

1 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

[MS-OXCFXICS]: Bulk Data Transfer Protocol

Specification

Intellectual Property Rights Notice for Protocol Documentation

 Copyrights. This protocol documentation is covered by Microsoft copyrights. Regardless of any

other terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the protocols, and

may distribute portions of it in your implementations of the protocols or your documentation as

necessary to properly document the implementation. You may also distribute in your

implementation, with or without modification, any schema, IDL’s, or code samples that are included

in the documentation. This permission also applies to any documents that are referenced in the

protocol documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the protocols. Neither this

notice nor Microsoft's delivery of the documentation grants any licenses under those or any other

Microsoft patents. However, the protocols may be covered by Microsoft’s Open Specification

Promise (available here: http://www.microsoft.com/interop/osp). If you would prefer a written

license, or if the protocols are not covered by the OSP, patent licenses are available by contacting

protocol@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be

covered by trademarks or similar intellectual property rights. This notice does not grant any licenses

under those rights.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than

specifically described above, whether by implication, estoppel, or otherwise.

Tools. This protocol documentation is intended for use in conjunction with publicly available standard

specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it. A protocol specification does not require the use of

Microsoft programming tools or programming environments in order for you to develop an implementation. If

you have access to Microsoft programming tools and environments you are free to take advantage of them.

Revision Summary

Author Date Version Comments

Microsoft

Corporation

April 4,

2008

0.1 Initial Availability.

Microsoft

Corporation

April 25,

2008

0.2 Revised and updated property names and other technical content.

Microsoft

Corporation

June 27,

2008

1.0 Initial Release.

http://go.microsoft.com/fwlink/?LinkId=114384
mailto:protocol@microsoft.com

2 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Microsoft

Corporation

August 6,

2008

1.01 Revised and edited technical content.

Microsoft

Corporation

September

3, 2008

1.02 Revised and edited technical content.

Microsoft

Corporation

December

3, 2008

1.03 Revised and edited technical content.

3 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Table of Contents

1 Introduction ... 8
1.1 Glossary ... 8

1.2 References ... 12
1.2.1 Normative References .. 12
1.2.2 Informative References .. 13

1.3 Protocol Overview .. 13
1.3.1 Fast Transfer Copy Operations .. 14

1.3.2 Incremental Change Synchronization.. 14
1.3.2.1 Download ... 15
1.3.2.2 Upload .. 15

1.4 Relationship to Other Protocols .. 15
1.5 Prerequisites/Preconditions ... 16
1.6 Applicability Statement... 16
1.7 Versioning and Capability Negotiation .. 17

1.8 Vendor-Extensible Fields ... 17
1.9 Standards Assignments ... 17

2 Messages .. 18
2.1 Transport .. 18
2.2 Message Syntax ... 18

2.2.1 Properties .. 19
2.2.1.1 ICS State Properties ... 19

2.2.1.1.1 PidTagIdsetGiven ... 20

2.2.1.1.2 PidTagCnsetSeen .. 20

2.2.1.1.3 PidTagCnsetSeenFAI ... 20
2.2.1.1.4 PidTagCnsetRead ... 20

2.2.1.2 Messaging Object Identification and Change Tracking Properties......... 21
2.2.1.2.1 PidTagMid .. 21
2.2.1.2.2 PidTagFolderId ... 21

2.2.1.2.3 PidTagChangeNumber ... 21
2.2.1.2.4 PidTagParentFolderId .. 21
2.2.1.2.5 PidTagSourceKey ... 21

2.2.1.2.6 PidTagParentSourceKey .. 22
2.2.1.2.7 PidTagChangeKey ... 22
2.2.1.2.8 PidTagPredecessorChangeList .. 22

2.2.1.3 Properties for Encoding Differences in Replica Content 22

2.2.1.3.1 PidTagIdsetDeleted .. 22
2.2.1.3.2 PidTagIdsetSoftDeleted ... 23
2.2.1.3.3 PidTagIdsetExpired .. 23

2.2.1.3.4 PidTagIdsetRead... 23
2.2.1.3.5 PidTagIdsetUnread ... 23

2.2.1.4 PidTagAssociated .. 23

4 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

2.2.1.5 PidTagMessageSize .. 23

2.2.1.6 Properties That Denote Subobjects ... 23
2.2.2 Structures .. 24

2.2.2.1 XID ... 24

2.2.2.2 PredecessorChangeList ... 25
2.2.2.2.1 SizedXid .. 25

2.2.2.3 IDSET .. 26
2.2.2.3.1 Serialized IDSET with REPLID .. 26
2.2.2.3.2 Serialized IDSET with REPLGUID .. 26

2.2.2.4 GLOBSET ... 27
2.2.2.4.1 Push Command (0x01 – 0x06) .. 27
2.2.2.4.2 Pop Command (0x50) .. 27
2.2.2.4.3 Bitmask Command (0x42) ... 27

2.2.2.4.4 Range Command (0x52) .. 28
2.2.2.4.5 End Command (0x00) .. 28

2.2.2.5 ProgressInformation .. 29
2.2.2.6 PropertyGroupInfo .. 29

2.2.2.6.1 PropertyGroup .. 30
2.2.2.7 FolderReplicaInfo .. 30
2.2.2.8 ExtendedErrorInfo ... 31

2.2.2.8.1 AuxBlock .. 33
2.2.3 ROPs ... 33

2.2.3.1 Fast Transfer Copy Operations ... 35
2.2.3.1.1 Download .. 35
2.2.3.1.2 Upload ... 44

2.2.3.2 Incremental Change Synchronization .. 46

2.2.3.2.1 Download .. 47
2.2.3.2.2 Uploading State .. 52
2.2.3.2.3 Downloading State ... 54

2.2.3.2.4 Upload ... 54
2.2.4 FastTransfer Stream.. 64

2.2.4.1 Lexical structure .. 65
2.2.4.1.1 fixedPropType, varPropType, mvPropType ... 66

2.2.4.1.2 propValue .. 66
2.2.4.1.3 Serialization of Simple Types .. 66
2.2.4.1.4 Markers ... 67
2.2.4.1.5 Meta-Properties .. 68

2.2.4.2 Syntactical Structure .. 69
2.2.4.3 Semantics of Elements .. 71

2.2.4.3.1 attachmentContent .. 71

2.2.4.3.2 contentsSync ... 71
2.2.4.3.3 deletions .. 71
2.2.4.3.4 errorInfo .. 72

5 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

2.2.4.3.5 folderChange ... 73

2.2.4.3.6 folderContent .. 74
2.2.4.3.7 folderMessages ... 74
2.2.4.3.8 groupInfo ... 75

2.2.4.3.9 hierarchySync ... 75
2.2.4.3.10 message ... 75
2.2.4.3.11 messageChange .. 76
2.2.4.3.12 messageChildren .. 76
2.2.4.3.13 messageChangeFull .. 76

2.2.4.3.14 messageChangeHeader .. 76
2.2.4.3.15 messageChangePartial ... 77
2.2.4.3.16 messageContent .. 78
2.2.4.3.17 messageList ... 78

2.2.4.3.18 progressPerMessage ... 78
2.2.4.3.19 progressTotal .. 79

2.2.4.3.20 propList ... 79
2.2.4.3.21 propValue.. 80

2.2.4.3.22 readStateChanges ... 80
2.2.4.3.23 recipient ... 80
2.2.4.3.24 root .. 81

2.2.4.3.25 state.. 81
2.2.4.4 Applicability to ROPs ... 81

3 Protocol Details ... 83
3.1 Common Details .. 83

3.1.1 Abstract Data Model .. 83

3.1.1.1 Object and Change Identification ... 83

3.1.1.2 Property Groups ... 86
3.1.1.3 Serialization of IDSET .. 87

3.1.1.3.1 Formatted IDSET ... 87

3.1.1.3.2 IDSET Serialization ... 88
3.1.1.3.3 GLOBSET Serialization .. 88

3.1.2 Timers ... 92
3.1.3 Initialization .. 92

3.1.4 Higher-Layer Triggered Events ... 92
3.1.4.1 Conflict Handling .. 92

3.1.4.1.1 Detection ... 92
3.1.4.1.2 Resolution ... 93

3.1.4.1.3 Reporting ... 94
3.1.5 Message Processing Events and Sequencing Rules.. 95
3.1.6 Creating Compact IDSETsOther Local Events .. 95

3.2 Server Details .. 95
3.2.1 Abstract Data Model .. 95

3.2.1.1 Isolation of Download and Upload Operations 95

6 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

3.2.1.2 Creating Compact IDSETs ... 95

3.2.2 Timers ... 96
3.2.3 Initialization .. 96
3.2.4 Higher-Layer Triggered Events ... 96

3.2.4.1 Determining What Differences Need to be Downloaded 96
3.2.4.2 Generating the PidTagSourceKey Value ... 98
3.2.4.3 Read State Change Tracking ... 98
3.2.4.4 Fast Transfer Copy Operations ... 99

3.2.4.4.1 Download .. 99

3.2.4.5 Incremental Change Synchronization .. 99
3.2.4.5.1 Downloading State ... 99
3.2.4.5.2 Upload ... 99

3.2.4.6 Effect of Property and Subobject Filters on Download 101

3.2.4.7 Properties to Ignore on Upload ... 102
3.2.4.8 Properties to Ignore on Download .. 102

3.2.5 Timer Events ... 102
3.2.6 Other Local Events ... 103

3.3 Client Details ... 103
3.3.1 Abstract Data Model .. 103

3.3.1.1 Object and Change Identification ... 103

3.3.1.1.1 Client-Assigned Internal Identifiers ... 103
3.3.1.1.2 Use Online Mode ROPs ... 103

3.3.1.1.3 Foreign Identifiers .. 104
3.3.1.2 Synchronization Scope .. 104

3.3.2 Timers ... 106

3.3.3 Initialization .. 106

3.3.4 Higher-Layer Triggered Events ... 106
3.3.4.1 Fast Transfer Copy Operations ... 106

3.3.4.1.1 Download .. 106

3.3.4.1.2 Upload ... 106
3.3.4.2 Incremental Change Synchronization .. 107

3.3.4.2.1 Downloading State ... 107
3.3.4.2.2 Upload ... 107

3.3.5 Message Processing Events and Sequencing Rules.. 110
3.3.6 Timer Events ... 110
3.3.7 Other Local Events ... 110

4 Protocol Examples .. 110
4.1 IDSET Serialization .. 110
4.2 FastTransfer Stream Produced by Contents Synchronization Download 114

5 Security .. 144
5.1 Security Considerations for Implementers ... 144
5.2 Index of Security Parameters .. 144

7 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

6 Appendix A: Office/Exchange Behavior .. 144

Index ... 146

8 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

1 Introduction

This document specifies a protocol for bulk transmission of mailbox data, represented by

folders and messages, between clients and servers. This protocol is commonly used for

replicating, exporting, or importing mailbox content between clients and servers.

This document specifies the following:

 How a client can configure a remote operation (ROP) to download or upload a set

of folders or messages to or from a server.

 How a client or a server can receive and reconstitute folders and messages that are

transmitted from another client or another server.

 How a client can upload changes made to local folders and message replicas to a

server.

 Semantics of ROPs that are used to fulfill the aforementioned operations.

1.1 Glossary

The following terms are defined in [MS-OXGLOS]:

ABNF

attachment

Attachment object

change number (CN)

Embedded Message object

enterprise/site/server distinguished name (ESSDN)

folder

folder associated information (FAI)

folder ID (FID)

Folder object

global counter (GLOBCNT)

global identifier (GID)

GLOBSET

GUID

handle

ICS state

Incremental Change Synchronization (ICS)

little-endian

local replica

LongTermID

mailbox

message

message ID (MID)

Message object

9 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

messaging object

Predecessor Change List (PCL)

property

property tag

property type

public folder

recipient

remote operation (ROP)

remote procedure call (RPC)

replica GUID (REPLGUID)

replica ID (REPLID)

restriction

Rich Text Format (RTF)

ROP request buffer

ROP response buffer

server replica

ShortTermIDstore

subobject

synchronization download context

synchronization scope

synchronization upload context

Unicode

The following data types are defined in [MS-DTYP]:

BOOLEAN

BYTE

The following data types are defined in [MS-OXCDATA]:

PtypBinary

PtypBoolean

PtypErrorCode

PtypGuid

PtypInteger16

PtypInteger32

PtypInteger64

PtypServerId

PtypString

PtypString8

The following terms are specific to this document:

base property type: The type of the property, if the property is single-valued, or the type of

an element of the property, if the property is multi-valued.

10 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

change number set (CNSET): A data structure that is similar to an IDSET, in which the

GLOBCNTs represent changes rather than messaging objects.

checkpoint ICS state: The ICS state provided by the server in the middle of an ICS

operation, which reflects the state of the local replica, indicated by initial ICS state,

after applying all differences transmitted in the ICS operation.

common byte stack: A list of arrays of bytes. Byte values of contained arrays, when together

in their natural order, represent common high-order bytes of GLOBCNT values. Used

in a last-in first-out (LIFO) fashion during serialization or deserialization of

GLOBSETs, as specified in section 2.2.2.4.1.

conflict detection: The process used to detect that two versions of the same object are in

conflict with each other, that is, one is not a direct or an indirect predecessor of

another.

conflict handling: Actions taken upon detection of a conflict between versions of an object.

Includes conflict detection, conflict reporting, and conflict resolution.

conflict reporting: The automated process of notifying a system actor of a previously

detected conflict.

conflict resolution: The automated or semi-automated process of resolving a previously

detected conflict between versions of an object by replacing conflicting versions with

their successor. How the successor version is related to the conflicting version depends

on the conflict resolution algorithm used.

contents synchronization: The process of keeping synchronized versions of Message

objects and their properties on a client and server.

deleted item list: An abstract repository of information about deleted items.

download: Transmission of data (payload) from a server to a client.

embedded message: See Embedded Message objects.

expired Message object: A Message object that the server has removed due to its age.

external identifier (XID): A globally unique identifier for an entity that represents either a

foreign identifier or an internal identifier. Consists of a GUID that represents a

namespace followed by one or more bytes that contain an identifier for an entity

within that namespace. If a XID represents and internal identifier, then it can be also

called a GID.

11 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

FastTransfer stream: A binary format for encoding full or partial folder and message data.

Also encodes information about differences between mailbox replicas.

final ICS state: The ICS state provided by the server upon completion of an ICS operation.

Final ICS state is a checkpoint ICS state provided at the end of the ICS operation.

foreign identifier: An identifier of an entity assigned by a foreign system, usually a client.

Always has a form of an XID, but not all XIDs are foreign identifiers.

formatted IDSET: An IDSET that has been properly arranged for serialization in a series of

REPLID-constant sections that are sorted by REPLID in ascending order. Each

section is a GLOBSET. This logical representation is further compressed on the wire.

hierarchy synchronization: The process of keeping synchronized versions of folder

hierarchies and their properties on a client and server.

IDSET: A set of IDs, or REPLID and GLOBCNT pairs. An IDSET has to be represented as

a formatted IDSET to be serialized on the wire.

IFF: Logical equivalence, that is A IFF B is the same as "A if and only if B".

initial ICS state: The ICS state that is provided by the client when it configures an ICS

operation.

Input Server object: An object on a server that is used as input for remote operations. For

more details about Server objects, see [MS-OXCROPS] section 3.

internal identifier: An identifier of a mailbox entity assigned by a server, which corresponds

to a format and restrictions specified in [MS-OXCSTOR].

Short-term representations of internal identifiers, which consist of a 2-byte

REPLID and a 6-byte GLOBCNT, are scoped to the logon in which they were

obtained.

If the term internal identifier is mentioned on its own, it means a short-term

representation of such. See also: GID.

marker: Unsigned 32-bit integer values, which adhere to property tag syntax and are used to

denote the start and end of related data in fast transfer streams. Property tags that

are used by markers do not represent valid properties. For a full list of markers, see

section 2.2.4.1.4.

meta-property: An entity identified with a property tag that contains information (a value)

that describes how to process other data in the FastTransfer stream.

normal message: Any message that is not an FAI message.

12 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Output Server object: An object on a server that is used as an output for remote operations.

For more details about Server objects, see [MS-OXCROPS] section 3.

partial completion: The outcome of a complex operation with independent steps, where

some steps succeeded and some steps failed.

property list restriction table: A set of restrictions imposed on an array of properties and

their values, expressed in the tabular form specified in section 2.2.

top-level message: A message that is not an embedded message. Top-level messages are

messaging objects.

upload: Transmission of data (payload) from a client to a server.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used

as described in [RFC2119]. All statements of optional behavior use either MAY,

SHOULD, or SHOULD NOT.

1.2 References

1.2.1 Normative References

[MS-DTYP] Microsoft Corporation, "Windows Data Types", March 2007,

http://go.microsoft.com/fwlink/?LinkId=111558.

[MS-OXCDATA] Microsoft Corporation, "Data Structures Protocol Specification", June

2008.

[MS-OXCFOLD] Microsoft Corporation, "Folder Object Protocol Specification", June 2008.

[MS-OXCMSG] Microsoft Corporation, "Message and Attachment Object Protocol

Specification", June 2008.

[MS-OXCNOTIF] Microsoft Corporation, "Core Notifications Protocol Specification", June

2008.

[MS-OXCROPS] Microsoft Corporation, "Remote Operations (ROP) List and Encoding

Protocol Specification", June 2008.

[MS-OXCRPC] Microsoft Corporation, "Wire Format Protocol Specification", June 2008.

[MS-OXCSTOR] Microsoft Corporation, "Store Object Protocol Specification", June 2008.

[MS-OXCSYNC] Microsoft Corporation, "Mailbox Synchronization Protocol Specification",

June 2008.

http://go.microsoft.com/fwlink/?LinkId=111558

13 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

[MS-OXGLOS] Microsoft Corporation, "Exchange Server Protocols Master Glossary", June

2008.

[MS-OXPROPS] Microsoft Corporation, "Exchange Server Protocols Master Property List

Specification", June 2008.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP

14, RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.

[RFC4234] Crocker, D., Ed. and Overell, P., "Augmented BNF for Syntax Specifications:

ABNF", RFC 4234, October 2005, http://www.ietf.org/rfc/rfc4234.txt.

1.2.2 Informative References

None.

1.3 Protocol Overview

This document specifies how clients and servers can efficiently exchange data that is

represented as folders and messages that are contained in private or public mailboxes.

Efficiency in the exchange of data is achieved through the following means:

 Packaging data for several folders or messages into a single remote operation (ROP)

response, which can be compressed at the remote procedure call (RPC) level.

 Reducing transmitted data to only changes that the user is interested in.

 Reducing transmitted data to only changes that relate to a subset of folder or message

data by using Incremental Change Synchronization (ICS).

 Performing optimizations on the server, provided that the server knows the scope of

the operation ahead of time.

 Minimizing the bandwidth required to copy message and folder content by efficiently

packing data by using FastTransfer streams.

This document supports the transfer of data in scenarios that derive from the following semi-

indepenent variables:

1. Direction of data transmission: download or upload.

2. Type of messaging objects included in a transmission: folders, messages, or both.

3. Scope of the data that is transmitted for a messaging object. The scope might be one of

the following:

 A full object or a subset of its data

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc4234.txt

14 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

 Changes since the last transmission

 Operations such as a read state change or a move

4. Scope of the messaging objects that are included in a set. The scope might be one of

the following:

 Identified directly by FIDs and MIDs

 Identified by a combination of criteria and state information maintained by the

client

This specification is based on the following roles: one server, and one or more clients.

1.3.1 Fast Transfer Copy Operations

FastTransfer enables clients to efficiently copy the content of explicitly specified folders,

messages, and attachments between replicas of the same or different mailboxes by using a

special binary format known as a FastTransfer stream as the medium. A FastTransfer stream

contains copies of folder, message, or attachment content in a predefined serialized format.

The FastTransfer stream can be used to create copies of this folder, message, or attachment

content in any destination folder, on any mailbox, on any client, or on any server.

Every FastTransfer operation is independent. After the operation is complete, no state has to

be maintained on the client or on the server.

FastTransfer download operations enable clients to download a copy of the explicitly

specified folders, messages, or attachments in the FastTransfer stream format. The resulting

FastTransfer stream can be either interpreted on the client, or used in a FastTransfer upload

operation if the intent is to copy messaging objects between mailboxes on different servers.

FastTransfer upload operations enable a client to create new folders or modify content of

existing folders, messages, and attachments by using input data encoded in the FastTransfer

stream format.

1.3.2 Incremental Change Synchronization

ICS enables servers and clients to keep synchronized versions of messages, folders, and their

related properties on both systems. Changes that are made to messages and folders on the

client are replicated to the server and vice versa. ICS can determine differences between two

folder hierarchies or two sets of content, and can upload or download information about the

differences in a single session.

Changes to folder properties, changes to the folder hierarchy, and folder creations and

deletions are included in hierarchy synchronizations.

15 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Changes to message properties, changes to read and unread message state, changes to

recipient and attachment information, message creations, and message deletions are included

in contents synchronizations.

Hierarchy synchronizations and contents synchronizations are the actual processes used to

implement ICS on the client and server.

ICS can also be used to send notifications to servers and clients. For details about ICS

notifications, see [MS-OXCNOTIF].

1.3.2.1 Download

Information about all changes and deletions made to mailbox data on the server is

downloaded to the client through one or more iterations of a single ROP, whose response

buffer can be efficiently packed at the RPC level.

Performing a hierarchy synchronization download using a synchronization context that was

opened on a folder will produce information about all folder changes and folder deletions of

descendants of that folder that have happened since the last synchronization download, as

defined by the initial ICS state.

Performing a contents synchronization download using a synchronization context that was

opened on a folder will produce information about all message changes and message deletions

in the folder that have happened since the last synchronization download, as defined by the

initial ICS state.

1.3.2.2 Upload

Uploading mailbox changes from a client to a server resembles the ICS download process,

except that instead of streaming data through a single ROP, multiple individual ROPs are sent

to upload changes to individual objects within a mailbox.

This protocol supports the uploading of hierarchy differences, such as creation and deletion of

folders and changes to folder properties.

This specification also supports the uploading of differences in the contents of folders, such as

creation and deletion of messages, changes to message properties and read state, and the

moving of messages between folders.

1.4 Relationship to Other Protocols

This specification provides a low-level explanation of bulk data transfer operations.

The Mailbox Synchronization Protocol Specification describes how to apply this protocol to

the replication of mailbox data between clients and servers, as specified in [MS-OXCSYNC].

The Core Notifications Protocol Specification describes ICS notifications, as specified in

[MS-OXCNOTIF].

16 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

This specification relies on the following:

 An understanding of remote procedure calls (RPCs) and remote operations (ROPs),

as specified in [MS-OXCRPC] and [MS-OXCROPS] respectively.

 An understanding of folders and messages, as specified in [MS-OXCFOLD] and

[MS-OXCMSG] respectively.

1.5 Prerequisites/Preconditions

When performing bulk data transfer operations, this protocol assumes that the client has

previously logged on to the server and has acquired a handle to the folder that contains the

messages and subfolders that will be uploaded or downloaded. For details about folders, see

[MS-OXCFOLD].

1.6 Applicability Statement

This protocol was designed for the following uses:

 To support the replication of mailbox content between clients and servers, as specified

in [MS-OXCSYNC].

 To support client-driven copying of data between multiple mailboxes on multiple

servers.

 To support exporting or importing of data to or from a mailbox.

This protocol provides high efficiency and complete preservation of data fidelity for the uses

mentioned in this section. However, it MAY not be appropriate for use in the following

scenarios:

 Those requiring copying of data between folders of the same mailbox, or different

mailboxes residing on the same server. Consider using RopCopyTo, as specified in

[MS-OXCROPS] section 2.2.7.12, for maximum efficiency.

 Those requiring fine-grain control over the set of information that has to be transferred

for each message. Consider using other ROPs specified in [MS-OXCROPS] that

provide access to individual parts of messages.

 Those that impose constraints on the amount of data that has to be passed over the

wire or stored on the client.

 Those that do not allow for persistence of state information on the client between runs.

17 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

1.7 Versioning and Capability Negotiation

Localization: Localization-related aspects of the protocol are specified in section

2.2.3.1.1.1.2.

Capability Negotiation: This protocol performs explicit capability negotiation by using the

following ROPs, properties, and flags. Support of the following features is determined by the

versions of the client and server that are supplied during the connect phase (by the

EcDoConnect and EcDoConnectEx RPCs) of the RPC session. For more details, see [MS-

OXCRPC] section 3.1.9.

Client version Description

11.0.0.4920 and above The client supports receiving ServerBusy in the

ReturnValue field of the

RopFastTransferSourceGetBuffer response.

For more details, see section 2.2.3.1.1.5.

12.0.3730.0 and above The client supports send optimization for ICS using

PidTagTargetEntryId. For more details, see [MS-

OXCSYNC] section 3.1.5.2.2.1.2.

Server version Description

8.0.359.0 and above The server supports PartialItem SendOptions flag.

For more details, see section 2.2.3.1.1.1.2.

RopTellVersion is used to explicitly declare capabilities of the servers in the server-to-client-

to-server upload scenario. For details, see section 3.3.4.1.2.1.

1.8 Vendor-Extensible Fields

This protocol provides no extensibility beyond what is specified in [MS-OXCMSG].

All undefined bits in flag structures and undefined values of enumerations that are defined in

this specification are reserved; clients MUST pass 0.

1.9 Standards Assignments

None.

18 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

2 Messages

2.1 Transport

The ROP request buffers and ROP response buffers specified by this protocol are sent to

and received from the server by using the underlying Remote Operations (ROP) List and

Encoding Protocol, as specified in [MS-OXCROPS].

2.2 Message Syntax

The following notations are used in this specification:

PidTagCnset*. Refers to any of the following properties: PidTagCnsetSeen,

PidTagCnsetSeenFAI, and PidTagCnsetRead.

RopFastTransferSourceCopy*. Refers to any of the following ROPs:

RopFastTransferSourceCopyTo, RopFastTransferSourceCopyProperties,

RopFastTransferSourceCopyMessages, and

RopFastTransferSourceCopyFolder.

RopSynchronizationImport*. Refers to any of the following ROPs:

RopSynchronizationImportMessageChange,

RopSynchronizationImportHierarchyChange,

RopSynchronizationImportMessageMove, RopSynchronizationImportDeletes,

RopSynchronizationImportReadStateChanges.

RopSynchronizationUploadStateStream*. Refers to any of the following ROPs:

RopSynchronizationUploadStateStreamBegin,

RopSynchronizationUploadStateStreamContinue, and

RopSynchronizationUploadStateStreamEnd.

Sections 2.2.1 through 2.2.4.4 use property list restriction tables in the following format to

describe restrictions on arrays of property values:

Name Restrictions Comments

PidSomeProperty Conditional

Fixed position

…

Condition of existence.

< other properties > Prohibited Comments.

Any property MUST NOT exist in a property list restriction table more than once. All non-

italicized rows of the table represent a restriction that is imposed on the property identified in

19 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

the Name column. For a list of all possible properties, see [MS-OXCPROPS]. The

Comments column contains free-form comments that amend the meaning of the Name and

Restriction columns. The Restrictions column specifies a subset of the following restrictions:

 Optional [default]: The property MAY be present in the list.

 Required: The property MUST be present in the list.

 Fixed position: The position of the property within the list is fixed and MUST

correspond to the position of the corresponding restriction in the property list

restriction table.

 Conditional: The presence of the property in the list is conditional. See the

Comments column for conditions.

Prohibited: The property MUST NOT be present in the list. Italicized rows represent

restrictions that apply to special sets of properties. The special set < other properties >

represents all properties that are not mentioned in the property list restriction table explicitly.

2.2.1 Properties

2.2.1.1 ICS State Properties

ICS uses a set of properties known as the ICS state to enable a server to narrow down the set

of data passed during an incremental change synchronization. By using the ICS state, only

differences that are relevant to a client are downloaded and the same information is only

downloaded once. The ICS state is produced by the server, optionally modified by the client,

and persisted exclusively on the client. The client passes the ICS state to the server

immediately after configuring a synchronization context for download or upload. The server

uses the ICS state and the synchronization scope, as defined during initialization of the

synchronization download context, to determine the set of differences that need to be

downloaded to the client. At the end of the synchronization operation, the client is given a new

ICS state, commonly referred to as the final ICS state.

All properties specified in this section are part of the ICS state. Two of these properties are

used for hierarchy synchronization. All four properties are used for contents

synchronization. The ICS state determines the state of the local replica bounded by the

synchronization scope (section 3.3.1.2) specified by the client in the

RopSynchronizationConfigure request (section 2.2.3.2.1.1).

ICS state properties are not persisted on the server and are only present as data in the

FastTransfer stream and in the fields of ROPs that support synchronization. The server uses

the synchronization scope and ICS state to determine what differences need to be downloaded

to the client. For more server-specific details, see section 3.2.4.1. Ordinarily, the server

modifies the ICS state properties and sends them back to the client. For details about

exceptions and checkpointing, see [MS-OXCSYNC] section 3.1.5.3.9.1.

All ICS state properties are of the PtypBinary type, and contain a serialized IDSET in the

REPLGUID-based form (section 2.2.2.3.1).

20 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Note that for the purposes of reducing the wire size of the ICS state by enabling compacting of

regions (as specified in section 3.2.1.2) and optimizing for performance of determining a set of

differences to be downloaded to clients, servers MAY include extra IDs in IDSETs that

represent change numbers sets (CNSETs), as long as that will never affect the sets of

differences that are downloaded to clients. For more server-specific details, see the following

property comments and section 3.2.4.1.

During the first synchronization of a synchronization scope, a client MUST <1> send the

relevant ICS state properties as zero-length byte arrays.

2.2.1.1.1 PidTagIdsetGiven

A PtypBinary value that contains a serialized IDSET of folder IDs (FIDs) for hierarchy

synchronization, or message IDs (MIDs) for contents synchronization, that exist in the

local replica of the client. This IDSET MUST NOT include any IDs that are not in the local

replica of the client. Because of this restriction on IDs, this property might not compress as

well as the PidTagCnset* properties, which will make the PidTagIdsetGiven property grow

much bigger than the PidTagCnset* properties. For more details about compression of

IDSETs, see section 3.2.1.2.

The property tag for this property suggests that it is of type PtypInteger32, but the data

MUST be handled as PtypBinary data.<2>

This property is ignored for synchronization upload operations and is not downloaded back

to the client in the final ICS state obtained for them through

RopSynchronizationGetTransferState. Clients SHOULD <3> remove this property before

uploading the initial ICS state on synchronization upload contexts and clients MUST

merge this property back in when receiving the final ICS state from the server. Clients MUST

add IDs of messaging objects created in or originating from a local replica to this property by

using a process called checkpointing, as specified in [MS-OXCSYNC].

