
1 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

[MS-OFFCRYPTO]:

Office Document Cryptography Structure

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

4/4/2008 0.1 New Initial Availability

6/27/2008 1.0 Major Revised and edited the technical content

10/6/2008 1.01 Editorial Revised and edited the technical content

12/12/2008 1.02 Editorial Revised and edited the technical content

3/18/2009 1.03 Editorial Revised and edited the technical content

7/13/2009 1.04 Major Revised and edited the technical content

8/28/2009 1.05 Major Updated and revised the technical content

11/6/2009 1.06 Editorial Revised and edited the technical content

2/19/2010 2.0 Editorial Revised and edited the technical content

3/31/2010 2.01 Editorial Revised and edited the technical content

4/30/2010 2.02 Editorial Revised and edited the technical content

6/7/2010 2.03 Editorial Revised and edited the technical content

6/29/2010 2.04 Editorial Changed language and formatting in the technical content.

7/23/2010 2.05 Minor Clarified the meaning of the technical content.

9/27/2010 2.05 None
No changes to the meaning, language, or formatting of the
technical content.

11/15/2010 2.05 None
No changes to the meaning, language, or formatting of the
technical content.

12/17/2010 2.05 None
No changes to the meaning, language, or formatting of the
technical content.

3/18/2011 2.05 None
No changes to the meaning, language, or formatting of the
technical content.

6/10/2011 2.05 None
No changes to the meaning, language, or formatting of the
technical content.

1/20/2012 2.6 Minor Clarified the meaning of the technical content.

4/11/2012 2.6 None
No changes to the meaning, language, or formatting of the
technical content.

7/16/2012 2.7 Minor Clarified the meaning of the technical content.

10/8/2012 2.8 Minor Clarified the meaning of the technical content.

2/11/2013 2.8 None
No changes to the meaning, language, or formatting of the
technical content.

7/30/2013 2.8 None
No changes to the meaning, language, or formatting of the
technical content.

11/18/2013 2.8 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Date
Revision
History

Revision
Class Comments

2/10/2014 2.8 None
No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 3.0 Major Significantly changed the technical content.

7/31/2014 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/30/2014 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/16/2015 4.0 Major Significantly changed the technical content.

9/4/2015 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/15/2016 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/14/2016 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/20/2017 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

12/12/2017 4.1 Minor Clarified the meaning of the technical content.

4/27/2018 5.0 Major Significantly changed the technical content.

8/28/2018 6.0 Major Significantly changed the technical content.

12/11/2018 6.1 Minor Clarified the meaning of the technical content.

11/17/2020 7.0 Major Significantly changed the technical content.

2/16/2021 7.1 Minor Clarified the meaning of the technical content.

4/22/2021 8.0 Major Significantly changed the technical content.

7/20/2021 9.0 Major Significantly changed the technical content.

8/17/2021 10.0 Major Significantly changed the technical content.

10/5/2021 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/16/2023 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/15/2023 11.0 Major Significantly changed the technical content.

4/16/2024 12.0 Major Significantly changed the technical content.

4 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Table of Contents

1 Introduction .. 8
1.1 Glossary ... 8
1.2 References .. 12

1.2.1 Normative References ... 12
1.2.2 Informative References ... 14

1.3 Overview .. 14
1.3.1 Data Spaces ... 14
1.3.2 Information Rights Management Data Space .. 15
1.3.3 Encryption ... 17

1.3.3.1 XOR Obfuscation ... 17
1.3.3.2 40-bit RC4 Encryption.. 17
1.3.3.3 CryptoAPI RC4 Encryption .. 17
1.3.3.4 ECMA-376 Document Encryption ... 17

1.3.4 Write Protection ... 18
1.3.5 Digital Signatures ... 18
1.3.6 Byte Ordering .. 18
1.3.7 String Encoding .. 18
1.3.8 OLE Compound File Path Encoding .. 18
1.3.9 Pseudocode Standard Objects .. 18

1.3.9.1 Array ... 19
1.3.9.2 String .. 19
1.3.9.3 Storage ... 19
1.3.9.4 Stream .. 19

1.4 Relationship to Protocols and Other Structures .. 19
1.5 Applicability Statement ... 19

1.5.1 Data Spaces ... 19
1.5.2 Information Rights Management Data Space .. 20
1.5.3 Encryption ... 20

1.6 Versioning and Localization ... 20
1.7 Vendor-Extensible Fields ... 20

2 Structures ... 21
2.1 Data Spaces .. 21

2.1.1 File ... 21
2.1.2 Length-Prefixed Padded Unicode String (UNICODE-LP-P4) 22
2.1.3 Length-Prefixed UTF-8 String (UTF-8-LP-P4) .. 23
2.1.4 Version .. 23
2.1.5 DataSpaceVersionInfo ... 23
2.1.6 DataSpaceMap ... 24

2.1.6.1 DataSpaceMapEntry Structure .. 25
2.1.6.2 DataSpaceReferenceComponent Structure ... 25

2.1.7 DataSpaceDefinition .. 26
2.1.8 TransformInfoHeader .. 27
2.1.9 EncryptionTransformInfo ... 27

2.2 Information Rights Management Data Space ... 28
2.2.1 \0x06DataSpaces\DataSpaceMap Stream .. 28
2.2.2 \0x06DataSpaces\DataSpaceInfo Storage .. 29
2.2.3 \0x06DataSpaces\TransformInfo Storage for Office Binary Documents 29
2.2.4 \0x06DataSpaces\TransformInfo Storage for ECMA-376 Documents 30
2.2.5 ExtensibilityHeader ... 31
2.2.6 IRMDSTransformInfo ... 31
2.2.7 End-User License Stream ... 31
2.2.8 LicenseID .. 32
2.2.9 EndUserLicenseHeader .. 32
2.2.10 Protected Content Stream .. 32

5 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.2.11 Viewer Content Stream ... 33
2.3 Encryption ... 33

2.3.1 EncryptionHeaderFlags .. 34
2.3.2 EncryptionHeader ... 34
2.3.3 EncryptionVerifier ... 36
2.3.4 ECMA-376 Document Encryption .. 38

2.3.4.1 \0x06DataSpaces\DataSpaceMap Stream... 38
2.3.4.2 \0x06DataSpaces\DataSpaceInfo Storage .. 38
2.3.4.3 \0x06DataSpaces\TransformInfo Storage ... 38
2.3.4.4 \EncryptedPackage Stream .. 39
2.3.4.5 \EncryptionInfo Stream (Standard Encryption) ... 39
2.3.4.6 \EncryptionInfo Stream (Extensible Encryption) .. 40
2.3.4.7 ECMA-376 Document Encryption Key Generation (Standard Encryption) 42
2.3.4.8 Password Verifier Generation (Standard Encryption) 43
2.3.4.9 Password Verification (Standard Encryption) .. 43
2.3.4.10 \EncryptionInfo Stream (Agile Encryption) ... 44
2.3.4.11 Encryption Key Generation (Agile Encryption) ... 49
2.3.4.12 Initialization Vector Generation (Agile Encryption) 50
2.3.4.13 PasswordKeyEncryptor Generation (Agile Encryption) 50
2.3.4.14 DataIntegrity Generation (Agile Encryption) ... 52
2.3.4.15 Data Encryption (Agile Encryption) .. 52

2.3.5 Office Binary Document RC4 CryptoAPI Encryption ... 53
2.3.5.1 RC4 CryptoAPI Encryption Header ... 53
2.3.5.2 RC4 CryptoAPI Encryption Key Generation ... 54
2.3.5.3 RC4 CryptoAPI EncryptedStreamDescriptor Structure 55
2.3.5.4 RC4 CryptoAPI Encrypted Summary Stream ... 55
2.3.5.5 Password Verifier Generation .. 57
2.3.5.6 Password Verification ... 57

2.3.6 Office Binary Document RC4 Encryption .. 58
2.3.6.1 RC4 Encryption Header .. 58
2.3.6.2 Encryption Key Derivation .. 59
2.3.6.3 Password Verifier Generation .. 59
2.3.6.4 Password Verification ... 59

2.3.7 XOR Obfuscation .. 60
2.3.7.1 Binary Document Password Verifier Derivation Method 1 60
2.3.7.2 Binary Document XOR Array Initialization Method 1 60
2.3.7.3 Binary Document XOR Data Transformation Method 1 62
2.3.7.4 Binary Document Password Verifier Derivation Method 2 63
2.3.7.5 Binary Document XOR Array Initialization Method 2 64
2.3.7.6 Binary Document XOR Data Transformation Method 2 65
2.3.7.7 Password Verification ... 65

2.4 Document Write Protection .. 65
2.4.1 ECMA-376 Document Write Protection ... 65
2.4.2 Binary Document Write Protection .. 65

2.4.2.1 Binary Document Write Protection Method 1 ... 65
2.4.2.2 Binary Document Write Protection Method 2 ... 65
2.4.2.3 Binary Document Write Protection Method 3 ... 66
2.4.2.4 ISO Write Protection Method .. 66

2.5 Binary Document Digital Signatures ... 67
2.5.1 CryptoAPI Digital Signature Structures and Streams 67

2.5.1.1 TimeEncoding Structure ... 67
2.5.1.2 CryptoAPI Digital Signature CertificateInfo Structure 68
2.5.1.3 CryptoAPI Digital Signature Structure .. 70
2.5.1.4 _signatures Stream .. 70
2.5.1.5 CryptoAPI Digital Signature Generation .. 70

2.5.2 Xmldsig Digital Signature Elements ... 72
2.5.2.1 SignedInfo Element ... 72
2.5.2.2 SignatureValue Element ... 72

6 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.5.2.3 KeyInfo Element ... 73
2.5.2.4 idPackageObject Object Element ... 73
2.5.2.5 idOfficeObject Object Element .. 73
2.5.2.6 XAdES Elements ... 76

2.5.3 _xmlsignatures Storage ... 77
2.6 Sensitivity Labels ... 77

2.6.1 Sensitivity Label Metadata ... 77
2.6.2 LabelInfo Stream Locations .. 78
2.6.3 LabelInfo versus Custom Document Properties ... 78
2.6.4 LabelInfo Stream Schema .. 79

2.6.4.1 Namespaces ... 80
2.6.4.2 xml Preprocessor Directive ... 80
2.6.4.3 labelList Element... 80
2.6.4.4 label Element ... 80
2.6.4.5 extLst Element ... 81
2.6.4.6 ext Element .. 81

2.6.5 LabelInfo Stream Structures .. 81
2.6.5.1 ST_ClassificationGuid .. 81
2.6.5.2 CT_ClassificationExtension ... 81
2.6.5.3 CT_ClassificationExtenstionList ... 82
2.6.5.4 CT_ClassificationLabel ... 82
2.6.5.5 CT_ClassificationLabelList .. 83

2.6.6 LabelInfo Stream Extensions .. 83
2.7 MsoDataStore .. 83

2.7.1 IsRedundantDataStorePromotion Storage .. 84
2.7.2 IsModifiedDataStorePromotion Storage ... 84

2.8 EncryptedSIHash Stream .. 85
2.9 EncryptedDSIHash Stream .. 85
2.10 EncryptedPropertyStreamInfo Structure .. 85

3 Structure Examples ... 87
3.1 Version Stream .. 87
3.2 DataSpaceMap Stream.. 88

3.2.1 DataSpaceMapEntry Structure .. 89
3.3 DRMEncryptedDataSpace Stream ... 90
3.4 0x06Primary Stream .. 90
3.5 EUL-ETRHA1143ZLUDD412YTI3M5CTZ Stream .. 92

3.5.1 EndUserLicenseHeader Structure .. 93
3.5.2 Certificate Chain ... 93

3.6 EncryptionHeader Structure... 94
3.7 EncryptionVerifier Structure .. 96
3.8 \EncryptionInfo Stream ... 96
3.9 \EncryptionInfo Stream (Third-Party Extensible Encryption) 98
3.10 Office Binary Document RC4 Encryption .. 99

3.10.1 Encryption Header .. 99
3.11 PasswordKeyEncryptor (Agile Encryption) .. 100
3.12 LabelInfo Stream .. 103

4 Security ... 104
4.1 Security Considerations for Implementers .. 104

4.1.1 Data Spaces .. 104
4.1.2 Information Rights Management .. 104
4.1.3 Encryption .. 104

4.1.3.1 ECMA-376 Document Encryption .. 104
4.1.3.2 Office Binary Document RC4 CryptoAPI Encryption 104
4.1.3.3 Office Binary Document RC4 Encryption .. 105
4.1.3.4 XOR Obfuscation .. 105
4.1.3.5 Information Rights Management Cypher Block Chaining 105

4.1.4 Document Write Protection ... 106

7 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

4.1.5 Binary Document Digital Signatures ... 106
4.2 Index of Security Fields ... 106

5 Appendix A: Product Behavior ... 107

6 Change Tracking .. 114

7 Index ... 115

8 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

1 Introduction

The Office Document Cryptography Structure is relevant to documents that have Information Rights
Management (IRM) policies, document encryption, or signing and write protection applied. More
specifically, this file format describes the following:

 A structure that acts as a generic mechanism for storing data that has been transformed along
with information about that data.

 A structure for storing rights management policies that have been applied to a particular
document.

 Encryption, signing, and write protection structures.

Sections 1.7 and 2 of this specification are normative. All other sections and examples in this
specification are informative.

1.1 Glossary

This document uses the following terms:

Advanced Encryption Standard (AES): A block cipher that supersedes the Data Encryption
Standard (DES). AES can be used to protect electronic data. The AES algorithm can be used to
encrypt (encipher) and decrypt (decipher) information. Encryption converts data to an

unintelligible form called ciphertext; decrypting the ciphertext converts the data back into its
original form, called plaintext. AES is used in symmetric-key cryptography, meaning that the
same key is used for the encryption and decryption operations. It is also a block cipher,
meaning that it operates on fixed-size blocks of plaintext and ciphertext, and requires the size of
the plaintext as well as the ciphertext to be an exact multiple of this block size. AES is also
known as the Rijndael symmetric encryption algorithm [FIPS197].

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-

encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

Azure Active Directory (Azure AD): The identity service in Microsoft Azure that provides identity
management and access control capabilities through a REST-based API, an Azure portal, or a

PowerShell command window.

base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is
converted to a sequence of printable ASCII characters, as described in [RFC4648].

block cipher: A cryptographic algorithm that transforms a group of plaintext bits, referred to as a
block, into a fixed-size block of cipher text. When the process is reversed, a fixed-size block of
cipher text is transformed into a block of plaintext bits. See also stream cipher.

certificate: A certificate is a collection of attributes and extensions that can be stored persistently.

The set of attributes in a certificate can vary depending on the intended usage of the certificate.
A certificate securely binds a public key to the entity that holds the corresponding private key. A
certificate is commonly used for authentication and secure exchange of information on open
networks, such as the Internet, extranets, and intranets. Certificates are digitally signed by the
issuing certification authority (CA) and can be issued for a user, a computer, or a service. The
most widely accepted format for certificates is defined by the ITU-T X.509 version 3
international standards. For more information about attributes and extensions, see [RFC3280]

and [X509] sections 7 and 8.

https://go.microsoft.com/fwlink/?LinkId=89870
https://go.microsoft.com/fwlink/?LinkId=90487
https://go.microsoft.com/fwlink/?LinkId=90414
https://go.microsoft.com/fwlink/?LinkId=90590

9 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

certificate chain: A sequence of certificates, where each certificate in the sequence is signed by
the subsequent certificate. The last certificate in the chain is normally a self-signed certificate.

child: An object that is immediately below the current object in a hierarchy.

cipher block chaining (CBC): A method of encrypting multiple blocks of plaintext with a block

cipher such that each ciphertext block is dependent on all previously processed plaintext blocks.
In the CBC mode of operation, the first block of plaintext is XOR'd with an Initialization Vector
(IV). Each subsequent block of plaintext is XOR'd with the previously generated ciphertext block
before encryption with the underlying block cipher. To prevent certain attacks, the IV must be
unpredictable, and no IV should be used more than once with the same key. CBC is specified in
[SP800-38A] section 6.2.

Component Object Model (COM): An object-oriented programming model that defines how

objects interact within a single process or between processes. In COM, clients have access to an
object through interfaces implemented on the object. For more information, see [MS-DCOM].

compound file: (1) A structure for storing a file system, similar to a simplified FAT file system

inside a single file, by dividing the single file into sectors.

(2) A file that is created as defined in [MS-CFB] and that is capable of storing data that is
structured as storage and streams.

Coordinated Universal Time (UTC): A high-precision atomic time standard that approximately
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC-0 (or GMT).

Cryptographic Application Programming Interface (CAPI) or CryptoAPI: The Microsoft
cryptographic application programming interface (API). An API that enables application

developers to add authentication, encoding, and encryption to Windows-based applications.

cryptographic service provider (CSP): A software module that implements cryptographic

functions for calling applications that generates digital signatures. Multiple CSPs may be
installed. A CSP is identified by a name represented by a NULL-terminated Unicode string.

cyclic redundancy check (CRC): An algorithm used to produce a checksum (a small, fixed
number of bits) against a block of data, such as a packet of network traffic or a block of a
computer file. The CRC is a broad class of functions used to detect errors after transmission or

storage. A CRC is designed to catch random errors, as opposed to intentional errors. If errors
might be introduced by a motivated and intelligent adversary, a cryptographic hash function
should be used instead.

Data Encryption Standard (DES): A specification for encryption of computer data that uses a
56-bit key developed by IBM and adopted by the U.S. government as a standard in 1976. For
more information see [FIPS46-3].

data space: A series of transforms that operate on original document content in a specific order.
The first transform in a data space takes untransformed data as input and passes the

transformed output to the next transform. The last transform in the data space produces data
that is stored in the compound file. When the process is reversed, each transform in the data
space is applied in reverse order to return the data to its original state.

data space reader: A software component that extracts protected content to perform an
operation on the content or to display the content to users. A data space reader does not modify

or create data spaces.

data space updater: A software component that can read and update protected content. A data
space updater cannot change data space definitions.

https://go.microsoft.com/fwlink/?LinkId=128809
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
https://go.microsoft.com/fwlink/?LinkId=89872

10 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

data space writer: A software component that can read, update, or create a data space definition
or protected content.

decryption: In cryptography, the process of transforming encrypted information to its original
clear text form.

Distinguished Encoding Rules (DER): A method for encoding a data object based on Basic
Encoding Rules (BER) encoding but with additional constraints. DER is used to encode X.509
certificates that need to be digitally signed or to have their signatures verified.

document: An object in a content database such as a file, folder, list, or site. Each object is
identified by a URI.

document library: A type of list that is a container for documents and folders.

document property: A name/value pair that serves as metadata for a document.

document stream: A byte stream that is associated with a document, such as the content of a

file. Some documents do not have document streams.

electronic codebook (ECB): A block cipher mode that does not use feedback and encrypts each
block individually. Blocks of identical plaintext, either in the same message or in a different
message that is encrypted with the same key, are transformed into identical ciphertext blocks.
Initialization vectors cannot be used.

encrypted document: A document that was converted from plaintext into cipher text to disguise
the content of the document when it is stored or sent.

encryption: In cryptography, the process of obscuring information to make it unreadable without
special knowledge.

encryption key: One of the input parameters to an encryption algorithm. Generally speaking, an
encryption algorithm takes as input a clear-text message and a key, and results in a cipher-text
message. The corresponding decryption algorithm takes a cipher-text message, and the key,

and results in the original clear-text message.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

Hash-based Message Authentication Code (HMAC): A mechanism for message authentication
using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash
function (for example, MD5 and SHA-1) in combination with a secret shared key. The
cryptographic strength of HMAC depends on the properties of the underlying hash function.

Information Rights Management (IRM): A technology that provides persistent protection to
digital data by using encryption, certificates, and authentication. Authorized recipients or users

acquire a license to gain access to the protected files according to the rights or business rules
that are set by the content owner.

language code identifier (LCID): A 32-bit number that identifies the user interface human
language dialect or variation that is supported by an application or a client computer.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

MD5: A one-way, 128-bit hashing scheme that was developed by RSA Data Security, Inc., as

described in [RFC1321].

https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=90275

11 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

OLE compound file: A form of structured storage, as described in [MS-CFB]. A compound file
allows independent storages and streams to exist within a single file.

OPC package: A .ZIP file archive [PKZIP] that follows the Open Packaging Conventions (OPC).

protected content: Any content or information, such as a file, Internet message, or other object

type, to which a rights-management usage policy is assigned and is encrypted according to that
policy. See also Information Rights Management (IRM).

publishing license: An XrML 1.2 license that defines the usage policy for protected content and
contains the content key with which that content is encrypted. The usage policy identifies all
authorized users and the actions that they are authorized to take with the content, in addition to
any usage conditions. The publishing license tells a server which usage policies apply to a
specific piece of content and grants a server the right to issue use licenses (ULs) based on that

policy. The publishing license is created when content is protected. Also referred to as "Issuance
License (IL)."

RC4: A variable key-length symmetric encryption algorithm. For more information, see

[SCHNEIER] section 17.1.

root storage object: A storage object in a compound file that must be accessed before any other
storage objects and stream objects are referenced. It is the uppermost parent object in the

storage object and stream object hierarchy.

salt: An additional random quantity, specified as input to an encryption function that is used to
increase the strength of the encryption.

sensitivity label: An identifier that correlates content with associated data classifications and their
related relative sensitivity. It is defined by administrative policy as integrated via the Microsoft
Information Protection SDK.

sensitivity label metadata: Information specific to a particular instance of one or more

sensitivity labels as applied to content.

SHA-1: An algorithm that generates a 160-bit hash value from an arbitrary amount of input data,
as described in [RFC3174]. SHA-1 is used with the Digital Signature Algorithm (DSA) in the
Digital Signature Standard (DSS), in addition to other algorithms and standards.

site identifier: A GUID that is used to identify a site in a site collection.

storage: An element of a compound file that is a unit of containment for one or more storages and
streams, analogous to directories in a file system, as described in [MS-CFB].

stream: (1) An element of a compound file, as described in [MS-CFB]. A stream contains a
sequence of bytes that can be read from or written to by an application, and they can exist only
in storages.

(2) A sequence of bytes written to a file on the target file system. Every file stored on a volume
that uses the file system contains at least one stream, which is normally used to store the
primary contents of the file. Additional streams within the file can be used to store file

attributes, application parameters, or other information specific to that file. Every file has a
default data stream, which is unnamed by default. That data stream, and any other data stream
associated with a file, can optionally be named.

stream schema: A numeric selector that specifies the format of a file's stream binary pieces.

transform: An operation that is performed on data to change it from one form to another. Two
examples of transforms are compression and encryption.

Unicode: A character encoding standard developed by the Unicode Consortium that represents

almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]

https://go.microsoft.com/fwlink/?LinkId=817338
https://go.microsoft.com/fwlink/?LinkId=90408
https://go.microsoft.com/fwlink/?LinkId=154659

12 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing
mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):

Generic Syntax [RFC3986].

Uniform Resource Locator (URL): A string of characters in a standardized format that identifies
a document or resource on the World Wide Web. The format is as specified in [RFC1738].

UTF-8: A byte-oriented standard for encoding Unicode characters, defined in the Unicode standard.
Unless specified otherwise, this term refers to the UTF-8 encoding form specified in
[UNICODE5.0.0/2007] section 3.9.

X.509: An ITU-T standard for public key infrastructure subsequently adapted by the IETF, as

specified in [RFC3280].

XOR obfuscation: A type of file encryption that helps protect private data by using an exclusive or

bitwise operation. This is done by adding a mathematical expression that prevents a simple
reverse-engineering process.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[BCMO800-38A] National Institute of Standards and Technology, "Recommendation for Block Cipher
Modes of Operation: Methods and Techniques", NIST Special Publication 800-38A, December 2001,
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

[Can-XML-1.0] Boyer, J., "Canonical XML Version 1.0", W3C Recommendation, March 2001,
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

[DRAFT-DESX] Simpson, W.A. and Baldwin R., "The ESP DES-XEX3-CBC Transform", July 1997,
http://tools.ietf.org/html/draft-ietf-ipsec-ciph-desx-00

[ECMA-376] ECMA International, "Office Open XML File Formats", https://www.ecma-
international.org/publications-and-standards/standards/ecma-376/

[ISO/IEC 10118] International Organization for Standardization, "Hash-functions -- Part 3: Dedicated
hash-functions", March 2004,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39876

[ISO/IEC29500-1:2016] ISO/IEC, "Information technology -- Document description and processing
languages -- Office Open XML File Formats -- Part 1: Fundamentals and Markup Language Reference",

ISO/IEC 29500-1:2016, https://www.iso.org/standard/71691.html

https://go.microsoft.com/fwlink/?LinkId=90453
https://go.microsoft.com/fwlink/?LinkId=90287
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=113491
https://go.microsoft.com/fwlink/?LinkId=120197
https://go.microsoft.com/fwlink/?LinkId=128905
https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409
https://go.microsoft.com/fwlink/?linkid=861065

13 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

[ITUX680-1994] ITU-T, "Information Technology - Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation", ITU-T Recommendation X.680, July 1994, http://www.itu.int/rec/T-

REC-X.680-199407-S/en

[MS-CFB] Microsoft Corporation, "Compound File Binary File Format".

[MS-DOC] Microsoft Corporation, "Word (.doc) Binary File Format".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-OI29500] Microsoft Corporation, "Office Implementation Information for ISO/IEC 29500
Standards Support".

[MS-OSHARED] Microsoft Corporation, "Office Common Data Types and Objects Structures".

[MS-PPT] Microsoft Corporation, "PowerPoint (.ppt) Binary File Format".

[MS-RMPR] Microsoft Corporation, "Rights Management Services (RMS): Client-to-Server Protocol".

[MS-UCODEREF] Microsoft Corporation, "Windows Protocols Unicode Reference".

[MS-XLSB] Microsoft Corporation, "Excel (.xlsb) Binary File Format".

[MS-XLS] Microsoft Corporation, "Excel Binary File Format (.xls) Structure".

