[MS-OXABREF]:

Address Book Name Service Provider Interface (NSPI) Referral Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

- **Technical Documentation.** Microsoft publishes Open Specifications documentation for protocols, file formats, languages, standards as well as overviews of the interaction among each of these technologies.
- Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you may make copies of it in order to develop implementations of the technologies described in the Open Specifications and may distribute portions of it in your implementations using these technologies or your documentation as necessary to properly document the implementation. You may also distribute in your implementation, with or without modification, any schema, IDL's, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications.
- No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
- Patents. Microsoft has patents that may cover your implementations of the technologies described in the Open Specifications. Neither this notice nor Microsoft's delivery of the documentation grants any licenses under those or any other Microsoft patents. However, a given Open Specification may be covered by Microsoft's Open Specification Promise (available here: http://www.microsoft.com/interop/osp) or the Community Promise (available here: http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if the technologies described in the Open Specifications are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
- **Trademarks.** The names of companies and products contained in this documentation may be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights.
- **Fictitious Names.** The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments you are free to take advantage of them. Certain Open Specifications are intended for use in conjunction with publicly available standard specifications and network programming art, and assumes that the reader either is familiar with the aforementioned material or has immediate access to it.

Revision Summary

Date	Revision History	Revision Class	Comments	
04/04/2008	0.1		Initial Availability.	
04/25/2008	0.2		Revised and updated property names and other technical content.	
06/27/2008	1.0		Initial Release.	
08/06/2008	1.01		Revised and edited technical content.	
09/03/2008	1.02		Updated references.	
12/03/2008	1.03		Updated IP notice.	
04/10/2009	2.0		Updated technical content and applicable product releases.	
07/15/2009	3.0	Major	Revised and edited for technical content.	
11/04/2009	4.0.0	Major	Updated and revised the technical content.	
02/10/2010	4.1.0	Minor	Updated the technical content.	

Table of Contents

1	Introduction	4
	1.1 Glossary	4
	1.2 References	5
	1.2.1 Normative References	
	1.2.2 Informative References	5
	1.3 Protocol Overview	5
	1.4 Relationship to Other Protocols	6
	1.5 Prerequisites/Preconditions	6
	1.6 Applicability Statement	6
	1.7 Versioning and Capability Negotiation	7
	1.8 Vendor-Extensible Fields	7
	1.9 Standards Assignments	7
2	Messages	
	2.1 Transport	
	2.2 Common Data Types	
	2.2.1 handle_t	8
2	Protocol Details	0
3	3.1 NSPIReferral Server Details	
	3.1.1 Abstract Data Model	
	3.1.2 Timers	
	3.1.3 Initialization	
	3.1.4 Message Processing Events and Sequencing Rules	
	3.1.4.1 RfrGetNewDSA (opnum 0)	
	3.1.4.2 RfrGetFQDNFromServerDN (opnum 1)	 10
	3.1.5 Timer Events	
	3.1.6 Other Local Events	
	J.1.0 Other Lowi Events	
4	Protocol Examples	12
5	Security	
	5.1 Security Considerations for Implementers	
	5.2 Index of Security Parameters	.13
6	Appendix A: Full IDL	1 /
o	Appendix A. Full IDE	14
7	Appendix B: Product Behavior	15
8	Change Tracking	17
9	Index	1 0

1 Introduction

This document describes the address book Name Service Provider Interface (NSPI) Referral Service (NSPIReferral). NSPIReferral is a remote procedure call (RPC) service that supplies a caller with the name of an NSPI server. Additionally, NSPIReferral can return the domain name system (DNS) fully qualified domain name (FQDN) of a mailbox server, given the distinguished name (DN) of that server.

1.1 Glossary

The following terms are defined in [MS-OXGLOS]:

Address Book object binding handle distinguished name (DN) domain **Domain Name System (DNS)** dynamic endpoint endpoint (2) flags fully qualified domain name (FQDN) **Interface Definition Language (IDL)** Name Service Provider Interface (NSPI) **Network Data Representation (NDR)** NT LAN Manager (NTLM) remote procedure call (RPC) **RPC** protocol sequence security provider universal unique identifier (UUID) well-known endpoint

The following terms are specific to this document:

binding: The string representation of the protocol sequence, NetworkAddress, and optionally the endpoint. Also referred to as "string binding". For more information, see [C706].

directory service (DS): A service that stores and organizes information about a computer network's users and resources, and that allows network administrators to manage network resources, users, and their access to network resources.