2.2.1.1.2 PidTagCnsetSeen

A PtypBinary value that contains an IDSET of CNs. The CNs track changes to folders (for

hierarchy sychronizations) or normal messages (for contents synchronizations) in the

current synchronization scope that have been previously communicated to a client, and are

reflected in its local replica.

2.2.1.1.3 PidTagCnsetSeenFAI

A PtypBinary value, with semantics identical to PidTagCnsetSeen, except that it contains

IDs for folder associated information (FAI) messages and is therefore only used in contents

synchronization.

2.2.1.1.4 PidTagCnsetRead

21 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

A PtypBinary value that contains an IDSET of CNs. The CNs track changes to the read state

for messages in the current synchronization scope that have been previously communicated

to the client, and are reflected in its local replica.

The read state of a message is determined from the PidTagMessageFlags property, which

contains a bitmask of flags that indicates the origin and current state of the message. For more

details about this property, see [MS-OXPROPS] section 2.1667.

2.2.1.2 Messaging Object Identification and Change Tracking Properties

This section contains information about the properties that are used by this protocol to identify

messages and folders and track changes.

For details about how messaging object and change identification values are created and

modified by the protocol roles, see section 3.1.1.

2.2.1.2.1 PidTagMid

A PtypInteger64 value that contains the MID of the message currently being synchronized.

For details about the conditions of its presence in message change headers, see section

2.2.3.2.1.1.3.

2.2.1.2.2 PidTagFolderId

A PtypInteger64 value that contains the FID of the folder currently being synchronized.

For details about the conditions of its presence in message change headers, see section

2.2.3.2.1.1.3.

2.2.1.2.3 PidTagChangeNumber

A PtypInteger64 value that contains the CN that identifies the last change to the message or

folder that is currently being synchronized.

For details about the conditions of its presence in message change headers, see section

2.2.3.2.1.1.4.

2.2.1.2.4 PidTagParentFolderId

A PtypInteger64 value that contains the FID that identifies the parent folder of the

messaging object being synchronized. If a hierarchy synchronization download is occuring,

this property MUST be set to 0 to identify the child of a folder for which the download

operation was configured.

2.2.1.2.5 PidTagSourceKey

A PtypBinary value that contains an internal identifier (GID) for this folder or message.

The binary content of this property is a serialization of an XID. For more details about the

binary format, see section 2.2.2.1.

22 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Clients usually <4> generate the content of this property in the same way, and with the same

data store GUIDs, as the server (as global identifiers, or GIDs). For more details about how

clients generate this property, see section 3.3.1.1.1.

When requested by clients, servers MUST output the property value if it is persisted, or

generate it on-the-fly if it is missing, based on the internal identifiers of the server for the

messaging object, as specified in section 3.2.4.2. For more details about messaging object

identification, see section 3.1.1.1.

2.2.1.2.6 PidTagParentSourceKey

A PtypBinary value on a folder that contains the PidTagSourceKey of the parent folder.

2.2.1.2.7 PidTagChangeKey

A PtypBinary value that contains the serialized XID of the last change to the messaging

object.

If the last change to the messaging object was imported from a client by using

RopSynchronizationImportMessageChange, this property contains a value for the

PidTagChangeKey property that was passed in fields to that ROP.

If the last change to a messaging object was made by a server, this property contains an XID

generated from the PidTagChangeNumber property. For more details about generating

XIDs based on internal identifiers, see section 3.2.4.2.

2.2.1.2.8 PidTagPredecessorChangeList

A PtypBinary value that contains a serialized representation of a PredecessorChangeList

structure, as specified in section 2.2.2.2. This value represents a set of change numbers for

versions of the messaging object in all replicas that were integrated into the current version.

This property is used in conflict detection by all protocol roles.

2.2.1.3 Properties for Encoding Differences in Replica Content

Because servers do not maintain a per-client state, the following properties are not persisted on

servers and are only present as data in the FastTransfer streams.

All properties are of the PtypBinary type, and contain a serialized IDSET in the REPLID-

based form (as specified in section 2.2.2.3.1).

2.2.1.3.1 PidTagIdsetDeleted

A PtypBinary value that contains a serialization of a REPLID-based IDSETs. The IDSETs

contains the IDs of folders (for hierarchy synchronization) or messages (for contents

synchronization) that were hard- or soft-deleted since the last synchronization identified by

the initial ICS state.

23 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

2.2.1.3.2 PidTagIdsetSoftDeleted

A PtypBinary value that contains a serialization of a REPLID-based IDSETs. The IDSETs

contains the IDs of messages that got out of synchronization scope since the last

synchronization identified by the initial ICS state. Note that soft-deleted messages will be

reported in the PidTagIdsetDeleted property.

2.2.1.3.3 PidTagIdsetExpired

A PtypBinary value that contains a serialization of a REPLID-based IDSETs. The IDSETs

contains IDs of expired Message objects in a public folder that expired since the last

synchronization identified by the initial ICS state.

2.2.1.3.4 PidTagIdsetRead

A PtypBinary value that contains a serialization of a REPLID-based IDSETs. The IDSETs

contain IDs of messages that were marked as read (as specified by the PidTagMessageStatus

property in [MS-OXPROPS] section 2.1732) since the last synchronization identified by the

initial ICS state.

2.2.1.3.5 PidTagIdsetUnread

A PtypBinary value that contains a serialization of a REPLID-based IDSETs. The IDSETs

contain IDs of messages that were marked as unread (as specified by the

PidTagMessageStatus property in [MS-OXPROPS] section 2.1732) since the last

synchronization identified by the initial ICS state.

2.2.1.4 PidTagAssociated

A PtypBoolean value that specifies whether the message being synchronized is an FAI

message.

2.2.1.5 PidTagMessageSize

An unsigned PtypInteger32 value that identifies the size of the message in bytes.

For details about the conditions of the PidTagMessageSize presence in message change

headers, see section 2.2.3.2.1.1.3.

A server SHOULD make the best effort to calculate this property, but because there is no

objective way of computing it, it MUST be treated only as an estimate by client.

2.2.1.6 Properties That Denote Subobjects

The properties in the following tables denote subobjects of the messaging objects and can be

used in the following:

24 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

 The property inclusion and exclusion lists of ROPs that configure download

operations. For example, RopSynchronizationConfigure and

RopFastTransferSouceCopyTo.

 As values of PidTagFXDelProp meta-properties (as specified in section 2.2.4.1.5.1).

Folder properties Description

PidTagContainerContents Identifies all normal messages in the current

folder.

PidTagFolderAssociatedContents Identifies all FAI messages in the current

folder.

PidTagContainerHierarchy Identifies all subfolders of the current folder.

Message Properties Description

PidTagMessageRecipients Identifies all recipients of the current

message.

PidTagMessageAttachments Identifies all attachments to the current

message.

Attachment Properties Description

PidTagAttachDataObject Identifies the embedded message of the

current attachment.

2.2.2 Structures

2.2.2.1 XID

Represents an external identifier for an entity within a data store.

25 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

NamespaceGuid (16 bytes): A 128-bit GUID that identifies the namespace that the identifier

specified by LocalId belongs to.

LocalId (variable): A variable binary value that contains the ID of the entity in the

namespace specified by NamespaceGuid. The length of this field MUST be within the [1;

239] range.

For more details about GID structures, which are a subtype of an XID, see [MS-OXCSTOR].

For GIDs, the REPLGUID maps to the NamespaceGuid field, and the global counter

(GLOBCNT) maps to the LocalId field.

All XIDs with the same NamespaceGuid MUST have the same length of LocalId fields.

However, the size of the LocalId value cannot be determined by examining the

NamespaceGuid value and MUST be provided externally. In most cases, XID structures are

present within other structures, which specify the size of the XID, such as the SizedXid

element (as specified in section 2.2.2.2.1) or the propValue element (as specified in section

2.2.4.3.21).

2.2.2.2 PredecessorChangeList

Contains a set of XIDs that represent change numbers of messaging objects in different

replicas. The order of the XIDs does not have significance for interpretation, but is significant

for serialization and deserialization. The set of XIDs MUST be serialized without padding as

an array of SizedXid structures binary-sorted by the value of NamespaceGuid field of the

XID structure in the ascending order.

2.2.2.2.1 SizedXid

XidSize (1 byte): An unsigned 8-bit integer. MUST be equal to the size of the Xid field in

bytes.

26 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Xid (variable): A structure of type Xid that contains the value of the internal identifier of an

object, or internal or external identifier of a change number. This field MUST contain the

same number of bytes as specified in the XidSize field.

2.2.2.3 IDSET

An IDSET is a set of ID values. The IDSET can be used to contain a set of MID values, a set

of FID values, or a set of CN values (also known as CNSET). An IDSET MUST NOT

contain duplicate ID values.

The serialization format specified in the following sections is optimized for data transfer, and

is not intended for in-memory operations. See section 3.1.1.3 for details about the serialization

and deserialization process.

2.2.2.3.1 Serialized IDSET with REPLID

For every REPLID and GLOBSET pair represented in the formatted IDSET, the following

needs to be added to the serialization buffer in lowest to highest REPLID order.

ReplId (2 byte): A REPLID value that when combined with all GLOBCNT values

represented in the GlobSet field, produces a set of IDs.

GlobSet (variable): A serialized GLOBSET.

2.2.2.3.2 Serialized IDSET with REPLGUID

For every ReplicaGuid and GLOBSET pair represented in the formatted IDSET, the

following needs to be added to the serialization buffer.

ReplGuid (16 bytes): A GUID value that represents a REPLGUID. When combined with

all GLOBCNT values represented in the GlobSet field, produces a set of GIDs. The GUID

values can be converted into a REPLID to produce a set of IDs.

27 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

GlobSet (variable): A serialized GLOBSET.

2.2.2.4 GLOBSET

A GLOBSET is a set of GLOBCNT values that are typically reduced to GLOBCNT ranges.

The serialization format specified in the following sections is optimized for data transfer, and

is not intended for in-memory operations.

A GLOBSET is serialized without padding as a set of commands. For details about how to

translate an abstract data model for a GLOBSET into a set of commands, see section 3.1.1.3.

2.2.2.4.1 Push Command (0x01 – 0x06)

The Push command will place high-order bytes onto the common byte stack.

Command (byte): A value in the range "0x01" through "0x06".

CommonBytes (variable): Variable length byte array to be pushed onto the common byte

stack. The length of the byte array is equal to the Command value ("0x01" through "0x06").

2.2.2.4.2 Pop Command (0x50)

The Pop command will remove bytes that were added to the common byte stack from the

previous Push command.

Command (1 byte): The value 0x50.

2.2.2.4.3 Bitmask Command (0x42)

The Bitmask command allows for up to five GLOBCNT ranges to be compressed into a

single encoding command if they all have five high-order bytes in common and the low-order

bytes are all within eight values of each other.

Command (1 byte): The value "0x42".

StartingValue (1 byte): Low-order byte of first GLOBCNT.

28 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bitmask (1 byte): Creates additional GLOBCNT values that are defined based on which bits

are set in Bitmask.

2.2.2.4.4 Range Command (0x52)

The Range command is used to add a GLOBCNT range to the GLOBSET. The range is

determined by the GLOBSET value produced from the LowValue field and the GLOBCNT

produced from the HighValue field.

Command (1 byte): The value "0x52".

LowValue (variable): Variable length byte array of low-order values for GLOBCNT

generation. The number of bytes in this field is equal to six minus the number of high-order

bytes in the common byte stack. MUST be less than or equal to HighValue, when compared

byte to byte.

HighValue (variable): Variable length byte array of low-order values for GLOBCNT

generation. The number of bytes in this field is equal to six minus the number of high-order

bytes in the common byte stack. MUST be greater or equal to LowValue, when compared

byte to byte.

2.2.2.4.5 End Command (0x00)

The End command is used to signal the end of the GLOBSET encoding.

Command (1 byte): The value "0x00".

29 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

2.2.2.5 ProgressInformation

Version (2 bytes): A four-bit value that contains a number that identifies the binary structure

of the data that follows. The table in this section describes a format for version "0x0000",

which is the only version of this structure defined for this protocol.

<padding>: SHOULD be set to zeroes and MUST be ignored by clients.

FAIMessageCount (4 bytes): An unsigned 32-bit integer value that contains the total number

of changes to FAI messages that are scheduled for download during the current

synchronization operation.

FAIMessageTotalSize (8 bytes): An unsigned 64-bit integer value that contains the size in

bytes of all changes to FAI messages that are scheduled for download during the current

synchronization operation.

NormalMessageCount (4 bytes): An unsigned 32-bit integer value that contains the total

number of changes to normal messages that are scheduled for download during the current

synchronization operation.

NormalMessageTotalSize (8 bytes): An unsigned 64-bit integer value that contains the size

in bytes of all changes to FAI messages that are scheduled for download during the current

synchronization operation.

2.2.2.6 PropertyGroupInfo

The PropertyGroupInfo structure describes a single property mapping –between group

indexes and property tags within a property group. For more details about property groups,

see section3.1.1.2.

30 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

GroupId (4 bytes): An unsigned 32-bit integer value that identifies a property mapping

within the current synchronization download.

Reserved (4 bytes): This value MUST be set to "0x00000000".

GroupCount (4 bytes): An unsigned 32-bit integer value that specifies how many

PropertyGroup structures are present in the Groups field.

Groups (variable): An array of PropertyGroup structures. This field MUST contain

GroupCount PropertyGroup elements.

2.2.2.6.1 PropertyGroup

PropertyTagCount (4 bytes): An unsigned 32-bit integer value that specifies how many

property tags are present in PropertyTags.

PropertyTags (variable): An arrray of PropertyTag structures. This field MUST contain

PropertyTagCount tags.

2.2.2.7 FolderReplicaInfo

The FolderReplicaInfo structure contains information about replicas of a public folder.

31 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Flags (4 bytes): MUST be set to "0x00000000".

Depth (4 bytes): MUST be set to "0x00000000".

FolderLongTermId (24 bytes): A LongTermId structure. Contains the LongTermId of a

folder, for which replica information is being described.

ServerDNCount (4 bytes): An unsigned 32-bit integer value that determines how many

elements exist in ServerDNArray.

CheapServerDNCount (4 bytes): An unsigned 32-bit integer value that determines how

many of the leading elements in ReplicaMdbArray have the same, lowest, network access

cost. CheapServerDNCount MUST be less than or equal to ServerDNCount.

ServerDNArray (variable): An array of ASCII-encoded NULL-terminated strings. MUST

contain ServerDNCount strings. Contains an enterprise/site/server distinguished name

(ESSDN) of servers that have a replica of the folder identifier by FolderLongTermId.

2.2.2.8 ExtendedErrorInfo

Contains extended and contextual information about an error that has occurred when

producing a FastTransfer stream.

See section 2.2.4.3.4 for details about how this structure is used in FastTransfer error recovery

and reporting of partial completion of download operations.

32 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Version (2 bytes): An unsigned 16-bit integer that determines the format the structure. The

format shown above corresponds to version "0x00000000", which is the only version defined

for the protocol. Servers MUST output this structure in a version that corresponds to a version

of a protocol chosen by the client.

<padding>: SHOULD be set to zeroes and MUST be ignored by the clients.

ErrorCode: One of the error codes defined in [MS-OXCDATA] that describes the reason for

the failure.

FolderGID (22 bytes): A GID structure that identifies the folder that was in context at the

time the error occurred. MUST be filled with zeroes, if no folders were in context.

MessageGID (22 bytes): A GID structure that identifies the message that was in context at

the time the error occurred. MUST be filled with zeroes, if no messages were in context.

AuxBytesCount (4 bytes): An unsigned 32-bit integer value that specifies the size of the

AuxBytes field. If set to 0, AuxBytes is missing.

33 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

AuxBytesOffset (4 bytes): An unsigned 32-bit integer value that specifies the offset in bytes

of Auxbytes from the beginning of the structure.

Reserved (variable): SHOULD be set to zeroes and SHOULD be ignored by clients.

AuxBytes (optional, variable): A PtypBinary value that MUST be present and reside at

offset AuxBytes from the beginning of the structure, IFF AuxBytesCount > 0. If present,

MUST consist of one or more AuxBlock structures serialized sequentially without any

padding.

2.2.2.8.1 AuxBlock

BlockType (2 bytes): An unsigned 16-bit integer that specifies the format of the BlockBytes

field. The known types are described in the following table:

0x0000 Exchange Server diagnostic context (opaque)

BlockBytesCount (4 bytes): An unsigned 32-bit integer value that specifies the size in bytes

of the BlockBytes field.

BlockBytes (variable): A PtypBinary value. Semantics are determined by the value of the

BlockType field. MUST be exactly BlockBytesCount bytes long.

Clients MUST ignore any AuxBlock structures whose BlockType they do not recognize.

Unknown AuxBlocks can be easily skipped over to subsequent blocks, because their size can

always be determined based on BlockBytesCount.

2.2.3 ROPs

FastTransfer and ICS operations are performed by sending a specific set of ROP requests to

the server.

If a ROP name starts with RopSynchronization, it can only be used in ICS operations.

If a ROP name starts with RopFastTransfer, it can be used in FastTransfer operations, and

MAY also be used ICS operations. See ROP details provided in this section and the following

table for more details.

All FastTransfer and ICS operations can be separated into similar steps:

1. Initialization. Configure an operation and assign it a context, which is used to identify

this operation in all subsequent steps.

34 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

2. Data transmission. Transmission of messaging object data based on the context

configuration.

3. Checkpointing. An optional step in which data that is required for subsequent

initialization of the next iteration of this operation is downloaded.

4. Release of resources. Release of resources held on a server. This includes releasing the

context by using RopRelease.

Note that the context in step 1 is not a messaging object, which means that it is not persisted in

a mailbox and and its lifetime is limited to the lifetime of the handle that is opened for it.

The following table describes the applicability of ROPs for each step of every FastTransfer or

ICS operation. See the ROP details in this section for usage directions.

Operation Initialization Data transmission Checkpointing

FastTransfer

download
RopFastTransfer

- SourceCopy*

RopTellVersion

RopFastTransfer

- SourceGetBuffer

Mailbox data is encoded

into a FastTransfer

stream.

Not applicable.

FastTransfer

upload

RopFastTransfer

- DestinationConfigure

RopTellVersion

RopFastTransfer

- DestinationPutBuffer

Mailbox data is encoded

into a FastTransfer

stream.

Not applicable.

ICS

download
RopSynchronization

- Configure

- UploadStateStream*

RopFastTransfer

- SourceGetBuffer

Mailbox data is encoded

into a FastTransfer

stream.

RopSynchronization

- GetState

RopFastTransfer

- SourceGetBuffer

The final ICS state is

downloaded as a part

of data transmission

ICS upload RopSynchronization

- OpenCollector

RopSynchronization

- Import*

ROPs that operate on a

RopSynchronization

- GetState

35 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Operation Initialization Data transmission Checkpointing

- UploadStateStream* Message object. RopFastTransfer

- SourceGetBuffer

In this section, whenever the applicability of a ROP or protocol details are discussed,

operations to which an explanation applies will usually be referenced by mentioning the type

of the context, as specified in the following table.

Context type Operations it applies to

Download context FastTransfer download, ICS download

FastTransfer context FastTransfer download, FastTransfer upload

FastTransfer download context FastTransfer download

FastTransfer upload context FastTransfer upload

synchronization context ICS download, ICS upload

synchronization download context ICS download

synchronization upload context ICS upload

The FastTransfer stream is specified in section 2.2.4.

2.2.3.1 Fast Transfer Copy Operations

2.2.3.1.1 Download

The following steps MUST be taken by a client to download copies of messaging objects

from the server in FastTransfer mode.

1. Obtain a handle to a messaging object whose contents are requested, or a handle to a

messaging object that the client will download a copy of.

2. Send the RopFastTransferSourceCopy* request to create a FastTransfer download

context on the server and define the parameters and the scope of the operation.

3. Optionally, send a RopTellVersion request, if performing a server-to-client-to-server

upload (as specified in section 3.3.4.1.2.1).

4. Iteratively send RopFastTransferSourceGetBuffer requests on the FastTransfer

context to retrieve the FastTransfer stream with serialized messaging objects.

36 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

5. Send a RopRelease request to release the messaging object and FastTransfer context

obtained in steps 1 and 2.

2.2.3.1.1.1 RopFastTransferSourceCopyTo

RopFastTransferSourceCopyTo initializes a FastTransfer operation to download content

from a given messaging object and its descendant subobjects.

The object output in OutputServerObject field MUST be released using RopRelease as

soon as the client no longer needs it.

Request:

InputServerObject: MUST be either an Attachment, or a Message, or a Folder object.

Level (1 byte): An unsigned 8-bit integer. Set to "0" if all descendant subobjects have to be

included in the copying, unless explicitly excluded in PropertyTags. Set to non-zero if all

descendant subobjects have to be excluded from copying. Note that this field MUST NOT be

considered when determining what properties and subobjects to copy for descendant

subobjects of InputServerObject.

CopyFlags (4 byte): A 32-bit flags structure. For more details about the possible values of

this structure, see section 2.2.3.1.1.1.1.

SendOptions (1 byte): An 8-bit flag structure. For more details about possible values for this

structure, see section 2.2.3.1.1.1.2.

PropertyTagCount (2 bytes): An unsigned 16-bit integer. This value specifies the number of

structures in the PropertyTags field.

PropertyTags (variable): An array of PropertyTag structures. Specifies properties and

subobjects (as specified in section 2.2.1.6) to exclude when copying a messaging object

pointed to by the InputServerObject. Note that this field MUST NOT be considered when

determining what properties and subobjects to copy for descendant subobjects of

InputServerObject. See section 3.2.4.6 for more details about the effect of property and

subobject filters on download operations.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

OutputServerObject: MUST be the FastTransfer download context. MUST be present IFF

ReturnValue equals Success.

Remarks:

If InputServerObject is a folder that was opened to show soft-deleted messages, the scope

of an operation that this ROP initiates will only include soft-deleted messages. Otherwise,

only normal, non-deleted messages will be included. This applies at all levels that are

permitted by the Level field.

37 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

The Level field MUST be ignored and treated as if it is set to "0" if InputServerObject is an

Attachment object.

2.2.3.1.1.1.1 CopyFlag

Defines parameters of the FastTransfer download operation.

Name Value Description

Move 0x00000001 MUST NOT be passed if InputServerObject is not a

folder or a message.

If this flag is set, the client identifies the FastTransfer

operation being configured as a logical part of a larger

object move operation.

If this flag is specified for a download operation, the

server SHOULD NOT output any objects in a

FastTransfer stream that the client does not have

permissions to delete. See section 3.2.4.4.1 for more

server details.

CopySubfolders 0x00000010 MUST NOT be passed to any ROP other than

RopFastTransferSourceCopyFolder .

This flag identifies whether subfolders of a folder

specified in InputServerObject, MUST be

recursively included into the scope.

SendEntryId 0x00000020 MUST NOT be passed to any ROP other than

RopFastTransferSourceCopyMessages and

RopFastTransferSourceCopyFolder.

By setting this flag, message and change identification

information is not removed from output.

RecoverMode 0x00000200 This flag is ignored. Clients MUST use SendOptions

RecoverMode instead.

BestBody 0x00002000 This flag is ignored by any ROPs other than the

following:

 RopFastTransferSourceCopyTo if

InputServerObject is a message

 RopFastTransferSourceCopyMessages

If set, the server SHOULD output message bodies in

38 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

their original format.

If not set, the server MUST output message bodies in

the compressed Rich Text Format (RTF).

Servers MAY fail the command if unknown flag bits are set.

2.2.3.1.1.1.2 SendOption

Defines the parameters of a download operation that relate to data representation.

Name Value Description

Unicode 0x01 See the following table for all possible combinations of

encoding flags.

When used on RopSynchronizationConfigure, MUST match

the value of the Unicode SynchronizationFlag (as specified in

section 2.2.3.2.1.1.2).

ForUpload 0x03 Used in FastTransfer operations only when the client requests a

FastTransfer stream with the intent of uploading it

immediately to another destination server.<5>

The ROP that uses this flag MUST be followed by

RopTellVersion. See section 3.3.4.1.2.1 for details about how

this affects behaviors of servers and clients.

RecoverMode 0x04 Used when a client supports recovery mode and requests that a

server MUST attempt to recover from failures to download

changes for individual messages.

MUST NOT be set when ForUpload flag is set.

ForceUnicode 0x08 See the following table for all possible combinations of

encoding flags.

Partial 0x10 MUST NOT be passed for anything but contents

synchronization download.

This flag is set if a client supports partial message downloads.

If a server supports this mode, it SHOULD output partial

message changes if it reduces the size of the produced stream.

Servers MUST <6> fail the ROP if any unknown flag bits are set.

The following table lists all valid combinations of the Unicode | ForceUnicode flags.

39 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Flag Description

0 String properties MUST be output in the codepage set in

RopLogon.

Unicode String properties MUST be output either in Unicode, or in the

codepage set on the current logon, with Unicode being preferred.

Unicode |

ForceUnicode

String properties MUST be output in Unicode

2.2.3.1.1.2 RopFastTransferSourceCopyProperties

RopFastTransferSourceCopyProperties initializes a FastTransfer operation to download

content from a given messaging object and its descendant subobjects.

The object output in the OutputServerObject field MUST be released using RopRelease as

soon as the client no longer needs it.

Request:

InputServerObject: MUST be either an Attachment, Message, or Folder object.

Level (1 byte): An unsigned 8-bit integer. Set to 0 if descendant subobjects have to be

included in the copying, if explicitly included in PropertyTags. Set to non-zero if all

descendant subobjects have to be excluded from copying. Note that this field MUST NOT be

considered when determining what properties and subobjects to copy for descendant

subobjects of InputServerObject.

CopyFlags (1 byte): An 8-bit flag structure. The possible values for this structure are defined

in section 2.2.3.1.1.1.1.

SendOptions (1 byte): An 8-bit flag structure. The possible values for this structure are

defined in section 2.2.3.1.1.1.1.

PropertyTagCount (2 bytes): An unsigned 16-bit integer. This value specifies the number of

structures in the PropertyTags field.

PropertyTags (variable): An array of PropertyTag structures. This array specifies the

properties and subobjects (as specified in section 2.2.1.6) to copy from the messaging object

pointed to by the InputServerObject. Note that this field MUST NOT be considered when

determining what properties and subobjects to copy for descendant subobjects of

InputServerObject.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

40 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

OutputServerObject: MUST be the FastTransfer download context. MUST be present IFF

ReturnValue equals Success.

Remarks:

This ROP is very similar to RopFastTransferSourceCopyTo, with the following exceptions:

 PropertyTags specify a list of properties and subobjects to include, as opposed to

exclude.

 BestBody logic SHOULD NOT be used when copying messages.

2.2.3.1.1.3 RopFastTransferSourceCopyMessages

RopFastTransferSourceCopyMessages initializes a FastTransfer operation for

downloading content and descendant subobjects for messages identified by a given set of

IDs.

The object output in OutputServerObject field MUST be released using RopRelease as

soon as the client no longer needs it.

Request:

InputServerObject: MUST be a Folder object.

MessageIdCount (2 bytes): An unsigned 16-bit integer. This value specifies the number of

identifiers in the MessageIds field. MUST be greater than 0.

MessageIds (variable): An array of 64-bit identifiers. This list specifies the MIDs of the

messages to copy. Messages MUST be contained by a folder identified by

InputServerObject.

CopyFlags (1 byte): An 8-bit flag structure. The possible values for this structure are defined

in section 2.2.3.1.1.1.1.

SendOptions (1 byte): An 8-bit flag structure. The possible values for this structure are

defined in section 2.2.3.1.1.1.1.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

OutputServerObject: MUST be the FastTransfer download context. MUST be present IFF

ReturnValue equals Success.

2.2.3.1.1.4 RopFastTransferSourceCopyFolder

RopFastTransferSourceCopyFolder initializes a FastTransfer operation to download

properties and descendant subobjects for a specified folder.

The object output in OutputServerObject field MUST be released using RopRelease as

soon as the client no longer needs it.

Request:

41 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

InputServerObject: MUST be a Folder object.

CopyFlags (1 byte): An 8-bit flag structure. The possible values for this structure are defined

in section 2.2.3.1.1.1.1.

SendOptions (1 byte): An 8-bit flag structure. The possible values for this structure are

defined in section 2.2.3.1.1.1.1.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

OutputServerObject: MUST be the FastTransfer download context. MUST be present IFF

ReturnValue equals Success.

Remarks:

This ROP is very similar to RopFastTransferSourceCopyTo, with the following exceptions:

 The type of the InputServerObject is limited to a Folder object.

 The FastTransfer stream produced by an operation configured with this ROP wraps

folder properties and subobjects with the topFolder element (as specified in section

2.2.4.4).

 All properties and contained messages are copied.

 The CopySubfolders flag of CopyFlag field indicates whether to copy subfolders.

 BestBody logic SHOULD NOT be used when copying messages.

2.2.3.1.1.5 RopFastTransferSourceGetBuffer

RopFastTransferSourceGetBuffer downloads the next portion of a FastTransfer stream

that is produced by a previously configured download operation.

Request:

InputServerObject: MUST be a download context.

BufferSize (2 bytes): An unsigned 16-bit integer. This field specifies the maximum amount

of data (in bytes) to be output in the TransferBuffer. If this value is "0xBABE", the server

determines the buffer size based on the residual size of the RPC buffer.

Clients SHOULD <7> set this to a sentinel value of "0xBABE" to achieve maximum

efficiency.

MaximumBufferSize (2 bytes, optional): An unsigned 16-bit integer that specifies the

maximum size limit when the server determines the buffer size.

MUST be present IFF BufferSize is set to a sentinel value of "0xBABE".

Clients SHOULD set this value to at least the size of the output RPC buffer to achieve

maximum efficiency.

Response:

42 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

The following table lists error codes that clients SHOULD implement special handling for.

Name Description

ServerBusy The client MUST wait at least the period of time specified in

BackoffTime before retrying the ROP.

Servers MUST NOT output this error code if the client did not indicate

<8> that is supports BackOff on connect. For more details about version

checking, see [MS-OXCRPC] section 3.1.9.

TransferStatus (2 bytes): A 16-bit enumeration. The possible values for this enumeration are

defined in section 2.2.3.1.1.5.1.