[RFC1319] Kaliski, B., "The MD2 Message-Digest Algorithm", RFC 1319, April 1992, https://www.rfc-
editor.org/info/rfc1319

[RFC1320] Rivest, R., "The MD4 Message-Digest Algorithm", RFC 1320, April 1992, https://www.rfc-

editor.org/info/rfc1320

[RFC1851] Karn, P., Metzger, P., and Simpson, W., "The ESP Triple DES Transform", RFC 1851,
September 1995, http://www.rfc-editor.org/rfc/rfc1851.txt

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed-Hashing for Message
Authentication", RFC 2104, February 1997, https://www.rfc-editor.org/info/rfc2104

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[RFC2268] Rivest, R., "A Description of the RC2(r) Encryption Algorithm", RFC 2268, March 1998,
https://www.rfc-editor.org/info/rfc2268

[RFC2822] Resnick, P., Ed., "Internet Message Format", RFC 2822, April 2001, https://www.rfc-
editor.org/info/rfc2822

[RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography Specification Version 2.0", RFC 2898,
September 2000, https://www.rfc-editor.org/info/rfc2898

[RFC3280] Housley, R., Polk, W., Ford, W., and Solo, D., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC 3280, April 2002, http://www.rfc-
editor.org/info/rfc3280

[RFC3447] Jonsson, J. and Kaliski, B., "Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1", RFC 3447, February 2003, https://www.rfc-
editor.org/info/rfc3447

[RFC4634] Eastlake III, D. and Hansen, T., "US Secure Hash Algorithms (SHA and HMAC-SHA)", RFC

4634, July 2006, https://www.rfc-editor.org/info/rfc4634

https://go.microsoft.com/fwlink/?LinkId=120478
https://go.microsoft.com/fwlink/?LinkId=120478
%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-DOC%5d.pdf#Section_ccd7b4867881484ca13751170af7cc22
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-OI29500%5d.pdf#Section_1fd4a662862349c082f018fa91b413b8
%5bMS-OI29500%5d.pdf#Section_1fd4a662862349c082f018fa91b413b8
%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
%5bMS-PPT%5d.pdf#Section_6be79dde33c14c1b8ccc4b2301c08662
%5bMS-RMPR%5d.pdf#Section_d8ed4b1ee6054668b1736312cba6977e
%5bMS-UCODEREF%5d.pdf#Section_4a045e08fc294f22baf416f38c2825fb
%5bMS-XLSB%5d.pdf#Section_acc8aa921f02416799f584f9f676b95a
%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06
https://go.microsoft.com/fwlink/?LinkId=90273
https://go.microsoft.com/fwlink/?LinkId=90273
https://go.microsoft.com/fwlink/?LinkId=90274
https://go.microsoft.com/fwlink/?LinkId=90274
https://go.microsoft.com/fwlink/?LinkId=128901
https://go.microsoft.com/fwlink/?LinkId=90314
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90330
https://go.microsoft.com/fwlink/?LinkId=90385
https://go.microsoft.com/fwlink/?LinkId=90385
https://go.microsoft.com/fwlink/?LinkId=119708
https://go.microsoft.com/fwlink/?LinkId=90414
https://go.microsoft.com/fwlink/?LinkId=90414
https://go.microsoft.com/fwlink/?LinkId=90422
https://go.microsoft.com/fwlink/?LinkId=90422
https://go.microsoft.com/fwlink/?LinkId=90486

14 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

[W3C-XSD] World Wide Web Consortium, "XML Schema Part 2: Datatypes Second Edition", 28
October 2004, http://www.w3.org/TR/2004/REC-xmlschema-2-20041028

[XAdES] ETSI, "XML Advanced Electronic Signatures (XAdES)", ETSI TS 101 903 V1.3.2,
http://uri.etsi.org/01903/v1.3.2/

[XMLDSig] Bartel, M., Boyer, J., Fox, B., et al., "XML-Signature Syntax and Processing", W3C
Recommendation, February 2002, http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

1.2.2 Informative References

[ISO/IEC29500-1:2011] ISO/IEC, "Information Technology -- Document description and processing
languages -- Office Open XML File Formats -- Part 1: Fundamentals and Markup Language Reference",
ISO/IEC 29500-1:2011, 2011,

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=59575

[MSDN-CAB] Microsoft Corporation, "Microsoft Cabinet Format", March 1997,

http://msdn.microsoft.com/en-us/library/bb417343.aspx

1.3 Overview

1.3.1 Data Spaces

The data spaces structure describes a consistent method of storing content in OLE compound files
that has been transformed in some way. The structure stores both the protected content and
information about the transforms that have been applied to the content. By storing all of this
information inside an OLE compound file, client software has all of the information required to read,
write, or manipulate the content. A standard structure of streams (1) and storages allows various
software components to interact with the data in a consistent manner.

The data spaces structure allows client applications to describe one or more arbitrary transforms. Each
transform represents a single arbitrary operation to be performed on a set of storages or streams (1)

in the original document content. One or more transforms can then be composited into a data space
definition. Data space definitions can then be applied to arbitrary storages or streams (1) in the
original document content in the data space map (section 2.1).

Because of the layers of indirection between transforms and document content, different transforms
can be applied to different parts of the document content, and transforms can be composited in any

order.

The following figure illustrates the relationships between the DataSpaceMap stream (1), the
DataSpaceInfo storage, the TransformInfo storages, and the protected content. Note that other
streams (1) and storages exist in this file format; this figure describes only the relationships between
these storages and streams (1).

https://go.microsoft.com/fwlink/?LinkId=90563
https://go.microsoft.com/fwlink/?LinkId=151586
https://go.microsoft.com/fwlink/?LinkId=130861
https://go.microsoft.com/fwlink/?LinkId=252374
https://go.microsoft.com/fwlink/?LinkId=226293

15 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Figure 1: Relationships among the DataSpaceMap stream, the DataSpaceInfo storage, the
TransformInfo storages, and the protected content

1.3.2 Information Rights Management Data Space

The Information Rights Management Data Space (IRMDS) structure is used to enforce a rights
management policy applied to a document. The structure defines a transform that is used to encrypt
document content, and it defines a second transform that can be used for certain document types to

compress document content.

The original document content is transformed through encryption and placed in a storage not normally
accessed by the application. When needed, the application uses the transforms defined in the
document to decrypt the protected content.

16 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

This structure is an implementation of the data spaces structure. Therefore, implementing the
structure implies storing document content in an OLE compound file.

Applications that implement this structure will typically store a second document in the OLE compound
file called the placeholder document. The placeholder document is place into the streams (1) or

storages normally identified by the application as containing document content, such that an
application that does not detect the IRMDS structure will instead open the placeholder document.

Applications that implement this structure will typically try to follow the licensing limitations placed on
a document. Typical licensing limitations include the right to view, print, edit, forward, or view rights
data, as described in [MS-RMPR].

The following figure shows the specific storages, streams (1), structures, and relationships among
them that are created when the IRMDS structure is used in an ECMA-376 document [ECMA-376].

Figure 2: An ECMA-376 word processing document with the IRMDS structure applied

%5bMS-RMPR%5d.pdf#Section_d8ed4b1ee6054668b1736312cba6977e
https://go.microsoft.com/fwlink/?LinkId=200054

17 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

1.3.3 Encryption

Password-protected documents can be created by using one of four mechanisms:

 XOR obfuscation.

 40-bit RC4 encryption.

 Cryptographic Application Programming Interface (CAPI) or CryptoAPI encryption.

 ECMA-376 document encryption [ECMA-376], which can include one of three approaches:

 Standard encryption: This approach uses a binary EncryptionInfo structure. It uses
Advanced Encryption Standard (AES) as an encryption algorithm and SHA-1 as a hashing
algorithm.

 Agile encryption: This approach uses an XML EncryptionInfo structure. The encryption and

hashing algorithms are specified in the structure and can be for any encryption supported on

the host computer.

 Extensible encryption: This approach uses an extensible mechanism to allow arbitrary
cryptographic modules to be used.

1.3.3.1 XOR Obfuscation

XOR obfuscation is performed on portions of Office binary documents. The normal streams (1)
contained within the document are modified in place. For more information about how an application
can determine whether XOR obfuscation is being used and the placement of the password verifier see
[MS-XLS] and [MS-DOC].

There are two methods for performing XOR obfuscation, known as Method 1 and Method 2. Method 1

specifies structures and procedures used by the Excel Binary File Format (.xls) Structure [MS-XLS],
and Method 2 specifies structures and procedures used by the Word Binary File Format (.doc)
Structure [MS-DOC].

1.3.3.2 40-bit RC4 Encryption

40-bit RC4 encryption is performed on portions of Office binary documents. For more information
about how to determine whether 40-bit RC4 encryption is being used and the placement of the
password verifier, see [MS-XLS] and [MS-DOC]. The same mechanisms for generating the password
verifier, deriving the encryption key, and encrypting data are used for all file formats supporting 40-
bit RC4 encryption.

1.3.3.3 CryptoAPI RC4 Encryption

CryptoAPI RC4 encryption is performed on portions of Office binary documents. The documents will
contain a new stream (1) to contain encrypted information but can also encrypt other streams (1) in
place. For more information about how to determine whether CryptoAPI RC4 encryption is being used

and the placement of the password verifier, see [MS-XLS], [MS-DOC], and [MS-PPT]. The same

mechanisms for generating the password verifier, storing data specifying the cryptography, deriving
the encryption key, and encrypting data are used for all file formats supporting CryptoAPI RC4
encryption.

1.3.3.4 ECMA-376 Document Encryption

Encrypted ECMA-376 documents [ECMA-376] use the data spaces functionality (section 1.3.1) to
contain the entire document as a single stream (1) in an OLE compound file. All ECMA-376
documents [ECMA-376] adhere to the approaches specified in this document and do not require

https://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06
%5bMS-DOC%5d.pdf#Section_ccd7b4867881484ca13751170af7cc22
%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06
%5bMS-DOC%5d.pdf#Section_ccd7b4867881484ca13751170af7cc22
%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06
%5bMS-DOC%5d.pdf#Section_ccd7b4867881484ca13751170af7cc22
%5bMS-PPT%5d.pdf#Section_6be79dde33c14c1b8ccc4b2301c08662
https://go.microsoft.com/fwlink/?LinkId=200054

18 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

knowledge of application-specific behavior to perform encryption operations. The overall approach is
very similar to that used by IRMDS (section 1.3.2).

1.3.4 Write Protection

The application of password-based write protection for Office binary documents is specified in section
2.4.2. Write-protected binary documents vary according to the file format. A summary of each type
follows:

 The Excel Binary File Format (.xls) [MS-XLS]: The password is converted to a 16-bit password

verifier, stored in the document as described in [MS-XLS], and the document is then encrypted as
described in [MS-XLS] and in this specification. If the user does not supply an encryption
password, a fixed password is used.

 The Word (.doc) Binary File Format [MS-DOC]: The password is stored in the clear, as described in
[MS-DOC], and the document is not encrypted.

 The PowerPoint (.ppt) Binary File Format [MS-PPT]: The password is stored in the clear, as
described in [MS-PPT], and the document can then be encrypted as described in [MS-PPT] and in

this specification. If encryption is used and the user does not supply an encryption password, a
fixed password is used.

1.3.5 Digital Signatures

Office binary documents can be signed by using one of the following methods:

 A binary format stored in a _signatures storage. This approach is described in section 2.5.1.

 A format that uses XML-Signature Syntax and Processing, as described in [XMLDSig], stored in an
_xmlsignatures storage. This approach is described in sections 2.5.2 and 2.5.3.

1.3.6 Byte Ordering

All data and structures in this file format are assumed to be in little-endian format.

1.3.7 String Encoding

In this file format, several storages and stream (1) names include the strings "0x01", "0x05",

"0x06", and "0x09".These strings are not literally included in the name. Instead, they represent the
ASCII characters with hexadecimal values 0x01, 0x05, 0x06, and 0x09 respectively.

1.3.8 OLE Compound File Path Encoding

Paths to specific storages and streams (1) in an OLE compound file are separated by the backslash
(\). The backslash is a delimiter between parts of the path and, therefore, is not part of the name of
any specific storage or stream (1). Paths that begin with a backslash signify the root storage of the
OLE compound file.

1.3.9 Pseudocode Standard Objects

The pseudocode in this document refers to several objects with associated properties. Accessing a
property of an object is denoted with the following syntax: Object.Property. This section describes

the properties of each object as it is used in this document.

%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06
%5bMS-DOC%5d.pdf#Section_ccd7b4867881484ca13751170af7cc22
%5bMS-PPT%5d.pdf#Section_6be79dde33c14c1b8ccc4b2301c08662
https://go.microsoft.com/fwlink/?LinkId=130861

19 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

1.3.9.1 Array

An array is a collection of zero or more child objects of uniform type, where each child is addressable
by using an unsigned integer index. Referencing a child object of an array is denoted by using the

following syntax: array[index].

Indexes are zero-based and monotonically increase by 1. Therefore, Index 0 references the first
element in an array, and Index 1 references the second child in the array.

Arrays have the following property:

 Length: The number of child objects in the array.

1.3.9.2 String

A string is an array of ASCII characters. As in arrays, individual characters in the string are
addressable by using a zero-based index.

1.3.9.3 Storage

A storage is an OLE storage as described by [MS-CFB]. Storages have the following properties:

 Name: A unique identifier for the storage within its parent, as described in [MS-CFB].

 GUID: A 16-byte identifier associated with the storage, as described in [MS-CFB].

 Children: Zero or more child storages or streams (1). Each child is addressable by its name.

1.3.9.4 Stream

A stream (1) is an OLE storage as described in [MS-CFB]. Streams (1) have the following properties:

 Name: A unique identifier for the stream (1) within its parent, as described in [MS-CFB].

 Data: An array of zero or more unsigned 8-bit integers containing the data in the stream (1).

1.4 Relationship to Protocols and Other Structures

This file format builds on the file format as described in [MS-CFB].

Some structures in this specification reference structures described in [MS-RMPR]. In addition, the
protocols described in [MS-RMPR] are necessary for obtaining the information required to understand
the transformed data in a document with a rights management policy applied.

For encryption operations, this specification also requires an understanding of the file formats as

described in [MS-XLS], [MS-PPT], or [MS-DOC].

1.5 Applicability Statement

1.5.1 Data Spaces

The data spaces structure specifies a set of storages and streams (1) within an OLE compound file,
the structures contained in them, and relationships among them. OLE compound files that conform to
the data spaces structure can also have other storages or streams (1) in them that are not specified
by this file format.

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-RMPR%5d.pdf#Section_d8ed4b1ee6054668b1736312cba6977e
%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06
%5bMS-PPT%5d.pdf#Section_6be79dde33c14c1b8ccc4b2301c08662
%5bMS-DOC%5d.pdf#Section_ccd7b4867881484ca13751170af7cc22

20 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

1.5.2 Information Rights Management Data Space

The IRMDS structure is required when reading, modifying, or creating documents with rights
management policies applied.

1.5.3 Encryption

The ECMA-376 [ECMA-376] encryption structure, streams (1), and storages are required when
encrypting ECMA-376 documents. When binary file types are encrypted, either CryptoAPI RC4
encryption, RC4 encryption, or XOR obfuscation is required.

1.6 Versioning and Localization

None.

1.7 Vendor-Extensible Fields

The data spaces structure allows vendors to implement arbitrary transforms, data space definitions,
and data space maps. In this way, the structure can be used to represent any arbitrary transformation
to any arbitrary data.

The IRMDS structure does not contain any vendor-extensible fields.

ECMA-376 document encryption [ECMA-376] can be extended if either additional CryptoAPI providers
are installed or extensible encryption is used.

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=200054

21 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2 Structures

2.1 Data Spaces

The data spaces structure consists of a set of interrelated storages and streams (1) in an OLE

compound file as specified in [MS-CFB].

Software components that interact with data spaces MUST check the DataSpaceVersionInfo
structure (section 2.1.5) contained in the \0x06DataSpaces\Version stream (1) for the version
numbers and respect the following rules.

Data space readers:

 Data space readers MUST read the protected content when the reader version is less than or

equal to the highest data spaces structure version understood by the software component.

 Readers MUST NOT read the protected content when the reader version is greater than the
highest data spaces structure version understood by the software component.

Data space updaters:

 Data space updaters MUST preserve the format of the protected content when the updater
version is less than or equal to the highest data spaces structure version understood by the
software component.

 Updaters MUST NOT change the protected content when the updater version is greater than the
highest data spaces structure version understood by the software component.

Data space writers:

 Data space writers MUST set the writer version to "1.0".

 Writers MUST set the updater version to "1.0".

 Writers MUST set the reader version to "1.0".

2.1.1 File

Every document that conforms to the data spaces structure (section 2.1) MUST be an OLE compound
File structure as specified in [MS-CFB]. The File structure MUST contain the following storages and
streams (1):

 \0x06DataSpaces storage: A storage that contains all of the necessary information to
understand the transforms applied to original document content in a given OLE compound file.

 \0x06DataSpaces\Version stream: A stream (1) containing the DataSpaceVersionInfo
structure, as specified in section 2.1.5. This stream (1) specifies the version of the data spaces

structure used in the file.

 \0x06DataSpaces\DataSpaceMap stream: A stream (1) containing a DataSpaceMap
structure as specified in section 2.1.6. This stream (1) associates protected content with the data

space definition used to transform it.

 \0x06DataSpaces\DataSpaceInfo storage: A storage containing the data space definitions
used in the file. This storage MUST contain one or more streams (1), each of which contains a
DataSpaceDefinition structure as specified in section 2.1.7. The storage MUST contain exactly
one stream (1) for each DataSpaceMapEntry structure (section 2.1.6.1) in the

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b

22 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

\0x06DataSpaces\DataSpaceMap stream (1) (section 2.2.1). The name of each stream (1)
MUST be equal to the DataSpaceName field of exactly one DataSpaceMapEntry structure

contained in the \0x06DataSpaces\DataSpaceMap stream (1).

 Transformed content streams and storages: One or more storages or streams (1) containing

protected content. The transformed content is associated with a data space definition by an entry
in the \0x06DataSpaces\DataSpaceMap stream (1).

 \0x06DataSpaces\TransformInfo storage: A storage containing definitions for the transforms
used in the data space definitions stored in the \0x06DataSpaces\DataSpaceInfo storage as
specified in section 2.2.2. The stream (1) contains zero or more definitions for the possible
transforms that can be applied to the data in content streams (1).

Every transform referenced from a data space MUST be defined in a child storage of the

\0x06DataSpaces\TransformInfo storage (section 2.2.3), each of which is called a transform
storage. Transform storages MUST have a valid storage name.

Each transform storage identifies an algorithm used to transform data and any parameters needed by
that algorithm. Transform storages do not contain actual implementations of transform algorithms but
merely definitions and parameters. It is presumed that all software components that interact with the
protected content have access to an existing implementation of the transform algorithm.

Every transform storage MUST contain a stream (1) named "0x06Primary". The 0x06Primary stream
(1) MUST begin with a TransformInfoHeader structure (section 2.1.8). Transform storages can
contain other streams (1) or storages if needed by a particular transform.

2.1.2 Length-Prefixed Padded Unicode String (UNICODE-LP-P4)

The Length-Prefixed Padded Unicode String structure (UNICODE-LP-P4) contains a length-prefixed
Unicode string, which MUST be padded so it is a multiple of 4 bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Data (variable)

...

Padding (variable)

...

Length (4 bytes): An unsigned integer that specifies the size, in bytes, of the Data field. It MUST be
a multiple of 2 bytes.

Data (variable): A Unicode string containing the value of the UNICODE-LP-P4 structure. It MUST
NOT be null-terminated.

Padding (variable): A set of bytes that MUST be of the correct size such that the size of the
UNICODE-LP-P4 structure is a multiple of 4 bytes. If Padding is present, it MUST be exactly 2
bytes long, and each byte MUST be 0x00.

23 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.1.3 Length-Prefixed UTF-8 String (UTF-8-LP-P4)

The Length-Prefixed UTF-8 String structure (UTF-8-LP-P4) contains a length-prefixed UTF-8 string,
padded to use a multiple of 4 bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Data (variable)

...

Padding (variable)

...

Length (4 bytes): An unsigned integer that specifies the size, in bytes, of the Data field.

Data (variable): A UTF-8 string that specifies the value of the UTF-8-LP-P4 structure. It MUST NOT
be null-terminated.

Padding (variable): A set of bytes that MUST be of correct size such that the size of the UTF-8-LP-

P4 structure is a multiple of 4 bytes. If Padding is present, each byte MUST be 0x00. If the value
of the Length field is exactly 0x00000000, the Data field specifies a null string, and the entire
structure uses exactly 4 bytes. If the value of the Length field is exactly 0x00000004, the Data
field specifies an empty string, and the entire structure also uses exactly 4 bytes.

2.1.4 Version

The Version structure specifies the version of a product or feature. It contains a major and a minor
version number. When comparing version numbers, vMajor MUST be considered the most significant
component and vMinor MUST be considered the least significant component.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

vMajor vMinor

vMajor (2 bytes): An unsigned integer that specifies the major version number.

vMinor (2 bytes): An unsigned integer that specifies the minor version number.

2.1.5 DataSpaceVersionInfo

The DataSpaceVersionInfo structure indicates the version of the data spaces structure used in a
given file.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FeatureIdentifier (variable)

24 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

...

ReaderVersion

UpdaterVersion

WriterVersion

FeatureIdentifier (variable): A UNICODE-LP-P4 structure (section 2.1.2) that specifies the
functionality for which the DataSpaceVersionInfo structure specifies version information. It
MUST be "Microsoft.Container.DataSpaces".

ReaderVersion (4 bytes): A Version structure (section 2.1.4) that specifies the reader version of
the data spaces structure (section 2.1). ReaderVersion.vMajor MUST be 1.
ReaderVersion.vMinor MUST be 0.

UpdaterVersion (4 bytes): A Version structure that specifies the updater version of the data

spaces structure. UpdaterVersion.vMajor MUST be 1. UpdaterVersion.vMinor MUST be 0.

WriterVersion (4 bytes): A Version structure that specifies the writer version of the data spaces
structure. WriterVersion.vMajor MUST be 1. WriterVersion.vMinor MUST be 0.

2.1.6 DataSpaceMap

The DataSpaceMap structure associates protected content with data space definitions. The data
space definition, in turn, describes the series of transforms that MUST be applied to that protected
content to restore it to its original form.

By using a map to associate data space definitions with content, a single data space definition can be
used to define the transforms applied to more than one piece of protected content. However, a given

piece of protected content can be referenced only by a single data space definition.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderLength

EntryCount

MapEntries (variable)

...

HeaderLength (4 bytes): An unsigned integer that specifies the number of bytes in the
DataSpaceMap structure before the first entry in the MapEntries array. It MUST be equal to
0x00000008.

EntryCount (4 bytes): An unsigned integer that specifies the number of DataSpaceMapEntry items
(section 2.1.6.1) in the MapEntries array.

MapEntries (variable): An array of one or more DataSpaceMapEntry structures.

25 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.1.6.1 DataSpaceMapEntry Structure

The DataSpaceMapEntry structure associates protected content with a specific data space definition.
It is contained within the DataSpaceMap structure (section 2.1.6).

Reference components MUST be listed from the most general—that is, storages—to the most specific—
that is, streams (1). For example, a stream (1) titled "Chapter 1" in a substorage called "Book" off
the root storage of an OLE compound file would have two reference components: "Book" and "Chapter
1", in that order. The simplest content stream (1) reference is one with a single reference component
indicating the name of a stream (1) in the root storage of the OLE compound file.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

ReferenceComponentCount

ReferenceComponents (variable)

...

DataSpaceName (variable)

...

Length (4 bytes): An unsigned integer that specifies the size, in bytes, of the DataSpaceMapEntry
structure.

ReferenceComponentCount (4 bytes): An unsigned integer that specifies the number of

DataSpaceReferenceComponent items (section 2.1.6.2) in the ReferenceComponents array.

ReferenceComponents (variable): An array of one or more DataSpaceReferenceComponent
structures. Each DataSpaceReferenceComponent structure specifies the name of a storage or

stream (1) containing protected content that is associated with the data space definition named in
the DataSpaceName field.

DataSpaceName (variable): A UNICODE-LP-P4 structure (section 2.1.2) that specifies the name
of the data space definition associated with the protected content specified in the
ReferenceComponents field. It MUST be equal to the name of a stream (1) in the
\0x06DataSpaces\DataSpaceInfo storage as specified in section 2.2.2.

2.1.6.2 DataSpaceReferenceComponent Structure

The DataSpaceReferenceComponent structure stores the name of a specific storage or stream (1)

containing protected content. It is contained within the DataSpaceMapEntry structure (section
2.1.6.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReferenceComponentType

26 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

ReferenceComponent (variable)

...

ReferenceComponentType (4 bytes): An unsigned integer that specifies whether the referenced
component is a stream (1) or storage. It MUST be 0x00000000 for a stream (1) or 0x00000001
for a storage.

ReferenceComponent (variable): A UNICODE-LP-P4 structure (section 2.1.2) that specifies the
name of the stream (1) or storage containing the protected content to be transformed. If

ReferenceComponentType is 0x00000000, then ReferenceComponent MUST be equal to the
name of a stream (1) contained in the root storage of the OLE compound file. If
ReferenceComponentType is 0x00000001, then ReferenceComponent MUST be equal to the
name of a storage contained in the root storage of the OLE compound file.

2.1.7 DataSpaceDefinition

Each DataSpaceDefinition structure stores a data space definition. A document can contain more
than one data space definition—for example, if one content stream (1) is both compressed and
encrypted while a second stream (1) is merely encrypted.

Each DataSpaceDefinition structure MUST be stored in a stream (1) in the
\0x06DataSpaces\DataSpaceInfo storage (section 2.2.2). The name of the stream (1) MUST be

referenced by a DataSpaceReferenceComponent structure (section 2.1.6.2) within a
DataSpaceMapEntry structure (section 2.1.6.1) stored in the \0x06DataSpaces\DataSpaceMap
stream (1) (section 2.2.1).

TransformReferences MUST be stored in the reverse order in which they have been applied to the
protected content. When reversing the transformation, a software component will apply the
transforms in the order specified in the TransformReferences array.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderLength

TransformReferenceCount

TransformReferences (variable)

...

HeaderLength (4 bytes): An unsigned integer that specifies the number of bytes in the

DataSpaceDefinition structure before the TransformReferences field. It MUST be
0x00000008.

TransformReferenceCount (4 bytes): An unsigned integer that specifies the number of items in
the TransformReferences array.

TransformReferences (variable): An array of one or more UNICODE-LP-P4 structures (section
2.1.2) that specify the transforms associated with this data space definition. Each transform MUST
be equal to the name of a storage contained in the \0x06DataSpaces\TransformInfo storage
(section 2.2.3 and 2.2.4).

27 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.1.8 TransformInfoHeader

The TransformInfoHeader structure specifies the identity of a transform. Additional data or
structures can follow this header in a stream (1). See section 2.2.6 for an example of the usage of

additional data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TransformLength

TransformType

TransformID (variable)

...

TransformName (variable)

...

ReaderVersion

UpdaterVersion

WriterVersion

TransformLength (4 bytes): An unsigned integer that specifies the number of bytes in this

structure before the TransformName field.

TransformType (4 bytes): An unsigned integer that specifies the type of transform to be applied. It
MUST be 0x00000001.

TransformID (variable): A UNICODE-LP-P4 structure (section 2.1.2) that specifies an identifier
associated with a specific transform.

TransformName (variable): A UNICODE-LP-P4 structure that specifies the friendly name of the

transform.

ReaderVersion (4 bytes): A Version structure (section 2.1.4) that specifies the reader version.

UpdaterVersion (4 bytes): A Version structure that specifies the updater version.

WriterVersion (4 bytes): A Version structure that specifies the writer version.

2.1.9 EncryptionTransformInfo

The EncryptionTransformInfo structure specifies the encryption used for ECMA-376 document
encryption [ECMA-376].

https://go.microsoft.com/fwlink/?LinkId=200054

28 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionName (variable)

...

EncryptionBlockSize

CipherMode

Reserved

EncryptionName (variable): A UTF-8-LP-P4 structure (section 2.1.3) that specifies the name of

the encryption algorithm. The name MUST be the name of an encryption algorithm, such as "AES

128", "AES 192", or "AES 256". When used with extensible encryption, this value is specified by
the extensible encryption module.

EncryptionBlockSize (4 bytes): An unsigned integer that specifies the block size for the encryption
algorithm specified by EncryptionName. It MUST be 0x00000010 as specified by the Advanced
Encryption Standard (AES). When used with extensible encryption, this value is specified by the
extensible encryption module.

CipherMode (4 bytes): A value that MUST be 0x00000000, except when used with extensible
encryption. When used with extensible encryption, this value is specified by the extensible
encryption module.

Reserved (4 bytes): A value that MUST be 0x00000004.

2.2 Information Rights Management Data Space

IRMDS defines several data space definitions used to enforce rights management policies that have
been applied to a document. This structure is an extension of the data spaces structure specified in
section 2.1.

IRMDS can be applied to the following types of documents:

 Office binary documents

 ECMA-376 documents [ECMA-376]

In each case, the protected content contains the original document transformed as specified by the
IRMDS structure.<1>

2.2.1 \0x06DataSpaces\DataSpaceMap Stream

If the original document content is an Office binary document:

 The \0x06DataSpaces\DataSpaceMap stream (1) MUST contain a DataSpaceMap structure
(section 2.1.6) containing at least one DataSpaceMapEntry structure (section 2.1.6.1). The
DataSpaceMapEntry structure:

 MUST have a DataSpaceName equal to "0x09DRMDataSpace".

https://go.microsoft.com/fwlink/?LinkId=200054

29 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 MUST have exactly one ReferenceComponents entry with the name "0x09DRMContent" and
the type 0x00000000, which signifies a stream (1).

