79 00 00 00

varSizeValue

Y.e.l.l.

o.w..C.

a.t.e.g.

o.r.y...

0B 00 4D 81-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 0E 85 00

00

propDef

PidLidAgingDontAgeMe property ([MS-OXPROPS] section 2.4) (0x850E
[PSETID_Common]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

03 00 84 81-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 18 85 00

00

propDef

PidLidTaskMode property ([MS-OXOTASK] section 2.2.2.2.1) (0x8518
[PSETID_Common]) [Int32]

00 00 00 00 fixedSizeValue

[Int32] 0

0B 00 4B 82-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 06 85 00

00

propDef

PidLidPrivate property ([MS-OXCMSG] section 2.2.1.15) (0x8506 [PSETID_Common])
[Bool]

00 00 fixedSizeValue

[Bool] FALSE

1F 00 4D 82-
08 20 06 00

propDef

PidLidInternetAccountName property ([MS-OXOMSG] section 2.2.1.62) (0x8580

%5bMS-OXPROPS%5d.pdf
%5bMS-OXOTASK%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf

174 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 80 85 00

00

[PSETID_Common]) [Unicode]

26 00 00 00 length

38 (0x26)

4D 00 69 00-
63 00 72 00

6F 00 73 00-
6F 00 66 00

74 00 20 00-
45 00 78 00

63 00 68 00-
61 00 6E 00

67 00 65 00-
00 00

varSizeValue

M.i.c.r.

o.s.o.f.

t..E.x.

c.h.a.n.

g.e...

... value truncated...

1F 00 4E 82-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 81 85 00

00

propDef

PidLidInternetAccountStamp property ([MS-OXOMSG] section 2.2.1.63) (0x8581
[PSETID_Common]) [Unicode]

E4 00 00 00 length

228 (0xE4)

30 00 30 00-
30 00 30 00

30 00 30 00-
30 00 32 00

01 00 45 00-
58 00 43 00

48 00 2D 00-
43 00 4C 00

49 00 2D 00-
31 00 38 00

varSizeValue

0.0.0.0.

0.0.0.2.

..E.X.C.

H.-.C.L.

I.-.1.8.

... value truncated...

0B 00 4F 82-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 82 85 00

propDef

PidLidUseTnef property ([MS-OXOMSG] section 2.2.1.66) (0x8582 [PSETID_Common])
[Bool]

%5bMS-OXOMSG%5d.pdf
%5bMS-OXOMSG%5d.pdf

175 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

00

00 00 fixedSizeValue

[Bool] FALSE

03 00 A8 83-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 01 85 00

00

propDef

PidLidReminderDelta property ([MS-OXORMDR] section 2.2.1.3) (0x8501
[PSETID_Common]) [Int32]

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 AD 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 01 81 00

00

propDef

PidLidTaskStatus property ([MS-OXOTASK] section 2.2.2.2.2) (0x8101 [PSETID_Task])
[Int32]

00 00 00 00 fixedSizeValue

[Int32] 0

05 00 AE 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 02 81 00

00

propDef

PidLidPercentComplete property ([MS-OXOTASK] section 2.2.2.2.3) (0x8102
[PSETID_Task]) [Double]

00 00 00 00-
00 00 00 00

fixedSizeValue

[Double] 0

0B 00 B0 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 1C 81 00

00

propDef

PidLidTaskComplete property ([MS-OXOTASK] section 2.2.2.2.20) (0x811C
[PSETID_Task]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

03 00 CA 83-
03 20 06 00

00 00 00 00-

C0 00 00 00

propDef

PidLidTaskState property ([MS-OXOTASK] section 2.2.2.2.14) (0x8113 [PSETID_Task])
[Int32]

%5bMS-OXORMDR%5d.pdf
%5bMS-OXOTASK%5d.pdf
%5bMS-OXOTASK%5d.pdf
%5bMS-OXOTASK%5d.pdf
%5bMS-OXOTASK%5d.pdf

176 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

00 00 00 46-
00 13 81 00

00

01 00 00 00 fixedSizeValue

[Int32] 1

03 00 CB 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 12 81 00

00

propDef

PidLidTaskVersion property ([MS-OXOTASK] section 2.2.2.2.13) (0x8112
[PSETID_Task]) [Int32]

01 00 00 00 fixedSizeValue

[Int32] 1

02 01 13 10 propDef

PidTagBodyHtml property ([MS-OXCMSG] section 2.2.1.56.3) (10130102 [Binary])

58 06 00 00 length

1624 (0x658)

3C 68 74 6D-
6C 20 78 6D

6C 6E 73 3A-
76 3D 22 75

72 6E 3A 73-
63 68 65 6D

61 73 2D
6D-69 63 72
6F

73 6F 66 74-
2D 63 6F 6D

varSizeValue

<html xm

lns:v="u

rn:schem

as-micro

soft-com

... value truncated...

03 00 16 40 propDef

MetaTagFXDelProp property (section 2.2.4.1.5.1) (40160003 [Int32])

0D 00 12 0E fixedSizeValue

PidTagMessageRecipients property ([MS-OXPROPS] section 2.784) (0E12000D
[Object])

03 00 03 40 marker

StartRecip marker (section 2.2.4.1.4) (40030003 [Int32])

03 00 00 30 propDef

PidTagRowid property ([MS-OXPROPS] section 2.928) (30000003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

%5bMS-OXOTASK%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf

177 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

1F 00 02 30 propDef

PidTagAddressType property ([MS-OXCMAIL] section 2.1.3.1.9) (3002001F [Unicode])

06 00 00 00 length

6 (0x6)

45 00 58 00-
00 00

varSizeValue

E.X...

1F 00 03 30 propDef

PidTagEmailAddress property ([MS-OXPROPS] section 2.672) (3003001F [Unicode])

BA 00 00 00 length

186 (0xBA)

2F 00 4F 00-
3D 00 46 00

49 00 52 00-
53 00 54 00

20 00 4F 00-
52 00 47 00

41 00 4E 00-
49 00 5A 00

41 00 54 00-
49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated...

1F 00 01 30 propDef

PidTagDisplayName property ([MS-OXCFOLD] section 2.2.2.2.2.5) (3001001F
[Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

02 01 F6 0F propDef

PidTagInstanceKey property ([MS-OXPROPS] section 2.732) (0FF60102 [Binary])

04 00 00 00 length

4 (0x4)

00 00 00 00 varSizeValue

....

03 00 15 0C propDef

PidTagRecipientType property ([MS-OXOMSG] section 2.2.3.1) (0C150003 [Int32])

01 00 00 00 fixedSizeValue

[Int32] 1

%5bMS-OXCMAIL%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCFOLD%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXOMSG%5d.pdf

178 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

02 01 FF 0F propDef

PidTagEntryId property ([MS-OXPROPS] section 2.674) (0FFF0102 [Binary])

79 00 00 00 length

121 (0x79)

00 00 00 00-
DC A7 40 C8

C0 42 10 1A-
B4 B9 08 00

2B 2F E1 82-
01 00 00 00

00 00 00 00-
2F 4F 3D 46

49 52 53 54-
20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated...

02 01 0B 30 propDef

PidTagSearchKey property (300B0102 [Binary])

60 00 00 00 length

96 (0x60)

45 58 3A 2F-
4F 3D 46 49

52 53 54 20-
4F 52 47 41

4E 49 5A 41-
54 49 4F 4E

2F 4F 55 3D-
45 58 43 48

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

... value truncated...

1F 00 20 3A propDef

PidTagTransmittableDisplayName property ([MS-OXOABK] section 2.2.3.8)
(3A20001F [Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

0B 00 0F 0E propDef

PidTagResponsibility property ([MS-OXPROPS] section 2.920) (0E0F000B [Bool])

01 00 fixedSizeValue

[Bool] TRUE

0B 00 40 3A propDef

%5bMS-OXPROPS%5d.pdf
%5bMS-OXOABK%5d.pdf
%5bMS-OXPROPS%5d.pdf

179 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

PidTagSendRichInfo property (3A40000B [Bool])

01 00 fixedSizeValue

[Bool] TRUE

03 00 FD 5F propDef

PidTagRecipientFlags property ([MS-OXOCAL] section 2.2.4.10.1) (5FFD0003 [Int32])

01 00 00 00 fixedSizeValue

[Int32] 1

02 01 F7 5F propDef

PidTagRecipientEntryId property ([MS-OXPROPS] section 2.889) (5FF70102 [Binary])

79 00 00 00 length

121 (0x79)

00 00 00 00-

DC A7 40 C8

C0 42 10 1A-
B4 B9 08 00

2B 2F E1 82-
01 00 00 00

00 00 00 00-
2F 6F 3D 46

69 72 73 74-
20 4F 72 67

varSizeValue

......@.

.B......

+/......

..../o=F

irst Org

... value truncated...

1F 00 FE 39 propDef

PidTagSmtpAddress property ([MS-OXPROPS] section 2.1008) (39FE001F [Unicode])

46 00 00 00 length

70 (0x46)

74 00 31 00-
40 00 65 00

75 00 6D 00-
61 00 72 00

75 00 2D 00-
64 00 6F 00

6D 00 2E 00-
65 00 78 00

74 00 65 00-
73 00 74 00

varSizeValue

t.1.@.e.

u.m.a.r.

u.-.d.o.

m...e.x.

t.e.s.t.

... value truncated...

03 00 05 39 propDef

PidTagDisplayTypeEx property ([MS-OXOABK] section 2.2.3.12) (39050003 [Int32])

00 00 00 40 fixedSizeValue

%5bMS-OXOCAL%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXOABK%5d.pdf

180 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

[Int32] 1073741824

03 00 00 39 propDef

PidTagDisplayType property ([MS-OXOABK] section 2.2.3.11) (39000003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 FE 0F propDef

PidTagObjectType property ([MS-OXOABK] section 2.2.3.10) (0FFE0003 [Int32])

06 00 00 00 fixedSizeValue

[Int32] 6

1F 00 FF 39 propDef

PidTagAddressBookDisplayNamePrintable property ([MS-OXOABK] section 2.2.3.7)
(39FF001F [Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

1F 00 00 3A propDef

PidTagAccount property ([MS-OXOABK] section 2.2.3.20) (3A00001F [Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

03 00 FF 5F propDef

PidTagRecipientTrackStatus property ([MS-OXOCAL] section 2.2.4.10.2) (5FFF0003
[Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 DE 5F propDef

Unspecified property (5FDE0003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

1F 00 F6 5F propDef

PidTagRecipientDisplayName property ([MS-OXPROPS] section 2.888) (5FF6001F
[Unicode])

06 00 00 00 length

6 (0x6)

%5bMS-OXOABK%5d.pdf
%5bMS-OXOABK%5d.pdf
%5bMS-OXOABK%5d.pdf
%5bMS-OXOABK%5d.pdf
%5bMS-OXOCAL%5d.pdf
%5bMS-OXPROPS%5d.pdf

181 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

74 00 31 00-
00 00

varSizeValue

t.1...