InProgressCount (2 bytes): An unsigned 16-bit integer. The number of steps that have

already been completed in the current operation. Only usable for progress information display.

TotalStepCount (2 bytes): An unsigned 16-bit integer that contains the approximate total

number of steps to be completed in the current operation. Only usable for progress

information display.

Reserved (1 byte): MUST be set to "0x00" when sending and ignored on receipt.

TransferBufferSize (2 bytes): An unsigned 16-bit integer. This value specifies the size of the

TransferBuffer field.

TransferBuffer (variable, optional): An array of bytes that contains the next portion of a

FastTransfer stream. The syntax of the FastTransfer stream is specified in section 2.2.4.

MUST be present IFF the error code is not ServerBusy.

BackoffTime (4 bytes, optional): An unsigned 32-bit integer that contains the time, in

milleseconds, that a client MUST wait before retrying the ROP. MUST be present IFF the

error code is ServerBusy.

Remarks:

To obtain all data output by an operation, this ROP MUST be sent iteratively, because the

amount of data that can be passed in one RPC is limited by its maximum size. A client MUST

stop sending this ROP on a download context as soon as it receives TransferStatus Done or

Error.

RopFastTransferSourceGetBuffer supports packed buffers, as specified in [MS-OXCRPC]

section 3.1.7.2.

If BufferSize is set to a sentinel value of "0xBABE", the server MUST limit the amount of

data returned in TransferBuffer to the residual size of the output buffer minus result structure

overhead, or MaxBufferSize, whichever is smaller.

43 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

The value of BufferSize, if it is set to a value other than sentinel value of "0xBABE", has the

following semantics:

 The server MUST fail the command before processing by doing the following:

o Failing the entire RPC with ecBufferTooSmall if it will not be able to fit the

resulting BufferSize bytes in TransferBuffer into the biggest possible output

RPC buffer allowed by the protocol.

o Returning RopBufferTooSmall if it will not be able to fit the resulting

BufferSize bytes in TransferBuffer into the residual output RPC buffer.

 The server MUST output at most BufferSize bytes in TransferBuffer even if

more data is available.

 The server returns less than or equal to the BufferSize bytes in TransferBuffer.

2.2.3.1.1.5.1 TransferStatus

Represents the status of the download operation after producing data for the TransferBuffer

field.

Value Bit Description

Error 0x0000 The download stopped because a non-recoverable error has

occurred when producing a FastTransfer stream. The

ReturnValue field of the ROP output buffer contains a code for

that error.

Partial 0x0001 The FastTransfer stream was split, and more data is available.

TransferBuffer contains incomplete data. See section 2.2.4.1 for

restrictions on where FastTransfer streams SHOULD be split. NoRoom 0x0002

Done 0x0003 This was the last portion of the FastTransfer stream.

2.2.3.1.1.6 RopTellVersion

RopTellVersion is used to provide the version of one server to another server that is

participating in the server-to-client-to-server upload (as specified in section 3.3.4.1.2.1).

Request:

Version (6 bytes): An array of three unsigned 16-bit integers. This array contains the

version information for another server that is participating in the server-to-client-to-server

upload. The format of this structure is the same as that specified in [MS-OXCRPC]

section 3.1.9.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

44 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

2.2.3.1.2 Upload

The following steps MUST be taken by a client to upload copies of messaging objects to the

server in FastTransfer mode:

1. Obtain a handle to an object, for which appending or replacing properties and/or

subobjects is requested.

2. Send RopFastTransferDestinationConfigure to create a FastTransfer upload

context on the server and define the parameters of the operation.

3. Optionally, send RopTellVersion if performing a server-to-client-to-server upload (as

specified in section 3.3.4.1.2.1).

4. Iteratively send the RopFastTransferDestinationPutBuffer on the FastTransfer

context to upload the FastTransfer stream with the serialized messaging objects.

5. Send RopRelease to release the messaging object and the FastTransfer context

obtained in steps 1 and 2.

In step 4, if a client simply re-sends the stream that it is getting through the FastTransfer

download, it MAY consider using an optimized server-to-client-to-server upload process, as

specified in section 3.3.4.1.2.1.

2.2.3.1.2.1 RopFastTransferDestinationConfigure

RopFastTransferDestinationConfigure initializes a FastTransfer operation for uploading

content encoded in a client-provided FastTransfer stream into a mailbox.

The object output in the OutputServerObject field MUST be released using RopRelease as

soon as the client no longer needs it.

Request:

InputServerObject: MUST be either an Attachment, Message, or Folder object.

SourceOperation (1 byte): An 8-bit enumeration. The possible values for this enumeration

are specified in section 2.2.3.1.2.1.1.

CopyFlags (1 byte): 8-bit flag structure. The possible values for this structure are specified in

section 2.2.3.1.1.1.1.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

OutputServerObject: MUST be the FastTransfer upload context. MUST be present IFF

ReturnValue equals Success.

Remarks:

Any changes to an object identified by InputServerObject are not persisted until

RopSaveChangesMessage is called.

45 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

2.2.3.1.2.1.1 SourceOperation

This enumeration is used to specify the type of data in a FastTransfer stream that would be

uploaded by using RopFastTransferDestinationPutBuffer on the FastTransfer upload

context that is returned in the OutputServerObject field.

SourceOperation

enumeration value

Root element in FastTransfer

stream

Conditions

CopyTo

CopyProperties

folderContent InputServerObject is a Folder object.

messageContent InputServerObject is a Message object.

attachmentContent InputServerObject is an Attachment

object.

CopyMessages messageList Always.

CopyFolder topFolder Always.

If a FastTransfer stream to be uploaded is produced by a FastTransfer download operation,

the client MUST pass a value that corresponds to a RopFastTransferSourceCopy* ROP that

was used to configure the download operation.

SourceOperation

enumeration value

Ordinal value Corresponding ROP of the FastTransfer download

CopyTo 0x01 RopFastTransferSourceCopyTo

CopyProperties 0x02 RopFastTransferSourceCopyProperties

CopyMessages 0x03 RopFastTransferSourceCopyMessages

CopyFolder 0x04 RopFastTransferSourceCopyFolder

Servers MUST stop execution of the ROP if an unknown SourceOperation value is passed.

2.2.3.1.2.2 RopFastTransferDestinationPutBuffer

RopFastTransferDestinationPutBuffer uploads the next portion of an input FastTransfer

stream for a previously configured FastTransfer upload operation.

Request:

InputServerObject: MUST be a FastTransfer upload context.

TransferDataSize (2 bytes): An unsigned 16-bit integer. This value specifies the size of the

TransferData field.

46 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

TransferData (variable): An array of bytes. This array contains the data to be uploaded to the

destination FastTransfer object and contains the next portion of a FastTransfer stream. The

syntax of the FastTransfer stream is specified in section 2.2.4.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

TransferStatus (2 bytes): A 16-bit enumeration. This value specifies the current status of the

transfer.<9>

InProgressCount (2 bytes): An unsigned 16-bit integer that specifies the number of steps that

have been completed in the current operation. This field is only usable for progress

information display.

TotalStepCount (2 bytes): An unsigned 16-bit integer that contains the approximate total

number of steps <10> to be completed in the current operation. This field is only usable for

progress information display.

Reserved (1 byte): MUST be set to "0x00" when sending and ignored on receipt.

BufferUsedSize (2 bytes): An unsigned 16-bit integer. This value is the buffer size that was

used. MAY be less than TransferDataSize IFF a ROP failed and ReturnValue is not equal

to Success.

2.2.3.2 Incremental Change Synchronization

The following figure shows the steps involved in ICS.

47 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Initialize Synchronization Object

Using ICS State

Send/Receive Data

Update ICS State

Persist ICS State

Acquire Synchronization Object

Figure 1: Steps in Incremental Change Synchronization

For a client-centric explanation of how to use this protocol to maintain the local replica of a

mailbox, see [MS-OXCSYNC].

2.2.3.2.1 Download

The following steps MUST be taken by a client when downloading mailbox differences from

a server:

1. Obtain a handle to a Folder object, for which synchronization is to be requested. For

details about obtaining a folder handle, see [MS-OXCFOLD].

2. Send the RopSynchronizationConfigure request to create a synchronization

download context on the server and define the parameters and the scope of the

operation.

3. Send the RopSynchronizationUploadStateStreamBegin/-Continue/-End requests

to upload the initial ICS state information to the synchronization context.

48 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

4. Iteratively send the RopFastTransferSourceGetBuffer request on the

synchronization context to retrieve the FastTransfer stream of the mailbox

differences and the final ICS state.

5. Persist the ICS state.

6. Send the RopRelease request to release the Folder object and the synchronization

context obtained in steps 1 and 2.

2.2.3.2.1.1 RopSynchronizationConfigure

RopSynchronizationConfigure is used to define the scope and parameters of the

synchronization download operation. The client MUST upload the last remaining piece of

configuration data, the initial ICS state, before it can request a FastTransfer stream that

contains differences from the server.

Synchronization scope determines the boundaries of a synchronization operation, and is

defined by the following:

 The type of objects considered for synchronization (folders for hierarchy

synchronization and messages for contents synchronizations).

 A folder that contains these objects as children (contents) or descendants (hierarchy).

 A restriction on messages within that folder (contents).

See section 3.3.1.2 for more details.

The object output in OutputServerObject field MUST be released using RopRelease as

soon as the client no longer needs it.

Request:

InputServerObject: MUST be a Folder object that contributes to the synchronization scope.

SynchronizationType (1 byte): An 8-bit enumeration that defines the type of

synchronization requested: content or hierarchy. This field contributes to the synchronization

scope. For the possible values for this enumeration, see section 2.2.3.2.1.1.1.

SendOptions (1 byte): An 8-bit enumeration that identifies options for sending the data. For

the possible values for this enumeration, see section 2.2.3.1.1.1.1.

SynchronizationFlags (2 bytes): A 16-bit flag structure that defines the parameters of the

synchronization operation. For the possible values of this structure, see section 2.2.3.2.1.1.2.

RestrictionDataSize (2 bytes): An unsigned 16-bit integer that specifies the length of the

RestrictionData field.

RestrictionData (variable): The variable-length Restriction structure, which is used to select

the data to be synchronized. This value contributes to the synchronization scope. This field is

used in contents synchronization only. The value MUST be set to "0" if

SynchronizationType is set to Hierarchy ("0x02"). For more details about restrictions, see

[MS-OXCDATA].

49 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

SynchronizationExtraFlags (4 bytes): A 32-bit flag structure. For the possible values of this

structure, see section 2.2.3.2.1.1.3.

PropertyTagCount (2 bytes): An unsigned 16-bit integer that specifies the number of

PropertyTag structures in PropertyTags.

PropertyTags (variable): An array of PropertyTag structures (as specified in section

2.2.3.2.1.1.4).

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the status of the ROP

execution.

OutputServerObject: This value MUST be the synchronization download context. This

value MUST be present IFF ReturnValue is Success.

2.2.3.2.1.1.1 SynchronizationType

Name Value Description

Contents 0x01 Indicates a contents synchronization.

Hierarchy 0x02 Indicates a hierarchy synchronization.

Servers MUST fail the ROP if an unknown SynchronizationType value is passed.

2.2.3.2.1.1.2 SynchronizationFlag

Name Value Description

Unicode 0x0001 The client supports Unicode. The server MUST output

values of string properties as they are stored, whether in

Unicode or non-Unicode format.

This flag MUST match the value of the Unicode flag from

SendOptions field.

NoDeletions 0x0002 The server MUST NOT download information about

deletions.

NoSoftDeletions 0x0004 MUST NOT be passed for anything but a contents

synchronization download.

The server MUST NOT download information about

messages that went out of scope. This flag MUST be treated

as set if NoDeletions is set.

50 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

ReadState 0x0008 MUST NOT be passed for anything but a contents

synchronization download.

The server MUST also download information about changes

to the read state of messages.

FAI 0x0010 MUST NOT be passed for anything but a contents

synchronization download.

The server MUST ignore any changes to FAI messages

unless this flag is set.

Normal 0x0020 MUST NOT be passed for anything but a contents

synchronization download.

The server MUST ignore any changes to normal messages

unless this flag is set.

OnlySpecifiedPr

operties

0x0080 MUST NOT be passed for anything but a contents

synchronization download.

If this flag is not set, the server SHOULD exclude properties

and subobjects output for folders and top-level messages, if

they are listed in PropertyTags.

If this flag is set, the server SHOULD limit properties and

subobjects output for top-level messages to the properties

listed in PropertyTags.

NoForeignIdenti

fiers

0x0100 The server MUST ignore any persisted values for the

PidTagSourceKey and PidTagParentSourceKey

properties when producing output for folder and message

changes.

Clients SHOULD set this flag. For more details about

possible issues if this flag is not set, see section 3.3.1.1.3.

Reserved 0x1000 MUST be set to "0" when sending. Servers MUST fail the

ROP request if this flag set.

BestBody 0x2000 MUST NOT be passed for anything but a contents

synchronization download.

If set, a server SHOULD <11> output message bodies in

their original format.

If not set, a server MUST output message bodies in the

51 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

compressed RTF format.

IgnoreSpecified

OnFAI

0x4000 MUST NOT be passed for anything but a contents

synchronization download.

If set, all properties and subobjects of FAI messages MUST

be output.

Progress 0x8000 MUST NOT be passed for anything but contents

synchronization download.

A server SHOULD inject progress information into the

output FastTransfer stream. This flag is in addition to the

means of progress reporting available through the

RopFastTransferSourceGetBuffer results.

Servers SHOULD <12> fail the ROP if unknown flag bits are set.

2.2.3.2.1.1.3 SynchronizationExtraFlag

Name Value Description

Eid 0x00000001 A server MUST include PidTagFolderId (for

hierarchy synchronization) or PidTagMid (for

contents synchronization) into a folder change or

message change header IFF this flag is set.

MessageSize 0x00000002 MUST NOT be passed for anything but a contents

synchronization download.

A server MUST include the PidTagMessageSize

property into a message change header IFF this flag

is set.

Cn 0x00000004 A server MUST include the

PidTagChangeNumber property into a message

change header IFF this flag is set.

OrderByDeliveryTim

e

0x00000008 MUST NOT be passed for anything but a contents

synchronization download.

The server MUST sort messages by the value of

their PidTagMessageDeliveryTime property ([MS-

OXOMSG] section 2.2.3.9), or by

PidTagLastModificationTime ([MS-OXCMSG]

section 2.2.2.2) if the former is missing, when

52 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

generating a sequence of messageChange elements

for the FastTransfer stream, as specified in section

2.2.4.2.

Servers MUST ignore any unknown flag bits.

2.2.3.2.1.1.4 PropertyTags

Specifies properties and subobjects (as specified in section 2.2.1.6) to exclude or include.

This field has different semantics, depending on the value of the SynchronizationFlag

OnlySpecifiedProperties, as follows:

 If the OnlySpecifiedProperties flag is not set, the server SHOULD exclude

properties and subobjects from output for folders and top-level messages, if the

property is listed in the PropertyTags field.

 If the OnlySpecifiedProperties flag is set, the server SHOULD limit properties and

subobjects output for top-level messages to properties listed in the PropertyTags

field.

In addition to regular property tags, this field can contain property tags for the properties that

denote message subobjects (as specified in section 2.2.4.1.5). Inclusion of these properties in

the PropertyTags field means that the server SHOULD include or exclude these special parts

from output for top-level messages.

2.2.3.2.2 Uploading State

After the synchronization context is acquired, the client MUST supply the initial ICS State

(as specified in section 2.2.1.1) before executing any other ROPs on it. Depending on the type

of the context, the client MUST or SHOULD upload the initial ICS state before proceeding.

The client MAY choose not to upload the initial ICS state when performing synchronization

upload. See section 3.3.4.2.2.1 for details about how that would affect the responsibilities of

the roles. The following table summarizes the requirements for the ICS state properties being

uploaded to different synchronization contexts.

ICS state property Hierarchy

download

Contents download Hierarchy upload Contents upload

PidTagIdsetGiven MUST MUST Not

applicable.

Not

applicable.

PidTagCnsetSeen MUST MUST SHOULD SHOULD

PidTagCnsetSeenFAI Not applicable. MUST Not

applicable.

SHOULD

53 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

ICS state property Hierarchy

download

Contents download Hierarchy upload Contents upload

PidTagCnsetRead Not applicable. MUST Not

applicable.

SHOULD

Uploading the ICS state is done sequentially, property by property. The order in which

properties are uploaded does not matter. The upload of each property MUST be initiated by

sending the RopSynchronizationUploadStateStreamBegin request, followed by one or

more RopSynchronizationUploadStateStreamContinue requests. The upload is finished

with the RopSynchronizationUploadStateStreamEnd ROP.

2.2.3.2.2.1 RopSynchronizationUploadStateStreamBegin

Initiates the upload of an ICS state property into the synchronization context. No other

property upload MUST be in progress for this synchronization context, and a property that is

being specified in this ROP SHOULD NOT have been already uploaded into this

synchronization context. This ROP MUST be followed by

RopSynchronizationUploadStateStreamContinue or

RopSynchronizationUploadStateStreamEnd.

Request:

InputServerObject: MUST be a synchronization context.

StateProperty (4 bytes): A 32-bit PropertyTag structure. Valid input is restricted to the

property tags of the ICS state properties specified in section 2.2.1.1: PidTagIdsetGiven,

PidTagCnsetSeen, PidTagCnsetSeenFAI, PidTagCnsetRead.

TransferBufferSize (4 bytes): An unsigned 32-bit integer. This value specifies the size of the

stream to be uploaded by RopSynchronizationUploadStateStreamContinue.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

2.2.3.2.2.2 RopSynchronizationUploadStateStreamContinue

Continues to upload an ICS state property value into the synchronization context. This ROP

MUST be followed by RopSynchronizationUploadStateStreamContinue or

RopSynchronizationUploadStateStreamEnd. Upload MUST be initiated by sending the

RopSynchronizationUploadStateStreamBegin ROP.

Request:

InputServerObject: MUST be a synchronization context.

StreamDataSize (2 bytes): An unsigned 16-bit integer. This value specifies the size of the

StreamData field.

54 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

StreamData (variable): This array contains the state stream data to be uploaded.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

Remarks:

Clients SHOULD skip this ROP if the size of the remaining data specified in

StreamDataSize field is 0.

2.2.3.2.2.3 RopSynchronizationUploadStateStreamEnd

Concludes the upload of an ICS state property value into the synchronization context. The

upload MUST be initiated by sending a RopSynchronizationUploadStateStreamBegin

request followed by zero or more iterations of

RopSynchronizationUploadStateStreamContinue.

Servers concatenate StreamData from all received

RopSynchronizationUploadStateStreamContinue requests for a given ICS state property.

Request:

InputServerObject: MUST be a synchronization context.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

2.2.3.2.3 Downloading State

2.2.3.2.3.1 RopSynchronizationGetTransferState

Creates a FastTransfer download context for a snapshot of the checkpoint ICS state of the

operation identified by the given synchronization context.

The object output in OutputServerObject MUST be released by using RopRelease as soon

as the client no longer needs it.

Request:

InputServerObject: MUST be a synchronization context, either download or upload.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

OutputServerObject: MUST be the synchronization download context for the ICS state.

MUST be present IFF ReturnValue equals Success.

2.2.3.2.4 Upload

The following steps MUST be taken by a client when uploading mailbox differences to a

server:

55 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

1. Obtain a handle to the Folder object (as specified in [MS-OXCFOLD]) that will be

synchronized.

2. Send a RopSynchronizationOpenCollector request to create a synchronization

context on the server and to define parameters and the scope of an operation.

3. [Optional] Send the RopSynchronizationUploadStateStreamBegin/-Continue/-

End request to upload the initial ICS state information to the synchronization

context.

4. Upload changes, moves, and deletes of individual objects within the mailbox through

RopSynchronizationImport* ROPs, while passing the synchronization context

obtained in step 2.

5. [Optional] Obtain the final ICS state by doing the following:

a. Acquire a separate FastTransfer download context for a checkpoint ICS state

by using RopSynchronizationGetTransferState and passing the

synchronization upload context obtained in step 2 in the request buffer.

b. Perform the FastTransfer download steps 4-5 (as specified in section 2.2.3.1.1)

on the FastTransfer download context acquired in step (a).

c. Release the FastTransfer download context obtained in step (a).

6. Persist the ICS state.

7. Send the RopRelease request to release the Folder object and the synchronization

upload context obtained in steps 1 and 2.

The client MAY elect not to upload/download the ICS states in steps 3 and 5. See section

3.3.4.2.2.1 for details on how that would impact responsibilities of the roles.

When uploading hierarchy differences, the client sends the following ROP requests:

 RopSynchronizationImportHierarchyChange

 RopSynchronizationImportDeletes

When uploading content differences, the client can send any combination of the following

ROP requests:

 RopSynchronizationImportMessageChange. Imports new messages or changes

to existing messages.

 RopSynchronizationImportMessageMove. Communicates the movement of

messages between folders within the same mailbox.

 RopSynchronizationImportDeletes. Imports deletions of messages.

 RopSynchronizationImportReadStateChanges. Imports changes to the read

state of messages.

These ROPs do not have to be sent in any specific order and can be mixed together. For

example, all the deletions do not have to be uploaded before all the message moves, and all the

56 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

message changes do not have to be uploaded before all the deletions. See [MS-OXCSYNC]

section 3.1.5.2 for best practices for ordering different types of upload and download

operations.

RopSynchronizationImportMessageChange returns the handle of a Message object, which

the client MUST populate with the contents of the message. The client populates the Message

object by sending ROPSetProperties, ROPCreateAttachment, and so on, followed by

ROPSaveChangesMessage. For details about additional ROPs, see [MS-OXCROPS] and

[MX-OXCMSG].

The following table lists the common return values from the RopSynchronizationImport*

ROPs that clients SHOULD have special processing for.

Value Description

Success No error occurred, or a conflict has been resolved.

NoParentFolder The parent folder never existed.

ObjectDeleted An object or its parent folder has already been deleted.

IgnoreFailure The change was ignored, as it has been superseded by

another change.

For the complete list of error codes, see [MS-OXCDATA] section 2.4.

2.2.3.2.4.1 RopSynchronizationOpenCollector

RopSynchronizationOpenCollector configures the synchronization upload operation, and

returns a handle to a synchronization upload context.

A client SHOULD upload the initial ICS state (as specified in section 2.2.3.2.2) into the

returned synchronization context prior to using any RopSynchronizationImport* ROPs. The

client MAY elect not to upload the initial ICS state. See section 3.3.4.2.2.1 for details about

how that would affect responsibilities of the roles.

The object output in the OutputServerObject field MUST be released by using RopRelease

as soon as the client no longer needs it.

Request:

InputServerObject: MUST be a Folder object that contributed to the synchronization

scope that corresponds to the initial ICS state to be uploaded (as specified in section 3.3.1.2).

IsContentsCollector (1 byte): An 8-bit PtypBoolean value. TRUE (non-zero) if

synchronization upload is requested for contents of folders, and FALSE if it is requested for

their hierarchy.

Response:

57 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

OutputServerObject: MUST be the synchronization upload context. MUST be present IFF

ReturnValue equals Success.

2.2.3.2.4.2 RopSynchronizationImportMessageChange

RopSynchronizationImportMessageChange is used to import new messages or full

changes to existing messages into the server replica.

The object output in the OutputServerObject field MUST be released using RopRelease as

soon as the client no longer needs it.

Request:

InputServerObject: MUST be the synchronization upload context configured for the

collection of changes to content.

ImportFlag (1 byte): An 8-bit flag structure. For details about the possible values for this

structure, see section 2.2.3.2.4.2.1.

PropertyValueCount (2 bytes): An unsigned 16-bit integer. This value specifies the number

of structures in the PropertyValues field.

PropertyValues (variable): An array of PropertyValue structures. These values are used to

specify extra properties on the message, properties that cannot be set using RopSetProperties.

The following table lists the restrictions that exist for properties passed in this field.

Name Restrictions Comments

PidTagSourceKey Required

Fixed position

GID of the message being

uploaded in the local replica.

PidTagLastModificationTime Required

Fixed position

None.

PidTagChangeKey Required

Fixed position

XID of a change of a message

being uploaded in a local

replica. See section 3.1.1.1 for

information about how clients

can generate this value.

PidTagPredecessorChangeList Required

Fixed position

None.

< other properties > Prohibited None.

58 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

For details about the common return values for RopSynchronizationImport* ROPs that

require special processing, see section 2.2.3.2.4. The following table contains additional return

values.

Name Description

SyncConflict A conflict has occurred and conflict resolution was

either disabled through ImportFlag FailOnConflict, or

failed. No data was imported.

OutputServerObject: MUST be the Message object into which the client will upload the

rest of the message changes. MUST be present IFF ReturnValue equals Success.

MessageId (8 bytes): A 64-bit identifier that specifies the MID of the message that was

imported. MUST be set to "0x0000000000000000" if the PidTagSourceKey property that

was passed in PropertyValues was a GID. MUST be present IFF ReturnValue equals

Success.

Remarks:

The server is responsible for conflict detection and resolution, as specified in section 3.1.4.1.

The server MUST detect conflicts. Conflict resolution is controlled by the ImportFlag

FailOnConflict and the value of PidTagResolveMethod set on the containing folder.

2.2.3.2.4.2.1 ImportFlag

Name Value Description

Associated 0x10 The message being imported is an FAI.

FailOnConflict 0x40 If a conflict was detected and this flag is set, a ROP MUST fail

with SyncConflict.

If a conflict was detected and this flag is not set, a ROP MAY

succeed and return a handle to a Message object in the

response buffer. The server becomes responsible for

performing conflict resolution on

RopSaveChangesMessage, as specified in section 3.1.4.1.2.

This flag has no effect on the execution of the ROP if no

conflict has occurred.

Servers MAY fail the ROP if unknown flag bits are set.

59 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

2.2.3.2.4.3 RopSynchronizationImportHierarchyChange

RopSynchronizationImportHierarchyChange is used to import new folders, or changes to

existing folders, into the server replica.

Request:

InputServerObject: MUST be the synchronization upload context configured to collect

changes to the hierarchy.

HierarchyValueCount (2 bytes): An unsigned 16-bit integer. This value specifies the

number of structures in the HierarchyValues field.

HierarchyValues (variable): An array of PropertyValue structures. These values are used

to specify folder hierarchy properties, which determine the location of the folder within the

hierarchy. The following table lists the restrictions that exist on the HierarchyValue field.

Name Restrictions Comments

PidTagParentSourceKey Required

Fixed position

Can be zero-length to identify a

folder for which a

synchronization upload context

was opened.

PidTagSourceKey Required

Fixed position

GID of the folder being

uploaded in the local replica.

PidTagLastModificationTime Required

Fixed position

None.

PidTagChangeKey Required

Fixed position

XID of a change being uploaded

in a local replica. See section

3.1.1.1 for information about

how clients can generate its

value.

PidTagPredecessorChangeList Required

Fixed position

None.

PidTagDisplayName Required

Fixed position

Value MUST be a non-empty

string.

< other properties > Prohibited None.

60 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

PropertyValueCount (2 bytes): An unsigned 16-bit integer. This value specifies the number

of structures in the PropertyValues field.

PropertyValues (variable): An array of PropertyValue structures. These values are used to

specify folder properties.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

For common return values of RopSynchronizationImport* ROPs that require special

processing, see section 2.2.3.2.4.

FolderId (8 bytes): A 64-bit identifier. The FID of the folder that was imported. MUST be

set to "0x0000000000000000" if the PidTagSourceKey passed in PropertyValues was a

GID. MUST be present IFF ReturnValue equals Success.

Remarks:

Changes to parent folders MUST be made before changes to child folders. For example, you

cannot send RopSynchronizationImportHierarchyChange with a subfolder change before

informing the server of the existence of the parent folder.

To move a folder to a different subfolder within the same private mailbox, the client MUST

pass the PidTagSourceKey value of a destination parent folder in the

PidTagParentSourceKey value in the HierarchyValues field while passing the

PidTagSourceKey value of the folder being moved in the PidTagSourceKey property.

Moving folders within a public mailbox is not supported.

The server is responsible for conflict detection and resolution, as specified in section 3.1.4.1.

If a conflict is detected, the server MUST resolve it as specified in section 3.1.4.1.2 and return

Success. A server MAY report a conflict using a conflict notification message.

2.2.3.2.4.4 RopSynchronizationImportMessageMove

Imports information about moving a message between two existing folders within the same

mailbox.

Request:

InputServerObject: MUST be the synchronization upload context configured for

collecting changes to the contents of the message move destination folder.

SourceFolderIdSize (4 bytes): An unsigned 32-bit integer. This value specifies the size of the

SourceFolderId field.

SourceFolderId (variable): An array of bytes. This value contains a serialized representation

of the GID that represents a PidTagSourceKey value of the source folder. The source folder

MUST be in the same mailbox as the destination folder specified in InputServerObject.

SourceMessageIdSize (4 bytes): An unsigned 32-bit integer. This value specifies the size of

the SourceMessageId field.

61 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

SourceMessageId (variable): An array of bytes. This value contains a serialized

representation of the GID that represents a PidTagSourceKey of the message in the source

folder, identified by SourceFolderId field.

PredecessorChangeListSize (4 bytes): An unsigned 32-bit integer. This value specifies the

size of the PredecessorChangeList field.

PredecessorChangeList (variable): An array of bytes. This value contains a serialized

representation of the PidTagPredecessorChangeList value in the local replica of the

message being moved.

DestinationMessageIdSize (4 bytes): An unsigned 32-bit integer. This value specifies the

size of the DestinationMessageId field.

DestinationMessageId (variable): An array of bytes. This value contains a serialized

representation of the GID that represents a PidTagSourceKey of the message in the

destination folder. See section 3.1.1.1 for details about why DestinationMessageId MUST be

different from SourceMessageId.

ChangeNumberSize (4 bytes): An unsigned 32-bit integer. This value specifies the size of

the ChangeNumber field.

ChangeNumber (variable): An array of bytes. This value contains a serialized representation

of the XID that represents a PidTagChangeKey of the message in the destination folder.

Response:

Return value: An unsigned 32-bit integer. This value represents the ROP execution status.

For the common return values of the RopSynchronizationImport* ROPs that require special

processing, see section 2.2.3.2.4. The following table contains additional return values.

Name Description

NewerClientChange The ROP succeeded, but the server replica had an older version

of a message than the local replica. ChangeNumber and

PredecessorChangeList were not applied to the destination

message.

For the complete list of error codes, see [MS-OXCDATA] section 2.4.