 The \0x06DataSpaces\DataSpaceMap stream (1) MAY<2> contain a second
DataSpaceMapEntry structure in the DataSpaceMap structure. The second

DataSpaceMapEntry structure:

 MUST have a DataSpaceName equal to "0x09LZXDRMDataSpace".

 MUST have exactly one ReferenceComponents entry with the name
"0x09DRMViewerContent" and the type 0x00000000, which signifies a stream (1).

If the original document content is an ECMA-376 document [ECMA-376]:

 The \0x06DataSpaces\DataSpaceMap stream (1) MUST contain a DataSpaceMap structure
containing exactly one DataSpaceMapEntry structure.

 The DataSpaceMapEntry substructure:

 MUST have a DataSpaceName equal to "DRMEncryptedDataSpace".

 MUST have exactly one ReferenceComponents entry with the name "EncryptedPackage"
and the type 0x00000000, which signifies a stream (1).

2.2.2 \0x06DataSpaces\DataSpaceInfo Storage

If the original document content is an Office binary document:

 The \0x06DataSpaces\DataSpaceInfo storage MUST contain a stream (1) named
"0x09DRMDataSpace", which MUST contain a DataSpaceDefinition structure (section 2.1.7):

 The DataSpaceDefinition structure MUST have exactly one TransformReferences entry,
which MUST be "0x09DRMTransform".

 The \0x06DataSpaces\DataSpaceInfo storage MAY<3> contain a stream (1) named
"0x09LZXDRMDataSpace". If this stream (1) exists, it MUST contain a DataSpaceDefinition
structure:

 The DataSpaceDefinition structure MUST have exactly two TransformReferences entries.

 The first TransformReferences entry MUST be "0x09DRMTransform".

 The second TransformReferences entry MUST be "0x09LZXTransform".

If the original document content is an ECMA-376 document [ECMA-376]:

 The \0x06DataSpaces\DataSpaceInfo storage MUST contain a stream (1) named
"DRMEncryptedDataSpace", which MUST contain a DataSpaceDefinition structure.

 The DataSpaceDefinition structure MUST have exactly one TransformReferences entry, which

MUST be "DRMEncryptedTransform".

2.2.3 \0x06DataSpaces\TransformInfo Storage for Office Binary Documents

If the original document content is an Office binary document, the
\0x06DataSpaces\TransformInfo storage MUST contain one storage named "0x09DRMTransform".
The "0x09DRMTransform" storage MUST contain a stream (1) named "0x06Primary". The
"0x06Primary" stream (1) MUST contain an IRMDSTransformInfo structure (section 2.2.6). Within
the IRMDSTransformInfo structure, the following values MUST be set:

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=200054

30 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 TransformInfoHeader.TransformType MUST be 0x00000001.

 TransformInfoHeader.TransformID MUST be "{C73DFACD-061F-43B0-8B64-
0C620D2A8B50}".

 TransformInfoHeader.TransformName MUST be "Microsoft.Metadata.DRMTransform".

 TransformInfoHeader.ReaderVersion MUST be "1.0".

 TransformInfoHeader.UpdaterVersion MUST be "1.0".

 TransformInfoHeader.WriterVersion MUST be "1.0".

The 0x09DRMTransform storage MUST also contain one or more end-user license streams (1) as
specified in section 2.2.7.

The \0x06DataSpaces\TransformInfo storage MAY<4> contain a substorage named
"0x09LZXTransform". If the 0x09LZXTransform storage exists, it MUST contain a stream (1) named

"0x06Primary". The 0x06Primary stream (1) MUST contain a TransformInfoHeader structure
(section 2.1.8). Within the TransformInfoHeader structure, the following values MUST be set:

 TransformType MUST be 0x00000001.

 TransformID MUST be "{86DE7F2B-DDCE-486d-B016-405BBE82B8BC}".

 TransformName MUST be "Microsoft.Metadata.CompressionTransform".

 ReaderVersion MUST be "1.0".

 UpdaterVersion MUST be "1.0".

 WriterVersion MUST be "1.0".

2.2.4 \0x06DataSpaces\TransformInfo Storage for ECMA-376 Documents

If the original document is an ECMA-376 document [ECMA-376] conforming to the IRMDS structure,

the \0x06DataSpaces\TransformInfo storage MUST contain one storage named
"DRMEncryptedTransform". The "DRMEncryptedTransform" storage MUST contain a stream (1)
named "0x06Primary". The "0x06Primary" stream (1) MUST contain an IRMDSTransformInfo
structure (section 2.2.6). Within the IRMDSTransformInfo structure, the following values MUST be
set:

 TransformInfoHeader.TransformType MUST be 0x00000001.

 TransformInfoHeader.TransformID MUST be "{C73DFACD-061F-43B0-8B64-
0C620D2A8B50}".

 TransformInfoHeader.TransformName MUST be "Microsoft.Metadata.DRMTransform".

 TransformInfoHeader.ReaderVersion MUST be 1.0.

 TransformInfoHeader.UpdaterVersion MUST be 1.0.

 TransformInfoHeader.WriterVersion MUST be 1.0.

The DRMEncryptedTransform storage MUST also contain one or more end-user license streams (1) as

specified in section 2.2.7.

https://go.microsoft.com/fwlink/?LinkId=200054

31 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.2.5 ExtensibilityHeader

The ExtensibilityHeader structure provides a facility to allow an updated header with more
information to be inserted into a larger structure in the future. This structure consists of a single

element.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Length (4 bytes): An unsigned integer that specifies the size of the ExtensibilityHeader structure.
It MUST be 0x00000004.

2.2.6 IRMDSTransformInfo

The IRMDSTransformInfo structure specifies a specific transform that has been applied to protected
content to enforce rights management policies applied to the document.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TransformInfoHeader (variable)

...

ExtensibilityHeader

XrMLLicense (variable)

...

TransformInfoHeader (variable): A TransformInfoHeader structure (section 2.1.8) that specifies

the identity of the transform applied.

ExtensibilityHeader (4 bytes): An ExtensibilityHeader structure (section 2.2.5).

XrMLLicense (variable): A UTF-8-LP-P4 structure (section 2.1.3) containing a valid XrML signed
issuance license as specified in [MS-RMPR] section 2.2.9.9. The signed issuance license MAY<5>
contain the application-specific name-value attribute pairs name and id, as specified in [MS-
RMPR] section 2.2.9.7.6, as part of the AUTHENTICATEDDATA element.

2.2.7 End-User License Stream

The end-user license stream (1) contains cached use licenses.

The end-user license stream (1) name MUST be prefixed with "EUL-", with a base-32-encoded GUID
as the remainder of the stream (1) name.

The license stream (1) MUST consist of an EndUserLicenseHeader structure (section 2.2.9),
followed by a UTF-8-LP-P4 string (section 2.1.3) containing XML specifying a certificate chain. The
certificate chain MUST include a use license with an enablingbits element containing the symmetric
content key encrypted with the user's RAC public key, as specified in [MS-RMPR] section 2.2.9.1.13.

%5bMS-RMPR%5d.pdf#Section_d8ed4b1ee6054668b1736312cba6977e
http://msdn.microsoft.com/en-us/library/f2adc901-a61c-48ed-9cac-95ad61751230/
http://msdn.microsoft.com/en-us/library/77752c42-9ce8-44a8-862b-222f780eb3a1/
%5bMS-RMPR%5d.pdf#Section_d8ed4b1ee6054668b1736312cba6977e
http://msdn.microsoft.com/en-us/library/4b093a0a-a16f-4f11-9866-eca874b1598a/

32 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

The XML in this string is derived from a certificatechain element as specified in [MS-RMPR] section
2.2.3.2. Each XrML certificate or license from a certificate element as specified in [MS-RMPR]

section 2.2.3.1 is encoded as a base64-encoded Unicode string.

The certificate chain has been transformed in the following manner:

1. For each certificate element in the certificate chain:

1. The XrML content of the certificate element is encoded as Unicode.

2. Each resulting string is subsequently base64-encoded.

3. Each resulting string is then placed in a certificate element.

2. The resulting collection of new certificate elements is accumulated in a certificatechain
element.

3. The XML header <?xml version="1.0"?> is prefixed to the resulting certificatechain element.

4. The resulting XML is stored in the stream (1) as a UTF-8-LP-P4 string.

2.2.8 LicenseID

A LicenseID specifies the identity of a user as a Unicode string. The string MUST be of the form
"Windows:<emailaddr>" or "Passport:<emailaddr>", where emailaddr represents a valid email
address as specified in [RFC2822].

2.2.9 EndUserLicenseHeader

The EndUserLicenseHeader structure is a container for a LicenseID (section 2.2.8) as specified in
[MS-RMPR].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

ID_String (variable)

...

Length (4 bytes): An unsigned integer that specifies the size of the EndUserLicenseHeader
structure.

ID_String (variable): A UTF-8-LP-P4 structure (section 2.1.3) that contains a base64-encoded
Unicode LicenseID.

2.2.10 Protected Content Stream

The protected content stream (1) MUST be contained within the root storage. If the original

document content is an ECMA-376 document [ECMA-376], the stream (1) MUST be named
"EncryptedPackage". For all other original document content types, it MUST be named
"\0x09DRMContent".

The protected content stream (1) has the following structure.

http://msdn.microsoft.com/en-us/library/328ee37c-c01d-4683-90ee-b7804ab5705d/
http://msdn.microsoft.com/en-us/library/3b9a3021-c765-48b2-914e-af7fa811d091/
https://go.microsoft.com/fwlink/?LinkId=90385
%5bMS-RMPR%5d.pdf#Section_d8ed4b1ee6054668b1736312cba6977e
https://go.microsoft.com/fwlink/?LinkId=200054

33 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

...

Contents (variable)

...

Length (8 bytes): An unsigned 64-bit integer that specifies the size, in bytes, of the plaintext data
that is stored encrypted in the Contents field.

Contents (variable): Specifies the protected content. The protected content MUST be encrypted or

decrypted with the content symmetric key encrypted for the user in the end-user license as
specified in [MS-RMPR]. Protected content MUST be encrypted or decrypted using AES-128, a 16-
byte block size, electronic codebook (ECB) mode, and an initialization vector of all zeros.

2.2.11 Viewer Content Stream

The viewer content stream (1) MAY<6> be present. The purpose of the viewer content stream (1) is
to provide a MIME Encapsulation of Aggregate HTML Documents (MHTML) representation of the
document to enable an application that cannot parse the protected content stream (1) (section

2.2.10) to present a read-only representation of the document to the user. If the viewer content
stream (1) is present, the stream (1) MUST be named "\0x09DRMViewerContent".

The viewer content stream (1) has the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

...

Contents (variable)

...

Length (8 bytes): An unsigned 64-bit integer that specifies the size, in bytes, of the compressed
plaintext data stored encrypted in the Contents field.

Contents (variable): The MHTML representation of the protected content. The protected content
MUST be encrypted or decrypted as specified in [MS-RMPR]. Once decrypted, the plaintext MUST
be decompressed with the LZX compression algorithm, as described in [MSDN-CAB].

2.3 Encryption

This section specifies encryption and obfuscation. The four different techniques are:

 ECMA-376 encryption [ECMA-376], which leverages the data spaces storages specified in section
2.1.

%5bMS-RMPR%5d.pdf#Section_d8ed4b1ee6054668b1736312cba6977e
%5bMS-RMPR%5d.pdf#Section_d8ed4b1ee6054668b1736312cba6977e
https://go.microsoft.com/fwlink/?LinkId=226293
https://go.microsoft.com/fwlink/?LinkId=200054

34 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 CryptoAPI RC4 encryption.

 RC4 encryption.

 XOR obfuscation.

ECMA-376 encryption [ECMA-376] also includes encryption using a third-party cryptography

extension, which will be called extensible encryption in the remainder of this document.

2.3.1 EncryptionHeaderFlags

The EncryptionHeaderFlags structure specifies properties of the encryption algorithm used. It MUST

be contained within an EncryptionHeader structure (section 2.3.2).

If the fCryptoAPI bit is set and the fAES bit is not set, RC4 encryption MUST be used. If the fAES
encryption bit is set, a block cipher that supports ECB mode MUST be used. For compatibility with
current implementations, AES encryption with a key length of 128, 192, or 256 bits SHOULD<7> be
used.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

A B C D E F Unused

A – Reserved1 (1 bit): A value that MUST be 0 and MUST be ignored.

B – Reserved2 (1 bit): A value that MUST be 0 and MUST be ignored.

C – fCryptoAPI (1 bit): A flag that specifies whether CryptoAPI RC4 or ECMA-376 encryption [ECMA-
376] is used. It MUST be 1 unless fExternal is 1. If fExternal is 1, it MUST be 0.

D – fDocProps (1 bit): A value that MUST be 0 if document properties are encrypted. The encryption
of document properties is specified in section 2.3.5.4.

E – fExternal (1 bit): A value that MUST be 1 if extensible encryption is used. If this value is 1, the
value of every other field in this structure MUST be 0.

F – fAES (1 bit): A value that MUST be 1 if the protected content is an ECMA-376 document [ECMA-

376]; otherwise, it MUST be 0. If the fAES bit is 1, the fCryptoAPI bit MUST also be 1.

Unused (26 bits): A value that is undefined and MUST be ignored.

2.3.2 EncryptionHeader

The EncryptionHeader structure is used by ECMA-376 document encryption [ECMA-376] and Office
binary document RC4 CryptoAPI encryption, as defined in section 2.3.5, to specify encryption
properties for an encrypted stream (1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

SizeExtra

AlgID

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=200054

35 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

AlgIDHash

KeySize

ProviderType

Reserved1

Reserved2

CSPName

...

Flags (4 bytes): An EncryptionHeaderFlags structure, as specified in section 2.3.1, that specifies
properties of the encryption algorithm used.

SizeExtra (4 bytes): A field that is reserved and for which the value MUST be 0x00000000.

AlgID (4 bytes): A signed integer that specifies the encryption algorithm. It MUST be one of the
values described in the following table.

Value Algorithm

0x00000000 Determined by Flags

0x00006801 RC4

0x0000660E 128-bit AES

0x0000660F 192-bit AES

0x00006610 256-bit AES

The Flags field and AlgID field contain related values and MUST be set to one of the combinations
in the following table.

Flags.fCryptoAPI Flags.fAES Flags.fExternal AlgID Algorithm

0 0 1 0x00000000 Determined by the
application

1 0 0 0x00000000 RC4

1 0 0 0x00006801 RC4

1 1 0 0x00000000 128-bit AES

1 1 0 0x0000660E 128-bit AES

1 1 0 0x0000660F 192-bit AES

1 1 0 0x00006610 256-bit AES

AlgIDHash (4 bytes): A signed integer that specifies the hashing algorithm together with the
Flags.fExternal bit. It MUST be one of the combinations in the following table.

AlgIDHash Flags.fExternal Algorithm

0x00000000 1 Determined by the application

36 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

AlgIDHash Flags.fExternal Algorithm

0x00000000 0 SHA-1

0x00008004 0 SHA-1

KeySize (4 bytes): An unsigned integer that specifies the number of bits in the encryption key. It
MUST be a multiple of 8 and MUST be one of the values in the following table.

Algorithm Value Comment

Any 0x00000000 Determined by Flags

RC4 0x00000028 – 0x00000080 (inclusive) 8-bit increments

AES 0x00000080, 0x000000C0, 0x00000100 128-bit, 192-bit, or 256-
bit

If the Flags field does not have the fCryptoAPI bit set, the KeySize field MUST be 0x00000000.
If RC4 is used, the value MUST be compatible with the chosen cryptographic service provider
(CSP).

ProviderType (4 bytes): An implementation-specific value that corresponds to constants accepted
by the specified CSP. It MUST be compatible with the chosen CSP. It SHOULD<8> be one of the
following values.

Algorithm Value Comment

Any 0x00000000 Determined by Flags

RC4 0x00000001

AES 0x00000018

If the Flags field does not have the fCryptoAPI bit set, the ProviderType field MUST be
0x00000000.

Reserved1 (4 bytes): A value that is undefined and MUST be ignored.

Reserved2 (4 bytes): A value that MUST be 0x00000000 and MUST be ignored.

CSPName (variable): A null-terminated Unicode string that specifies the CSP name.

2.3.3 EncryptionVerifier

The EncryptionVerifier structure is used by Office Binary Document RC4 CryptoAPI Encryption
(section 2.3.5) and ECMA-376 Document Encryption (section 2.3.4). Every usage of this structure
MUST specify the hashing algorithm and encryption algorithm used in the EncryptionVerifier
structure.

Verifier can be 16 bytes of data randomly generated each time the structure is created. Verifier is
not stored in this structure directly.

The EncryptionVerifier structure MUST be set by using the following process:

1. Generate random data and write it into the Salt field.

2. Derive the encryption key from the password and salt, as specified in either section 2.3.4.7 or
section 2.3.5.2, with block number 0.

37 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

3. Generate 16 bytes of additional random data as the Verifier.

4. Encrypt the result of step 3 and write it into the EncryptedVerifier field.

5. For the chosen hashing algorithm, obtain the size of the hash data and write this value into the
VerifierHashSize field.

6. Obtain the hashing algorithm output by using as input the data generated in step 3.

7. Encrypt the hashing algorithm output from step 6 by using the chosen encryption algorithm, and
write the output into the EncryptedVerifierHash field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SaltSize

Salt (16 bytes)

...

...

EncryptedVerifier (16 bytes)

...

...

VerifierHashSize

EncryptedVerifierHash (variable)

...

SaltSize (4 bytes): An unsigned integer that specifies the size of the Salt field. It MUST be
0x00000010.

Salt (16 bytes): An array of bytes that specifies the salt value used during password hash
generation. It MUST NOT be the same data used for the verifier stored encrypted in the
EncryptedVerifier field.

EncryptedVerifier (16 bytes): A value that MUST be the randomly generated Verifier value
encrypted using the algorithm chosen by the implementation.

VerifierHashSize (4 bytes): An unsigned integer that specifies the number of bytes needed to
contain the hash of the data used to generate the EncryptedVerifier field.

EncryptedVerifierHash (variable): An array of bytes that contains the encrypted form of the hash
of the randomly generated Verifier value. The length of the array MUST be the size of the
encryption block size multiplied by the number of blocks needed to encrypt the hash of the

Verifier. If the encryption algorithm is RC4, the length MUST be 20 bytes. If the encryption
algorithm is AES, the length MUST be 32 bytes. After decrypting the EncryptedVerifierHash
field, only the first VerifierHashSize bytes MUST be used.

38 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.3.4 ECMA-376 Document Encryption

When an ECMA-376 document [ECMA-376] is encrypted as specified in [ECMA-376] Part 2 Annex C
Table C-5 BIT 0, a structured storage utilizing the data spaces construct as specified in section 2.1

MUST be used. Unless exceptions are noted in the following subsections, streams (1) and storages
contained within the \0x06DataSpaces storage MUST be present as specified in section 2.1.1.

2.3.4.1 \0x06DataSpaces\DataSpaceMap Stream

The data space map MUST contain the following structure:

 The \0x06DataSpaces\DataSpaceMap stream (1) MUST contain a DataSpaceMap structure
(section 2.1.6) containing exactly one DataSpaceMapEntry structure (section 2.1.6.1).

 The DataSpaceMapEntry structure:

 MUST have a DataSpaceName equal to "StrongEncryptionDataSpace".

 MUST have exactly one ReferenceComponents entry with the name "EncryptedPackage" and the
type 0x00000000, which signifies a stream (1).

2.3.4.2 \0x06DataSpaces\DataSpaceInfo Storage

The DataSpaceInfo storage MUST contain a stream (1) that is defined as follows:

 The \0x06DataSpaces\DataSpaceInfo storage MUST contain a stream (1) named
"StrongEncryptionDataSpace", which MUST contain a DataSpaceDefinition structure (section

2.1.7).

 The DataSpaceDefinition structure MUST have exactly one TransformReferences entry, which
MUST be "StrongEncryptionTransform".

2.3.4.3 \0x06DataSpaces\TransformInfo Storage

The \0x06DataSpaces\TransformInfo storage MUST contain one storage named
"StrongEncryptionTransform". The "StrongEncryptionTransform" storage MUST contain a stream (1)
named "0x06Primary". The "0x06Primary" stream (1) MUST contain an IRMDSTransformInfo
structure (section 2.2.6). Within the IRMDSTransformInfo structure, the following values MUST be
set:

 TransformInfoHeader.TransformType MUST be 0x00000001.

 TransformInfoHeader.TransformID MUST be "{FF9A3F03-56EF-4613-BDD5-5A41C1D07246}".

 TransformInfoHeader.TransformName MUST be "Microsoft.Container.EncryptionTransform".

 TransformInfoHeader.ReaderVersion MUST be "1.0".

 TransformInfoHeader.UpdaterVersion MUST be "1.0".

 TransformInfoHeader.WriterVersion MUST be "1.0".

Following the IRMDSTransformInfo structure, an EncryptionTransformInfo structure (section
2.1.9) MUST exist that specifies the encryption algorithms to be used. However, if the algorithms

specified in the EncryptionTransformInfo structure differ from the algorithms specified in the
EncryptionInfo stream (1) (as specified in section 2.3.4.5, section 2.3.4.6, and section 2.3.4.10),
the EncryptionInfo stream (1) MUST be considered authoritative. If the agile encryption method is

https://go.microsoft.com/fwlink/?LinkId=200054

39 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

used, the EncryptionName field of the EncryptionTransformInfo structure MUST be a null string
(0x00000000).

2.3.4.4 \EncryptedPackage Stream

The \EncryptedPackage stream is an encrypted stream (1) of bytes containing the entire ECMA-
376 source file [ECMA-376] in compressed form.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StreamSize

...

EncryptedData (variable)

...

StreamSize (8 bytes): An unsigned integer that specifies the number of bytes used by data
encrypted within the EncryptedData field, not including the size of the StreamSize field. Note
that the actual size of the \EncryptedPackage stream (1) can be larger than this value,
depending on the block size of the chosen encryption algorithm

EncryptedData (variable): A block of data that is encrypted by using the algorithm specified within

the \EncryptionInfo stream (1) (section 2.3.4.5).

2.3.4.5 \EncryptionInfo Stream (Standard Encryption)

The \EncryptionInfo stream (1) contains detailed information that is used to initialize the

cryptography used to encrypt the \EncryptedPackage stream (1), as specified in section 2.3.4.4,

when standard encryption is used.

If an external encryption provider is used, see section 2.3.4.6.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo

EncryptionHeader.Flags

EncryptionHeaderSize

EncryptionHeader (variable)

...

EncryptionVerifier (variable)

...

https://go.microsoft.com/fwlink/?LinkId=200054

40 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

EncryptionVersionInfo (4 bytes): A Version structure (section 2.1.4) where Version.vMajor
MUST be 0x0002, 0x0003 or 0x0004<9>, and Version.vMinor MUST be 0x0002.

EncryptionHeader.Flags (4 bytes): A copy of the Flags stored in the EncryptionHeader field of
this structure.

EncryptionHeaderSize (4 bytes): An unsigned integer that specifies the size, in bytes, of the
EncryptionHeader field of this structure.

EncryptionHeader (variable): An EncryptionHeader structure (section 2.3.2) that specifies
parameters used to encrypt data. The values MUST be set as specified in the following table.

Field Value

Flags The fCryptoAPI and fAES bits MUST be set. The fDocProps bit MUST be 0.

SizeExtra This value MUST be 0x00000000.

AlgID This value MUST be 0x0000660E (AES-128), 0x0000660F (AES-192), or
0x00006610 (AES-256).

AlgIDHash This value MUST be 0x00008004 (SHA-1).

KeySize This value MUST be 0x00000080 (AES-128), 0x000000C0 (AES-192), or
0x00000100 (AES-256).

ProviderType This value SHOULD<10> be 0x00000018 (AES).

Reserved1 This value is undefined and MUST be ignored.

Reserved2 This value MUST be 0x00000000 and MUST be ignored.

CSPName This value SHOULD<11> be set to either "Microsoft Enhanced RSA and AES
Cryptographic Provider" or "Microsoft Enhanced RSA and AES Cryptographic
Provider (Prototype)" as a null-terminated Unicode string.

EncryptionVerifier (variable): An EncryptionVerifier structure, as specified in section 2.3.3, that
is generated as specified in section 2.3.4.8.

2.3.4.6 \EncryptionInfo Stream (Extensible Encryption)

ECMA-376 documents [ECMA-376] can optionally use user-provided custom (extensible) encryption
modules. When extensible encryption is used, the \EncryptionInfo stream (1) MUST contain the
structure described in the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo

EncryptionHeader.Flags

EncryptionHeaderSize

EncryptionHeader (variable)

...

https://go.microsoft.com/fwlink/?LinkId=200054

41 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

EncryptionInfo(variable)

…

EncryptionVerifier (variable)

...

EncryptionVersionInfo (4 bytes): A Version structure (section 2.1.4) where Version.vMajor
MUST be 0x0003 or 0x0004 and Version.vMinor MUST be 0x0003.

EncryptionHeader.Flags (4 bytes): A copy of the Flags stored in the EncryptionHeader field of
this structure as specified in section 2.3.1. It MUST have the fExternal bit set to 1. All other bits
in this field MUST be set to 0.

EncryptionHeaderSize (4 bytes): An unsigned integer that specifies the size, in bytes, of the
EncryptionHeader field of this structure, including the GUID specifying the extensible encryption

module.

EncryptionHeader (variable): An EncryptionHeader structure (section 2.3.2) used to encrypt the
structure. The values MUST be set as described in the following table.

Field Value

Flags A value that MUST have the fExternal bit set to 1.
All other bits MUST be set to 0.

SizeExtra A value that MUST be 0x00000000.

AlgID A value that MUST be 0x00000000.

AlgIDHash A value that MUST be 0x00000000.

KeySize A value that MUST be 0x00000000.

ProviderType A value that MUST be 0x00000000.

Reserved1 A value that is undefined and MUST be ignored.

Reserved2 A value that MUST be 0x00000000 and MUST be
ignored.

CSPName A unique identifier of an encryption module.<12>

EncryptionInfo (variable): A Unicode string that specifies an EncryptionData element. The first
Unicode code point MUST be 0xFEFF.

The EncryptionData XML element MUST conform to the following XMLSchema namespace as

specified by [W3C-XSD].

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema targetNamespace="urn:schemas-microsoft-com:office:office"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xs:element name="EncryptionData">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="EncryptionProvider">
 <xs:complexType>

https://go.microsoft.com/fwlink/?LinkId=90563

42 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 <xs:sequence>
 <xs:element name="EncryptionProviderData">
 <xs:simpleType>
 <xs:restriction base="xs:base64Binary"/>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Id" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="\{[0-9A-Fa-f]{8}\-[0-9A-Fa-f]{4}\-
 [0-9A-Fa-f]{4}\-[0-9A-Fa-f]{4}\-[0-9A-Fa-f]{12}\}"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="Url" type="xs:anyURI" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

Element Parent Attribute Value

EncryptionData

EncryptionProvider EncryptionData

 Id The GUID of the extensible
encryption module,
expressed as a string.

 Url A URL where the extensible
encryption module can be
obtained.

EncryptionProviderData EncryptionProvider Base64-encoded data used
by the extensible module.

EncryptionVerifier (variable): An EncryptionVerifier structure, as specified in section 2.3.3, that
is generated as specified in section 2.3.4.8.

2.3.4.7 ECMA-376 Document Encryption Key Generation (Standard Encryption)

The encryption key for ECMA-376 document encryption [ECMA-376] MUST be generated by using the
following method, which is derived from PKCS #5: Password-Based Cryptography Version 2.0
[RFC2898].

