

1 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

[MS-OXCDATA]: Data Structures Protocol

Specification

Intellectual Property Rights Notice for Protocol Documentation

 Copyrights. This protocol documentation is covered by Microsoft copyrights.

Regardless of any other terms that are contained in the terms of use for the

Microsoft website that hosts this documentation, you may make copies of it in

order to develop implementations of the protocols, and may distribute portions of

it in your implementations of the protocols or your documentation as necessary to

properly document the implementation. This permission also applies to any

documents that are referenced in the protocol documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this

documentation.

 Patents. Microsoft has patents that may cover your implementations of the

protocols. Neither this notice nor Microsoft's delivery of the documentation grants

any licenses under those or any other Microsoft patents. However, the protocols

may be covered by Microsoft‟s Open Specification Promise (available here:

http://www.microsoft.com/interop/osp/default.mspx). If you would prefer a

written license, or if the protocols are not covered by the OSP, patent licenses are

available by contacting protocol@microsoft.com.

 Trademarks. The names of companies and products contained in this

documentation may be covered by trademarks or similar intellectual property

rights. This notice does not grant any licenses under those rights.

Reservation of Rights. All other rights are reserved, and this notice does not grant any

rights other than specifically described above, whether by implication, estoppel, or

otherwise.

Preliminary Documentation. This documentation is preliminary documentation for these

protocols. Since the documentation may change between this preliminary version and the

final version, there are risks in relying on preliminary documentation. To the extent that you

incur additional development obligations or any other costs as a result of relying on this

preliminary documentation, you do so at your own risk.

http://www.microsoft.com/interop/osp/default.mspx
mailto:protocol@microsoft.com

2 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Tools. This protocol documentation is intended for use in conjunction with publicly available

standard specifications and networking programming art, and assumes that the reader is either

familiar with the aforementioned material or has immediate access to it. A protocol

specification does not require the use of Microsoft programming tools or programming

environments in order for a Licensee to develop an implementation. Licensees who have

access to Microsoft programming tools and environments are free to take advantage of them.

Revision Summary

Author Date Version Comments

Microsoft

Corporation

April 4,

2008

0.1 Initial Availability.

Microsoft

Corporation

April 25,

2008

0.2 Revised and updated property names and other technical content.

3 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Table of Contents

1 Introduction ... 5
1.1 Glossary ... 5

1.2 References ... 5
1.2.1 Normative References .. 5
1.2.2 Informative References .. 6

1.3 Structure Overview (Synopsis) ... 6
1.4 Relationship to Protocols and Other Structures ... 7

1.5 Applicability Statement... 7
1.6 Versioning and Localization ... 7
1.7 Vendor-Extensible Fields ... 7

2 Structures ... 7
2.1 Address Lists ... 7

2.1.1 AddressEntry .. 7
2.1.2 AddressList ... 8

2.2 EntryId and Related Types ... 8
2.2.1 FID, MID, and GID .. 9

2.2.2 General EntryId Structure .. 10
2.2.3 Message Database Object EntryIds ... 12
2.2.4 Recipient EntryIds .. 16

2.3 EntryId Lists .. 22
2.3.1 EntryList ... 22

2.3.2 FlatEntry ... 23
2.3.3 FlatEntryList ... 23

2.4 Error Codes .. 24
2.4.1 Additional Error Codes .. 31

2.4.2 Property Error Codes .. 47
2.4.3 Warning Codes ... 48

2.5 Flat UID ... 49

2.6 Notifications .. 50
2.6.1 New Mail Delivery ... 50
2.6.2 Object Creation ... 51

2.6.3 Object Modification ... 54
2.6.4 Object Deletion ... 57
2.6.5 Object Moved or Copied .. 59
2.6.6 Search Complete... 61
2.6.7 Contents or Hierarchy Table Change .. 61

2.6.8 ICS Notification .. 69
2.7 PropertyName .. 70

2.8 PropertyProblem.. 70
2.9 PropertyProblemArray .. 71
2.10 PropertyRows .. 72

2.10.1 PropertyRow ... 72

4 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

2.10.2 PropertyRowSet.. 73

2.10.3 RecipientRow ... 74
2.11 PropertyTag, PropertyId ... 77
2.12 PropertyTagArray ... 77

2.13 Property Values ... 78
2.13.1 Property Value Types ... 78
2.13.2 PropertyValue ... 83
2.13.3 TypedPropertyValue .. 84
2.13.4 TaggedPropertyValue .. 84

2.13.5 FlaggedPropertyValue ... 85
2.13.6 FlaggedPropertyValueWithType ... 85
2.13.7 TypedString .. 86

2.14 Restrictions .. 87

2.14.1 AndRestriction .. 89
2.14.2 OrRestriction... 89

2.14.3 NotRestriction ... 90
2.14.4 ContentRestriction .. 90

2.14.5 PropertyRestriction ... 92
2.14.6 ComparePropertiesRestriction ... 95
2.14.7 BitMaskRestriction ... 97

2.14.8 SizeRestriction .. 98
2.14.9 ExistRestriction .. 99

2.14.10 SubObjectRestriction ... 100
2.14.11 CommentRestriction .. 101
2.14.12 CountRestriction ... 102

2.15 Sorting .. 102

2.15.1 SortOrder .. 102
2.15.2 SortOrderSet ... 103

3 Structure Examples .. 104
3.1 Restriction Example .. 104
3.2 PropertyRow Example .. 112

4 Security Considerations.. 114

5 Appendix A: Office/Exchange Behavior .. 114

6 Index .. 115

5 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

1 Introduction

Certain data structures appear repeatedly in different remote operations (ROPs) and property

values, and in both store and address book protocols.

The Data Structures Protocol specifies certain common data structures that are used repeatedly

in the ROPs specified in the Remote Operations (ROP) List and Encoding Protocol and in the

Office Exchange Protocols Master Property List. This protocol includes structure layouts and

semantics.

1.1 Glossary

The following terms are defined in [MS-OXGLOS]:

entry ID

LongTermID

Personal Information Manager (PIM)

remote operation (ROP)

X500 DN

The following terms are specific to this document:

double-byte character set (DBCS): A charset, such as iso-2022-jp, in which characters are

encoded as either 1 or 2 bytes.

multiple-byte character set (MBCS): A charset, such as iso-2022-jp, in which more than 1

byte is required to encode at least some characters.

single-byte character set (SBCS): A charset, such as US-ASCII, in which all characters are

encoded as a single byte.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used

as described in [RFC2119]. All statements of optional behavior use either MAY,

SHOULD, or SHOULD NOT.

1.2 References

1.2.1 Normative References

[MS-DTYP] Microsoft Corporation, "Windows Data Types", March 2007,

http://go.microsoft.com/fwlink/?LinkId=111558.

[MS-NSPI] Microsoft Corporation, "Name Service Provider Interface (NSPI) Protocol

Specification", April 2008.

[MS-OAUT] Microsoft Corporation, "OLE Automation Protocol Specification", March 2007,

http://go.microsoft.com/fwlink/?LinkId=112419.

http://go.microsoft.com/fwlink/?LinkId=111558
http://go.microsoft.com/fwlink/?LinkId=112419

6 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

[MS-OXCROPS] Microsoft Corporation, "Remote Operations (ROP) List and Encoding

Protocol Specification", April 2008.

[MS-OXCRPC] Microsoft Corporation, "Wire Format Protocol Specification", April 2008.

[MS-OXCTABL] Microsoft Corporation, "Table Object Protocol Specification", April 2008.

[MS-OXGLOS] Microsoft Corporation, "Office Exchange Protocols Master Glossary", April

2008.

[MS-OXOAB] Microsoft Corporation, "Offline Address Book (OAB) Format and Schema

Protocol Specification", April 2008.

[MS-OXOABK] Microsoft Corporation, "Address Book Object Protocol Specification", April

2008.

[MS-OXOCNTC] Microsoft Corporation, "Contact Object Protocol Specification", April

2008.

[MS-OXOMSG] Microsoft Corporation, "E-mail Object Protocol Specification", April 2008.

[MS-OXORULE] Microsoft Corporation, "E-mail Rules Protocol Specification", April 2008.

[MS-OXOSFLD] Microsoft Corporation, "Special Folders Protocol Specification", April

2008.

[MS-OXPROPS] Microsoft Corporation, "Office Exchange Protocols Master Property List

Specification", April 2008.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP

14, RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.

1.2.2 Informative References

None.

1.3 Structure Overview (Synopsis)

The Data Structures Protocol specifies several commonly used data structures. These

structures are primarily concerned with property values, folder and message object identifiers,

and folder queries.

There are some apparent redundancies; for example, EntryIds are specified in a couple of

different ways in section 2.2. This is because information is formatted differently in different

http://www.ietf.org/rfc/rfc2119.txt

7 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

contexts. For example, store EntryIds are formatted differently in the context of a remote

operation (ROP) than in the context of a binary property value created by clients.

As a rule, integers in the data structures here specified are transmitted in little-endian byte

order, with the least significant byte first. But when individual bits within a byte field are

specified, they are numbered starting with the most significant bit. Therefore, in a 1-byte field,

bit 0 is the 0x80 bit, bit 1 is the 0x40 bit, and bit 7 ix the 0x01 bit.

1.4 Relationship to Protocols and Other Structures

This specification defines structures used by more than one of the ROPs as specified in [MS-

OXCROPS]. It also defines structures used by more than one of the PIM object type

specifications, such as [MS-OXOMSG] and the protocols that extend it.

The descriptions and list of properties in [MS-OXPROPS] provides context for many of the

structures defined in this specification.

1.5 Applicability Statement

This specification applies to communication between clients and mailbox or public folder

servers via the protocol as specified in [MS-OXCRPC].

1.6 Versioning and Localization

None.

1.7 Vendor-Extensible Fields

None.

2 Structures

2.1 Address Lists

In the context of a ROP, addressees or recipients of a message object are represented either by

a few property values or by a RecipientRow structure. In certain other contexts, such as in

saved search folder criteria, addressees are represented less compactly by counted lists of

property tags and values, called AddressLists.

2.1.1 AddressEntry

An AddressEntry is a set of properties representing one addressee.

8 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PropertyCount

Values (variable)

…

PropertyCount (4 bytes): A 32-bit unsigned integer giving the number of

TaggedPropertyValues to follow. Please refer to section 0 for the specification of

TaggedPropertyValue.

Values (variable): „PropertyCount‟ TaggedPropertyValue structures representing one

addressee.

2.1.2 AddressList

An AddressList is simply a counted set of AddressEntry structures. Each AddressEntry

represents one addressee.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AddressCount

Addresses (variable)

…

AddressCount (4 bytes): A 32-bit unsigned integer giving the number of addressees to

follow.

Addresses (variable size): „AddressCount‟ AddressEntry structures.

2.2 EntryId and Related Types

EntryId is an abstraction of an identifier for many different types of objects including folders,

messages, recipients, address book entries, and message stores.

For the most common ROPs, concrete identifiers such as FolderId and MessageId – which are

much more compact than EntryId – are used instead. However, there are many cases where

EntryIds are stored as part or all of a binary property value, for example:

 Address book IDs are stored in a message object‟s PidTagSentRepresentingEntryId

property

9 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

 Address book and one-off EntryIds are stored in a recipient‟s PidTagEntryId property

 Contact address EntryIds are stored in a contact distribution list‟s

PidLidDistributionListMembers property

This section first describes the compact FID, MID, and GID structures, then the general

EntryId structure, followed by folder, message, and message database EntryIds, and finally

recipient EntryIds.

2.2.1 FID, MID, and GID

These are compact structures used in ROPs where the message database context of the objects

they refer to is known.

2.2.1.1 FolderId (FID)

A FolderId uniquely identifies a folder in the context of a logon to a message database. The

FolderId is serialized compactly in the context of a ROP, such as RopOpenFolder, where the

message database context is already established. It is an 8-byte structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReplicaId GlobalCounter

…

ReplicaId (2 bytes): A 16-bit unsigned integer identifying a message database.

GlobalCounter (6 bytes): An unsigned 48-bit integer identifying the folder within its

message database.

2.2.1.2 MessageId (MID)

A MessageId uniquely identifies a message in the context of a logon to a message database.

The MessageId is serialized compactly in the context of a ROP, such as RopOpenMessage,

where the message database context is already established. It is an 8-byte structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReplicaId GlobalCounter

…

10 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

ReplicaId (2 bytes): A 16-bit unsigned integer identifying a message database.

GlobalCounter (6 bytes): An unsigned 48-bit integer identifying the message within its

message database.

2.2.1.3 GID

A GID identifies a folder or message in a message database. It differs from a FID or MID in

that the ReplicaId is replaced by the corresponding message database‟s GUID. The last fields

of a folder or message EntryId are effectively a GID.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DatabaseGuid (16 bytes)

…

…

…

GlobalCounter

…

DatabaseGuid (16 bytes): A 128-bit unsigned integer identifying a message database.

GlobalCounter (6 bytes): An unsigned 48-bit integer identifying the folder within its

message database.

2.2.1.3.1 Long Term EntryId Structure

A Long Term EntryId (also referred to as a LongTermID) is a GID, as defined in section

2.2.1.3, plus a 2-byte Pad field containing 0x0000. The total length of the Long Term EntryID

is 24 bytes.

Long Term EntryIds can be generated from the MID and FID by using

RopLongTermIdFromId. Going the other way, MID and FID can be generated from their

Long Term EntryIds by using RopIdFromLongTermId. See [MS-OXCROPS] for the ROP

specifications.

2.2.2 General EntryId Structure

An EntryId carries a sequence of bytes used to identify and access an object. Note that the

length of an EntryId is specified externally, not in the structure itself.

11 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

ProviderUID (16 bytes)

…

…

…

ProviderData (variable)

…

Flags (4 bytes): MUST be set to 0x00000000. Bits in this field indicate under what

circumstances a short-term EntryId is valid. However, in any EntryId stored in a property

value, these 4 bytes MUST be zero indicating a long-term EntryId.

ProviderUID (16 bytes): Identifies the provider that created the EntryId, and used to route

EntryIDs to the correct provider. A table of values for this field appears below at Table 1.

ProviderData (variable): Provider-specific data, further specified below for several different

types.

The following table specifies possible values for the ProviderUID field.

Table 1: ProviderUID Values

EntryId UID type ProviderUID value

object in private

store

%xEE.C1.BD.78.61.11.D0.11.91.7B.00.00.00.00.00.01

object in public store %x38.A1.BB.10.05.E5.10.1A.A1.BB.08.00.2B.2A.56.C2

Address book

recipient

%xDC.A7.40.C8.C0.42.10.1A.B4.B9.08.00.2B.2F.E1.82

One-off recipient %x81.2B.1F.A4.BE.A3.10.19.9D.6E.00.DD.01.0F.54.02

Contact address or

personal distribution

list recipient

%xFE.42.AA.0A.18.C7.1A.10.E8.85.0B.65.1C.24.00.00

12 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

2.2.3 Message Database Object EntryIds

All EntryIds for objects in a message database include, at the beginning of the ProviderData

field, a 16-bit unsigned integer indicating the type of object to which the EntryId corresponds.

Here are the valid values for that type.

Table 2: Message database object types

Message database object type (alternate

name)

Hexadecimal value

PrivateFolder

(eitLTPrivateFolder)

0x0001

%x01.00

PublicFolder

(eitLTPublicFolder)

0x0003

%x03.00

MappedPublicFolder

(eitLTWackyFolder)

0x0005

%x05.00

PrivateMessage

(eitLTPrivateMessage)

0x0007

%x07.00

PublicMessage

(eitLTPublicMessage)

0x0009

%x09.00

MappedPublicMessage

(eitLTWackyMessage)

0x000B

%x0B.00

PublicNewsgroupFolder

(eitLTPublicFolderByName)

0x000C

%x0c.00

2.2.3.1 Folder EntryId

In the context of an EntryId, a FolderId looks quite different than in the context of a ROP. The

ReplicaId is mapped to a DatabaseGuid; the RopLongTermIdFromId operation supports this

mapping. This less compact format is necessary because no assumptions can be made about

the message database context in which a folder EntryId is used.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

13 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Provider UID (16 bytes)

….

…

…

FolderType DatabaseGuid (16 bytes)

…

…

…

… GlobalCounter

…

Pad

Flags (4 bytes): MUST be zero.

Provider UID (16 bytes): MUST be %xEE.C1.BD.78.61.11.D0.11.91.7B.00.00.00.00.00.01,

for a folder in a private mailbox, or %x38.A1.BB.10.05.E5.10.1A.A1.BB.08.00.2B.2A.56.C2,

for a folder in the public store.

FolderType (2 bytes): One of several types as specified in Table 2 above.

DatabaseGuid (16 bytes): A GUID associated with the message database, and corresponding

to the ReplicaId field of the FID.

GlobalCounter (6 bytes): An unsigned 48-bit integer identifying the folder.

Pad (2 bytes): MUST be zero.

2.2.3.2 Message EntryId

In the context of an EntryId, a MessageId looks quite different than in the context of a ROP.

The DatabaseReplicationId is mapped to a MessageDatabaseGuid (perhaps using the

RopLongTermIdFromId operation) and the whole ID is prefixed with flags and a provider

UID. In addition, the FolderId of the folder in which the message resides is included.

14 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

ProviderUID (16 bytes)

…

…

…

MessageType FolderDatabaseGuid (16 bytes)

…

…

…

… FolderGlobalCounter

…

Pad MessageDatabaseGuid (16 bytes)

...

…

…

… MessageGlobalCounter

…

Pad

Flags (4 bytes): MUST be 0x00000000.

ProviderUID (16 bytes): MUST be either

%xEE.C1.BD.78.61.11.D0.11.91.7B.00.00.00.00.00.01, for a folder in a private mailbox, or

%x38.A1.BB.10.05.E5.10.1A.A1.BB.08.00.2B.2A.56.C2, for a folder in the public store.

MessageType (2 bytes): One of several types as specified in Table 2 above.

15 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

FolderDatabaseGuid (16 bytes): A GUID associated with the message database of the folder

in which the message resides, and corresponding to the DatabaseReplicationId field of the

FolderId.

FolderGlobalCounter (6 bytes): An unsigned 48-bit integer identifying the folder in which

the message resides.

Pad (2 bytes): MUST be zero.

MessageDatabaseGuid (16 bytes): A GUID associated with the message database of the

message and corresponding to the DatabaseReplicationId field of the MessageId.

MessageGlobalCounter (6 bytes): An unsigned 48-bit integer identifying the message.

Pad (2 bytes): MUST be zero.

2.2.3.3 Message Database EntryIds

A message database EntryId identifies a mailbox message database or a public folder message

database itself, rather than a message or folder object residing in such a database. It is used in

certain property values.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

ProviderUID (16 bytes)

…

…

…

Version Flag DLLFileName (variable)

… WrappedFlags

… WrappedProvider UID (16 bytes)

…

…

…

… WrappedType

16 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

… ServerShortname (variable)

… MailboxDN (variable)

…

Flags (4 bytes): MUST be 0x00000000.