03 00 DF 5F propDef

PidTagRecipientOrder property ([MS-OXPROPS] section 2.891) (5FDF0003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 04 40 marker

EndToRecip marker (section 2.2.4.1.4) (40040003 [Int32])

03 00 16 40 propDef

MetaTagFXDelProp property (40160003 [Int32])

0D 00 13 0E FixedSizeValue

PidTagMessageAttachments property ([MS-OXPROPS] section 2.774) (0E13000D
[Object])

03 00 00 40 marker

NewAttach marker (section 2.2.4.1.4) (40000003 [Int32])

03 00 21 0E propDef

PidTagAttachNumber property ([MS-OXCMSG] section 2.2.2.6) (0E210003 [Int32])

00 00 00 00 marker

[Int32] 0

02 01 02 37 propDef

PidTagAttachEncoding property ([MS-OXCMSG] section 2.2.2.20) (37020102 [Binary])

00 00 00 00 length

0 (0x0)

03 00 0B 37 propDef

PidTagRenderingPosition property ([MS-OXCMSG] section 2.2.2.16) (370B0003
[Int32])

FF FF FF FF fixedSizeValue

[Int32] -1

03 00 20 0E propDef

PidTagAttachSize property ([MS-OXCMSG] section 2.2.2.5) (0E200003 [Int32])

E7 15 00 00 fixedSizeValue

[Int32] 5607

03 00 F7 0F propDef

PidTagAccessLevel property (0FF70003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf

182 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

40 00 07 30 propDef

PidTagCreationTime property (30070040 [SysTime])

E2 EA E3 B1-
BC 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T03:45:35.3281250

40 00 08 30 propDef

PidTagLastModificationTime property (30080040 [SysTime])

E2 EA E3 B1-
BC 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T03:45:35.3281250

03 00 05 37 propDef

PidTagAttachMethod property ([MS-OXCMSG] section 2.2.2.9) (37050003 [Int32])

05 00 00 00 fixedSizeValue

[Int32] 5

02 01 09 37 propDef

PidTagAttachRendering property ([MS-OXCMSG] section 2.2.2.17) (37090102
[Binary])

B8 0D 00 00 length

3512 (0xDB8)

01 00 09 00-
00 03 DC 06

00 00 00 00-
21 06 00 00

00 00 05 00-
00 00 09 02

00 00 00 00-
05 00 00 00

01 02 FF FF-
FF 00 A5 00

varSizeValue

........

....!...

........

........

........

... value truncated...

03 00 14 37 propDef

PidTagAttachFlags property ([MS-OXCMSG] section 2.2.2.18) (37140003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

0B 00 FE 7F propDef

PidTagAttachmentHidden property ([MS-OXCMSG] section 2.2.2.24) (7FFE000B [Bool])

00 00 fixedSizeValue

[Bool] FALSE

1F 00 04 37 propDef

PidTagAttachFilename property ([MS-OXCMSG] section 2.2.2.11) (3704001F
[Unicode])

%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf
%5bMS-OXCMSG%5d.pdf

183 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

0E 00 00 00 length

14 (0xE)

54 00 65 00-
73 00 74 00

20 00 31 00-
00 00

varSizeValue

T.e.s.t.

.1...

0B 00 FF 7F propDef

PidTagAttachmentContactPhoto property ([MS-OXPROPS] section 2.588) (7FFF000B
[Bool])

00 00 fixedSizeValue

[Bool] FALSE

1F 00 01 30 propDef

PidTagDisplayName property (3001001F [Unicode])

0E 00 00 00 length

14 (0xE)

54 00 65 00-
73 00 74 00

20 00 31 00-
00 00

varSizeValue

T.e.s.t.

.1...

02 01 F9 0F propDef

PidTagRecordKey property ([MS-OXPROPS] section 2.899) (0FF90102 [Binary])

04 00 00 00 length

4 (0x4)

00 00 00 00 varSizeValue

....

03 00 01 40 marker

StartEmbed marker (section 2.2.4.1.4) (40010003 [Int32])

14 00 4A 67 propDef

PidTagMid property (section 2.2.1.2.1) (674A0014 [Int64])

01 00 00 00-
00 78 48 C1

fixedSizeValue

[Int64] -4519230284670959615

0B 00 02 00 propDef

PidTagAlternateRecipientAllowed property (0002000B [Bool])

01 00 fixedSizeValue

[Bool] TRUE

03 00 17 00 propDef

PidTagImportance property (00170003 [Int32])

%5bMS-OXPROPS%5d.pdf
%5bMS-OXPROPS%5d.pdf

184 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

01 00 00 00 fixedSizeValue

[Int32] 1

1F 00 1A 00 propDef

PidTagMessageClass property (001A001F [Unicode])

12 00 00 00 length

18 (0x12)

49 00 50 00-
4D 00 2E 00

4E 00 6F 00-
74 00 65 00

00 00

varSizeValue

I.P.M...

N.o.t.e.

..

0B 00 23 00 propDef

PidTagOriginatorDeliveryReportRequested property (0023000B [Bool])

00 00 fixedSizeValue

[Bool] FALSE

03 00 26 00 propDef

PidTagPriority property (00260003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

0B 00 29 00 propDef

PidTagReadReceiptRequested property (0029000B [Bool])

00 00 fixedSizeValue

[Bool] FALSE

03 00 36 00 propDef

PidTagSensitivity property (00360003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

1F 00 37 00 propDef

PidTagSubject property (0037001F [Unicode])

0E 00 00 00 length

14 (0xE)

54 00 65 00-
73 00 74 00

20 00 31 00-
00 00

varSizeValue

T.e.s.t.

.1...

40 00 39 00 propDef

PidTagClientSubmitTime property (00390040 [SysTime])

185 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

00 B4 A1 9D-
8B 84 C8 01

fixedSizeValue

[SysTime] 2008-03-12T21:54:16.0000000

02 01 3B 00 propDef

PidTagSentRepresentingSearchKey property (003B0102 [Binary])

60 00 00 00 length

96 (0x60)

45 58 3A 2F-
4F 3D 46 49

52 53 54 20-
4F 52 47 41

4E 49 5A 41-
54 49 4F 4E

2F 4F 55 3D-
45 58 43 48

41 4E 47 45-
20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated...

1F 00 3D 00 propDef

PidTagSubjectPrefix property (003D001F [Unicode])

02 00 00 00 length

2 (0x2)

00 00 varSizeValue

..

02 01 3F 00 propDef

PidTagReceivedByEntryId property (003F0102 [Binary])

79 00 00 00 length

121 (0x79)

00 00 00 00-
DC A7 40 C8

C0 42 10 1A-
B4 B9 08 00

2B 2F E1 82-
01 00 00 00

00 00 00 00-
2F 4F 3D 46

49 52 53 54-
20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated...

1F 00 40 00 propDef

PidTagReceivedByName property (0040001F [Unicode])

186 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

02 01 41 00 propDef

PidTagSentRepresentingEntryId property (00410102 [Binary])

79 00 00 00 length

121 (0x79)

00 00 00 00-
DC A7 40 C8

C0 42 10 1A-
B4 B9 08 00

2B 2F E1 82-
01 00 00 00

00 00 00 00-
2F 4F 3D 46

49 52 53 54-
20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated...

1F 00 42 00 propDef

PidTagSentRepresentingName property (0042001F [Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

02 01 43 00 propDef

PidTagReceivedRepresentingEntryId property (00430102 [Binary])

79 00 00 00 length

121 (0x79)

00 00 00 00-
DC A7 40 C8

C0 42 10 1A-
B4 B9 08 00

2B 2F E1 82-
01 00 00 00

00 00 00 00-
2F 4F 3D 46

49 52 53 54-
20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated...

187 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

1F 00 44 00 propDef

PidTagReceivedRepresentingName property (0044001F [Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

02 01 51 00 propDef

PidTagReceivedBySearchKey property (00510102 [Binary])

60 00 00 00 length

96 (0x60)

45 58 3A 2F-
4F 3D 46 49

52 53 54 20-
4F 52 47 41

4E 49 5A 41-
54 49 4F 4E

2F 4F 55 3D-
45 58 43 48

41 4E 47 45-
20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated...

02 01 52 00 propDef

PidTagReceivedRepresentingSearchKey property (00520102 [Binary])

60 00 00 00 length

96 (0x60)

45 58 3A 2F-
4F 3D 46 49

52 53 54 20-
4F 52 47 41

4E 49 5A 41-
54 49 4F 4E

2F 4F 55 3D-
45 58 43 48

41 4E 47 45-
20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated...

0B 00 63 00 propDef

PidTagResponseRequested property ([MS-OXOMSG] section 2.2.1.46) (0063000B
[Bool])

01 00 fixedSizeValue

[Bool] TRUE

%5bMS-OXOMSG%5d.pdf

188 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

1F 00 64 00 propDef

PidTagSentRepresentingAddressType property (0064001F [Unicode])

06 00 00 00 length

6 (0x6)

45 00 58 00-
00 00

varSizeValue

E.X...

1F 00 65 00 propDef

PidTagSentRepresentingEmailAddress property (0065001F [Unicode])

BA 00 00 00 length

186 (0xBA)

2F 00 4F 00-
3D 00 46 00

49 00 52 00-
53 00 54 00

20 00 4F 00-
52 00 47 00

41 00 4E 00-
49 00 5A 00

41 00 54 00-
49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated...

1F 00 70 00 propDef

PidTagConversationTopic property (0070001F [Unicode])

0E 00 00 00 length

14 (0xE)

54 00 65 00-
73 00 74 00

20 00 31 00-
00 00

varSizeValue

T.e.s.t.

.1...

02 01 71 00 propDef

PidTagConversationIndex property (00710102 [Binary])

16 00 00 00 length

22 (0x16)

01 C8 84 8B-
9D B1 08 58

53 52 00 5B-
4A D4 96 BA

3C 88 9D
B4-16 AE

varSizeValue

.......X

SR.[J...

<.....

1F 00 75 00 propDef

189 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

PidTagReceivedByAddressType property (0075001F [Unicode])

06 00 00 00 length

6 (0x6)

45 00 58 00-
00 00

varSizeValue

E.X...

1F 00 76 00 propDef

PidTagReceivedByEmailAddress property (0076001F [Unicode])

BA 00 00 00 length

186 (0xBA)

2F 00 4F 00-
3D 00 46 00

49 00 52 00-
53 00 54 00

20 00 4F 00-
52 00 47 00

41 00 4E 00-
49 00 5A 00

41 00 54 00-
49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated...

1F 00 77 00 propDef

PidTagReceivedRepresentingAddressType property (0077001F [Unicode])

06 00 00 00 length

6 (0x6)

45 00 58 00-
00 00

varSizeValue

E.X...