Let H() be a hashing algorithm as determined by the EncryptionHeader.AlgIDHash field, Hn be the
hash data of the nth iteration, and a plus sign (+) represent concatenation. This hashing algorithm

MUST be SHA-1. The password MUST be provided as an array of Unicode characters. Limitations on
the length of the password and the characters used by the password are implementation-dependent.
The initial password hash is generated as follows:

 H0 = H(salt + password)

The salt used MUST be generated randomly and MUST be 16 bytes in size. The salt MUST be stored in
the EncryptionVerifier.Salt field contained within the \EncryptionInfo stream (1) as specified in
section 2.3.4.5. The hash is then iterated by using the following approach:

 Hn = H(iterator + Hn-1)

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=119708

43 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

where iterator is an unsigned 32-bit value that is initially set to 0x00000000 and then incremented
monotonically on each iteration until 50,000 iterations have been performed. The value of iterator on

the last iteration MUST be 49,999.

After the final hash data has been obtained, the encryption key MUST be generated by using the final

hash data, and the block number MUST be 0x00000000. The encryption algorithm MUST be specified
in the EncryptionHeader.AlgID field. The encryption algorithm MUST use ECB mode. The method
used to generate the hash data that is the input into the key derivation algorithm is as follows:

 Hfinal = H(Hn + block)

The encryption key derivation method is specified by the following steps:

1. Let cbRequiredKeyLength be equal to the size, in bytes, of the required key length for the
relevant encryption algorithm as specified by the EncryptionHeader structure. Note that

cbRequiredKeyLength MUST be less than or equal to 40.

2. Let cbHash be the number of bytes output by the hashing algorithm H.

3. Form a 64-byte buffer by repeating the constant 0x36 64 times. XOR Hfinal into the first cbHash
bytes of this buffer, and compute a hash of the resulting 64-byte buffer by using hashing
algorithm H. This will yield a hash value of length cbHash. Let the resulting value be called X1.

4. Form another 64-byte buffer by repeating the constant 0x5C 64 times. XOR Hfinal into the first

cbHash bytes of this buffer, and compute a hash of the resulting 64-byte buffer by using hash
algorithm H. This yields a hash value of length cbHash. Let the resulting value be called X2.

5. Concatenate X1 with X2 to form X3, which will yield a value twice the length of cbHash.

6. Let keyDerived be equal to the first cbRequiredKeyLength bytes of X3.

2.3.4.8 Password Verifier Generation (Standard Encryption)

The password verifier uses an EncryptionVerifier structure as specified in section 2.3.3. The

password verifier Salt field MUST be equal to the salt created during password key generation, as
specified in section 2.3.4.7. A randomly generated verifier is then hashed using the SHA-1 hashing
algorithm specified in the EncryptionHeader structure, and encrypted using the key generated as
specified in section 2.3.4.7, with a block number of 0x00000000.

2.3.4.9 Password Verification (Standard Encryption)

Passwords MUST be verified by using the following steps:

1. Generate an encryption key as specified in section 2.3.4.7.

2. Decrypt the EncryptedVerifier field of the EncryptionVerifier structure as specified in section

2.3.3, and generated as specified in section 2.3.4.8, to obtain the Verifier value. The resulting
Verifier value MUST be an array of 16 bytes.

3. Decrypt the EncryptedVerifierHash field of the EncryptionVerifier structure to obtain the hash
of the Verifier value. The number of bytes used by the encrypted Verifier hash MUST be 32. The
number of bytes used by the decrypted Verifier hash is given by the VerifierHashSize field,
which MUST be 20.

4. Calculate the SHA-1 hash value of the Verifier value calculated in step 2.

5. Compare the results of step 3 and step 4. If the two hash values do not match, the password is
incorrect.

44 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.3.4.10 \EncryptionInfo Stream (Agile Encryption)

The \EncryptionInfo stream (1) contains detailed information about the cryptography used to
encrypt the \EncryptedPackage stream (1) (section 2.3.4.4) when agile encryption is used.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo

Reserved

XmlEncryptionDescriptor (variable)

...

EncryptionVersionInfo (4 bytes): A Version structure (section 2.1.4), where Version.vMajor
MUST be 0x0004 and Version.vMinor MUST be 0x0004.

Reserved (4 bytes): A value that MUST be 0x00000040.

XmlEncryptionDescriptor (variable): An XML element that MUST conform to the following XML
schema namespace, as specified in [W3C-XSD]:

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 targetNamespace="http://schemas.microsoft.com/office/2006/encryption"
 xmlns="http://schemas.microsoft.com/office/2006/encryption"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="ST_SaltSize">
 <xs:restriction base="xs:unsignedInt">
 <xs:minInclusive value="1" />
 <xs:maxInclusive value="65536" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ST_BlockSize">
 <xs:restriction base="xs:unsignedInt">
 <xs:minInclusive value="2" />
 <xs:maxInclusive value="4096" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ST_KeyBits">
 <xs:restriction base="xs:unsignedInt">
 <xs:minInclusive value="8" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ST_HashSize">
 <xs:restriction base="xs:unsignedInt">
 <xs:minInclusive value="1" />
 <xs:maxInclusive value="65536" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ST_SpinCount">
 <xs:restriction base="xs:unsignedInt">
 <xs:minInclusive value="0" />
 <xs:maxInclusive value="10000000" />
 </xs:restriction>

https://go.microsoft.com/fwlink/?LinkId=90563

45 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 </xs:simpleType>

 <xs:simpleType name="ST_CipherAlgorithm">
 <xs:restriction base="xs:string">
 <xs:minLength value="1" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ST_CipherChaining">
 <xs:restriction base="xs:string">
 <xs:minLength value="1" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ST_HashAlgorithm">
 <xs:restriction base="xs:string">
 <xs:minLength value="1" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="CT_KeyData">
 <xs:attribute name="saltSize" type="ST_SaltSize" use="required" />
 <xs:attribute name="blockSize" type="ST_BlockSize" use="required" />
 <xs:attribute name="keyBits" type="ST_KeyBits" use="required" />
 <xs:attribute name="hashSize" type="ST_HashSize" use="required" />
 <xs:attribute name="cipherAlgorithm" type="ST_CipherAlgorithm" use="required" />
 <xs:attribute name="cipherChaining" type="ST_CipherChaining" use="required" />
 <xs:attribute name="hashAlgorithm" type="ST_HashAlgorithm" use="required" />
 <xs:attribute name="saltValue" type="xs:base64Binary" use="required" />
 </xs:complexType>

 <xs:complexType name="CT_DataIntegrity">
 <xs:attribute name="encryptedHmacKey" type="xs:base64Binary" use="required" />
 <xs:attribute name="encryptedHmacValue" type="xs:base64Binary" use="required" />
 </xs:complexType>

 <xs:complexType name="CT_KeyEncryptor">
 <xs:sequence>
 <xs:any processContents="lax" />
 </xs:sequence>
 <xs:attribute name="uri" type="xs:token" />
 </xs:complexType>

 <xs:complexType name="CT_KeyEncryptors">
 <xs:sequence>
 <xs:element name="keyEncryptor" type="CT_KeyEncryptor" minOccurs="1"
maxOccurs="unbounded" />

 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="CT_Encryption">
 <xs:sequence>
 <xs:element name="keyData" type="CT_KeyData" minOccurs="1" maxOccurs="1" />
 <xs:element name="dataIntegrity" type="CT_DataIntegrity" minOccurs="0" maxOccurs="1" />
 <xs:element name="keyEncryptors" type="CT_KeyEncryptors" minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>

 <xs:element name="encryption" type="CT_Encryption" />
 </xs:schema>

SaltSize: An unsigned integer that specifies the number of bytes used by a salt. It MUST be at least 1
and no greater than 65,536.

BlockSize: An unsigned integer that specifies the number of bytes used to encrypt one block of data.
It MUST be at least 2, no greater than 4096, and a multiple of 2.

46 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

KeyBits: An unsigned integer that specifies the number of bits used by an encryption algorithm. It
MUST be at least 8 and a multiple of 8.

HashSize: An unsigned integer that specifies the number of bytes used by a hash value. It MUST be
at least 1, no greater than 65,536, and the same number of bytes as the hash algorithm emits.

SpinCount: An unsigned integer that specifies the number of times to iterate on a hash of a
password. It MUST NOT be greater than 10,000,000.

CipherAlgorithm: A string that specifies the cipher algorithm. The values in the following table are
defined.

Value Cipher algorithm

AES MUST conform to the AES algorithm.

RC2 MUST conform to the algorithm as specified in
[RFC2268].<13>

RC4 MUST NOT be used.

DES MUST conform to the DES algorithm.<14>

DESX MUST conform to the algorithm as specified in
[DRAFT-DESX].<15>

3DES MUST conform to the algorithm as specified in
[RFC1851].<16>

3DES_112 MUST conform to the algorithm as specified in
[RFC1851].<17>

Values that are not defined MAY<18> be used, and a compliant implementation is not required to
support all defined values. The string MUST be at least 1 character.

CipherChaining: A string that specifies the chaining mode used by CipherAlgorithm. For more
details about chaining modes, see [BCMO800-38A]. It MUST be one of the values described in the
following table.

Value Chaining mode

ChainingModeCBC Cipher block chaining (CBC)

ChainingModeCFB Cipher feedback chaining (CFB), with an 8-bit
window

HashAlgorithm: A string specifying a hashing algorithm. The values described in the following table
are defined.

Value Hash algorithm

SHA-1 MUST conform to the algorithm as specified in
[RFC4634].

SHA256 MUST conform to the algorithm as specified in
[RFC4634].

SHA384 MUST conform to the algorithm as specified in
[RFC4634].

SHA512 MUST conform to the algorithm as specified in

https://go.microsoft.com/fwlink/?LinkId=90330
https://go.microsoft.com/fwlink/?LinkId=128905
https://go.microsoft.com/fwlink/?LinkId=128901
https://go.microsoft.com/fwlink/?LinkId=113491
https://go.microsoft.com/fwlink/?LinkId=90486

47 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Value Hash algorithm

[RFC4634].

MD5 MUST conform to MD5.

MD4 MUST conform to the algorithm as specified in
[RFC1320].

MD2 MUST conform to the algorithm as specified in
[RFC1319].

RIPEMD-128 MUST conform to the hash functions specified in
[ISO/IEC 10118].

RIPEMD-160 MUST conform to the hash functions specified in
[ISO/IEC 10118].

WHIRLPOOL MUST conform to the hash functions specified in
[ISO/IEC 10118].

Values that are not defined MAY<19> be used, and a compliant implementation is not required to
support all defined values. The string MUST be at least 1 character. For more information, see section
4.

KeyData: A complex type that specifies the encryption used within this element. The saltValue
attribute is a base64-encoded binary value that is randomly generated. The number of bytes required
to decode the saltValue attribute MUST be equal to the value of the saltSize attribute.

DataIntegrity: A complex type that specifies data used to verify whether the encrypted data passes
an integrity check. It MUST be generated using the method specified in section 2.3.4.14. This type is
composed of the following simple types:

 encryptedHmacKey: A base64-encoded value that specifies an encrypted key used in calculating

the encryptedHmacValue.

 encryptedHmacValue: A base64-encoded value that specifies an HMAC derived from
encryptedHmacKey and the encrypted data.

KeyEncryptor: A complex type that specifies the parameters used to encrypt an intermediate key,
which is used to perform the final encryption of the document. To ensure extensibility, arbitrary
elements can be defined to encrypt the intermediate key. The intermediate key MUST be the same for

all KeyEncryptor elements. PasswordKeyEncryptor and CertificateKeyEncryptor are defined
later in this section.

KeyEncryptors: A sequence of KeyEncryptor elements. Exactly one KeyEncryptors element MUST
be present, and the KeyEncryptors element MUST contain at least one KeyEncryptor.

Encryption: A complex type composed of the following elements that specify the encryption
properties:

 keyData: One KeyData element MUST be present.

 dataIntegrity: One DataIntegrity element SHOULD<20> be present.

 keyEncryptors: One KeyEncryptors sequence MUST be present.

The KeyEncryptor element, which MUST be used when encrypting password-protected agile
encryption documents, is either a PasswordKeyEncryptor or a CertificateKeyEncryptor. Exactly
one PasswordKeyEncryptor MUST be present. Zero or more CertificateKeyEncryptor elements
are contained within the KeyEncryptors element. The PasswordKeyEncryptor is specified by the
following schema:

https://go.microsoft.com/fwlink/?LinkId=90274
https://go.microsoft.com/fwlink/?LinkId=90273
https://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409

48 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 targetNamespace="http://schemas.microsoft.com/office/2006/keyEncryptor/password"
 xmlns="http://schemas.microsoft.com/office/2006/keyEncryptor/password"
 xmlns:e="http://schemas.microsoft.com/office/2006/encryption"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://schemas.microsoft.com/office/2006/encryption"
schemaLocation="encryptionInfo.xsd" />

 <xs:simpleType name="ST_PasswordKeyEncryptorUri">
 <xs:restriction base="xs:token">
 <xs:enumeration value="http://schemas.microsoft.com/office/2006/keyEncryptor/password"
/>

 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="CT_PasswordKeyEncryptor">
 <xs:attribute name="saltSize" type="e:ST_SaltSize" use="required" />
 <xs:attribute name="blockSize" type="e:ST_BlockSize" use="required" />
 <xs:attribute name="keyBits" type="e:ST_KeyBits" use="required" />
 <xs:attribute name="hashSize" type="e:ST_HashSize" use="required" />
 <xs:attribute name="cipherAlgorithm" type="e:ST_CipherAlgorithm" use="required" />
 <xs:attribute name="cipherChaining" type="e:ST_CipherChaining" use="required" />
 <xs:attribute name="hashAlgorithm" type="e:ST_HashAlgorithm" use="required" />
 <xs:attribute name="saltValue" type="xs:base64Binary" use="required" />
 <xs:attribute name="spinCount" type="e:ST_SpinCount" use="required" />
 <xs:attribute name="encryptedVerifierHashInput" type="xs:base64Binary" use="required" />
 <xs:attribute name="encryptedVerifierHashValue" type="xs:base64Binary" use="required" />
 <xs:attribute name="encryptedKeyValue" type="xs:base64Binary" use="required" />
 </xs:complexType>

 <xs:element name="encryptedKey" type="CT_PasswordKeyEncryptor" />
 </xs:schema>

saltSize: A SaltSize that specifies the size of the salt for a PasswordKeyEncryptor.

blockSize: A BlockSize that specifies the block size for a PasswordKeyEncryptor.

keyBits: A KeyBits that specifies the number of bits for a PasswordKeyEncryptor.

hashSize: A HashSize that specifies the size of the binary form of the hash for a
PasswordKeyEncryptor.

cipherAlgorithm: A CipherAlgorithm that specifies the cipher algorithm for a

PasswordKeyEncryptor. The cipher algorithm specified MUST be the same as the cipher algorithm
specified for the Encryption.keyData element.

cipherChaining: A CipherChaining that specifies the cipher chaining mode for a
PasswordKeyEncryptor.

hashAlgorithm: A HashAlgorithm that specifies the hashing algorithm for a
PasswordKeyEncryptor. The hashing algorithm specified MUST be the same as the hashing

algorithm specified for the Encryption.keyData element.

saltValue: A base64-encoded binary byte array that specifies the salt value for a
PasswordKeyEncryptor. The number of bytes required by the decoded form of this element MUST
be saltSize.

spinCount: A SpinCount that specifies the spin count for a PasswordKeyEncryptor.

encryptedVerifierHashInput: A base64-encoded value that specifies the encrypted verifier hash
input for a PasswordKeyEncryptor used in password verification.

49 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

encryptedVerifierHashValue: A base64-encoded value that specifies the encrypted verifier hash
value for a PasswordKeyEncryptor used in password verification.

encryptedKeyValue: A base64-encoded value that specifies the encrypted form of the intermediate
key.

The CertificateKeyEncryptor is specified by the following schema:

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 targetNamespace="http://schemas.microsoft.com/office/2006/keyEncryptor/certificate"
 xmlns="http://schemas.microsoft.com/office/2006/keyEncryptor/certificate"
 xmlns:e="http://schemas.microsoft.com/office/2006/encryption"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:import namespace="http://schemas.microsoft.com/office/2006/encryption"
schemaLocation="encryptionInfo.xsd" />

 <xs:simpleType name="ST_PasswordKeyEncryptorUri">
 <xs:restriction base="xs:token">
 <xs:enumeration
value="http://schemas.microsoft.com/office/2006/keyEncryptor/certificate" />

 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="CT_CertificateKeyEncryptor">
 <xs:attribute name="encryptedKeyValue" type="xs:base64Binary" use="required" />
 <xs:attribute name="X509Certificate" type="xs:base64Binary" use="required" />
 <xs:attribute name="certVerifier" type="xs:base64Binary" use="required" />
 </xs:complexType>
 <xs:element name="encryptedKey" type="CT_CertificateKeyEncryptor" />
 </xs:schema>

encryptedKeyValue: A base64-encoded value that specifies the encrypted form of the intermediate
key, which is encrypted with the public key contained within the X509Certificate attribute.

 X509Certificate: A base64-encoded value that specifies a DER-encoded X.509 certificate used to
encrypt the intermediate key. The certificate MUST contain only the public portion of the public-private

key pair.

certVerifier: A base64-encoded value that specifies the HMAC of the binary data obtained by base64-

decoding the X509Certificate attribute. The hashing algorithm used to derive the HMAC MUST be the
hashing algorithm specified for the Encryption.keyData element. The secret key used to derive the
HMAC MUST be the intermediate key.

If the intermediate key is reset, any CertificateKeyEncryptor elements are also reset to contain the
new intermediate key, except that the certVerifier attribute MUST match the value calculated using
the current intermediate key, to verify that the CertificateKeyEncryptor element actually encrypted
the current intermediate key. If a CertificateKeyEncryptor element does not have a correct

certVerifier attribute, it MUST be discarded.

2.3.4.11 Encryption Key Generation (Agile Encryption)

The encryption key for ECMA-376 document encryption [ECMA-376] using agile encryption MUST be

generated by using the following method, which is derived from PKCS #5: Password-Based
Cryptography Version 2.0 [RFC2898].

Let H() be a hashing algorithm as determined by the PasswordKeyEncryptor.hashAlgorithm
element, Hn be the hash data of the nth iteration, and a plus sign (+) represent concatenation. The
password MUST be provided as an array of Unicode characters. Limitations on the length of the
password and the characters used by the password are implementation-dependent. The initial
password hash is generated as follows:

 H0 = H(salt + password)

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=119708

50 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

The salt used MUST be generated randomly. The salt MUST be stored in the
PasswordKeyEncryptor.saltValue element contained within the \EncryptionInfo stream (1) as

specified in section 2.3.4.10. The hash is then iterated by using the following approach:

 Hn = H(iterator + Hn-1)

where iterator is an unsigned 32-bit value that is initially set to 0x00000000 and then incremented
monotonically on each iteration until PasswordKeyEncryptor.spinCount iterations have been
performed. The value of iterator on the last iteration MUST be one less than
PasswordKeyEncryptor.spinCount.

The final hash data that is used for an encryption key is then generated by using the following
method:

 Hfinal = H(Hn + blockKey)

where blockKey represents an array of bytes used to prevent two different blocks from encrypting to
the same cipher text.

If the size of the resulting Hfinal is smaller than that of PasswordKeyEncryptor.keyBits, the key
MUST be padded by appending bytes with a value of 0x36. If the hash value is larger in size than
PasswordKeyEncryptor.keyBits, the key is obtained by truncating the hash value.

2.3.4.12 Initialization Vector Generation (Agile Encryption)

Initialization vectors are used in all cases for agile encryption. An initialization vector MUST be
generated by using the following method, where H() is a hash function that MUST be the same as
specified in section 2.3.4.11 and a plus sign (+) represents concatenation:

1. If a blockKey is provided, let IV be a hash of the KeySalt and the following value:

1. blockKey:IV = H(KeySalt + blockKey)

2. If a blockKey is not provided, let IV be equal to the following value:

1. KeySalt:IV = KeySalt.

3. If the number of bytes in the value of IV is less than the value of the blockSize attribute
corresponding to the cipherAlgorithm attribute, pad the array of bytes by appending 0x36 until
the array is blockSize bytes. If the array of bytes is larger than blockSize bytes, truncate the

array to blockSize bytes.

2.3.4.13 PasswordKeyEncryptor Generation (Agile Encryption)

For agile encryption, the password key encryptor XML element specified in section 2.3.4.10 MUST be
created as follows:

saltSize: Set this attribute to the number of bytes used by the binary form of the saltValue attribute.
It MUST conform to a SaltSize type.

blockSize: Set this attribute to the number of bytes needed to contain an encrypted block of data, as
defined by the cipherAlgorithm used. It MUST conform to a BlockSize type.

keyBits: Set this attribute to the number of bits needed to contain an encryption key, as defined by
the cipherAlgorithm used. It MUST conform to a KeyBits type.

hashSize: Set this attribute to the number of bytes needed to contain the output of the hashing

algorithm defined by the hashAlgorithm element. It MUST conform to a HashSize type.

51 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

cipherAlgorithm: Set this attribute to a string containing the cipher algorithm used to encrypt the
encryptedVerifierHashInput, encryptedVerifierHashValue, and encryptedKeyValue. It MUST

conform to a CipherAlgorithm type.

cipherChaining: Set this attribute to the cipher chaining mode used to encrypt

encryptedVerifierHashInput, encryptedVerifierHashValue, and encryptedKeyValue. It MUST
conform to a CipherChaining type.

hashAlgorithm: Set this attribute to the hashing algorithm used to derive the encryption key from
the password and that is also used to obtain the encryptedVerifierHashValue. It MUST conform to a
HashAlgorithm type.

saltValue: Set this attribute to a base64-encoded, randomly generated array of bytes. It MUST
conform to a SaltValue type. The number of bytes required by the decoded form of this element

MUST be saltSize.

spinCount: Set this attribute to the number of times to iterate the password hash when creating the
key used to encrypt the encryptedVerifierHashInput, encryptedVerifierHashValue, and

encryptedKeyValue. It MUST conform to a SpinCount type.

encryptedVerifierHashInput: This attribute MUST be generated by using the following steps:

1. Generate a random array of bytes with the number of bytes used specified by the saltSize

attribute.

2. Generate an encryption key as specified in section 2.3.4.11 by using the user-supplied password,
the binary byte array used to create the saltValue attribute, and a blockKey byte array
consisting of the following bytes: 0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, and 0x79.

3. Encrypt the random array of bytes generated in step 1 by using the binary form of the saltValue
attribute as an initialization vector as specified in section 2.3.4.12. If the array of bytes is not an
integral multiple of blockSize bytes, pad the array with 0x00 to the next integral multiple of

blockSize bytes.

4. Use base64 to encode the result of step 3.

encryptedVerifierHashValue: This attribute MUST be generated by using the following steps:

1. Obtain the hash value of the random array of bytes generated in step 1 of the steps for
encryptedVerifierHashInput.

2. Generate an encryption key as specified in section 2.3.4.11 by using the user-supplied password,
the binary byte array used to create the saltValue attribute, and a blockKey byte array

consisting of the following bytes: 0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, and 0x4e.

3. Encrypt the hash value obtained in step 1 by using the binary form of the saltValue attribute as
an initialization vector as specified in section 2.3.4.12. If hashSize is not an integral multiple of
blockSize bytes, pad the hash value with 0x00 to an integral multiple of blockSize bytes.

4. Use base64 to encode the result of step 3.

encryptedKeyValue: This attribute MUST be generated by using the following steps:

1. Generate a random array of bytes that is the same size as specified by the
Encryptor.KeyData.keyBits attribute of the parent element.

2. Generate an encryption key as specified in section 2.3.4.11, using the user-supplied password, the
binary byte array used to create the saltValue attribute, and a blockKey byte array consisting of
the following bytes: 0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, and 0xd6.

52 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

3. Encrypt the random array of bytes generated in step 1 by using the binary form of the saltValue
attribute as an initialization vector as specified in section 2.3.4.12. If the array of bytes is not an

integral multiple of blockSize bytes, pad the array with 0x00 to an integral multiple of blockSize
bytes.

4. Use base64 to encode the result of step 3.

2.3.4.14 DataIntegrity Generation (Agile Encryption)

The DataIntegrity element contained within an Encryption element MUST be generated by using

the following steps:

1. Obtain the intermediate key by decrypting the encryptedKeyValue from a KeyEncryptor
contained within the KeyEncryptors sequence. Use this key for encryption operations in the
remaining steps of this section.

2. Generate a random array of bytes, known as Salt, of the same length as the value of the

KeyData.saltSize attribute.

3. Encrypt the random array of bytes generated in step 2 by using the binary form of the

KeyData.saltValue attribute and a blockKey byte array consisting of the following bytes: 0x5f,
0xb2, 0xad, 0x01, 0x0c, 0xb9, 0xe1, and 0xf6 used to form an initialization vector as specified in
section 2.3.4.12. If the array of bytes is not an integral multiple of blockSize bytes, pad the array
with 0x00 to the next integral multiple of blockSize bytes.

4. Assign the encryptedHmacKey attribute to the base64-encoded form of the result of step 3.

5. Generate an HMAC, as specified in [RFC2104], of the encrypted form of the data (message),
which the DataIntegrity element will verify by using the Salt generated in step 2 as the key.

Note that the entire EncryptedPackage stream (1), including the StreamSize field, MUST be
used as the message.

6. Encrypt the HMAC as in step 3 by using a blockKey byte array consisting of the following bytes:

0xa0, 0x67, 0x7f, 0x02, 0xb2, 0x2c, 0x84, and 0x33.

7. Assign the encryptedHmacValue attribute to the base64-encoded form of the result of step 6.

2.3.4.15 Data Encryption (Agile Encryption)

The EncryptedPackage stream (1) MUST be encrypted in 4096-byte segments to facilitate nearly
random access while allowing CBC modes to be used in the encryption process.

The initialization vector for the encryption process MUST be obtained by using the zero-based segment
number as a blockKey and the binary form of the KeyData.saltValue as specified in section

2.3.4.12. The block number MUST be represented as a 32-bit unsigned integer.

Data blocks MUST then be encrypted by using the initialization vector and the intermediate key
obtained by decrypting the encryptedKeyValue from a KeyEncryptor contained within the
KeyEncryptors sequence as specified in section 2.3.4.10. The final data block MUST be padded to the

next integral multiple of the KeyData.blockSize value. Any padding bytes can be used. Note that the
StreamSize field of the EncryptedPackage stream (1) specifies the number of bytes of unencrypted
data as specified in section 2.3.4.4.

2.3.5 Office Binary Document RC4 CryptoAPI Encryption

The storages and streams (1) encrypted by Office binary document RC4 CryptoAPI encryption are
specified in the documentation for the relevant application; for more information see [MS-DOC], [MS-

https://go.microsoft.com/fwlink/?LinkId=90314
%5bMS-DOC%5d.pdf#Section_ccd7b4867881484ca13751170af7cc22
%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06

53 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

XLS], and [MS-PPT]. The following subsections specify the structures and key generation methods
used by the application.

2.3.5.1 RC4 CryptoAPI Encryption Header

The encryption header structure used for RC4 CryptoAPI encryption is specified as shown in the
following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo

EncryptionHeader.Flags

EncryptionHeaderSize

EncryptionHeader (variable)

...

EncryptionVerifier (variable)

...

EncryptionVersionInfo (4 bytes): A Version structure (section 2.1.4) that specifies the encryption

version used to create the document and the encryption version required to open the document.
Version.vMajor MUST be 0x0002, 0x0003, or 0x0004<21> and Version.vMinor MUST be
0x0002.

EncryptionHeader.Flags (4 bytes): A copy of the Flags stored in the EncryptionHeader structure
(section 2.3.2) that is stored in this stream (1).

EncryptionHeaderSize (4 bytes): An unsigned integer that specifies the size, in bytes, of the
EncryptionHeader structure.