ProviderUID (16 bytes): MUST be either

%xEE.C1.BD.78.61.11.D0.11.91.7B.00.00.00.00.00.01, for a folder in a private mailbox, or

%x38.A1.BB.10.05.E5.10.1A.A1.BB.08.00.2B.2A.56.C2, for a folder in the public store.

Version (1 byte): MUST be zero.

Flag (1 byte): MUST be zero.

DLLFileName (variable): MUST be set to the following value which represents

“emsmdb.dll”: %x45.4D.53.4D.44.42.2E.44.4C.4C.00.00.00.00

WrappedFlags (4 bytes): MUST be 0x00000000.

WrappedProvider UID (16 bytes): MUST be one of the following values:

Message database type ProviderUID value

Mailbox message

database

%x1B.55.FA.20.AA.66.11.CD.9B.C8.00.AA.00.2F.C4.5A

Public folder message

database

%x1C.83.02.10.AA.66.11.CD.9B.C8.00.AA.00.2F.C4.5A

WrappedType (4 bytes): MUST be %x0C.00.00.00 for a mailbox store, or %x06.00.00.00

for a public store.

ServerShortname (variable): A string of single-byte characters terminated by a single zero

byte, indicating the shortname or NetBIOS name of the server.

MailboxDN (variable): A string of single-byte characters terminated by a single zero byte

and representing the X500 DN of the mailbox, as specified in [MS-OXOAB]. This field is

present only for mailbox databases.

2.2.4 Recipient EntryIds

2.2.4.1 One-Off EntryId

One-off EntryIds are used to hold information about recipients that do not exist in the

directory. All information about a one-off recipient is contained in the EntryId itself.

17 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

ProviderUID (16 bytes)

…

…

…

Version U R L Pad Format M

DisplayName (variable)

…

AddressType (variable)

…

EmailAddress (variable)

…

Flags (4 bytes): MUST be 0x00000000.

ProviderUID (16 bytes): MUST be

%x81.2B.1F.A4.BE.A3.10.19.9D.6E.00.DD.01.0F.54.02.

Version (2 bytes): MUST be 0x0000.

U (1 bit): 1-bit flag (0x8000). If 1, the string fields following are in Unicode (UTF-16) with

two-byte null terminators; if 0, the string fields following are MBCS characters terminated by

a single 0 byte.

R (2 bits): Reserved (mask 0x6000), MUST be zero.

L (1 bit): 1-bit flag (0x1000). If 1, server SHOULD NOT attempt to look up this user‟s e-mail

address in the address book.

Pad (5 bits): Reserved (mask 0x0F80), MUST be 0.

Format (6 bits): (6-bit enumeration, mask 0x007E) The message format desired for this

recipient, as specified in the following table.

Table 3: One-Off EntryId Formatting Values

18 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Name Word

value

Field

value

Description

TextOnly 0x0006 b‟000011‟ Send a plain text message body.

HtmlOnly 0x000E b„000111‟ Send an HTML message body.

TextAndHtml 0x0016 b‟001011‟ Send a multipart/alternative body with

both plain text and HTML.

M (1 bit): 1-bit flag (0x0001). If 0, recipient SHOULD receive messages in TNEF format; if

1, recipient SHOULD receive messages in MIME format.

DisplayName (variable): The recipient‟s display name (in the recipient table,

PidTagDisplayName) as a null-terminated string. If the U field is 1, the null terminator is 2

bytes long; otherwise, 1 byte.

AddressType (variable): The recipient‟s e-mail address type (in the recipient table,

PidTagAddressType) as a null-terminated string. If the U field is 1, the null terminator is 2

bytes long; otherwise, 1 byte.

EmailAddress (variable): The recipient‟s e-mail address (in the recipient table,

PidTagEmailAddress) as a null-terminated string. If the U field is 1, the null terminator is 2

bytes long; otherwise, 1 byte.

2.2.4.2 Address Book EntryId

Address book EntryIds can represent several types of address book objects including

individual users, distribution lists, containers, and templates as specified in Table 4.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

ProviderUID (16 bytes)

…

…

…

Version

19 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Type

X500DN (variable)

…

Flags (4 bytes): MUST be 0x00000000.

ProviderUID (16 bytes): MUST be

%xDC.A7.40.C8.C0.42.10.1A.B4.B9.08.00.2B.2F.E1.82. (Directory)

Version (4 bytes): MUST be set to %x01.00.00.00.

Type (4 bytes): A 32-bit integer representing the type of the object. It MUST be one of the

values from the following table. For more information, see [MS-OXABK].

Table 4: Address Book Object Types

Value (hex bytes) Address book EntryId type

0x00000000

%x00.00.00.00

Local mail user

0x00000001

%x01.00.00.00

Distribution list

0x00000002

%x02.00.00.00

Bulletin board or public folder

0x00000003

%x03.00.00.00

Automated mailbox

0x00000004

%x04.00.00.00

Organizational mailbox

0x00000005

%x05.00.00.00

Private distribution list

0x00000006

%x06.00.00.00

Remote mail user

0x00000100

%x00.01.00.00

Container

20 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0x00000101

%x01.01.00.00

Template

0x00000102

%x02.01.00.00

One-off user

0x00000200

%x00.02.00.00

Search

X500DN (variable): The X500 DN of the address book object. X500DN is a null-terminated

string of 8-bit characters.

2.2.4.3 Contact Address EntryId

Contact Address EntryIds represent recipients whose information is stored in a Contact object,

as specified in [MS-OXCNTC].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

ProviderUID (16 bytes)

…

…

…

Version

Type

Index

EntryIdCount

EntryIdBytes (variable)

…

Flags (4 bytes): MUST be %x00.00.00.00.

21 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

ProviderUID (16 bytes): MUST be

%xFE.42.AA.0A.18.C7.1A.10.E8.85.0B.65.1C.24.00.00.

Version (4 bytes): MUST be %x03.00.00.00.

Type (4 bytes): MUST be %x04.00.00.00.

Index (4 bytes): 4-byte unsigned integer value. This value MUST be a number between 0 and

5 (inclusive) and represents which electronic address in the contact information to use. A

value of 0, 1, and 2 represents Email1, Email2, Email3 respectively, and a value of 3, 4, and 5

represents Fax1, Fax2 and Fax3 respectively. For more information, see [MS-OXCNTC].

EntryIdCount (4 bytes): 4-byte unsigned integer value representing the count of bytes in the

EntryIdBytes field.

EntryIdBytes (variable): EntryId of the Contact object that contains this address, which in

turn has a format specified in section 2.2.3.2. The size of this structure is specified by the

EntryIdCount field <1>.

2.2.4.4 Personal Distribution List EntryId

The Personal Distribution List entry IDs represents recipients whose information is stored in a

Personal Distribution List object, as specified in [MS-OXCNTC].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

ProviderUID

…

…

…

Version

Type

Index

EntryIdCount

EntryIdBytes (variable)

…

22 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Flags (4 bytes): MUST be %x00.00.00.00.

ProviderUID (16 bytes): MUST be

%xFE.42.AA.0A.18.C7.1A.10.E8.85.0B.65.1C.24.00.00.

Version (4 bytes): MUST be %x03.00.00.00.

Type (4 bytes): MUST be %x05.00.00.00.

Index (4 bytes): MUST be %xFF.00.00.00.

EntryIdCount (4 bytes): 4-byte unsigned integer value representing the count of bytes in the

EntryIdBytes field.

EntryIdBytes (variable): EntryId of the Personal Distribution List object to which this

address refers, which in turn has the format specified in section 2.2.3.2. The size of this

structure is specified by the EntryIdCount field <2>.

2.3 EntryId Lists

2.3.1 EntryList

EntryList is used in search folder criteria to serialize a list of EntryIds. Briefly, there are three

parts to this structure:

 The count of entries in the list

 „count‟ structures giving the length of individual entries

 Data for each of the „count‟ individual entries

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EntryCount

Pad

EntryLength (variable)

…

EntryIds (variable)

…

23 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

EntryCount (4 bytes): An unsigned 32-bit integer giving the number of EntryIds in the list. It

MUST be followed by that many EntryLength and that many EntryId structures.

Pad (4 bytes): Clients MAY store any value; servers MUST ignore the value.

EntryLength (EntryCount * 8 bytes): A series of „EntryCount‟ pairs: an unsigned 32-bit

integer giving the size of one EntryId, followed by 4-byte pad that MAY have any value.

EntryIds (variable size): A series of „EntryCount‟ EntryIds. There is no padding between

EntryIds. The length of the i‟th EntryId is specified by the first 32 bits of the i‟th element of

the EntryLength.

2.3.2 FlatEntry

A FlatEntry structure is simply the size of an EntryId, followed by the EntryId itself, for ease

of serialization.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size

EntryId (variable)

…

Size (4 bytes): An unsigned 32-bit integer giving the size of the following EntryId, not

including the Size field itself.

EntryId: The EntryId itself. It MUST be exactly Size bytes long.

2.3.3 FlatEntryList

A FlatEntryList gives the number of EntryIds and their total size, followed by a series of

FlatEntry structures.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Count

Size

FlatEntries (variable)

24 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

…

Count (4 bytes): An unsigned 32-bit integer giving the number of FlatEntry structures in the

list.

Size (4 bytes): The total size of all the FlatEntry structures, not including the Count and Size

fields themselves.

FlatEntries (variable size): A series of FlatEntry structures with the actual EntryId data.

There MUST be exactly Count structures, and their total size MUST be exactly Size.

2.4 Error Codes

When encoded in ROP buffers, all error codes are transmitted as 32-bit integers in little-endian

format. Error codes are presented in the following table:.

Table 5 Error Codes

Name Description (alternate names) Numeric value

(hex)

Success The operation succeeded.

(S_OK, SUCCESS_SUCCESS)

00000000,

%x00.00.00.00

GeneralFailure The operation failed for an unspecified

reason (E_FAIL,

MAPI_E_CALL_FAILED, ecError,

SYNC_E_ERROR)

80004005,

%x05.40.00.80

OutOfMemory Not enough memory was available to

complete the operation (E_NOMEMORY,

MAPI_E_NOT_ENOUGH_MEMORY,

ecMAPIOOM, ecPropSize)

8007000E,

%x0E.00.07.80

InvalidParameter An invalid parameter was passed to a

remote procedure call (E_INVALIDARG,

MAPI_E_INVALID_PARAMETER,

ecInvalidParam, ecInvalidSession,

ecBadBuffer,

SYNC_E_INVALID_PARAMETER)

80070057,

%x57.00.07.80

NoInterface The requested interface is not supported

(E_NOINTERFACE,

MAPI_E_INTERFACE_NOT_SUPPOR

TED, ecinterfacenotsupported)

80004002

%x02.40.00.80

25 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Name Description (alternate names) Numeric value

(hex)

AccessDenied The caller does not have sufficient access

rights to perform the operation

(E_ACCESSDENIED,

MAPI_E_NO_ACCESS, ecaccessdenied,

ecpropsecurityviolation)

80070005,

%x05.00.07.80

NotSupported The server does not support this method

call.

(MAPI_E_NO_SUPPORT,

ecNotSupported, ecNotImplemented)

80040102,

%x02.01.04.80

InvalidCharacterWidth Unicode characters were requested when

only 8-bit characters are supported, or vice

versa.

(MAPI_E_BAD_CHARWIDTH,

ecBadCharwidth)

80040103,

%x03.01.04.80

StringTooLong In the context of this method call, a string

exceeds the maximum permitted length.

(MAPI_E_STRING_TOO_LONG,

ecStringTooLarge)

80040105,

%x05.01.04.80

InvalidFlag An unrecognized flag bit was passed to a

method call.

(MAPI_E_UNKNOWN_FLAGS,

ecUnknownFlags,

SYNC_E_UNKNOWN_FLAGS)

80040106,

%x06.01.04.80

InvalidEntryID An incorrectly formatted EntryId was

passed to a method call.

(MAPI_E_INVALID_ENTRYID,

ecInvalidEntryId)

80040107,

%x07.01.04.80

InvalidObject A method call was made using a reference

to an object that has been destroyed or is

not in a viable state.

(MAPI_E_INVALID_OBJECT,

ecInvalidObject)

80040108,

%x08.01.04.80

26 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Name Description (alternate names) Numeric value

(hex)

ObjectChanged An attempt to commit changes failed

because the object was changed

separately.

(MAPI_E_OBJECT_CHANGED,

ecObjectModified)

80040109,

%x09.01.04.80

ObjectDeleted An operation failed because the object was

deleted separately.

(MAPI_E_OBJECT_DELETED,

ecObjectDeleted)

8004010A,

%x0A.01.04.80

ServerBusy A table operation failed because a separate

operation was in progress at the same

time.

(MAPI_E_BUSY, ecBusy)

8004010B,

%x0B.01.04.80

OutOfDisk Not enough disk space was available to

complete the operation.

(MAPI_E_NOT_ENOUGH_DISK,

ecDiskFull)

8004010D,

%x0D.01.04.80

OutOfResources Not enough of an unspecified resource

was available to complete the operation.

(MAPI_E_NOT_ENOUGH_RESOURC

ES, ecInsufficientResrc)

8004010E,

%x0E.01.04.80

NotFound The requested object could not be found at

the server.

(MAPI_E_NOT_FOUND, ecNotFound,

ecAttachNotFound, ecUnknownRecip,

ecPropNotExistent)

8004010F,

%x0F.01.04.80

VersionMismatch Client and server versions are not

compatible.

(MAPI_E_VERSION,

ecVersionMismatch, ecVersion)

80040110,

%x10.01.04.80

LogonFailed A client was unable to log on to the server.

(MAPI_E_LOGON_FAILED,

ecLoginFailure)

80040111,

%x11.01.04.80

27 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Name Description (alternate names) Numeric value

(hex)

TooManySessions A server or service is unable to create any

more sessions.

(MAPI_E_SESSION_LIMIT,

ecTooManySessions)

80040112,

%x12.01.04.80

UserCanceled An operation failed because a user

cancelled it.

(MAPI_E_USER_CANCEL,

ecUserAbort)

80040113,

%x13.01.04.80

AbortFailed A RopAbort or RopAbortSubmit request

was unsuccessful.

(MAPI_E_UNABLE_TO_ABORT,

ecUnableToAbort)

80040114,

%x14.01.04.80

NetworkError An operation was unsuccessful because of

a problem with network operations or

services.

(MAPI_E_NETWORK_ERROR,

ecNetwork)

80040115,

%x15.01.04.80

DiskError There was a problem writing to or reading

from disk.

(MAPI_E_DISK_ERROR, ecWriteFault,

ecReadFault)

80040116,

%x16.01.04.80

TooComplex The operation requested is too complex for

the server to handle; often applied to

restrictions.

(MAPI_E_TOO_COMPLEX,

ecTooComplex)

80040117,

%x17.01.04.80

InvalidColumn The column requested is not allowed in

this type of table.

(MAPI_E_BAD_COLUMN)

80040118,

%x18.01.04.80

ComputedValue A property cannot be updated because it is

read-only, computed by the server.

(MAPI_E_COMPUTED, ecComputed)

8004011A,

%x1A.01.04.80

28 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Name Description (alternate names) Numeric value

(hex)

CorruptData There is an internal inconsistency in a

database, or in a complex property value.

(MAPI_E_CORRUPT_DATA,

ecCorruptData)

8004011B,

%x1B.01.04.80

InvalidCodepage The server is not configured to support the

codepage requested by the client.

(MAPI_E_UNKNOWN_CPID)

8004011E,

%x1E.01.04.80

InvalidLocale The server is not configured to support the

locale requested by the client.

(MAPI_E_UNKNOWN_LCID)

8004011F,

%x1F.01.04.80

TimeSkew The operation failed due to clock skew

between servers.

(MAPI_E_INVALID_ACCESS_TIME,

ecTimeSkew)

80040123,

%x23.01.04.80

EndOfSession Indicates that the server session has been

destroyed, possibly by a server restart, and

the client SHOULD reconnect.

(MAPI_E_END_OF_SESSION)

80040200,

%x00.02.04.80

UnknownEntryId Indicates that the EntryId passed to

OpenEntry was created by a different

MAPI provider.

(MAPI_E_UNKNOWN_ENTRYID)

80040201,

%x01.02.04.80

NotCompleted A complex operation such as building a

table row set could not be completed.

(MAPI_E_UNABLE_TO_COMPLETE,

ecUnableToComplete)

80040400,

%x00.04.04.80

Timeout An asynchronous operation did not

succeed within the specified timeout.

(MAPI_E_TIMEOUT, ecTimeout)

80040401,

%x01.04.04.80

EmptyTable A table essential to the operation is empty.

(MAPI_E_TABLE_EMPTY,

ecTableEmpty)

80040402,

%x02.04.04.80

29 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Name Description (alternate names) Numeric value

(hex)

TableTooBig The table is too big for the requested

operation to complete.

(MAPI_E_TABLE_TOO_BIG,

ecTableTooBig)

80040403,

%x03.04.04.80

InvalidBookmark The bookmark passed to a table operation

was not created on the same table.

(MAPI_E_INVALID_BOOKMARK,

ecInvalidBookmark)

80040405,

%x05.04.04.80

ErrorWait A wait timeout has expired.

(MAPI_E_WAIT, ecWait)

80040500,

%x00.05.04.80

ErrorCancel The operation had to be canceled,

(MAPI_E_CANCEL, ecCancel)

80040501,

%x01.05.04.80

NoSuppress The server does not support the

suppression of read receipts.

(MAPI_E_NO_SUPPRESS)

80040602,

%x02.06.04.80

CollidingNames A folder or item cannot be created because

one with the same name or other criteria

already exists.

(MAPI_E_COLLISION,

ecDuplicateName)

80040604,

%x04.06.04.80

NotInitialized The subsystem is not ready.

(MAPI_E_NOT_INITIALIZED,

ecNotInitialized)

80040605,

%x05.06.04.80

NoRecipients A message cannot be sent because it has

no recipients.

(MAPI_E_NO_RECIPIENTS)

80040607,

%x07.06.04.80

AlreadySent A message cannot be opened for

modification because it has already been

sent.

(MAPI_E_SUBMITTED, ecSubmitted)

80040608,

%x08.06.04.80

30 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Name Description (alternate names) Numeric value

(hex)

HasFolders A folder cannot be deleted because it still

contains subfolders.

(MAPI_E_HAS_FOLDERS,

ecFolderHasChildren)

80040609,

%x09.06.04.80

HasMessages A folder cannot be deleted because it still

contains messages.

(MAPI_E_HAS_MESSAGES,

ecFolderHasContents)

8004060A,

%x0A.06.04.80

FolderCycle A folder move or copy operation would

create a cycle (typically when the request

is to copy a parent folder to one of its

subfolders).