1F 00 78 00 propDef

PidTagReceivedRepresentingEmailAddress property (0078001F [Unicode])

BA 00 00 00 length

186 (0xBA)

2F 00 4F 00-
3D 00 46 00

49 00 52 00-
53 00 54 00

20 00 4F 00-
52 00 47 00

41 00 4E 00-
49 00 5A 00

41 00 54 00-
49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

190 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

... value truncated...

1F 00 7D 00 propDef

PidTagTransportMessageHeaders property (007D001F [Unicode])

B0 06 00 00 length

1712 (0x6B0)

52 00 65 00-
63 00 65 00

69 00 76 00-
65 00 64 00

3A 00 20 00-
66 00 72 00

6F 00 6D 00-

20 00 45 00

58 00 43 00-
48 00 2D 00

varSizeValue

R.e.c.e.

i.v.e.d.

:..f.r.

o.m..E.

X.C.H.-.

... value truncated...

0B 00 17 0C propDef

PidTagReplyRequested property ([MS-OXOMSG] section 2.2.1.45) (0C17000B [Bool])

01 00 fixedSizeValue

[Bool] TRUE

02 01 19 0C propDef

PidTagSenderEntryId property (0C190102 [Binary])

79 00 00 00 length

121 (0x79)

00 00 00 00-
DC A7 40 C8

C0 42 10 1A-
B4 B9 08 00

2B 2F E1 82-
01 00 00 00

00 00 00 00-
2F 4F 3D 46

49 52 53 54-
20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated...

1F 00 1A 0C propDef

PidTagSenderName property (0C1A001F [Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00- varSizeValue

%5bMS-OXOMSG%5d.pdf

191 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

00 00 t.1...

02 01 1D 0C propDef

PidTagSenderSearchKey property (0C1D0102 [Binary])

60 00 00 00 length

96 (0x60)

45 58 3A 2F-
4F 3D 46 49

52 53 54 20-
4F 52 47 41

4E 49 5A 41-
54 49 4F 4E

2F 4F 55 3D-

45 58 43 48

41 4E 47 45-
20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated...

1F 00 1E 0C propDef

PidTagSenderAddressType property (0C1E001F [Unicode])

06 00 00 00 length

6 (0x6)

45 00 58 00-
00 00

varSizeValue

E.X...

1F 00 1F 0C propDef

PidTagSenderEmailAddress property (0C1F001F [Unicode])

BA 00 00 00 length

186 (0xBA)

2F 00 4F 00-
3D 00 46 00

49 00 52 00-
53 00 54 00

20 00 4F 00-
52 00 47 00

41 00 4E 00-
49 00 5A 00

41 00 54 00-
49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated...

1F 00 D4 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

propDef

PidLidTaskRole property (0x8127 [PSETID_Task]) [Unicode]

192 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

00 00 00 46-
00 27 81 00

00

02 00 00 00 length

2 (0x2)

00 00 varSizeValue

..

03 00 D3 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-

00 2A 81 00

00

propDef

PidLidTaskAcceptanceState property (0x812A [PSETID_Task]) [Int32]

00 00 00 00 fixedSizeValue

[Int32] 0

0B 00 D2 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 2C 81 00

00

propDef

PidLidTaskFFixOffline property (0x812C [PSETID_Task]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

40 00 06 0E propDef

PidTagMessageDeliveryTime property (0E060040 [SysTime])

00 0E 04 A0-
8B 84 C8 01

fixedSizeValue

[SysTime] 2008-03-12T21:54:20.0000000

03 00 07 0E propDef

PidTagMessageFlags property (0E070003 [Int32])

01 00 00 00 fixedSizeValue

[Int32] 1

03 00 CF 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 10 81 00

00

propDef

PidLidTaskActualEffort property (0x8110 [PSETID_Task]) [Int32]

00 00 00 00 fixedSizeValue

193 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

[Int32] 0

03 00 17 0E propDef

PidTagMessageStatus property (0E170003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

0B 00 D1 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 24 81 00

00

propDef

PidLidTaskNoCompute property (0x8124 [PSETID_Task]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

1F 00 1D 0E propDef

PidTagNormalizedSubject property (0E1D001F [Unicode])

0E 00 00 00 length

14 (0xE)

54 00 65 00-
73 00 74 00

20 00 31 00-
00 00

varSizeValue

T.e.s.t.

.1...

0B 00 1F 0E propDef

PidTagRtfInSync property (0E1F000B [Bool])

01 00 fixedSizeValue

[Bool] TRUE

03 00 23 0E propDef

Unspecified property (0E230003 [Int32])

1B 00 00 00 fixedSizeValue

[Int32] 27

03 00 2B 0E propDef

PidTagToDoItemFlags property ([MS-OXOFLAG] section 2.2.1.6) (0E2B0003 [Int32])

01 00 00 00 fixedSizeValue

[Int32] 1

03 00 79 0E propDef

PidTagTrustSender property (0E790003 [Int32])

01 00 00 00 fixedSizeValue

[Int32] 1

%5bMS-OXOFLAG%5d.pdf

194 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

03 00 D0 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 11 81 00

00

propDef

PidLidTaskEstimatedEffort property (0x8111 [PSETID_Task]) [Int32]

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 F7 0F propDef

PidTagAccessLevel property (0FF70003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

0B 00 D6 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 26 81 00

00

propDef

PidLidTaskFRecurring property (0x8126 [PSETID_Task]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

02 01 09 10 propDef

PidTagRtfCompressed property ([MS-OXCMSG] section 2.2.1.56.4) (10090102
[Binary])

22 05 00 00 length

1314 (0x522)

1E 05 00 00-
85 0B 00 00

4C 5A 46 75-
31 AE 9B E3

03 00 0A 00-
72 63 70 67

31 32 35 83-
00 50 03 52

68 74 6D 6C-
31 03 31 F8

varSizeValue

........

LZFu1...

....rcpg

125..P.R

html1.1.

... value truncated...

0B 00 D5 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-

propDef

PidLidTeamTask property (0x8103 [PSETID_Task]) [Bool]

%5bMS-OXCMSG%5d.pdf

195 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

00 03 81 00

00

00 00 fixedSizeValue

[Bool] FALSE

1F 00 35 10 propDef

PidTagInternetMessageId property (1035001F [Unicode])

AC 00 00 00 length

172 (0xAC)

3C 00 31 00-
39 00 44 00

37 00 46 00-
42 00 30 00

46 00 30 00-
36 00 31 00

36 00 41 00-
31 00 34 00

31 00 42 00-
46 00 46 00

varSizeValue

<.1.9.D.

7.F.B.0.

F.0.6.1.

6.A.1.4.

1.B.F.F.

... value truncated...

03 00 80 10 propDef

PidTagIconIndex property (10800003 [Int32])

FF FF FF FF fixedSizeValue

[Int32] -1

03 00 90 10 propDef

PidTagFlagStatus property ([MS-OXOFLAG] section 2.2.1.1) (10900003 [Int32])

02 00 00 00 fixedSizeValue

[Int32] 2

03 00 95 10 propDef

PidTagFollowupIcon property ([MS-OXOFLAG] section 2.2.1.2) (10950003 [Int32])

06 00 00 00 fixedSizeValue

[Int32] 6

40 00 07 30 propDef

PidTagCreationTime property (30070040 [SysTime])

90 F8 65 B0-
BC 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T03:45:32.8250000

40 00 08 30 propDef

PidTagLastModificationTime property (30080040 [SysTime])

90 F8 65 B0- fixedSizeValue

%5bMS-OXOFLAG%5d.pdf
%5bMS-OXOFLAG%5d.pdf

196 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

BC 84 C8 01 [SysTime] 2008-03-13T03:45:32.8250000

02 01 0B 30 propDef

PidTagSearchKey property (300B0102 [Binary])

10 00 00 00 length

16 (0x10)

87 56 4A B2-
FC C2 77 46

A4 81 15 08-
9D 47 46 8C

varSizeValue

.VJ...wF

.....GF.

02 01 10 30 propDef

PidTagTargetEntryId property ([MS-OXOMSG] section 2.2.1.76) (30100102 [Binary])

46 00 00 00 length

70 (0x46)

00 00 00 00-
FE C7 EE E9

76 05 2D 4F-
80 00 61 68

94 97 4B 0A-
07 00 19 D7

FB 0F 06 16-
A1 41 BF F6

91 C7 63
DA-A8 66 00
00

varSizeValue

........

v.-O..ah

..K.....

.....A..

..c..f..

... value truncated...

0B 00 40 3A propDef

PidTagSendRichInfo property (3A40000B [Bool])

01 00 fixedSizeValue

[Bool] TRUE

03 00 DE 3F propDef

PidTagInternetCodepage property (3FDE0003 [Int32])

9F 4E 00 00 fixedSizeValue

[Int32] 20127

03 00 F1 3F propDef

PidTagMessageLocaleId property (3FF10003 [Int32])

09 04 00 00 fixedSizeValue

[Int32] 1033

1F 00 F8 3F propDef

PidTagCreatorName property ([MS-OXPROPS] section 2.647) (3FF8001F [Unicode])

%5bMS-OXOMSG%5d.pdf
%5bMS-OXPROPS%5d.pdf

197 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

1F 00 FA 3F propDef

PidTagLastModifierName property ([MS-OXCPRPT] section 2.2.1.5) (3FFA001F
[Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

03 00 FD 3F propDef

PidTagMessageCodepage property (3FFD0003 [Int32])

E3 04 00 00 fixedSizeValue

[Int32] 1251

03 00 19 40 propDef

Unspecified property (40190003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 1A 40 propDef

PidTagSentRepresentingFlags property (401A0003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 1B 40 propDef

Unspecified property (401B0003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 1C 40 propDef

Unspecified property (401C0003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 76 40 propDef

PidTagContentFilterSpamConfidenceLevel property (40760003 [Int32])

FF FF FF FF fixedSizeValue

[Int32] -1

03 00 02 59 propDef

%5bMS-OXCPRPT%5d.pdf

198 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

PidTagInternetMailOverrideFormat property (59020003 [Int32])

00 00 16 00 fixedSizeValue

[Int32] 1441792

03 00 09 59 propDef

PidTagMessageEditorFormat property (59090003 [Int32])

02 00 00 00 fixedSizeValue

[Int32] 2

0B 00 4A 66 propDef

PidTagHasNamedProperties property ([MS-OXPROPS] section 2.708) (664A000B
[Bool])

01 00 fixedSizeValue

[Bool] TRUE

03 00 02 80-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 10 85 00

00

propDef

PidLidSideEffects property (0x8510 [PSETID_Common]) [Int32]

00 00 00 00 fixedSizeValue

[Int32] 0

0B 00 08 80-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 03 85 00

00

propDef

PidLidReminderSet property (0x8503 [PSETID_Common]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

1F 00 1A 80-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 A4 85 00

00

propDef

PidLidToDoTitle property ([MS-OXOFLAG] section 2.2.1.12) (0x85A4
[PSETID_Common]) [Unicode]

0E 00 00 00 length

14 (0xE)

54 00 65 00-
73 00 74 00

varSizeValue

T.e.s.t.