EncryptionHeader (variable): An EncryptionHeader structure (section 2.3.2) used to encrypt the
structure. The values MUST be set as described in the following table.

Field Value

Flags The fCryptoAPI bit MUST be set. The fDocProps bit MUST be set
if the document properties are not encrypted.

SizeExtra MUST be 0x00000000.

AlgID MUST be 0x00006801 (RC4 encryption).

AlgIDHash MUST be 0x00008004 (SHA-1).

KeySize MUST be greater than or equal to 0x00000028 bits and less than
or equal to 0x00000080 bits, in increments of 8 bits. If set to
0x00000000, it MUST be interpreted as 0x00000028 bits. It MUST
be compatible with the chosen cryptographic service provider
(CSP).

%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06
%5bMS-PPT%5d.pdf#Section_6be79dde33c14c1b8ccc4b2301c08662

54 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Field Value

ProviderType MUST be 0x00000001.

Reserved1 Undefined and MUST be ignored.

Reserved2 MUST be 0x00000000 and MUST be ignored.

CSPName MUST be set to a recognized CSP name that supports RC4 and
SHA-1 algorithms with a key length compatible with the KeySize
field value.<22>

EncryptionVerifier (variable): An EncryptionVerifier structure as specified in section 2.3.3 that is
generated as specified in section 2.3.5.5.

2.3.5.2 RC4 CryptoAPI Encryption Key Generation

The encryption key for RC4 CryptoAPI binary document encryption MUST be generated by using the
following approach.

Let H() be a hashing algorithm as determined by the EncryptionHeader.AlgIDHash field, and a plus
sign (+) represents concatenation. The password MUST be provided as an array of Unicode
characters.

Limitations on the length of the password and the characters used by the password are
implementation-dependent. For details about behavior variations, see [MS-DOC], [MS-XLS], and [MS-
PPT]. Unless otherwise specified, the maximum password length MUST be 255 Unicode characters.

The password hash is generated as follows:

 H0 = H(salt + password)

The salt used MUST be generated randomly and MUST be 16 bytes in size. The salt MUST be stored

in the EncryptionVerifier.Salt field as specified in section 2.3.4.5. Note that the hash MUST NOT be

iterated. See section 4 for additional notes.

After the hash has been obtained, the encryption key MUST be generated by using the hash data and
a block number that is provided by the application. The encryption algorithm MUST be specified in the
EncryptionHeader.AlgID field.

The method used to generate the hash data that is the input into the key derivation algorithm is as
follows:

 Hfinal = H(H0 + block)

The block number MUST be a 32-bit unsigned value provided by the application.

Let keyLength be the key length, in bits, as specified by the RC4 CryptoAPI Encryption Header
KeySize field.

The first keyLength bits of Hfinal MUST be considered the derived encryption key, unless keyLength
is exactly 40 bits long. An SHA-1 hash is 160 bits long, and the maximum RC4 key length is 128 bits;
therefore, keyLength MUST be less than or equal to 128 bits. If keyLength is exactly 40 bits, the

encryption key MUST be composed of the first 40 bits of Hfinal and 88 bits set to zero, creating a 128-
bit key.

%5bMS-DOC%5d.pdf#Section_ccd7b4867881484ca13751170af7cc22
%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06
%5bMS-PPT%5d.pdf#Section_6be79dde33c14c1b8ccc4b2301c08662
%5bMS-PPT%5d.pdf#Section_6be79dde33c14c1b8ccc4b2301c08662

55 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.3.5.3 RC4 CryptoAPI EncryptedStreamDescriptor Structure

The RC4 CryptoAPI EncryptedStreamDescriptor structure specifies information about encrypted
streams (1) and storages contained within an RC4 CryptoAPI Encrypted Summary stream (1) as

specified in section 2.3.5.4. It is specified as shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StreamOffset

StreamSize

Block NameSize A B Unused

Reserved2

StreamName (variable)

...

StreamOffset (4 bytes): An unsigned integer that specifies the offset, in bytes, within the summary
stream (1) where the encrypted stream (1) is written.

StreamSize (4 bytes): An unsigned integer that specifies the size, in bytes, of the encrypted stream
(1).

Block (2 bytes): An unsigned integer that specifies the block number used to derive the encryption
key for this encrypted stream (1).

NameSize (1 byte): An unsigned integer that specifies the number of characters used by the
StreamName field, not including the terminating NULL character.

A – fStream (1 bit): A value that MUST be 1 if the encrypted data is a stream (1). It MUST be 0 if
the encrypted data is a storage.

B – Reserved1 (1 bit): A value that MUST be 0 and MUST be ignored.

Unused (6 bits): A value that MUST be ignored.

Reserved2 (4 bytes): A value that MUST be ignored.

StreamName (variable): A null-terminated Unicode string specifying the name of the stream (1) (or
storage) stored within the encrypted summary stream (1).

2.3.5.4 RC4 CryptoAPI Encrypted Summary Stream

When RC4 CryptoAPI encryption is used, an encrypted summary stream (1) MAY<23> be created.
The name of the stream (1) MUST be specified by the application. If the encrypted summary stream
(1) is present, the \0x05DocumentSummaryInformation stream (1) MUST be present, MUST
conform to the details as specified in [MS-OSHARED] section 2.3.3.2, and MUST contain no properties.
The \0x05SummaryInformation stream (1) MUST NOT be present.

For details about the contents of the \0x05SummaryInformation and
\0x05DocumentSummaryInformation streams (1), see [MS-OSHARED] section 2.3.3.2.1 and
[MS-OSHARED] section 2.3.3.2.2.

%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d

56 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

For brevity, this section refers to the RC4 CryptoAPI Encrypted Summary stream (1) as the encrypted
summary stream (1).

The stream (1) MUST have the format that is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StreamDescriptorArrayOffset

StreamDescriptorArraySize

EncryptedStreamData (variable)

...

EncryptedStreamDescriptorCount

EncryptedStreamDescriptorArray (variable)

...

StreamDescriptorArrayOffset (4 bytes): An unsigned integer that specifies the offset within the
encrypted summary stream (1) where the EncryptedStreamDescriptorCount structure is
found.

StreamDescriptorArraySize (4 bytes): An unsigned integer that specifies the number of bytes
used by the EncryptedStreamDescriptorArray structure.

EncryptedStreamData (variable): One or more encrypted streams (1) stored within the encrypted

summary stream (1).

EncryptedStreamDescriptorCount (4 bytes): An encrypted unsigned integer specifying the count
of EncryptedStreamDescriptor structures (section 2.3.5.3).

EncryptedStreamDescriptorArray (variable): One or more EncryptedStreamDescriptor
structures that specify the offsets and names of the encrypted streams (1) and storages contained
within the encrypted summary stream (1).

The encrypted summary stream (1) MUST be written as specified in the following steps:

1. Seek forward from the start of the encrypted summary stream (1) by 8 bytes to provide space for
the StreamDescriptorArrayOffset and StreamDescriptorArraySize fields, which will be
written in step 8. Let BlockNumber initially be 0x00000000.

2. If additional streams (1) or storages are provided by the application, for each stream (1) or

storage the following steps MUST be performed:

1. If the data is contained within a stream (1), retrieve the contents of the stream (1).
Initialize the encryption key as specified in section 2.3.5.2, using a block number of

0x00000000, and encrypt the stream (1) data. Write the encrypted bytes into the
encrypted summary stream (1).

2. If the data is contained within a storage, convert the storage into a file as specified in
[MS-CFB]. Initialize the encryption key as specified in section 2.3.5.2, using a block

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b

57 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

number of BlockNumber, and encrypt the storage data as a stream (1) of bytes. Write
the encrypted bytes into the encrypted summary stream (1).

3. Set the fields within the associated EncryptedStreamDescriptor for the stream (1) or
storage. Do not write it to the encrypted summary stream (1) yet.

4. Increment BlockNumber.

3. Generate or retrieve the entire contents of the \0x05SummaryInformation stream (1).
Initialize the encryption key as specified in section 2.3.5.2, using a block number of
BlockNumber, and encrypt the \0x05SummaryInformationStream data. Write the encrypted
bytes into the encrypted summary stream (1). Increment BlockNumber.

4. Set the fields within the associated EncryptedStreamDescriptor for the
\0x05SummaryInformation stream (1). Do not write it to the encrypted summary stream (1)

yet.

5. Generate or retrieve data contained within the \0x05DocumentSummaryInformation stream

(1). Initialize the encryption key as specified in section 2.3.5.2, using a block number of
BlockNumber, and encrypt the \0x05DocumentSummaryInformationStream data. Write the
encrypted bytes into the encrypted summary stream (1) immediately following the data written in
step 2.

6. Set the fields within the associated EncryptedStreamDescriptor for the
\0x05DocumentSummaryInformation stream (1). Do not write it to the encrypted summary
stream (1) yet.

7. Write the EncryptedStreamDescriptorCount and EncryptedStreamDescriptorArray by
initializing the encryption key as specified in section 2.3.5.2, using a block number of
0x00000000. Concatenate and encrypt the EncryptedStreamDescriptorCount and the
EncryptedStreamDescriptor. Write the encrypted bytes into the encrypted summary stream

(1).

8. Initialize the StreamDescriptorArrayOffset and StreamDescriptorArraySize fields to specify

the encrypted location of the EncryptedStreamDescriptorCount and size of the
EncryptedStreamDescriptorCount and EncryptedStreamDescriptorArray within the
encrypted summary stream (1). Initialize the encryption key as specified in section 2.3.5.2, using
a block number of 0x00000000.

2.3.5.5 Password Verifier Generation

The password verifier uses an EncryptionVerifier structure, as specified in section 2.3.3. The
password verifier Salt field MUST be populated with the salt created during password key generation,
as specified in section 2.3.5.2. An additional 16-byte verifier is then hashed using the SHA-1 hashing

algorithm specified in the encryption header structure, and encrypted using the key generated in
section 2.3.5.2, with a block number of 0x00000000.

2.3.5.6 Password Verification

The password verification process is specified by the following steps:

1. Generate an encryption key as specified in section 2.3.3, using a block number of 0x00000000.

2. Decrypt the EncryptedVerifier field of the EncryptionVerifier structure to obtain the Verifier
value. The resulting Verifier value MUST be an array of 16 bytes.

3. Decrypt the EncryptedVerifierHash field of the EncryptionVerifier structure to obtain the hash
of the Verifier value. The number of bytes used by the encrypted Verifier hash MUST be 20.

58 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

4. Calculate the SHA-1 hash value of the Verifier value calculated in step 2.

5. Compare the results of step 3 and step 4. If the two hash values do not match, the password is
incorrect.

The RC4 decryption stream (1) MUST NOT be reset between the two decryption operations specified

in steps 2 and 3.

2.3.6 Office Binary Document RC4 Encryption

Office binary document RC4 encryption does not alter the storages and streams (1) used. If a stream

(1) is encrypted, it is encrypted in place. The following subsections specify the structures and key
generation methods used by the application.

2.3.6.1 RC4 Encryption Header

The encryption header used for RC4 encryption is specified as shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo

Salt (16 bytes)

...

...

EncryptedVerifier (16 bytes)

...

...

EncryptedVerifierHash (16 bytes)

...

...

EncryptionVersionInfo (4 bytes): A Version structure (section 2.1.4), where Version.vMajor
MUST be 0x0001 and Version.vMinor MUST be 0x0001.

Salt (16 bytes): A randomly generated array of bytes that specifies the salt value used during
password hash generation. It MUST NOT be the same data used for the verifier stored encrypted
in the EncryptedVerifier field.

EncryptedVerifier (16 bytes): An additional 16-byte verifier encrypted using a 40-bit RC4 cipher
initialized as specified in section 2.3.6.2, with a block number of 0x00000000.

EncryptedVerifierHash (16 bytes): A 40-bit RC4 encrypted MD5 hash of the verifier used to
generate the EncryptedVerifier field.

59 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.3.6.2 Encryption Key Derivation

The encryption key for Office binary document RC4 encryption is generated by using the following
method: Let H() be the MD5 hashing algorithm, Hn be the hash data of the nth iteration, and a plus

sign (+) represent concatenation. The password MUST be provided as an array of Unicode characters.

Limitations on the length of the password and the characters used by the password are
implementation-dependent. For details about behavior variations, see [MS-DOC] and [MS-XLS].
Unless otherwise specified, the maximum password length MUST be 255 Unicode characters.

The initial password hash is generated as follows.

 H0 = H(password)

The salt used MUST be generated randomly and MUST be 16 bytes in size. The salt MUST be stored in

the Salt field of the RC4 Encryption Header structure (section 2.3.6.1). The hash is then computed
by using the following approach:

1. Let TruncatedHash be the first 5 bytes of H0.

2. Let IntermediateBuffer be a 336-byte buffer.

3. Form a 21-byte buffer by concatenating TruncatedHash plus the salt. Initialize
IntermediateBuffer by copying the 21-byte buffer into IntermediateBuffer a total of 16 times.

4. Use the following: H1 = H(IntermediateBuffer).

After the final hash has been obtained, the encryption key MUST be generated by using the first 5
bytes of the final hash data and a block number that is provided by the application. The encryption
algorithm MUST be RC4. The method used to generate the hash data that is the input into the key
derivation algorithm is the following:

 Let TruncatedHash be the first 5 bytes of H1.

 Use the following: Hfinal equals H(TruncatedHash + block).

The block number MUST be a 32-bit unsigned value provided by the application.

The first 128 bits of Hfinal MUST then be used as the derived encryption key.

2.3.6.3 Password Verifier Generation

The password verifier uses a RC4 Encryption Header structure, as specified in section 2.3.6.1. The

password verifier Salt field MUST be populated with the salt created during password key generation,
as specified in section 2.3.6.2. An additional 16-byte verifier is then hashed by using the MD5 hashing
algorithm and encrypted by using the key generated in section 2.3.6.2, with a block number of
0x00000000.

The RC4 decryption stream (1) MUST NOT be reset between decrypting EncryptedVerifier and
EncryptedVerifierHash.

2.3.6.4 Password Verification

The password verification process is specified by the following steps:

1. Generate an encryption key as specified in section 2.3.6.2, using a block number of 0x00000000.

2. Decrypt the EncryptedVerifier field of the RC4 Encryption Header structure to obtain the

Verifier value. The resulting Verifier value MUST be an array of 16 bytes.

%5bMS-DOC%5d.pdf#Section_ccd7b4867881484ca13751170af7cc22
%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06

60 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

3. Decrypt the EncryptedVerifierHash field of the RC4 Encryption Header structure to obtain the
hash of the Verifier value. The number of bytes used by the encrypted Verifier hash MUST be

16.

4. Calculate the MD5 hash value of the results of step 2.

5. Compare the results of step 3 and step 4. If the two hash values do not match, the password is
incorrect.

The RC4 decryption stream (1) MUST NOT be reset between decrypting EncryptedVerifier and
EncryptedVerifierHash.

2.3.7 XOR Obfuscation

XOR obfuscation is supported for backward compatibility with older file formats.

2.3.7.1 Binary Document Password Verifier Derivation Method 1

The CreatePasswordVerifier_Method1 procedure specifies how a 16-bit password verifier is
obtained from an ASCII password string. The password verifier is used in XOR obfuscation as well as
for document write protection.

The CreatePasswordVerifier_Method1 procedure takes the following parameter:

 Password: An ASCII string that specifies the password to be used when generating the verifier.

 FUNCTION CreatePasswordVerifier_Method1
 PARAMETERS Password
 RETURNS 16-bit unsigned integer

 DECLARE Verifier AS 16-bit unsigned integer
 DECLARE PasswordArray AS array of 8-bit unsigned integers

 SET Verifier TO 0x0000
 SET PasswordArray TO (empty array of bytes)
 SET PasswordArray[0] TO Password.Length
 APPEND Password TO PasswordArray

 FOR EACH PasswordByte IN PasswordArray IN REVERSE ORDER
 IF (Verifier BITWISE AND 0x4000) is 0x0000
 SET Intermediate1 TO 0
 ELSE
 SET Intermediate1 TO 1
 ENDIF

 SET Intermediate2 TO Verifier MULTIPLED BY 2
 SET most significant bit of Intermediate2 TO 0

 SET Intermediate3 TO Intermediate1 BITWISE OR Intermediate2
 SET Verifier TO Intermediate3 BITWISE XOR PasswordByte
 ENDFOR

 RETURN Verifier BITWISE XOR 0xCE4B
 END FUNCTION

For more information, see section 4.

2.3.7.2 Binary Document XOR Array Initialization Method 1

The CreateXorArray_Method1 procedure specifies how a 16-byte XOR obfuscation array is
initialized. The procedure takes the following parameter:

61 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 Password: An ASCII string that specifies the password to be used to encrypt the data. Password
MUST NOT be longer than 15 characters.

 SET PadArray TO (0xBB, 0xFF, 0xFF, 0xBA, 0xFF, 0xFF, 0xB9, 0x80,
 0x00, 0xBE, 0x0F, 0x00, 0xBF, 0x0F, 0x00)

 SET InitialCode TO (0xE1F0, 0x1D0F, 0xCC9C, 0x84C0, 0x110C,
 0x0E10, 0xF1CE, 0x313E, 0x1872, 0xE139,
 0xD40F, 0x84F9, 0x280C, 0xA96A, 0x4EC3)

 SET XorMatrix TO (0xAEFC, 0x4DD9, 0x9BB2, 0x2745, 0x4E8A, 0x9D14, 0x2A09,
 0x7B61, 0xF6C2, 0xFDA5, 0xEB6B, 0xC6F7, 0x9DCF, 0x2BBF,
 0x4563, 0x8AC6, 0x05AD, 0x0B5A, 0x16B4, 0x2D68, 0x5AD0,
 0x0375, 0x06EA, 0x0DD4, 0x1BA8, 0x3750, 0x6EA0, 0xDD40,
 0xD849, 0xA0B3, 0x5147, 0xA28E, 0x553D, 0xAA7A, 0x44D5,
 0x6F45, 0xDE8A, 0xAD35, 0x4A4B, 0x9496, 0x390D, 0x721A,
 0xEB23, 0xC667, 0x9CEF, 0x29FF, 0x53FE, 0xA7FC, 0x5FD9,
 0x47D3, 0x8FA6, 0x0F6D, 0x1EDA, 0x3DB4, 0x7B68, 0xF6D0,
 0xB861, 0x60E3, 0xC1C6, 0x93AD, 0x377B, 0x6EF6, 0xDDEC,
 0x45A0, 0x8B40, 0x06A1, 0x0D42, 0x1A84, 0x3508, 0x6A10,
 0xAA51, 0x4483, 0x8906, 0x022D, 0x045A, 0x08B4, 0x1168,
 0x76B4, 0xED68, 0xCAF1, 0x85C3, 0x1BA7, 0x374E, 0x6E9C,
 0x3730, 0x6E60, 0xDCC0, 0xA9A1, 0x4363, 0x86C6, 0x1DAD,
 0x3331, 0x6662, 0xCCC4, 0x89A9, 0x0373, 0x06E6, 0x0DCC,
 0x1021, 0x2042, 0x4084, 0x8108, 0x1231, 0x2462, 0x48C4)

 FUNCTION CreateXorArray_Method1
 PARAMETERS Password
 RETURNS array of 8-bit unsigned integers

 DECLARE XorKey AS 16-bit unsigned integer
 DECLARE ObfuscationArray AS array of 8-bit unsigned integers

 SET XorKey TO CreateXorKey_Method1(Password)

 SET Index TO Password.Length
 SET ObfuscationArray TO (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)

 IF Index MODULO 2 IS 1
 SET Temp TO most significant byte of XorKey
 SET ObfuscationArray[Index] TO XorRor(PadArray[0], Temp)

 DECREMENT Index

 SET Temp TO least significant byte of XorKey
 SET PasswordLastChar TO Password[Password.Length MINUS 1]
 SET ObfuscationArray[Index] TO XorRor(PasswordLastChar, Temp)
 END IF

 WHILE Index IS GREATER THAN to 0
 DECREMENT Index
 SET Temp TO most significant byte of XorKey
 SET ObfuscationArray[Index] TO XorRor(Password[Index], Temp)

 DECREMENT Index
 SET Temp TO least significant byte of XorKey
 SET ObfuscationArray[Index] TO XorRor(Password[Index], Temp)
 END WHILE

 SET Index TO 15
 SET PadIndex TO 15 MINUS Password.Length
 WHILE PadIndex IS greater than 0

 SET Temp TO most significant byte of XorKey
 SET ObfuscationArray[Index] TO XorRor(PadArray[PadIndex], Temp)
 DECREMENT Index
 DECREMENT PadIndex

62 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 SET Temp TO least significant byte of XorKey
 SET ObfuscationArray[Index] TO XorRor(PadArray[PadIndex], Temp)
 DECREMENT Index
 DECREMENT PadIndex
 END WHILE

 RETURN ObfuscationArray
 END FUNCTION

 FUNCTION CreateXorKey_Method1
 PARAMETERS Password
 RETURNS 16-bit unsigned integer

 DECLARE XorKey AS 16-bit unsigned integer

 SET XorKey TO InitialCode[Password.Length MINUS 1]

 SET CurrentElement TO 0x00000068

 FOR EACH Char IN Password IN REVERSE ORDER
 FOR 7 iterations
 IF (Char BITWISE AND 0x40) IS NOT 0
 SET XorKey TO XorKey BITWISE XOR XorMatrix[CurrentElement]
 END IF
 SET Char TO Char MULTIPLIED BY 2
 DECREMENT CurrentElement
 END FOR
 END FOR

 RETURN XorKey
 END FUNCTION

 FUNCTION XorRor
 PARAMETERS byte1, byte2
 RETURNS 8-bit unsigned integer

 RETURN Ror(byte1 XOR byte2)
 END FUNCTION

 FUNCTION Ror
 PARAMETERS byte
 RETURNS 8-bit unsigned integer

 SET temp1 TO byte DIVIDED BY 2
 SET temp2 TO byte MULTIPLIED BY 128
 SET temp3 TO temp1 BITWISE OR temp2
 RETURN temp3 MODULO 0x100
 END FUNCTION

2.3.7.3 Binary Document XOR Data Transformation Method 1

Data transformed by Binary Document XOR Data Transformation Method 1 for encryption MUST be as
specified in the EncryptData_Method1 procedure. This procedure takes the following parameters:

 Password: An ASCII string that specifies the password to be used to encrypt the data.

 Data: An array of unsigned 8-bit integers that specifies the data to be encrypted.

 XorArrayIndex: An unsigned integer that specifies the initial index into the XOR obfuscation
array to be used.

63 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 FUNCTION EncryptData_Method1
 PARAMETERS Password, Data, XorArrayIndex
 DECLARE XorArray as array of 8-bit unsigned integers

 SET XorArray TO CreateXorArray_Method1(Password)

 FOR Index FROM 0 TO Data.Length
 SET Value TO Data[Index]
 SET Value TO (Value rotate left 5 bits)
 SET Value TO Value BITWISE XOR XorArray[XorArrayIndex]
 SET DATA[Index] TO Value

 INCREMENT XorArrayIndex
 SET XorArrayIndex TO XorArrayIndex MODULO 16
 END FOR
 END FUNCTION

Data transformed by the Binary Document XOR Data Transformation Method 1 for decryption MUST be

as specified in the DecryptData_Method1 procedure. This procedure takes the following

parameters:

 Password: An ASCII string that specifies the password to be used to decrypt the data.

 Data: An array of unsigned 8-bit integers that specifies the data to be decrypted.

 XorArrayIndex: An unsigned integer that specifies the initial index into the XOR obfuscation
array to be used.

 FUNCTION DecryptData_Method1
 PARAMETERS Password, Data, XorArrayIndex
 DECLARE XorArray as array of 8-bit unsigned integers

 SET XorArray TO CreateXorArray_Method1(Password)

 FOR Index FROM 0 to Data.Length
 SET Value TO Data[Index]
 SET Value TO Value BITWISE XOR XorArray[XorArrayIndex]
 SET Value TO (Value rotate right 5 bits)
 SET Data[Index] TO Value

 INCREMENT XorArrayIndex
 SET XorArrayIndex TO XorArrayIndex MODULO 16
 END FOR
 END FUNCTION

2.3.7.4 Binary Document Password Verifier Derivation Method 2

The CreatePasswordVerifier_Method2 procedure specifies how a 32-bit password verifier is
obtained from a string of single-byte characters that has been transformed from a Unicode string. The

password verifier is used in XOR obfuscation.

Two different approaches exist for preprocessing the password string to convert it from Unicode to
single-byte characters:

 Using the current language code identifier (LCID), convert Unicode input into an ANSI string,
as specified in [MS-UCODEREF]. Truncate the resulting string to 15 single-byte characters.

 For each input Unicode character, copy the least significant byte into the single-byte string, unless

the least significant byte is 0x00. If the least significant byte is 0x00, copy the most significant
byte. Truncate the resulting string to 15 characters.

%5bMS-UCODEREF%5d.pdf#Section_4a045e08fc294f22baf416f38c2825fb

64 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

When writing files, the second approach MUST be used. When reading files, both methods MUST be
tried, and the password MUST be considered correct if either approach results in a match.

The CreatePasswordVerifier_Method2 procedure takes the following parameter:

 Password: A string of single-byte characters that specifies the password to be used to encrypt

the data. Password MUST NOT be longer than 15 characters. Password MUST be transformed from
Unicode to single-byte characters by using the method specified in this section.

 FUNCTION CreatePasswordVerifier_Method2
 PARAMETERS Password
 RETURNS 32-bit unsigned integer

 DECLARE Verifier as 32-bit unsigned integer
 DECLARE KeyHigh as 16-bit unsigned integer
 DECLARE KeyLow as 16-bit unsigned integer

 SET KeyHigh TO CreateXorKey_Method1(Password)
 SET KeyLow TO CreatePasswordVerifier_Method1(Password)

 SET most significant 16 bits of Verifier TO KeyHigh
 SET least significant 16 bits of Verifier TO KeyLow

 RETURN Verifier
 END FUNCTION

2.3.7.5 Binary Document XOR Array Initialization Method 2

The CreateXorArray_Method2 procedure specifies how a 16-byte XOR obfuscation array is
initialized. The procedure takes the following parameter:

 Password: A string of single-byte characters that specifies the password to be used to encrypt
the data. Password MUST NOT be longer than 15 characters. Password MUST be transformed from
Unicode to single-byte characters by using the method specified in section 2.3.7.4, which results

in the password verifier matching.

 FUNCTION CreateXorArray_Method2
 PARAMETERS Password
 RETURNS array of 8-bit unsigned integers

 DECLARE Verifier as 32-bit unsigned integer
 DECLARE VerifierHighWord as 16-bit unsigned integer
 DECLARE KeyHigh as 8-bit unsigned integer
 DECLARE KeyLow as 8-bit unsigned integer

 SET Verifier TO CreatePasswordVerifier_Method2(Password)
 SET VerifierHighWord TO 16 most significant bits of Verifier
 SET KeyHigh TO 8 most significant bits of VerifierHighWord
 SET KeyLow TO 8 least significant bits of VerifierHighWord

 SET PadArray TO (0xBB, 0xFF, 0xFF, 0xBA, 0xFF, 0xFF, 0xB9, 0x80,
 0x00, 0xBE, 0x0F, 0x00, 0xBF, 0x0F, 0x00)
 SET ObfuscationArray TO (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)

 SET Index TO 0
 WHILE Index IS LESS THAN Password.Length
 SET ObfuscationArray[Index] TO Password[Index]
 INCREMENT Index
 END WHILE
 WHILE Index IS LESS THAN 16
 SET ObfuscationArray[Index] TO PadArray[Index MINUS Password.Length]
 INCREMENT Index
 END WHILE

65 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 SET Index TO 0
 WHILE Index IS LESS THAN 16
 SET Temp1 TO ObfuscationArray[Index] BITWISE XOR KeyLow
 SET ObfuscationArray[Index] TO Ror(Temp1)

 INCREMENT Index

 SET Temp1 TO ObfuscationArray[Index] BITWISE XOR KeyHigh
 SET ObfuscationArray[Index] TO Ror(Temp1)

 INCREMENT Index
 END WHILE

 RETURN ObfuscationArray
 END FUNCTION

2.3.7.6 Binary Document XOR Data Transformation Method 2

Data transformed by Binary Document XOR data transformation method 2 takes the result of an XOR
operation on each byte of input in sequence and the 16-byte XOR obfuscation array that is initialized
as specified in section 2.3.7.2, except when the byte of input is 0x00 or the binary XOR of the input
and the obfuscation array element is 0x00, in which case the byte of input is not modified. When the

end of the XOR obfuscation array is reached, start again at the beginning.