MessageId (8 bytes): A 64-bit identifier. The MID of the moved message in a destination

folder. MUST be set to "0x0000000000000000". MUST be present IFF ReturnValue equals

Success.

Remarks:

Clients MUST <13> only pass folders from private mailboxes in InputServerObject.

To move folders within a mailbox, use RopSynchronizationImportHierarchyChange.

62 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

2.2.3.2.4.5 RopSynchronizationImportDeletes

RopSynchronizationImportDeletes imports deletions of messages or folders into the server

replica.

Request:

InputServerObject: MUST be the synchronization upload context. The type of

synchronization upload context MUST correspond to the IsHierarchy field.

IsHierarchy (1 byte): An 8-bit PtypBoolean value. TRUE (non-zero) if folder deletions are

being imported; otherwise, FALSE for message deletions.

PropertyValues (variable): An array of PropertyValue structures. The value of this field is

used to specify the folders or messages to delete. The following restrictions exist:

Name Restrictions Comments

[MVBinary] 0x00001102 Required

Fixed position

An array of serialized GIDs that represent the

objects to be deleted.

< other properties > Prohibited None.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

For common return values for RopSynchronizationImport* ROPs that require special

processing, see section 2.2.3.2.4.

2.2.3.2.4.6 RopSynchronizationImportReadStateChanges

Imports message read state changes into the server replica.

Request:

InputServerObject: MUST be the synchronization upload context configured to collect

changes to content.

MessageReadStateSize (2 bytes): An unsigned 16-bit integer. This value specifies the size in

bytes of the MessageReadStates field.

MessageReadStates (variable): An array of MessageReadState structures, one per each

message that’s changing its read state, that consist of the following:

 MessageIdSize (2 bytes): An unsigned 16-bit integer. This value specifies the size of

the MessageId field.

 MessageId (variable): An array of bytes. Contains a serialized representation of the

XID that represents a PidTagSourceKey for a message that is changing its read state.

 MarkAsRead (1 byte): An 8-bit PtypBoolean. This value specifies whether to mark

the message as read (TRUE, non-zero) or unread (FALSE, zero).

63 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

For common return values for the RopSynchronizationImport* ROPs that require special

processing, see section 2.2.3.2.4.

Remarks:

MIDs of FAI messages in MessageReadStates are ignored. This ROP partially succeeds

whenever it encounters a problem finding a single message or changing its read state. In case

of a partial success, an error code is returned in ReturnValue.

2.2.3.2.4.7 RopGetLocalReplicaIds

Allocates a range of internal identifiers for the purpose of assigning them to client-originated

objects in a local replica. For more details about client-assigned internal identifiers, see

section 3.3.1.1.1.

Request:

InputServerObject: MUST be a Logon object.

IdCount (4 bytes): An unsigned 32-bit integer. This value specifies the number of IDs to

allocate.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

ReplGuid (16 bytes): A GUID that specifies the REPLGUID shared by all allocated IDs.

GlobalCount (6 bytes): An array of bytes. This array specifies the value of the GLOBCNT

field for the first allocated ID in the allocated set of [GlobalCount, GlobalCount + IdCount

– 1].

Remarks:

The client can reconstruct all allocated GIDs by combining the returned ReplGuid with any

GLOBCNT values from the [GlobalCount, GlobalCount + IdCount – 1] range.

The client SHOULD use the obtained IDs whenever creating new folders or new messages in

any folder within its local replica. For more details about how clients can assign identifiers to

objects created in a local replica, see section 3.3.1.1.

2.2.3.2.4.8 RopSetLocalReplicaMidsetDeleted

Identifies that a set of IDs either belongs to deleted messages in the specified folder or will

never be used for any messages in the specified folder.

Request:

InputServerObject: MUST be a Folder object.

64 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

DataSize (2 bytes): An unsigned 16-bit integer. This value specifies the size of both the

LongTermIdRangeCount and LongTermIdRanges fields.

LongTermIdRangeCount (4 bytes): An unsigned 32-bit integer. This value specifies the

number of structures in the LongTermIdRanges field.

LongTermIdRanges (variable): An array of LongTermIdRange structures. Each

LongTermIdRange structure defines a range of IDs, which are reported as unused or deleted.

Consisists of the following:

 MinLongTermId (24 bytes): A LongTermId structure that defines the ID by using

the minimum value of a GLOBCNT part that belongs to a range.

 MaxLongTermId (24 bytes): A LongTermId structure that defines the ID by using

the maximum value of a GLOBCNT part that belongs to a range.

The ReplGuid parts of MinLongTermId and MaxLongTermId MUST be the same.

Response:

ReturnValue: An unsigned 32-bit integer. This value represents the ROP execution status.

Remarks:

All the IDs contained in LongTermIdRanges structures MUST have been obtained

previously by using RopGetLocalReplicaIds.

RopSetLocalReplicaMidsetDeleted does not deallocate IDs, it only reports that they cannot

be used within a given folder. For guidance on the use of

RopSetLocalReplicaMidsetDeleted, see [MS-OXCSYNC]. See section 3.2.1.2 in this

specification for details about its possible application on the server.

2.2.4 FastTransfer Stream

The information set encoded in a FastTransfer stream depends on the type and parameters

of the operation that produces it (as specified in section 2.2.4.4). Parsing (syntactic analysis) of

the stream can be done without knowing what operation produced it.

At a high level, the FastTransfer stream contains serialized mailbox data and markers. Note

that markers are not properties and can never have a value, although they are specified in [MS-

OXPROPS] and have the same syntax as property tags. The complete list of markers can be

found in section 2.2.4.1.4. The PidTag prefix is omitted to emphasize their difference from

properties.

Sections 2.2.4.1 and 2.2.4.2 contain an ABNF-like description of the tokenized FastTransfer

stream structure. The description uses the conventions established in [RFC4234], except for

the following:

 Names enclosed in curly brackets indicate terminal tokens that are serializations of

simple types (as specified in section 2.2.4.1.3). They can be followed by prose

definitions that add restrictions to disambiguate the lexical analysis.

65 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

 For display purposes, indented lines represent a continuation of the lines that

precede them.

Despite of their name, FastTransfer streams are not represented as Stream objects, and they

can only be manipulated by using RopFastTransferSourceGetBuffer for download

operations and RopFastTransferDestinationPutBuffer for upload operations.

2.2.4.1 Lexical structure

Lexical structure of the FastTransfer stream is essential to let its producers and consumers

agree on rules that govern splitting of the stream into sequential buffers retrieved by using

RopFastTransferSourceGetBuffer or supplied through

RopFastTransferDestinationPutBuffer. It is also beneficial for an explanation of the

protocol, as it separates matters of data serialization and deserialization (lexical analysis) from

data and data organization (syntactical analysis), and from its mapping to mailbox concepts

(semantics).

The lexical structure of a FastTransfer stream is as follows:

stream = 1*element

element = marker / propValue

marker = {PtypInteger32} <from the table in 2.2.4.1.4>

propValue = fixedPropType propInfo fixedSizeValue

propValue /= varPropType propInfo length varSizeValue

propValue /= mvPropType

propInfo

length

*(fixedSizeValue / length varSizeValue)

propInfo = taggedPropId / (namedPropId namedPropInfo)

namedPropInfo = {PtypGuid}PropertySet

((%x00 {PtypInteger32}dispid)

/ (%x01 {PtypString}name))

namedPropId = {PtypInteger16}PropertyId

<Greater or equal to 0x8000>

taggedPropId = {PtypInteger16}PropertyId

<less than 0x8000>

length = {PtypInteger32}

fixedPropType = {PtypInteger16} <see table below>

varPropType = {PtypInteger16} <see table below>

mvPropType = {PtypInteger16} <see table below>

66 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

A FastTransfer stream MAY be larger than a single buffer. The server MUST split the stream

when it cannot fit into a single buffer. A stream MUST be split either between two atoms or at

any point inside a varSizeValue. A stream MUST NOT be split within a single atom. The

lexical structure of an atom is as follows:

atom = marker

/ propDef

/ fixedSizeValue

/ length

propDef = (propType propInfo)

propType = fixedPropType / varPropType / mvPropType

2.2.4.1.1 fixedPropType, varPropType, mvPropType

Property types supported in FastTransfer streams are a subset of those defined in [MS-

OXCDATA] section 2.13.1.

Lexeme Range of types defined as a subset of types listed in section 2.14.2 of

[MS-OXCDATA]

fixedPropType Property type value of any type that has a fixed length, as specified in [MS-

OXCDATA] section 2.13.1.

varPropType Property type value of either PtypString, PtypString8 or PtypBinary,

PtypServerId, or PtypObject.

mvPropType Property type value of any multi-valued property type (starts with

PtypMultiple), whose base type is either a valid fixedPropType or a valid

varPropType.

2.2.4.1.2 propValue

Represents the identification and a value of a property or a meta-property.

fixedSizeValue or varSizeValue lexemes contained in a propValue represent a value of the

property and MUST be serializations of a base property type for a property type specified

with contained fixedPropType, varPropType, or mvPropType values.

2.2.4.1.3 Serialization of Simple Types

Serialization of simple types in FastTransfer streams is identical to serialization of property

values as specified [MS-OXCDATA], with the following exceptions:

67 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Type Difference in serialization

PtypBoolean 2-byte in FastTransfer streams, instead of 1-byte as specified in [MS-

OXCDATA].

Using little-endian byte ordering, "01 00" for TRUE and "00 00" for

FALSE.

Note that little-endian byte ordering MUST be used. The data type of simple type elements

determine how bytes are serialized on the wire. For example, Int16 value "0x1234" is encoded

as "34 12" on the wire.

2.2.4.1.4 Markers

The following table shows the complete list of markers used in FastTransfer streams. The

PidTag prefix is omitted in this table and everywhere else in the document to emphasize their

difference from properties.

Start/standalone marker name and its

numeric value

Corresponding end marker, if

applicable, and its numeric value

Folders

StartTopFld 0x40090003
EndFolder 0x400B0003

StartSubFld 0x400A0003

Messages and their parts

StartMessage 0x400C0003
EndMessage 0x400D0003

StartFAIMsg 0x40100003

StartEmbed 0x40010003 EndEmbed 0x40020003

StartRecip 0x40030003 EndRecip 0x40040003

NewAttach 0x40000003 EndAttach 0x400E0003

Synchronization download

IncrSyncChg 0x40120003 None.

IncrSyncDel 0x40130003 None.

68 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Start/standalone marker name and its

numeric value

Corresponding end marker, if

applicable, and its numeric value

IncrSyncEnd 0x40140003 None.

IncrSyncRead 0x402F0003 None.

IncrSyncStateBegin 0x403A0003 IncrSyncStateEnd 0x403B0003

IncrSyncProgressMode 0x4074000B None.

IncrSyncProgressPerMsg 0x4075000B None.

IncrSyncMsg 0x40150003 None.

Special

FXErrorInfo 0x40180003

2.2.4.1.5 Meta-Properties

Meta-properties contain information about how to process data, instead of containing data to

be processed. Use of meta-properties specified in this section is restricted to specific occasions

in FastTransfer streams; therefore, values for these meta-properties are serialized according

to FastTransfer stream rules (as specified in section 2.2.4.1.3).

2.2.4.1.5.1 PidTagFXDelProp

A PtypInteger32 value that represents a directive to a client to delete specific subobjects of

the object in context. The type of subobjects to delete is determined by the value of the meta-

property, which can be any of the property tags specified in section 2.2.1.6.

2.2.4.1.5.2 PidTagEcWarning

A PtypInteger32 value that conveys a warning that occurred when producing output for an

element in context.

The following error code requires special processing when passed as a value of the

PidTagEcWarning meta-property:

Name Description

PartiallyComplete The client SHOULD NOT assume that properties and subobjects

of an object represented by an element in context were output

completely.

69 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

For the complete list of error codes, see [MS-OXCDATA] section 2.4.

2.2.4.1.5.3 PidTagNewFXFolder

A PtypBinary value that provides information about alternative replicas for a public folder in

context. Represents a serialized FolderReplicaInfo structure.

2.2.4.1.5.4 PidTagIncrSyncGroupId

A PtypInteger32 value that specifies an identifier of a property group mapping. Directs the

client to use the specified property group mapping where applicable, until reset with another

instance of the PidTagIncrSyncGroupId meta-property.

See section 3.1.1.2 for more details about property groups.

2.2.4.1.5.5 PidTagIncrementalSyncMessagePartial

A PtypInteger32 value that specifies an index of a property group within a property group

mapping currently in context. Directs a client to treat all forthcoming property values as a part

of the specified group, where applicable, until reset with another instance of the

PidTagIncrementalSyncMessagePartial meta-property.

See section 3.1.1.2 for more details about property groups.

2.2.4.2 Syntactical Structure

The syntatactical structure of the FastTransfer adheres to the following guidelines:

 Camel-cased names are non-terminal syntactic elements ([RFC4234] section 2.3).

 Bolded Pascal-cased names are markers. Markers do not have the PidTag prefix.

 Normal Pascal-cased names are meta-properties, and have the PidTag prefix.

Note that markers never have a value, and meta-properties, just as regular properties, always

have a value when serialized into a FastTransfer stream. Therefore, wherever a marker

exists, it is serialized as 4 bytes. Meta-properties, on the other hand, are serialized the same as

propValue elements.

The sytactical structure of a FastTransfer stream is as follows:

root = contentsSync

/ hierarchySync

/ state

/ folderContent

/ messageContent

/ attachmentContent

/ messageList

/ topFolder

propValue = <see lexical structure in 2.2.4.1>

errorInfo = FXErrorInfo propList

70 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

propList = *propValue

subFolder = StartSubFld folderContent EndFolder

topFolder = StartTopFld folderContent EndFolder

folderContent = propList [PidTagEcWarning]

(PidTagNewFXFolder / folderMessages)

[PidTagFXDelProp *subFolder]

folderMessages = *2(PidTagFXDelProp messageList)

message = (StartMessage / StartFAIMsg)

messageContent

EndMessage

messageChildren = [PidTagFXDelProp *recipient]

[PidTagFXDelProp *attachment]

messageContent = propList messageChildren

messageList = 1*([PidTagEcWarning] message)

recipient = StartRecip propList EndRecip

attachment = NewAttach attachmentContent EndAttach

attachmentContent = propList [embeddedMessage]

embeddedMessage = StartEmbed messageContent EndEmbed

contentsSync = [progressTotal]

*([progressPerMessage] messageChange)

[deletions]

[readStateChanges]

state

IncrSyncEnd

hierarchySync = *folderChange

[deletions]

state

IncrSyncEnd

deletions = IncrSyncDel propList

folderChange = IncrSyncChg propList

groupInfo = IncrPropertyGroupInfo propList

messageChange = messageChangeFull / messageChangePartial

71 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

messageChangeFull = IncrSyncChg messageChangeHeader

IncrSyncMsg propList

messageChildren

messageChangeHeader = propList

messageChangePartial = [groupInfo] [PidTagIncrSyncGroupId]

IncrSyncChgPartial messageChangeHeader

*(PidTagIncrementalSyncMessagePartial propList

)

messageChildren

progressPerMessage = IncrSyncProgressPerMsg propList

progressTotal = IncrSyncProgressMode propList

readStateChanges = IncrSyncRead propList

state = IncrSyncStateBegin propList IncrSyncStateEnd

2.2.4.3 Semantics of Elements

2.2.4.3.1 attachmentContent

The attachmentContent element contains the properties and the embedded message of an

Attachment object, if present.

Property filters (as specified in section 3.2.4.6) can affect the Attachment object properties

in the contained propList.

The following table lists the restrictions that exist on the contained propList.

Name Restrictions Comments

PidTagAttachNumber Required

Fixed position

None.

< other properties > None. None.

2.2.4.3.2 contentsSync

The contentsSync element contains the result of the contents synchronization download

operation.

See section 3.2.4.1 for details about how servers MUST determine the set of differences that

need to be downloaded to clients.

2.2.4.3.3 deletions

The deletions element contains information about IDs of messaging objects that had been

deleted, expired, or moved out of the synchronization scope since the last synchronization, as

72 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

specified in the initial ICS state. See section 3.2.4.1 for details about how servers MUST

determine the set of IDs to be reported by using this element.

Deletions SHOULD NOT be present if SynchronizationFlag NoDeletions was set when

configuring the synchronization download operation.

The following restrictions exist on the contained propList:

 MUST contain at least one property.

 MUST adhere to the following restrictions:

Name Restrictions Comments

PidTagIdsetDeleted None. None.

PidTagIdsetSoftDeleted Conditional MUST NOT be present if

SynchronizationType equals Hierarchy.

MUST NOT be present if

SynchronizationFlag NoSoftDeletions is

set.

PidTagIdsetExpired Conditional MUST NOT be present if

SynchronizationType equals Hierarchy.

< other properties > Prohibited None.

2.2.4.3.4 errorInfo

The errorInfo element provides for out-of-band error reporting and recovery. It is used to

provide support for partial completion of the operations by scoping the failures down to the

failing object, rather than the entire operation.

The errorInfo element can be inserted wherever a lexical structure (specified in section

2.2.4.1) allows a marker or a propValue.

This element SHOULD be used IFF SendOptions RecoverMode is set. Note that by the

time a server encounters an error that requires failing a download of a messaging object in

context, it might have already output some part of the data pertaining to that object in the

previous buffer.

Clients MUST support parsing of this element if the client set RecoverMode in

SendOptions.

Whenever a server or a client produces or parses this element, it MUST unwind its producing

or parsing stack up to, but not including, the closest element that supports recovery. The

current version of the protocol defines two such elements: contentsSync and messageList.

73 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Upon receiving this element, clients MAY perform additional steps to remove a faulty object

from future synchronizations, as specified in [MS-OXCSYNC] section 3.1.5.3.3.

The following table lists the restrictions that exist on the contained propList.

Name Restrictions Comments

[PtypBinary] 0x00000102 Required

Fixed position

Serialized ExtendedErrorInfo structure. See

section 2.2.2.8 for more details.

< other properties > Prohibited None.

2.2.4.3.5 folderChange

The folderChange element contains a new or changed folder in the hierarchy

synchronization.

The contained propList contains the properties of the Folder object, possibly affected by

property filters (as specified in section 3.2.4.6) and combined with additional mandatory

properties that are required for object identification and conflict detection.

The following table lists the restrictions that exist on the contained propList.

Name Restrictions Comments

PidTagParentSourceKey Required None.

PidTagSourceKey Required None.

PidTagLastModificationTime Required None.

PidTagChangeKey Required None.

PidTagPredecessorChangeList Required None.

PidTagDisplayName Required None.

PidTagFolderId Conditional MUST be present IFF

SynchronizationExtraFlag
Eid is set.

PidTagParentFolderId Conditional MUST be present if

SynchronizationFlag

NoForeignIdentifiers is set.

74 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Name Restrictions Comments

< other properties > None. None.

2.2.4.3.6 folderContent

The folderContent element contains the content of a folder: its properties, messages, and

subfolders.

The propList contains the properties of the Folder object, which are possibly affected by

property filters (as specified in section 3.2.4.6).

The following table lists the restrictions that exist on the contained propList.

Name Restrictions Comments

PidTagFolderId Conditional

Fixed position

MUST be present IFF the folder is started

with StartTopFld.

PidTagDisplayName Required

Fixed position

None.

PidTagComment Required

Fixed position

None.

< other properties > None None.

See section 3.2.4.6 for more details about the impact of property and subobject filters that are

specified when configuring an operation on the content of this element.

The PidTagEcWarning meta-property MUST be output by the server if the client does not

have the permissions necessary to open the folder, to read its contents, view its subfolder

structure, or any additional permissions, as specified in section 3.2.4.4.1. The warning is

necessary to make it possible for a client to tell this case from an empty folder.

The PidTagNewFXFolder meta-property MUST be output instead of message elements

when outputting a public folder whose contents have not replicated yet.

Under conditions specified in section 3.2.4.6, subFolder elements MUST be preceded by a

PidTagFXDelProp meta-property for the PidTagContainerHierarchy property.

2.2.4.3.7 folderMessages

The folderMessages element contains the messages contained in a folder.

75 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

All FAI messages MUST be output first, followed by normal messages. Under conditions

specified in section 3.2.4.6, each of these groups MUST be preceded by a PidTagFXDelProp

meta-property for the corresponding subobject, PidTagFolderAssociatedContents or

PidTagContainerContents respectively.

2.2.4.3.8 groupInfo

The groupInfo element provides a definition for the property group mapping (as specified in

section 3.1.1.2). Property group mappings, after they are defined by using the groupInfo

element, can be referenced with the PidTagIncrSyncGroupId meta-property further in the

stream by its group ID.

The following table lists the restrictions that exist on the contained propList.

Name Restrictions Comments

[PtypBinary] 0x00000102 Required

Fixed position

Serialized PropertyGroupInfo structure. See

2.2.2.6 for more details.

< other properties > Prohibited None.

2.2.4.3.9 hierarchySync

The hierarchySync element contains the result of the hierarchy synchronization download

operation.

See section 3.2.4.1 for details about how servers MUST determine the set of differences that

need to be downloaded to clients.

The parent-child relationship is determined by comparing the PidTagSourceKey of a

prospective parent folder and a PidTagParentSourceKey of a prospective child folder. The

folderChange elements with zero-length PidTagParentSourceKey values are children of the

root of the synchronization operation.

There MUST be exactly one folderChange element for each descendant folder of the root of

the synchronization operation (that is the folder that was passed to

RopSynchronizationConfigure) that is new or has been changed since the last

synchronization. The folderChange elements for the parent folders MUST be output before

any of their child folders.

See section 3.2.4.1 for details about how servers MUST determine the set of differences that

need to be downloaded to clients.

2.2.4.3.10 message

The message element represents a Message object.

76 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

The type of the starting marker to use depends on whether the message is a normal message

or an FAI message. Normal messages use the StartMessage marker; FAI messages use the

StartFAIMsg marker.

2.2.4.3.11 messageChange

The messageChange element represents a change to a Message object.

A server MUST use messageChangeFull, instead of messageChange, if any of the following

are true:

 SendOptions Partial flag was not set.

 The MID of the message to be output is not in PidTagIdsetGiven from the initial

ICS state.

 The message is an FAI message.

 The message is a conflicting version contained in a conflict resolve message. See

section 3.1.4.1.2.1 for details.

Otherwise, it is up to the server to determine the most efficient way to communicate the

message change on a case-by-case basis.

2.2.4.3.12 messageChildren

The messageChildren element represents children of the Message objects: recipient and

Attachment objects.

See section 3.2.4.6 for more details about the impact of property and subobject filters that are

specified when configuring an operation on the content of this element.

Under the conditions specified in section 3.2.4.6, recipient and attachment elements MUST

be preceded by a PidTagFXDelProp meta-property for PidTagMessageRecipients and

PidTagMessageAttachments respectively.

2.2.4.3.13 messageChangeFull

The messageChageFull element contains the complete content of a new or changed message:

the message properties, the recipients, and the attachments.

Property filters (as specified in section 3.2.4.6) can affect the Message object properties in

the contained propList.

2.2.4.3.14 messageChangeHeader

The messageChangeHeader element contains a fixed set of information about the message

change that follows this element in the FastTransfer stream. The information in the header is

sufficient for message identification and conflict detection.

The following table lists the restrictions that exist on the contained propList.

77 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Name Restrictions Comments

PidTagSourceKey Required

Fixed position

None.

PidTagLastModificationTime Required

Fixed position

None.

PidTagChangeKey Required

Fixed position

None.

PidTagPredecessorChangeList Required

Fixed position

None.

PidTagAssociated Required

Fixed position

None.

PidTagMid Conditional MUST be present IFF

SynchronizationExtraFlag
Eid is set.

PidTagMessageSize Conditional MUST be present IFF

SynchronizationExtraFlag

MessageSize is set.

PidTagChangeNumber Conditional MUST be present IFF

SynchronizationExtraFlag
Cn is set.

< other properties > Prohibited None.

2.2.4.3.15 messageChangePartial

The messageChangePartial element represents the difference in message content since the

last download, as identified by the initial ICS state. Changes to a message are output based

on the granularity of the property group (as specified in section 3.1.1.2). The last encountered

PidTagIncrSyncGroupId meta-property determines which property group mapping MUST

be used.

Clients MUST treat every contained propList element as the complete content of a property

group denoted by the PidTagIncrementalSyncMessagePartial meta-property that preceded

it. That is, all properties missing from a propList, but defined for this group in the

corresponding property group mapping, MUST be deleted.

78 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

The following table lists the restrictions that exist on the contained propList elements.

Name Restrictions Comments

[PtypInteger32]

0x00000003

Conditional MUST be present IFF a property group is

empty, but was still marked as changed since

the last download.

Value MUST be "0". MUST be ignored by

clients.

< other properties > None None.

2.2.4.3.16 messageContent

The messageContent element represents the content of a message: its properties, the

recipients, and the attachments.

Property filters (as specified in section 3.2.4.6) can affect the Message object properties in

the contained propList.

2.2.4.3.17 messageList

The messageList element contains a list of messages, which is determined by the scope of the

operation.

For each message in the messageList, the server SHOULD output PidTagEcWarning if a

client does not have the permissions necessary to access it (as specified in section 3.2.4.4.1).

The warning is necessary to make it possible for a client to tell this case from a missing

message.

2.2.4.3.18 progressPerMessage

The progressPerMessage element contains data that describes the approximate size of

message change data that follows.

MUST be present IFF the progessTotal element was output within the same ancestor

contentsSync element.

MUST NOT be present if SynchronizationFlag Progress was not set when configuring the

synchronization download operation.

The following table lists the restrictions that exist on the contained propList.

Name Restrictions Comments

[PtypInteger32]

0x00000003

Required

Fixed position

Size of the message to be follow. Servers

MAY supply the same value as the

79 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Name Restrictions Comments

PidTagMessageSize in

messageChangeHeader, or use a different

approximation.

[Boolean] 0x0000000B Required

Fixed position

Identifies whether the Message object that

follows FAI.

< other properties > Prohibited None.

2.2.4.3.19 progressTotal

The progressTotal element contains data that describes the approximate size of all the

messageChange elements that will follow in this stream. MAY be used by clients to display

progress information. Servers MAY use a sum of message sizes (PidTagMessageSize) for all

messages in which changes will be downloaded in the current operation, or servers MAY use

a different approximation.

Note that this method of reporting progress is provided in addition to what is available in the

RopFastTransferSourceGetBuffer response. This method of reporting is supposed to reflect

the amount of work more precisely, as it is based on message sizes, rather than object count.

This element MUST be present if SynchronizationFlag Progress was set when configuring

the synchronization download operation, and a server supports progress reporting.

This element MUST NOT be present if SynchronizationFlag Progress was not set when

configuring the synchronization download operation.

The following table lists the restrictions that exist on the contained propList.

Name Restrictions Comments

[PtypBinary] 0x00000102 Required

Fixed position

Serialized ProgressInformation structure.

See section 2.2.2.5 for more details.

< other properties > Prohibited None.

2.2.4.3.20 propList

The propList elements MUST NOT contain propValue elements for meta-properties. All

instances in which meta-properties can be encountered in a document are mentioned explicitly

in the syntax ABNF.

Syntactic elements that contain a propList can express restrictions on a set of properties

and/or the position of properties within a list by using property list restriction table syntax

(as specified in section 2.2).

80 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Properties that contain an error (have the PtypErrorCode type) instead of an actual value

MUST be omitted from the propList.

2.2.4.3.21 propValue

The propValue element represents identification information and the value of the property.

Note that the protocol imposes no limit on the size of data that can be encoded using this

element, unlike the response buffers of RopQueryRows and RopGetPropertiesSpecific.

Clients and servers MUST be capable of accepting large amounts of data and MUST fail the

operation if the size of data crosses the threshold imposed by an implementation, rather than

truncating the data.

2.2.4.3.22 readStateChanges

The readStateChanges element contains information about MIDs of Message objects that

had their read state changed since the last synchronization, as specified by the initial ICS

state. See section 3.2.4.1 for details about how servers MUST determine the set of IDs to be

reported using this element.

This element SHOULD NOT be present if SynchronizationFlag ReadState was not set

when configuring the synchronization download operation.

The following restrictions exist on the contained propList:

 MUST contain at least one property.

 MUST adhere to the following restrictions:

Name Restrictions Comments

PidTagIdsetRead None. None.

PidTagIdsetUnread None. None.

< other properties > Prohibited None.

2.2.4.3.23 recipient

The recipient element represents a Recipient object, which is a subobject of the Message

object.

The propList child element contains the properties of the Recipient object.

The following table lists the restrictions that exist on the contained propList.

Name Restrictions Comments

PidTagRowid Required None.

81 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Name Restrictions Comments

Fixed position

< other properties > None. None.

2.2.4.3.24 root

The root element contains the root element of FastTransfer streams.

Producers of the FastTransfer stream MUST choose a contained element to generate

depending on the Bulk Data Transfer operation in effect. For more details, see the mapping

specified in sections 2.2.4.4 and 2.2.3.1.2.1.1.

2.2.4.3.25 state

The state element contains the final ICS state of the synchronization download operation.

See sections 3.2.4.1 and 3.2.1.1 for details about how servers MUST construct the final ICS

state.

The following table lists the restrictions that exist on the contained propList.

Name Restrictions Comments

PidTagIdsetGiven None. None.

PidTagCnsetSeen None. None.

PidTagCnsetSeenFAI Conditional MUST NOT be present if

SynchronizationType equals Hierarchy.

PidTagCnsetRead Conditional MUST NOT be present if

SynchronizationType equals Hierarchy.

< other properties > Prohibited None.

2.2.4.4 Applicability to ROPs

The following table describes how possible root elements in the FastTransfer stream

correspond to Bulk Data Transfer operations defined in section 1.3. Every download

operation has to be configured prior to being able to produce a FastTransfer stream.

Configuration starts by sending one of the ROPs in the following table and then performing

the additional ROP specific configuration steps (as specified in sections 2.2.3.1.1 and

2.2.3.2.1).

82 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

ROP that initiate an

operation

Root element in the

produced

FastTransfer stream

ROP request buffer field conditions

RopSynchronization-

- Configure contentsSync SynchronizationType equals

Contents.

hierarchySync SynchronizationType equals

Hierarchy.

- GetState state Always.

RopFastTranserSource-

- CopyTo

- CopyProperties
folderContent InputServerObject is a Folder

object.

messageContent InputServerObject is a Message

object.

attachmentContent InputServerObject is an

Attachment object.

- CopyMessages messageList Always.

- CopyFolder topFolder Always.

FastTransfer streams produced by operations initiated by the RopSynchronizationConfigure

ROP are intended for processing on the client only.