%5bMS-OXPROPS%5d.pdf
%5bMS-OXOFLAG%5d.pdf

199 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

20 00 31 00-
00 00

.1...

1F 00 2C 80-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 30 85 00

00

propDef

PidLidFlagRequest property ([MS-OXOFLAG] section 2.2.1.9) (0x8530
[PSETID_Common]) [Unicode]

14 00 00 00 length

20 (0x14)

46 00 6F 00-

6C 00 6C 00

6F 00 77 00-
20 00 75 00

70 00 00 00

varSizeValue

F.o.l.l.

o.w..u.

p...

0B 00 4D 81-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 0E 85 00

00

propDef

PidLidAgingDontAgeMe property (0x850E [PSETID_Common]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

03 00 84 81-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 18 85 00

00

propDef

PidLidTaskMode property (0x8518 [PSETID_Common]) [Int32]

00 00 00 00 fixedSizeValue

[Int32] 0

0B 00 4B 82-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 06 85 00

00

propDef

PidLidPrivate property (0x8506 [PSETID_Common]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

%5bMS-OXOFLAG%5d.pdf

200 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

0B 00 4F 82-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 82 85 00

00

propDef

PidLidUseTnef property (0x8582 [PSETID_Common]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

40 00 68 82-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 A0 85 00

00

propDef

PidLidToDoOrdinalDate property ([MS-OXOFLAG] section 2.2.1.13) (0x85A0
[PSETID_Common]) [SysTime]

F0 55 C3 C6-
8B 84 C8 01

fixedSizeValue

[SysTime] 2008-03-12T21:55:25.0070000

1F 00 69 82-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 A1 85 00

00

propDef

PidLidToDoSubOrdinal property ([MS-OXOFLAG] section 2.2.1.14) (0x85A1
[PSETID_Common]) [Unicode]

10 00 00 00 length

16 (0x10)

35 00 35 00-
35 00 35 00

35 00 35 00-
35 00 00 00

varSizeValue

5.5.5.5.

5.5.5...

03 00 A8 83-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 01 85 00

00

propDef

PidLidReminderDelta property (0x8501 [PSETID_Common]) [Int32]

00 00 00 00 fixedSizeValue

[Int32] 0

40 00 A9 83-
03 20 06 00

00 00 00 00-

propDef

PidLidTaskDueDate property ([MS-OXOTASK] section 2.2.2.2.5) (0x8105
[PSETID_Task]) [SysTime]

%5bMS-OXOFLAG%5d.pdf
%5bMS-OXOFLAG%5d.pdf
%5bMS-OXOTASK%5d.pdf

201 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

C0 00 00 00

00 00 00 46-
00 05 81 00

00

00 00 CB 03-
D4 83 C8 01

fixedSizeValue

[SysTime] 2008-03-12T00:00:00.0000000

40 00 AA 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 04 81 00

00

propDef

PidLidTaskStartDate property ([MS-OXOTASK] section 2.2.2.2.4) (0x8104
[PSETID_Task]) [SysTime]

00 00 CB 03-
D4 83 C8 01

fixedSizeValue

[SysTime] 2008-03-12T00:00:00.0000000

40 00 AB 83-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 16 85 00

00

propDef

PidLidCommonStart property ([MS-OXOTASK] section 2.2.2.1.3) (0x8516
[PSETID_Common]) [SysTime]

00 D8 29 B0-
0E 84 C8 01

fixedSizeValue

[SysTime] 2008-03-12T07:00:00.0000000

40 00 AC 83-
08 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 17 85 00

00

propDef

PidLidCommonEnd property ([MS-OXOTASK] section 2.2.2.1.4) (0x8517
[PSETID_Common]) [SysTime]

00 D8 29 B0-
0E 84 C8 01

fixedSizeValue

[SysTime] 2008-03-12T07:00:00.0000000

03 00 AD 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 01 81 00

00

propDef

PidLidTaskStatus property ([MS-OXOTASK] section 2.2.2.2.2) (0x8101 [PSETID_Task])
[Int32]

00 00 00 00 fixedSizeValue

[Int32] 0

%5bMS-OXOTASK%5d.pdf
%5bMS-OXOTASK%5d.pdf
%5bMS-OXOTASK%5d.pdf
%5bMS-OXOTASK%5d.pdf

202 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

05 00 AE 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 02 81 00

00

propDef

PidLidPercentComplete property (0x8102 [PSETID_Task]) [Double]

00 00 00 00-
00 00 00 00

fixedSizeValue

[Double] 0

0B 00 B0 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 1C 81 00

00

propDef

PidLidTaskComplete property (0x811C [PSETID_Task]) [Bool]

00 00 fixedSizeValue

[Bool] FALSE

03 00 CA 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 13 81 00

00

propDef

PidLidTaskState property (0x8113 [PSETID_Task]) [Int32]

01 00 00 00 fixedSizeValue

[Int32] 1

03 00 CB 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 12 81 00

00

propDef

PidLidTaskVersion property (0x8112 [PSETID_Task]) [Int32]

01 00 00 00 fixedSizeValue

[Int32] 1

03 00 CC 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 23 81 00

00

propDef

PidLidTaskOrdinal property (0x8123 [PSETID_Task]) [Int32]

203 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

FF FF FF 7F fixedSizeValue

[Int32] 2147483647

1F 00 CD 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 21 81 00

00

propDef

PidLidTaskAssigner property (0x8121 [PSETID_Task]) [Unicode]

02 00 00 00 length

2 (0x2)

00 00 varSizeValue

..

03 00 CE 83-
03 20 06 00

00 00 00 00-
C0 00 00 00

00 00 00 46-
00 29 81 00

00

propDef

PidLidTaskOwnership property (0x8129 [PSETID_Task]) [Int32]

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 03 40 marker

StartRecip marker (section 2.2.4.1.4) (40030003 [Int32])

03 00 00 30 propDef

PidTagRowid property (30000003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

1F 00 02 30 propDef

PidTagAddressType property (3002001F [Unicode])

06 00 00 00 length

6 (0x6)

45 00 58 00-
00 00

varSizeValue

E.X...

1F 00 03 30 propDef

PidTagEmailAddress property (3003001F [Unicode])

BA 00 00 00 length

186 (0xBA)

204 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

2F 00 4F 00-
3D 00 46 00

49 00 52 00-
53 00 54 00

20 00 4F 00-
52 00 47 00

41 00 4E 00-
49 00 5A 00

41 00 54 00-
49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated...

1F 00 01 30 propDef

PidTagDisplayName property (3001001F [Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

02 01 F6 0F propDef

PidTagInstanceKey property (0FF60102 [Binary])

04 00 00 00 length

4 (0x4)

00 00 00 00 varSizeValue

....

03 00 15 0C propDef

PidTagRecipientType property (0C150003 [Int32])

01 00 00 00 fixedSizeValue

[Int32] 1

02 01 FF 0F propDef

PidTagEntryId property (0FFF0102 [Binary])

79 00 00 00 length

121 (0x79)

00 00 00 00-
DC A7 40 C8

C0 42 10 1A-
B4 B9 08 00

2B 2F E1 82-
01 00 00 00

00 00 00 00-
2F 4F 3D 46

49 52 53 54-

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

205 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

20 4F 52 47

... value truncated...

02 01 0B 30 propDef

PidTagSearchKey property (300B0102 [Binary])

60 00 00 00 length

96 (0x60)

45 58 3A 2F-
4F 3D 46 49

52 53 54 20-
4F 52 47 41

4E 49 5A 41-
54 49 4F 4E

2F 4F 55 3D-
45 58 43 48

41 4E 47 45-
20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated...

1F 00 20 3A propDef

PidTagTransmittableDisplayName property (3A20001F [Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

0B 00 0F 0E propDef

PidTagResponsibility property (0E0F000B [Bool])

01 00 fixedSizeValue

[Bool] TRUE

0B 00 40 3A propDef

PidTagSendRichInfo property (3A40000B [Bool])

01 00 fixedSizeValue

[Bool] TRUE

03 00 FD 5F propDef

PidTagRecipientFlags property (5FFD0003 [Int32])

01 00 00 00 fixedSizeValue

[Int32] 1

02 01 F7 5F propDef

PidTagRecipientEntryId property (5FF70102 [Binary])

206 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

79 00 00 00 length

121 (0x79)

00 00 00 00-
DC A7 40 C8

C0 42 10 1A-
B4 B9 08 00

2B 2F E1 82-
01 00 00 00

00 00 00 00-
2F 6F 3D 46

69 72 73 74-
20 4F 72 67

varSizeValue

......@.

.B......

+/......

..../o=F

irst Org

... value truncated...

1F 00 FE 39 propDef

PidTagSmtpAddress property (39FE001F [Unicode])

46 00 00 00 length

70 (0x46)

74 00 31 00-
40 00 65 00

75 00 6D 00-
61 00 72 00

75 00 2D 00-
64 00 6F 00

6D 00 2E 00-
65 00 78 00

74 00 65 00-
73 00 74 00

varSizeValue

t.1.@.e.

u.m.a.r.

u.-.d.o.

m...e.x.

t.e.s.t.

... value truncated...

03 00 05 39 propDef

PidTagDisplayTypeEx property (39050003 [Int32])

00 00 00 40 fixedSizeValue

[Int32] 1073741824

03 00 00 39 propDef

PidTagDisplayType property (39000003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 FE 0F propDef

PidTagObjectType property (0FFE0003 [Int32])

06 00 00 00 fixedSizeValue

[Int32] 6

207 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

1F 00 FF 39 propDef

PidTagAddressBookDisplayNamePrintable property (39FF001F [Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

1F 00 00 3A propDef

PidTagAccount property (3A00001F [Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

03 00 DE 5F propDef

Unspecified property (5FDE0003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 DF 5F propDef

PidTagRecipientOrder

property (5FDF0003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

1F 00 F6 5F propDef

PidTagRecipientDisplayName property (5FF6001F [Unicode])

06 00 00 00 length

6 (0x6)

74 00 31 00-
00 00

varSizeValue

t.1...

03 00 FF 5F propDef

PidTagRecipientTrackStatus property (5FFF0003 [Int32])

00 00 00 00 fixedSizeValue

[Int32] 0

03 00 04 40 marker

EndToRecip marker (section 2.2.4.1.4) (40040003 [Int32])

03 00 02 40 marker

EndEmbed marker (section 2.2.4.1.4) (40020003 [Int32])

208 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

03 00 0E 40 marker

EndAttach marker (section 2.2.4.1.4) (400E0003 [Int32])

03 00 13 40 marker

IncrSyncDel marker (section 2.2.4.1.4) (40130003 [Int32])

02 01 E5 67 propDef

MetaTagIdsetDeleted property (section 2.2.1.3.1) (67E50102 [Binary])

0D 00 00 00 length

13 (0xD)

01 00 06 00-
00 00 78 2E

23 00 04 00-
00

varSizeValue

......x.