2.3.7.7 Password Verification

Calculate the password verifier for the applicable password verifier derivation method, as specified in
section 2.3.7.1 or section 2.3.7.4, depending on the document type. Compare the derived password

verifier with the password verifier stored in the file. If the two do not match, the password is incorrect.

2.4 Document Write Protection

Document write protection is meant to discourage tampering with the file or sections of the file by

users. See section 4.1.4 for more information.

Limitations on the length of the password and the characters used by the password are
implementation-dependent. For more details about behavior variations, see [MS-DOC] and [MS-XLS].
Unless otherwise specified, the maximum password length MUST be 255 Unicode characters.

2.4.1 ECMA-376 Document Write Protection

ECMA-376 document write protection [ECMA-376] is as specified in [ECMA-376] Part 4 Sections
2.15.1.28, 2.15.1.94, 3.2.12, and 4.3.1.17.<24>

2.4.2 Binary Document Write Protection

2.4.2.1 Binary Document Write Protection Method 1

Binary documents that conform to the file format as specified in [MS-DOC] MUST store the write
protection password in the file in plaintext as specified in [MS-DOC] section 2.9.276.

2.4.2.2 Binary Document Write Protection Method 2

Binary documents that conform to the file format as specified in [MS-XLS] MUST store the write
protection password verifier in the file, as specified in [MS-XLS] section 2.2.9 and created by using the

%5bMS-DOC%5d.pdf#Section_ccd7b4867881484ca13751170af7cc22
%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06
https://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-DOC%5d.pdf#Section_ccd7b4867881484ca13751170af7cc22
%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06

66 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

method specified in section 2.3.7.1. When a binary document using write protection method 2 is write
protected, the document can also be encrypted by using one of the methods specified in section

2.3.<25>

2.4.2.3 Binary Document Write Protection Method 3

Binary documents that conform to the file format as specified in [MS-PPT] MUST store the write
protection password in the file in plaintext, as specified in [MS-PPT] section 2.4.7. When a binary
document using write protection method 3 is write protected, it SHOULD NOT<26> also be encrypted

by using one of the methods specified in section 2.3.

If the user has not supplied an encryption password and the document is encrypted, the default
encryption choice using the techniques specified in section 2.3 MUST be the following password:
"\x2f\x30\x31\x48\x61\x6e\x6e\x65\x73\x20\x52\x75\x65\x73\x63\x68\x65\x72\x2f\x30\x31".

2.4.2.4 ISO Write Protection Method

Cases where binary documents use the following hashing algorithm, intended to be compatible with
ISO/IEC 29500 (for more information, see [ISO/IEC29500-1:2011]), are specified in [MS-XLSB]. The
ISO password hashing algorithm takes the following parameters:

 Password: An array of Unicode characters specifying the write protection password. The
password MUST be a minimum of 1 and a maximum of 255 Unicode characters.

AlgorithmName: A Unicode string specifying the name of the cryptographic hash algorithm used to

compute the password hash value. The values in the following table are reserved. (Values that are not
defined MAY<27> be used, and a compliant implementation is not required to support all defined
values. The string MUST be at least 1 character. See section 4 for additional information.)

Value Hash algorithm

SHA-1 MUST conform to the details as specified in
[RFC4634].

SHA-256 MUST conform to the details as specified in
[RFC4634].

SHA-384 MUST conform to the details as specified in
[RFC4634].

SHA-512 MUST conform to the details as specified in
[RFC4634].

MD5 MUST conform to MD5.

MD4 MUST conform to the details as specified in
[RFC1320].

MD2 MUST conform to the details as specified in
[RFC1319].

RIPEMD-128 MUST conform to the details as specified in
[ISO/IEC 10118].

RIPEMD-160 MUST conform to the details as specified in
[ISO/IEC 10118].

WHIRLPOOL MUST conform to the details as specified in
[ISO/IEC 10118].

%5bMS-PPT%5d.pdf#Section_6be79dde33c14c1b8ccc4b2301c08662
https://go.microsoft.com/fwlink/?LinkId=252374
%5bMS-XLSB%5d.pdf#Section_acc8aa921f02416799f584f9f676b95a
https://go.microsoft.com/fwlink/?LinkId=90486
https://go.microsoft.com/fwlink/?LinkId=90274
https://go.microsoft.com/fwlink/?LinkId=90273
https://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409

67 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 Salt: An array of bytes that specifies the salt value used during password hash generation. When
computing hashes for new passwords, this MUST be generated using an arbitrary pseudorandom

function. When verifying a password, the salt value retrieved from the document MUST be used.
The salt MUST NOT be larger than 65,536 bytes.

 SpinCount: A 32-bit unsigned integer that specifies the number of times to iterate on a hash of a
password. It MUST NOT be greater than 10,000,000.

Let H() be an implementation of the hashing algorithm specified by AlgorithmName, iterator be an
unsigned 32-bit integer, Hn be the hash data of the nth iteration, and a plus sign (+) represent
concatenation. The initial password hash is generated as follows.

 H0 = H(salt + password)

The hash is then iterated using the following approach.

 Hn = H(Hn-1 + iterator)

where iterator is initially set to 0 and is incremented monotonically on each iteration until SpinCount
iterations have been performed. The value of iterator on the last iteration MUST be one less than
SpinCount. The final hash is then Hfinal = HSpinCount-1.

2.5 Binary Document Digital Signatures

This section specifies the process used to create and store digital signatures within Office binary
documents, and it specifies XML Advanced Electronic Signatures [XAdES] support for all documents
using xmldsig digital signatures. There are two digital signature formats. The first is referred to as a
CryptoAPI digital signature, and the second is referred to as an xmldsig digital signature.

The process used by ECMA-376 documents [ECMA-376] for xmldsig digital signatures is very similar to

the process used by xmldsig digital signatures when applied to Office binary documents, as specified
in [ECMA-376] Part 2 Section 12. Both document types use an XML signature format as specified in
[XMLDSig]. For details about a schema reference, see [ECMA-376] Part 2 Section 12.2.4.

2.5.1 CryptoAPI Digital Signature Structures and Streams

2.5.1.1 TimeEncoding Structure

The TimeEncoding structure specifies a date and time in Coordinated Universal Time (UTC), with
the most significant 32 bits and the least significant 32 bits of the structure swapped. To be processed

as a valid UTC time, HighDateTime and LowDateTime MUST be assigned to a FILETIME structure
as specified in [MS-DTYP]. Because of the reverse ordering, the HighDateTime field MUST be
assigned to the dwHighDateTime field of the FILETIME structure, and the LowDateTime field
MUST be assigned to the dwLowDateTime field of the FILETIME structure. After the
HighDateTime and LowDateTime fields are correctly assigned to a FILETIME structure, the UTC
time can be obtained.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HighDateTime

LowDateTime

HighDateTime (4 bytes): An unsigned integer specifying the high order 32 bits of a UTCTime.

LowDateTime (4 bytes): An unsigned integer specifying the low order 32 bits of a UTCTime.

https://go.microsoft.com/fwlink/?LinkId=151586
https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=130861
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

68 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.5.1.2 CryptoAPI Digital Signature CertificateInfo Structure

The CertificateInfo structure has the format that is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CertificateInfoSize

SignerLength

IssuerLength

ExpireTime

...

SignTime

...

AlgIDHash

SignatureSize

EncodedCertificateSize

Version

SerialNumberSize

IssuerBlobSize

Reserved

SignerName (variable)

...

IssuerName (variable)

...

Signature (variable)

...

EncodedCertificate (variable)

69 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

...

SerialNumber (variable)

...

IssuerBlob (variable)

...

CertificateInfoSize (4 bytes): An unsigned integer specifying the number of bytes used by the

remainder of this structure, not including CertificateInfoSize.

SignerLength (4 bytes): An unsigned integer specifying the number of characters needed to store

the SignerName field, not including the terminating null character.

IssuerLength (4 bytes): An unsigned integer specifying the number of characters needed to store
the IssuerName field, not including the terminating null character.

ExpireTime (8 bytes): A TimeEncoding structure (section 2.5.1.1) specifying the expiration time of
this signature.

SignTime (8 bytes): A TimeEncoding structure specifying the time this signature was created.

AlgIDHash (4 bytes): A signed integer specifying the algorithm identifier. It MUST be 0x00008003
(MD5).

SignatureSize (4 bytes): An unsigned integer specifying the number of bytes used by the
Signature field.

EncodedCertificateSize (4 bytes): An unsigned integer specifying the number of bytes used by the

EncodedCertificate field.

Version (4 bytes): A value that MUST be 0x00000000.

SerialNumberSize (4 bytes): An unsigned integer specifying the number of bytes used by the
SerialNumber field.

IssuerBlobSize (4 bytes): An unsigned integer specifying the number of bytes used by the
IssuerBlob field.

Reserved (4 bytes): A value that MUST be 0x00000000.

SignerName (variable): A null-terminated Unicode string specifying the name of the signer.

IssuerName (variable): A null-terminated Unicode string specifying the name of the issuer.

Signature (variable): A binary representation of the signature, generated as specified in [RFC3280],
except stored in little-endian form.

EncodedCertificate (variable): An encoded representation of the certificate. MUST contain the
ASN.1 [ITUX680-1994] DER encoding of an X.509 certificate. For more details, see [RFC3280].

SerialNumber (variable): An array of bytes specifying the serial number of the certificate as

specified in [RFC3280], with the least significant byte first. Any leading 0x00 bytes MUST be
truncated.

IssuerBlob (variable): An ASN.1 structure as specified in IETF [RFC3280] section 4.1.2.4.

https://go.microsoft.com/fwlink/?LinkId=90414
https://go.microsoft.com/fwlink/?LinkId=120478

70 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.5.1.3 CryptoAPI Digital Signature Structure

A CryptoAPI digital signature structure MUST contain exactly one IntermediateCertificatesStore
and MUST contain at least one CryptoAPI Digital Signature CertificateInfo structure (section

2.5.1.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CertificateSize

IntermediateCertificatesStore (variable)

...

Reserved

CertificateInfoArray (variable)

...

EndMarker

CertificateSize (4 bytes): An unsigned integer specifying the number of bytes in the
IntermediateCertificatesStore field.

IntermediateCertificatesStore (variable): A binary representation of the certificates in the
certificate chains of the certificates used to sign the document, excluding the self-signed root CA
certificates and end-entity certificates. This store is generated as specified in [MS-OSHARED]

section 2.3.9.1.

Reserved (4 bytes): A value that MUST be 0x00000000.

CertificateInfoArray (variable): An array that MUST contain a single CertificateInfo structure for
every signature included in this stream (1).

EndMarker (4 bytes): A value that MUST be 0x00000000.

2.5.1.4 _signatures Stream

A binary document containing a CryptoAPI digital signature MUST have a stream (1) named
"_signatures" in the root storage. The contents of the _signatures stream (1) MUST contain exactly
one CryptoAPI Digital Signature structure (section 2.5.1.3).

2.5.1.5 CryptoAPI Digital Signature Generation

The hash used to generate a document signature is created by recursively traversing the OLE
compound file streams (1) and storages. Certain streams (1) and storages MUST NOT be used, as
specified later in this section. A document can have more than one signature, each of which MUST be
generated by using the GenerateSignature function. Each individual certificate MUST be stored in

the CertificateInfoArray of the CryptoAPI Digital Signature structure.

Let H() be a hashing function, which MUST be MD5, and a plus sign (+) represent concatenation. Let
HashObject be an object that can be initialized, that can append data in blocks into the object, and
that can finalize to extract the resultant hash value Hfinal.

%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d

71 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Let ClsID be the GUID identifier for an OLE compound file storage as specified in [MS-CFB].

Let TimeStamp be a FILETIME structure as specified in [MS-DTYP], containing the current system
time, expressed in Coordinated Universal Time (UTC). TimeStamp MUST be stored in the CryptoAPI
Digital Signature Structure SignTime field, as specified in section 2.5.1.3.

Let ExcludedStorages be defined as follows:

 0x06DataSpaces

 0x05Bagaaqy23kudbhchAaq5u2chNd

Let ExcludedStreams be defined as follows:

 _signatures

 0x09DRMContent

 FUNCTION GenerateSignature
 PARAMETERS Storage, Certificate
 RETURNS Signature

 CALL HashObject.Initialize
 CALL GenerateSignatureHash(Storage, HashObject, IsFiltered, AppFilter)
 SET Hdata TO HashObject.Finalize
 SET Hfinal TO H(Hdata + TimeStamp)
 SET Signature TO RFC3447(Hfinal, Certificate)
 RETURN Signature
 END FUNCTION

In the GenerateSignatureHash function, IsFiltered MUST be true if the document conforms to the
details as specified in [MS-XLS] and the stream (1) name is "Workbook" or if the document conforms

to the details as specified in [MS-PPT] and the stream (1) name is "Current User". It MUST be false
for all other document types and streams (1).

For documents that conform to the details as specified in [MS-XLS], let AppFilter be defined as the
process specified in [MS-XLS] section 2.1.7.15, which appends data to HashObject, excluding a
portion of the stream (1) from being used in the hashing operation.

For documents that conform to the details as specified in [MS-PPT], let AppFilter be defined as a
process that returns without appending data to HashObject. The result is that the name of the

CurrentUser stream (1) MUST be appended to the HashObject, but the data contained within the
CurrentUser stream (1) MUST NOT be appended to the HashObject.

When stream (1) or storage names are appended to a HashObject, the terminating Unicode null
character MUST NOT be included.

Let SORT be a string sorting method that is case sensitive and ascending and that skips any
nonprintable characters, such that if two streams (1) named "Data" and
"0x05DocumentSummaryInformation" are input, the stream (1) named "Data" is ordered first.

 FUNCTION GenerateSignatureHash
 PARAMETERS Storage, HashObject, IsFiltered, AppFilter
 RETURNS VOID

 DECLARE StorageNameArray as (empty array of Unicode strings)
 DECLARE StreamNameArray as (empty array of Unicode strings)

 SET ClsID TO Storage.GUID
 CALL HashObject.AppendData(ClsID)
 FOR EACH Child IN Storage.Children
 IF Child IS a storage AND Child.Name NOT IN ExcludedStorages

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06
%5bMS-PPT%5d.pdf#Section_6be79dde33c14c1b8ccc4b2301c08662

72 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 APPEND Child.Name to StorageNameArray
 END IF
 IF Child IS a stream AND Child.Name NOT IN ExcludedStreams
 APPEND Child.Name to StreamNameArray
 END IF
 END FOR

 SORT StorageNameArray SORT StreamNameArray

 FOR EACH StreamName IN StreamNameArray

 CALL HashObject.AppendData(StreamName)

 SET ChildStream TO Storage.Children[StreamName]
 IF IsFiltered IS true
 CALL AppFilter(ChildStream, HashObject)
 ELSE
 CALL HashObject.AppendData(ChildStream.Data)
 ENDIF
 ENDFOR

 FOR EACH StorageName IN StorageNameArray

 CALL HashObject.AppendData(StorageName)

 SET ChildStorage TO Storage.Children[StorageName]
 CALL GenerateSignatureHash(ChildStorage, HashObject,
IsFiltered, AppFilter)

 END FOR

 END FUNCTION

When signing Hfinal, the certificate MUST be an RSA certificate as specified in [RFC3447], and the
signing operation MUST be performed as specified in [RFC3447] section 9.2.

If a document is protected as specified in section 2.2, the hash MUST be created by first appending

the unencrypted form of the storage that is decrypted from the 0x09DRMContent stream (1),

followed by the entire original encrypted file storage with the 0x09DRMContent stream (1) excluded
as noted previously.

2.5.2 Xmldsig Digital Signature Elements

A binary document digital signature is specified as containing the elements that are specified in the
following subsections. If not explicitly stated in each subsection, the content of an element MUST be
generated as specified in [XMLDSig].

2.5.2.1 SignedInfo Element

The SignedInfo element MUST contain the following elements:

 CanonicalizationMethod, where the algorithm MUST be as specified in [Can-XML-1.0].

 Reference, where the URI attribute MUST be "#idPackageObject", and DigestMethod is
provided by the application.<28>

 Reference, where the URI attribute MUST be "#idOfficeObject", and DigestMethod is provided
by the application.<29>

2.5.2.2 SignatureValue Element

The SignatureValue element contains the value of the signature, as specified in [XMLDSig].

https://go.microsoft.com/fwlink/?LinkId=90422
https://go.microsoft.com/fwlink/?LinkId=130861
https://go.microsoft.com/fwlink/?LinkId=120197
https://go.microsoft.com/fwlink/?LinkId=130861

73 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.5.2.3 KeyInfo Element

The KeyInfo element contains the key information, as specified in [XMLDSig].

2.5.2.4 idPackageObject Object Element

The idPackageObject element contains the following:

 A Manifest element as specified in [XMLDSig], which contains Reference elements corresponding
to each stream (1) that is signed. Except for streams (1) and storages enumerated later in this
section, all streams (1) and storages MUST be included in the Manifest element. DigestMethod

is provided by the application.<30>

 A SignatureProperties element containing a SignatureProperty element with a time stamp, as
specified in [ECMA-376] Part 2 Section 12.2.4.20.

When constructing the Manifest element, the following storages and any storages or streams (1)

contained within listed storages MUST be excluded:

 0x05Bagaaqy23kudbhchAaq5u2chNd

 0x06DataSpaces

 Xmlsignatures

 MsoDataStore

The following streams (1) MUST also be excluded:

 0x09DRMContent

 _signatures

 0x05SummaryInformation

 0x05DocumentSummaryInformation

If the document conforms to the details as specified in [MS-XLS], and the name of the stream (1) is
Workbook, the stream (1) MUST be filtered as specified in [MS-XLS] section 2.1.7.21.

If the document conforms to the details as specified in [MS-PPT], the hash of the CurrentUser stream
(1) MUST be calculated when verifying the signature as if the stream (1) were empty, which would be
the result of hashing 0 bytes.

2.5.2.5 idOfficeObject Object Element

The idOfficeObject element contains the following:

 A SignatureProperties element containing a SignatureProperty element, which MUST contain
a SignatureInfoV1 element that specifies the details of a digital signature in a document. The

following XML Schema specifies the contents of the SignatureProperty element:

 <?xml version="1.0" encoding="utf-8"?>
 <xsd:schema targetNamespace="http://schemas.microsoft.com/office/2006/digsig"
elementFormDefault="qualified" xmlns="http://schemas.microsoft.com/office/2006/digsig"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:simpleType name="ST_PositiveInteger">
 <xsd:restriction base="xsd:int">
 <xsd:minExclusive value="0" />
 </xsd:restriction>
 </xsd:simpleType>

https://go.microsoft.com/fwlink/?LinkId=130861
https://go.microsoft.com/fwlink/?LinkId=130861
https://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06
%5bMS-PPT%5d.pdf#Section_6be79dde33c14c1b8ccc4b2301c08662

74 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 <xsd:simpleType name="ST_SignatureComments">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="255" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="ST_SignatureProviderUrl">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="2083" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="ST_SignatureText">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="100" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="ST_SignatureType">
 <xsd:restriction base="xsd:int">
 <xsd:enumeration value="1"></xsd:enumeration>
 <xsd:enumeration value="2"></xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="ST_Version">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="ST_UniqueIdentifierWithBraces">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\{[0-9a-fA-F]{8}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\-
[0-9a-fA-F]{12}\}|" />

 </xsd:restriction>
 </xsd:simpleType>
 <xsd:group name="EG_RequiredChildren">
 <xsd:sequence>
 <xsd:element name="SetupID" type="ST_UniqueIdentifierWithBraces"></xsd:element>
 <xsd:element name="SignatureText" type="ST_SignatureText"></xsd:element>
 <xsd:element name="SignatureImage" type="xsd:base64Binary"></xsd:element>
 <xsd:element name="SignatureComments" type="ST_SignatureComments"></xsd:element>
 <xsd:element name="WindowsVersion" type="ST_Version"></xsd:element>
 <xsd:element name="OfficeVersion" type="ST_Version"></xsd:element>
 <xsd:element name="ApplicationVersion" type="ST_Version"></xsd:element>
 <xsd:element name="Monitors" type="ST_PositiveInteger"></xsd:element>
 <xsd:element name="HorizontalResolution" type="ST_PositiveInteger"></xsd:element>
 <xsd:element name="VerticalResolution" type="ST_PositiveInteger"></xsd:element>
 <xsd:element name="ColorDepth" type="ST_PositiveInteger"></xsd:element>
 <xsd:element name="SignatureProviderId"
type="ST_UniqueIdentifierWithBraces"></xsd:element>

 <xsd:element name="SignatureProviderUrl" type="ST_SignatureProviderUrl"></xsd:element>
 <xsd:element name="SignatureProviderDetails" type="xsd:int"></xsd:element>
 <xsd:element name="SignatureType" type="ST_SignatureType"></xsd:element>
 </xsd:sequence>
 </xsd:group>
 <xsd:group name="EG_OptionalChildren">
 <xsd:sequence>
 <xsd:element name="DelegateSuggestedSigner" type="xsd:string"></xsd:element>
 <xsd:element name="DelegateSuggestedSigner2" type="xsd:string"></xsd:element>
 <xsd:element name="DelegateSuggestedSignerEmail" type="xsd:string"></xsd:element>
 <xsd:element name="ManifestHashAlgorithm" type="xsd:anyURI"
minOccurs="0"></xsd:element>

 </xsd:sequence>
 </xsd:group>
 <xsd:group name="EG_OptionalChildrenV2">
 <xsd:sequence>
 <xsd:element name="Address1" type="xsd:string"></xsd:element>
 <xsd:element name="Address2" type="xsd:string"></xsd:element>
 </xsd:sequence>
 </xsd:group>
 <xsd:complexType name="CT_SignatureInfoV1">
 <xsd:sequence>

75 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 <xsd:group ref="EG_RequiredChildren" />
 <xsd:group ref="EG_OptionalChildren" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="CT_SignatureInfoV2">
 <xsd:sequence> <xsd:group ref="EG_OptionalChildrenV2" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="SignatureInfoV1" type="CT_SignatureInfoV1"></xsd:element>
 <xsd:element name="SignatureInfoV2" type="CT_SignatureInfoV2"></xsd:element>
 </xsd:schema>

The child elements of the SignatureInfoV1 element are further specified as follows:

ApplicationVersion: The version of the application that created the digital signature.

ColorDepth: The color depth of the primary monitor of the computer on which the digital signature
was created.

HorizontalResolution: The horizontal resolution of the primary monitor of the computer on which
the digital signature was created.

ManifestHashAlgorithm: An optional element containing a URI that identifies the particular hash
algorithm for the signature. The value of this element MUST be ignored.

Monitors: The count of monitors on the computer where the digital signature was created.

OfficeVersion: The version of the application suite that created the digital signature. The version can
be appended with a ‘/’ followed by a signing version represented by an unsigned integer. The signing
version can be used to ensure that future application versions do not attempt to verify relationships

that did not exist in the signing version. Not including the ‘/’ results in all signed relationships being
verified which is consistent with previous behavior.

SetupID: A GUID that can be cross-referenced with the identifier of the signature line stored in the

document content.

SignatureComments: The comments on the digital signature.

SignatureImage: An image for the digital signature.

SignatureProviderDetails: The details of the signature provider. The value MUST be an integer

computed from a bitmask of the flags that are described in the following table.

Value Description

0x00000000 Specifies that there are no restrictions on the provider's usage.

0x00000001 Specifies that the provider MUST only be used for the user interface (UI).

0x00000002 Specifies that the provider MUST only be used for invisible signatures.

0x00000004 Specifies that the provider MUST only be used for visible signatures.

0x00000008 Specifies that the application UI MUST be used for the provider.

0x00000010 Specifies that the application stamp UI MUST be used for the provider.

SignatureProviderId: The class identifier of the signature provider.<31>

SignatureProviderUrl: The URL of the software used to generate the digital signature.

76 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

SignatureText: The text of actual signature in the digital signature.

SignatureType: The type of the digital signature. Its value MUST be one of those in the following
table.

Value Description

1 The digital signature MUST NOT be printed.

2 The digital signature MUST be printed.

If set to 2, there MUST be two additional objects in the signature with the following identifier values:

 idValidSigLnImg: The image of a valid signature.

 idInvalidSigLnImg: The image of an invalid signature.

VerticalResolution: The vertical resolution of the primary monitor of the computer on which the

digital signature was created.

WindowsVersion: The version of the operating system on which the digital signature was created.

DelegateSuggestedSigner: The name of a person to whom the signature has been delegated.

DelegateSuggestedSigner2: The title of a person to whom the signature has been delegated.

DelegateSuggestedSignerEmail: The email address of a person to whom the signature has been
delegated.

The child elements of the SignatureInfoV2 element are specified as follows:

Address1: The location at which the signature was created.

Address2: The location at which the signature was created.

The optional SignatureInfoV2 element is used to provide additional information to the
SignatureProductionPlace element, which is specified in [XAdES] section 7.2.7.

2.5.2.6 XAdES Elements

XML Advanced Electronic Signatures [XAdES] extensions to xmldsig signatures MAY<32> be present
in either binary or ECMA-376 documents [ECMA-376] when using xmldsig signatures. XAdES-EPES
through XAdES-X-L extensions are specified within a signature. Unless otherwise specified, any
optional elements as specified in [XAdES] are ignored.

The Object element containing the information as specified in [XAdES] has a number of optional
elements, and many of the elements have more than one method specified. A document compliant
with this file format uses the following options:

 The SignedSignatureProperties element MUST contain a SigningCertificate property as

specified in [XAdES] section 7.2.2.

 A SigningTime element MUST be present as specified in [XAdES] section 7.2.1.

 A SignaturePolicyIdentifier element MUST be present as specified in [XAdES] section 7.2.3.

 If the information as specified in [XAdES] contains a time stamp as specified by the requirements
for XAdES-T, the time stamp information MUST be specified as an EncapsulatedTimeStamp
element containing DER encoded ASN.1. data.

https://go.microsoft.com/fwlink/?LinkId=151586
https://go.microsoft.com/fwlink/?LinkId=151586
https://go.microsoft.com/fwlink/?LinkId=200054

77 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 If the information as specified in [XAdES] contains references to validation data, the certificates
used in the certificate chain, except for the signing certificate, MUST be contained within the

CompleteCertificateRefs element as specified in [XAdES] section 7.4.1. In addition, for the
signature to be considered a well-formed XAdES-C signature, a CompleteRevocationRefs

element MUST be present, as specified in [XAdES] section 7.4.2.

 If the information as specified in [XAdES] contains time stamps on references to validation data,
the SigAndRefsTimestamp element as specified in [XAdES] section 7.5.1 and [XAdES] section
7.5.1.1 MUST be used. The SigAndRefsTimestamp element MUST specify the time stamp
information as an EncapsulatedTimeStamp element containing DER encoded ASN.1. data.

 If the information as specified in [XAdES] contains properties for data validation values, the
CertificateValues and RevocationValues elements MUST be constructed as specified in

[XAdES] section 7.6.1 and [XAdES] section 7.6.2. Except for the signing certificate, all certificates
used in the validation chain MUST be entered into the CertificateValues element.