Fully Qualified Domain Name (FQDN): An unambiguous reference to a unique domain name.

Kerberos: An authentication system that enables two parties to exchange private information across an otherwise open network by assigning a unique key (called a ticket) to each user that logs on to the network and then embedding these tickets into messages sent by the users. For more information, see [MS-KILE].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information. Please check the archive site, http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997, http://www.opengroup.org/public/pubs/catalog/c706.htm.

[MS-NSPI] Microsoft Corporation, "Name Service Provider Interface (NSPI) Protocol Specification", June 2008, http://go.microsoft.com/fwlink/?LinkID=154742.

[MS-OXGLOS] Microsoft Corporation, "Exchange Server Protocols Master Glossary", June 2008.

[MS-OXOABK] Microsoft Corporation, "Address Book Object Protocol Specification", June 2008.

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions", January 2007, http://go.microsoft.com/fwlink/?linkid=112410.

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions", July 2006, http://go.microsoft.com/fwlink/?LinkId=112246.

[RFC1035] Mockapetris, P., "Domain Names – Implementation and Specification", RFC 1035, November 1987, http://www.ietf.org/rfc/rfc1035.txt.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt.

1.2.2 Informative References

[MSDN-MIDL] Microsoft Corporation, "Microsoft Interface Definition Language (MIDL)", http://go.microsoft.com/fwlink/?LinkId=112244.

[MSDN-RPC] Microsoft Corporation, "Remote Procedure Call", http://go.microsoft.com/fwlink/?LinkId=112245.

1.3 Protocol Overview

NSPIReferral serves to return the network name of a server to a client. It has two methods, RfrGetNewDSA, which returns the name of an NSPI server, and RfrGetFQDNFromServerDN, which returns the DNS FQDN of a mailbox server. Figure 1 shows the RfrGetNewDSA method call. Figure 2 shows the RfrGetFQDNFromServerDN method call.

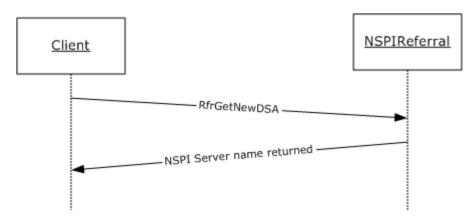


Figure 1: Relationship between client and NSPIReferral

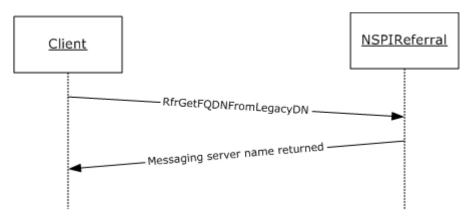


Figure 2: Client retrieving mailbox server name from NSPIReferral

1.4 Relationship to Other Protocols

NSPIReferral is built on the Microsoft remote procedure call (RPC) interface (as specified in [C706] and [MS-RPCE]). It supports only RPC protocol sequences ncacn_ip_tcp and ncacn_http, as specified in [MS-RPCE] sections 2.1.1.1 and 2.1.1.8, respectively.

1.5 Prerequisites/Preconditions

None.

1.6 Applicability Statement

Clients request an NSPI server by using the **RfrGetNewDSA** method of NSPIReferral before the client engages in any NSPI requests. This gives the NSPIReferral server the ability to control which NSPI server an NSPI client will connect to, for purposes including but not limited to balancing the client load across multiple NSPI servers, choosing the best version of NSPI server for that particular client, or satisfying network requirements that are not discernible by the client.