#....

03 00 2F 40 marker

IncrSyncRead marker (section 2.2.4.1.4) (402F0003 [Int32])

02 01 2D 40 propDef

MetaTagIdsetRead property (section 2.2.1.3.4) (402D0102 [Binary])

0A 00 00 00 length

10 (0xA)

01 00 06 00-
00 00 78 2E

1F 00

varSizeValue

......x.

..

02 01 2E 40 propDef

MetaTagIdsetUnread property (section 2.2.1.3.5) (402E0102 [Binary])

0A 00 00 00 length

10 (0xA)

01 00 06 00-
00 00 78 2E

20 00

varSizeValue

......x.

.

03 00 3A 40 marker

IncrSyncStateBegin marker (section 2.2.4.1.4) (403A0003 [Int32])

02 01 96 67 propDef

MetaTagCnsetSeen property (section 2.2.1.1.2) (67960102 [Binary])

1D 00 00 00 length

29 (0x1D)

19 D7 FB 0F-
06 16 A1 41

BF F6 91 C7-

IDSET printout:

{0ffbd719-1606-41a1-bff6-91c763daa866:{[0x1, 0x784D1D]}}

209 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

63 DA A8 66

03 00 00 00-
52 00 00 01

78 4D 1D
50-00

02 01 DA 67 propDef

MetaTagCnsetSeenFAI (section 2.2.1.1.3) (67DA0102 [Binary])

1D 00 00 00 length

29 (0x1D)

19 D7 FB 0F-
06 16 A1 41

BF F6 91 C7-

63 DA A8 66

03 00 00 00-
52 00 00 01

78 4D 1D
50-00

IDSET printout:

{0ffbd719-1606-41a1-bff6-91c763daa866:{[0x1, 0x784D1D]}}

03 00 17 40 propDef

MetaTagIdsetGiven property (section 2.2.1.1.1) (40170003 [Int32])

38 00 00 00 length

56 (0x38)

19 D7 FB 0F-
06 16 A1 41

BF F6 91 C7-
63 DA A8 66

05 00 00 00-
78 2E 52 1D

22 50 00 D2-
0C 67 79 AC

4C 50 42 89-
2C 24 5D 2D

1A E3 A4 05-
00 00 00 78

06 42 01 01-
01 0C 50 00

IDSET printout:

{0ffbd719-1606-41a1-bff6-91c763daa866:{[0x782E1D, 0x782E22]},79670cd2-4cac-
4250-892c-245d2d1ae3a4:{[0x780601, 0x780602], [0x78060C, 0x78060C]}}

02 01 D2 67 propDef

MetaTagCnsetRead property (section 2.2.1.1.4) (67D20102 [Binary])

1D 00 00 00 length

29 (0x1D)

19 D7 FB 0F-
06 16 A1 41

BF F6 91 C7-
63 DA A8 66

IDSET printout:

{0ffbd719-1606-41a1-bff6-91c763daa866:{[0x1, 0x784D1D]}}

210 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Bytes on

the wire Value/description

03 00 00 00-
52 00 00 01

78 4D 1D
50-00

03 00 3B 40 marker

IncrSyncStateEnd marker (section 2.2.4.1.4) (403B0003 [Int32])

03 00 14 40 marker

IncrSyncEnd marker (section 2.2.4.1.4) (40140003 [Int32])

 EOS

4.6 Conflict Detection and Conflict Resolution Examples

4.6.1 Comparing the PidTagPredecessorChangeList Property to Detect Conficts,

No Conflicts Found

In this example, data is being replicated from the client to the server. The
PidTagPredecessorChangeList properties (section 2.2.1.2.8) of both the client and the server
contain one PidTagChangeKey property (section 2.2.1.2.7). The value of the GLOBCNT structure,
as described in section 2.2.2.5, of the client's PidTagPredecessorChangeList property entry is
larger than the value of the GLOBCNT structure that is located on the server.

Before synchronization:

The client PidTagPredecessorChangeList property has the following data:

Size GUID GLOBCNT

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 0a

The server PidTagPredecessorChangeList property has the following data:

Size GUID GLOBCNT

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 08

Conflict analysis:

There are no common PidTagChangeKey property items in the client and server

PidTagPredecessorChangeList property that are to be eliminated.

The client PidTagChangeKey property is larger than the server PidTagChangeKey property, so

the imported item from the client overwrites the server item.

There is no change on the client PidTagPredecessorChangeList property.

After synchronization:

The client PidTagPredecessorChangeList property has no change. The value is the same as

before synchronization.

211 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

The server PidTagPredecessorChangeList property has the following data:

Size GUID GLOBCNT

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 0a

In the next example, data is being replicated from the client to the server, where the client

predecessor change list (PidTagPredecessorChangeList property) shows that the client has more
recent changes than the server.

Before synchronization:

The client PidTagPredecessorChangeList property has the following data:

Size GUID GLOBCNT

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 0a

22 2A47B01B-29A5-45F1-9FDC-F6E14FB7ECCA 00 8e 7a 7c 13 30

The server PidTagPredecessorChangeList property has the following data:

Size GUID GLOBCNT

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 0a

Conflict analysis:

As stated in the previous conflict-detection logic, removing the identical PidTagChangeKey

property values from both the PidTagPredecessorChangeList properties leaves only the latest
PidTagChangeKey property of the client (as shown in the following table).

Size GUID GLOBCNT

22 2A47B01B-29A5-45F1-9FDC-F6E14FB7ECCA 00 8e 7a 7c 13 30

This imported client item overwrites the server item.

After synchronization:

The client PidTagPredecessorChangeList property has no change. The value is the same as

before synchronization.

The server PidTagPredecessorChangeList property has the following data:

Size GUID GLOBCNT

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 0a

22 2A47B01B-29A5-45F1-9FDC-F6E14FB7ECCA 00 8e 7a 7c 13 30

212 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

4.6.2 Comparing the PidTagPredecessorChangeList Property to Detect Conflicts,

Conflicts Found

In this example, the data is being replicated from the client to the server with the predecessor
change list (PidTagPredecessorChangeList property (section 2.2.1.2.8)) so that the client has
the same lineage but a new GLOBCNT structure value, as described in section 2.2.2.5. The server
also has a different GLOBCNT structure value.

Before synchronization:

The client PidTagPredecessorChangeList property has the following data:

Size GUID GLOBCNT

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 0a

22 2A47B01B-29A5-45F1-9FDC-F6E14FB7ECCA 00 8e 7a 7c 13 30

The server PidTagPredecessorChangeList property has the following data:

Size GUID GLOBCNT

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 0a

22 0EFAF908-FB24-0EFA-3820-570048EED320 00 8e 7a 7c 3e 5e

Conflict analysis:

As stated in the previous conflict-detection logic, removing the identical PidTagChangeKey

property (section 2.2.1.2.7) values from both the client and server
PidTagPredecessorChangeList properties leaves the following client

PidTagPredecessorChangeList property:

Size GUID GLOBCNT

22 2A47B01B-29A5-45F1-9FDC-F6E14FB7ECCA 00 8e 7a 7c 13 30

and the following server PidTagPredecessorChangeList property:

Size GUID GLOBCNT

22 0EFAF908-FB24-0EFA-3820-570048EED320 00 8e 7a 7c 3e 5e

There is a conflict because the server PidTagPredecessorChangeList property does not contain

the remaining client PidTagChangeKey property item, and the client

PidTagPredecessorChangeList property does not contain the remaining server
PidTagChangeKey property item.

After synchronization:

The server creates a conflict message that contains all four items, as shown in the following

table.

213 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Size GUID GLOBCNT

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 0a

22 0EFAF908-FB24-0EFA-3820-570048EED320 00 8e 7a 7c 3e 5e

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 0a

22 2A47B01B-29A5-45F1-9FDC-F6E14FB7ECCA 00 8e 7a 7c 13 30

In the next example, the data is being replicated from the client to the server and the client
PidTagPredecessorChangeList property has different PidTagChangeKey properties than the

server.

Before synchronization:

The client PidTagPredecessorChangeList property has the following data:

Size GUID GLOBCNT

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 0a

22 2A47B01B-29A5-45F1-9FDC-F6E14FB7ECCA 00 8e 7a 7c 13 30

The server PidTagPredecessorChangeList property has the following data:

Size GUID GLOBCNT

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 ef

Conflict analysis:

There are no identical PidTagChangeKey properties.

There is a conflict because the client PidTagPredecessorChangeList property does not contain

the server PidTagChangeKey property item.

After synchronization:

The server creates a conflict message that contains the three items, as shown in the following

table.

Size GUID GLOBCNT

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 ef

22 75DCB0E0-EDB1-481E-B5CE-EC3400896353 00 8e 7a 74 08 0a

22 2A47B01B-29A5-45F1-9FDC-F6E14FB7ECCA 00 8e 7a 7c 13 30

214 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

5 Security

5.1 Security Considerations for Implementers

There are no special security considerations specific to this protocol. General security considerations
that pertain to the underlying ROP-based transport apply.

5.2 Index of Security Parameters

None.

215 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft Exchange Server 2003

Microsoft Exchange Server 2007

Microsoft Exchange Server 2010

Microsoft Exchange Server 2013

Microsoft Office Outlook 2003

Microsoft Office Outlook 2007

Microsoft Outlook 2010

Microsoft Outlook 2013

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2.2.1.3.3: The MetaTagIdsetExpired property is not supported in Exchange 2013.

<2> Section 2.2.3: In Exchange 2003 and Exchange 2007, the

RopSynchronizationGetTransferState ([MS-OXCROPS] section 2.2.13.8) and the
RopFastTransferSourceGetBuffer ([MS-OXCROPS] section 2.2.12.3) ROPs are used to checkpoint
ICS download operations. In Exchange 2010 and Exchange 2013, trying to retrieve a checkpoint ICS

state during the download returns the initial state, and not a state with differences applied.

<3> Section 2.2.3.1.1.1.1: The BestBody flag is not supported in Exchange 2013. In Exchange
2013, the message body (2) is always in the original format.

<4> Section 2.2.3.1.1.1.1: Exchange 2003 and Office Outlook 2003 do not support partial item
downloads. Exchange 2003 does not support the PartialItem bit flag of the SendOptions field and
Office Outlook 2003 does not pass it.

<5> Section 2.2.3.1.1.3.1: The BestBody flag is not supported in Exchange 2013. In Exchange

2013, the message body (2) is always in the original format.

<6> Section 2.2.3.1.1.4.1: In Exchange 2003 and Exchange 2007, the Move bit flag is not ignored

on receipt.