FastTransfer streams produced by operations initiated with the RopFastTransferSource*

ROPs can either be processed by the client or uploaded to the server through an operation

initiated by RopFastTransferDestinationConfigure. See section 2.2.3.1.2.1.1 for details

about the applicability of FastTransfer streams to FastTransfer upload operations.

83 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

The protocol details in sections 3.1.1.1 through 3.1.1.3.3.2.5 contain formulas operating on

sets of elements, which include the operators and special identifiers listed in the following

table.

Operat

or or

special

identifi

er

Example Definition

 A  B Union of two sets. Every element in the resulting set belongs to

either A, or B, or both.

 A  B Intersection of two sets. Every element in the resulting set belongs

to both A and B.

{ } {A1, …, An} A set consisting of elements A1 through An.

⊆
⊇

B ⊆ A

A ⊇ B

B is a subset of or equal to A: every element of B is also an

element of A.

+= Set += element Instructs to include an element into a set. The Set is assigned to

Set  {element}.

ø A = ø Empty set: a set that contains no elements. Set A is asserted to be

an empty set, it has no elements.

3.1.1.1 Object and Change Identification

On creation, objects in the mailbox are assigned internal identifiers, commonly known as

FIDs for folders and MIDs for messages. After internal identifiers are assigned to an object,

they MUST never be reused, even if the object it was first assigned to no longer exists.

Copying of messaging objects within a mailbox or moving messages between folders of the

same mailbox translates into creation of new messaging objects and therefore, new internal

identifiers MUST be assigned to new copies. All other observed behavior is an

implementation detail, and not a part of the protocol, and therefore MUST NOT be relied

upon.

84 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

In most cases, the server is responsible for assigning internal identifiers to mailbox objects,

which usually happens during execution of ROPs, such as RopSaveChangesMessage and

RopCopyTo, or while processing events not controlled by the client (such as Message object

delivery).

Messaging objects also maintain a change number, or CN, which identifies a version of an

object and adheres to the same rules as internal identifiers for messaging objects. A new

change number is assigned to an object whenever an object is created or modified. For

messages, in addition to a change number for the entire message, there are additional

mechanisms for tracking changes to their elements: read state (as specified in section 3.2.4.3)

and properties and subobjects arranged into groups (as specified in section 3.1.1.2).

A protocol role that generates internal identifiers for messaging objects and changes MUST

ensure that the GLOBCNT portions of the internal identifiers that share the same

NamespaceGuid (as specified in the XID structure in section 2.2.2.1) only increase with time,

when compared byte to byte.

Whenever a change number is changed on a messaging object as the result of the direct

modification of the object in a replica, as opposed to a synchronization, its predecessor

change list (PCL) MUST be merged with the XID that represents the new change number.

Although it is not recommended as a general practice, it is possible to change an object

without altering its change number, and therefore without flagging it for synchronization. For

more details about changing an object without altering its change number, see the ROPs

specified in [MS-OXCROPS] that end with "NoReplicate".

Clients that use ICS upload to synchronize their local replica with a server replica MUST

assign identifiers to client-originated objects in a local replica by using one of the mechanisms

specified in section 3.3.1.1.1. Clients MUST generate foreign identifiers (as specified in

section 3.3.1.1.3) to identify client-side changes to objects that they import through ICS

upload.

Upon successful import of a new or changed object using ICS upload, the server MUST do

the following when receiving RopSaveChangesMessage:

 Assign the object a new internal change number (PidTagChangeNumber).

This is necessary because the server MUST be able to represent the imported version

in the PidTagCnsetSeen or PidTagCnsetSeenFAI properties, and these properties

cannot operate on foreign identifiers for change numbers that a client passes.

 Assign the object an internal identifier (PidTagMid or PidTagFolderId) based on the

kind of external identifier that was passed for the objects identification by the client

IFF the object is new.

o If the external identifier is a GID, the server MUST convert it to a short-term

internal identifier and assign it to an imported object.

 Assign the object the given PidTagChangeKey and PCL

(PidTagPredecessorChangeList) that equals PCL  {PidTagChangeKey}.

85 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

If the import of the object triggered detection of a conflict, the server MUST follow the

previous steps for a version of the object resulting from the conflict resolution. See section

3.1.4.1 for details about handling conflict.

Foreign identifiers supplied by clients for change identification (PidTagChangeKey) are

replaced whenever their corresponding internal identifiers change. Examples are provided in

the following table.

Sequence of client action Corresponding server reaction

RopSynchronizationImportMessageChange
for a new message:

 SourceKey = GID(ID1)

 ExternalChangeNumber = XCN1

Client checkpoints the stored initial ICS state:

IdsetGiven += ID2

 SourceKey = GID(ID1)

 Mid = ID1

 ExternalChangeNumber = XCN1

 ChangeNumber = CN2

 Final ICS State: CnsetSeen += CN2

RopSynchronizationImportMessageChange

 SourceKey = GID(ID1)

 ExternalChangeNumber = XCN3

 ExternalChangeNumber = XCN3

 ChangeNumber = CN4

 Final ICS state: CnsetSeen += CN4

ICS download of contents SourceKey = GID(ID1)

 Mid = ID1

 ExternalChangeNumber = XCN3

 ChangeNumber = CN4

RopOpenMessage – RopSetProperties –

RopSaveChangesMessage
 ChangeNumber = CN5

ICS Download Changes to a message:

o SourceKey = GID(ID1)

o Mid = ID1

o ExternalChangeNumber =

GID(CN5)

o ChangeNumber = CN5

 Final ICS state: CnsetSeen += CN5

86 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Sequence of client action Corresponding server reaction

RopSynchronizationImportMessageMove Message is hard-deleted in the source

folder A.

 A copy of the message is created in

destination folder B with:

o Mid = ID2

o ChangeNumber = CN6

ICS download of contents for folder A Deletions: ID1

 Final ICS state: IdsetGiven -= ID1

ICS download of contents for folder B New message:

o SourceKey = GID(ID2)

o Mid = ID2

o ExternalChangeNumber =

GID(CN6)

o ChangeNumber = CN6

 Final ICS state:

o IdsetGiven -= ID2

o CnsetSeen += CN6

RopSynchronizationImportMessageChange

 SourceKey = GID(ID2)

 ExternalChangeNumber = XCN7

 ExternalChangeNumber = XCN7

 ChangeNumber = CN8

3.1.1.2 Property Groups

If servers choose to support partial message change synchronization, they MUST either use a

mechanism described in this section, or use an alternative mechanism that localizes changes to

a message to a set of properties and subobjects, which can be unambiguously expressed by

using the messageChangePartial element of the FastTransfer stream.

ICS is optimized for reporting partial changes to messages on a property group basis. The

simplest approach for servers providing that information is to track changes made to groups of

properties. A group is considered changed if any of the properties in the group are modified. It

is up to the server to define a property group mapping - how properties are distributed into

87 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

groups. ICS offers a way to communicate property group mapping information per-message,

so every message MAY use its own property group mapping. However, to minimize

overhead, it is recommended that the number of different mappings is kept to a minimum.

For example, a change to any single attachment property would mean that all the properties

in the attachment property group are updated during ICS. Likewise, a change to any one body

property would mean that all the properties in the body property group are updated during the

next synchronization.

To track changes to property groups on a message, servers SHOULD keep change numbers

for each property group, and assign a new change number to both the group and the message

whenever a change is made to a property that belongs to the group. Note that marking a

message as read or unread is the most common type of message modification, and there is a

specific mechanism to support just that change, as specified in section 3.2.4.3.

How properties are organized into property groups determines their property group mapping.

One message in a mailbox might have a different mapping <14> than another message, which

means that the properties in group N on one message might be different than the properties in

group N in another message.

3.1.1.3 Serialization of IDSET

When an IDSET has to be transmitted from a client to a server or from a server to a client, it

has to be serialized. This section contains details about how IDSETs MUST be serialized.

3.1.1.3.1 Formatted IDSET

Before serialization, the contents of an IDSET have to be arranged in such a way as to allow it

to be properly encoded. The ID values MUST be arranged by REPLID and all IDs for each

REPLID MUST be reduced into a GLOBSET of GLOBCNT values. Each GLOBSET

MUST be arranged from lowest to highest GLOBCNT where all duplicate GLOBCNT values

are removed. The remaining GLOBCNT values MUST be grouped into consecutive ranges

with a low GLOBCNT value and a high GLOBCNT value. If a GLOBCNT value is disjoint it

MUST be made into a singleton range with the low and high GLOBCNT values being the

same. The following diagram shows what a properly formatted IDSET MUST look like for

serialization.

88 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

IDSET

REPLID 1
GLOBCNT

(low)

RANGE 1

GLOBCNT

(high)

GLOBSET 1

REPLID 2

GLOBCNT

(low)

RANGE 2

GLOBCNT

(high)

GLOBCNT

(low)

RANGE M1

GLOBCNT

(high)

. . .

REPLID N

GLOBCNT

(low)

RANGE 1

GLOBCNT

(high)

GLOBSET 2

GLOBCNT

(low)

RANGE 2

GLOBCNT

(high)

GLOBCNT

(low)

RANGE M2

GLOBCNT

(high)

. . .

GLOBCNT

(low)

RANGE 1

GLOBCNT

(high)

GLOBSET N

GLOBCNT

(low)

RANGE 2

GLOBCNT

(high)

GLOBCNT

(low)

RANGE MN

GLOBCNT

(high)

. . .

.

.

.

Figure 2: Formatted IDSET

3.1.1.3.2 IDSET Serialization

There are two different formats in which a serialized IDSET can exist on the wire. The only

difference is how the REPLID value is represented in the serialization buffer. The first format

contains the REPLID value followed by the GLOBSET data. The second format contains,

instead of the REPLID, the ReplicaGuid that is associated with the REPLID, followed by the

GLOBSET data. No information contained in the serialized buffer identifies which format is

being used. The context in which the serialized IDSET is being used on the wire dictates

which format MUST be used. Sections 3.1.1.3.3 through 3.1.1.3.3.2.5 describe the layout of

both formats on the wire.

See section 2.2.2.3 for more details about the format of each serialized IDSET.

3.1.1.3.3 GLOBSET Serialization

IDSET serialization requires each GLOBSET within the IDSET to be serialized. The

GLOBCNT ranges within the GLOBSET are serialized by using special encoding commands

to compress the amount of data for each GLOBCNT pair. This section contains information

about how to encode and decode a GLOBSET during IDSET serialization.

3.1.1.3.3.1 Encoding

89 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

The following commands can be used to encode a GLOBSET.

3.1.1.3.3.1.1 Push Command (0x01 – 0x06)

The Push command SHOULD be used when multiple GLOBCNT values share the same

high-order values. For example, if all GLOBCNT values have the same two high-order bytes,

the Push command (0x02) SHOULD be used to push two bytes onto the common byte

stack. These two bytes will be used to create GLOBCNT pairs during decoding.

The Push command can also be used to generate an encoding for a singleton range where the

low value and the high value are the same. When a Push command places a sixth byte onto

the common byte stack, it tells the decoder the next GLOBCNT pair has all six bytes in

common. This will place a singleton GLOBCNT range into the GLOBSET when decoded.

The values added to the common byte stack on the last Push command are removed

automatically and do not require a Pop command.

See section 2.2.2.4.1 for more details about the format of the Push command.

3.1.1.3.3.1.2 Pop Command (0x50)

Bytes that have been pushed onto the common byte stack with a Push command can be

removed using the Pop command. The Push and Pop commands are used together to adjust

the bytes that are stored on the common byte stack. The common byte stack is used to reduce

the amount of serialized data if the GLOBCNT values all share common high-order bytes.

This allows for those common high-order bytes to be encoded and placed into the serialization

buffer only once and not repeated with every GLOBCNT. The Pop command MUST NOT be

used if no bytes are currently on the common byte stack.

See section 2.2.2.4.2 for more details about the format of the Pop command.

3.1.1.3.3.1.3 Bitmask Command (0x42)

The Bitmask command is used when there are multiple GLOBCNT ranges that share five

high-order bytes in common and the low-order bytes are all within 8 values of each other.

Each GLOBCNT range is represented by one or more bits in a bitmask. There MUST already

be five high-order bytes in the common byte stack to use this command. The Bitmask

command can only represent at most five GLOBCNT ranges.

See section 2.2.2.4.3 for more details about the format of the Bitmask command and its fields.

The StartingValue field MUST be set to the low-order byte of the low value of the first

GLOBCNT range. The Bitmask field MUST have one bit set for each value within a range,

excluding the low value of the first GLOBCNT range. The bit to set for each value within a

range is determined by subtracting the low-order byte of the GLOBCNT from the

StartingValue. From the result, subtract one. The bit numbers within the Bitmask field are 0

for the lowest bit to 7 the highest bit. For all GLOBCNT values between ranges, the bit is not

set.

90 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

For example, given a set of ranges where all have the same five high-order bytes in common

and the low-order bytes are the values {0x01-0x03, 0x05-0x05, 0x07-0x09}, it would be

encoded as a StartingValue of 0x01 and the Bitmask would be 0xEB. The Bitmask value is

broken down in the following table.

Low-Order Byte Value 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02

Bit Number 7 6 5 4 3 2 1 0

Bit Value 1 1 1 0 1 0 1 1

If you take the StartingValue and each low-order byte value corresponding to a bit that is set

in the Bitmask, you end up with the low-order byte values {0x01, 0x02, 0x03, 0x05, 0x07,

0x08, 0x09}. If you collapse these into ranges, you will have {0x01-0x03, 0x05-0x05, 0x07-

0x09}.

3.1.1.3.3.1.4 Range Command (0x52)

The Range command is used to generate a single GLOBCNT range. If the low and high

value of the GLOBCNT range are not the same, or the range has values that are more than 8

bytes from each other or the low and high value do not share five high-order bytes in common,

the Range command MUST be used.

If the low and high GLOBCNT values share common high-order bytes, these SHOULD be

pushed onto the common byte stack by using the Push command prior to using the Range

command. The low-order bytes that are not in common are used to build the Range

command.

See section 2.2.2.4.4 for more details about the format of the Range command and its fields.

3.1.1.3.3.1.5 End Command (0x00)

The End command is used to signal the end of the GLOBSET encoding. This command

MUST be added after all GLOBCNT ranges within the GLOBSET have been encoded. The

End command can only be used if the common byte stack is empty. If after all GLOBCNT

ranges have been encoded, there are still bytes on the common byte stack, they MUST be

removed with one or more Pop commands before the End command can be used.

See section 2.2.2.4.5 for more details about the format of the End command.

3.1.1.3.3.2 Decoding

The following commands can exist in a serialized GLOBSET.

3.1.1.3.3.2.1 Push Command (0x01 – 0x06)

The Push command can add one to six bytes of high-order bytes to a common byte stack.

The common byte stack is used in conjunction with subsequent encoding commands to build

91 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

GLOBCNT pairs that represent GLOBCNT ranges within the GLOBSET. When building a

GLOBCNT, all the bytes on the common byte stack are used and any remaining bytes needed

for a complete GLOBCNT have to come from another encoding command. The common

bytes are pushed onto the stack highest to lowest byte order.

See section 2.2.2.4.1 for more details about the format of the Push command in the

serialization buffer.

3.1.1.3.3.2.2 Pop Command (0x50)

The Pop command removes the bytes that were previously pushed onto the common byte

stack from the last Push command. The Pop command unwinds the stack in the reverse order

in which the bytes where pushed.

See section 2.2.2.4.2 for more details about the format of the Pop command in the

serialization buffer.

3.1.1.3.3.2.3 Bitmask Command (0x42)

The Bitmask command MUST only be encountered when there are five bytes in the common

byte stack.

See section 2.2.2.4.3 for more details about the format of the Bitmask command and its fields.

Using the StartingValue and the Bitmask fields of the Bitmask command, a set of low-order

bytes can be produced. See section 3.1.1.3.3.1.3 for more details about decoding the Bitmask

field to produce individual low-order values. Each low-order byte MUST be combined with

the required five high-order bytes on the common byte stack or form a complete 6-byte

GLOBCNT value, which MUST be added to the GLOBSET.

3.1.1.3.3.2.4 Range Command (0x52)

The Range command generates a GLOBCNT range. The GLOBCNT range MUST be added

to the GLOBSET.

See section 2.2.2.4.4 for details about the format of the Range command and its fields.

The Range command contains two byte array fields, the LowValue and HighValue. Each of

these fields MUST be combined with any high-order bytes in the common byte stack to

produce a 6-byte GLOBCNT value. The two GLOBCNT values are the low and high value of

the GLOBCNT range.

3.1.1.3.3.2.5 End Command (0x00)

When the End command is encountered, the GLOBSET MUST be complete based on the

GLOBCNT values generated from any previous encoding commands. The End command

MUST NOT be encountered when there are bytes stored on the common byte stack.

92 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Conflict Handling

The properties that are associated with a message or a folder can be modified by the server or

client at any time. Synchronizing these changes can result in conflicts in which a server or a

client has to decide which set of message properties or folder properties to use: the local copy,

or the copy being replicated.

This specification does not mandate that clients implement any conflict handling. However, if

clients do implement conflict handling, their conflict handling logic MUST be compatible

with the one mandated for servers, as specified in this section, to ensure the consistency of

user experience regardless of the role performing the conflict handling. When referring to

synchronization in this specification, both download and upload are considered, unless

specified otherwise.

3.1.4.1.1 Detection

Servers MUST implement conflict detection using an algorithm compatible with the one

described in this section.

Servers MUST perform conflict detection on ICS uploads for versions of messaging objects

stored in a server replica and passed by the client through the RopSynchronizationImport*

ROPs.

Conflict detection is performed by examining the PidTagPredecessorChangeList properties

for objects that have the same value for the PidTagSourceKey property.

Clients MAY perform conflict detection during ICS download for versions of objects stored

in a local replica and passed by the server in a FastTransfer stream.

To illustrate the use of PCLs in conflict detection, the following algorithm uses sample PCLs

(PCLA and PCLB) to detect a conflict between two versions of the same messaging object.

Conflict Detection Algorithm

PCLA includes PCLB IFF for every XID in PCLB there is an XID in PCLA that has the same

NamespaceGuid and same or greater LocalId part. The notation PCLA ≽ PCLB will be used

if PCLA includes or is equal to PCLB.

If a change to a messaging object is being synchronized from replica A to replica B, use the

following statements to identify the conflict and the version to replicate:

93 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

1) If PCLA includes PCLB, then the version from replica A is newer and replaces the

version in replica B.

2) If PCLB includes or is equal to PCLA, then the version from replica A is older, and is

ignored. The version in replica B remains intact.

3) If neither 1 nor 2 is true, then versions from replicas A and B are in conflict.

Servers MAY implement additional conflict detection mechanisms, as long as PCLs for object

versions that do and do not conflict adhere to this criteria.

3.1.4.1.2 Resolution

At a minimum, servers MUST implement conflict resolution to the extent specified in this

section. Servers MAY implement additional resolution algorithms. Any additional resolution

algorithms MUST NOT result in the creation of conflict resolve messages, as specified in

section 3.1.4.1.2.1.

A version that results from conflict resolution MUST have a PCL that makes it a successor of

all conflicting versions. To achieve that, roles SHOULD assign the successor a PCL created

by merging the PCLs of all conflicting versions.

Version X is a successor of versions A and B IFF the conflict detection algorithm in 3.1.4.1.1

would determine that X is not in conflict and is newer than both A and B.

PCLX is a merge of PCLA and PCLB IFF all of the following statements are true:

1) PCLX ⊆ (PCLA  PCLB)

2) PCLX ≽ PCLA

3) PCLX ≽ PCLB

3.1.4.1.2.1 Conflict Resolve Message

A conflict resolve message provides a way to encapsulate conflicting versions of a Message

object into a single Message object, by storing all the versions of the Message object as

individual attachments to the new Message object. For more details about conflict resolve

messages, see [MS-OXCSYNC] section 3.1.5.4. With the exceptions specified in [MS-

OXCSYNC] section 3.1.5.4, the contents of the conflict resolve message include all properties

and subobjects of the winning version; therefore the conflict resolve message can be used in

place of the winning version whenever needed. The winner MUST be determined by the last

writer wins algorithm, as specified in section 3.1.4.1.2.2. Because the conflict resolve message

is a successor of all the conflicting versions it represents, its PCL MUST be the merge of the

PCLs of the conflicting versions.

Conflict resolve messages MUST NOT be synchronized as Message objects. Instead, each

attachment that represents a version in conflict MUST be synchronized as a separate Message

object. This allows the other role to re-resolve the conflict during synchronization, while

considering all (possibly, more than two) conflicting versions.

94 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

The last writer wins algorithm SHOULD be used for conflicts detected during hierarchy

synchronization and contents synchronization of normal messages, unless specified

otherwise in the PidTagResolveMethod property set on the folder.

3.1.4.1.2.2 Last Writer Wins Algorithm

The last writer wins algorithm uses the PidTagLastModificationTime property to determine

the winning version, as specified in the following steps:

1) The version with the most recent PidTagLastModificationTime wins.

2) If the PidTagLastModificationTime value is equal on both objects, the winning

version MAY <15> be determined by comparing byte-to-byte values of the

NamespaceGuid field for XIDs in the PidTagChangeKey properties.

3) If the byte-to-byte comparison in step 2 determines that the NamespaceGuid fields

are equal, the version being imported wins.

This algorithm SHOULD be used for conflicts detected during hierarchy synchronization

and contents synchronization of FAI messages.

3.1.4.1.3 Reporting

Conflict reporting, if needed, SHOULD be done through a combination of the following

methods:

1) Failing the ROP that detected the conflict.

2) Creating a conflict resolve message.

3) Creating a conflict notification message, as specified in [MS-OXCSYNC] section

3.1.5.4.

Servers MUST implement conflict reporting by failing ROPs and creating conflict resolve

messages. Servers MAY implement other means of conflict reporting.

The use of the conflict resolve message combines semi-automatic conflict resolution with

conflict reporting: the message has all properties of the winning version, while at the same

time it contains all conflicting versions as its attachments, which clients MAY use to offer

manual conflict resolution.

Determining whether to perform conflict reporting, and what method of conflict reporting

SHOULD be used, is dependent on the operation that triggered the conflict detection and on

the value of the PidTagResolveMethod property on the folder.

For example, RopSynchronizationImportMessageChange has a flag FailOnConflict,

which switches between reporting by failing of the ROP and reporting by creating a conflict

notification message. However, RopSyhcnronizationImportHierarchyChange MUST

detect and resolve, and MAY report, possible conflicts by using a conflict notification

message.

95 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

3.1.5 Message Processing Events and Sequencing Rules

ROPs discussed in this document are synchronous and MUST be executed in the order

outlined for each operation discussed in sections 1.3 and 2.2.3 and their subsections.

Otherwise, the client and server behavior remains undefined.

3.1.6 Creating Compact IDSETsOther Local Events

None.

3.2 Server Details

3.2.1 Abstract Data Model

3.2.1.1 Isolation of Download and Upload Operations

Clients MUST NOT assume that upload or download operations are isolated transactions.

Upload and download operations can be affected by other operations on messaging objects.

To counteract the lack of transaction isolation between ICS download operations and the rest

of operations that occur on messaging objects at the same time, servers MUST guarantee that

the final ICS state does not reflect the state of the server replica at the end of the operation,

but instead reflects the actual differences downloaded to a client, combined with the initial

ICS state.

3.2.1.2 Creating Compact IDSETs

As the number of changes that happen to a folder grow over its lifetime, the sets of MIDs and

CNs that need to be kept in IDSETs grow as well. The size of the IDSET is rarely a problem

for hierarchy synchronizations due to the small number of folders commonly present in

mailboxes. Therefore, this discussion focuses on contents synchronization. In this section,

the term IDSET is used to refer to both IDSETs and CNSETs.

The following mechanisms are available to help optimize IDSETs for performance:

1. IDSET compression: The wire format of IDSETs is optimized for consecutive ranges

and sets of non-consecutive IDs that have close values.

2. Clustering of IDs: Clients and servers SHOULD allocate IDs of messages within a

folder from contiguous sets of IDs. This optimization is based on an assumption that

with time, all old messages will be either deleted or moved to another folder, and so all

of their IDs could be represented as one range. See section 3.3.1.1.1 for details.

3. Collapsing of ranges: If an IDSET is never iterated over and is only used in

operations like "not in", it is possible to add ranges of IDs to the IDSET to help

collapse its regions, if that would not affect the results of operations it is used in.

Note that because the synchronization scope limits synchronization to one folder, and

96 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

the algorithm for determining the difference between replicas (specified in section

3.2.4.1) only checks that a certain ID is not in the PidTagCnset* properties, it is

possible to add CNs that were either never used or used on objects outside the

synchronization scope to these IDSETs without affecting the outcome. Note that this

MUST NOT be done for IDSETs that are ever iterated over, such as

PidTagIdsetGiven, as it will change the outcome.

For example, an IDSET contains [10; 20] and [30; 40] for some REPLGUID.

Because every internal change number within the same REPLGUID MUST be

greater than any previous one, and the change numbers [21; 29] do not belong to any

messages in the current folder, the two regions can be safely collapsed into [10; 40].

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

3.2.4.1 Determining What Differences Need to be Downloaded

In this section, all references to the ICS state properties refer to values uploaded in the initial

ICS state.

For every object in the synchronization scope, servers MUST do the following:

 Include information about a change to an object if one of the following applies:

o It is a folder

AND a change number is not in PidTagCnsetSeen.

o It is a normal message

AND SynchronizationFlag Normal was set

AND a change number is not in PidTagCnsetSeen.

o It is an FAI message

AND SynchronizationFlag FAI was set

AND a change number is not in PidTagCnsetSeenFAI.

 If SynchronizationFlag NoDeletions is not set, include deletion information about

objects that either:

o Have their internal identifiers present in PidTagIdsetGiven

AND are missing from the server replica.

o Are folders that have never been reported as deleted.

97 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

 If SynchronizationFlag NoSoftDeletions is not set, include deletion information

about objects that:

o Have their internal identifiers present in PidTagIdsetGiven

AND exist in a server replica

AND belong to a folder that defines the synchronization scope

AND do not match the restriction that defines the synchronization scope.

 If SynchronizationFlag ReadState is set, include read state change information about

messages that:

o Do not have their change numbers for read and unread state in

PidTagCnsetRead
AND are not FAI messages

AND have not had change information downloaded for them in this session.

The server needs to make sure that the checkpoint ICS state that is returned by

RopSynchronizationGetTransferState, sent before the subsequent

RopFastTransferSourceGetBuffer, contains only the differences that have been

downloaded to the client in the current synchronization download operation, in addition to

what was reflected in the initial ICS state. Note that the final ICS state that has to be

downloaded in the FastTransfer stream as the last portion of the payload is exactly the same

as the checkpoint ICS state that corresponds to the end of the operation.

The following invariants define the relationship between the initial ICS state, the checkpoint

ICS state, and differences downloaded at the time of checkpointing. The following table

contains the nomenclature used to describe the invariants.

PropIndex Property Prop of the ICS state (as specified in section

2.2.1.1). Index can be I for Initial and C for

checkpoint.

PropD Property Prop that contains a particular set of

differences that have been downloaded in the current

operation, as specified in section 2.2.1.3.

{changeSubset.Id}

{changeSubset.Cn}

Internal identifiers or change numbers of all changes

that have been downloaded in the current operation.

The Subset can be one of the following:

 Omitted to denote all changes.

 Normal for normal messages.

 FAI for FAI messages.

 Partial for normal messages downloaded as

partial changes.

98 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

{readStateChange.Id}

{readStateChange.ReadStateCn}

Internal identifiers or read state change numbers of all

normal messages, with only the read state changed,

which have been downloaded in the current operation.

Servers MUST ensure that the following invariants are true:

AllDeleted = (IdsetDeletedD  IdsetSoftDeletedD  IdsetExpiredD)

IdsetGivenC = (IdsetGivenI  {change.Id}) \ AllDeleted

CnsetSeenC = CnsetSeenI  {changeNormal.Cn}

CnsetSeenFAIC = CnsetSeenFAII  {changeFAI.Cn}

CnsetReadC = CnsetReadI  {readStateChange.ReadCn}

Invariants for CnsetSeenC, CnsetSeenFAIC, and CnsetReadC are amended in 3.2.1.2.

IdsetGivenI ⊇ {changesPartial.Id}

IdsetGivenI ⊇ (IdsetReadD  IdsetUnreadD)

{readStateChange.Id} = IdsetReadD  IdsetUnreadD

{change.Id}  AllDeleted = ø

{change.Cn}  (CnsetSeenI  CnsetSeenFAII) = ø

{readStateChange.Id}  AllDeleted = ø

{readStateChange.Id}  {change.Id} = ø

3.2.4.2 Generating the PidTagSourceKey Value

When the PidTagSourceKey value is missing, the server MUST generate it by producing a

GID from the internal identifier (MID or FID) of the object by using the same mapping

algorithm as described for RopLongTermIdFromId (as specified in [MS-OXCSTOR]).

The only exception is when a server needs to generate this property on the fly for a folder,

which is a root of the current hierarchy synchronization download operation (that is, it is the

folder that was passed to RopSynchronizationConfigure). In this case, PidTagSourceKey

MUST be output as a zero-length PtypBinary.

3.2.4.3 Read State Change Tracking

To conserve the bandwidth between clients and servers, the read state of the messages

SHOULD be tracked separately from other changes.

99 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Whenever the read state of a message changes, a separate change number on the message,

the read state change number, SHOULD be assigned a new value. The change number of the

message SHOULD NOT be modified unless other changes to a message were made at the

same time. This allows the change to be efficiently downloaded to a client as the MID in an

IDSET PidTagIdsetRead or PidTagIdsetUnread, compressed together with read state

changes to other messages in the synchronization scope.

3.2.4.4 Fast Transfer Copy Operations

3.2.4.4.1 Download

When producing FastTransfer streams for operations configured with

RopFastTransferSourceCopy* ROPs, servers SHOULD skip over objects that the client

does not have adequate permissions for. For example, if the Move flag of the CopyFlags field

(as specified in section 2.2.3.1.1.1.1) is set, an additional permission to delete an object is

required for an object to be included in the output FastTransfer stream. If a permission check

for an object fails, the PidTagEcWarning meta-property SHOULD be output in a

FastTransfer stream, wherever allowed by its syntactical structure, to signal a client about

incomplete content.

3.2.4.4.1.1 Receiving a RopFastTransferSourceGetBuffer

Servers SHOULD fail any successive calls to RopFastTransferSourceGetBuffer, after the

previous iteration returns a buffer with a ReturnValue other that Success or ServerBusy.