The **RfrGetFQDNFromServerDN** method of NSPIReferral is appropriate when a client knows the distinguished name (DN) of a Mailbox server but not the FQDN of the Mailbox server (as specified in [RFC1035]) with which it can make a network connection to that server. In practice, this is necessary in several cases:

- When creating client mail settings, a client uses an NSPI server to read an Address Book object representing its Mailbox, which includes the DN of the messaging server that hosts the Mailbox.
- When connecting to the wrong Mailbox or public folder server, an error will be returned containing the DN of the correct server.
- When connecting to another user's Mailbox, having only the <u>PidTagAddressBookHomeMessageDatabase</u> property for that Mailbox. For more details about the <u>PidTagAddressBookHomeMessageDatabase</u> property, see [MS-OXOABK] section 2.2.4.67.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

- **Supported Transports:** This protocol uses multiple RPC protocol sequences as specified in section 2.1.
- **Protocol Versions:** NSPIReferral has only one interface version. The use of these methods is specified in section 3.1.
- Security and Authentication Methods: NSPIReferral supports the following authentication methods: NT LAN Manager Authentication Protocol (NTLM) and Kerberos.

There is no capability negotiation.

1.8 Vendor-Extensible Fields

RfrGetNewDSA and **RfrGetFQDNFromServerDN** return HRESULT values as defined in [MS-DTYP] section 2.2.16. Vendors MAY define their own HRESULT values, provided that they set the C bit (0x20000000) for each vendor-defined value to indicate that the value is a customer code.

RfrGetNewDSA can also return other error values. Any non-zero return code indicates an error.

1.9 Standards Assignments

This protocol uses a well known **endpoint**, as specified in section <u>2.1</u>. This protocol uses RPC **dynamic endpoints** as defined in [C706] part 4.

Parameter	Value	Reference
RFRI RPC interface UUID	1544f5e0-613c-11d1-93df-00c04fd7bd09	Appendix A

2 Messages

2.1 Transport

NSPIReferral works over the protocol sequences listed in the following table.

Protocol sequence	
ncacn_ip_tcp	
ncacn_http	

NSPIReferral uses a **well-known endpoint** for network protocol sequence "ncacn_http". The following well-known endpoint is used:

Server	Protocol sequence	Endpoint	
NSPIReferral	ncacn_http	6002	

For all other network protocol sequences, the protocol uses RPC dynamic endpoints as specified in [C706] Part 4. These endpoints are configurable by the owner of the server, to enable the owner to open a minimum set of ports in a firewall to give clients access to NSPIReferral.

NSPIReferral supports NTLM (RPC_C_AUTHN_WINNT), and Negotiate (RPC_C_AUTHN_GSS_NEGOTIATE) **security providers**. A Negotiate security provider determines whether to use NTLM or **Kerberos** authentication. The default is Kerberos. A Negotiate security provider selects NTLM authentication only in the following cases:

- One of the systems that is involved in the authentication cannot use Kerberos authentication.
- The client does not provide sufficient information to use Kerberos authentication.

Callers MUST be authenticated but no further authorization checks are performed.

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it is to support the **Network Data Representation (NDR)** transfer syntax only, as specified in [C706] Part 4.

NSPIReferral makes use of the types, structures, and constants that are specified in [C706] and [MS-RPCE] section 2.

2.2.1 handle t

The **handle_t** data type is used to represent an explicit RPC **binding handle**, as specified in [C706] and [MS-RPCE] section 2. It is a primitive type of the **Interface Definition Language (IDL)** and does not require an explicit declaration.

3 Protocol Details

The client side of this protocol is simply a pass-through. That is, no additional timers or other **state** is required on the client side of this protocol. Calls made by the higher-layer protocol or application are passed directly to the transport, and the results returned by the transport are passed directly back to the higher-layer protocol or application.

3.1 NSPIReferral Server Details

This is a simple single-request, single-response protocol.

3.1.1 Abstract Data Model

A data structure that tracks the available NSPI servers and their current state is beneficial to any implementation. This internal state means the client is more likely to get a good NSPI server name and connect successfully on the first try. The NSPIReferral server is not required to connect to the NSPI server in order to service clients; therefore, it is important for an NSPIReferral implementation to use some method to maintain up-to-date information about available NSPI servers. This ensures that clients who call RfrGetNewDSA are not given the name of an NSPI server that is not functioning.

3.1.2 Timers

None required.

3.1.3 Initialization

Initialization occurs at server startup. NSPIReferral registers the NSPIReferral protocol interface with the RPC system using the RFRI RPC interface UUID, from section 1.9.

3.1.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency check at target level 5.0, as specified in [MS-RPCE] section 3.

The following table lists the methods that are included in this interface.