<7> Section 2.2.3.1.1.4.1: In Exchange 2003 and Exchange 2007, the Move bit flag is read by the
server.

<8> Section 2.2.3.1.1.5.2: The NoRoom value is not returned by Exchange 2010 or Exchange

2013. The NoRoom value is supported by Exchange 2003 and Exchange 2007.

%5bMS-OXCROPS%5d.pdf
%5bMS-OXCROPS%5d.pdf

216 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

<9> Section 2.2.3.1.1.5.2: Exchange 2010 and Exchange 2013 report inaccurate information in this
output parameter when client connection services are deployed on a Microsoft Exchange server that

does not also have a mailbox message store installed.

<10> Section 2.2.3.1.2.2.1: Exchange 2003, Exchange 2007, Exchange 2010, the initial release of

Exchange 2013, Office Outlook 2003, Office Outlook 2007, Outlook 2010, and the initial release of
Outlook 2013 do not support the Execute request type. The Execute request type was introduced
in Outlook 2013 SP1 and Exchange 2013 SP1.

<11> Section 2.2.3.1.2.2.2: Exchange 2010 and Exchange 2013 set the value of the
TotalStepCount field to 0x0001. Exchange 2003 and Exchange 2007 set the value of the
TotalStepCount field to 0x0000.

<12> Section 2.2.3.1.2.2.2: Exchange 2003, Exchange 2007, Exchange 2010, and Exchange 2013

always return a value for the BufferSizeUsed field that is equal to the value of the
TransferDataSize field, regardless of whether the value of the ReturnValue field is Success
(0x00000000).

<13> Section 2.2.3.2.1.1.1: The BestBody flag is not supported in Exchange 2013. In Exchange
2013, the message body (2) is always in the original format.

<14> Section 2.2.3.2.4.2.1: The FailOnConflict flag is not supported by Exchange 2003, Exchange

2007, or the initial release version of Exchange 2010. The FailOnConflict flag is supported by
Exchange 2010 SP1 and Exchange 2013.

<15> Section 2.2.3.2.4.3.1: The initial release version of Exchange 2010 has a return value of
InvalidParameter (0x80070057) if the value of the PidTagParentSourceKey property (section
2.2.1.2.6) has a length of zero.

<16> Section 2.2.3.2.4.5.1: The HardDelete flag is not supported by Exchange 2003 or Exchange
2007.

<17> Section 2.2.4.1.3: Exchange 2003 and Exchange 2007 fail to add a null-terminator when
string values are larger than 32 KB.

<18> Section 2.2.4.3.5: Exchange 2003, Exchange 2007, and Exchange 2010 do not include the
PidTagParentFolderId property (section 2.2.1.2.4) in the folderChange element if the Eid flag of
the SynchronizationExtraFlags field is set.

<19> Section 2.2.4.3.6: Exchange 2010 and Exchange 2013 do not include the
MetaTagEcWarning meta-property (section 2.2.4.1.5.2) in the propList element as Exchange

2010 and Exchange 2013 do not check permissions on move operations.

<20> Section 2.2.4.3.15: Exchange 2003 and Office Outlook 2003 do not support partial item
downloads. Exchange 2003 does not support the PartialItem flag of the SendOptions field and
Office Outlook 2003 does not pass it.

<21> Section 2.2.4.3.20: Exchange 2003 and Exchange 2007 can include the MetaTagEcWarning
meta-property (section 2.2.4.1.5.2) in the propList of the folderContent element, as described in

section 2.2.4.3.6.

<22> Section 2.2.4.4: Office Outlook 2003, Office Outlook 2007, Outlook 2010, and Outlook 2013
do not use the folderContent element as a root element in a FastTransfer stream.

<23> Section 2.2.4.4: The RopFastTransferSourceCopyProperties ROP (section 2.2.3.1.1.2)
does not use the attachmentContent element as a root element in a FastTransfer stream in Office
Outlook 2003, Office Outlook 2007, Outlook 2010, or Outlook 2013.

217 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

<24> Section 3.1.1: Exchange 2003, Exchange 2007, Exchange 2010, and the initial release of
Exchange 2013 do not support the session context cookie. The session context cookie was

introduced in Exchange 2013 SP1.

<25> Section 3.1.5.4.3.2: Exchange 2010 and Exchange 2013 send an RpcFormat error

(0x000004B6), and Exchange 2003 and Exchange 2007 send a FormatError error (0x000004ED),
as specified in [MS-OXCDATA] section 2.4.1, if the server encounters an unsupported command or
any other decoding failures.

<26> Section 3.1.5.4.3.2.3: Exchange 2010 and Exchange 2013 send an RpcFormat error
(0x000004B6), and Exchange 2003 and Exchange 2007 send a FormatError error (0x000004ED),
as specified in [MS-OXCDATA] section 2.4.1, if the server encounters the Bitmask command when
there are more or fewer than five bytes in the common byte stack.

<27> Section 3.1.5.4.3.2.4: Exchange 2010 and Exchange 2013 send an RpcFormat error
(0x000004B6) and Exchange 2003 and Exchange 2007 send a FormatError error (0x000004ED),
as specified in [MS-OXCDATA] section 2.4.1, if the high value of the range is larger than the low
value of the range.

<28> Section 3.2.1: Exchange 2003, Exchange 2007, Exchange 2010, and the initial release of
Exchange 2013 do not support the session context cookie. The session context cookie was

introduced in Exchange 2013 SP1.

<29> Section 3.2.5.3: Exchange 2010 and Exchange 2013 do not perform this confirmation step.
Exchange 2003 and Exchange 2007 do perform this confirmation step.

<30> Section 3.2.5.7: Exchange 2003 and Office Outlook 2003 do not support partial item
downloads. Exchange 2003 does not support the PartialItem bit flag of the SendOptions field and
Office Outlook 2003 does not pass it.

<31> Section 3.2.5.8.1.1: Exchange 2010 and Exchange 2013 do not support the Move flag for the

RopFastTransferSourceCopyTo ROP (section 2.2.3.1.1.1). The server sets the value of the
ReturnValue field to InvalidParameter (0x80070057) if it receives this flag.

<32> Section 3.2.5.8.1.1: The BestBody flag is not supported in Exchange 2013. In Exchange
2013, the message body (2) is always in the original format.

<33> Section 3.2.5.8.1.3: The BestBody flag is not supported in Exchange 2013. In Exchange
2013, the message body (2) is always in the original format.

<34> Section 3.2.5.8.1.5: Exchange 2003, Exchange 2007, Exchange 2010, the initial release of

Exchange 2013, Office Outlook 2003, Office Outlook 2007, Outlook 2010, and the initial release of
Outlook 2013 do not support the Execute request type. The Execute request type was introduced
in Outlook 2013 SP1 and Exchange 2013 SP1.

<35> Section 3.2.5.8.1.5: Exchange 2003, Exchange 2007, Exchange 2010, the initial release of
Exchange 2013, Office Outlook 2003, Office Outlook 2007, Outlook 2010, and the initial release of
Outlook 2013 do not support the Execute request type. The Execute request type was introduced

in Outlook 2013 SP1 and Exchange 2013 SP1.

<36> Section 3.2.5.8.2.1: Exchange 2010 and Exchange 2013 fail the ROP if unknown bit flags in
the CopyFlags field are set.

<37> Section 3.2.5.8.2.1: Exchange 2003 and Exchange 2007 ignore unknown values of the
CopyFlags field.

%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf
%5bMS-OXCDATA%5d.pdf

218 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

<38> Section 3.2.5.9.1.1: The BestBody flag is not supported in Exchange 2013. In Exchange
2013, the message body (2) is always in the original format.

<39> Section 3.2.5.9.3.1: In Exchange 2010 and Exchange 2013, the
RopSynchronizationGetTransferState ROP (section 2.2.3.2.3.1) returns the initial ICS state for the

download context until the end of the FastTransfer stream has been downloaded. Exchange 2003
and Exchange 2007 do not use this behavior.

<40> Section 3.2.5.9.3.1: In Exchange 2003 and Exchange 2007, the
RopSynchronizationGetTransferState ROP (section 2.2.3.2.3.1) returns a checkpoint ICS state that
is reflective of the current status. Exchange 2010 and Exchange 2013 do not use this behavior.

<41> Section 3.2.5.9.4.2: Exchange 2010 and Exchange 2013 fail the ROP if unknown bit flags are
set. Exchange 2003 and Exchange 2007 do not fail the ROP if unknown bit flags are set.

<42> Section 3.3.1: Exchange 2003, Exchange 2007, Exchange 2010, and the initial release of
Exchange 2013 do not support the session context cookie. The session context cookie was
introduced in Exchange 2013 SP1.

<43> Section 3.3.5.1: Office Outlook 2003 introduced the implementation of performing upload
operations before download operations; however the Bulk Data Transfer Protocol has no
requirement about the order of upload or download operations.

<44> Section 3.3.5.6: Exchange 2003 and Exchange 2007 do not return the initial ICS state in
place of the checkpoint ICS state.

<45> Section 3.3.5.6: In Exchange 2003 and Exchange 2007, synchronization download operations
function the same as synchronization upload operations. In Exchange 2003 and Exchange 2007, the
server returns checkpoint ICS states that are accurate to the time at which the checkpoint was
requested in both synchronization download operations and synchronization upload operations.

<46> Section 3.3.5.7.1: In Exchange 2003 and Exchange 2007, clients are not required to pass a

value in the BufferSize field of a certain size.

<47> Section 3.3.5.9.1: Office Outlook 2003 does not support the 0x00000480 error code.

219 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

7 Change Tracking

This section identifies changes that were made to the [MS-OXCFXICS] protocol document between
the April 2014 and July 2014 releases. Changes are classified as New, Major, Minor, Editorial, or No
change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are
updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed.
Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor
editorial and formatting changes may have been made, but the technical content of the document is
identical to the last released version.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

220 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N) Change type

2.2.4.3.6

folderContent Element

Updated the list of product versions

in the product behavior note for the
MetaTagEcWarning meta-property.

N Product

behavior note
updated.

3.2.5.8.1.5
Receiving a
RopFastTransferSourceGetBuffer ROP
Request

Added a product behavior note
describing which products support
the Execute request type.