(MAPI_E_FOLDER_CYCLE,

ecRootFolder)

8004060B,

%x0B.06.04.80

TooManyLocks Too many locks have been requested.

(MAPI_E_LOCKID_LIMIT,

ecLockIdLimit)

8004060D,

%x0D.06.04.80

AmbiguousRecipient An unresolved recipient matches more

than one entry in the directory.

(MAPI_E_AMBIGUOUS_RECIP,

ecAmbiguousRecip)

80040700,

%x00.07.04.80

ObjectDeleted The requested object was previously

deleted.

(SYNC_E_OBJECT_DELETED)

80040800,

%x00.08.04.80

IgnoreFailure An error occurred but it's safe to ignore the

error, perhaps because the change in

question has been superseded.

(SYNC_E_IGNORE)

80040801

%x01.08.04.80

SyncConflict Conflicting changes to an object have been

detected.

(SYNC_E_CONFLICT)

80040802

%x02.08.04.80

NoParentFolder The parent folder could not be found.

(SYNC_E_NO_PARENT)

80040803

%x03.08.04.80

31 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Name Description (alternate names) Numeric value

(hex)

CycleDetected An operation would create a cycle (for

instance, by copying a parent folder to one

of its subfolders).

80040804

%x04.08.04.80

NotSynchronized A sync operation did not take place,

possibly due to a conflicting change.

(SYNC_E_UNSYNCHRONIZED)

80040805

%x05.08.04.80

NamedPropertyQuota The message database cannot store any

more named property mappings.

(MAPI_E_NAMED_PROP_QUOTA_E

XCEEDED, ecNPQuotaExceeded)

80040900,

%x00.09.04.80

2.4.1 Additional Error Codes

When encoded in ROP buffers, all error codes are transmitted as 32-bit integers in little-endian

format. Additional error codes are presented in the following table:

Table 6 Additional Error Codes

Name Description (alternate names) Numeric value

(hex)

JetError Unspecified database failure.

 (ecJetError)

0x000003EA

UnknownUser Unable to identify a home message database

for this user.

(ecUnknownUser)

0x000003EB

Exiting The server is in the process of stopping.

(ecExiting)

0x000003ED

BadConfiguration Protocol settings for this user are incorrect.

(ecBadConfig)

0x000003EE

UnknownCodePage The specified codepage is not installed on the

server.

(ecUnknownCodePage)

0x000003EF

32 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

ServerMemory The server is out of memory.

(ecServerOOM, ecMemory)

0x000003F0

LoginPermission This user does not have access rights to the

mailbox.

(ecLoginPerm)

0x000003F2

DatabaseRolledBack The database has been restored and needs

fixup, but cannot be fixed up.

(ecDatabaseRolledBack)

0x000003F3

DatabaseCopiedError The database file has been copied from

another server.

(ecDatabaseCopiedError)

0x000003F4

AuditNotAllowed Auditing of security operations is not

permitted.

(ecAuditNotAllowed)

0x000003F5

ZombieUser User has no security identifier.

(ecZombieUser)

0x000003F6

UnconvertableACL An access control list cannot be converted to

NTFS format.

(ecUnconvertableACL)

0x000003F7

NoFreeJetSessions No Jet session is available.

(ecNoFreeJses)

0x0000044C

DifferentJetSession Warning, a Jet session other than the one

requested was returned.

(ecDifferentJses)

0x0000044D

FileRemove An error occurred when attempting to

remove a database file.

(ecFileRemove)

0x0000044F

ParameterOverflow Parameter value overflow.

(ecParameterOverflow)

0x00000450

BadVersion Bad message store database version number.

(ecBadVersion)

0x00000451

TooManyColumns Too many columns requested in SetColumns.

(ecTooManyCols)

0x00000452

33 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

HaveMore A ROP has more data to return.

(ecHaveMore)

0x00000453

DatabaseError General database problem

(ecDatabaseError)

0x00000454

IndexNameTooBig An index name is larger than what Jet allows

(ecIndexNameTooBig)

0x00000455

UnsupportedProperty The property data type is not supported.

(ecUnsupportedProp)

0x00000456

MessageNotSaved During AbortSubmit, a message was not

saved.

(ecMsgNotSaved)

0x00000457

UnpublishedNotification A notification could not be published at this

time.

(ecUnpubNotif)

0x00000459

DifferentRoot Moving or copying folders to a different top-

level hierarchy is not supported.

(ecDifferentRoot)

0x0000045B

BadFolderName Invalid folder name.

(ecBadFolderName)

0x0000045C

AttachmentOpen The attachment is open.

(ecAttachOpen)

0x0000045D

InvalidCollapseState The collapse state given to SetCollapseState

is invalid.

(ecInvClpsState)

0x0000045E

SkipMyChildren While walking a folder tree, do not consider

children of this folder.

(ecSkipMyChildren)

0x0000045F

SearchFolder The operation is not supported on a search

folder.

(ecSearchFolder)

0x00000460

NotSearchFolder The operation is valid only on a search folder.

(ecNotSearchFolder)

0x00000461

34 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

FolderSetReceive This is a receive folder and cannot be deleted.

(ecFolderSetReceive)

0x00000462

NoReceiveFolder No receive folder is available (even no

default).

(ecNoReceiveFolder)

0x00000463

DeleteSubmittedMessage Deleting a message that has been submitted

for sending is not permitted.

 (ecNoDelSubmitMsg)

0x00000465

InvalidRecipients It was impossible to deliver to this recipient.

(ecInvalidRecips)

0x00000467

NoReplicaHere No replica of the public folder in this

message database.

(ecNoReplicaHere)

0x00000468

NoReplicaAvailable No available message database has a replica

of this public folder.

(ecNoReplicaAvailable)

0x00000469

PublicDatabase The operation is invalid on a public message

database.

(ecPublicMDB)

0x0000046A

NotPublicDatabase The operation is valid only on a public

message database.

(ecNotPublicMDB)

0x0000046B

RecordNotFound The record was not found.

(ecRecordNotFound)

0x0000046C

ReplicationConflict A replication conflict was detected.

(ecReplConflict)

0x0000046D

FXBufferOverrun Prevented an overrun while reading a fast

transfer buffer.

(ecFxBufferOverrun)

0x00000470

FXBufferEmpty No more in a fast transfer buffer.

(ecFxBufferEmpty)

0x00000471

FXPartialValue Partial long value in a fast transfer buffer.

(ecFxPartialValue)

0x00000472

35 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

FxNoRoom No room for an atomic value in a fast transfer

buffer.

(ecFxNoRoom)

0x00000473

TimeExpired Housekeeping functions have exceeded their

time window.

(ecMaxTimeExpired)

0x00000474

DestinationError An error occurred on the destination folder

during a copy operation.

(ecDstError)

0x00000475

DatabaseNotInitialized The message database was not properly

initialized.

(ecMDBNotInit)

0x00000476

WrongServer This server does not host the user‟s mailbox

database.

(ecWrongServer)

0x00000478

BufferTooSmall A buffer passed to this function is not big

enough.

(ecBufferTooSmall)

0x0000047D

AttachmentResolutionRe

quired

Linked attachments could not be resolved to

actual files.

(ecRequiresRefResolve)

0x0000047E

ServerPaused The service is in a paused state.

(ecServerPaused)

0x0000047F

ServerBusy The server is too busy to complete an

operation.

(ecServerBusy)

0x00000480

NoSuchLogon No such logon exists in the message

database‟s Logon list.

(ecNoSuchLogon)

0x00000481

LoadLibraryFailed Internal error: the service cannot load a

required DLL.

(ecLoadLibFailed)

0x00000482

36 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

AlreadyConfigured A synchronization object has already been

configured.

(ecObjAlreadyConfig)

0x00000483

NotConfigured A synchronization object has not yet been

configured.

(ecObjNotConfig)

0x00000484

DataLoss A CodePage conversion incurred when data

loss.

(ecDataLoss)

0x00000485

MaximumSendThreadEx

ceeded

The maximum number of send threads has

been exceeded.

(ecMaxSendThreadExceeded)

0x00000488

FxErrorMarker A fast transfer error marker was found, and

recovery is necessary.

(ecFxErrorMarker)

0x00000489

NoFreeJtabs There are no more free Jet tables.

(ecNoFreeJtabs)

0x0000048A

NotPrivateDatabase The operation is only valid on a private

mailbox database.

(ecNotPrivateMDB)

0x0000048B

IsintegMDB The message database has been locked by the

ISINTEG utility.

(ecIsintegMDB)

0x0000048C

RecoveryMismatch A recovery storage group operation was

attempted on a non-RSG message database,

or vice-versa.

(ecRecoveryMDBMismatch)

0x0000048D

TableMayNotBeDeleted Attempt to delete a critical table, such as the

Messages or Attachments table.

(ecTableMayNotBeDeleted)

0x0000048E

RpcRegisterIf Error in registering RPC interfaces.

(ecRpcRegisterIf)

0x000004B1

RpcListen Error in starting the RPC listener.

(ecRpcListen)

0x000004B2

37 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

RpcFormat A badly formatted RPC buffer was detected.

(ecRpcFormat)

0x000004B6

NoCopyTo Single instance storage cannot be used in this

case.

(ecNoCopyTo)

0x000004B7

NullObject An object handle reference in the RPC buffer

could not be resolved.

(ecNullObject)

0x000004B9

RpcAuthentication Server requests client to use authentication.

(ecRpcAuthentication)

0x000004BC

RpcBadAuthenticationLe

vel

The server doesn't recognize a client‟s

authentication level.

(ecRpcBadAuthenticationLevel)

0x000004BD

NullCommentRestriction The sub-restriction of a comment restriction

is empty.

(ecNullCommentRestriction)

0x000004BE

RulesLoadError Rule data was unavailable for this folder.

(ecRulesLoadError)

0x000004CC

RulesDeliverErr Delivery-time failure in rule execution.

(ecRulesDeliverErr)

0x000004CD

RulesParsingErr Invalid syntax in a stored rule condition or

action.

(ecRulesParsingErr)

0x000004CE

RulesCreateDAE Failure creating a deferred rule action error

message.

(ecRulesCreateDaeErr)

0x000004CF

RulesCreateDAM Failure creating a deferred rule action

message.

(ecRulesCreateDamErr)

0x000004D0

RulesNoMoveCopyFolde

r

A move or copy rule action could not be

performed due to a problem with the target

folder.

(ecRulesNoMoveCopyFolder)

0x000004D1

38 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

RulesNoFolderRights A move or copy rule action could not be

performed due to a permissions problem with

the target folder.

 (ecRulesNoFolderRights)

0x000004D2

MessageTooBig A message could not be delivered because it

exceeds a size limit.

(ecMessageTooBig)

0x000004D4

FormNotValid There is a problem with the form mapped to

the message‟s message class.

(ecFormNotValid)

0x000004D5

NotAuthorized Delivery to the desired folder was not

authorized.

(ecNotAuthorized)

0x000004D6

DeleteMessage The message was deleted by a rule action.

(ecDeleteMessage)

0x000004D7

BounceMessage Delivery of the message was denied by a rule

action.

(ecBounceMessage)

0x000004D8

QuotaExceeded The operation failed because it would have

exceeded a resource quota.

(ecQuotaExceeded)

0x000004D9

MaxSubmissionExceeded A message could not be submitted because its

size exceeds the defined maximum.

(ecMaxSubmissionExceeded)

0x000004DA

MaxAttachmentExceeded The maximum number of message

attachments has been exceeded.

(ecMaxAttachmentExceeded)

0x000004DB

SendAsDenied The user account does not have permission to

send mail as the owner of this mailbox.

(ecSendAsDenied)

0x000004DC

ShutoffQuotaExceeded The operation failed because it would have

exceeded the mailbox‟s shutoff quota.

(ecShutoffQuotaExceeded)

0x000004DD

39 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

TooManyOpenObjects A client has opened too many objects of a

specific type.

(ecMaxObjsExceeded)

0x000004DE

ClientVersionBlocked The server is configured to block clients of

this version.

(ecClientVerDisallowed)

0x000004DF

RpcHttpDisallowed The server is configured to block RPC

connections via HTTP.

(ecRpcHttpDisallowed)

0x000004E0

CachedModeRequired The server is configured to block online

mode connections; only cached mode

connections are allowed.

 (ecCachedModeRequired)

0x000004E1

FolderNotCleanedUp The folder has been deleted but not yet

cleaned up.

(ecFolderNotCleanedUp)

0x000004E3

FormatError Part of a ROP buffer was incorrectly

formatted.

(ecFmtError)

0x000004ED

NotExpanded Error in expanding or collapsing rows in a

categorized view.

(ecNotExpanded)

0x000004F7

NotCollapsed Error in expanding or collapsing rows in a

categorized view. (ecNotCollapsed)

0x000004F8

NoExpandLeafRow Leaf rows cannot be expanded; only category

header rows can be expanded.

(ecLeaf)

0x000004F9

UnregisteredNameProp An operation was attempted on a named

property ID for which no name has been

registered.

(ecUnregisteredNameProp)

0x000004FA

FolderDisabled Access to the folder is disabled, perhaps

because form design is in progress.

(ecFolderDisabled)

0x000004FB

40 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

DomainError There is an inconsistency in the message

database‟s association with its server.

(ecDomainError)

0x000004FC

NoCreateRight The operation requires create access rights

which the user does not have.

(ecNoCreateRight)

0x000004FF

PublicRoot The operation requires create access rights at

a public folder root.

(ecPublicRoot)

0x00000500

NoReadRight The operation requires read access rights

which the user does not have.

(ecNoReadRight)

0x00000501

NoCreateSubfolderRight The operation requires create subfolder

access rights which the user does not have.

(ecNoCreateSubfolderRight)

0x00000502

MessageCycle The source message contains the destination

message and cannot be attached to it.

(ecMsgCycle)

0x00000504

NullDestinationObject The RPC buffer contains a destination object

handle that could not be resolved to a server

object.

(ecDstNullObject)

0x00000503

TooManyRecips A hard limit on the number of recipients per

message was exceeded.

(ecTooManyRecips)

0x00000505

VirusScanInProgress The operation failed because the target

message is being scanned for viruses.

(ecVirusScanInProgress)

0x0000050A

VirusDetected The operation failed because the target

message is infected with a virus.

(ecVirusDetected)

0x0000050B

MailboxInTransit The mailbox is in transit and is not accepting

mail.

(ecMailboxInTransit)

0x0000050C

41 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

BackupInProgress The operation failed because the message

database is being backed up.

(ecBackupInProgress)

0x0000050D

VirusMessageDeleted The operation failed because the target

message was infected with a virus and has

been deleted.

(ecVirusMessageDeleted)

0x0000050E

InvalidBackupSequence Backup steps were performed out of

sequence.

(ecInvalidBackupSequence)

0x0000050F

InvalidBackupType The requested backup type was not

recognized.

(ecInvalidBackupType)

0x00000510

TooManyBackups Too many backups are already in progress.

(ecTooManyBackupsInProgress)

0x00000511

RestoreInProgress A restore is already in progress.

(ecRestoreInProgress)

0x00000512

DuplicateObject The object already exists.

(ecDuplicateObject)

0x00000579

ObjectNotFound An internal database object could not be

found.

(ecObjectNotFound)

0x0000057A

FixupReplyRule A rule object MUST be fixed up with the

reply template message ID.

(ecFixupReplyRule)

0x0000057B

TemplateNotFound The reply template could not be found for a

message that triggered an auto-reply rule.

(ecTemplateNotFound)

0x0000057C

RuleExecution An error occurred while executing a rule

action.

(ecRuleExecution)

0x0000057D

DSNoSuchObject A server object could not be found in the

directory.

(ecDSNoSuchObject)

0x0000057E

42 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

AlreadyTombstoned An attempt to tombstone a message already

in the message tombstone list failed.

(ecMessageAlreadyTombstoned)

0x0000057F

ReadOnlyTransaction A write operation was attempted in a read-

only transaction.

(ecRequiresRWTransaction)

0x00000596

Paused Attempt to pause a server that is already

paused.

(ecPaused)

0x0000060E

NotPaused Attempt to unpause a server that is not

paused.

(ecNotPaused)

0x0000060F

WrongMailbox The operation was attempted on the wrong

mailbox.

(ecWrongMailbox)

0x00000648

ChangePassword The account password MUST be changed.

(ecChgPassword)

0x0000064C

PasswordExpired The account password has expired.

(ecPwdExpired)

0x0000064D

InvalidWorkstation The account has logged on from the wrong

workstation.

(ecInvWkstn)

0x0000064E

InvalidLogonHours The account has logged on at the wrong time

of day.

(ecInvLogonHrs)

0x0000064F

AccountDisabled The account is disabled.

(ecAcctDisabled)

0x00000650

RuleVersion The rule data contains an invalid rule version.

(ecRuleVersion)

0x000006A4

RuleFormat The rule condition or action was incorrectly

formatted.

(ecRuleFormat)

0x000006A5

43 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

RuleSendAsDenied The rule is not authorized to send from this

mailbox.

(ecRuleSendAsDenied)

0x000006A6

NoServerSupport A newer client requires functionality that an

older server does not support.

(ecNoServerSupport)

0x000006B9

LockTimedOut An attempt to unlock a message failed

because the lock had already timed out.

(ecLockTimedOut)

0x000006BA

ObjectLocked The operation failed because the target object

is locked.

(ecObjectLocked)

0x000006BB

InvalidLockNamespace Attempt to lock a nonexistent object.

(ecInvalidLockNamespace)

0x000006BD

MessageDeleted Operation failed because the message has

been deleted.

(ecMessageDeleted)

0x000007D6

ProtocolDisabled The requested protocol is disabled in the

server configuration.

(ecProtocolDisabled)

0x000007D8

CleartextLogonDisabled Clear text logons were disabled.

(ecCleartextLogonDisabled)

0x000007D9

Rejected The operation was rejected, perhaps because

it is not supported.

(ecRejected)

0x000007EE

AmbiguousAlias User account information did not uniquely

identify a user.

(ecAmbiguousAlias)

0x0000089A

UnknownMailbox No mailbox object for this logon exists in the

address book.

(ecUnknownMailbox)

0x0000089B

ExpressionReserved Internal error in evaluating an expression.

(ecExpReserved)

0x000008FC

44 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

ExpressionParseDepth The expression tree exceeds a defined depth

limit.

(ecExpParseDepth)

0x000008FD

ExpressionArgumentTyp

e

An argument to a function has the wrong

type.

(ecExpFuncArgType)

0x000008FE

ExpressionSyntax Syntax error in expression.

(ecExpSyntax)

0x000008FF

ExpressionBadStringTok

en

Invalid string token in expression.

(ecExpBadStrToken)

0x00000900

ExpressionBadColToken Invalid column name in expression.

(ecExpBadColToken)

0x00000901

ExpressionTypeMismatc

h

Property types in, for example, a comparison

expression, are incompatible.

(ecExpTypeMismatch)

0x00000902

ExpressionOperatorNotS

upported

The requested operator is not supported.