3.2.4.5 Incremental Change Synchronization

3.2.4.5.1 Downloading State

3.2.4.5.1.1 Receiving a RopSynchronizationGetTransferState

The server MUST ensure that changes to the state of the synchronization context that occur

after this ROP do not affect the ICS state that is downloaded through the FastTransfer

download context that is returned from this ROP.

3.2.4.5.2 Upload

3.2.4.5.2.1 Receiving a RopSynchronizationImportMessageChange

Upon successful completion of the RopSynchronizationImportMessageChange ROP, the

ICS state on the synchronization context MUST be updated to include a new change

number in either the PidTagCnsetSeen or PidTagCnsetSeenFAI property, depending on

whether a particular message is a normal message or an FAI message.

100 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

The server MUST purge all client-settable properties and subobjects of the Message object

prior to returning it in the OutputServerObject. Note that any changes to this message made

by this ROP or any other ROP that operates on it MUST NOT be persisted until

RopSaveChangesMessages is called.

3.2.4.5.2.2 Receiving a RopSynchronizationImportHierarchyChange

Upon successful completion of this ROP, the ICS state on the synchronization context

MUST be updated to include a new change number in the PidTagCnsetSeen property.

If a conflict has occurred, the server:

 SHOULD NOT update the PidTagCnsetSeen property, and let the clients

download a result of conflict resolution.

 MAY generate a conflict notification message. See section 3.1.4.1.3 for more

details.

 MUST return Success in the ReturnValue.

The server MUST ignore the properties in PropertyValues, which are also present in

HierarchyValues.

3.2.4.5.2.3 Receiving a RopSynchronizationImportMessageMove

Upon successful completion, the ICS state on the synchronization context MUST be updated

to include change numbers of messages in the destination folder in either the

PidTagCnsetSeen or PidTagCnsetSeenFAI property, depending on whether a message is a

normal message or an FAI message.

3.2.4.5.2.4 Receiving a RopSynchronizationImportDeletes

The server MUST ignore requests to delete objects that have already been deleted and

SHOULD record deletions of objects that never existed in the server replica, in order to

prevent RopSynchronizationImportHierarchyChange or

RopSynchronizationImportMessageChange from restoring them back.

The protocol does not dictate that deletions of all objects passed in the request to this ROP

MUST happen in a transacted way. However, to minimize the possibility of putting replicas

into a desynchronized state and because a protocol does not let clients know in any way what

part of an operation has succeeded, servers SHOULD make a reasonable effort to predict

whether all deletions will succeed, and if a deletion will not succeed, report a failure right

away, instead of partially completing an operation.

3.2.4.5.2.5 Receiving a RopSynchronizationImportReadStateChanges

The RopSynchronizationImportReadStateChanges ROP is a batch variant of

RopSetMessageReadFlag, which also takes care of updating the ICS state. The net effect of

changing the read state message by message by using RopSetMessageReadFlag MUST be

101 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

identical to changing the read state in bulk by using

RopSynchronizationImportReadStateChanges.

Requests to change the read state of FAI messages MUST be ignored. Upon successful

completion, the ICS state on the synchronization context MUST be updated by adding the

new change number to the PidTagCnsetRead property.

The protocol does not dictate that the change of the read state for all objects passed in the

ROP request MUST happen in a transacted way. However, to minimize the possibility of

putting replicas into a desynchronized state and because a protocol does not let clients know

what part of an operation has succeeded, servers SHOULD make a reasonable effort to predict

whether changes of state for all messages will succeed, and if the changes of state will not

succeed, report a failure immediately, instead of partially completing an operation.

3.2.4.5.2.6 Receiving a RopGetLocalReplicaIds

A server MAY limit the number of IDs that can be allocated in one batch to prevent malicious

clients from reserving too many IDs with the intent of causing a denial-of-service attack by

depleting the set of available IDs. A server MAY limit the maximum number of IDs that can

be allocated in one batch to the upper limit of the range recommended to clients, as specified

in section 3.3.4.2.2.7.

3.2.4.5.2.7 Receiving a RopSetLocalReplicaMidsetDeleted

A server MAY add ranges of IDs supplied through this ROP to the deleted item list, if one is

maintained for the folder. One possible reason for doing that is to be able to compress the

deleted item list by using the IDSET optimization algorithm specified in section 3.2.1.2.

A server MAY ensure that ranges supplied as request fields to this ROP are allocated by using

RopGetLocalReplicaIds.

3.2.4.6 Effect of Property and Subobject Filters on Download

Property and subobject filters specified during the configuration of a download operation

only have an effect on the objects that are directly included in the scope of the operation. For

example:

 Specifying property A in the PropertyTags field of the request buffer of a

RopFastTransferSourceCopyProperties ROP that is configured with an

Attachment object as an InputServerObject will affect the set of properties to be

copied for this attachment, but not its embedded message or any attachments that it

might contain.

 Specifying the PidTagFolderAssociatedContents property in the PropertyTags

field of the request buffer of a RopFastTransferSourceCopyTo ROP that is

configured with a Folder object as an InputServerObject will only exclude FAI

Message objects from copying this specific folder, but not any of its descendant

folders.

102 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

 Specifying the PidTagMessageRecipients property in the PropertyTags fields of the

request buffer of a RopSynchronizationConfigure ROP will exclude recipient

subobjects from all message changes downloaded in that operation, but it will not

affect recipients of embedded messages that their attachments might have.

Regardless of property filters specified at operation configuration time, certain properties

MUST always be excluded from output. See section 3.2.4.8 for more details.

At the same time, directives to include or exclude properties and subobjects supplied through

flags do have an effect on downloaded objects at all levels. For example:

 Specifying the CopyFlag CopySubfolders flag (as specified in section 2.2.3.1.1.1.1)

includes all subfolders of the current folder into the operation scope.

 Specifying CopyFlag SendEntryId flag includes all identification properties for all

objects being downloaded.

Whenever subobject filters have an effect, servers MUST output a PidTagFXDelProp meta-

property immediately before outputting subobjects of a particular type, to differentiate

between the cases where a set of subobjects (such as attachments or recipients) was filtered in,

but was empty, and where it was filtered out. For example:

 Specifying meta-property PidTagMessageRecipients in the PropertyTags field of

the request buffer of the RopFastTransferSourceCopyProperties ROP that is

configured with a Message object as an InputServerObject, will direct the server to

output PidTagFXDelProp PidTagMessageRecipients before outputting recipients of

that message, even if there are no recipients.

The protocol does not support incremental download of subobjects. Subobjects of a particular

type are either filtered out, in which case the PidTagFXDelProp meta-property MUST NOT

be output, or are filtered in; that is, they MUST be output one after another, prefixed by the

PidTagFXDelProp meta-property.

3.2.4.7 Properties to Ignore on Upload

Unless specified otherwise in property list restriction tables, properties that belong to the

provider-defined internal non-transmittable range, as specified in [MS-OXPROPS] section

1.3.3, MUST be ignored on upload.

3.2.4.8 Properties to Ignore on Download

Unless specified otherwise in property list restriction tables, propValue elements of

FastTransfer streams that belong to the provider-defined internal non-transmittable range (as

specified in [MS-OXPROPS] section 1.3.3) MUST be excluded from download.

3.2.5 Timer Events

None.

103 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

3.2.6 Other Local Events

None.

3.3 Client Details

This section provides client-specific details related to bulk data transfer. The Mailbox

Synchronization Protocol Specification [MS-OXCSYNC] also contains important client-

specific details related to bulk data transfer.

3.3.1 Abstract Data Model

3.3.1.1 Object and Change Identification

The following three alternative mechanisms are available to clients that need to create objects

in their local replica without having immediate contact with the server to upload the

differences. This is also known as working offline.

3.3.1.1.1 Client-Assigned Internal Identifiers

When using this most preferred approach, clients MUST send a request to a server to allocate

a range of internal identifiers for their exclusive use by using RopGetLocalReplicaIds.

Clients can then assign these IDs to any new folders or messages within their local replica

and communicate these assignments back when performing ICS upload by using

RopSyncrhonizationImportHierarchyChange (as specified in section 2.2.3.2.4.3) or

RopSyncrhonizationImportMessageChange (as specified in section 2.2.3.2.4.2). Note that

these IDs MUST NOT be used for change numbers.

Clients MUST generate foreign identifiers to identify changes to objects in the local replica,

as specified in section 3.3.1.1.3.

This mechanism is being serviced by two ROPs, RopGetLocalReplicaIds (as specified in

section 2.2.3.2.4.7) and RopSetLocalReplicaMidsetDeleted (as specified in section

2.2.3.2.4.8).

To help compression of IDSETs and to alleviate fragmentation of the deleted item list, if a

server maintains an IDSET for a folder, clients SHOULD assign consecutive IDs from the

allocated range to messages within the same folder. One possible mechanism to achieve this is

to allocate a contiguous subset of allocated IDs to each folder.

Clients MUST report IDs assigned to objects in a client replica that were deleted without ever

being uploaded through RopSynchronizationImportDeletes.

Clients MUST report ranges of server-allocated IDs, which will never be used for any

messages in a folder, through RopSetLocalReplicaMidsetDeleted. For an example, see

section 3.3.4.2.2.8.

3.3.1.1.2 Use Online Mode ROPs

104 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

In this approach, clients MUST upload objects created in their local replica by using the

regular, non-synchronization ROPs, such as RopCreateFolder or RopCreateMessage, as

specified in [MS-OXCMSG] and [MS-OXCFOLD], which makes servers assign internal

identifiers as usual. The following are the limitations of this mode:

 Clients do not have server-accepted identifiers for objects until after they are uploaded

to a server.

 Clients do not control internal identifiers assigned to objects and changes by a server.

 Clients cannot set values of special properties, such as

PidTagLastModificationTime.

 Clients are entirely responsible for updating the ICS state to prevent uploaded objects

from being downloaded during a subsequent synchronization download operation.

3.3.1.1.3 Foreign Identifiers

Clients MUST generate foreign identifiers to identify changes to objects in the local replica.

Foreign identifiers are represented as XIDs and MUST NOT have the same byte length as

GIDs; that is, the number of bytes in the LocalId field that follows a NamespaceGuid in the

XID structure MUST be different from the size of GLOBCNT, which is 6 bytes. At the same

time, foreign identifiers that share the same NamespaceGuid MUST have the same length as

the LocalId part.

Clients MUST create foreign identifiers within the NamespaceGuids they generated, and

MUST NOT use any REPLGUIDs returned by a server for that purpose.

Foreign identifiers MUST have the same qualities as internal identifiers: they MUST be

unique, MUST NOT ever be reused and MUST be guaranteed to increase for any new

change, or use a different GUID. This is important for conflict detection, as specified in

section 3.1.4.1.1.

3.3.1.2 Synchronization Scope

To be able to perform an Incremental Change Synchronization (ICS) download of mailbox

data, a client MUST subdivide all necessary synchronization work into smaller pieces, which

clearly define boundaries of synchronization operations in the terms supported by the ICS

protocol (see RopSynchronizationConfigure, as specified in section 2.2.3.2.1.1).

Synchronization scope is determined by using the following variables:

 Mailbox

 Synchronization type (hierarchy or contents)

 Folder within the mailbox

 Restrictions on messages within the folder that are included in the scope (for contents

synchronization only)

105 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Synchronization for each of the scopes can be performed independently. For each

synchronization scope, a client MUST persist the corresponding ICS state, and be sure to pass

it along when configuring a synchronization operation (as specified in section 2.2.3). ICS state

does not reflect the synchronization scope it belongs to. Therefore, a client MUST ensure that

the ICS state it passes to a server corresponds to the synchronization scope that it was

originally obtained for.

Examples of synchronization scopes include the following:

 Folder hierarchy that starts with folder X

 All contents of folder Z

 All unread messages in folder Y that were received within the last three days

Note that the set of messaging objects that are considered for ICS operation can be further

limited with flags, such as Normal or FAI set in the SynchronizationFlag field of

RopSynchronizationConfigure. However, these flags do not modify the synchronization

scope; they just filter the output produced by an operation.

For example, consider the following ICS operation:

1. IcsDownload(icsStateX, Normal | FAI) => (diffNormal  diffFAI, icsStateZ)

This operation outputs differences for all the messages in a folder. Compare it with the

following sequence of ICS operations:

1. IcsDownload(icsStateX, Normal) => (diffNormal, icsStateY)

2. IcsDownload(icsStateY, FAI) => (diffFAI, icsStateZ)

This sequence is correct and it will produce the same end result as the previous single step

operation.

The following sequence, however, is incorrect, because it uses a different synchronization

scope (by supplying a different value for the Restriction field) for the same ICS state:

1. IcsDownload(icsStateX, Normal | FAI, {PidTagAssociated equals FALSE})

=> (diff1, icsStateA)

2. IcsDownload(icsStateA, Normal | FAI, {PidTagAssociated equals TRUE})

=> (diff2, icsStateB)

As a result, this sequence will not yield the same result:

 diff1 will contain soft-deletion notifications for any previously downloaded

messaging objects mentioned in icsStateX.PidTagIdsetGiven, which do not have

PidTagAssociated equals FALSE.

 diff2 will contain soft-deletions for all messaging objects mentioned in

icsStateA.PidTagIdsetGiven.

 icsStateB.PidTagIdsetGiven will only contain IDs of FAI messages.

106 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

3.3.2 Timers

None.

3.3.3 Initialization

None.

3.3.4 Higher-Layer Triggered Events

None.

3.3.4.1 Fast Transfer Copy Operations

3.3.4.1.1 Download

3.3.4.1.1.1 Sending a RopFastTransferSourceGetBuffer

The FastTransfer stream on download is read-only and non-seekable, and is usually

generated on-the-fly. Once it is obtained, data cannot be re-queried, unless the operation is re-

configured from the beginning. Even then, there is no guarantee that the content of the stream

will be the same as during the previous attempt.

As streams can be very large, clients MAY decode portions of the FastTransfer stream as they

arrive in RopFastTransferSourceGetBuffer response buffers, and then query for more when

they need to.

3.3.4.1.1.2 Sending a RopTellVersion

Clients MUST pass the version exactly as it was obtained from the EcDoConnect or

EcDoConnectEx call results. For more details about the only application scenario for this

ROP, server-to-client-to-server upload, see section 3.3.4.1.2.1.

3.3.4.1.2 Upload

3.3.4.1.2.1 Server-to-Client-to-Server Upload

To optimize copying messaging objects between two different mailboxes on two different

servers by using FastTransfer download paired with FastTransfer download, a client MAY

specify the ForUpload flag in SendOptions, which instructs the source server to produce a

FastTransfer stream that is optimized for the destination server.

Clients MUST NOT parse the FastTransfer stream produced by the source server, as it MAY

contain any kind of optimizations and not adhere to the grammar specified in section 2.2.4.

Clients MUST use the following steps to execute server-to-client-to-server copying:

107 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

1. Send one of the RopFastTransferSourceCopy* requests to server A to configure a

FastTransfer download context, while setting the ForUpload flag in the SendOptions

field.

2. Send the RopFastTransferDestinationConfigure request to server B to configure a

FastTransfer upload context.

3. Send the RopTellVersion request on a FastTransfer download context with a version

of server B.

4. Send the RopTellVersion request on a FastTransfer upload context with a version of

server A.

5. Iteratively send RopFastTransferSourceGetBuffer requests on a FastTransfer

download context followed by RopFastTransferDestinationPutBuffer requests on a

FastTransfer upload context until there is no more data.

6. Release both FastTransfer contexts.

3.3.4.2 Incremental Change Synchronization

3.3.4.2.1 Downloading State

3.3.4.2.1.1 Sending a RopSynchronizationGetTransferState

Clients only need to use the RopSynchronizationGetTransferState ROP when performing

synchronization uploads, as it is the only way to obtain the ICS state maintained on the

synchronization upload context. For synchronization downloads, the final ICS state is

downloaded at the end of the FastTransfer stream, and this ROP can only be used to obtain

the checkpoint ICS state, as an alternative to using client-side checkpointing (as specified in

[MS-OXCSYNC] section 3.1.5.3.9.1).

3.3.4.2.2 Upload

Clients MAY <16> perform a synchronization upload without uploading the initial ICS state

properties into a synchronization upload context, because the behavior of the

RopSynchronizationImport* ROPs does not depend on the initial ICS state. In that case, a

server MAY download the changes uploaded in this session during the subsequent ICS

download.

3.3.4.2.2.1 Sending a RopSynchronizationOpenCollector

Be sure to update the stored PidTagIdsetGiven value with internal identifiers of the objects

that were imported into the server replica. These identifiers are either returned in the

responses of RopSynchronizationImport* ROPs, or can be extracted from GIDs sent as

input PidTagSourceKey values.

3.3.4.2.2.2 Sending a RopSynchronizationImportMessageChange

108 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

When uploading new messages, clients SHOULD add their MIDs to the PidTagIdsetGiven

value upon successful completion of this ROP.

Note that because a server returns an empty message from

RopSynchronizationImportMessageChange, even when uploading changes to an existing

message, this ROP can only be used to perform upload of full message changes or new

messages. If a client wants to upload partial message changes, it SHOULD take them outside

the synchronization upload operation, by initiating an upload by using RopOpenMessage

followed by other ROPs discussed in [MS-OXCMSG], such as RopSetProperties and

RopFlushRecipients. However, these ROPs do not let the client set values to any of the

properties that RopSynchronizationImportMessageChange accepts.

3.3.4.2.2.3 Sending a RopSynchronizationImportHierarchyChange

When uploading new folders, clients SHOULD update the ICS state that corresponds to the

chosen synchronization scope by adding FIDs of new folders to the PidTagIdsetGiven

property upon successful completion of this ROP.

3.3.4.2.2.4 Sending a RopSynchronizationImportMessageMove

When uploading new messages, clients SHOULD update the ICS state of the source folder

by removing MIDs of moved messages from its PidTagIdsetGiven property. Otherwise, the

client MUST be prepared to receive deletion notifications for these messages in the source

folder during the next ICS download.

3.3.4.2.2.5 Sending a RopSynchronizationImportDeletes

Clients SHOULD update the ICS state of the chosen synchronization scope by removing

internal identifiers of deleted objects from its PidTagIdsetGiven property. Otherwise, clients

MUST be prepared to receive deletion notifications for these messages during the next ICS

download.

Clients SHOULD expect this ROP to fail if deletion of any of the objects passed in the

request buffer fail, except for the common cases specified in section 2.2.3.2.4.5. The

possibility of a failure is higher when the user has lower privileges to a mailbox – this is

especially a consideration for delegate and public folder access. Clients that use this ROP

SHOULD have a strategy to retry this operation, which MAY be a combination of the

following steps:

1) Retry the ROP with the same arguments on a new synchronization upload context.

2) Retry the ROP, passing one ID at a time.

3) Retry the ROP by using online mode ROPs, like RopDeleteFolder and

RopDeleteMessages.<17>

4) Perform the ICS download, resolving server changes against their own pending

upload.

5) Skip an object and undo the operation in the local replica.

109 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

3.3.4.2.2.6 Sending a RopSynchronizationImportReadStateChanges

Clients SHOULD expect this ROP to fail if any state changes on the objects passed in the

request buffer fail. The possibility of a failure is higher when the user has lower privileges to a

mailbox – this is especially a consideration for delegate and public folder access. Clients that

use this ROP SHOULD have a strategy to retry this operation, which MAY be a combination

of the following steps:

1) Retry the ROP with the same arguments on a new synchronization upload context.

2) Retry the ROP, passing one ID at a time.

3) Retry the ROP by using online mode ROPs, such as RopSetMessageReadFlag.

4) Perform the ICS download, resolving server changes against their own pending

upload.

5) Skip an object and undo the operation in the local replica.

3.3.4.2.2.7 Sending a RopGetLocalReplicaIds

Clients SHOULD NOT allocate another batch of IDs until the one they allocated before is

used up or near depletion. Allocating IDs in batches of moderate size, between 0x00000200

and 0x0000FFFF, is recommended. Note that servers SHOULD impose restrictions on the

number of IDs that can be allocated at one time.

3.3.4.2.2.8 Sending a RopSetLocalReplicaMidsetDeleted

The following example shows a possible implementation of the client with regards to

assignment of server-allocated IDs (section 3.3.1.1.1) to objects in a local replica. Clients do

not have to follow the example specified in this section; it is only used to show the

applicability of RopSetLocalReplicaMidsetDeleted.

1. Initially, a client has no server-allocated IDs that it can assign to objects that are

created when working offline, so it needs to ask a server to allocate a block of IDs by

sending RopGetLocalReplicaIds. The server responds with a block of IDs that the

client stores in a local replica.

2. The client needs the server-allocated ID whenever it has to create a message in a

folder in a local replica. For that purpose, the client associates a range of IDs

previously allocated with RopGetLocalReplicaIds with a folder, so that IDs from

that range can be used for new or moved items in that folder.

3. If a folder does not have a range of server-allocated IDs associated with it, because the

previous range was depleted (say, [A; B]), the client would have to allocate another

range (say, [C; D]) from the block obtained in step 1 and associate it with that folder.

4. After a new range [C; D] is associated with a folder, the client knows that all ids in

[B+1; C-1] will never be used in that folder, because they have already been

associated with other folders. Therefore, the client can send

RopSetLocalReplicaMidsetDeleted for that folder with the [B+1; C-1] range.

110 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

3.3.5 Message Processing Events and Sequencing Rules

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

4 Protocol Examples

4.1 IDSET Serialization

To efficiently transfer large numbers of MIDs and FIDs that identify changed or new

messaging objects, the MIDs and FIDs are serialized into an IDSET for transfer across the

wire. The following example shows how to format and serialize an IDSET. Because of the

variability of the GLOBSET encoding commands that are used within the serialization of an

IDSET, an IDSET can be encoded in many different ways. There is no single correct way to

encode a GLOBSET as long as the GLOBSET, when decoded, contains the same set of

GLOBCNT values. The following is just one way to encode an IDSET.

This example uses an IDSET with following four MID values:

IDSET

 Value REPLID GLOBCNT

MID1 01 00 00 00 00 00 00 05 0001 000000000005

MID2 01 00 00 00 00 00 00 06 0001 000000000006

MID3 01 00 00 00 00 00 00 10 0001 000000000010

MID4 02 00 00 00 00 00 00 09 0002 000000000009

The IDSET MUST first be properly formatted for serializations. See section 3.1.1.3.1 for more

details about how to format an IDSET.

The following diagram represents how the IDSET MUST be arranged for serialization. The

individual ID values have been arranged by REPLID and the GLOBCNT values have been

reduced to a GLOBSET for each REPLID. Within the GLOBSET, the GLOBCNT values are

placed into contiguous ranges.

111 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

IDSET

REPLID

0001 GLOBCNT

000000000005

RANGE 1

GLOBCNT

0000000006

GLOBSET 1

REPLID

0002

GLOBCNT

0000000010

RANGE 2

GLOBCNT

0000000010

GLOBCNT

0000000009

RANGE 1

GLOBCNT

0000000009

GLOBSET 2

Figure 3: Sample IDSET used in the serialization example

This example serializes the IDSET by using the REPLID format. See section 2.2.2.3 for more

details about the different serialization formats of an IDSET.

For each REPLID/GLOBSET pair, the REPLID MUST be added to the serialization buffer

before the encoded GLOBSET. They MUST be ordered based on the REPLID value where

they are ordered from lowest to higheset value.

The serialization buffer will resemble the following:

Serialization Buffer

01 00 <encoded GLOBSET 1> 02 00 <encoded GLOBSET 2>

GLOBSET 1 contains four GLOBCNT values; two in each GLOBCNT range. The encoding

MUST be performed based on the same order in which they are arranged in GLOBCNT

ranges: from lowest to highest value. The following table is a list of all the GLOBCNT values

in the order in which they MUST be encoded.

GLOBCNT

1 00 00 00 00 00 05

2 00 00 00 00 00 06

3 00 00 00 00 00 10

4 00 00 00 00 00 10

112 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Because all values have the same five bytes in common, the Push command can be used to

push the five common bytes onto the common byte stack.

Current Encoding Buffer

05 00 00 00 00 00

Low and high GLOBCNT values in all ranges MUST be evaluated in pairs. Because value 1

is close to value 2, it is possible to continue to evaluate subsequent ranges of GLOBCNT

values to see if the Bitmask command can be used. However, values 3 and 4 are not close

enough to value 1 to use the Bitmask command. Because only one GLOBCNT range will be

put into a Bitmask command, either the Bitmask command or the Range command could be

used. Because they both will occupy the same number of bytes in the encoded buffer, whether

to use a Bitmask or Range command is an implementation decision. Both methods when

decoded will result in the same GLOBCNT range. In this example, the Range command is

used with the values 0x05 and 0x06 following it.

Current Encoding Buffer

05 00 00 00 00 00 52 05 06

This results in encodings to generate GLOBCNT values 1 and 2 if decoded. For GLOBCNT

value 3 and 4, because they both have five bytes in common that are already in the common

byte stack, no Pop or Push command has to be used. Because values 3 and 4 are close in

value (in this particular case, they are identical), the Bitmask command could be used.

Because there are no more GLOBCNT ranges to encode, the Bitmask command will only

contain one range that takes 3 bytes of encoding. This is the same size a Range command

would be to encode the same range. However, because the range is a singleton, it is more

efficient to use the Push command to fill in the common byte stack. This will generate two

identical GLOBCNT values when decoded.

Current Encoding Buffer

05 00 00 00 00 00 52 05 06 01 10

This results in encodings in the encoding buffer to generate all GLOBCNT values in the

GLOBSET. To complete the encoding, an End command has to be added. Before the End

command can be added, any bytes on the common byte stack have to be removed. Because all

bytes on the common byte stack were pushed with a single Push command, only one Pop

command is needed to remove them.

Current Encoding Buffer

05 00 00 00 00 00 52 05 06 01 10 50

113 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

The End command can now be added.

Current Encoding Buffer

05 00 00 00 00 00 52 05 06 01 10 50 00

The GLOBSET 1 encoding can be added to the serialization buffer to produce the following:

Serialization Buffer

01 00 05 00 00 00 00 00 52 05 06 01 10 50 00 02 00 <encoded GLOBSET 2>

The last step is to encode GLOBSET 2. GLOBSET 2 contains two GLOBCNT values. The

following table is a list of all the GLOBCNT values in the order in which they MUST be

encoded.

GLOBCNT

1 00 00 00 00 00 09

2 00 00 00 00 00 09

Because both GLOBCNT values 1 and 2 are identical, the Push command can be used,

followed by the full 6 bytes to add to the common byte stack. Because this will fill the

common array, it will generate two identical GLOBCNT values when decoded, producing a

singleton GLOBCNT range.

Current Encoding Buffer

06 00 00 00 00 00 09

We now have encodings in the encoding buffer to generate all GLOBCNT values in the

GLOBSET. To complete the encoding, an end command has to be added.

Current Encoding Buffer

06 00 00 00 00 00 09 00

The GLOBSET 2 encoding can be added to the serialization buffer to produce the following:

Serialization Buffer

01 00 05 00 00 00 00 00 52 05 06 01 10 50 00 02 00 06 00 00 00 00 00 09 00

This completes the serialization of the IDSET.

114 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

4.2 FastTransfer Stream Produced by Contents Synchronization Download

The following example shows the sample output of a FastTransfer stream that is

downloaded to a client during a contents synchronization. The download operation was

configured by using the RopSynchronizationConfigure command with the following fields

specified in the request buffer:

Field of the request buffer Value

SynchronizationType Contents

SendOptions Unicode, RecoverMode, ForceUnicode,

PartialItem

SynchronizationFlags Unicode, ReadState, FAI, Normal,

NoForeignIdentifiers, BestBody, Progress

RestrictionDataSize 0

RestrictionData < missing >

SynchronizationExtraFlags Eid, Cn, OrderByDeliveryTime

The FastTransfer stream contains the full message change for one message, message

deletions, message read state changes, and the final ICS state. The following list shows the

structure of the data included in this FastTransfer stream. The list shows the markers that

occur in this stream in the order of their appearance. The nesting structure shows the logial

relationship of the data delimited by the markers.

IncrSyncProgressMode

IncrSyncProgressPerMsg

IncrSyncChg

IncrSyncMsg

StartRecip

EndToRecip

NewAttach

StartEmbed

StartRecip

EndToRecip

EndEmbed

115 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

EndAttach

IncrSyncDel

IncrSyncRead

IncrSyncStateBegin

IncrSyncStateEnd

IncrSyncEnd

Bytes on the wire Description

0B 00 74 40

marker

IncrSyncProgressMode (4074000B [Bool])

02 01 00 00

propDef

ProgressInformation (special) (00000102 [Binary])

20 00 00 00

length

32 (0x20)

26 00 00 00-32 54 76 98

BE BA BE BA-BE BA BE BA

EF CD AB 00-00 00 00 00

EF CD AB 90-78 56 34 12

varSizeValue

0B 00 75 40

marker

IncrSyncProgressPerMsg (4075000B [Bool])

03 00 00 00

propDef

MessageSize (special) (00000003 [Int32])

38 00 00 00

fixedSizeValue

[Int32] 56

0B 00 00 00 propDef

IsAssociated (special) (0000000B [Bool])

00 00

fixedSizeValue

[Bool] False

03 00 12 40

marker

IncrSyncChg (40120003 [Int32])

02 01 E0 65

propDef

PidTagSourceKey (65E00102 [Binary])

16 00 00 00

length

22 (0x16)

19 D7 FB 0F-06 16 A1 41

BF F6 91 C7-63 DA A8 66

00 00 00 78-2E 21

varSizeValue

.......A

....c..f

...x.!

40 00 08 30

propDef

PidTagLastModificationTime (30080040 [SysTime])

FC 65 69 CF-C0 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T04:15:02.8437500

02 01 E2 65

propDef

PidTagChangeKey (65E20102 [Binary])

16 00 00 00

length

22 (0x16)

19 D7 FB 0F-06 16 A1 41

BF F6 91 C7-63 DA A8 66

00 00 00 78-4D 1C

varSizeValue

.......A

....c..f

...xM.

02 01 E3 65

propDef

PidTagPredecessorChangeList (65E30102 [Binary])

17 00 00 00

length

23 (0x17)

 varSizeValue

116 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

16 19 D7 FB-0F 06 16 A1

41 BF F6 91-C7 63 DA A8

66 00 00 00-78 4D 1C

........

A....c..

f...xM.