Method	Description
RfrGetNewDSA	Returns the name of an NSPI server. opnum: 0
RfrGetFQDNFromServerDN	Returns the domain name system (DNS) FQDN of the server corresponding to the passed DN. For more details about domain name systems, see [RFC1035]. opnum: 1

All methods MUST NOT throw exceptions.

3.1.4.1 RfrGetNewDSA (opnum 0)

The **RfrGetNewDSA** method returns the name of an NSPI server.

//opnum 0

9 / 19

[MS-OXABREF] — v20100205 Address Book Name Service Provider Interface (NSPI) Referral Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Friday, February 5, 2010

hRpc: An RPC binding handle parameter, as specified in [C706] section 2. MUST NOT be NULL.

ulFlags: An unsigned long value, containing a set of bit **flags**. Unused; SHOULD be set to zero. Other values MUST be ignored by the server.

pUserDN: Optional, a DN indicating the Mailbox owned by the client user. The client SHOULD pass this to the server. If supplied, the server SHOULD use that DN to affect which NSPI server is returned to the caller.

ppszUnused: A string. Unused; SHOULD be set to NULL. Other values MUST be ignored by the server.

ppszServer: A string. If the server does not return an error, ppszServer contains the FQDN of an NSPI server <1>. On failure, the value is undefined.

Return Values: The server returns 0 for a successful execution. An error results in an HRESULT or other non-zero error code.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol as specified by [MS-RPCE].

Upon receiving this message, the server MUST process the data from the client to the following constraints. If pUserDN is present and contains the DN of an Address Book object, the server MUST prioritize an NSPI server that contains a writeable copy of that Address Book object over NSPI servers that do not <2>. The server SHOULD take other constraints into account, such as the network location of the NSPI server in comparison to the NSPIReferral server or the client. The server MUST prioritize available, responsive NSPI servers over unresponsive ones. The server SHOULD consider load balancing of clients when more than one NSPI server has equal priority. After considering these constraints, NSPIReferral SHOULD return one NSPI server name in the ppszServer parameter and a return value of zero. If any errors occur and NSPIReferral is not able to return the name of an NSPI server, a non-zero value MUST be returned.

Because the goal of the server is to balance load across multiple NSPI servers, clients MUST NOT expect the same NSPI server to be returned from **RfrGetNewDSA**, even if all inputs are the same.

A client SHOULD call **RfrGetNewDSA** in the NSPIReferral service and connect to the NSPI server returned from that method. The client SHOULD NOT connect to an NSPI server without first requesting a server name from **RfrGetNewDSA** <3>.

The NSPI server returned in ppszServer MUST support the same RPC protocol sequence used by the RPC binding handle.

3.1.4.2 RfrGetFQDNFromServerDN (opnum 1)

The **RfrGetFQDNFromServerDN** method returns the domain name system (DNS) FQDN of the server corresponding to the passed DN.

[C++]

10 / 19

[MS-OXABREF] — v20100205 Address Book Name Service Provider Interface (NSPI) Referral Protocol Specification

Copyright © 2010 Microsoft Corporation.

Release: Friday, February 5, 2010

hRpc: An RPC binding handle parameter, as specified in [C706] section 2. MUST NOT be NULL.

ulFlags: An unsigned long value, containing a set of bit flags. Unused; SHOULD be set to zero. Other values MUST be ignored by the server.

cbMailboxServerDN: An unsigned long value containing the number of bytes in the **szMailboxServerDN** string, including terminating NULL. The value is at least 10, at most 1024.

szMailboxServerDN: A DN identifying a Mailbox server <4>.

ppszServerFQDN: A string. If the server does not return an error, ppszServerFQDN contains the FODN of the Mailbox server identified by szMailboxServerDN.

Return Values: The server returns 0 for a successful execution. An error results in an HRESULT or other non-zero error code.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol as specified by [MS-RPCE].

The server MUST process the data from the client to the following constraints when receiving this **Message**. NSPIReferral MUST perform some lookup to determine the FQDN of the server identified by szMailboxServerDN. After considering these constraints, NSPIReferral SHOULD return one Mailbox server name in ppszServerFQDN and 0 as a return value. If any errors occur and NSPIReferral is not able to return the name of a Mailbox server, a failing HRESULT SHOULD be returned.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

4 Protocol Examples

NSPIReferral is a simple protocol that is well-explained by the following example:

Client requests an NSPI server name from the server by calling RfrGetNewDSA() with pUserDN set to the client's Mailbox DN.