N New product
behavior note
added.

mailto:dochelp@microsoft.com

221 / 221

[MS-OXCFXICS] — v20140721
 Bulk Data Transfer Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: July 31, 2014

8 Index

A

Abstract data model
client 119
server 102

Applicability 17

C

Capability negotiation 17
Change tracking 219
Client

abstract data model 119
initialization 120
other local events 141
overview (section 3.1 86, section 3.3 119)
timer events 141
timers 120

D

Data model - abstract
client 119
server 102

F

FastTransfer Stream message 66

Fields - vendor-extensible 18

G

Glossary 11

H

Higher-layer triggered events
server 102

I

Implementer - security considerations 214
Index of security parameters 214
Informative references 14
Initialization

client 120
server 102

Introduction 11

M

Messages
FastTransfer Stream 66
ROPs 38
transport 19

N

Normative references 13

O

Other local events
client 141
server 119

Overview (synopsis) 14

P

Parameters - security index 214
Preconditions 17
Prerequisites 17
Product behavior 215

R

References 13
informative 14
normative 13

Relationship to other protocols 17
ROPs message 38

S

Security
implementer considerations 214
parameter index 214

Server
abstract data model 102
higher-layer triggered events 102
initialization 102
other local events 119
overview 86
timer events 119
timers 102

Standards assignments 18

T

Timer events
client 141
server 119

Timers
client 120
server 102

Tracking changes 219
Transport 19
Triggered events - higher-layer

server 102

V

Vendor-extensible fields 18
Versioning 17

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 FastTransfer Copy Operations
	1.3.2 Incremental Change Synchronization
	1.3.2.1 Download Changes Using ICS
	1.3.2.2 Upload Changes Using ICS

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Properties
	2.2.1.1 ICS State Properties
	2.2.1.1.1 MetaTagIdsetGiven ICS State Property
	2.2.1.1.2 MetaTagCnsetSeen ICS State Property
	2.2.1.1.3 MetaTagCnsetSeenFAI ICS State Property
	2.2.1.1.4 MetaTagCnsetRead ICS State Property

	2.2.1.2 Messaging Object Identification and Change Tracking Properties
	2.2.1.2.1 PidTagMid Property
	2.2.1.2.2 PidTagFolderId Property
	2.2.1.2.3 PidTagChangeNumber Property
	2.2.1.2.4 PidTagParentFolderId Property
	2.2.1.2.5 PidTagSourceKey Property
	2.2.1.2.6 PidTagParentSourceKey Property
	2.2.1.2.7 PidTagChangeKey Property
	2.2.1.2.8 PidTagPredecessorChangeList Property
	2.2.1.2.9 PidTagOriginalEntryId Property

	2.2.1.3 Meta-Properties for Encoding Differences in Replica Content
	2.2.1.3.1 MetaTagIdsetDeleted Meta-Property
	2.2.1.3.2 MetaTagIdsetNoLongerInScope Meta-Property
	2.2.1.3.3 MetaTagIdsetExpired Meta-Property
	2.2.1.3.4 MetaTagIdsetRead Meta-Property
	2.2.1.3.5 MetaTagIdsetUnread Meta-Property

	2.2.1.4 Conflict Resolution Properties
	2.2.1.4.1 PidTagResolveMethod Property
	2.2.1.4.2 PidTagConflictEntryId Property
	2.2.1.4.3 PidTagInConflict Property

	2.2.1.5 PidTagAssociated Property
	2.2.1.6 PidTagMessageSize Property
	2.2.1.7 Properties That Denote Subobjects

	2.2.2 Structures
	2.2.2.1 CN Structure
	2.2.2.2 XID Structure
	2.2.2.3 PredecessorChangeList Structure
	2.2.2.3.1 SizedXid Structure

	2.2.2.4 IDSET and CNSET Structures
	2.2.2.4.1 Serialized IDSET Structure Containing a REPLID Structure
	2.2.2.4.2 Serialized IDSET Structure Containing a REPLGUID Structure

	2.2.2.5 GLOBCNT Structure
	2.2.2.6 GLOBSET Structure
	2.2.2.6.1 Push Command (0x01 – 0x06)
	2.2.2.6.2 Pop Command (0x50)
	2.2.2.6.3 Bitmask Command (0x42)
	2.2.2.6.4 Range Command (0x52)
	2.2.2.6.5 End Command (0x00)

	2.2.2.7 ProgressInformation Structure
	2.2.2.8 PropertyGroupInfo Structure
	2.2.2.8.1 PropertyGroup Structure
	2.2.2.8.1.1 GroupPropertyName Structure

	2.2.2.9 FolderReplicaInfo Structure
	2.2.2.10 ExtendedErrorInfo Structure

	2.2.3 ROPs
	2.2.3.1 FastTransfer Copy Operations
	2.2.3.1.1 Download
	2.2.3.1.1.1 RopFastTransferSourceCopyTo ROP
	2.2.3.1.1.1.1 RopFastTransferSourceCopyTo ROP Request Buffer
	2.2.3.1.1.1.2 RopFastTransferSourceCopyTo ROP Response Buffer

	2.2.3.1.1.2 RopFastTransferSourceCopyProperties ROP
	2.2.3.1.1.2.1 RopFastTransferSourceCopyProperties ROP Request Buffer
	2.2.3.1.1.2.2 RopFastTransferSourceCopyProperties ROP Response Buffer

	2.2.3.1.1.3 RopFastTransferSourceCopyMessages ROP
	2.2.3.1.1.3.1 RopFastTransferSourceCopyMessages ROP Request Buffer
	2.2.3.1.1.3.2 RopFastTransferSourceCopyMessages ROP Response Buffer

	2.2.3.1.1.4 RopFastTransferSourceCopyFolder ROP
	2.2.3.1.1.4.1 RopFastTransferSourceCopyFolder ROP Request Buffer
	2.2.3.1.1.4.2 RopFastTransferSourceCopyFolder ROP Response Buffer

	2.2.3.1.1.5 RopFastTransferSourceGetBuffer ROP
	2.2.3.1.1.5.1 RopFastTransferSourceGetBuffer ROP Request Buffer
	2.2.3.1.1.5.2 RopFastTransferSourceGetBuffer ROP Response Buffer

	2.2.3.1.1.6 RopTellVersion ROP
	2.2.3.1.1.6.1 RopTellVersion ROP Request Buffer
	2.2.3.1.1.6.2 RopTellVersion ROP Response Buffer

	2.2.3.1.2 Upload
	2.2.3.1.2.1 RopFastTransferDestinationConfigure ROP
	2.2.3.1.2.1.1 RopFastTransferDestinationConfigure ROP Request Buffer
	2.2.3.1.2.1.2 RopFastTransferDestinationConfigure ROP Response Buffer

	2.2.3.1.2.2 RopFastTransferDestinationPutBuffer ROP
	2.2.3.1.2.2.1 RopFastTransferDestinationPutBuffer ROP Request Buffer
	2.2.3.1.2.2.2 RopFastTransferDestinationPutBuffer ROP Response Buffer

	2.2.3.2 Incremental Change Synchronization
	2.2.3.2.1 Download
	2.2.3.2.1.1 RopSynchronizationConfigure ROP
	2.2.3.2.1.1.1 RopSynchronizationConfigure ROP Request Buffer
	2.2.3.2.1.1.2 RopSynchronizationConfigure ROP Response Buffer

	2.2.3.2.2 Upload State
	2.2.3.2.2.1 RopSynchronizationUploadStateStreamBegin ROP
	2.2.3.2.2.1.1 RopSynchronizationUploadStateStreamBegin ROP Request Buffer
	2.2.3.2.2.1.2 RopSynchronizationUploadStateStreamBegin ROP Response Buffer

	2.2.3.2.2.2 RopSynchronizationUploadStateStreamContinue ROP
	2.2.3.2.2.2.1 RopSynchronizationUploadStateStreamContinue ROP Request Buffer
	2.2.3.2.2.2.2 RopSynchronizationUploadStateStreamContinue ROP Response Buffer

	2.2.3.2.2.3 RopSynchronizationUploadStateStreamEnd ROP
	2.2.3.2.2.3.1 RopSynchronizationUploadStateStreamEnd ROP Request Buffer
	2.2.3.2.2.3.2 RopSynchronizationUploadStateStreamEnd ROP Response Buffer

	2.2.3.2.3 Download State
	2.2.3.2.3.1 RopSynchronizationGetTransferState ROP
	2.2.3.2.3.1.1 RopSynchronizationGetTransferState ROP Request Buffer
	2.2.3.2.3.1.2 RopSynchronizationGetTransferState ROP Response Buffer

	2.2.3.2.4 Upload
	2.2.3.2.4.1 RopSynchronizationOpenCollector ROP
	2.2.3.2.4.1.1 RopSynchronizationOpenCollector ROP Request Buffer
	2.2.3.2.4.1.2 RopSynchronizationOpenCollector ROP Response Buffer

	2.2.3.2.4.2 RopSynchronizationImportMessageChange ROP
	2.2.3.2.4.2.1 RopSynchronizationImportMessageChange ROP Request Buffer
	2.2.3.2.4.2.2 RopSynchronizationImportMessageChange ROP Response Buffer

	2.2.3.2.4.3 RopSynchronizationImportHierarchyChange ROP
	2.2.3.2.4.3.1 RopSynchronizationImportHierarchyChange ROP Request Buffer
	2.2.3.2.4.3.2 RopSynchronizationImportHierarchyChange ROP Response Buffer

	2.2.3.2.4.4 RopSynchronizationImportMessageMove ROP
	2.2.3.2.4.4.1 RopSynchronizationImportMessageMove ROP Request Buffer
	2.2.3.2.4.4.2 RopSynchronizationImportMessageMove ROP Response Buffer

	2.2.3.2.4.5 RopSynchronizationImportDeletes ROP
	2.2.3.2.4.5.1 RopSynchronizationImportDeletes ROP Request Buffer
	2.2.3.2.4.5.2 RopSynchronizationImportDeletes ROP Response Buffer

	2.2.3.2.4.6 RopSynchronizationImportReadStateChanges ROP
	2.2.3.2.4.6.1 RopSynchronizationImportReadStateChanges ROP Request Buffer
	2.2.3.2.4.6.2 RopSynchronizationImportReadStateChanges ROP Response Buffer

	2.2.3.2.4.7 RopGetLocalReplicaIds ROP
	2.2.3.2.4.7.1 RopGetLocalReplicaIds ROP Request Buffer
	2.2.3.2.4.7.2 RopGetLocalReplicaIds ROP Response Buffer

	2.2.3.2.4.8 RopSetLocalReplicaMidsetDeleted ROP
	2.2.3.2.4.8.1 RopSetLocalReplicaMidsetDeleted ROP Request Buffer
	2.2.3.2.4.8.2 RopSetLocalReplicaMidsetDeleted ROP Response Buffer

	2.2.4 FastTransfer Stream
	2.2.4.1 Lexical structure
	2.2.4.1.1 fixedPropType, varPropType, mvPropType Property Types
	2.2.4.1.1.1 Code Page Property Types

	2.2.4.1.2 propValue Lexical Element
	2.2.4.1.3 Serialization of Simple Types
	2.2.4.1.4 Markers
	2.2.4.1.5 Meta-Properties
	2.2.4.1.5.1 MetaTagFXDelProp Meta-Property
	2.2.4.1.5.2 MetaTagEcWarning Meta-Property
	2.2.4.1.5.3 MetaTagNewFXFolder Meta-Property
	2.2.4.1.5.4 MetaTagIncrSyncGroupId Meta-Property
	2.2.4.1.5.5 MetaTagIncrementalSyncMessagePartial Meta-Property
	2.2.4.1.5.6 MetaTagDnPrefix Meta-Property