(ecExpOpNotSupported)

0x00000903

ExpressionDivideByZero Divide by zero doesn‟t work.

(ecExpDivByZero)

0x00000904

ExpressionUnaryArgume

nt

The argument to a unary expression is of

incorrect type.

(ecExpUnaryArgType)

0x00000905

NotLocked An attempt to lock a resource failed.

(ecNotLocked)

0x00000960

ClientEvent A client-suplied event has fired.

(ecClientEvent)

0x00000961

CorruptEvent Data in the event table is bad.

(ecCorruptEvent)

0x00000965

CorruptWatermark A watermark in the event table is bad.

(ecCorruptWatermark)

0x00000966

EventError General event processing error.

(ecEventError)

0x00000967

45 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

WatermarkError An event watermark is out of range or

otherwise invalid.

(ecWatermarkError)

0x00000968

NonCanonicalACL A modification to an access control list failed

because the existing ACL is not in canonical

format.

(ecNonCanonicalACL)

0x00000969

MailboxDisabled Logon was unsuccessful because the mailbox

is disabled.

(ecMailboxDisabled)

0x0000096C

RulesFolderOverQuota A move or copy rule action failed because the

destination folder is over quota.

(ecRulesFolderOverQuota)

0x0000096D

AddressBookUnavailable The address book server could not be

reached.

(ecADUnavailable)

0x0000096E

AddressBookError Unspecified error from the Address Book

server.

(ecADError)

0x0000096F

AddressBookObjectNotF

ound

An object was not found in the Address

Book.

(ecADNotFound)

0x00000971

AddressBookPropertyErr

or

A property was not found in the Address

Book.

(ecADPropertyError)

0x00000972

NotEncrypted The server is configured to force encrypted

connections, but the client requested an

unencrypted connection.

(ecNotEncrypted)

0x00000970

RpcServerTooBusy An external RPC call failed because the

server was too busy.

(ecRpcServerTooBusy)

0x00000973

46 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

RpcOutOfMemory An external RPC call failed because the local

server was out of memory.

(ecRpcOutOfMemory)

0x00000974

RpcServerOutOfMemory An external RPC call failed because the

remote server was out of memory.

(ecRpcServerOutOfMemory)

0x00000975

RpcOutOfResources An external RPC call failed because the

remote server was out of an unspecified

resource.

(ecRpcOutOfResources)

0x00000976

RpcServerUnavailable An external RPC call failed because the

remote server was unavailable.

(ecRpcServerUnavailable)

0x00000977

SecureSubmitError A failure occurred while setting the secure

submission state of a message.

(ecSecureSubmitError)

0x0000097A

EventsDeleted Requested events were already deleted from

the queue.

(ecEventsDeleted)

0x0000097C

SubsystemStopping A component service is in the process of

shutting down.

(ecSubsystemStopping)

0x0000097D

AttendantUnavailable The system attendant service is unavailable.

(ecSAUnavailable)

0x0000097E

CIStopping The content indexer service is stopping.

(ecCIStopping)

0x00000A28

FxInvalidState An internal fast transfer object has invalid

state.

(ecFxInvalidState)

0x00000A29

FxUnexpectedMarker Fast Transfer parsing has hit an invalid

marker.

(ecFxUnexpectedMarker)

0x00000A2A

47 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

DuplicateDelivery A copy of this message has already been

delivered.

(ecDuplicateDelivery)

0x00000A2B

ConditionViolation The condition was not met for a conditional

operation.

(ecConditionViolation)

0x00000A2C

2.4.2 Property Error Codes

Property errors appear in two different contexts. When an error occurs in getting a property of

an object, or a column of a table, from the server, then the type of the returned property value

is ErrorCode (0x000A) and the property value itself is the error code. When an error occurs in

setting a property of an object on the server, then the RopSetProperties returns an array of

PropertyProblem structures that includes the error code.

Most property error codes are also used as general error codes, but they have a special

meaning in the context of a property operation.

Property Error Codes are presented in the following table:

Table 7 Property Error Codes

Name Description (alternate names) Numeric value

(hex)

NotEnoughMemory On get, indicates that the property or column

value is too large to be retrieved by the

request, and property value MUST instead be

accessed with a stream interface.

(E_NOMEMORY,

MAPI_E_NOT_ENOUGH_MEMORY)

8007000E,

%x0E.00.07.80

NotFound On get, indicates that the property or column

has no value for this object.

(MAPI_E_NOT_FOUND)

8004010F,

%x0F.01.04.80

BadValue On set, indicates that the property value is not

acceptable to the server.

(MAPI_E_BAD_VALUE, ecPropBadValue)

80040301,

%x01.03.04.80

48 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

InvalidType On get or set, indicates that the data type

passed with the property or column is

undefined.

(MAPI_E_INVALID_TYPE, ecInvalidType)

80040302,

%x02.03.04.80

UnsupportedType On get or set, indicates that the data type

passed with the property or column is not

acceptable to the server.

(MAPI_E_TYPE_NO_SUPPORT,

ecTypeNotSupported)

80040303,

%x03.0.04.80

UnexpectedType On get or set, indicates that the data type

passed with the property or column is not the

type expected by the server.

(MAPI_E_UNEXPECTED_TYPE,

ecPropType)

80040304,

%x04.03.04.80

TooBig Indicates that the result set of the operation is

too big for the server to return.

(MAPI_E_TOO_BIG, ecTooBig)

80040305,

%x05.03.04.80

DeclineCopy On a copy operation, indicates that the server

cannot copy the object – possibly because the

source and destination are on different types of

servers – and wishes to delegate the copying to

client code.

(MAPI_E_DECLINE_COPY)

80040306,

%x06.03.04.80

UnexpectedId On get or set, indicates that the server does not

support property IDs in this range, usually the

named property ID range (0x8000-0xFFFF).

(MAPI_E_UNEXPECTED_ID)

80040307,

%x07.03.04.80

2.4.3 Warning Codes

Warning codes indicate that while the operation as a whole was processed successfully by the

server, individual items or properties were not processed successfully. For example, if three

properties are requested from a message object in a RopGetPropertiesSpecific operation and

one of the three properties does not exist on the message object, then in the return buffer:

a) The ROP returns an ErrorsReturned warning.

b) The type in the property tag of the missing property is errorcode.

c) The property value of the missing property is notfound.

49 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Warning codes are presented in the following table:

Table 8 Warning Codes

Name Description (alternate names) Numeric value

(hex)

ErrorsReturned A request involving multiple properties failed

for one or more individual properties, while

succeeding overall.

(MAPI_W_ERRORS_RETURNED,

ecWarnWithErrors)

00040380,

%x80.03.04.00

PositionChanged A table operation succeeded, but the bookmark

specified is no longer set at the same row as

when it was last used.

(MAPI_W_POSITION_CHANGED,

ecWarnPositionChanged)

00040481,

%x81.04.04.00

ApproximateCount The row count returned by a table operation is

approximate, not exact.

(MAPI_W_APPROX_COUNT,

ecWarnApproxCount)

00040482,

%x82.04.04.00

PartiallyComplete A move, copy, or delete operation succeeded

for some messages but not for others.

(MAPI_W_PARTIAL_COMPLETION,

ecPartialCompletion)

00040680,

%x80.06.04.00

SyncProgress The operation succeeded but there is more to

do.

(SYNC_W_PROGRESS)

00040820,

%x20.08.04.00

NewerClientChange In a change conflict, the client has the more

recent change.

(SYNC_W_CLIENT_CHANGE_NEWER)

00040821,

%x21.08.04.00

2.5 Flat UID

The FlatUID structure is a byte-order independent version of a GUID structure and is used to

uniquely identify a service provider. It appears in EntryIds.

A FlatUID is a GUID structure put into little-endian byte order. That is, FlatUID and GUID

structures have the same byte order when used on a little-endian processor. However, on a

50 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

big-endian processor, the FlatUID has the same byte order as on the little-endian machine, but

the GUID uses big-endian format for certain fields

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FlatUID (16 bytes)

…

…

…

FlatUID (16 bytes): A flat 16-byte little-endian sequence used as a unique identifier in

various structures.

2.6 Notifications

A client can use RopRegisterNotification to request a server to notify it when one of the

following events occurs:

 New mail delivery

 Object creation

 Object modification

 Object deletion

 Search completion

 Contents or hierarchy table change

In addition a client can use RopRegisterSynchronizationNotifications to request a server to

notify it when the following event occurs:

 Folder(s) need to be resynched

The server queues notifications for the client as events occur, and when the client makes an

RPC call (of any sort), the pending notifications are returned as individual RopNotify packets

as part of the response to the RPC call.

This section describes the formats of the notification structures returned by servers.

2.6.1 New Mail Delivery

A client MAY request notification of new mail delivery to a mailbox store or to a specified

folder within a mailbox store or the public store. When a new message is delivered, the server

creates a NewMailNotification structure for the client.

51 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType FID

…

… MID

…

… MessageFlags

…
UnicodeFlag

MessageClass

(Variable)

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and in this case MUST be set to 0x2 by the server.

FID (8 bytes): FID structure. The value identifies the folder where the new mail was received.

MID (8 bytes): MID structure. The value identifies the new mail message.

MessageFlags (4 bytes): Unsigned 4-byte integer giving the value of the

PidTagMessageFlags property for the new mail message.

UnicodeFlag (1 byte): Unsigned 1-byte integer. If TRUE (0x01), indicates that the

MessageClass field which follows is a Unicode (UTF-16) string; otherwise, the MessageClass

field is an MBCS string.

MessageClass (Variable): A null-terminated string which is in Unicode if the value of

UnicodeFlag is TRUE (0x01) or in MBCS if the value of UnicodeFlag is FALSE (0x00).

2.6.2 Object Creation

A client MAY request notification when objects are created within an entire mailbox store or

as immediate child objects of a specified folder. Note: Move and Copy operations generate

object creation notifications for the destination folder.

The next subsections describe the three different formats for object creation notifications.

2.6.2.1 FolderCreatedNotification

This structure is used to notify a client that a new folder has been created.

52 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType FID

…

… ParentFID

…

… TagCount

Tags (Variable)

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0x0004 by the server.

FID (8 bytes): FID structure. The value identifies the new folder which was created.

ParentFID (8 bytes): FID structure. The value identifies the parent folder which contains the

new folder.

TagCount (2 bytes): Unsigned 16-bit integer. When it has the value 0xFFFF, the Tags field is

not present. Otherwise, it indicates how many PropertyTag elements are present in Tags.

Tags (variable): Array of PropertyTag structures. This field MUST contain TagCount tags; it

simply lists properties that were set on the new folder, without specifying their values.

2.6.2.2 MessageCreatedNotification

This structure is used to notify a client when a new message is created in a normal folder.

There is a different notification type for search folders.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType FID

…

… MID

…

53 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

… TagCount

Tags (Variable)

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0x8004 by the server.

FID (8 bytes): FID structure. The value identifies the folder containing the message.

MID (8 bytes): MID structure. The value identifies the message.

TagCount (2 bytes): Unsigned 16-bit integer. When it has the value 0xFFFF, the Tags field is

not present. Otherwise, it indicates how many PropertyTag elements are present in Tags.

Tags (variable): Array of PropretyTag structures. This field MUST contain TagCount

structures. It lists properties that were initially set or updated on the message.

2.6.2.3 SearchMessageAddedNotification

This structure is used to notify when a new message is added to the search results in a search

folder. When the server discovers a message that meets the folder‟s search criteria, it inserts a

link to the message into the search folder‟s contents table and generates this notification for

the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType FID

…

… MID

…

… SearchFID

…

… TagCount

Tags (Variable)

…

54 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0xC004 by the server.

FID (8 bytes): FID structure. The value identifies the folder the message is actually stored in,

and not the search folder itself.

MID (8 bytes): MID structure. The value identifies the message.

SearchFID (8 bytes): FID structure. The value identifies the search folder the message was

added to.

TagCount (2 bytes): Unsigned 16-bit integer. When it has the value 0xFFFF, the Tags field is

not present. Otherwise, it indicates how many PropertyTag elements are present in Tags.

Tags (variable): Array of PropertyTag structures. This field MUST contain TagCount tags. It

lists properties that were initially set or updated on the message.

2.6.3 Object Modification

A client MAY request notification about the changes to properties of objects. The following

subsections describe the three different formats for object modification notifications.

2.6.3.1 FolderModifiedNotification

This structure is used to notify a client when the properties of a folder change.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType FID

…

… TagCount

Tags (Variable)

…

TotalMessageCount

UnreadMessageCount

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to one of four values: 0x0010, 0x1010, 0x2010, or 0x3010 by

55 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

the server. These different values indicate the presence or absence of the TotalMessageCount

and UnreadMessageCount fields.

FID (8 bytes): FID structure. The value identifies the folder which was modified.

TagCount (2 bytes): Unsigned 16-bit integer. When it has the value 0xFFFF, the Tags field is

not present. Otherwise, it indicates how many PropertyTag elements are present in Tags.

Tags (variable): Array of PropertyTag structures. This field MUST contain TagCount

structures. This field gives a list of properties that were changed on the folder.

TotalMessageCount (4 bytes): Unsigned 32-bit integer. This field is ONLY present when

NotificationType is 0x1010 or 0x3010. This value gives the new number of messages in the

folder.

UnreadMessageCount (4 bytes): Unsigned 32-bit integer. This field is ONLY present when

NotificationType is 0x2010 or 0x3010. This value gives the new number of unread messages

in the folder.

2.6.3.2 MessageModifiedNotification

This structure is used to notify a client when the properties of a message in a normal, non-

search folder change. A different type of notification is issued for search folders.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType FID

…

… MID

…

… TagCount

Tags (Variable)

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0x8010 by the server.

FID (8 bytes): FID structure. The value identifies the folder containing the message.

MID (8 bytes): MID structure. The value identifies the message.

56 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

TagCount (2 bytes): Unsigned 16-bit integer. When it has the value 0xFFFF, the Tags field is

not present. Otherwise, it indicates how many PropertyTag elements are present in Tags.

Tags (variable): Array of PropertyTag structures. This field MUST contain TagCount

structures. This field gives a list of properties that were initially set or updated on the message.

2.6.3.3 SearchMessageModifiedNotification

This structure is used to notify a client when the properties of a message in a search folder

change (but the message still meets the folder‟s search criteria).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType FID

…

… MID

…

… SearchFID

…

… TagCount

Tags (Variable)

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0xC010 by the server.

FID (8 bytes): FID structure. The value identifies the folder the message is actually stored in.

MID (8 bytes): MID structure. The value identifies the message.

SearchFID (8 bytes): FID structure. The value identifies the search folder the message is in.

TagCount (2 bytes): Unsigned 16-bit integer. When it has the value 0xFFFF, the Tags field is

not present. Otherwise, it indicates how many PropertyTag elements are present in Tags.

Tags (variable): Array of PropertyTag structures. This field MUST contain PidTagCount

structures. This field gives a list of properties that were initially set or updated on the message.

57 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

2.6.4 Object Deletion

A client MAY request notification about deletion of objects. The following subsections

describe the three different formats for object deletion notifications. Note: Move operations

generate object deletion notifications for the source folder.

2.6.4.1 FolderDeletedNotification

This structure is used to notify a client when a folder has been deleted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType FID

…

… ParentFID

…

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and in this case MUST be set to 0x0008 by the server.

FID (8 bytes): FID structure. The value identifies the folder which was deleted.

ParentFID (8 bytes): FID structure. The value identifies the parent folder which used to

contain the deleted folder.

2.6.4.2 MessageDeletedNotification

This structure is used to notify a client when a message has been deleted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType FID

…

... MID

…

58 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and in this case MUST be set to 0x8008 by the server.

FID (8 bytes): FID structure. The value identifies the folder containing the message which

was deleted.

MID (8 bytes): MID structure. The value identifies the message which was deleted.

2.6.4.3 SearchMessageRemovedNotification

This structure is used to notify clients that a message is no longer part of a search folder. This

can occur because the message was actually deleted, or because properties of the message

have changed in such a way that it no longer meets the search criteria.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType FID

…

... MID

…

… SearchFID

…

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and in this case MUST be set to 0xC008 by the server.

FID (8 bytes): FID structure. The value identifies the folder that contained the message (if it

was deleted) or still contains the message (if its properties have changed in such a way that it

no longer meets the search criteria).

MID (8 bytes): MID structure. The value identifies the message.

SearchFID (8 bytes): FID structure. The value identifies the search folder the message has

been removed from.

59 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

2.6.5 Object Moved or Copied

A client MAY request notification about objects that are moved or copied. The following

subsections describe the two different formats for object modification notifications.

2.6.5.1 FolderMoveCopyNotification

This structure is used to notify clients when a folder is moved or copied.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType FID

…

… ParentFID

…

… OldFID

…

… OldParentFID

…

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set by the server to 0x0020 to indicate a move notification, or

0x0040 to indicate a copy notification.

FID (8 bytes): FID structure. The value gives the new FID of the folder which was moved or

copied.

ParentFID (8 bytes): FID structure. The value identifies the parent folder which now

contains the folder which was moved or copied.

OldFID (8 bytes): FID structure. In the case of a move notification, this gives the FID of the

folder before it was moved. In the case of copy notification, this gives the FID of the folder

which was copied.

60 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

OldParentFID (8 bytes): FID structure. The value identifies the parent folder from which the

folder was moved or copied.

2.6.5.2 MessageMoveCopyNotification

This structure is used to notify clients when a message is moved or copied.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType FID

…

… MID

…

… OldFID

…

… OldMID

…

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set by the server to 0x8020 to indicate a move notification, or

0x8040 to indicate a copy notification.

FID (8 bytes): FID structure. The value identifies the new parent folder of the message which

was moved or copied.

MID (8 bytes): MID structure. The value gives the new MID of the message that was moved

or copied.

OldFID (8 bytes): FID structure. The value identified the parent folder that the message was

moved or copied from.

OldMID (8 bytes): MID structure. In the case of a move notification, this gives the MID of

the message before it was moved. In the case of copy notification, this gives the MID of the

message which was copied.

61 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

2.6.6 Search Complete

A client MAY request notification when a search is complete, that is, when all messages

within the scope of the search have been evaluated. When this occurs, a

SearchCompleteNotification structure is used to notify the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType FID

…

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0x0080 by the server.

FID (8 bytes): FID structure. The value identifies the search folder where the search has

completed.

2.6.7 Contents or Hierarchy Table Change

A client can register for notification on changes to an open hierarchy or contents table object.

Servers SHOULD generate rich table notifications that allow the client to update its view of

the table without making additional queries for row information. The following table lists table

notification types:

Table 9 Rich Table Notification Types

Name Value Description

TABLE_ROW_ADDED 3 A new row has been added to the table.

TABLE_ROW_DELETED 4 A row has been removed from the table

TABLE_ROW_MODIFIED

5 One or more property values in a row have been

changed.