0B 00 AA 67

propDef

PidTagAssociated (67AA000B [Bool])

00 00

fixedSizeValue

[Bool] False

14 00 4A 67

propDef

PidTagMid (674A0014 [Int64])

01 00 00 00-00 78 2E 21

fixedSizeValue

[Int64] 2390980393575645185

14 00 A4 67

propDef

PidTagChangeNumber (67A40014 [Int64])

01 00 00 00-00 78 4D 1C

fixedSizeValue

[Int64] 2039418147664035841

03 00 15 40

marker

IncrSyncMsg (40150003 [Int32])

0B 00 02 00

propDef

PidTagAlternateRecipientAllowed (0002000B [Bool])

01 00

fixedSizeValue

[Bool] True

03 00 17 00

propDef

PidTagImportance (00170003 [Int32])

01 00 00 00

fixedSizeValue

[Int32] 1

1F 00 1A 00

propDef

PidTagMessageClass (001A001F [Unicode])

12 00 00 00

length

18 (0x12)

49 00 50 00-4D 00 2E 00

4E 00 6F 00-74 00 65 00

00 00

varSizeValue

I.P.M...

N.o.t.e.

..

0B 00 23 00

propDef

PidTagOriginatorDeliveryReportRequested (0023000B [Bool])

00 00

fixedSizeValue

[Bool] False

03 00 26 00

propDef

PidTagPriority (00260003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

0B 00 29 00

propDef

PidTagReadReceiptRequested (0029000B [Bool])

00 00

fixedSizeValue

[Bool] False

03 00 36 00

propDef

PidTagSensitivity (00360003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

1F 00 37 00

propDef

PidTagSubject (0037001F [Unicode])

26 00 00 00

length

38 (0x26)

54 00 65 00-73 00 74 00

20 00 77 00-69 00 74 00

68 00 20 00-65 00 6D 00

62 00 65 00-64 00 64 00

65 00 64 00-00 00

varSizeValue

T.e.s.t.

.w.i.t.

h. .e.m.

b.e.d.d.

e.d...

... value truncated ...

40 00 39 00

propDef

PidTagClientSubmitTime (00390040 [SysTime])

 fixedSizeValue

117 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

80 BA A7 B7-BC 84 C8 01 [SysTime] 2008-03-13T03:45:45.0000000

02 01 3B 00

propDef

PidTagSentRepresentingSearchKey (003B0102 [Binary])

60 00 00 00

length

96 (0x60)

45 58 3A 2F-4F 3D 46 49

52 53 54 20-4F 52 47 41

4E 49 5A 41-54 49 4F 4E

2F 4F 55 3D-45 58 43 48

41 4E 47 45-20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated ...

1F 00 3D 00

propDef

PidTagSubjectPrefix (003D001F [Unicode])

02 00 00 00

length

2 (0x2)

00 00

varSizeValue

..

02 01 3F 00

propDef

PidTagReceivedByEntryId (003F0102 [Binary])

79 00 00 00

length

121 (0x79)

00 00 00 00-DC A7 40 C8

C0 42 10 1A-B4 B9 08 00

2B 2F E1 82-01 00 00 00

00 00 00 00-2F 4F 3D 46

49 52 53 54-20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated ...

1F 00 40 00

propDef

PidTagReceivedByName (0040001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

02 01 41 00

propDef

PidTagSentRepresentingEntryId (00410102 [Binary])

79 00 00 00

length

121 (0x79)

00 00 00 00-DC A7 40 C8

C0 42 10 1A-B4 B9 08 00

2B 2F E1 82-01 00 00 00

00 00 00 00-2F 4F 3D 46

49 52 53 54-20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated ...

1F 00 42 00

propDef

PidTagSentRepresentingName (0042001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

02 01 43 00

propDef

PidTagReceivedRepresentingEntryId (00430102 [Binary])

79 00 00 00

length

121 (0x79)

00 00 00 00-DC A7 40 C8

C0 42 10 1A-B4 B9 08 00

2B 2F E1 82-01 00 00 00

00 00 00 00-2F 4F 3D 46

49 52 53 54-20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated ...

118 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

1F 00 44 00

propDef

PidTagReceivedRepresentingName (0044001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

02 01 51 00

propDef

PidTagReceivedBySearchKey (00510102 [Binary])

60 00 00 00

length

96 (0x60)

45 58 3A 2F-4F 3D 46 49

52 53 54 20-4F 52 47 41

4E 49 5A 41-54 49 4F 4E

2F 4F 55 3D-45 58 43 48

41 4E 47 45-20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated ...

02 01 52 00

propDef

PidTagReceivedRepresentingSearchKey (00520102 [Binary])

60 00 00 00

length

96 (0x60)

45 58 3A 2F-4F 3D 46 49

52 53 54 20-4F 52 47 41

4E 49 5A 41-54 49 4F 4E

2F 4F 55 3D-45 58 43 48

41 4E 47 45-20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated ...

1F 00 64 00

propDef

PidTagSentRepresentingAddressType (0064001F [Unicode])

06 00 00 00

length

6 (0x6)

45 00 58 00-00 00

varSizeValue

E.X...

1F 00 65 00

propDef

PidTagSentRepresentingEmailAddress (0065001F [Unicode])

BA 00 00 00

length

186 (0xBA)

2F 00 4F 00-3D 00 46 00

49 00 52 00-53 00 54 00

20 00 4F 00-52 00 47 00

41 00 4E 00-49 00 5A 00

41 00 54 00-49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated ...

1F 00 70 00

propDef

PidTagConversationTopic (0070001F [Unicode])

26 00 00 00

length

38 (0x26)

54 00 65 00-73 00 74 00

20 00 77 00-69 00 74 00

68 00 20 00-65 00 6D 00

62 00 65 00-64 00 64 00

65 00 64 00-00 00

varSizeValue

T.e.s.t.

.w.i.t.

h. .e.m.

b.e.d.d.

e.d...

... value truncated ...

02 01 71 00

propDef

PidTagConversationIndex (00710102 [Binary])

16 00 00 00

length

22 (0x16)

01 C8 84 BC-B6 CB 8A CC

1E B8 32 77-43 2B A1 C6

varSizeValue

........

..2wC+..

119 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

83 9A 4A F4-BC 14 ..J...

1F 00 75 00

propDef

PidTagReceivedByAddressType (0075001F [Unicode])

06 00 00 00

length

6 (0x6)

45 00 58 00-00 00

varSizeValue

E.X...

1F 00 76 00

propDef

PidTagReceivedByEmailAddress (0076001F [Unicode])

BA 00 00 00

length

186 (0xBA)

2F 00 4F 00-3D 00 46 00

49 00 52 00-53 00 54 00

20 00 4F 00-52 00 47 00

41 00 4E 00-49 00 5A 00

41 00 54 00-49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated ...

1F 00 77 00

propDef

PidTagReceivedRepresentingAddressType (0077001F [Unicode])

06 00 00 00

length

6 (0x6)

45 00 58 00-00 00

varSizeValue

E.X...

1F 00 78 00

propDef

PidTagReceivedRepresentingEmailAddress (0078001F

[Unicode])

BA 00 00 00

length

186 (0xBA)

2F 00 4F 00-3D 00 46 00

49 00 52 00-53 00 54 00

20 00 4F 00-52 00 47 00

41 00 4E 00-49 00 5A 00

41 00 54 00-49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated ...

1F 00 7D 00

propDef

PidTagTransportMessageHeaders (007D001F [Unicode])

E8 06 00 00

length

1768 (0x6E8)

52 00 65 00-63 00 65 00

69 00 76 00-65 00 64 00

3A 00 20 00-66 00 72 00

6F 00 6D 00-20 00 45 00

58 00 43 00-48 00 2D 00

varSizeValue

R.e.c.e.

i.v.e.d.

:. .f.r.

o.m. .E.

X.C.H.-.

... value truncated ...

02 01 7F 00

propDef

PidTagTnefCorrelationKey (007F0102 [Binary])

56 00 00 00

length

86 (0x56)

3C 31 39 44-37 46 42 30

46 30 36 31-36 41 31 34

31 42 46 46-36 39 31 43

37 36 33 44-41 41 38 36

36 37 38 34-34 42 37 40

varSizeValue

<19D7FB0

F0616A14

1BFF691C

763DAA86

67844B7@

... value truncated ...

02 01 19 0C

propDef

PidTagSenderEntryId (0C190102 [Binary])

79 00 00 00

length

121 (0x79)

 varSizeValue

120 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

00 00 00 00-DC A7 40 C8

C0 42 10 1A-B4 B9 08 00

2B 2F E1 82-01 00 00 00

00 00 00 00-2F 4F 3D 46

49 52 53 54-20 4F 52 47

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated ...

1F 00 1A 0C

propDef

PidTagSenderName (0C1A001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

02 01 1D 0C

propDef

PidTagSenderSearchKey (0C1D0102 [Binary])

60 00 00 00

length

96 (0x60)

45 58 3A 2F-4F 3D 46 49

52 53 54 20-4F 52 47 41

4E 49 5A 41-54 49 4F 4E

2F 4F 55 3D-45 58 43 48

41 4E 47 45-20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated ...

1F 00 1E 0C

propDef

PidTagSenderAddressType (0C1E001F [Unicode])

06 00 00 00

length

6 (0x6)

45 00 58 00-00 00

varSizeValue

E.X...

1F 00 1F 0C

propDef

PidTagSenderEmailAddress (0C1F001F [Unicode])

BA 00 00 00

length

186 (0xBA)

2F 00 4F 00-3D 00 46 00

49 00 52 00-53 00 54 00

20 00 4F 00-52 00 47 00

41 00 4E 00-49 00 5A 00

41 00 54 00-49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated ...

03 00 D3 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 2A 81 00

00

propDef

PidLidTaskAcceptanceState (0x812A [PSETID_Task]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

0B 00 D2 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 2C 81 00

00

propDef

PidLidTaskFFixOffline (0x812C [PSETID_Task]) [Bool]

00 00

fixedSizeValue

[Bool] False

0B 00 D1 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 24 81 00

00

propDef

PidLidTaskNoCompute (0x8124 [PSETID_Task]) [Bool]

00 00

fixedSizeValue

[Bool] False

40 00 06 0E

propDef

PidTagMessageDeliveryTime (0E060040 [SysTime])

121 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

80 E7 D8 B8-BC 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T03:45:47.0000000

03 00 07 0E

propDef

PidTagMessageFlags (0E070003 [Int32])

31 00 00 00

fixedSizeValue

[Int32] 49

03 00 CE 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 29 81 00

00

propDef

PidLidTaskOwnership (0x8129 [PSETID_Task]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 17 0E

propDef

PidTagMessageStatus (0E170003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 D0 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 11 81 00

00

propDef

PidLidTaskEstimatedEffort (0x8111 [PSETID_Task]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

1F 00 1D 0E

propDef

PidTagNormalizedSubject (0E1D001F [Unicode])

26 00 00 00

length

38 (0x26)

54 00 65 00-73 00 74 00

20 00 77 00-69 00 74 00

68 00 20 00-65 00 6D 00

62 00 65 00-64 00 64 00

65 00 64 00-00 00

varSizeValue

T.e.s.t.

.w.i.t.

h. .e.m.

b.e.d.d.

e.d...

... value truncated ...

0B 00 1F 0E

propDef

PidTagRtfInSync (0E1F000B [Bool])

01 00

fixedSizeValue

[Bool] True

03 00 23 0E

propDef

PidTagInternetArticleNumber (0E230003 [Int32])

26 00 00 00

fixedSizeValue

[Int32] 38

03 00 79 0E

propDef

PidTagTrustSender (0E790003 [Int32])

01 00 00 00

fixedSizeValue

[Int32] 1

03 00 CF 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 10 81 00

00

propDef

PidLidTaskActualEffort (0x8110 [PSETID_Task]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 F7 0F

propDef

PidTagAccessLevel (0FF70003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

1F 00 CD 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 21 81 00

00

propDef

PidLidTaskAssigner (0x8121 [PSETID_Task]) [Unicode]

122 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

02 00 00 00

length

2 (0x2)

00 00

varSizeValue

..

03 00 CC 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 23 81 00

00

propDef

PidLidTaskOrdinal (0x8123 [PSETID_Task]) [Int32]

FF FF FF 7F

fixedSizeValue

[Int32] 2147483647

1F 00 35 10

propDef

PidTagInternetMessageId (1035001F [Unicode])

AC 00 00 00

length

172 (0xAC)

3C 00 31 00-39 00 44 00

37 00 46 00-42 00 30 00

46 00 30 00-36 00 31 00

36 00 41 00-31 00 34 00

31 00 42 00-46 00 46 00

varSizeValue

<.1.9.D.

7.F.B.0.

F.0.6.1.

6.A.1.4.

1.B.F.F.

... value truncated ...

03 00 80 10

propDef

PidTagIconIndex (10800003 [Int32])

FF FF FF FF

fixedSizeValue

[Int32] -1

40 00 07 30

propDef

PidTagCreationTime (30070040 [SysTime])

A2 DA EF B9-BC 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T03:45:48.8281250

40 00 08 30

propDef

PidTagLastModificationTime (30080040 [SysTime])

FC 65 69 CF-C0 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T04:15:02.8437500

02 01 0B 30

propDef

PidTagSearchKey (300B0102 [Binary])

10 00 00 00

length

16 (0x10)

6B 3B AA B8-C7 83 78 4E

80 8E F2 DE-04 82 C8 EB

varSizeValue

k;....xN

........

0B 00 40 3A

propDef

PidTagSendRichInfo (3A40000B [Bool])

01 00

fixedSizeValue

[Bool] True

03 00 DE 3F

propDef

PidTagInternetCodepage (3FDE0003 [Int32])

9F 4E 00 00

fixedSizeValue

[Int32] 20127

03 00 F1 3F

propDef

PidTagMessageLocaleId (3FF10003 [Int32])

09 04 00 00

fixedSizeValue

[Int32] 1033

03 00 FD 3F

propDef

PidTagMessageCodepage (3FFD0003 [Int32])

E3 04 00 00

fixedSizeValue

[Int32] 1251

03 00 19 40

propDef

PidTagSenderFlags (40190003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 1A 40

propDef

PidTagSentRepresentingFlags (401A0003 [Int32])

123 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 1B 40

propDef

PidTagReceivedByFlags (401B0003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 1C 40

propDef

PidTagReceivedRepresentingFlags (401C0003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 76 40

propDef

PidTagContentFilterSpamConfidenceLevel (40760003 [Int32])

FF FF FF FF

fixedSizeValue

[Int32] -1

03 00 02 59

propDef

PidTagInternetMailOverrideFormat (59020003 [Int32])

00 00 16 00

fixedSizeValue

[Int32] 1441792

03 00 09 59

propDef

PidTagMessageEditorFormat (59090003 [Int32])

02 00 00 00

fixedSizeValue

[Int32] 2

03 00 C6 65

propDef

PidTagSecureSubmitFlags (65C60003 [Int32])

02 00 00 00

fixedSizeValue

[Int32] 2

1F 00 D4 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 27 81 00

00

propDef

PidLidTaskRole (0x8127 [PSETID_Task]) [Unicode]

02 00 00 00

length

2 (0x2)

00 00

varSizeValue

..

0B 00 D5 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 03 81 00

00

propDef

PidLidTeamTask (0x8103 [PSETID_Task]) [Bool]

00 00

fixedSizeValue

[Bool] False

0B 00 D6 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 26 81 00

00

propDef

PidLidTaskFRecurring (0x8126 [PSETID_Task]) [Bool]

00 00

fixedSizeValue

[Bool] False

03 00 00 80-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 52 85 00

00

propDef

PidLidCurrentVersion (0x8552 [PSETID_Common]) [Int32]

04 ED 01 00

fixedSizeValue

[Int32] 126212

1F 00 01 80-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 54 85 00

00

propDef

PidLidCurrentVersionName (0x8554 [PSETID_Common])

[Unicode]

0A 00 00 00

length

10 (0xA)

124 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

31 00 32 00-2E 00 30 00

00 00

varSizeValue

1.2...0.

..

03 00 02 80-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 10 85 00

00

propDef

PidLidSideEffects (0x8510 [PSETID_Common]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

0B 00 08 80-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 03 85 00

00

propDef

PidLidReminderSet (0x8503 [PSETID_Common]) [Bool]

00 00

fixedSizeValue

[Bool] False

1F 10 0C 80-29 03 02 00

00 00 00 00-C0 00 00 00

00 00 00 46-01 4B 00 65

00 79 00 77-00 6F 00 72

00 64 00 73-00 00 00

propDef

PidNameKeywords (Keywords [PS_PUBLIC_STRINGS])

[MultiValueUnicode]

02 00 00 00

length

2 (0x2)

1C 00 00 00

length

28 (0x1C)

42 00 6C 00-75 00 65 00

20 00 43 00-61 00 74 00

65 00 67 00-6F 00 72 00

79 00 00 00

varSizeValue

B.l.u.e.

.C.a.t.

e.g.o.r.

y...

20 00 00 00

length

32 (0x20)

59 00 65 00-6C 00 6C 00

6F 00 77 00-20 00 43 00

61 00 74 00-65 00 67 00

6F 00 72 00-79 00 00 00

varSizeValue

Y.e.l.l.

o.w. .C.

a.t.e.g.

o.r.y...

0B 00 4D 81-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 0E 85 00

00

propDef

PidLidAgingDontAgeMe (0x850E [PSETID_Common]) [Bool]

00 00

fixedSizeValue

[Bool] False

03 00 84 81-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 18 85 00

00

propDef

PidLidTaskMode (0x8518 [PSETID_Common]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

0B 00 4B 82-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 06 85 00

00

propDef

PidLidPrivate (0x8506 [PSETID_Common]) [Bool]

00 00

fixedSizeValue

[Bool] False

1F 00 4D 82-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 80 85 00

propDef

PidLidInternetAccountName (0x8580 [PSETID_Common])

[Unicode]

125 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

00

26 00 00 00

length

38 (0x26)

4D 00 69 00-63 00 72 00

6F 00 73 00-6F 00 66 00

74 00 20 00-45 00 78 00

63 00 68 00-61 00 6E 00

67 00 65 00-00 00

varSizeValue

M.i.c.r.

o.s.o.f.

t. .E.x.

c.h.a.n.

g.e...

... value truncated ...

1F 00 4E 82-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 81 85 00

00

propDef

PidLidInternetAccountStamp (0x8581 [PSETID_Common])

[Unicode]

E4 00 00 00

length

228 (0xE4)

30 00 30 00-30 00 30 00

30 00 30 00-30 00 32 00

01 00 45 00-58 00 43 00

48 00 2D 00-43 00 4C 00

49 00 2D 00-31 00 38 00

varSizeValue

0.0.0.0.

0.0.0.2.

..E.X.C.

H.-.C.L.

I.-.1.8.

... value truncated ...

0B 00 4F 82-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 82 85 00

00

propDef

PidLidUseTnef (0x8582 [PSETID_Common]) [Bool]

00 00

fixedSizeValue

[Bool] False

03 00 A8 83-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 01 85 00

00

propDef

PidLidReminderDelta (0x8501 [PSETID_Common]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 AD 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 01 81 00

00

propDef

PidLidTaskStatus (0x8101 [PSETID_Task]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

05 00 AE 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 02 81 00

00

propDef

PidLidPercentComplete (0x8102 [PSETID_Task]) [Double]

00 00 00 00-00 00 00 00

fixedSizeValue

[Double] 0

0B 00 B0 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 1C 81 00

00

propDef

PidLidTaskComplete (0x811C [PSETID_Task]) [Bool]

00 00

fixedSizeValue

[Bool] False

03 00 CA 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 13 81 00

00

propDef

PidLidTaskState (0x8113 [PSETID_Task]) [Int32]

126 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

01 00 00 00

fixedSizeValue

[Int32] 1

03 00 CB 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 12 81 00

00

propDef

PidLidTaskVersion (0x8112 [PSETID_Task]) [Int32]

01 00 00 00

fixedSizeValue

[Int32] 1

02 01 13 10

propDef

PidTagBodyHtml (10130102 [Binary])

58 06 00 00

length

1624 (0x658)

3C 68 74 6D-6C 20 78 6D

6C 6E 73 3A-76 3D 22 75

72 6E 3A 73-63 68 65 6D

61 73 2D 6D-69 63 72 6F

73 6F 66 74-2D 63 6F 6D

varSizeValue

<html xm

lns:v="u

rn:schem

as-micro

soft-com

... value truncated ...

03 00 16 40

propDef

PidTagFXDelProp (40160003 [Int32])

0D 00 12 0E

fixedSizeValue

PidTagMessageRecipients (0E12000D [Object])

03 00 03 40

marker

StartRecip (40030003 [Int32])

03 00 00 30

propDef

PidTagRowid (30000003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

1F 00 02 30

propDef

PidTagAddressType (3002001F [Unicode])

06 00 00 00

length

6 (0x6)

45 00 58 00-00 00

varSizeValue

E.X...

1F 00 03 30

propDef

PidTagEmailAddress (3003001F [Unicode])

BA 00 00 00

length

186 (0xBA)

2F 00 4F 00-3D 00 46 00

49 00 52 00-53 00 54 00

20 00 4F 00-52 00 47 00

41 00 4E 00-49 00 5A 00

41 00 54 00-49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated ...

1F 00 01 30

propDef

PidTagDisplayName (3001001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

02 01 F6 0F

propDef

PidTagInstanceKey (0FF60102 [Binary])

04 00 00 00

length

4 (0x4)

00 00 00 00

varSizeValue

....

03 00 15 0C

propDef

PidTagRecipientType (0C150003 [Int32])

01 00 00 00

fixedSizeValue

[Int32] 1

127 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

02 01 FF 0F

propDef

PidTagEntryId (0FFF0102 [Binary])

79 00 00 00

length

121 (0x79)

00 00 00 00-DC A7 40 C8

C0 42 10 1A-B4 B9 08 00

2B 2F E1 82-01 00 00 00

00 00 00 00-2F 4F 3D 46

49 52 53 54-20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated ...

02 01 0B 30

propDef

PidTagSearchKey (300B0102 [Binary])

60 00 00 00

length

96 (0x60)

45 58 3A 2F-4F 3D 46 49

52 53 54 20-4F 52 47 41

4E 49 5A 41-54 49 4F 4E

2F 4F 55 3D-45 58 43 48

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

... value truncated ...

1F 00 20 3A

propDef

PidTagTransmittableDisplayName (3A20001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

0B 00 0F 0E

propDef

PidTagResponsibility (0E0F000B [Bool])

01 00

fixedSizeValue

[Bool] True

0B 00 40 3A

propDef

PidTagSendRichInfo (3A40000B [Bool])

01 00

fixedSizeValue

[Bool] True

03 00 FD 5F

propDef

PidTagRecipientFlags (5FFD0003 [Int32])

01 00 00 00

fixedSizeValue

[Int32] 1

02 01 F7 5F

propDef

PidTagRecipientEntryId (5FF70102 [Binary])

79 00 00 00

length

121 (0x79)

00 00 00 00-DC A7 40 C8

C0 42 10 1A-B4 B9 08 00

2B 2F E1 82-01 00 00 00

00 00 00 00-2F 6F 3D 46

69 72 73 74-20 4F 72 67

varSizeValue

......@.

.B......

+/......

..../o=F

irst Org

... value truncated ...

1F 00 FE 39

propDef

PidTagPrimarySmtpAddress (39FE001F [Unicode])

46 00 00 00

length

70 (0x46)

74 00 31 00-40 00 65 00

75 00 6D 00-61 00 72 00

75 00 2D 00-64 00 6F 00

6D 00 2E 00-65 00 78 00

74 00 65 00-73 00 74 00

varSizeValue

t.1.@.e.

u.m.a.r.

u.-.d.o.

m...e.x.

t.e.s.t.

... value truncated ...

03 00 05 39

propDef

PidTagDisplayTypeEx (39050003 [Int32])

128 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

00 00 00 40

fixedSizeValue

[Int32] 1073741824

03 00 00 39

propDef

PidTagDisplayType (39000003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 FE 0F

propDef

PidTagObjectType (0FFE0003 [Int32])

06 00 00 00

fixedSizeValue

[Int32] 6

1F 00 FF 39

propDef

PidTag7BitDisplayName (39FF001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

1F 00 00 3A

propDef

PidTagAccount (3A00001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

03 00 FF 5F

propDef

PidTagRecipientTrackStatus (5FFF0003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 DE 5F

propDef

PidTagRecipientResourceState (5FDE0003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

1F 00 F6 5F

propDef

PidTagRecipientDisplayName (5FF6001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

03 00 DF 5F

propDef

PidTagRecipientOrder (5FDF0003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 04 40

marker

EndToRecip (40040003 [Int32])

03 00 16 40

propDef

PidTagFXDelProp (40160003 [Int32])

0D 00 13 0E

marker

PidTagMessageAttachments (0E13000D [Object])

03 00 00 40

marker

NewAttach (40000003 [Int32])

03 00 21 0E

propDef

PidTagAttachNumber (0E210003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

02 01 02 37

propDef

PidTagAttachEncoding (37020102 [Binary])

00 00 00 00

length

0 (0x0)

03 00 0B 37

propDef

PidTagRenderingPosition (370B0003 [Int32])

FF FF FF FF

fixedSizeValue

[Int32] -1

03 00 20 0E

propDef

PidTagAttachSize (0E200003 [Int32])

 fixedSizeValue

129 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

E7 15 00 00 [Int32] 5607

03 00 F7 0F

propDef

PidTagAccessLevel (0FF70003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

40 00 07 30

propDef

PidTagCreationTime (30070040 [SysTime])

E2 EA E3 B1-BC 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T03:45:35.3281250

40 00 08 30

propDef

PidTagLastModificationTime (30080040 [SysTime])

E2 EA E3 B1-BC 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T03:45:35.3281250

03 00 05 37

propDef

PidTagAttachMethod (37050003 [Int32])

05 00 00 00

fixedSizeValue

[Int32] 5

02 01 09 37

propDef

PidTagAttachRendering (37090102 [Binary])

B8 0D 00 00

length

3512 (0xDB8)

01 00 09 00-00 03 DC 06

00 00 00 00-21 06 00 00

00 00 05 00-00 00 09 02

00 00 00 00-05 00 00 00

01 02 FF FF-FF 00 A5 00

varSizeValue

........

....!...

........

........

........

... value truncated ...

03 00 14 37

propDef

PidTagAttachFlags (37140003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

0B 00 FE 7F

propDef

PidTagAttachmentHidden (7FFE000B [Bool])

00 00

fixedSizeValue

[Bool] False

1F 00 04 37

propDef

PidTagAttachFilename (3704001F [Unicode])

0E 00 00 00

length

14 (0xE)

54 00 65 00-73 00 74 00

20 00 31 00-00 00

varSizeValue

T.e.s.t.

.1...

0B 00 FF 7F

propDef

PidTagAttachmentContactPhoto (7FFF000B [Bool])

00 00

fixedSizeValue

[Bool] False

1F 00 01 30

propDef

PidTagDisplayName (3001001F [Unicode])

0E 00 00 00

length

14 (0xE)

54 00 65 00-73 00 74 00

20 00 31 00-00 00

varSizeValue

T.e.s.t.

.1...

02 01 F9 0F

propDef

PidTagRecordKey (0FF90102 [Binary])

04 00 00 00

length

4 (0x4)

00 00 00 00

varSizeValue

....

03 00 01 40

marker

StartEmbed (40010003 [Int32])

 propDef

130 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

14 00 4A 67 PidTagMid (674A0014 [Int64])

01 00 00 00-00 78 48 C1

fixedSizeValue

[Int64] -4519230284670959615

0B 00 02 00

propDef

PidTagAlternateRecipientAllowed (0002000B [Bool])

01 00

fixedSizeValue

[Bool] True

03 00 17 00

propDef

PidTagImportance (00170003 [Int32])

01 00 00 00

fixedSizeValue

[Int32] 1

1F 00 1A 00

propDef

PidTagMessageClass (001A001F [Unicode])

12 00 00 00

length

18 (0x12)

49 00 50 00-4D 00 2E 00

4E 00 6F 00-74 00 65 00

00 00

varSizeValue

I.P.M...

N.o.t.e.

..

0B 00 23 00

propDef

PidTagOriginatorDeliveryReportRequested (0023000B [Bool])

00 00

fixedSizeValue

[Bool] False

03 00 26 00

propDef

PidTagPriority (00260003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

0B 00 29 00

propDef

PidTagReadReceiptRequested (0029000B [Bool])

00 00

fixedSizeValue

[Bool] False

03 00 36 00

propDef

PidTagSensitivity (00360003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

1F 00 37 00

propDef

PidTagSubject (0037001F [Unicode])

0E 00 00 00

length

14 (0xE)

54 00 65 00-73 00 74 00

20 00 31 00-00 00

varSizeValue

T.e.s.t.

.1...

40 00 39 00

propDef

PidTagClientSubmitTime (00390040 [SysTime])

00 B4 A1 9D-8B 84 C8 01

fixedSizeValue

[SysTime] 2008-03-12T21:54:16.0000000

02 01 3B 00

propDef

PidTagSentRepresentingSearchKey (003B0102 [Binary])

60 00 00 00

length

96 (0x60)

45 58 3A 2F-4F 3D 46 49

52 53 54 20-4F 52 47 41

4E 49 5A 41-54 49 4F 4E

2F 4F 55 3D-45 58 43 48

41 4E 47 45-20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated ...

1F 00 3D 00

propDef

PidTagSubjectPrefix (003D001F [Unicode])

02 00 00 00

length

2 (0x2)

00 00

varSizeValue

..

131 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

02 01 3F 00

propDef

PidTagReceivedByEntryId (003F0102 [Binary])

79 00 00 00

length

121 (0x79)

00 00 00 00-DC A7 40 C8

C0 42 10 1A-B4 B9 08 00

2B 2F E1 82-01 00 00 00

00 00 00 00-2F 4F 3D 46

49 52 53 54-20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated ...

1F 00 40 00

propDef

PidTagReceivedByName (0040001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

02 01 41 00

propDef

PidTagSentRepresentingEntryId (00410102 [Binary])

79 00 00 00

length

121 (0x79)

00 00 00 00-DC A7 40 C8

C0 42 10 1A-B4 B9 08 00

2B 2F E1 82-01 00 00 00

00 00 00 00-2F 4F 3D 46

49 52 53 54-20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated ...