	2.2.4.2 Syntactical Structure
	2.2.4.3 Semantics of Elements
	2.2.4.3.1 attachmentContent Element
	2.2.4.3.2 contentsSync Element
	2.2.4.3.3 deletions Element
	2.2.4.3.4 errorInfo Element
	2.2.4.3.5 folderChange Element
	2.2.4.3.6 folderContent Element
	2.2.4.3.7 folderMessages Element
	2.2.4.3.8 groupInfo Element
	2.2.4.3.9 hierarchySync Element
	2.2.4.3.10 message Element
	2.2.4.3.11 messageChange Element
	2.2.4.3.12 messageChildren Element
	2.2.4.3.13 messageChangeFull Element
	2.2.4.3.14 messageChangeHeader Element
	2.2.4.3.15 messageChangePartial Element
	2.2.4.3.16 messageContent Element
	2.2.4.3.17 messageList Element
	2.2.4.3.18 progressPerMessage Element
	2.2.4.3.19 progressTotal Element
	2.2.4.3.20 propList Element
	2.2.4.3.21 propValue Element
	2.2.4.3.22 readStateChanges Element
	2.2.4.3.23 recipient Element
	2.2.4.3.24 root Element
	2.2.4.3.25 state Element

	2.2.4.4 FastTransfer Streams in ROPs

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Per Mailbox
	3.1.1.2 Per Messaging Object
	3.1.1.3 Per ICS State

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Isolating Download and Upload Operations
	3.1.5.2 Managing ICS State Properties
	3.1.5.2.1 Sending and Receiving the PidTagIdsetGiven ICS State Property

	3.1.5.3 Identifying Objects and Maintaining Change Numbers
	3.1.5.4 Serializing an IDSET Structure
	3.1.5.4.1 Formatted IDSET Structures
	3.1.5.4.2 IDSET Serialization
	3.1.5.4.3 GLOBSET Serialization
	3.1.5.4.3.1 Encoding
	3.1.5.4.3.1.1 Push Command (0x01 – 0x06)
	3.1.5.4.3.1.2 Pop Command (0x50)
	3.1.5.4.3.1.3 Bitmask Command (0x42)
	3.1.5.4.3.1.4 Range Command (0x52)
	3.1.5.4.3.1.5 End Command (0x00)

	3.1.5.4.3.2 Decoding
	3.1.5.4.3.2.1 Push Command (0x01 – 0x06)
	3.1.5.4.3.2.2 Pop Command (0x50)
	3.1.5.4.3.2.3 Bitmask Command (0x42)
	3.1.5.4.3.2.4 Range Command (0x52)
	3.1.5.4.3.2.5 End Command (0x00)

	3.1.5.5 Creating Compact IDSET Structures
	3.1.5.6 Conflict Handling
	3.1.5.6.1 Detection
	3.1.5.6.2 Resolution
	3.1.5.6.2.1 Conflict Resolve Message
	3.1.5.6.2.2 Last Writer Wins Algorithm

	3.1.5.6.3 Reporting
	3.1.5.6.3.1 Conflict Notification Message

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Isolating Download and Upload Operations
	3.2.5.2 Managing the ICS State on the Server
	3.2.5.2.1 Receiving the MetaTagIdsetGiven ICS State Property

	3.2.5.3 Determining What Differences To Download
	3.2.5.4 Calculating the PidTagMessageSize Property Value
	3.2.5.5 Generating the PidTagSourceKey Value
	3.2.5.6 Tracking Read State Changes
	3.2.5.7 Working with Property Groups and Partial Changes
	3.2.5.8 Receiving FastTransfer ROPs
	3.2.5.8.1 Download
	3.2.5.8.1.1 Receiving a RopFastTransferSourceCopyTo ROP Request
	3.2.5.8.1.2 Receiving a RopFastTransferSourceCopyProperties ROP Request
	3.2.5.8.1.3 Receiving a RopFastTransferSourceCopyMessages ROP Request
	3.2.5.8.1.4 Receiving a RopFastTransferSourceCopyFolder ROP Request
	3.2.5.8.1.5 Receiving a RopFastTransferSourceGetBuffer ROP Request
	3.2.5.8.1.6 Receiving a RopTellVersion ROP Request

	3.2.5.8.2 Upload
	3.2.5.8.2.1 Receiving a RopFastTransferDestinationConfigure ROP Request
	3.2.5.8.2.2 Receiving a RopFastTransferDestinationPutBuffer ROP Request

	3.2.5.9 Receiving Incremental Change Synchronization ROPs
	3.2.5.9.1 Download
	3.2.5.9.1.1 Receiving a RopSynchronizationConfigure ROP Request

	3.2.5.9.2 Upload State
	3.2.5.9.2.1 Receiving a RopSynchronizationUploadStateStreamBegin ROP Request
	3.2.5.9.2.2 Receiving a RopSynchronizationUploadStateStreamContinue Request
	3.2.5.9.2.3 Receiving a RopSynchronizationUploadStateStreamEnd ROP Request

	3.2.5.9.3 Download State
	3.2.5.9.3.1 Receiving a RopSynchronizationGetTransferState ROP Request

	3.2.5.9.4 Upload
	3.2.5.9.4.1 Receiving a RopSynchronizationOpenCollector ROP Request
	3.2.5.9.4.2 Receiving a RopSynchronizationImportMessageChange ROP Request
	3.2.5.9.4.3 Receiving a RopSynchronizationImportHierarchyChange ROP Request
	3.2.5.9.4.4 Receiving a RopSynchronizationImportMessageMove ROP Request
	3.2.5.9.4.5 Receiving a RopSynchronizationImportDeletes ROP Request
	3.2.5.9.4.6 Receiving a RopSynchronizationImportReadStateChanges ROP Request
	3.2.5.9.4.7 Receiving a RopGetLocalReplicaIds ROP Request
	3.2.5.9.4.8 Receiving a RopSetLocalReplicaMidsetDeleted ROP Request

	3.2.5.10 Effect of Property and Subobject Filters on Download
	3.2.5.11 Properties to Ignore on Upload
	3.2.5.12 Properties to Ignore on Download

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Client Details
	3.3.1 Abstract Data Model
	3.3.1.1 Per Messaging Object

	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.4.1 Downloading Messaging Objects Using FastTransfer
	3.3.4.2 Uploading Messaging Objects Using FastTransfer
	3.3.4.2.1 Server-to-Client-to-Server Upload

	3.3.4.3 Synchronizing Incremental Changes
	3.3.4.3.1 Uploading the ICS State
	3.3.4.3.2 Downloading Changes Using ICS
	3.3.4.3.3 Uploading Changes Using ICS
	3.3.4.3.3.1 Hierarchy Upload
	3.3.4.3.3.1.1 Uploading Hierarchy Changes
	3.3.4.3.3.1.2 Uploading Hierarchy Deletions

	3.3.4.3.3.2 Content Upload
	3.3.4.3.3.2.1 Uploading Moves
	3.3.4.3.3.2.1.1 Moves and Modifications
	3.3.4.3.3.2.1.2 Avoiding Duplicate Uploads

	3.3.4.3.3.2.2 Uploading Modifications
	3.3.4.3.3.2.2.1 Full Item Upload
	3.3.4.3.3.2.2.2 Partial Item Upload

	3.3.4.3.3.2.3 Uploading Deletes
	3.3.4.3.3.2.4 Uploading Read/Unread State Changes

	3.3.4.3.4 Downloading the ICS State

	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Order of Operations
	3.3.5.2 Creating Objects and Identifying Changes on the Local Replica
	3.3.5.2.1 Client-Assigned Internal Identifiers
	3.3.5.2.2 Use Online Mode ROPs
	3.3.5.2.3 Foreign Identifiers

	3.3.5.3 Back-in-Time Detection
	3.3.5.4 Mailbox Validation
	3.3.5.5 Determining the Synchronization Scope
	3.3.5.6 Client Side Checkpointing
	3.3.5.7 Sending FastTransfer ROPs
	3.3.5.7.1 Sending a RopFastTransferSourceGetBuffer ROP Request
	3.3.5.7.2 Sending a RopTellVersion ROP Request

	3.3.5.8 Sending ICS ROPs
	3.3.5.8.1 Sending a RopSynchronizationConfigure ROP Request
	3.3.5.8.2 Sending a RopSynchronizationUploadStateStreamBegin ROP Request
	3.3.5.8.3 Sending a RopSynchronizationUploadStateStreamContinue ROP Request
	3.3.5.8.4 Sending a RopSynchronizationUploadStateStreamEnd ROP Request
	3.3.5.8.5 Sending a RopSynchronizationGetTransferState ROP Request
	3.3.5.8.6 Sending a RopSynchronizationOpenCollector ROP Request
	3.3.5.8.7 Sending a RopSynchronizationImportMessageChange ROP Request
	3.3.5.8.8 Sending a RopSynchronizationImportHierarchyChange ROP Request
	3.3.5.8.9 Sending a RopSynchronizationImportMessageMove ROP Request
	3.3.5.8.10 Sending a RopSynchronizationImportDeletes ROP Request
	3.3.5.8.11 Sending a RopSynchronizationImportReadStateChanges ROP Request
	3.3.5.8.12 Sending a RopGetLocalReplicaIds ROP Request
	3.3.5.8.13 Sending a RopSetLocalReplicaMidsetDeleted ROP Request

	3.3.5.9 Receiving FastTransfer and ICS ROP Responses
	3.3.5.9.1 Receiving a RopFastTransferSourceGetBuffer ROP Response

	3.3.5.10 Client Specific Handling
	3.3.5.11 Client Conflict Resolution
	3.3.5.12 Using the PidTagMessageSize Property Value
	3.3.5.13 Sending the MetaTagIdsetGiven ICS State Property

	3.3.6 Timer Events
	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 Hierarchy Synchronization Examples
	4.1.1 Adding or Modifying a Folder
	4.1.2 Deleting a Folder

	4.2 Message Synchronization Upload Examples
	4.2.1 Creating or Modifying a Message
	4.2.2 Deleting a Message

	4.3 Partial Item Examples
	4.3.1 Uploading a Partial Item
	4.3.2 Downloading a Partial Item

	4.4 Serialization of an IDSET Structure Example
	4.5 FastTransfer Stream Produced by a Content Synchronization Download Example
	4.6 Conflict Detection and Conflict Resolution Examples
	4.6.1 Comparing the PidTagPredecessorChangeList Property to Detect Conficts, No Conflicts Found
	4.6.2 Comparing the PidTagPredecessorChangeList Property to Detect Conflicts, Conflicts Found

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