TABLE_CHANGED

1 When it is not possible to generate a rich notification,

the server SHOULD generate this notification.

Indicates at a high level that something about the

table has changed. The table's state is as it was before

the event, meaning that the values of the instance key

62 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

property, bookmarks, current positioning, and user

interface selections are still valid, but the table MUST

be reread from the server.

TABLE_RESTRICT_DONE

7 Servers MUST generate the this table event after the

computation of a new view has been completed:

Indicates that an asynchronous restriction operation

has completed.

2.6.7.1 TABLE_ROW_ADDED Notifications

A client can use a TABLE_ROW_ADDED notification to directly update its row cache

without pulling new data from the server.

There are two formats for TABLE_ROW_ADDED notifications, one for hierarchy tables and

another for contents tables.

2.6.7.1.1 HierarchyRowAddedNotification

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType TableEvent

FID

...

InsertAfterFID

…

Columns (variable)

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0x0100 by the server.

TableEvent (2 bytes): Unsigned 16-bit integer. This value indicates the type of table event

and MUST be set to 0x0003 by the server.

FID (8 bytes): FID structure. This value gives the FID of the folder that was added.

63 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

InsertAfterFID (8 bytes): FID structure. This value gives the FID of the folder row that the

new row SHOULD be inserted after. If the new folder row SHOULD be placed first, then this

field MUST consist of 8 zero bytes.

Columns (variable): PropertyRow structure, as specified in section 2.10. This field gives the

values for the columns of the new row.

The FID value is the unique identifier for a row of a hierarchy table. In order to update its

view of a hierarchy table when a new row notification arrives, the client SHOULD cache the

rows it is currently displaying, and store the FID with each row.

2.6.7.1.2 ContentsRowAddedNotification

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType TableEvent

FID

...

MID

…

Instance

InsertAfterFID

…

InsertAfterMID

…

InsertAfterInstance

Columns (variable)

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0x8100 by the server.

64 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

TableEvent (2 bytes): Unsigned 16-bit integer. This value indicates the type of table event

and MUST be set to 0x003 by the server.

FID (8 bytes): FID structure. This value gives the FID of the row that was added.

MID (8 bytes): MID structure. When the table is categorized, this gives the category id of the

new row. In other cases it gives the MID of the new row.

Instance (4 bytes): Unsigned 32-bit integer. When the table is categorized and one of the

columns is multi-valued and specified as MultivalueInstance, this gives the instance number

of the new row. In other cases it will be 0.

InsertAfterFID (8 bytes): FID structure. This value gives the FID of the row that the new

row SHOULD be inserted after. If the new folder row SHOULD be placed first, then this field

will consist of 8 zero bytes.

InsertAfterMID (8 bytes): MID structure. This value gives the MID (or category id) of the

row that the new row SHOULD be inserted after. If the new folder row SHOULD be placed

first, then this field will consist of 8 zero bytes.

InsertAfterInstance (4 bytes): Unsigned 32-bit integer. This value gives the instance value

for the row that new row SHOULD be inserted after. If the new folder row SHOULD be

placed first, then this value will be zero.

Columns (variable): PropertyRowSet structure. This field gives the values for the columns of

the new row.

The combination of the FID, MID, and Instance makes a unique identifier for a row of a

contents table. In order to update its view of a contents table when a new row notification

arrives, a client SHOULD cache the rows it is currently displaying, and store the FID, MID,

and Instance values with each row.

2.6.7.2 TABLE_ROW_DELETED Notifications

A client can use a TABLE_ROW_DELETED notification to directly update its row cache

without pulling new data from the server.

There are two formats for TABLE_ROW_DELETED notifications: one for hierarchy tables

and another for contents tables.

2.6.7.2.1 HierarchyRowDeletedNotification

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType TableEvent

FID

65 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

...

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0x0100 by the server.

TableEvent (2 bytes): Unsigned 16-bit integer. This value indicates the type of table event

and MUST be set to 0x0004 by the server.

FID (8 bytes): FID structure. This value gives the FID of the folder row that was deleted.

The FID value is the unique identifier for a row of a hierarchy table. In order to update its

view of a hierarchy table when a new row notification arrives, the client SHOULD cache the

rows it is currently displaying, and store the FID with each row.

2.6.7.2.2 ContentsRowDeletedNotification

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType TableEvent

FID

...

MID

…

Instance

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0x8100 by the server.

TableEvent (2 bytes): Unsigned 16-bit integer. This value indicates the type of table event

and MUST be set to 0x0004 by the server.

FID (8 bytes): FID structure. This value gives the FID of the row that was deleted.

MID (8 bytes): MID structure. When the table is categorized, this gives the category id of the

row that was deleted. In other cases, it gives the MID of the deleted row.

Instance (4 bytes): Unsigned 32-bit integer. When the table is categorized and one of the

columns is multi-valued and specified as MULTIVALUEINSTANCE, this gives the instance

66 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

number of the deleted row; the instance number is the value of PidTagInstanceKey column in

that row. In other cases it will be 0.

The combination of the FID, MID, and Instance makes a unique identifier for a row of a

contents table. In order to update its view of a contents table when a new row notification

arrives, the client SHOULD cache the rows it is currently displaying, and store the FID, MID,

and Instance values with each row.

2.6.7.3 TABLE_ROW_MODIFIED Notifications

A client can use a TABLE_ROW_MODIFIED notification to directly update its row cache

without pulling new data from the server.

There are two formats for TABLE_ROW_MODIFIED notifications: one for hierarchy tables

and another for contents tables.

2.6.7.3.1 HierarchyRowModifiedNotification

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType TableEvent

FID

...

InsertAfterFID

…

Columns (variable)

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0x0100 by the server.

TableEvent (2 bytes): Unsigned 16-bit integer. This value indicates the type of table event

and MUST be set to 0x0005 by the server.

FID (8 bytes): FID structure. This value gives the FID of the row that was modified.

InsertAfterFID (8 bytes): FID structure. This value gives the FID of the folder row that the

modified row SHOULD be moved after. If the modified folder row SHOULD be placed first,

then this field MUST consist of 8 zero bytes.

67 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Columns (variable): PropertyRow structure, as specified in section 2.10. This field gives the

new values for the columns of the modified row.

The FID is the unique identifier for a row of a hierarchy table. In order to update its view of a

hierarchy table when a new row notification arrives, a client SHOULD cache the rows it is

currently displaying and store the FID with each row.

2.6.7.3.2 ContentsRowModifiedNotification

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType TableEvent

FID

...

MID

…

Instance

InsertAfterFID

…

InsertAfterMID

…

InsertAfterInstance

Columns (variable)

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0x8100 by the server.

TableEvent (2 bytes): Unsigned 16-bit integer. This value indicates the type of table event

and MUST be set to 0x005 by the server.

FID (8 bytes): FID structure. This value gives the FID of the folder whose contents table has

been modified.

68 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

MID (8 bytes): MID structure. When the table is categorized, this gives the category id of the

modified row. In other cases, it gives the MID of the modified message object.

Instance (4 bytes): Unsigned 32-bit integer. When the table is categorized and one of the

columns is multi-valued and specified as MultivalueInstance, this gives the instance number

of the modified row. In other cases it will be 0.

InsertAfterFID (8 bytes): FID structure. This value gives the FID of the row that the

modified row SHOULD be moved after. If the modified folder row SHOULD be placed first,

then this field will consist of 8 zero bytes.

InsertAfterMID (8 bytes): MID structure. This value gives the MID (or category id) of the

row that the modified row SHOULD be moved after. If the modified folder row SHOULD be

placed first, then this field will consist of 8 zero bytes.

InsertAfterInstance (4 bytes): Unsigned 32-bit integer. This value gives the instance value

(the value of PidTagInstanceKey) of the row after which the modified row SHOULD be

inserted. If the modified folder row SHOULD be placed first, then this value will be zero.

Columns (variable): PropertyRow structure. This field gives the new values for the columns

of the modified row.

The combination of the FID, MID, and Instance makes a unique identifier for a row of a

contents table. In order to update its view of a contents table when a new row notification

arrives, the client SHOULD cache the rows it is currently displaying, and store the FID, MID,

and Instance values with each row.

2.6.7.4 TableChangedNotification

When a client receives a TABLE_CHANGED notification, it MUST discard its current

rendering of the table and any cached data from the server, reread that data from the server,

and recreate the rendering.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType TableEventType

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set by the server to either 0x0100 (for a hierarchy table) or 0x8100

(for a contents table).

TableEventType (2 bytes): An unsigned 16-bit integer. This value indicates the type of table

event and MUST be set to 0x0001 by the server.

69 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

2.6.7.5 RestrictDoneNotification

The TABLE_RESTRICT_DONE notification tells a client that an asynchronous Restrict

operation has completed on the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType TableEventType

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0x0100 by the server.

TableEventType (2 bytes): Unsigned 16-bit integer. This value indicates the type of table

event and MUST be set to 0x0007.

2.6.8 ICS Notification

An IcsNotification signals the client that one or more folders have changed on the server. The

client SHOULD respond by resyncing the indicated folder or folders.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NotificationType HierChanged GIDCount

… GIDs (variable)

…

NotificationType (2 bytes): Unsigned 16-bit integer. This value indicates the type of

notification and MUST be set to 0x0200 by the server.

HierChanged (1 byte): Unsigned 8-bit integer. This value will be either TRUE (0x01) or

FALSE (0x00) and indicates whether the folder hierarchy information has changed since the

last ICS synchronization.

GIDCount (4 bytes): Unsigned 32-bit integer. This value indicates how many GID elements

are present in GIDs.

GIDs (Variable): Array of GID structures. Each GID in this array specifies a folder whose

contents have changed since the last ICS synchronization.

70 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

2.7 PropertyName

The PropertyName structure describes a named property. It is used in

RopGetPropertyIdsFromNames and RopGetNamesFromPropertyIds requests.

0 1 2 3 4 5 6 7 8 9
1

0 1 2 3 4 5 6 7 8 9
2

0 1 2 3 4 5 6 7 8 9
3

0 1

Kind Guid (16 bytes)

…

…

…

… LID (optional)

… NameSize (optional) Name (variable, optional)

…

Kind (1 byte): 0 if the property is identified by a LID, and 1 if the property is identified by a

name.

Guid (16 bytes): The GUID that identifies the property set for the named property.

Note: Servers MUST NOT swap bytes for this GUID; it is treated as a FLATUID. Client code

on big-endian systems MUST therefore place GUID fields in little-endian byte order in the

request buffer.

LID (4 bytes, optional): Present only if Kind=0. An unsigned 32-bit integer that identifies the

named property within its property set.

NameSize (1 byte, optional): Present only if Kind=1. A single byte giving the number of

bytes in the Name string that follows it.

Name (variable, optional): Present only if Kind=1. A Unicode (UTF-16) string, followed by

two zero bytes as a null terminator, that identifies the property within its property set.

2.8 PropertyProblem

A PropertyProblem describes an error relating to an operation involving a property. It is often

used in an array; see PropertyProblemArray.

71 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0 1 2 3 4 5 6 7 8 9
1

0 1 2 3 4 5 6 7 8 9
2

0 1 2 3 4 5 6 7 8 9
3

0 1

Index

PropertyTag

ErrorCode

Index (4 bytes): Unsigned 32-bit integer. This value specifies an index into an array of

property tags.

PropertyTag (4 bytes): PropertyTag structure. This value specifies the property for which

there was an error.

ErrorCode (4 bytes): Unsigned 32-bit integer. This value specifies the error that occurred

when processing this property.

An array of PropertyProblem structures is returned from the following ROPs:

 RopDeleteProperties

 RopDeletePropertiesNoReplicate

 RopSetProperties

 RopSetPropertiesNoReplicate

 RopCopyProperties

 RopCopyTo

A PropertyProblem structure contains an error value that is a result of an operation attempting

to modify or delete a property, as specified in Table 7. That property is identified by its

PropertyTag, and also by its index in the property array passed to the request.

2.9 PropertyProblemArray

A PropertyProblemArray is a set of PropertyProblems that describe errors relating to an

operation involving one or more properties.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Count Problems (variable)

…

72 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Count (2 bytes): Unsigned 16-bit integer, specifying the number of PropertyProblems to

follow.

Problems: „Count‟ PropertyProblem structures, as specified in section 2.8..

2.10 PropertyRows

2.10.1 PropertyRow

A PropertyRow structure is used to pass back a list of property values without including the

property tag values that correspond to them. It is used to format property data returned to the

client when the list of property tags is known in advance.

For instance, this data structure is used to format the response buffers of

RopGetPropertiesSpecific, RopFindRow, and RopGetReceiveFolderTable. In addition, an

array of PropertyRow structures makes up the key part of the PropertyRowSet structure

returned in the response buffer for RopQueryRows. Finally, PropertyRow structures used in

table notification structures to indicate the column values of a new added or modified row.

Since the property tags are not returned, clients SHOULD maintain state–perhaps from the

request that receives a PropertyRow in its response, or perhaps from a previous request such

as ROPSetColumns – in order to match property values from the row with their property

tags.

There are two PropertyRow variants. A StandardPropertyRow contains no error values and no

type data; it is simply a sequence of Property Values. A FlaggedPropertyRow MAY contain

type data, if the request included PtypUnspecified for any property or column, and it MAY

contain error values if a property value is missing or there was a problem retrieving the value.

By examining the first byte of the property row, the client can identify the variant.

2.10.1.1 StandardPropertyRow

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flag ValueArray (Variable)

…

Flag (1 byte): Unsigned 8-bit integer. This value indicates whether all values are present and

without error. This MUST be set to 0x00.

ValueArray (Variable): An array of variable-sized structures. At each position of the array,

the structure will either be a PropertyValue structure (see section 2.13.2) if the type of the

corresponding property tag was specified, or a TypedPropertyValue structure (see section

2.13.30) if the type of the corresponding property tag was PtypUnspecified.

73 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

2.10.1.2 FlaggedPropertyRow

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flag ValueArray (Variable)

…

Flag (1 byte): Unsigned 8-bit integer. This value indicates whether all values are present and

without error. This MUST be set to 0x01.

ValueArray (Variable): An array of variable-sized structures. At each position of the array,

the structure will either be a FlaggedPropertyValue structure (see section 2.13.5) if the type of

the corresponding property tag was previously specified, or a

FlaggedPropertyValueWithTypeSpecified structure (see 0) if the type of the corresponding

property tag was PtypUnspecified

2.10.2 PropertyRowSet

A PropertyRowSet is a counted series of PropertyRows. As for PropertyRow, the number of

columns in each PropertyRow is not included in the PropertyRowSet. Clients SHOULD

maintain state from a previous request, such as RopSetColumns, that includes the number of

columns.

In table operations, such as in the response to a RopQueryRows request, servers SHOULD

truncate long column values to a maximum of 255 bytes (for binary types) or 255 characters

(for string types). Clients analyzing data returned from table operations SHOULD assume that

if the length of such a value is exactly 255 bytes or characters, then the value of the same

property obtained by opening the message and issuing a RopGetPropertiesSpecific request is

likely to be larger.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RowCount Rows (variable)

…

RowCount (2 bytes): An unsigned 16-bit integer specifying the number of PropertyRows that

follow.

74 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Rows (variable size): A series of „RowCount‟ PropertyRow structures.

2.10.3 RecipientRow

A RecipientRow structure represents a single recipient belonging to a message object. It is

rather complex, but can be considered as a sequence of three different parts:

 A flags field indicating which of several standard properties are present

 Standard property values

 Arbitrary property values outside the standard set

This structure is used by several ROPs including:

 RopFlushRecipients

 RopReadRecipients

 RopOpenMessage

 RopOpenEmbeddedMessage

 RopRefreshCache

First, we specify the RecipientFlags field.

2.10.3.1 RecipientFlags

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

R S T D E Type O Reserved I U N

R (1 bit): 1-bit flag (0x0080). If 1, a different transport is responsible for delivery to this

recipient.

S (1 bit): 1-bit flag (0x0040). If 1, the Transmittable Display Name is the same as the Display

Name.

T (1 bit): 1-bit flag (0x0020). If 1, the TransmittableDisplayName field is included.

D (1 bit): 1-bit flag (0x0010). If 1, the DisplayName field is included.

E (1 bit): 1-bit flag (0x0008). If 1, the EmailAddress field is included.

Type (3 bits): 3-bit enumeration (mask 0x0007). This enumeration specifies the type of

address. The valid types are:

 NoType (0x0)

 X500DN (0x1)

 MsMail (0x2)

 SMTP (0x3)

 Fax (0x4)

75 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

 ProfessionalOfficeSystem (0x5)

 PersonalDistributionList1 (0x6)

 PersonalDistributionList2 (0x7)

O (1 bit): 1-bit flag (0x8000). If 1,this recipient has a non-standard address type and the

AddressType field is included.

Reserved (4 bits): (mask 0x0078) The server MUST set this to 0.

I (1 bit): 1-bit flag (0x0400). If 1, the SimpleDisplayName is included.

U (1 bit): 1-bit flag (0x0200). If 1, the associated string properties are in Unicode with a 2-

byte null terminator; if 0, string properties are MBCS with a single null terminator, in the

codepage sent to the server in EcDoConnect (as specified in [MS-OXCRPC]).

N (1 bit): 1-bit flag (0x0100). This flag specifies that the recipient does not support receiving

rich text messages.

2.10.3.2 RecipientRow

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecipientFlags
AddressPrefixUsed

(optional)

DisplayType

(optional)

X500DN (variable, optional)

EntryIdSize

(optional)

EntryId

(variable, optional)

… SearchKeySize (optional)
SearchKey

(variable, optional)

… AddressType (variable, optional)

… EmailAddress (variable, optional)

… DisplayName (variable, optional)

… SimpleDisplayName (variable, optional)

… TransmittableDisplayName (variable, optional)

… RecipientColumnCount
RecipientProperties

(variable)

…

76 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

RecipientFlags (2 bytes): RecipientFlags structure. The format of this structure is defined in

section 2.10.3.1. This value specifies the type of recipient and which standard properties are

included.

AddressPrefixUsed (1 byte, optional): Unsigned 8-bit integer. This field MUST be present

when the Type field of the RecipientFlags field is set to X500DN (0x1) and MUST NOT be

present otherwise. This value specifies the amount of the Address Prefix is used for this X500

DN.

DisplayType (1 byte, optional): 8-bit enumeration. This field MUST be present when the

Type field of the RecipientFlags field is set to X500DN (0x1) and MUST NOT be present

otherwise. This value specifies the display type of this address.

X500DN (variable, optional): Null-terminated ASCII string. This field MUST be present

when the Type field of the RecipientFlags field is set to X500DN (0x1) and MUST NOT be

present otherwise. This value specifies the X500 DN of this recipient.