Typical parameters will look like the following:

Server responds to the RfrGetNewDSA call with return code 0 and a valid server name.

Typical parameters will look like the following:

```
ppszServer "server1.example.com" unsigned char * *
```

5 Security

5.1 Security Considerations for Implementers

There are no special security considerations specific to NSPIReferral. General security considerations pertaining to the underlying RPC-based transport apply (see [MS-RPCE]). NSPIReferral usually requires authentication, but generally does not restrict any caller who is authenticated.

5.2 Index of Security Parameters

Security parameter	Section
DS Referral authentication protocols	<u>2.1</u>

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided below. The syntax uses the IDL syntax extensions as specified in [MS-RPCE] sections 2.2.4 and 3.1.5.1. For example, as specified in [MS-RPCE] section 2.2.4.9, a pointer_default declaration is not required and pointer_default(unique) is assumed.

rfri.IDL:

```
[ uuid (1544f5e0-613c-11d1-93df-00c04fd7bd09),
 version(1.0),
 pointer default(unique)]
interface rfri
long RfrGetNewDSA(
[in]
        handle t
                        hRpc,
            unsigned long ulFlags,
 [in]
 [in, string] unsigned char * pUserDN,
 [in,out,unique, string] unsigned char * * ppszUnused,
 [in,out,unique, string] unsigned char * * ppszServer);
long RfrGetFQDNFromServerDN(
  [in]
          handle t
                              hRpc,
              unsigned long
                             ulFlags,
  [in]
  [in, range(10,1024)] unsigned long cbMailboxServerDN,
  [in, string, size is(cbMailboxServerDN)] unsigned char *
                                                           szMailboxServerDN,
  [out, ref, string] unsigned char ** ppszServerFQDN);
```

7 Appendix B: Product Behavior

The information in this specification is applicable to the following product versions. References to product versions include released service packs.

- Microsoft Office Outlook 2003
- Microsoft Exchange Server 2003
- Microsoft Office Outlook 2007
- Microsoft Exchange Server 2007
- Microsoft Outlook 2010
- Microsoft Exchange Server 2010

Exceptions, if any, are noted below. If a service pack number appears with the product version, behavior changed in that service pack. The new behavior also applies to subsequent service packs of the product unless otherwise specified.

Unless otherwise specified, any statement of optional behavior in this specification prescribed using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that product does not follow the prescription.

<1> Section 3.1.4.1: Exchange 2007 and Exchange 2003: The Exchange implementation of NSPIReferral returns an NSPI server that listens on the endpoint 6004 for the ncacn_http protocol sequence. This works around network topology considerations which make it technically difficult to expose the NSPI servers directly to NSPI clients outside the local network.

<2> Section 3.1.4.1: Exchange 2007 and Exchange 2003: The Exchange implementation of NSPIReferral follows these NSPI server preference rules: NSPI servers have four properties:

- 1. Server is up and functioning.
- 2. Server supports the client's protocol sequence. This does not apply to Exchange 2010.
- 3. Server has a writeable copy of the object represented by pUserDN.
- 4. Server is physically close to NSPIReferral server.

The NSPI servers are compared on these four properties in the order above. If two servers both satisfy or both do not satisfy 1, then 2 is used as a tie-breaker; if two servers both satisfy or both do not satisfy 1 and both satisfy or both don't satisfy 2, then 3 is used as a tie-breaker; and so on. The server that breaks the tie by satisfying a property that the other one does not satisfy is the preferred server. If multiple servers tie after comparing all four properties, those servers are returned in "round robin" order, meaning that each call to RfrGetNewDSA will return the next server in the list of tied servers. In the Exchange implementation of NSPIReferral, the administrator of the Exchange NSPIReferral service can configure NSPIReferral to reverse the priorities of properties 3 and 4.

<3> Section 3.1.4.1: Outlook 2007 and Outlook 2003: Outlook can connect to a messaging server with a co-located NSPI server and no NSPIReferral server, as well as a messaging server with an NSPIReferral server. When first connecting, Outlook has not yet determined which type of messaging server it is connecting to, and therefore it will try to connect to the messaging server's

co-located NSPI server. On subsequent connections to that server, Outlook will use NSPIReferral. This is one exception to the protocol documentation that states that clients SHOULD always use NSPIReferral. Clients written to this protocol documentation have no reason to connect to an NSPI server before using NSPIReferral.