1F 00 42 00

propDef

PidTagSentRepresentingName (0042001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

02 01 43 00

propDef

PidTagReceivedRepresentingEntryId (00430102 [Binary])

79 00 00 00

length

121 (0x79)

00 00 00 00-DC A7 40 C8

C0 42 10 1A-B4 B9 08 00

2B 2F E1 82-01 00 00 00

00 00 00 00-2F 4F 3D 46

49 52 53 54-20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated ...

1F 00 44 00

propDef

PidTagReceivedRepresentingName (0044001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

02 01 51 00

propDef

PidTagReceivedBySearchKey (00510102 [Binary])

60 00 00 00

length

96 (0x60)

45 58 3A 2F-4F 3D 46 49

52 53 54 20-4F 52 47 41

4E 49 5A 41-54 49 4F 4E

2F 4F 55 3D-45 58 43 48

41 4E 47 45-20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated ...

 propDef

132 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

02 01 52 00 PidTagReceivedRepresentingSearchKey (00520102 [Binary])

60 00 00 00

length

96 (0x60)

45 58 3A 2F-4F 3D 46 49

52 53 54 20-4F 52 47 41

4E 49 5A 41-54 49 4F 4E

2F 4F 55 3D-45 58 43 48

41 4E 47 45-20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated ...

0B 00 63 00

propDef

PidTagResponseRequested (0063000B [Bool])

01 00

fixedSizeValue

[Bool] True

1F 00 64 00

propDef

PidTagSentRepresentingAddressType (0064001F [Unicode])

06 00 00 00

length

6 (0x6)

45 00 58 00-00 00

varSizeValue

E.X...

1F 00 65 00

propDef

PidTagSentRepresentingEmailAddress (0065001F [Unicode])

BA 00 00 00

length

186 (0xBA)

2F 00 4F 00-3D 00 46 00

49 00 52 00-53 00 54 00

20 00 4F 00-52 00 47 00

41 00 4E 00-49 00 5A 00

41 00 54 00-49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated ...

1F 00 70 00

propDef

PidTagConversationTopic (0070001F [Unicode])

0E 00 00 00

length

14 (0xE)

54 00 65 00-73 00 74 00

20 00 31 00-00 00

varSizeValue

T.e.s.t.

.1...

02 01 71 00

propDef

PidTagConversationIndex (00710102 [Binary])

16 00 00 00

length

22 (0x16)

01 C8 84 8B-9D B1 08 58

53 52 00 5B-4A D4 96 BA

3C 88 9D B4-16 AE

varSizeValue

.......X

SR.[J...

<.....

1F 00 75 00

propDef

PidTagReceivedByAddressType (0075001F [Unicode])

06 00 00 00

length

6 (0x6)

45 00 58 00-00 00

varSizeValue

E.X...

1F 00 76 00

propDef

PidTagReceivedByEmailAddress (0076001F [Unicode])

BA 00 00 00

length

186 (0xBA)

2F 00 4F 00-3D 00 46 00

49 00 52 00-53 00 54 00

20 00 4F 00-52 00 47 00

41 00 4E 00-49 00 5A 00

41 00 54 00-49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated ...

133 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

1F 00 77 00

propDef

PidTagReceivedRepresentingAddressType (0077001F [Unicode])

06 00 00 00

length

6 (0x6)

45 00 58 00-00 00

varSizeValue

E.X...

1F 00 78 00

propDef

PidTagReceivedRepresentingEmailAddress (0078001F

[Unicode])

BA 00 00 00

length

186 (0xBA)

2F 00 4F 00-3D 00 46 00

49 00 52 00-53 00 54 00

20 00 4F 00-52 00 47 00

41 00 4E 00-49 00 5A 00

41 00 54 00-49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated ...

1F 00 7D 00

propDef

PidTagTransportMessageHeaders (007D001F [Unicode])

B0 06 00 00

length

1712 (0x6B0)

52 00 65 00-63 00 65 00

69 00 76 00-65 00 64 00

3A 00 20 00-66 00 72 00

6F 00 6D 00-20 00 45 00

58 00 43 00-48 00 2D 00

varSizeValue

R.e.c.e.

i.v.e.d.

:. .f.r.

o.m. .E.

X.C.H.-.

... value truncated ...

0B 00 17 0C

propDef

PidTagReplyRequested (0C17000B [Bool])

01 00

fixedSizeValue

[Bool] True

02 01 19 0C

propDef

PidTagSenderEntryId (0C190102 [Binary])

79 00 00 00

length

121 (0x79)

00 00 00 00-DC A7 40 C8

C0 42 10 1A-B4 B9 08 00

2B 2F E1 82-01 00 00 00

00 00 00 00-2F 4F 3D 46

49 52 53 54-20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated ...

1F 00 1A 0C

propDef

PidTagSenderName (0C1A001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

02 01 1D 0C

propDef

PidTagSenderSearchKey (0C1D0102 [Binary])

60 00 00 00

length

96 (0x60)

45 58 3A 2F-4F 3D 46 49

52 53 54 20-4F 52 47 41

4E 49 5A 41-54 49 4F 4E

2F 4F 55 3D-45 58 43 48

41 4E 47 45-20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated ...

1F 00 1E 0C

propDef

PidTagSenderAddressType (0C1E001F [Unicode])

134 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

06 00 00 00

length

6 (0x6)

45 00 58 00-00 00

varSizeValue

E.X...

1F 00 1F 0C

propDef

PidTagSenderEmailAddress (0C1F001F [Unicode])

BA 00 00 00

length

186 (0xBA)

2F 00 4F 00-3D 00 46 00

49 00 52 00-53 00 54 00

20 00 4F 00-52 00 47 00

41 00 4E 00-49 00 5A 00

41 00 54 00-49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated ...

1F 00 D4 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 27 81 00

00

propDef

PidLidTaskRole (0x8127 [PSETID_Task]) [Unicode]

02 00 00 00

length

2 (0x2)

00 00

varSizeValue

..

03 00 D3 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 2A 81 00

00

propDef

PidLidTaskAcceptanceState (0x812A [PSETID_Task]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

0B 00 D2 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 2C 81 00

00

propDef

PidLidTaskFFixOffline (0x812C [PSETID_Task]) [Bool]

00 00

fixedSizeValue

[Bool] False

40 00 06 0E

propDef

PidTagMessageDeliveryTime (0E060040 [SysTime])

00 0E 04 A0-8B 84 C8 01

fixedSizeValue

[SysTime] 2008-03-12T21:54:20.0000000

03 00 07 0E

propDef

PidTagMessageFlags (0E070003 [Int32])

01 00 00 00

fixedSizeValue

[Int32] 1

03 00 CF 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 10 81 00

00

propDef

PidLidTaskActualEffort (0x8110 [PSETID_Task]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 17 0E

propDef

PidTagMessageStatus (0E170003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

0B 00 D1 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 24 81 00

00

propDef

PidLidTaskNoCompute (0x8124 [PSETID_Task]) [Bool]

 fixedSizeValue

135 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

00 00 [Bool] False

1F 00 1D 0E

propDef

PidTagNormalizedSubject (0E1D001F [Unicode])

0E 00 00 00

length

14 (0xE)

54 00 65 00-73 00 74 00

20 00 31 00-00 00

varSizeValue

T.e.s.t.

.1...

0B 00 1F 0E

propDef

PidTagRtfInSync (0E1F000B [Bool])

01 00

fixedSizeValue

[Bool] True

03 00 23 0E

propDef

PidTagInternetArticleNumber (0E230003 [Int32])

1B 00 00 00

fixedSizeValue

[Int32] 27

03 00 2B 0E

propDef

PidTagToDoItemFlags (0E2B0003 [Int32])

01 00 00 00

fixedSizeValue

[Int32] 1

03 00 79 0E

propDef

PidTagTrustSender (0E790003 [Int32])

01 00 00 00

fixedSizeValue

[Int32] 1

03 00 D0 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 11 81 00

00

propDef

PidLidTaskEstimatedEffort (0x8111 [PSETID_Task]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 F7 0F

propDef

PidTagAccessLevel (0FF70003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

0B 00 D6 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 26 81 00

00

propDef

PidLidTaskFRecurring (0x8126 [PSETID_Task]) [Bool]

00 00

fixedSizeValue

[Bool] False

02 01 09 10

propDef

PidTagRtfCompressed (10090102 [Binary])

22 05 00 00

length

1314 (0x522)

1E 05 00 00-85 0B 00 00

4C 5A 46 75-31 AE 9B E3

03 00 0A 00-72 63 70 67

31 32 35 83-00 50 03 52

68 74 6D 6C-31 03 31 F8

varSizeValue

........

LZFu1...

....rcpg

125..P.R

html1.1.

... value truncated ...

0B 00 D5 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 03 81 00

00

propDef

PidLidTeamTask (0x8103 [PSETID_Task]) [Bool]

00 00

fixedSizeValue

[Bool] False

1F 00 35 10

propDef

PidTagInternetMessageId (1035001F [Unicode])

 length

136 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

AC 00 00 00 172 (0xAC)

3C 00 31 00-39 00 44 00

37 00 46 00-42 00 30 00

46 00 30 00-36 00 31 00

36 00 41 00-31 00 34 00

31 00 42 00-46 00 46 00

varSizeValue

<.1.9.D.

7.F.B.0.

F.0.6.1.

6.A.1.4.

1.B.F.F.

... value truncated ...

03 00 80 10

propDef

PidTagIconIndex (10800003 [Int32])

FF FF FF FF

fixedSizeValue

[Int32] -1

03 00 90 10

propDef

PidTagFlagStatus (10900003 [Int32])

02 00 00 00

fixedSizeValue

[Int32] 2

03 00 95 10

propDef

PidTagFollowupIcon (10950003 [Int32])

06 00 00 00

fixedSizeValue

[Int32] 6

40 00 07 30

propDef

PidTagCreationTime (30070040 [SysTime])

90 F8 65 B0-BC 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T03:45:32.8250000

40 00 08 30

propDef

PidTagLastModificationTime (30080040 [SysTime])

90 F8 65 B0-BC 84 C8 01

fixedSizeValue

[SysTime] 2008-03-13T03:45:32.8250000

02 01 0B 30

propDef

PidTagSearchKey (300B0102 [Binary])

10 00 00 00

length

16 (0x10)

87 56 4A B2-FC C2 77 46

A4 81 15 08-9D 47 46 8C

varSizeValue

.VJ...wF

.....GF.

02 01 10 30

propDef

PidTagTargetEntryId (30100102 [Binary])

46 00 00 00

length

70 (0x46)

00 00 00 00-FE C7 EE E9

76 05 2D 4F-80 00 61 68

94 97 4B 0A-07 00 19 D7

FB 0F 06 16-A1 41 BF F6

91 C7 63 DA-A8 66 00 00

varSizeValue

........

v.-O..ah

..K.....

.....A..

..c..f..

... value truncated ...

0B 00 40 3A

propDef

PidTagSendRichInfo (3A40000B [Bool])

01 00

fixedSizeValue

[Bool] True

03 00 DE 3F

propDef

PidTagInternetCodepage (3FDE0003 [Int32])

9F 4E 00 00

fixedSizeValue

[Int32] 20127

03 00 F1 3F

propDef

PidTagMessageLocaleId (3FF10003 [Int32])

09 04 00 00

fixedSizeValue

[Int32] 1033

1F 00 F8 3F

propDef

PidTagCreatorName (3FF8001F [Unicode])

06 00 00 00

length

6 (0x6)

 varSizeValue

137 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

74 00 31 00-00 00 t.1...

1F 00 FA 3F

propDef

PidTagLastModifierName (3FFA001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

03 00 FD 3F

propDef

PidTagMessageCodepage (3FFD0003 [Int32])

E3 04 00 00

fixedSizeValue

[Int32] 1251

03 00 19 40

propDef

PidTagSenderFlags (40190003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 1A 40

propDef

PidTagSentRepresentingFlags (401A0003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 1B 40

propDef

PidTagReceivedByFlags (401B0003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 1C 40

propDef

PidTagReceivedRepresentingFlags (401C0003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 76 40

propDef

PidTagContentFilterSpamConfidenceLevel (40760003 [Int32])

FF FF FF FF

fixedSizeValue

[Int32] -1

03 00 02 59

propDef

PidTagInternetMailOverrideFormat (59020003 [Int32])

00 00 16 00

fixedSizeValue

[Int32] 1441792

03 00 09 59

propDef

PidTagMessageEditorFormat (59090003 [Int32])

02 00 00 00

fixedSizeValue

[Int32] 2

0B 00 4A 66

propDef

PidTagHasNamedProperties (664A000B [Bool])

01 00

fixedSizeValue

[Bool] True

03 00 02 80-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 10 85 00

00

propDef

PidLidSideEffects (0x8510 [PSETID_Common]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

0B 00 08 80-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 03 85 00

00

propDef

PidLidReminderSet (0x8503 [PSETID_Common]) [Bool]

00 00

fixedSizeValue

[Bool] False

1F 00 1A 80-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 A4 85 00

00

propDef

PidLidToDoTitle (0x85A4 [PSETID_Common]) [Unicode]

 length

138 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

0E 00 00 00 14 (0xE)

54 00 65 00-73 00 74 00

20 00 31 00-00 00

varSizeValue

T.e.s.t.

.1...

1F 00 2C 80-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 30 85 00

00

propDef

PidLidFlagRequest (0x8530 [PSETID_Common]) [Unicode]

14 00 00 00

length

20 (0x14)

46 00 6F 00-6C 00 6C 00

6F 00 77 00-20 00 75 00

70 00 00 00

varSizeValue

F.o.l.l.

o.w. .u.

p...

0B 00 4D 81-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 0E 85 00

00

propDef

PidLidAgingDontAgeMe (0x850E [PSETID_Common]) [Bool]

00 00

fixedSizeValue

[Bool] False

03 00 84 81-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 18 85 00

00

propDef

PidLidTaskMode (0x8518 [PSETID_Common]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

0B 00 4B 82-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 06 85 00

00

propDef

PidLidPrivate (0x8506 [PSETID_Common]) [Bool]

00 00

fixedSizeValue

[Bool] False

0B 00 4F 82-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 82 85 00

00

propDef

PidLidUseTnef (0x8582 [PSETID_Common]) [Bool]

00 00

fixedSizeValue

[Bool] False

40 00 68 82-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 A0 85 00

00

propDef

PidLidToDoOrdinalDate (0x85A0 [PSETID_Common]) [SysTime]

F0 55 C3 C6-8B 84 C8 01

fixedSizeValue

[SysTime] 2008-03-12T21:55:25.0070000

1F 00 69 82-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 A1 85 00

00

propDef

PidLidToDoSubOrdinal (0x85A1 [PSETID_Common]) [Unicode]

10 00 00 00

length

16 (0x10)

35 00 35 00-35 00 35 00

35 00 35 00-35 00 00 00

varSizeValue

5.5.5.5.

5.5.5...

03 00 A8 83-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 01 85 00

propDef

PidLidReminderDelta (0x8501 [PSETID_Common]) [Int32]

139 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

00

00 00 00 00

fixedSizeValue

[Int32] 0

40 00 A9 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 05 81 00

00

propDef

PidLidTaskDueDate (0x8105 [PSETID_Task]) [SysTime]

00 00 CB 03-D4 83 C8 01

fixedSizeValue

[SysTime] 2008-03-12T00:00:00.0000000

40 00 AA 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 04 81 00

00

propDef

PidLidTaskStartDate (0x8104 [PSETID_Task]) [SysTime]

00 00 CB 03-D4 83 C8 01

fixedSizeValue

[SysTime] 2008-03-12T00:00:00.0000000

40 00 AB 83-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 16 85 00

00

propDef

PidLidCommonStart (0x8516 [PSETID_Common]) [SysTime]

00 D8 29 B0-0E 84 C8 01

fixedSizeValue

[SysTime] 2008-03-12T07:00:00.0000000

40 00 AC 83-08 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 17 85 00

00

propDef

PidLidCommonEnd (0x8517 [PSETID_Common]) [SysTime]

00 D8 29 B0-0E 84 C8 01

fixedSizeValue

[SysTime] 2008-03-12T07:00:00.0000000

03 00 AD 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 01 81 00

00

propDef

PidLidTaskStatus (0x8101 [PSETID_Task]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

05 00 AE 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 02 81 00

00

propDef

PidLidPercentComplete (0x8102 [PSETID_Task]) [Double]

00 00 00 00-00 00 00 00

fixedSizeValue

[Double] 0

0B 00 B0 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 1C 81 00

00

propDef

PidLidTaskComplete (0x811C [PSETID_Task]) [Bool]

00 00

fixedSizeValue

[Bool] False

03 00 CA 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 13 81 00

00

propDef

PidLidTaskState (0x8113 [PSETID_Task]) [Int32]

01 00 00 00

fixedSizeValue

[Int32] 1

03 00 CB 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 12 81 00

00

propDef

PidLidTaskVersion (0x8112 [PSETID_Task]) [Int32]

140 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

01 00 00 00

fixedSizeValue

[Int32] 1

03 00 CC 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 23 81 00

00

propDef

PidLidTaskOrdinal (0x8123 [PSETID_Task]) [Int32]

FF FF FF 7F

fixedSizeValue

[Int32] 2147483647

1F 00 CD 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 21 81 00

00

propDef

PidLidTaskAssigner (0x8121 [PSETID_Task]) [Unicode]

02 00 00 00

length

2 (0x2)

00 00

varSizeValue

..

03 00 CE 83-03 20 06 00

00 00 00 00-C0 00 00 00

00 00 00 46-00 29 81 00

00

propDef

PidLidTaskOwnership (0x8129 [PSETID_Task]) [Int32]

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 03 40

marker

StartRecip (40030003 [Int32])

03 00 00 30

propDef

PidTagRowid (30000003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

1F 00 02 30

propDef

PidTagAddressType (3002001F [Unicode])

06 00 00 00

length

6 (0x6)

45 00 58 00-00 00

varSizeValue

E.X...

1F 00 03 30

propDef

PidTagEmailAddress (3003001F [Unicode])

BA 00 00 00

length

186 (0xBA)

2F 00 4F 00-3D 00 46 00

49 00 52 00-53 00 54 00

20 00 4F 00-52 00 47 00

41 00 4E 00-49 00 5A 00

41 00 54 00-49 00 4F 00

varSizeValue

/.O.=.F.

I.R.S.T.

.O.R.G.

A.N.I.Z.

A.T.I.O.

... value truncated ...

1F 00 01 30

propDef

PidTagDisplayName (3001001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

02 01 F6 0F

propDef

PidTagInstanceKey (0FF60102 [Binary])

04 00 00 00

length

4 (0x4)

00 00 00 00

varSizeValue

....

03 00 15 0C

propDef

PidTagRecipientType (0C150003 [Int32])

 fixedSizeValue

141 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

01 00 00 00 [Int32] 1

02 01 FF 0F

propDef

PidTagEntryId (0FFF0102 [Binary])

79 00 00 00

length

121 (0x79)

00 00 00 00-DC A7 40 C8

C0 42 10 1A-B4 B9 08 00

2B 2F E1 82-01 00 00 00

00 00 00 00-2F 4F 3D 46

49 52 53 54-20 4F 52 47

varSizeValue

......@.

.B......

+/......

..../O=F

IRST ORG

... value truncated ...

02 01 0B 30

propDef

PidTagSearchKey (300B0102 [Binary])

60 00 00 00

length

96 (0x60)

45 58 3A 2F-4F 3D 46 49

52 53 54 20-4F 52 47 41

4E 49 5A 41-54 49 4F 4E

2F 4F 55 3D-45 58 43 48

41 4E 47 45-20 41 44 4D

varSizeValue

EX:/O=FI

RST ORGA

NIZATION

/OU=EXCH

ANGE ADM

... value truncated ...

1F 00 20 3A

propDef

PidTagTransmittableDisplayName (3A20001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

0B 00 0F 0E

propDef

PidTagResponsibility (0E0F000B [Bool])

01 00

fixedSizeValue

[Bool] True

0B 00 40 3A

propDef

PidTagSendRichInfo (3A40000B [Bool])

01 00

fixedSizeValue

[Bool] True

03 00 FD 5F

propDef

PidTagRecipientFlags (5FFD0003 [Int32])

01 00 00 00

fixedSizeValue

[Int32] 1

02 01 F7 5F

propDef

PidTagRecipientEntryId (5FF70102 [Binary])

79 00 00 00

length

121 (0x79)

00 00 00 00-DC A7 40 C8

C0 42 10 1A-B4 B9 08 00

2B 2F E1 82-01 00 00 00

00 00 00 00-2F 6F 3D 46

69 72 73 74-20 4F 72 67

varSizeValue

......@.

.B......

+/......

..../o=F

irst Org

... value truncated ...

1F 00 FE 39

propDef

PidTagPrimarySmtpAddress (39FE001F [Unicode])

46 00 00 00

length

70 (0x46)

74 00 31 00-40 00 65 00

75 00 6D 00-61 00 72 00

75 00 2D 00-64 00 6F 00

6D 00 2E 00-65 00 78 00

74 00 65 00-73 00 74 00

varSizeValue

t.1.@.e.

u.m.a.r.

u.-.d.o.

m...e.x.

t.e.s.t.

... value truncated ...

142 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

03 00 05 39

propDef

PidTagDisplayTypeEx (39050003 [Int32])

00 00 00 40

fixedSizeValue

[Int32] 1073741824

03 00 00 39

propDef

PidTagDisplayType (39000003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 FE 0F

propDef

PidTagObjectType (0FFE0003 [Int32])

06 00 00 00

fixedSizeValue

[Int32] 6

1F 00 FF 39

propDef

PidTag7BitDisplayName (39FF001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

1F 00 00 3A

propDef

PidTagAccount (3A00001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

03 00 DE 5F

propDef

PidTagRecipientResourceState (5FDE0003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 DF 5F

propDef

PidTagRecipientOrder (5FDF0003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

1F 00 F6 5F

propDef

PidTagRecipientDisplayName (5FF6001F [Unicode])

06 00 00 00

length

6 (0x6)

74 00 31 00-00 00

varSizeValue

t.1...

03 00 FF 5F

propDef

PidTagRecipientTrackStatus (5FFF0003 [Int32])

00 00 00 00

fixedSizeValue

[Int32] 0

03 00 04 40

marker

EndToRecip (40040003 [Int32])

03 00 02 40

marker

EndEmbed (40020003 [Int32])

03 00 0E 40

marker

EndAttach (400E0003 [Int32])

03 00 13 40

marker

IncrSyncDel (40130003 [Int32])

02 01 E5 67

propDef

PidTagIdsetDeleted (67E50102 [Binary])

0D 00 00 00

length

13 (0xD)

01 00 06 00-00 00 78 2E

23 00 04 00-00

varSizeValue

......x.

#....

03 00 2F 40

marker

IncrSyncRead (402F0003 [Int32])

02 01 2D 40

propDef

PidTagIdsetRead (402D0102 [Binary])

0A 00 00 00

length

10 (0xA)

143 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Bytes on the wire Description

01 00 06 00-00 00 78 2E

1F 00

varSizeValue

......x.

..

02 01 2E 40

propDef

PidTagIdsetUnread (402E0102 [Binary])

0A 00 00 00

length

10 (0xA)

01 00 06 00-00 00 78 2E

20 00

varSizeValue

......x.

.

03 00 3A 40

marker

IncrSyncStateBegin (403A0003 [Int32])

02 01 96 67

propDef

PidTagCnsetSeen (67960102 [Binary])

1D 00 00 00

length

29 (0x1D)

19 D7 FB 0F-06 16 A1 41

BF F6 91 C7-63 DA A8 66

03 00 00 00-52 00 00 01

78 4D 1D 50-00

IDSET printout:

{0ffbd719-1606-41a1-bff6-91c763daa866:{[0x1, 0x784D1D]}}

02 01 DA 67

propDef

PidTagCnsetSeenFAI (67DA0102 [Binary])

1D 00 00 00

length

29 (0x1D)

19 D7 FB 0F-06 16 A1 41

BF F6 91 C7-63 DA A8 66

03 00 00 00-52 00 00 01

78 4D 1D 50-00

IDSET printout:

{0ffbd719-1606-41a1-bff6-91c763daa866:{[0x1, 0x784D1D]}}

03 00 17 40

propDef

PidTagIdsetGiven (40170003 [Int32])

38 00 00 00

length

56 (0x38)

19 D7 FB 0F-06 16 A1 41

BF F6 91 C7-63 DA A8 66

05 00 00 00-78 2E 52 1D

22 50 00 D2-0C 67 79 AC

4C 50 42 89-2C 24 5D 2D

1A E3 A4 05-00 00 00 78

06 42 01 80-01 0C 50 00

IDSET printout:

{0ffbd719-1606-41a1-bff6-91c763daa866:{[0x782E1D,

0x782E22]},79670cd2-4cac-4250-892c-

245d2d1ae3a4:{[0x780601, 0x780602], [0x78060C, 0x78060C]}}

02 01 D2 67

propDef

PidTagCnsetRead (67D20102 [Binary])

1D 00 00 00

length

29 (0x1D)

19 D7 FB 0F-06 16 A1 41

BF F6 91 C7-63 DA A8 66

03 00 00 00-52 00 00 01

78 4D 1D 50-00

IDSET printout:

{0ffbd719-1606-41a1-bff6-91c763daa866:{[0x1, 0x784D1D]}}

03 00 3B 40

marker

IncrSyncStateEnd (403B0003 [Int32])

03 00 14 40

marker

IncrSyncEnd (40140003 [Int32])

 EOS

144 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

5 Security

5.1 Security Considerations for Implementers

Individual security considerations are specified in sections 3.2.4.5.2.6 and 3.2.4.5.2.7.

There are no additional security considerations specific to the Bulk Data Transfer protocol.

Security considerations pertaining to the underlying Wire Format protocol, as specified in

[MS-OXCRPC] section 5, do apply to this specification.

5.2 Index of Security Parameters

None.

6 Appendix A: Office/Exchange Behavior

The information in this specification is applicable to the following versions of

Office/Exchange:

 Office 2003 with Service Pack 3 applied

 Exchange 2003 with Service Pack 2 applied

 Office 2007 with Service Pack 1 applied

 Exchange 2007 with Service Pack 1 applied

Exceptions, if any, are noted below. Unless otherwise specified, any statement of optional

behavior in this specification prescribed using the terms SHOULD or SHOULD NOT

implies Office/Exchange behavior in accordance with the SHOULD or SHOULD NOT

prescription. Unless otherwise specified, the term MAY implies Office/Exchange does

not follow the prescription.

<1> Section 2.2.1.1: Exchange Server 2003 SP2 and Exchange Server 2007 SP1 operate on

the assumption that the ICS state properties are zero-length byte arrays if a client fails to send

them when setting up a contents synchronization download. It is recommended that clients

always send all ICS state properties that are relevant to a selected synchronization mode,

defaulting them to zero-length byte arrays.

<2> Section 2.2.1.1.1: Clients MUST send this property with a property tag that defines it as

PtypInteger32. Servers MAY accept this property even if the type is not specified as

PtypInteger32.

<3> Section 2.2.1.1.1: Uploading this ICS State property into the synchronization upload

context has no effect on the Exchange Server implementation of the protocol.

145 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

<4> Section 2.2.1.2.5: Outlook 2003 SP3 and Outlook 2007 SP1 have never assigned foreign

values to this property.

<5> Section 2.2.3.1.1.1.2: Exchange 2003 SP2 and Exchange 2007 SP1 do not honor this flag

unless source and destination servers have the identical behavior, as determined by a version

specified through RopTellVersion.

<6>Section 2.2.3.1.1.1.2: Exchange 2003 SP2 and Exchange 2007 SP1 define additional flags

for this enumeration, which are only used in server-to-server communications. For that reason,

the ROP does not fail if those flags are passed from clients.

<7> Section 2.2.3.1.1.5: Outlook 2003 SP3 does not pass this value.

<8> Section 2.2.3.1.1.5: Outlook 2003 SP3 does not recognize this error code.

<9> Section 2.2.3.1.2.2: Clients MUST ignore the value of this field when communicating

with Exchange 2003 SP2 or Exchange 2007 SP1.

<10> Section 2.2.3.1.2.2: Exchange 2003 SP2 and Exchange 2007 SP1 always set this field to

0x0000.

<11> Section 2.2.3.2.1.1.2: Exchange 2003 SP2 and Exchange 2007 SP1 MAY output bodies

of embedded messages in compressed RTF.

<12> Section 2.2.3.2.1.1.2: Exchange 2003 SP2 and Exchange 2007 SP1 define additional

flags for this enumeration, which are only used in server-to-server communications. For that

reason, the ROP will not fail if those flags are passed from clients.

<13> Section 2.2.3.2.4.4: Exchange 2003 SP2 and Exchange 2007 SP1 do not support this

ROP on public folders.

<14> Section 3.1.1.2: In Exchange 2003 SP2 and Exchange 2007 SP1, property group

mappings do not change frequently, but they do change with each version of Exchange Server.

When a message is modified and the default mapping has changed after an upgrade, the

property group mapping of the message is updated.

<15> Section 3.1.3.2.2: Exchange 2003 SP2, Exchange 2007 SP1, Outlook 2003 SP3, and

Outlook 2007 SP1 only perform this step for messages. For folders, Exchange 2003 SP2 and

Exchange 2007 SP1 keep a server version if the client version is in conflict, but has the same

value of for the PidTagLastModificationTime property.

<16> Section 3.3.4.2.2: Outlook 2003 SP3 and Outlook 2007 SP1 upload initial ICS state and

download the final/checkpoint ICS state when doing synchronization uploads.

<17> Section 3.3.4.2.2.5: Online mode ROPs are used by Outlook 2003 SP3 and Outlook

2007 SP1 when they are in online mode and are connected to the server. These ROPs are

specified in [MS-OXCFOLD] and [MS-OXCMSG].

146 of 146

[MS-OXCFXICS] - v1.03
Bulk Data Transfer Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, December 3, 2008

Index
Applicability statement, 16

Client details, 103

Common details, 83

Glossary, 8

Informative references, 13

Introduction, 8

Message syntax, 18

Messages, 18

Message syntax, 18

Transport, 18

Normative references, 12

Office/Exchange behavior, 144

Prerequisites/preconditions, 16

Protocol details, 83

Client details, 103

Common details, 83

Server details, 95

Protocol examples, 110

Protocol overview, 13

References, 12

Informative references, 13

Normative references, 12

Relationship to other protocols, 15

Security, 144

Index of security parameters, 144

Security considerations for implementers, 144

Security Considerations for Implementers, 144

Server details, 95

Standards assignments, 17

Transport, 18

Vendor-extensible fields, 17

Versioning and capability negotiation, 17