EntryIdSize (2 bytes, optional): Unsigned 16-bit integer. This field MUST be present when

the Type field of the RecipientFlags field is set to PersonalDistributionList1 (0x6) or

PersonalDistributionList2 (0x7). This field MUST NOT be present otherwise. This value

specifies the size of the EntryId field.

EntryId (variable, optional): Array of bytes. This field MUST be present when the Type

field of the RecipientFlags field is set to PersonalDistributionList1 (0x6) or

PersonalDistributionList2 (0x7). This field MUST NOT be present otherwise. The number of

bytes in this field MUST be the same as specified in the EntryIdSize field. This array specifies

the Address Book EntryId of the Distribution List.

SearchKeySize (2 bytes, optional): Unsigned 16-bit integer. This field MUST be present

when the Type field of the RecipientFlags field is set to PersonalDistributionList1 (0x6) or

PersonalDistributionList2 (0x7). This field MUST NOT be present otherwise. This value

specifies the size of the SearchKey field.

SearchKey (variable, optional): Array of bytes. This field MUST be present when the Type

field of the RecipientFlags field is set to PersonalDistributionList1 (0x6) or

PersonalDistributionList2 (0x7). This field MUST NOT be present otherwise. The number of

bytes in this field MUST be the same as specified in the SearchKeySize field. This array

specifies the Search Key of the Distribution List.

AddressType (variable, optional): Null-terminated ASCII string. This field MUST be

present when the Type field of the RecipientFlags field is set to NoType (0x0) and the O flag

of the RecipientsFlags field is set. This field MUST NOT be present otherwise. This string

specifies the address type of the recipient.

EmailAddress (variable, optional): Null-terminated string. This field MUST be present

when the E flag of the RecipientsFlags field is set and MUST NOT be present otherwise. This

field MUST be specified in Unicode characters if the U flag of the RecipientsFlags field is set

and 8-bit character set otherwise. This string specifies the Email Address of the recipient.

77 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

DisplayName (variable, optional): Null-terminated string. This field MUST be present when

the D flag of the RecipientsFlags field is set and MUST NOT be present otherwise. This field

MUST be specified in Unicode characters if the U flag of the RecipientsFlags field is set and

8-bit character set otherwise. This string specifies the Email Address of the recipient.

SimpleDisplayName (variable, optional): Null-terminated string. This field MUST be

present when the I flag of the RecipientsFlags field is set and MUST NOT be present

otherwise. This field MUST be specified in Unicode characters if the U flag of the

RecipientsFlags field is set and 8-bit character set otherwise. This string specifies the Email

Address of the recipient.

TransmittableDisplayName (variable, optional): Null-terminated string. This field MUST

be present when the T flag of the RecipientsFlags field is set and MUST NOT be present

otherwise. This field MUST be specified in Unicode characters if the U flag of the

RecipientsFlags field is set and 8-bit character set otherwise. This string specifies the Email

Address of the recipient.

RecipientColumnCount (2 bytes): Unsigned 16-bit integer. This value specifies the number

of columns from the RecipientColumns field that are included in RecipientProperties.

RecipientProperties (variable): PropertyRow structures. The format of the PropertyRow

structure is defined in section 2.10 and the columns used for this row are those specified in

RecipientProperties.

2.11 PropertyTag, PropertyId

A property tag both identifies a property and gives the data type of its value. Please refer to

[MS-OXPROPS] and other sections of this document for further information about

PropertyIds and PropertyValues.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PropertyType PropertyId

PropertyType (2 bytes): A 16-bit unsigned integer that identifies the data type of the

property value, as specified by the table in section 2.13.3.

PropertyId (2 bytes): A 16-bit unsigned integer that identifies the property.

2.12 PropertyTagArray

A PropertyTagArray is simply a counted set of property tags, laid out as follows.

78 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Count PropertyTags (variable)

…

Count (2 bytes): Unsigned 16-bit integer, specifying the number of property tags to follow.

PropertyTags: „Count‟ unsigned 32-bit integers representing property tags.

2.13 Property Values

There are a variety of structures used for conveying the value of a property to and from the

server. Some variants contain only the value, because the usage context dictates the type.

Other variants include the type, or the full property tag. Still others include an indication of

whether an error occurred.

2.13.1 Property Value Types

For all variants, the structure of a property value is the same and is specified by the property

value type, whether or not the property value type is actually encoded in the buffer. The

following table lists both the property value type identifiers and the format of the property

values themselves.

There is one variation in the width of count fields. In the context of ROP buffers, such as

RopGetPropertiesSpecific, byte counts for PtypBinary property values and value counts for all

PtypMultiple property values are 16 bytes wide. But in the context of Extended Rules, as

specified in [MS-OXRULE], byte counts and property value counts are 32 bits wide (for

example, COUNT in the table below represents a 32-bit integer). Such count fields have a

width designation of COUNT, rather than an explicit 1-byte width, throughout section 2.13.

In the context of a table operation, properties are referred to as columns. The format of

property identifiers, types, and values in table operations such as RopQueryRows is the same

as in property operations such as RopGetPropertiesSpecific.

Property value types are presented in the following table:

Table 10 Property Value Types

Property type name Property

type

value

Property type specification Alternate

names

PtypInteger16 0x0002,

%x02.00

2 bytes, a 16-bit integer

[MS-DTYP]: INT16

PT_SHORT, PT_I2

79 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

PtypInteger32 0x0003,

%x03.00

4 bytes, a 32-bit integer

[MS-DTYP]: INT32

PT_LONG, PT_I4

PtypFloating32 0x0004,

%x04.00

4 bytes, a 32-bit floating point

number

[MS-DTYP]: FLOAT

PT_FLOAT,

PT_R4

PtypFloating64 0x0005,

%x05.00

8 bytes, a 64-bit floating point

number

[MS-DTYP]: DOUBLE

PT_DOUBLE,

PT_R8

PtypCurrency 0x0006,

%x06.00

8 bytes, a 64-bit signed, scaled

integer representation of a

decimal currency value, with 4

places to the right of the decimal

point

[MS-DTYP]: LONGLONG

[MS-OAUT]: CURRENCY

PT_CURRENCY

PtypFloatingTime 0x0007,

%x07.00

8 bytes, a 64-bit floating point

number in which the whole

number part represents the

number of days since December

30, 1899, and the fractional part

represents the fraction of a day

since midnight

[MS-DTYP]: DOUBLE

[MS-OAUT]: DATE

PT_APPTIME

PtypErrorCode 0x000A,

%x0A.00

4 bytes, a 32-bit integer encoding

error information as specified in

2.4.1

PT_ERROR

PtypBoolean 0x000B,

%x0B.00

1 byte, restricted to 1 or 0

[MS-DTYP]: BOOLEAN

PT_BOOLEAN

PtypInteger64 0x0014,

%x14.00

8 bytes, a 64-bit integer

[MS-DTYP]: LONGLONG

PT_LONGLONG,

PT_I8

PtypString 0x001F,

%x1F.00

Variable size, a string of Unicode

characters in UTF-16LE

encoding with terminating null

character (2 bytes of zero)

PT_UNICODE

80 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

PtypString8 0x001E,

%z1E.00

Variable size, a string of multi-

byte characters in externally

specified encoding with

terminating null character (single

0 byte)

PT_STRING8

PtypTime 0x0040,

%x40.00

8 bytes, a 64-bit integer

representing the number of 100-

nanosecond intervals since

January 1, 1601

[MS-DTYP]: FILETIME

PT_SYSTIME

PtypGuid 0x0048,

%x48.00

16 bytes, a GUID with Data1,

Data2, and Data3 fields in little-

endian format

[MS-DTYP]: GUID

PT_CLSID

PtypServerId 0x00FB,

%xFB.00

Variable size, a 16-bit count

followed a structure specified in

section 2.13.1.3.

PT_SVREID

PtypRestriction 0x00FD,

%xFD.00

Variable size, a byte array

representing one or more

Restriction structures as specified

in section 2.14

PT_SRESTRICT

PtypRuleAction 0x00FE,

%xFE.00

Variable size, a 16-bit count of

actions (not bytes) followed by

that many Rule Action structures,

as specified in [MS-OXORULE]

PT_ACTIONS

PtypBinary 0x0102,

%x02.01

Variable size, a COUNT

followed by that many bytes

PT_BINARY

PtypMultipleInteger16 0x1002,

%x02.10

Variable size, a COUNT

followed by that many

PtypInteger16 values

PT_MV_SHORT,

PT_MV_I2

PtypMultipleInteger32 0x1003,

%x03.10

Variable size, a COUNT

followed by that many

PtypInteger32 values

PT_MV_LONG,

PT_MV_I4

81 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

PtypMultipleFloating32 0x1004,

%x04.10

Variable size, a COUNT

followed by that many

PtypFloating32 values

PT_MV_FLOAT,

PT_MV_R4

PtypMultipleFloating64 0x1005,

%x05.10

Variable size, a COUNT

followed by that many

PtypFloating64 values

PT_MV_DOUBLE,

PT_MV_R8

PtypMultipleCurrency 0x1006,

%x06.10

Variable size, a COUNT

followed by that many

PtypCurrency values

PT_MV_CURREN

CY

PtypMultipleFloatingTi

me

0x1007,

%x07.10

Variable size, a COUNT

followed by that many

PtypFloatingtime values

PT_MV_APPTIME

PtypMultipleInteger64 0x1014,

%x14.10

Variable size, a COUNT

followed by that many

PtypInteger64 values

PT_MV_I8,

PT_MV_LONGLO

NG

PtypMultipleString 0x101F,

%x1F.10

Variable size, a COUNT

followed by that PtypString

values

PT_MV_UNICOD

E

PtypMultipleString8 0x101E,

%x1E.10

Variable size, a COUNT

followed by that many

PtypString8 values

PT_MV_STRING8

PtypMultipleTime 0x1040,

%x40.10

Variable size, a COUNT

followed by that many PtypTime

values

PT_MV_SYSTIME

PtypMultipleGuid 0x1048,

%x48.10

Variable size, a COUNT

followed by that many PtypGuid

values

PT_MV_CLSID

PtypMultipleBinary 0x1102,

%x02.11

Variable size, a COUNT

followed by that many

PtypBinary values

PT_MV_BINARY

82 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

PtypUnspecified 0x0000,

%x00.00

Any: this property type value

matches any type; a server

MUST return the actual type in

its response. Servers MUST NOT

return this type in response to a

client request other than

NspiGetIDsFromNames or

RopGetPropertyIdsFromNames.

PT_UNSPECIFIED

PtypNull 0x0001,

%x01.00

None: This property is a

placeholder

PT_NULL

PtypObject or

PtypEmbeddedTable

0x000D,

%x0d.00

The property value is a COM

object, as specified in section

2.13.1.4

PT_OBJECT

2.13.1.1 String Property Values

Clients SHOULD work with PtypString and PtypMultipleString properties in Unicode format.

When working with strings in Unicode format, string data MUST be encoded as UTF-16LE,

and property data types MUST be specified as 0x001F (PtypString) and 0x101F

(PtypMultipleString).

Clients MAY, instead, work with PtypString8 and PtypMultipleString8 properties in a specific

8-bit or multibyte codepage. In this case, property data types MUST be formatted as 0x001E

(PtypString8) and 0x101E (PtypMultipleString8).

In requests sent to a store server, the codepage of PtypString8 strings MUST match the

codepage sent to the server in EcDoConnect or similar RPC, as specified in [MS-OXCRPC].

Address book server rules for working with PtypString8 properties are somewhat more

involved, and are specified in [MS-NSPI].

2.13.1.2 Multi-Valued Property Value Instances

When working with multi-valued columns in the context of table operations, clients MAY set

the 0x2000 (MultivalueInstance, %x00.20) flag bit in the column‟s PropertyType field to

indicate that the multi-valued column is to be treated as individual values. The

MultivalueInstance flag MUST NOT be set for any column that does not also set the 0x1000

(Multivalue) bit in its property type. All PtypMultiple types in Table 10 set the 0x1000 bit.

The MultivalueInstance flag causes table operations to treat multi-valued columns as if they

were multiple instances of a single-valued column. Please refer to [MS-OXCTABL] for table

ROP specifications.

83 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

2.13.1.3 The PtypServerId Type

This property type encapsulates a message database EntryID. A ServerId identifies either a

folder object or a message object.

Ours (1 byte): 0x01 indicates the remaining bytes conform to this structure; 0x00 indicates

this is a client-defined value, and has whatever size and structure the client has defined.

FolderId (8 bytes): A FID, as specified in section 2.2.2.1, identifying a folder.

MessageId (8 bytes): A MID, as specified in section 2.2.2.2, identifying a message in the

folder identified by FolderId. If the object is a folder, this field MUST be all zeros.

Instance (4 bytes): A 32-bit unsigned instance number within an array of ServerIds to

compare against. This field is used only for searches against multi-value properties and MUST

be zero in any other context.

2.13.1.4 PtypObject and PtypEmbeddedTable

Store and address book servers treat this property type somewhat differently, but in both cases

a property of this type represents a complex structure. Access to properties of this type

requires the server to construct an object, and the client to issue requests similar to those used

for top-level objects.

 Store servers do not allow access to properties of type PtypObject through

RopGetPropertiesSpecific or RopGetPropertiesAll. Instead, properties of this type

MUST be accessed with RopOpenStream or RopOpenEmbeddedMessage requests, as

specified in [MS-OXCROPS].

 Address book servers use PtypEmbeddedTable to designate properties whose value is

a table, for example, the members of a distribution list. The necessary methods are

specified in [MS-NSPI].

2.13.2 PropertyValue

The PropertyValue structure simply specifies the value of the property. It contains no

information about the property type or id.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PropertyValue (variable)

…

PropertyValue (variable size): The size varies depending on the property type which can be

understood from the usage context. All numeric values are in little-endian format. For multi-

84 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

valued types, the first element in the ROP buffer is a 16-bit integer specifying the number of

entries.

2.13.3 TypedPropertyValue

The TypedPropertyValue structure includes the property type with the value of the property.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PropertyType PropertyValue (variable)

…

PropertyType (2 bytes): A 16-bit unsigned integer that specifies the data type of the property

value, according to the table in section 2.13.1.

PropertyValue (variable size): A PropertyValue structure as specified in section 2.13.2. The

value MUST be compatible with the value of the PropertyType field.

2.13.4 TaggedPropertyValue

As a rule, property tags are not specified explicitly in ROP buffers. To save space, property

tags are specified implicitly by a previous operation and only the property values are put in the

buffer. But under some circumstances a TaggedPropertyValue is used to explicitly include the

property type and ID in the buffer

.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PropertyTag

PropertyValue (variable)

…

PropertyTag (32 bits): A PropertyTag structure giving the PropertyId and PropertyType for

the property.

85 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

PropertyValue (variable size): A PropertyValue structure specifying the value of the

property. Its syntax is specified by the PropertyType field of the tag, and its semantics by the

PropertyId field of the tag.

2.13.5 FlaggedPropertyValue

This variant includes a flag to indicate whether the value was successfully retrieved or not.

Error conditions include a missing property or a failure at the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flag PropertyValue (Variable)

…

Flag (1 byte): An 8-bit unsigned integer. This flag MUST be set one of three possible values:

0x0, 0x1, or 0xA, which determines what is conveyed in the PropertyValue field. The

following table summarizes the meanings of these three values:

Flag value What it implies about the PropertyValue field

0x0 The PropertyValue field will be PropertyValue structure containing a

value compatible with the property type implied the context.

0x1 The PropertyValue field is not present.

0xA The PropertyValue field will be a PropertyValue structure containing

an unsigned 32-bit integer. This value SHOULD be interpreted as a

property error code (see section 2.4.2) indicating why the property value

is not present.

PropertyValue (variable size): A PropertyValue structure (see section 2.13.2) unless the

Flag field is 0x1.

2.13.6 FlaggedPropertyValueWithType

This variant includes both the property type and a flag giving more information about the

property value.

86 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PropertyType Flag PropVal(Variable)

…

PropertyType (2 bytes): A 16-bit unsigned integer that specifies the data type of the property

value, according to the table immediately below.

Flag (1 byte): An 8-bit unsigned integer. This flag MUST be set one of three possible values:

0x0, 0x1, or 0xA, which determines what is conveyed in the PropertyValue field. Refer to the

table in section 2.13.5 for the interpretation of this flag.

PropertyValue (variable size): A PropertyValue structure (see section 2.13.2). The value

MUST be compatible with the value of the PropertyType field.

2.13.7 TypedString

A TypedString is used in certain ROPs in order to compact the string representation on the

wire as much as possible.

0 1 2 3 4 5 6 7 8 9
1

0 1 2 3 4 5 6 7 8 9
2

0 1 2 3 4 5 6 7 8 9
3

0 1

StringType String (variable)

…

StringType (1 byte): 8-bit enumeration. The value MUST be one of the following:

 0x00: There is no string present.

 0x01: The string is empty.

 0x02: Null-terminated 8-bit character string. The null terminator is one zero byte.

 0x03: Null-terminated Reduced Unicode character string. The null terminator is one

zero byte.

 0x04: Null-terminated Unicode character string. The null terminator is 2 zero bytes.

87 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

String (variable, optional): If the StringType field is set to 0x02, 0x03, or 0x04, then this

field MUST be present and in the format specified by the Type field. Otherwise, this field

MUST NOT be present.

To produce a Reduced Unicode string from an original Unicode string, the server MUST first

scan the original Unicode string and determine that every character has a value less than

0x100; in other words, that the high-order byte of every character, including the null

terminator, is zero. It MUST then produce a Reduced Unicode string that is exactly half the

size of the original Unicode string by omitting all the high-order zero bytes, including that of

the null terminator.

To reproduce the original Unicode string from a Reduced Unicode string, the server MUST

insert a zero byte after each byte of the Reduced Unicode string, doubling its size.

2.14 Restrictions

Restrictions describe a filter for limiting the view of a table to particular set of rows. This filter

represents a Boolean expression that is evaluated against each item of the table. The item will

be included as a row of the restricted table if and only if the value of the Boolean expression

evaluates to TRUE.

Restrictions are sent to the server with the RopFindRow, RopRestrict, RopSetSearchCriteria,

and RopSynchronizationConfigure requests, and are returned from the

RopGetSetSearchCriteria request.

There are 12 different restriction packet formats: Six of them (AndRestriction, OrRestriction,

NotRestriction, SubRestriction, CommentRestriction, and CountRestriction) are used to

construct more complicated restrictions from one or more simpler ones. The other six types

(ContentRestriction, PropertyRestriction, ComparePropertiesRestriction, BitMaskRestriction,

SizeRestriction, and ExistRestriction) specify specific tests based on the properties of an item.

While the packet formats differ, the first 8 bits always stores RestrictType, an unsigned byte

value specifying the type of restriction. The possible values for RestrictType are are presented

in the following table:

Table 11 Restrict Type Values

RestrictType Hexadecimal value

(alternate name)

Description

AndRestriction 0x00

(RES_AND)

Logical AND operation

applied to a list of

subrestrictions.