<4> Section 3.1.4.2: Exchange 2007 and Exchange 2003: The value in the szMailboxServerDN parameter MUST match the server's implementation of server identities. In Exchange, this is a 5-element DN. It follows this format:

```
"/o=" organization-name "/ou=" administrative-group-name "/CN=configuration/CN=servers/CN=" short-messaging-server-name
```

Note that the client MAY receive a DN identifying a specific database on this server, from sources listed in section 1.6. This DN follows this format:

```
"/o=" organization-name "/ou=" administrative-group-name
"/CN=configuration/CN=servers/CN=" short-messaging-server-name
"/CN=Microsoft Private MDB"
```

Or

```
"/o=" organization-name "/ou=" administrative-group-name
"/CN=configuration/CN=servers/CN=" short-messaging-server-name
"/CN=Microsoft Public MDB"
```

If this is the DN available, it is the client's responsibility to remove the final element before passing the DN to RfrGetFQDNFromServerDN.

Exchange 2010 supports an additional, optional instance-name element following the CN=servers element:

```
"/o=" organization-name "/ou=" administrative-group-name
"/CN=configuration/CN=servers/CN=" instance-name "/CN=" short-messaging-server-name "/CN=Microsoft Public MDB"
```

8 Change Tracking

This section identifies changes made to [MS-OXABREF] protocol documentation between November 2009 and February 2010 releases. Changes are classed as major, minor, or editorial.

Major changes affect protocol interoperability or implementation. Examples of major changes are:

- A document revision that incorporates changes to interoperability requirements or functionality.
- An extensive rewrite, addition, or deletion of major portions of content.
- A protocol is deprecated.
- The removal of a document from the documentation set.
- Changes made for template compliance.

Minor changes do not affect protocol interoperability or implementation. Examples are updates to fix technical accuracy or ambiguity at the sentence, paragraph, or table level.

Editorial changes apply to grammatical, formatting, and style issues.

No changes means that the document is identical to its last release.

Major and minor changes can be described further using the following revision types:

- New content added.
- Content update.
- Content removed.
- New product behavior note added.
- Product behavior note updated.
- Product behavior note removed.
- New protocol syntax added.
- Protocol syntax updated.
- Protocol syntax removed.
- New content added due to protocol revision.
- Content updated due to protocol revision.
- Content removed due to protocol revision.
- New protocol syntax added due to protocol revision.
- Protool syntax updated due to protool revision.
- Protocol syntax removed due to protocol revision.
- New content added for template compliance.
- Content updated for template compliance.

- Content removed for template compliance.
- Obsolete document removed.

Editorial changes always have the revision type "Editorially updated."

Some important terms used in revision type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over the wire.

Changes are listed in the following table. If you need further information, please contact protocol@microsoft.com.

Section	Tracking number (if applicable) and description	Major change (Y or N)	Revision Type
1.9 Standards Assignments	48223 Removed parentheses around parameter value.	N	Content update.

9 Index

A
Abstract data model 9 Applicability 6
С
<u>Capability negotiation</u> 7 <u>Change tracking</u> 17 <u>Common data types</u> 8
D
<u>Data model - abstract</u> 9 Data types <u>common - overview</u> 8
E
Examples - overview 12
F
Fields-vendor-extensible 7 Full IDL 14
G
Glossary 4
I
IDL 14 Implementer - security considerations 13 Index of security parameters 13 Informative references 5 Initialization 9 Interfaces - server NSPIReferral 9 Introduction 4
М
Message processing 9 Messages common data types 8 transport 8
N
Normative references 5 NSPIReferral interface 9
o
Overview 5
D

```
Parameters - security index 13
Preconditions 6
Prerequisites 6
Product behavior 15
R
References
  informative 5
  normative 5
Relationship to other protocols 6
S
Security
  implementer considerations 13
  overview 13
 parameter index 13
Sequencing rules 9
Server
  overview 9
Standards assignments 7
Т
Tracking changes 17
Transport 8
Vendor-extensible fields 7
Versioning 7
```