There MUST be a Reference element specifying the digest of the SignedProperties element, as
specified in [XAdES], section 6.2.1. A Reference element is placed in one of two parent elements, as

specified in [XMLDSig]:

 The SignedInfo element of the top-level Signature XML.

 A Manifest element contained within an Object element.

A document compliant with this file format SHOULD<33> place the Reference element specifying the
digest of the SignedProperties element within the SignedInfo element. If the Reference element
is instead placed in a Manifest element, the containing Object element MUST have an id attribute set
to "idXAdESReferenceObject".

2.5.3 _xmlsignatures Storage

Digital signatures MUST be stored as streams (1) contained in a storage named "_xmlsignatures",
based on the root of the compound document. Streams (1) containing a signature MUST be named

using a base-10 string representation of a random number. The name of the stream (1) MUST NOT be
the same as an existing signature contained within the storage. A single signature is stored directly

into each stream (1), as UTF-8 characters, with no leading header. The content of each stream (1)
MUST be a valid signature as specified in [XMLDSig] and generated as specified in section 2.5.2. More
than one signature can be present in the "_xmlsignatures" storage.

2.6 Sensitivity Labels

This section covers details about how and where sensitivity label metadata is stored.

2.6.1 Sensitivity Label Metadata

When a sensitivity label is applied to content, certain sensitivity label metadata is generated at
the time the label is associated with the content. The sensitivity label metadata applied to a particular

document shall be stored within the same document content as specified in section 2.6.2 and section

2.6.3.

Note that in all cases if sensitivity label metadata conflicts with the label in the publishing license
that the label defined in the publishing license shall be construed to be the label applied to the
content.

https://go.microsoft.com/fwlink/?LinkId=130861
https://go.microsoft.com/fwlink/?LinkId=130861

78 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.6.2 LabelInfo Stream Locations

The LabelInfo stream (1) comprised of XML described in section 2.6.4 shall be written in the
\0x06DataSpaces\TransformInfo storage when Information Rights Management (IRM) is

applied to the document and the publishing license is present in the file and there is at least one
qualifying sensitivity label per section 2.6.3 to have corresponding sensitivity label metadata
written to the LabelInfo stream (2).

The LabelInfo stream (2) comprised of XML described in section 2.6.4 shall be written to the OPC
package in the Sensitivity Label Information part ([MS-OI29500] section 3.4.1.5) when Information
Rights Management (IRM) is not applied to the document or the publishing license is not present in
the file and there is at least one qualifying sensitivity label per section 2.6.3 to have corresponding

sensitivity label metadata written to the LabelInfo stream (2).

For either location an implementation might write an empty labelList element per section 2.6.4.3 if
there are no qualifying sensitivity labels.

Files ought not to contain sensitivity labels in both places, and implementations reading shall ignore

sensitivity label metadata written to the encrypted OPC package if the
\0x06DataSpaces\TransformInfo storage contains a valid LabelInfo stream (1).

2.6.3 LabelInfo versus Custom Document Properties

When reading sensitivity label metadata from a persisted document, it shall exist in custom
document properties ([MS-OI29500] section 2.1.31) or a LabelInfo stream (2) location specified in
section 2.6.2. Implementations shall use both sensitivity label policy and actual location of the

sensitivity label metadata to determine where to read and write sensitivity label metadata as follows.

When reading sensitivity label metadata, for each sensitivity label implementations have these cases
to consider:

1. If the sensitivity label policy opts in to the LabelInfo stream (2) then all applicable sensitivity label
metadata shall be first read from the LabelInfo location (section 2.6.2), and subsequently metadata

shall only be read for custom document properties where there is no label element (section 2.6.4.4).
This preserves the sensitivity label metadata so the sensitivity label policy can change from opted out

to opted in without losing applicable sensitivity label metadata for content created and persisted prior
to the policy change.

2. If the sensitivity label policy is known and does not opt in to the LabelInfo stream (2) then all
applicable sensitivity label metadata shall only be read from custom document properties.

3. If the sensitivity label policy is not known, then it shall be inferred to be opted in to the LabelInfo
stream (2) or not by the presence or absence of sensitivity label metadata in the LabelInfo stream

(2) per Azure AD tenant as given by the siteId attribute value of the corresponding label element
(section 2.6.4.4).

When writing, for each sensitivity label implementations have these cases to consider:

1. If the sensitivity label policy opts in to the LabelInfo stream (2) OR is unknown but the sensitivity

label metadata originally was present in the LabelInfo stream (2) then the sensitivity label metadata
shall be written to the LabelInfo stream (2) and any sensitivity label metadata associated with the
same Azure AD tenant that was present in custom document properties shall be preserved as-is in the

custom document properties even if the sensitivity label was removed or changed.

2. If the sensitivity label policy is known and does not opt in to the LabelInfo stream (2) OR is
unknown and the sensitivity label metadata originally was not present in the LabelInfo stream (2)
then the sensitivity label metadata shall be written to the custom document properties.

%5bMS-OI29500%5d.pdf#Section_1fd4a662862349c082f018fa91b413b8
%5bMS-OI29500%5d.pdf#Section_1fd4a662862349c082f018fa91b413b8

79 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Note that for the case where sensitivity label policy opts in to the LabelInfo stream (2) but there is
sensitivity label metadata present only in custom document properties, on read this custom document

property sensitivity label metadata shall be read and on write it shall be written as-is to the custom
document property stream (2) AND it shall be written to the LabelInfo stream (2). Any metadata

that existed in custom document properties and for which there is no LabelInfo stream (2) schema
(section 2.6.4.4) for (such as parent labels, Application, Owner, Name, SetDate, and others) shall not
be written to the LabelInfo stream (2) and any sensitivity label metadata formats shall be converted
to be compatible. For example, Enabled value in custom document properties being True shall be

written as enabled="1" or Method of Auto shall be written as method="Standard" to conform to the

LabelInfo schema detailed in section 2.6.4, especially section 2.6.4.4. The same conversion shall be
done regardless of the source of the sensitivity label metadata when writing to the LabelInfo stream
(2).

Implementations shall not read the sensitivity label metadata from the LabelInfo stream (2) if policy
is known for the sensitivity labels from that Azure AD tenant to not opt in to the LabelInfo stream

(2). The presence of a label element in the LabelInfo stream (2) and absence of corresponding
sensitivity label metadata for the same Azure AD tenant in the custom document properties shall not

result in the transfer of sensitivity label metadata from the LabelInfo stream (2) to the custom
document properties for any cases, since it would render older or unaware implementations or
implementations which chose to ignore the policy unable to remove sensitivity label metadata.

All implementations which read sensitivity label metadata from the LabelInfo stream (2) and

subsequently remove the sensitivity label and corresponding sensitivity label metadata shall write a
label element (section 2.6.4.4) with removed="1" on write. The presence of the label element

(section 2.6.4.4) with removed="1" shall indicate on subsequent read that corresponding sensitivity

label metadata shall not be read from custom document properties for that Azure AD tenant given by
the siteId attribute (section 2.6.4.4). In the absence of label policy the SiteId sensitivity label
metadata value included in custom document property ([MS-OI29500] section 2.1.31) might be used,
if present.

2.6.4 LabelInfo Stream Schema

The following describes the schema for the XML in the LabelInfo stream (2), where labelList (see
section 2.6.4.3) is the root element.

 <xsd:schema elementFormDefault="qualified"
 xmlns:clbl="http://schemas.microsoft.com/office/2020/mipLabelMetadata"
 xmlns:r="http://schemas.microsoft.com/office/2020/02/relationships"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:simpleType name="ST_ClassificationGuid">
 <xsd:restriction base="xsd:token">
 <xsd:pattern value="\{[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-
f]{12}\}"/>

 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="CT_ClassificationExtension">
 <xsd:sequence>
 <xsd:any/>
 </xsd:sequence>
 <xsd:attribute name="uri" type="xsd:token" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="CT_ClassificationExtensionList">
 <xsd:sequence>
 <xsd:element name="ext" type="CT_ClassificationExtension" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="CT_ClassificationLabel">

80 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 <xsd:attribute name="id" type="xsd:string" use="required"/>
 <xsd:attribute name="enabled" type="xsd:boolean" use="required"/>
 <xsd:attribute name="method" type="xsd:string" use="required"/>
 <xsd:attribute name="siteId" type="ST_ClassificationGuid" use="required"/>
 <xsd:attribute name="contentBits" type="xsd:unsignedInt" use="optional"/>
 <xsd:attribute name="removed" type="xsd:boolean" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="CT_ClassificationLabelList">
 <xsd:sequence>
 <xsd:element name="label" type="CT_ClassificationLabel" minOccurs="0"
maxOccurs="unbounded" />

 <xsd:element name="extLst" type="CT_ClassificationExtensionList" minOccurs="0"
maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="labelList" type="CT_ClassificationLabelList" />
 </xsd:schema>

2.6.4.1 Namespaces

Content in the LabelInfo stream (2) shall be in namespace
http://schemas.microsoft.com/office/2020/mipLabelMetadata unless otherwise specified.

2.6.4.2 xml Preprocessor Directive

The initial LabelInfo stream (2) bytes shall comprise of an xml preprocessor directive for example:

 <?xml version="1.0" encoding="utf-8" standalone="yes"?>

The value of the version attribute might be updated in the future to reflect files written with schema

updates.

2.6.4.3 labelList Element

The labelList element shall comprise the one and only root element of the XML in the LabelInfo
stream (2) (see section 2.6.4) and shall contain CT_ClassificationLabelList (see section 2.6.5.5).

 <xsd:element name="labelList" type="CT_ClassificationLabelList" />

An empty labelList element example:

 <clbl:labelList xmlns:clbl="http://schemas.microsoft.com/office/2020/mipLabelMetadata" />

2.6.4.4 label Element

Each label element shall contain CT_ClassificationLabel (see section 2.6.5.4).

 <xsd:element name="label" type="CT_ClassificationLabel" minOccurs="0" maxOccurs="unbounded"
/>

81 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.6.4.5 extLst Element

The extLst element, if present, shall contain CT_ClassificationExtenstionList (see section 2.6.5.3).

The content in the extLst element shall be preserved for all XML that is not understood or currently

documented in order to provide a mechanism whereby future file format changes might be introduced
and existing clients, while not interpreting the content, shall preserve it.

 <xsd:element name="extLst" type="CT_ClassificationExtensionList" minOccurs="0"
maxOccurs="1"/>

2.6.4.6 ext Element

Each ext element shall contain CT_ClassificationExtension (see section 2.6.5.2).

 <xsd:element name="ext" type="CT_ClassificationExtension" minOccurs="0"
maxOccurs="unbounded"/>

2.6.5 LabelInfo Stream Structures

This section details structures which describe elements in section 2.6.4.

2.6.5.1 ST_ClassificationGuid

A 128 bit unsigned value which shall be expressed in the following format.

 <xsd:restriction base="xsd:token">
 <xsd:pattern value="\{[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}\}" />
 </xsd:restriction>

2.6.5.2 CT_ClassificationExtension

The CT_ClassificationExtension type describes contents of the ext element (see section 2.6.4.6).

Additional specific contents of this element shall be defined and documented as needed in the future in
section 2.6.6 and other sections as appropriate. All content present shall be preserved except to
implement corresponding features as they are described in section 2.6.6. Implementations which
understand some ext elements shall preserve all ext elements which are not implemented, including
any not yet documented.

 <xsd:complexType name="CT_ClassificationExtension">
 <xsd:sequence>
 <xsd:any/>
 </xsd:sequence>
 <xsd:attribute name="uri" type="xsd:token" use="required"/>

 </xsd:complexType>

The uri attribute value shall be a value specified to indicate the CT_ClassificationExtension includes

XML for a particular feature which was not defined when the LabelInfo stream (2) was first
introduced, to allow for extensibility of the file format within the LabelInfo stream (2) on a feature by
feature basis. As extensions are added to the schema, they will be listed in section 2.6.6 wherein the
schema of the ext element along with its corresponding uri attribute value shall be specified. Each uri
attribute value shall correspond to one of the valid extensions listed in section 2.6.6.

The uri attribute value shall not be empty.

82 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.6.5.3 CT_ClassificationExtenstionList

The CT_ClassificationExtensionList type describes the contents of the extLst element (see section
2.6.4.5).

 <xsd:complexType name="CT_ClassificationExtensionList">
 <xsd:sequence>
 <xsd:element name="ext" type="CT_ClassificationExtension" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:sequence>
 </xsd:complexType>

2.6.5.4 CT_ClassificationLabel

The CT_ClassificationLabel type describes the contents of the label element (see section 2.6.4.4).

Each CT_ClassificationLabel contains sensitivity label metadata that was added as part of

classifying content using one or more sensitivity label. The attributes shall be written in the order
presented here. Unless otherwise specified, these all shall be written exactly as specified when the
sensitivity label was created and not updated in any way subsequent to that until the sensitivity label
is removed or a different sensitivity label is associated with the corresponding content. Unless
otherwise specified, the values are case sensitive. Optional values shall be omitted and shall not be
present with an empty value except as noted with the descriptions for particular attributes.

 <xsd:complexType name="CT_ClassificationLabel">
 <xsd:attribute name="id" type="xsd:string" use="required"/>
 <xsd:attribute name="enabled" type="xsd:boolean" use="required"/>
 <xsd:attribute name="method" type="xsd:string" use="required"/>
 <xsd:attribute name="siteId" type="ST_ClassificationGuid" use="required"/>
 <xsd:attribute name="contentBits" type="xsd:unsignedInt" use="optional"/>
 <xsd:attribute name="removed" type="xsd:boolean" use="required"/>
 </xsd:complexType>

Attribute Type Description

id xsd:string The id attribute value corresponds to the unique identifier of the
sensitivity label as specified in policy. This value shall not be empty.
This value ought to be set to the same value as siteId attribute for
removed labels. This shall be written in lowercase. If a 128 bit integer,
as it typically is, it ought to be written as a ST_ClassificationGuid
type.

enabled xsd:boolean The enabled attribute value indicates whether the sensitivity label
represented by this element is enabled. Removed labels ought not to
be enabled.

method xsd:string The method attribute value represents the assignment method for the
sensitivity label. This value shall be empty (method="") if the
removed attribute is 1. The method attribute value ought to be
"Standard" or "Privileged". When converting sensitivity label metadata
from some other source, the following guidelines shall govern which to
use:
 Standard: Use for any sensitivity label that was not directly

applied by the user. This includes any default labels, automatically
applied labels.

 Privileged: Use for any sensitivity label that was directly applied
by the user. This includes any manually applied sensitivity labels
as well as recommended or mandatory labeling or any feature
where the user decides which sensitivity label to apply.

siteId ST_ClassificationGuid The siteId attribute value represents the Azure Active Directory
(Azure AD) site identifier corresponding to the sensitivity label
policy which describes the sensitivity label. There shall only be at most

83 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Attribute Type Description

one label element with a given siteId. When converting sensitivity
label metadata from some other source which contains both parent and
child sensitivity labels, only the child sensitivity label shall be included.

contentBits xsd:unsignedInt The contentBits attribute value represents a decimal DWORD ([MS-
DTYP]) describing the types of content marking that ought to be
applied to a file. This value can be 0 when present. This value is a
logical OR of the following values:
 Header: 1
 Footer: 2
 Watermark: 4
 Encryption: 8
Other values are unused, and reserved for future use, and shall be
ignored on read and shall not be set on write but it is possible to be set
by future versions. Implementations ought to omit this attribute for
removed labels.

removed xsd:boolean The removed attribute value indicates whether the sensitivity label
was removed. A value of 0 (for example) means the sensitivity label is
applied to the content. A value of 1 (for example) means the sensitivity
label is not applied to the content. When a sensitivity label is removed,
instead of removing the label element from the xml there ought to be
one label element with a removed attribute to indicate for the
corresponding tenant that its sensitivity labels shall not be converted
from older locations (see section 2.6.3) it might be stored in the file
format, such as custom document properties [MS-OI29500] section
2.1.31.

2.6.5.5 CT_ClassificationLabelList

The CT_ClassificationLabelList type describes the contents of the labelList element (see section
2.6.4.3).

 <xsd:complexType name="CT_ClassificationLabelList">
 <xsd:sequence>
 <xsd:element name="label" type="CT_ClassificationLabel" minOccurs="0"
maxOccurs="unbounded"/>

 <xsd:element name="extLst" type="CT_ClassificationExtensionList" minOccurs="0"
maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>

2.6.6 LabelInfo Stream Extensions

There are currently no extensions defined for the CT_ClassificationExtensionList type (see section
2.6.5.3).

2.7 MsoDataStore

Writers shall not create both an IsRedundantDataStorePromotion (section 2.7.1) storage and an
IsModifiedDataStorePromotion (section 2.7.2) storage.

If a process changes any value in any MsoDataStore subordinate stream (1) without an associated
change to the Custom XML Data Storage and related ([ISO/IEC29500-1:2016] sections 15.2.5 and
15.2.6) within the encrypted streams (1) of the compound file (1) referred to by the IRMDS

(section 1.3.2) structure therein, writers:

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-OI29500%5d.pdf#Section_1fd4a662862349c082f018fa91b413b8
https://go.microsoft.com/fwlink/?linkid=861065

84 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 Shall remove the IsRedundantDataStorePromotion storage as the MsoDataStore subordinate
streams (1) are no longer completely represented in the encrypted streams (1).

 Shall create the IsModifiedDataStorePromotion storage as the MsoDataStore subordinate
streams (1) represent updated content that was originally represented in the encrypted streams

(1).

NOTE: The presence or absence of IsRedundantDataStorePromotion and
IsModifiedDataStorePromotion storages allow a process to determine if it can safely decrypt the
IRMDS object and discard the IRMDS structures (if IsRedundantDataStorePromotion is present), if
it considers the streams (1) subordinate to the MsoDataStore storage as superseding the content in
the IRMDS structures (if IsModifiedDataStorePromotion is present), or if it retains the IRMDS
structures for interoperability (if neither storage is present).

Example 1: If a document represented by an IRMDS object is uploaded to a Microsoft SharePoint
Online document library protected by Information Rights Management (IRM), and the
IsRedundantDataStorePromotion storage is not present, then SharePoint Online will not decrypt
the IRMDS object and will operate solely on the IRMDS object itself.

Example 2: If a document represented by an IRMDS object is uploaded to a SharePoint document
library protected by Information Rights Management (IRM), and the

IsReduntantDataStorePromotion storage is present, a SharePoint Online process modifies a
stream (1) subordinate to the MsoDataStore storage and removes the
IsRedundantDataStorePromotion storage and creates the IsModifiedDataStorePromotion
storage. The content for the Custom XML Data Storage ([ISO/IEC29500-1:2016] sections 15.2.5
and 15.2.6) in the encrypted streams (1) of the IRMDS object is now out-of-date, and the streams (1)
subordinate to the MsoDataStore storage MUST now supersede the content in the encrypted streams
(1).

2.7.1 IsRedundantDataStorePromotion Storage

The IsRedundantDataStorePromotion storage, when present as a child of the root storage
object, indicates the subordinate streams (1) of the MsoDataStore storage represent content that

is identically represented in the encrypted streams (1) of the compound file (1) referred to by the
IRMDS (section 1.3.2) structure therein.

Readers can choose to preserve, edit, or discard the subordinate streams (1) when the
IsRedundantDataStorePromotion storage is present.

Writers shall not create the IsRedundantDataStorePromotion storage if the subordinate
MsoDataStore streams (1) are not completely represented in the encrypted streams (1).

2.7.2 IsModifiedDataStorePromotion Storage

The IsModifiedDataStorePromotion storage, when present as a child of the root storage
object, indicates the subordinate streams (1) of the MsoDataStore storage represent subsequently
updated content that was originally represented in the encrypted streams (1) of the compound file
(1) referred to by the IRMDS (section 1.3.2) structure therein.

Readers shall consider the streams (1) subordinate to the MsoDataStore storage as superseding any
Custom XML Data Storage MsoDataStore (ISO29500-1:2016 §15.2.4 and §15.2.6.) content
represented in the encrypted streams (1).

Writers shall not create the IsModifiedDataStorePromotion storage if the unmodified subordinate
MsoDataStore streams (1) are not completely represented in the encrypted streams (1).

85 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

2.8 EncryptedSIHash Stream

The EncryptedSIHash stream (1), when present as a child of the root storage object, indicates
information about the \x05SummaryInformation stream (1) ([MS-OSHARED] section 2.3.3.2.1).

The EncryptedSIHash stream (1) shall only be present on encrypted files.

The EncryptedSIHash stream (1), when created or updated, shall be composed entirely of one
EncryptedPropertyStreamInfo structure (section 2.10), with a Checksum (section 2.10) computed
using the entire \x05SummaryInformation stream (1) contents, exclusive of stream (1) properties.

Writers that do not write the \x05SummaryInformation stream (1) shall not write the
EncryptedSIHash stream (1).

Writers that update the \x05SummaryInformation stream (1) without an associated change to any

applicable related document properties within the encrypted streams (1) of the compound file (2)
referred to by the IRMDS structure therein shall not update the EncryptedSIHash stream (1).

NOTE: The presence and contents of the EncryptedSIHash stream (1) allows a process to determine

if it can safely decrypt the IRMDS and discard the \x05SummaryInformation stream (1)

(EncryptedSIHash stream (1) is present and the CRC32 matches the computed CRC32 of the

\x05SummaryInformation stream (1)).

2.9 EncryptedDSIHash Stream

The EncryptedDSIHash stream (1), when present as a child of the root storage object, indicates
information about the \x05DocumentSummaryInformation stream (1) ([MS-OSHARED] section
2.3.3.2.2 and [MS-OSHARED] section 2.3.3.2.3).

The EncryptedDSIHash stream (1) shall only be present on encrypted files.

The EncryptedDSIHash stream (1), when created or updated, shall be composed entirely of one
EncryptedPropertyStreamInfo structure (section 2.10), with a Checksum (section 2.10) computed

using the entire \x05DocumentSummaryInformation stream (1) contents, exclusive of stream (1)
properties.

Writers that do not write the \x05DocumentSummaryInformation stream (1) shall not write the
EncryptedDSIHash stream (1).

Writers that update the \x05DocumentSummaryInformation stream (1) without an associated
change to any applicable related document properties within the encrypted streams (1) of the
compound file (2) referred to by the IRMDS structure therein shall not update the
EncryptedDSIHash stream (1).

NOTE: The presence and contents of the EncryptedDSIHash stream (1) allows a process to
determine if it can safely decrypt the IRMDS and discard the \x05DocumentSummaryInformation
stream (1) (EncryptedDSIHash stream (1) is present and the CRC32 matches the computed CRC32

of the \x05DocumentSummaryInformation stream (1)).

2.10 EncryptedPropertyStreamInfo Structure

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StreamId Version Checksum

%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d

86 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

... Reserved (variable)

...

StreamId (1 byte): A number which identifies this structure as content in either the
EncryptedSIHash (section 2.8) or EncryptedDSIHash (section 2.9) stream (1). The value shall be
0xAB. The EncryptedPropertyStreamInfo shall be considered invalid for all other values.

Version (1 byte): A number which identifies the stream schema. A value of 0x00 indicates the
format given here. Readers shall ignore the stream (1) if some other value is present.

Checksum (4 bytes): A value that shall be a CRC32 computed using the MsoCrc32Compute ([MS-
OSHARED] section 2.4.3) algorithm of the entire contents of the corresponding
\x05SummaryInformation or \x05DocumentSummaryInformation stream (1), stored little-
endian.

Reserved (variable): Undefined and shall be ignored if Version is 0x00; reserved for future use.

%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d

87 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

3 Structure Examples

This section provides examples of the following structures:

 An ECMA-376 document [ECMA-376] conforming to the IRMDS structure.

 Office binary data file structures with corresponding hexadecimal and graphical representation.

The example for the ECMA-376 document [ECMA-376] contains the following streams (1) and
storages:

 0x06DataSpaces storage:

 Version stream (1) containing a DataSpaceVersionInfo structure as specified in section
3.1.

 DataSpaceMap stream (1) containing a DataSpaceMap structure as specified in section 3.2.

 DataSpaceInfo storage:

 DRMEncryptedDataSpace stream (1) containing a DataSpaceDefinition structure as

described in section 3.3.

 TransformInfo storage:

 0x06Primary stream (1) containing an IRMDSTransformInfo structure as described in
section 3.4.

 EUL-ETRHA1143ZLUDD412YTI3M5CTZ stream (1) containing an
EndUserLicenseHeader structure and a certificate chain as described in section 3.5.

 EncryptedPackage stream (1).

 0x05SummaryInformation stream (1).

 0x05DocumentSummaryInformation stream (1).

Note that not all of the streams (1) and storages in the file, including the
0x05SummaryInformation stream (1) and 0x05DocumentSummaryInformation stream (1),
are specified in the IRMDS structure, and examples are not provided for those streams (1) in this
section. OLE compound files conforming to this structure frequently contain other storages and
streams (1).

3.1 Version Stream

This section provides an example of a Version stream (1) that contains a DataSpaceVersionInfo
structure (section 2.1.5).

 00000000: 3C 00 00 00 4D 00 69 00 63 00 72 00 6F 00 73 00
 00000010: 6F 00 66 00 74 00 2E 00 43 00 6F 00 6E 00 74 00
 00000020: 61 00 69 00 6E 00 65 00 72 00 2E 00 44 00 61 00
 00000030: 74 00 61 00 53 00 70 00 61 00 63 00 65 00 73 00
 00000040: 01 00 00 00 01 00 00 00 01 00 00 00

https://go.microsoft.com/fwlink/?LinkId=200054

88 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FeatureIdentifier (variable)

...

ReaderVersion.vMajor ReaderVersion.vMinor

UpdaterVersion.vMajor UpdaterVersion.vMinor

WriterVersion.vMajor WriterVersion.vMinor

FeatureIdentifier (variable): "Microsoft.Container.DataSpaces" specifies the functionality for which

this version information applies. This string is contained in a UNICODE-LP-P4 structure (section

2.1.2); therefore, the first 4 bytes of the structure contain 0x0000003C, which specifies the
length, in bytes, of the string. The string is not null-terminated.

ReaderVersion.vMajor (2 bytes): 0x0001 specifies the major component of the reader version of
the software component that created this structure.

ReaderVersion.vMinor (2 bytes): 0x0000 specifies the minor component of the reader version of
the software component that created this structure.

UpdaterVersion.vMajor (2 bytes): 0x0001 specifies the major component of the updater version of
the software component that created this structure.

UpdaterVersion.vMinor (2 bytes): 0x0000 specifies the minor component of the updater version of
the software component that created this structure.

WriterVersion.vMajor (2 bytes): 0x0001 specifies the major component of the writer version of the

software component that created this structure.

WriterVersion.vMinor (2 bytes): 0x0000 specifies the minor component of the writer version of the
software component that created this structure.

3.2 DataSpaceMap Stream

This section provides an example of a DataSpaceMap stream (1) that contains a DataSpaceMap

structure (section 2.1.6). The DataSpaceMap structure, in turn, contains a DataSpaceMapEntry
structure (section 2.1.6.1).

 00000000: 08 00 00 00 01 00 00 00 60 00 00 00 01 00 00 00
 00000010: 00 00 00 00 20 00 00 00 45 00 6E 00 63 00 72 00
 00000020: 79 00 70 00 74 00 65 00 64 00 50 00 61 00 63 00
 00000030: 6B 00 61 00 67 00 65 00 2A 00 00 00 44 00 52 00
 00000040: 4D 00 45 00 6E 00 63 00 72 00 79 00 70 00 74 00
 00000050: 65 00 64 00 44 00 61 00 74 00 61 00 53 00 70 00
 00000060: 61 00 63 00 65 00 00 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderLength

89 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

EntryCount

MapEntries (variable)

...