OrRestriction 0x01

(RES_OR)

Logical OR operation

applied to a list of

subrestrictions.

88 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

RestrictType Hexadecimal value

(alternate name)

Description

NotRestriction 0x02

(RES_NOT)

Logical NOT applied to a

subrestriction

ContentRestriction 0x03

(RES_CONTENT)

Search a property value for

specific content.

PropertyRestriction 0x04

(RES_PROPERTY)

Compare a property value to

a particular value.

ComparePropertiesRestriction 0x05

RES_COMPAREPROPS

Compare the values of two

properties.

BitMaskRestriction 0x06

(RES_BITMASK)

Perform bitwise AND of a

property value with a mask

and compare to zero

SizeRestriction 0x07

(RES_SIZE)

Compare the size of a

property value to a particular

figure.

ExistRestriction 0x08

(RES_EXIST)

Test whether a property has a

value.

SubObjectRestriction 0x09

(RES_SUBRESTRICTION)

Test whether any row of a

message‟s attachment or

recipient table satisfies a

subrestriction.

CommentRestriction 0x0A

(RES_COMMENT)

Associates a comment with a

subrestriction.

CountRestriction 0x0B

(RES_COUNT)

Limits the number of

matches returned from a

subrestriction.

The subsections which follow describe each packet format.

There is one variation in the way Restriction structures are serialized. In the context of ROP

buffers, such as RopRestrict or RopSetSearchCriteria, all count fields (such as the number of

subrestrictions of an AndRestriction) are 16 bits wide. But in the context of Extended Rules,

89 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

as specified in [MS-OXRULE], these counts are 32 bits wide. Such fields are identified as

COUNT fields throughout section 2.14.

2.14.1 AndRestriction

The AndRestriction structure describes an AND restriction, which is used to join a group of

restrictions using a logical AND operation.

0 1 2 3 4 5 6 7 8 9
1

0 1 2 3 4 5 6 7 8 9
2

0 1 2 3 4 5 6 7 8 9
3

0 1

RestrictType
RestrictCount (2-byte COUNT or 4-byte

COUNT) Restricts (variable)

…

RestrictType (1 byte): Unsigned 8-bit integer. This value indicates the type of restriction and

MUST be set to 0x00.

RestrictCount (COUNT): This value specifies how many Restriction structures are present

in Restricts.

Restricts (variable): Array of Restriction structures. This field MUST contain RestrictCount

structures.

The result of an AndRestriction is TRUE if all of its child restrictions evaluate to TRUE, and

FALSE if any child restriction evaluates to FALSE.

2.14.2 OrRestriction

The OrRestriction structure describes an OR restriction, which is used to join a group of

restrictions using a logical OR operation.

0 1 2 3 4 5 6 7 8 9
1

0 1 2 3 4 5 6 7 8 9
2

0 1 2 3 4 5 6 7 8 9
3

0 1

RestrictType
RestrictCount (2-byte COUNT or 4-byte

COUNT) Restricts (variable)

…

90 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

RestrictType (1 byte): Unsigned 8-bit integer. This value indicates the type of restriction and

MUST be set to 0x01.

RestrictCount (COUNT): This value specifies how many Restriction structures are present

in Restricts.

Restricts (variable): Array of Restriction structures. This field MUST contain RestrictCount

structures.

The result of an OrRestriction is TRUE if at least one of its child restrictions evaluates to

TRUE, and FALSE if all child restrictions evaluate to FALSE.

2.14.3 NotRestriction

The NotRestriction structure describes a NOT restriction, which is used to apply a logical

NOT operation to a single restriction.

0 1 2 3 4 5 6 7 8 9
1

0 1 2 3 4 5 6 7 8 9
2

0 1 2 3 4 5 6 7 8 9
3

0 1

RestrictType Restriction (variable)

…

RestrictType (1 byte): Unsigned 8-bit integer. This value indicates the type of restriction and

MUST be set to 0x02.

Restriction (variable): A restriction structure. This value specifies the restriction the logical

NOT SHOULD be applied to.

The result of a NotRestriction is TRUE if the child restriction evaluates to FALSE, and

FALSE if the child restriction evaluates to TRUE.

2.14.4 ContentRestriction

The ContentRestriction structure describes a content restriction, which is used to limit a table

view to only those rows that include a column with contents matching a search string.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RestrictType FuzzyLevelLow FuzzyLevelHigh

91 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

… PropertyTag

… TaggedValue (variable)

…

RestrictType (1 byte): Unsigned 8-bit integer. This value indicates the type of restriction and

MUST be set to 0x03.

FuzzyLevelLow (2 bytes): Unsigned 16-bit integer. This field specifies the level of precision

that the server SHOULD enforce when checking for a match against a ContentRestriction.

The lower 16 bits of the ulFuzzyLevel member apply to both binary and string properties and

MUST be set to one of the following values:

FuzzyLevelLow value Description

0x0000

FL_FULLSTRING

The value stored in TaggedValue and the value of the

column PropertyTag MUST match in their entirety.

0x0001

FL_SUBSTRING

The value stored in TaggedValue MUST match some

portion of the value of the column PropertyTag.

0x0002

FL_PREFIX

The value stored in TaggedValue MUST match a

starting portion of the value of the column

PropertyTag.

FuzzyLevelHigh (2 bytes): This field applies only to string valued properties and can be set

to the following bit values in any combination:

FuzzyLevelHigh values Description

0x0001

FL_IGNORECASE

The comparison SHOULD be made without

considering case.

0x0002

FL_IGNORENONSPACE

The comparison SHOULD ignore Unicode-defined

nonspacing characters such as diacritical marks.

92 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0x0004

FL_LOOSE

The comparison SHOULD result in a match

whenever possible, ignoring case and nonspacing

characters.

PropertyTag (4 bytes): Unsigned 32 bit integer. This value indicates the property tag of the

column that whose value MUST be matched against the value specified by the TaggedValue

field. The type of this property MUST NOT be multi-valued.

TaggedValue (Variable): A TaggedPropertyValue structure, as specified in section 2.13.4.

This structure contains the value to be matched.

The property id portion of the PropertyTag field in TaggedValue is ignored. Its property type

MUST match the property type of PropTag.

The result of a content restriction imposed against a property is undefined when the property

does not exist. When a client requires well-defined behavior for such a restriction and is not

sure whether the property exists, the client SHOULD create an AndRestriction to join the

ContentRestriction with an ExistRestriction.

2.14.5 PropertyRestriction

The PropertyRestriction structure describes a property restriction which is used to match a

constant with the value of a property.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RestrictType RelOp PropTag

… TaggedValue (variable)

…

RestrictType (1 byte): Unsigned 8-bit integer. This value indicates the type of restriction and

MUST be set to 0x4.

RelOp (1 byte): Unsigned 8-bit integer. The value indicates the relational operator that

SHOULD be used to compare the property on the object with PropValue. The value MUST

be one the following:

Relational operator Hexadecimal value Evaluation

93 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

(alternate name)

LessThan 0x00

RELOP_LT

TRUE if the value of

object‟s property is less than

the given value

LessThanOrEqual 0x01

(RELOP_LE)

TRUE if the value of the

object‟s property is less than

or equal to the given value

GreaterThan 0x02

(RELOP_GT)

TRUE if the value of the

object‟s property value is

greater than the given value

GreaterThanOrEqual 0x03

(RELOP_GE)

TRUE if the value of the

object‟s property value is

greater than or equal to the

given value

Equal 0x04

(RELOP_EQ)

TRUE if the object‟s

property value equals the

given value

NotEqual 0x05

(RELOP_NE)

TRUE if the object‟s

property value does not

equal the given value

MemberOfDL 0x64

(RELOP_MEMBER_OF_DL)

TRUE if the value of the

object‟s property is in the

DL membership of the

specified property value.

The value of the object‟s

property MUST be an

entryid of a mail-enabled

object in the Address Book.

The specified property value

MUST be an EntryId of a

distribution list object in the

Address Book.

PropTag (4 bytes): Unsigned 32 bit integer. This value indicates the property tag of the

property that MUST be compared.

94 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

TaggedValue (Variable): TaggedValue structure (see section 2.13.4). This structure

describes the property value to be compared against.

The TaggedValue field contains a property tag subfield which is distinct from the PropTag

field of this structure. Only the property type portion of the TaggedValue‟s property tag

subfield is used; the property id is ignored.

Multi-valued properties (when the bit MV_FLAG is set) are supported for this type of

restriction, but the base property types (obtained by masking off the bit MV_FLAG) of both

the PropTag field and property tag subfield of TaggedValue subfield MUST be the same in all

cases.

The MultivalueInstance bit MUST be set in neither the PropTag field nor the property tag

subfield of the TaggedValue.

The following table describes which cases are supported for multi-valued properties.

Table 12 Cases supported by multi-valued properties

PropTag TaggedValue Support Details

Single-valued Single-valued All RelOp

values are

supported

Simple comparison

Single-valued Multi-valued Only

RELOP_EQ

and

RELOP_NE

are supported

The value of property

PropTag is compared with

each value of TaggedValue.

If there are any matches,

RELOP_EQ is satisfied. If

no matches, RELOP_NE is

satisfied.

Multi-valued and same as

MultivalueInstance

column of table

Single-valued All RelOp

values are

supported

The single instance value of

property PropTag on the row

is compared with

TaggedValue.

Multi-valued and same as

MultivalueInstancecolumn

of table

Multi-valued Only

RELOP_EQ

and

RELOP_NE

supported

The single instance value of

property PropTag on the row

is compared with each value

of TaggedValue. If any

matches, RELOP_EQ is

satisfied. If no matches,

RELOP_NE is satisfied.

95 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Multi-valued but not same

as MultivalueInstance of

table

Single-valued All RelOp

values

supported

Each value of the property

PropTag is compared with

TaggedValue. For all RelOp

values except RELOP_NE,

one successful match means

the restriction is satisfied. For

RELOP_NE, the restriction

is satisfied only when there

are no matches

Multi-valued but not same

as MultivalueInstance of

table

Single-valued Not supported

In the context of a RopFindRow or RopRestrict call, the results are undefined if the property

PropTag does not exist on the object being tested. By creating an AndRestriction that joins the

property restriction with an ExistRestriction, a caller can be guaranteed accurate results.

Only RELOP_EQ and RELOP_NE are allowed for the RelOp field when the base type of

PropTag is Boolean.

Note: Some versions of Microsoft MAPI documentation list another relational operator called

RELOP_RE. Servers MAY not implement this relational operator, and clients MUST NOT

rely on server support for this operator.

2.14.6 ComparePropertiesRestriction

The ComparePropertiesRestriction structure specifies a comparison between the values of

two properties using a relational operator.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RestrictType RelOp PropTag1

… PropTag2

…

RestrictType (1 byte): Unsigned 8-bit integer. This value indicates the type of restriction and

MUST be set to 0x5.

96 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

RelOp (1 byte): Unsigned 8-bit integer. The value indicates the relational operator used to

compare the two properties. The value MUST be one the following.

Table 13 RelOp Operators Used to Compare Two Properties

Relational operator Hexadecimal value

(alternate name)

Evaluation

LessThan 0x00

RELOP_LT

TRUE if the value of the

property specified by Tag1

is less than the value of the

property specified by Tag2

LessThanOrEqual 0x01

(RELOP_LE)

TRUE if the value of the

property specified by Tag1

is less than or equal to the

value of the property

specified by Tag2

GreaterThan 0x02

(RELOP_GT)

TRUE if the value of the

property specified by Tag1

is greater than the value of

the property specified by

Tag2

GreaterThanOrEqual 0x03

(RELOP_GE)

TRUE if the value of the

property specified by Tag1

is greater than or equal to the

value of the property

specified by Tag2

Equal 0x04

(RELOP_EQ)

TRUE if the two property

values are equal

NotEqual 0x05

(RELOP_NE)

TRUE if the two property

values are unequal

MemberOfDL 0x64

(RELOP_MEMBER_OF_DL)

TRUE if the value of the

property specified by Tag1

is in the DL membership of

Tag2. The value of the

property specified by Tag1

MUST be an entryid of a

mail-enabled object in

Address Book. The value of

the property specified by

97 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Tag2 MUST be an EntryId

of a distribution list object in

Address Book.

PropTag1 (4 bytes): Unsigned 32 bit integer. This value is the PropertyTag of the first

property that MUST be compared.

PropTag2 (4 bytes): Unsigned 32 bit integer. This value is the PropertyTag of the second

property that MUST be compared.

The comparison order is (property tag 1) (relational operator) (property tag 2).

The properties to be compared MUST be of the same type.

The result of a compare property value restriction is undefined when one or both of the

properties do not exist. When a client requires well-defined behavior for such a restriction and

is not sure whether the property exists, for example, it is not a required column of a table, it

SHOULD create an AndRestriction to join the compare property restriction with an Exists

restriction.

The properties specified by PropTag1 and PropTag2 MUST be single-valued.

Only Equal and NotEqual operators are allowed field when the base type of Tag1 and Tag2 is

Boolean.

Note: Some versions of Microsoft MAPI documentation list another relational operator called

RELOP_RE. Servers MAY not implement this relational operator, and clients MUST NOT

rely on server support for this operator.

2.14.7 BitMaskRestriction

The BitMaskRestriction structure describes a bitmask restriction, which performs a bitwise

AND operation and compares the result with zero.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RestrictType BitmapRelOp PropTag

… Mask

…

RestrictType (1 byte): Unsigned 8-bit integer. This value indicates the type of restriction and

MUST be set to 0x06.

98 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

BitmapRelOp (1 byte): Unsigned 8-bit integer. The value specifies how the server MUST

perform the masking operation. The value MUST be one of the following:

BMR_EQZ =0x00

Perform a bitwise AND operation of the value of Mask with the value of the property

PropTag and test for being equal to zero.

BMR_NEZ =0x01

Perform a bitwise AND operation of the value of Mask with the value of the

property PropTag and test for NOT being equal to zero.

PropTag (4 bytes): Unsigned 32 bit integer. This value is the PropertyTag of the property to

be tested. Its property type MUST be single-valued Int32 (refer to section 2.4.2 for details

about individual property types).

Mask (4 bytes): Unsigned 32 bit integer. The bitmask to use for the AND operation.

The BitMaskRestriction structure performs a bitwise AND operation using the bitmask Mask

and the value of the property PropTag. If the result is zero, then BMR_EQZ is satisfied. If it's

nonzero, that is, if the property value has at least one of the same bits set as Mask, then

BMR_NEZ is satisfied.

2.14.8 SizeRestriction

The SizeRestriction structure describes a size restriction which compares the size (in bytes) of

a property value with a given size.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RestrictType RelOp PropTag

… Size

…

RestrictType (1 byte): Unsigned 8-bit integer. This value indicates the type of restriction and

MUST be set to 0x7.

RelOp (1 byte): Unsigned 8-bit integer. The value indicates the relational operator used in the

size comparison. The value MUST be one the following:

99 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

Table 14 RelOp operators Used for Size Comparison

Relational operator Hexadecimal value

(alternate name)

Evaluation

LessThan 0x00

RELOP_LT

TRUE if the size of object‟s

property is less than the given

size

LessThanOrEqual 0x01

(RELOP_LE)

TRUE if the size of object‟s

property is less than or equal

to the given size

GreaterThan 0x02

(RELOP_GT)

TRUE if the size of object‟s

property is greater than the

given size

GreaterThanOrEqual 0x03

(RELOP_GE)

TRUE if the size of object‟s

property is greater than or

equal to the given size

Equal 0x04

(RELOP_EQ)

TRUE if the size of object‟s

property is equal to the given

size

NotEqual 0x05

(RELOP_NE)

TRUE if the size of object‟s

property is not equal to the

given size

PropTag (4 bytes): Unsigned 32 bit integer. This value indicates the property tag of the

property, the size of whose value we are testing.

Size (4 bytes): Unsigned 32 bit integer. This value indicates size, as a count of bytes, that is to

be used in the comparison.

In the case where PropTag is multivalued, there are two cases. If it was specified as

MULTIVALUEINSTANCE column of the table, the size restriction is evaluated for each row

using the size of the single instance value of the row. If was not specified as an

MULTIVALUEINSTANCE column of the table, the size restriction is evaluated for each

multi-value. If one of the size restrictions succeeds, the restriction is satisfied.

2.14.9 ExistRestriction

The ExistRestriction structure tests whether a particular property value exists on a row of the

table.

100 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RestrictType PropTag

…

RestrictType (1 byte): Unsigned 8-bit integer. This value indicates the type of restriction and

MUST be set to 0x08.

PropTag (4 bytes): Unsigned 32-bit integer. This value is the PropertyTag of the column to

be tested for existence in each row.

The ExistRestriction is used to guarantee meaningful results for other types of restrictions that

involve properties, such as property and content restrictions. The result of a restriction that

involves a property which does not exist on a row is undefined. By creating an AND

restriction that joins the property restriction with an ExistRestriction, a client can be

guaranteed accurate results.

2.14.10 SubObjectRestriction

The SubObjectRestriction structure applies its subrestriction to a message object‟s

attachment table or recipients. If ANY row of the subobject satisfies the subrestriction, then

the message satisfies the SubObjectRestriction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RestrictType SubObject

… Restriction(variable)

…

RestrictType (1 byte): Unsigned 8-bit integer. This value indicates the type of restriction and

MUST be set to 0x09.

SubObject (4 byte): Unsigned 32-bit integer. This value is a PropertyTag that designates the

target of the subrestriction Restriction. Only two values are supported:

 PidTagMessageRecipients

101 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

 Apply the subrestriction to a message‟s recipiens.

 PidTagMessageAttachments

 Apply the subrestriction to a message‟s attachments.

Restriction (variable): A restriction structure. This subrestriction is applied to the rows of the

subobject.

2.14.11 CommentRestriction

The CommentRestriction structure describes a comment restriction, which is used to

annotate a restriction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RestrictType TaggedValuesCount TaggedValues (variable)

…

RestrictionPresent Restriction(variable)

…

RestrictType (1 byte): Unsigned 8-bit integer. This value indicates the type of restriction and

MUST be set to 0x0A.

TagggedValuesCount (1 byte): Unsigned 8-bit integer. This value specifies how many

TaggedValue structures are present in TaggedValues.

TaggedValues (variable): Array of TaggedPropertyValue (see section 2.13.4) structures.

This field MUST contain TaggedValuesCount structures. The TaggedPropertyValue

structures MUST NOT include any multi-valued properties.

RestrictionPresent (1 byte): Unsigned 8-bit integer. This field MUST contain either TRUE

(0x01) or FALSE (0x00). A TRUE value means that the Restriction field is present, while a

FALSE value indicates the Restriction field is not present.

Restriction (variable): A restriction structure. This field is only present if RestrictionPresent

is TRUE.

Clients MAY use a CommentRestriction structure to save associated comments together with

a restriction they pertain to. The comments are formatted as an arbitrary array of

TaggedPropValue structures, and servers MUST store and retrieve this information for the

client. If the Restriction field is present, servers MUST evaluate it; if it is not present, then the

102 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

CommentRestriction node will effectively evaluate as TRUE. In either case, the comments

themselves have no effect on the evaluation of the restriction.

One scenario for using a CommentRestriction is when a restriction includes named properties.

A client could store the property names corresponding to the PropertyIds in the comment area,

so that if the restriction were later applied to a folder with a different mapping of names to

PropertyIds, the names could be remapped to new PropertyIds that are valid for that folder.

2.14.12 CountRestriction

A CountRestriction structure limits the number of matches that SHOULD be returned from its

subrestriction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RestrictType Count

… SubRestriction (variable)

…

RestrictType (1 byte): Unsigned 8-bit integer. This value indicates the type of restriction and

MUST be set to 0x0B.

Count (4 bytes): Unsigned 32-bit integer. This value specifies the limit on the number of

matches to be returned when SubRestriction is evaluated.

SubRestriction (variable): A restriction structure. This field specifies the restriction to be

limited.

2.15 Sorting

Table sorting is performed by sending a RopSortTable operation to the server. The sort key is

specified using a SortOrderSet structure. The SortOrder structure is part of a SortOrderSet.

The format of these two structures is specified in the subsections which follow.

2.15.1 SortOrder

The SortOrder structure describes one column that is part of a sort key for sorting rows of a

table. It gives both the column and the direction of the sort.

SortOrder structures are typically combined into a SortOrderSet structure to describe

multiple sort keys and directions in a RopSortTable request.

103 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PropertyType PropertyId

Order

PropertyType (bits 0-15): Identifies the data type of the column to sort on. If the property is

multi-valued, for example, the MultivalueFlag bit (0x1000) is set in the PropertyType, then

clients MUST also set the MultivalueInstance bit, value 0x2000. In this case the server MUST

generate one row for each individual value of a multivalued column, and sort the table by

individual values of that column.

PropertyId (bits 16-31): Identifies the column to sort on.

Order (1 byte): MUST be one of the following values:

Order name Order

value

Description

Ascending 0x00 Sort by this column in ascending order.

Descending 0x01 Sort by this column in descending order.

MaximumCategory 0x04 Indicates this is an aggregated column in a

categorized sort, whose maximum value

(within the group of items with the same

value of the previous category) is to be used

as the sort key for the entire group.

If the MultivalueFlag bit is set, then the MultivalueInstance bit MUST also be set, and if the

MultivalueInstance bit is set, then the MultivalueFlag bit MUST also be set. In other words, it

is not possible to sort on all values of a multivalued column; one row per value MUST be

generated and individual values used in the sort.

The MaximumCategory bit causes groups of messages in a categorized sort to be ordered by

the maximum value of a column across an entire group. For example, a conversation view is

grouped by PidTagConversationTopic; groups are sorted by the group‟s most recent

(maximum) PidTagMessageDeliveryTime value, and within each group messages are sorted

by PidTagConversationIndex.

2.15.2 SortOrderSet

The SortOrderSet structure describes a sort key consisting of one or more columns.

104 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0 1 2 3 4 5 6 7 8 9
1

0 1 2 3 4 5 6 7 8 9
2

0 1 2 3 4 5 6 7 8 9
3

0 1

SortOrderCount CategorizedCount

ExpandedCount SortOrders (variable)

…

SortOrderCount (2 bytes): Unsigned 16-bit integer. This value specifies how many

SortOrder structures are present in SortOrders.

CategorizedCount (2 bytes): Unsigned 16-bit integer. This value specifies that the first

CategorizedCount columns SHOULD be categorized. This value MUST be in the range 0 to

SortOrderCount.

ExpandedCount (2 bytes): Unsigned 16-bit integer. This value specifies that the first

ExpandedCount of the categorized columns SHOULD start in an expanded state, where all of

the rows that apply to the category are visible in the table view. This value MUST be in the

range 0 to CategorizedCount.

SortOrders (variable): Array of SortOrder structures. This field MUST contain

SortOrderCount structures. At most one of the structures can specify a multi-valued property.

3 Structure Examples

This section provides two examples of how some of these structures would appear as a stream

of bytes.

3.1 Restriction Example

The following restriction, described in high level terms, could be used to search for items with

reminders set on them.

A restriction of the type RES_AND with the following two sub-clauses:

1. A restriction of type RES_AND, with the following eight sub-clauses:

 A restriction of type RES_PROPERTY with a relop value of

RELOP_NE, comparing the value of PidTagParentEntryId property

with the PidTagEntryId of the Deleted Items special folder (see [MS-

OXOSFLD])

1. A restriction of type RES_PROPERTY with a relop value of

RELOP_NE, comparing the value of PidTagParentEntryId property

105 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

with the PidTagEntryId of the Junk Mail special folder (see [MS-

OXOSFLD])

2. A restriction of type RES_PROPERTY with a relop value of

RELOP_NE, comparing the value of PidTagParentEntryId property

with the PidTagEntryId of the Drafts special folder (see [MS-

OXOSFLD])

3. A restriction of type RES_PROPERTY with a relop value of

RELOP_NE, comparing the value of PidTagParentEntryId property

with the PidTagEntryId of the Outbox special folder (see [MS-

OXOSFLD])

4. A restriction of type RES_PROPERTY with a relop value of

RELOP_NE, comparing the value of PidTagParentEntryId property

with the PidTagEntryId of the Conflicts special folder (see [MS-

OXOSFLD])

5. A restriction of type RES_PROPERTY with a relop value of

RELOP_NE, comparing the value of PidTagParentEntryId property

with the PidTagEntryId of the Local Failures special folder (see [MS-

OXOSFLD])

6. A restriction of type RES_PROPERTY with a relop value of

RELOP_NE, comparing the value of PidTagParentEntryId property

with the PidTagEntryId of the Server Failures special folder (see [MS-

OXOSFLD])

7. A restriction of type RES_PROPERTY with a relop value of

RELOP_NE, comparing the value of PidTagParentEntryId property

with the PidTagEntryId of the Sync Issues special folder (see [MS-

OXOSFLD])

2. A restriction of type RES_AND, with the following three sub-clauses:

1. A restriction of type RES_NOT, with the following sub-clause:

1. A Restriction of type RES_AND, with the following two sub-

clauses:

1. A Restriction of type RES_EXISTS that specifies the

PidTagMessageClass property.

2. A Restriction of type RES_CONTENT with a FuzzyLevel

of FL_PREFIX, comparing the value of

PidTagMessageClass property to the string value

“IPM.Schedule”

106 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

2. A restriction of type RES_BITMASK with a BitmapRelOp value of

BMR_EQZ that compares the value of the PidTagMessageFlags

property to the ULONG value MSGFLAG_SUBMIT

3. A restriction of type RES_OR, with the following two sub-clauses:

1. A restriction of type RES_PROPERTY with relop RELOP_EQ,

comparing the value of PidLidReminderSet property to the

Boolean value 1

2. A restriction of type RES_AND, with the following two sub-

clauses:

1. A Restriction of type RES_EXISTS that specifies the

PidLidRecurring property.

2. A Restriction of type RES_PROPERTY with relop

RELOP_EQ, comparing the value of PidLidRecurring

property to the Boolean value 1.

The following describes how this corresponds to a byte stream that is passed between the

client and server.

Before formatting this data structure to send to the server, the client would need to send a

RopGetPropertyIdsFromNames request to the server to map the two named properties

PidLidReminderSet and PidLidRecurring to actual property ids.

Bytes Field Meaning

00 RestrictType RES_AND

02 00 RestrictCount 2

 00 RestrictType RES_AND

08 00 RestrictCount 8

 04 RestrictType RES_PROPERTY

05 RelOp RELOP_NE

20 10 09 0E PropTag PidTagParentEntryId

0E 02 Byte Count 46

00 00 00 00 EntryId Flags MUST be zero

107 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

EE C1 BD 78 61 11 D0 11 91 7B 00 00

00 00 00 01

EntryId Provider

UID

UID for Mailbox store

01 00 EntryId Folder

Type

eitLTPrivateFolder

(16 byte guid specific to database) EntryId Message

Database GUID

UID identifies database

where folder was

originally created

(6 bytes identifying Deleted Items folder) EntryId Global

Counter

UID identifies specific

folder within database

00 00 EntryId Pad MUST be zero

 04 RestrictType RES_PROPERTY

05 RelOp RELOP_NE

20 10 09 0E PropTag PidTagParentEntryId

0E 02 Byte Count 46

00 00 00 00 EntryId Flags MUST be zero

EE C1 BD 78 61 11 D0 11 91 7B 00 00

00 00 00 01

EntryId Provider

UID

UID for Mailbox store

01 00 EntryId Folder

Type

eitLTPrivateFolder

(16 byte guid specific to database) EntryId Message

Database GUID

UID identifies database

where folder was

originally created

(6 bytes identifying Junk Mail folder) EntryId Global

Counter

UID identifies specific

folder within database

00 00 EntryId Pad MUST be zero

 04 RestrictType RES_PROPERTY

05 RelOp RELOP_NE

20 10 09 0E PropTag PidTagParentEntryId

108 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

0E 02 Byte Count 46

00 00 00 00 EntryId Flags MUST be zero

EE C1 BD 78 61 11 D0 11 91 7B 00 00

00 00 00 01

EntryId Provider

UID

UID for Mailbox store

01 00 EntryId Folder

Type

eitLTPrivateFolder

(16 byte guid specific to database) EntryId Message

Database GUID

UID identifies database

where folder was

originally created

(6 bytes identifying Drafts folder) EntryId Global

Counter

UID identifies specific

folder within database

00 00 EntryId Pad MUST be zero

 04 RestrictType RES_PROPERTY

05 RelOp RELOP_NE

20 10 09 0E PropTag PidTagParentEntryId

0E 02 Byte Count 46

00 00 00 00 EntryId Flags MUST be zero

EE C1 BD 78 61 11 D0 11 91 7B 00 00

00 00 00 01

EntryId Provider

UID

UID for Mailbox store

01 00 EntryId Folder

Type

eitLTPrivateFolder

(16 byte guid specific to database) EntryId Message

Database GUID

UID identifies database

where folder was

originally created

(6 bytes identifying Outbox folder) EntryId Global

Counter

UID identifies specific

folder within database

00 00 EntryId Pad MUST be zero

 04 RestrictType RES_PROPERTY

109 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

05 RelOp RELOP_NE

20 10 09 0E PropTag PidTagParentEntryId

0E 02 Byte Count 46

00 00 00 00 EntryId Flags MUST be zero

EE C1 BD 78 61 11 D0 11 91 7B 00 00

00 00 00 01

EntryId Provider

UID

UID for Mailbox store

01 00 EntryId Folder

Type

eitLTPrivateFolder

(16 byte guid specific to database) EntryId Message

Database GUID

UID identifies database

where folder was

originally created

(6 bytes identifying Conflicts folder) EntryId Global

Counter

UID identifies specific

folder within database

00 00 EntryId Pad MUST be zero

 04 RestrictType RES_PROPERTY

05 RelOp RELOP_NE

20 10 09 0E PropTag PidTagParentEntryId

0E 02 Byte Count 46

00 00 00 00 EntryId Flags MUST be zero

EE C1 BD 78 61 11 D0 11 91 7B 00 00

00 00 00 01

EntryId Provider

UID

UID for Mailbox store

01 00 EntryId Folder

Type

eitLTPrivateFolder

(16 byte guid specific to database) EntryId Message

Database GUID

UID identifies database

where folder was

originally created

(6 bytes identifying Local Failures folder) EntryId Global

Counter

UID identifies specific

folder within database

110 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

00 00 EntryId Pad MUST be zero

 04 RestrictType RES_PROPERTY

05 RelOp RELOP_NE

20 10 09 0E PropTag PidTagParentEntryId

0E 02 Byte Count 46

00 00 00 00 EntryId Flags MUST be zero

EE C1 BD 78 61 11 D0 11 91 7B 00 00

00 00 00 01

EntryId Provider

UID

UID for Mailbox store

01 00 EntryId Folder

Type

eitLTPrivateFolder

(16 byte guid specific to database) EntryId Message

Database GUID

UID identifies database

where folder was

originally created

(6 bytes identifying Server Failures folder) EntryId Global

Counter

UID identifies specific

folder within database

00 00 EntryId Pad MUST be zero

 04 RestrictType RES_PROPERTY

05 RelOp RELOP_NE

20 10 09 0E PropTag PidTagParentEntryId

0E 02 Byte Count 46

00 00 00 00 EntryId Flags MUST be zero

EE C1 BD 78 61 11 D0 11 91 7B 00 00

00 00 00 01

EntryId Provider

UID

UID for Mailbox store

01 00 EntryId Folder

Type

eitLTPrivateFolder

(16 byte guid specific to database) EntryId Message

Database GUID

UID identifies database

where folder was

111 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

originally created

(6 bytes identifying Sync Issues folder) EntryId Global

Counter

UID identifies specific

folder within database

00 00 EntryId Pad MUST be zero

 00 RestrictType RES_AND

03 00 RestrictCount 3

 02 RestrictType RES_NOT

00 RestrictType RES_AND

02 00 RestrictCount 2

 08 RestrictType RES_EXIST

1F 00 1A 00 PropTag PidTagMessageClass

 03 RestrictType RES_CONTENT

02 00 FuzzyLevelLow FL_PREFIX

00 00 FuzzyLevelHigh

1F 00 1A 00 PropertyTag PidTagMessageClass

49 00 50 00 4D 00 2E 00 53 00 63 00

68 00 65 00 64 00 75 00 6C 00 65 00

00 00

PropValue “IPM.Schedule”

 06 RestrictType RES_BITMASK

00 BitmapRelOp BMR_EQZ

03 00 07 0E PropTag PidTagMessageFlags

04 00 00 00 Mask MSGFLAG_SUBMIT

 01 RestrictType RES_OR

02 00 RestrictCount 2

112 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

 04 RestrictType RES_PROPERTY

04 RelOp RELOP_EQ

0B 00 + (2 byte mapped prop id) PropTag PidLidReminderSet

01 PropValue TRUE

 00 RestrictType RES_AND

02 00 RestrictCount 2

 08 RestrictType RES_EXIST

0B 00 + (2 byte mapped prop id) PropTag PidLidRecurring

 04 RestrictType RES_PROPERTY

04 RelOp RELOP_EQ

0B 00 + (2 byte mapped prop id) PropTag PidLidRecurring

01 PropValue TRUE

3.2 PropertyRow Example

In this example, the client sends RopGetPropsSpecific to the server requesting the properties

from an open message object:

Hexadecimal Value Property Id Property Type

0E070003 PidTagMessageFlags PtypInteger32

00370001 PidTagSubject PtypUnspecified

1000001F PidTagBody PtypString

Additional assumptions used in this example:

 This message had been sent to this mailbox from a different user.

 The message contained an attachment.

113 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

 The message had been already read by the user but had not been modified.

 The subject of this message is “Hello”.

 The body of the message is so large that the server requires the client to stream the

body to the client.

Under these conditions, the PropertyRow data returned from the server would use the

FlaggedPropertyRow structure variant (see section 2.13.5) to return the data from

RopGetPropsSpecific with the following data:

Bytes Field Meaning

01 Flag for PropertyRow There were either errors

retrieving values or some

values were not returned

00 Flag for

FlaggedPropertyValue

(see section 2.13.5)

The value for this property is

returned

13 00 00 00 Integer32 PropertyValue MSGFLAG_READ

|MSGFLAG_UMODIFIED

|MSGFLAG_HASATTACH

1F 00 PropertyType for

FlaggedPropertyValueW

ithType (see 0)

PtypString

00 Flag for

FlaggedPropertyValueW

ithType

RES_PROPERTY

48 00 65 00 6C 00 6C 00 6F 00

00 00

String PropertyValue “Hello”

0A Flag for

FlaggedPropertyValue

The value for this property was

not returned. RopOpenStream

can be used to obtain the

property value.

0E 00 07 80 32-bit SCODE NotEnoughMemory error (see

section 2.4)

114 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

4 Security Considerations

There are no special security considerations for this protocol over and above those specified in

[MS-OXCRPC].

5 Appendix A: Office/Exchange Behavior

The information in this specification is applicable to the following versions of

Office/Exchange:

 Office 2003 with Service Pack 3 applied

 Exchange 2003 with Service Pack 2 applied

 Office 2007 with Service Pack 1 applied

 Exchange 2007 with Service Pack 1 applied

Exceptions, if any, are noted below. Unless otherwise specified, any statement of optional

behavior in this specification prescribed using the terms SHOULD or SHOULD NOT implies

Office/Exchange behavior in accordance with the SHOULD or SHOULD NOT prescription.

Unless otherwise specified, the term MAY implies that Office/Exchange does not follow

the prescription.

<1> Section 2.2.4.3: Outlook 2003 SP3 and Outlook 2007 SP1 sometime leave 3 extra bytes

not filled at the end of the Contact Address EntryId structure; in other words, the sum of all

fields specified in this protocol can be 3 bytes less than the count of bytes of the entire EntryId.

The value extra 3 bytes has no meaning to either the server or the client.

<2> Section 2.2.4.4: Outlook 2003 SP3 and Outlook 2007 SP1 sometimes leaves 3 extra bytes

not filled at the end of the Personal Distribution List EntryId structure; in other words, the sum

of all fields specified in this protocol can be 3 bytes less than the count of bytes of the entire

EntryId. The value extra 3 bytes has no meaning to either the server or the client.

115 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

6 Index
Address lists, 7

Applicability statement, 7

EntryId and related types, 8

EntryId lists, 22

Error codes, 24

Flat UID, 49

Glossary, 5

Informative references, 6

Normative references, 5

Notifications, 50

Office/Exchange behavior, 114

Property values, 78

PropertyName, 70

PropertyProblem, 70

PropertyProblemArray, 71

PropertyRow example, 112

PropertyRows, 72

PropertyTag, PropertyId, 77

PropertyTagArray, 77

References, 5

Informative references, 6

Normative references, 5

Relationship to protocols and other structures, 7

Restriction example, 104

Restrictions, 87

Security considerations, 114

Sorting, 102

Structure examples, 104

PropertyRow example, 112

Restriction example, 104

Structure overview (synopsis), 6

Structures, 7

Address Lists, 7

EntryId and related types, 8

EntryId lists, 22

Error codes, 24

Flat UID, 49

Notifications, 50

Property values, 78

PropertyName, 70

116 of 116

[MS-OXCDATA] - v0.2
Data Structures Protocol Specification

Copyright © 2008 Microsoft Corporation.

Release: Friday, April 25, 2008

PropertyProblem, 70

PropertyProblemArray, 71

PropertyRows, 72

PropertyTag, PropertyId, 77

PropertyTagArray, 77

Restrictions, 87

Sorting, 102

Structure example, 104

Vendor-extensible fields, 7

Versioning and localization, 7