HeaderLength (4 bytes): 0x00000008 specifies the number of bytes in the DataSpaceMap
structure before the first DataSpaceMapEntry.

EntryCount (4 bytes): 0x00000001 specifies the number of DataSpaceMapEntry items in the
MapEntries array.

MapEntries (variable): The contents of the DataSpaceMapEntry array. For more information, see
section 3.2.1.

3.2.1 DataSpaceMapEntry Structure

This section provides an example of a DataSpaceMapEntry structure (section 2.1.6.1).

 00000000: 60 00 00 00 01 00 00 00
 00000010: 00 00 00 00 20 00 00 00 45 00 6E 00 63 00 72 00
 00000020: 79 00 70 00 74 00 65 00 64 00 50 00 61 00 63 00
 00000030: 6B 00 61 00 67 00 65 00 2A 00 00 00 44 00 52 00
 00000040: 4D 00 45 00 6E 00 63 00 72 00 79 00 70 00 74 00
 00000050: 65 00 64 00 44 00 61 00 74 00 61 00 53 00 70 00
 00000060: 61 00 63 00 65 00 00 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

ReferenceComponentCount

ReferenceComponent.ReferenceComponentType

ReferenceComponent.ReferenceComponent

...

DataSpaceName

...

Length (4 bytes): 0x00000060 specifies the size, in bytes, of the DataSpaceMapEntry structure.

ReferenceComponentCount (4 bytes): 0x00000001 specifies the number of
DataSpaceReferenceComponent items (section 2.1.6.2) in the ReferenceComponents array.

ReferenceComponent.ReferenceComponentType (4 bytes): 0x00000000 specifies that the
referenced component is a stream (1).

90 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

ReferenceComponent.ReferenceComponent (variable): "EncryptedPackage" specifies the
functionality for which this version information applies. This string is contained in a UNICODE-LP-

P4 structure (section 2.1.2); therefore, the first 4 bytes of the structure contain 0x00000020,
which specifies the length, in bytes, of the string. The string is not null-terminated.

"EncryptedPackage" matches the name of the stream (1) in the OLE compound file that contains
the protected contents.

DataSpaceName (variable): "DRMEncryptedDataSpace" specifies the functionality that this version
information applies to. This string is contained in a UNICODE-LP-P4 structure; therefore, the first
4 bytes of the structure contain 0x0000002A, which specifies the length, in bytes, of the string.
The string is not null-terminated; however, the structure is padded with 2 bytes to ensure that its
length is a multiple of 4 bytes.

3.3 DRMEncryptedDataSpace Stream

This section provides an example of a stream (1) in the \0x06DataSpaces\DataSpaceInfo
storage (section 2.2.2) that contains a DataSpaceDefinition structure (section 2.1.7).

 00000000: 08 00 00 00 01 00 00 00 2A 00 00 00 44 00 52 00
 00000010: 4D 00 45 00 6E 00 63 00 72 00 79 00 70 00 74 00
 00000020: 65 00 64 00 54 00 72 00 61 00 63 00 73 00 66 00
 00000030: 6F 00 72 00 6D 00 00 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderLength

TransformReferenceCount

TransformReferences

...

HeaderLength (4 bytes): 0x00000008 specifies the number of bytes in the DataSpaceDefinition
before the TransformReferences field.

TransformReferenceCount (4 bytes): 0x00000001 specifies the number of items in the
TransformReferences array.

TransformReferences (variable): "DRMEncryptedTransform" specifies the transform associated
with this DataSpaceDefinition structure. This string is contained in a UNICODE-LP-P4 structure
(section 2.1.2); therefore, the first 4 bytes of the structure contain 0x0000002A, which specifies
the length, in bytes, of the string. The string is not null-terminated; however, the structure is
padded with 2 bytes to ensure that its length is a multiple of 4 bytes. "DRMEncryptedTransform"

matches the name of the transform storage contained in the \0x06DataSpaces\TransformInfo
storage (section 2.2.3).

3.4 0x06Primary Stream

This section provides an example of a 0x06Primary stream (1) that contains an

IRMDSTransformInfo structure (section 2.2.6). Note that the first portion of this structure consists
of a TransformInfoHeader structure (section 2.1.8).

91 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 00000000: 58 00 00 00 01 00 00 00 4C 00 00 00 7B 00 43 00
 00000010: 37 00 33 00 44 00 46 00 41 00 43 00 44 00 2D 00
 00000020: 30 00 36 00 31 00 46 00 2D 00 34 00 33 00 42 00
 00000030: 30 00 2D 00 38 00 42 00 36 00 34 00 2D 00 30 00
 00000040: 43 00 36 00 32 00 30 00 44 00 32 00 41 00 38 00
 00000050: 42 00 35 00 30 00 7D 00 3E 00 00 00 4D 00 69 00
 00000060: 63 00 72 00 69 00 73 00 6F 00 66 00 74 00 2E 00
 00000070: 4D 00 65 00 74 00 61 00 64 00 61 00 74 00 61 00
 00000080: 2E 00 44 00 52 00 4D 00 54 00 72 00 61 00 6E 00
 00000090: 73 00 66 00 6F 00 72 00 6D 00 00 00 01 00 00 00
 000000A0: 01 00 00 00 01 00 00 00 04 00 00 00 26 2F 00 00
 000000B0: 3C 3F 78 6D 6C 20 76 65 72 73 69 6F 6E 3D 22 31

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TransformInfoHeader.TransformLength

TransformInfoHeader.TransformType

TransformInfoHeader.TransformID (variable)

...

TransformInfoHeader.TransformName (variable)

...

TransformInfoHeader.ReaderVersion.vMajor TransformInfoHeader.ReaderVersion.vMinor

TransformInfoHeader.UpdaterVersion.vMajor TransformInfoHeader.UpdaterVersion.vMinor

TransformInfoHeader.WriterVersion.vMajor TransformInfoHeader.WriterVersion.vMinor

ExtensibilityHeader

XrMLLicense (variable)

...

TransformInfoHeader.TransformLength (4 bytes): 0x00000058 specifies the number of bytes in
this structure before TransformInfoHeader.TransformName.

TransformInfoHeader.TransformType (4 bytes): 0x00000001 specifies the type of transform to
be applied.

TransformInfoHeader.TransformID (variable): "{C73DFACD-061F-43B0-8B64-0C620D2A8B50}"
specifies a unique, invariant identifier associated with this transform. This string is contained in a

UNICODE-LP-P4 structure (section 2.1.2); therefore, the first 4 bytes of the structure contain
0x0000004C, which specifies the length, in bytes, of the string. The string is not null-terminated.

TransformInfoHeader.TransformName (variable): "Microsoft.Metadata.DRMTransform" specifies
the logical name of the transform. This string is contained in a UNICODE-LP-P4 structure;

92 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

therefore, the first 4 bytes of the structure contain 0x0000003E, which specifies the length, in
bytes, of the string. The string is not null-terminated; however, the structure is padded with 2

bytes to ensure that its length is a multiple of 4 bytes.

TransformInfoHeader.ReaderVersion.vMajor (2 bytes): 0x0001 specifies the major component

of the reader version of the software component that created this structure.

TransformInfoHeader.ReaderVersion.vMinor (2 bytes): 0x0000 specifies the minor component
of the reader version of the software component that created this structure.

TransformInfoHeader.UpdaterVersion.vMajor (2 bytes): 0x0001 specifies the major component
of the updater version of the software component that created this structure.

TransformInfoHeader.UpdaterVersion.vMinor (2 bytes): 0x0000 specifies the minor component
of the updater version of the software component that created this structure.

TransformInfoHeader.WriterVersion.vMajor (2 bytes): 0x0001 specifies the major component of
the writer version of the software component that created this structure.

TransformInfoHeader.WriterVersion.vMinor (2 bytes): 0x0000 specifies the minor component of
the writer version of the software component that created this structure.

ExtensibilityHeader (4 bytes): 0x00000004 specifies that no further information exists in the
ExtensibilityHeader structure (section 2.2.5).

XrMLLicense (variable): An XrML license as described in [MS-RMPR]. This string is contained in a
UTF-8-LP-P4 structure (section 2.1.3); therefore, the first 4 bytes of the structure contain
0x00002F26, which specifies the length, in bytes, of the string. The string is not null-terminated;
however, the structure is padded with 2 bytes to ensure that its length is a multiple of 4 bytes.

3.5 EUL-ETRHA1143ZLUDD412YTI3M5CTZ Stream

This section provides an example of an end-user license stream (1) (section 2.2.7), which contains
an EndUserLicenseHeader structure (section 2.2.9) followed by a certificate chain containing one

use license.

 00000000: 48 00 00 00 40 00 00 00 56 77 42 70 41 47 34 41
 00000010: 5A 41 42 76 41 48 63 41 63 77 41 36 41 48 55 41
 00000020: 63 77 42 6C 41 48 49 41 51 41 42 6A 41 47 38 41
 00000030: 62 67 42 30 41 47 38 41 63 77 42 76 41 43 34 41
 00000040: 59 77 42 76 41 47 30 41 94 BE 00 00 3C 3F 78 6D
 00000050: 6C 20 76 65 72 73 69 6F 6E 3D 22 31 2E 30 22 3F
 00000060: 3E 3C 43 45 52 54 49 46 49 43 41 54 45 43 48 41
 00000070: 49 4E 3E 3C 43 45 52 54 49 46 49 43 41 54 45 3E
 00000080: 50 41 42 59 41 48 49 41 54 51 42 4D 41 43 41 41
 00000090: 64 67 42 6C 41 48 49 41 63 77 42 70 41 47 38 41
 000000a0: 62 67 41 39 41 43 49 41 4D 51 41 75 41 44 49 41
 000000b0: 49 67 41 67 41 48 67 41 62 51 42 73 41 47 34 41
 000000c0: 63 77 41 39 41 43 49 41 49 67 41 67 41 48 41 41
 000000d0: 64 51 42 79 41 48 41 41 62 77 42 7A 41 47 55 41
 000000e0: 50 51 41 69 41 45 4D 41 62 77 42 75 41 48 51 41
 000000f0: 5A 51 42 75 41 48 51 41 4C 51 42 4D 41 47 6B 41
 00000100: 59 77 42 6C 41 47 34 41 63 77 42 6C 41 43 49 41
 00000110: 50 67 41 38 41 45 49 41 54 77 42 45 41 46 6B 41
 00000120: 49 41 42 30 41 48 6B 41 63 41 42 6C 41 44 30 41
 00000130: 49 67 42 4D 41 45 6B 41 51 77 42 46 41 45 34 41
 00000140: 55 77 42 46 41 43 49 41 49 41 42 32 41 47 55 41
 00000150: 63 67 42 7A 41 47 6B 41 62 77 42 75 41 44 30 41
 00000160: 49 67 41 7A 41 43 34 41 4D 41 41 69 41 44 34 41
 00000170: 50 41 42 4A 41 46 4D 41 55 77 42 56 41 45 55 41
 00000180: 52 41 42 55 41 45 6B 41 54 51 42 46

%5bMS-RMPR%5d.pdf#Section_d8ed4b1ee6054668b1736312cba6977e

93 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

Bytes 0x00000000 through 0x000000047 specify an EndUserLicenseHeader structure (section
2.2.9). The contents of this section are illustrated in section 3.5.1.

Byte 0x00000048 through the end of this stream (1) specify a certificate chain stored in a UTF-8-LP-
P4 structure (section 2.1.3). The contents of this section are illustrated in section 3.5.2.

3.5.1 EndUserLicenseHeader Structure

This section provides an example of an EndUserLicenseHeader structure (section 2.2.9) containing
one LicenseId (section 2.2.8).

 00000000: 48 00 00 00 40 00 00 00 56 77 42 70 41 47 34 41
 00000010: 5A 41 42 76 41 48 63 41 63 77 41 36 41 48 55 41
 00000020: 63 77 42 6C 41 48 49 41 51 41 42 6A 41 47 38 41
 00000030: 62 67 42 30 41 47 38 41 63 77 42 76 41 43 34 41
 00000040: 59 77 42 76 41 47 30 41

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

ID_String.Length (variable)

...

ID_String.Data (variable)

...

Length (4 bytes): 0x00000048 specifies the size of the EndUserLicenseHeader structure.

ID_String.Length (variable): 0x00000040 specifies the size of the ASCII string that follows. Note
that ID_String.Length and ID_String.Data together form a UTF-8-LP-P4 structure (section
2.1.3).

ID_String.Data (variable):
"VwBpAG4AZABvAHcAcwA6AHUAcwBlAHIAQABjAG8AbgB0AG8AcwBvAC4AYwBvAG0A" specifies a
base64-encoded LicenseId that has the value "Windows:user@contoso.com".

3.5.2 Certificate Chain

This section provides an example of a certificate chain contained in an end-user license stream (1)
(section 2.2.7).

 00000040: 94 BE 00 00 3C 3F 78 6D
 00000050: 6C 20 76 65 72 73 69 6F 6E 3D 22 31 2E 30 22 3F
 00000060: 3E 3C 43 45 52 54 49 46 49 43 41 54 45 43 48 41
 00000070: 49 4E 3E 3C 43 45 52 54 49 46 49 43 41 54 45 3E
 00000080: 50 41 42 59 41 48 49 41 54 51 42 4D 41 43 41 41
 00000090: 64 67 42 6C 41 48 49 41 63 77 42 70 41 47 38 41
 000000a0: 62 67 41 39 41 43 49 41 4D 51 41 75 41 44 49 41
 000000b0: 49 67 41 67 41 48 67 41 62 51 42 73 41 47 34 41
 000000c0: 63 77 41 39 41 43 49 41 49 67 41 67 41 48 41 41
 000000d0: 64 51 42 79 41 48 41 41 62 77 42 7A 41 47 55 41
 000000e0: 50 51 41 69 41 45 4D 41 62 77 42 75 41 48 51 41

94 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 000000f0: 5A 51 42 75 41 48 51 41 4C 51 42 4D 41 47 6B 41
 00000100: 59 77 42 6C 41 47 34 41 63 77 42 6C 41 43 49 41
 00000110: 50 67 41 38 41 45 49 41 54 77 42 45 41 46 6B 41
 00000120: 49 41 42 30 41 48 6B 41 63 41 42 6C 41 44 30 41
 00000130: 49 67 42 4D 41 45 6B 41 51 77 42 46 41 45 34 41
 00000140: 55 77 42 46 41 43 49 41 49 41 42 32 41 47 55 41
 00000150: 63 67 42 7A 41 47 6B 41 62 77 42 75 41 44 30 41
 00000160: 49 67 41 7A 41 43 34 41 4D 41 41 69 41 44 34 41
 00000170: 50 41 42 4A 41 46 4D 41 55 77 42 56 41 45 55 41
 00000180: 52 41 42 55 41 45 6B 41 54 51 42 46

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Data

...

Length (4 bytes): 0x0000BE94 specifies the size of the ASCII string that follows. Note that Length
and Data together form a UTF-8-LP-P4 structure (section 2.1.3).

Data (variable): <?xml version="1.0"?><CERTIFICATECHAIN><CERTIFICATE>PABYAH

IATQBMACAAdgBlAHIAcwBp… specifies an encoded certificate chain.

The Data field has been transformed from the form of certificate chain, as described in [MS-RMPR], in
the following way:

1. The original SOAP response contained the following certificate chain:

 <CertificateChain><Certificate><XrML version="1.2" xmlns="" purpose="Content-License"><BODY
type="LICENSE" version="3.0"><ISSUEDTIME>…

2. The body of the Certificate element was then base64-encoded to yield the following:

 PABYAHIATQBMACAAdgBlAHIAcwBpAG8AbgA9ACIAMQAuADIAIgAgAHgAbQBsAG4AcwA9ACIAIgAgAHAAdQByAHAAbwBzA
GUAPQAiAEMAbwBuAHQAZQBuAHQALQBMAGkAYwBlAG4AcwBlACIAPgA8AEIATwBEAFkAIAB0AHkAcABlAD0AIgBMAEkAQw

BFAE4AUwBFACIAIAB2AGUAcgBzAGkAbwBuAD0AIgAzAC4AMAAiAD4APABJAFMAUwBVAEUARABUAEkATQBF…

3. The base64-encoded string was then placed in a Certificate element, again in a CertificateChain
element, and finally prefixed with "<?xml version="1.0"?>".

4. The final value of Data is thus as follows:

 <?xml version="1.0"?><CERTIFICATECHAIN><CERTIFICATE>PABYAHIATQBMACAAdgBlAH
IAcwBpAG8AbgA9ACIAMQAuADIAIgAgAHgAbQBsAG4AcwA9ACIAIgAgAHAAdQByAHAAbwBzAGUAPQAiAEMAbwBuAHQAZQB

uAHQALQBMAGkAYwBlAG4AcwBlACIAPgA8AEIATwBEAFkAIAB0AHkAcABlAD0AIgBMAEkAQwBFAE4AUwBFACIAIAB2AGUA

cgBzAGkAbwBuAD0AIgAzAC4AMAAiAD4APABJAFMAUwBVAEUARABUAEkATQBF…

%5bMS-RMPR%5d.pdf#Section_d8ed4b1ee6054668b1736312cba6977e

95 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

3.6 EncryptionHeader Structure

This section provides an example of an EncryptionHeader structure (section 2.3.2) used by Office
Binary Document RC4 CryptoAPI Encryption (section 2.3.5) to specify the encryption properties for an

encrypted stream (1).

 00001400: 04 00 00 00
 00001410: 00 00 00 00 01 68 00 00 04 80 00 00 28 00 00 00
 00001420: 01 00 00 00 B0 0A 86 02 00 00 00 00 4D 00 69 00
 00001430: 63 00 72 00 6F 00 73 00 6F 00 66 00 74 00 20 00
 00001440: 42 00 61 00 73 00 65 00 20 00 43 00 72 00 79 00
 00001450: 70 00 74 00 6F 00 67 00 72 00 61 00 70 00 68 00
 00001460: 69 00 63 00 20 00 50 00 72 00 6F 00 76 00 69 00
 00001470: 64 00 65 00 72 00 20 00 76 00 31 00 2E 00 30 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

SizeExtra

AlgID

AlgIDHash

KeySize

ProviderType

Reserved1

Reserved2

CSPName

...

Flags (4 bytes): 0x00000004 specifies that the encryption algorithm uses CryptoAPI encryption.

SizeExtra (4 bytes): 0x00000000 is the value in a reserved field.

AlgID (4 bytes): 0x00006801 specifies that the encryption algorithm used is RC4.

AlgIDHash (4 bytes): 0x00008004 specifies that SHA-1 is the hashing algorithm that is used.

KeySize (4 bytes): 0x00000028 specifies that the key is 40 bits long.

ProviderType (4 bytes): 0x00000001 specifies that RC4 is the provider type.

Reserved1 (4 bytes): 0x02860AB0 is the value in a reserved field.

Reserved2 (4 bytes): 0x00000000 is the value in a reserved field.

96 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

CSPName (variable): "Microsoft Base Cryptographic Provider v1.0" specifies the name of the
cryptographic provider supplying the RC4 implementation that was used to encrypt the file.

3.7 EncryptionVerifier Structure

This section provides an example of an EncryptionVerifier structure (section 2.3.3) using AES
encryption.

 000018B0: 10 00 00 00 92 25 50 F6 B6 4F FE 5B D3 96 DF 5E
 000018C0: E9 17 DA 3A BF 86 E1 8F 64 9D 17 D0 A5 41 D9 45
 000018D0: CE FD 96 0C 14 00 00 00 12 FF DC 88 A1 BD 26 23
 000018E0: 59 32 27 1F 73 0B 8F 79 4E 45 DA B3 AB 08 04 F4
 000018F0: 0B B9 50 46 D3 91 41 84

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SaltSize

Salt (variable)

...

EncryptedVerifier (16 bytes)

...

...

VerifierHashSize

EncryptedVerifierHash (variable)

...

SaltSize (4 bytes): 0x00000010 specifies the number of bytes used by the Salt field and the
number of bytes used by EncryptedVerifier field.

Salt (variable): "92 25 50 F6 B6 4F FE 5B D3 96 DF 5E E9 17 DA 3A" specifies a randomly generated
value used when generating the encryption key.

EncryptedVerifier (16 bytes): An encrypted form of a randomly generated, 16-byte verifier value,
which is the randomly generated Verifier value encrypted using the algorithm chosen by the

implementation—for example, "BF 86 E1 8F 64 9D 17 D0 A5 41 D9 45 CE FD 96 0C".

VerifierHashSize (4 bytes): 0x00000014 specifies the number of bytes used by the hash of the
randomly generated Verifier.

EncryptedVerifierHash (variable): An array of bytes that contains the encrypted form of the hash
of the randomly generated Verifier value—for example, "12 FF DC 88 A1 BD 26 23 59 32 27 1F
73 0B 8F 79 4E 45 DA B3 AB 08 04 F4 0B B9 50 46 D3 91 41 84".

97 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

3.8 \EncryptionInfo Stream

This section provides an example of an \EncryptionInfo stream (1) containing detailed information
used to initialize the cryptography that is used to encrypt the \EncryptedPackage stream (1).

 00001800: 03 00 02 00 24 00 00 00 A4 00 00 00 24 00 00 00
 00001810: 00 00 00 00 0E 66 00 00 04 80 00 00 80 00 00 00
 00001820: 18 00 00 00 E0 BC 3B 07 00 00 00 00 4D 00 69 00
 00001830: 63 00 72 00 6F 00 73 00 6F 00 66 00 74 00 20 00
 00001840: 45 00 6E 00 68 00 61 00 6E 00 63 00 65 00 64 00
 00001850: 20 00 52 00 53 00 41 00 20 00 61 00 6E 00 64 00
 00001860: 20 00 41 00 45 00 53 00 20 00 43 00 72 00 79 00
 00001870: 70 00 74 00 6F 00 67 00 72 00 61 00 70 00 68 00
 00001880: 69 00 63 00 20 00 50 00 72 00 6F 00 76 00 69 00
 00001890: 64 00 65 00 72 00 20 00 28 00 50 00 72 00 6F 00
 000018A0: 74 00 6F 00 74 00 79 00 70 00 65 00 29 00 00 00
 000018B0: 10 00 00 00 92 25 50 F6 B6 4F FE 5B D3 96 DF 5E
 000018C0: E9 17 DA 3A BF 86 E1 8F 64 9D 17 D0 A5 41 D9 45
 000018D0: CE FD 96 0C 14 00 00 00 12 FF DC 88 A1 BD 26 23
 000018E0: 59 32 27 1F 73 0B 8F 79 4E 45 DA B3 AB 08 04 F4
 000018F0: 0B B9 50 46 D3 91 41 84

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo.vMajor EncryptionVersionInfo.vMinor

EncryptionHeader.Flags

EncryptionHeaderSize

EncryptionHeader

...

EncryptionVerifier

...

EncryptionVersionInfo.vMajor (2 bytes): 0x0003 specifies the major version.

EncryptionVersionInfo.vMinor (2 bytes): 0x0002 specifies the minor version.

EncryptionHeader.Flags (4 bytes): 0x00000024 specifies that the CryptoAPI implementation

(0x0000004) of the ECMA-376 AES (0x00000020) algorithm [ECMA-376] was used to encrypt the
file.

EncryptionHeaderSize (4 bytes): 0x000000A4 specifies the number of bytes used by the
EncryptionHeader structure (section 2.3.2).

EncryptionHeader (variable): This field consists of the following:

 Flags: 0x00000024 is a bit flag that specifies that the CryptoAPI implementation (0x0000004) of
the ECMA-376 AES (0x00000020) algorithm [ECMA-376] was used to encrypt the file.

 SizeExtra: 0x00000000 is unused.

https://go.microsoft.com/fwlink/?LinkId=200054

98 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 AlgID: 0x0000660E specifies that the file is encrypted using the AES-128 encryption algorithm.

 AlgIDHash: 0x00008004 specifies that the hashing algorithm used is SHA-1.

 KeySize: 0x00000080 specifies that the key size is 128 bits.

 ProviderType: 0x00000018 specifies that AES is the provider type.

 Reserved1: 0x073BBCE0 is a reserved value.

 Reserved2: 0x00000000 is a reserved value.

 CSPName: "Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)" specifies the
name of the cryptographic provider.

Example

 24 00 00 00 00 00 00 00 0E 66 00 00 04 80 00 00
 80 00 00 00 18 00 00 00 E0 BC 3B 07 00 00 00 00
 4D 00 69 00 63 00 72 00 6F 00 73 00 6F 00 66 00
 74 00 20 00 45 00 6E 00 68 00 61 00 6E 00 63 00
 65 00 64 00 20 00 52 00 53 00 41 00 20 00 61 00
 6E 00 64 00 20 00 41 00 45 00 53 00 20 00 43 00
 72 00 79 00 70 00 74 00 6F 00 67 00 72 00 61 00
 70 00 68 00 69 00 63 00 20 00 50 00 72 00 6F 00
 76 00 69 00 64 00 65 00 72 00 20 00 28 00 50 00
 72 00 6F 00 74 00 6F 00 74 00 79 00 70 00 65 00
 29 00 00 00

EncryptionVerifier (variable): This field consists of the following:

 SaltSize: 0x00000010 specifies the number of bytes that make up the Salt field.

 Salt: "92 25 50 F6 B6 4F FE 5B D3 96 DF 5E E9 17 DA 3A" specifies a randomly generated value

used when generating the encryption key.

 EncryptedVerifier: "BF 86 E1 8F 64 9D 17 D0 A5 41 D9 45 CE FD 96 0C" specifies the encrypted
form of the verifier.

 VerifierHashSize: 0x00000014 specifies the number of bytes needed to contain the hash of the
verifier used to generate the EncryptedVerifier field.

 EncryptedVerifierHash: "12 FF DC 88 A1 BD 26 23 59 32 27 1F 73 0B 8F 79 4E 45 DA B3 AB 08
04 F4 0B B9 50 46 D3 91 41 84" specifies the encrypted hash of the verifier used to generate the

EncryptedVerifier field.

Example

 92 25 50 F6 B6 4F FE 5B D3 96 DF 5E E9 17 DA 3A
 BF 86 E1 8F 64 9D 17 D0 A5 41 D9 45 CE FD 96 0C
 14 00 00 00 12 FF DC 88 A1 BD 26 23 59 32 27 1F
 73 0B 8F 79 4E 45 DA B3 AB 08 04 F4 0B B9 50 46
 D3 91 41 84

3.9 \EncryptionInfo Stream (Third-Party Extensible Encryption)

This section provides an example of the XML structure for an EncryptionInfo field as specified in
section 2.3.4.6.

 <EncryptionData xmlns="urn:schemas-microsoft-com:office:office">

99 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 <EncryptionProvider Id="{05F17A8A-189E-42CD-9B21-E8F6B730EC8A}"
 Url="http://www.contoso.com/DownloadProvider/">
 <EncryptionProviderData>AAAAAA==</EncryptionProviderData>
 </EncryptionProvider>
 </EncryptionData>

EncryptionData xmlns: "urn:schemas-microsoft-com:office:office" specifies the XML namespace for
this XML fragment.

EncryptionProvider: Specifies the code module that contains the cryptographic functionality used in
this document with the following attributes:

 Id: "{05F17A8A-189E-42CD-9B21-E8F6B730EC8A}" specifies a unique identifier for the
encryption provider.

 Url: "http://www.contoso.com/DownloadProvider/" specifies the URL for the location of the
EncryptionProvider code module.

EncryptionProviderData: Data for consumption by the extensible encryption module specified in the
EncryptionProvider node.

3.10 Office Binary Document RC4 Encryption

3.10.1 Encryption Header

This section provides an example of an RC4 encryption header structure (section 2.3.6.1) used by
Office Binary Document RC4 Encryption (section 2.3.6) to specify the encryption properties for an

encrypted stream (1).

00001200: 01 00 01 00 C4 DC 85 69 91 13 EC 1C F1 E5 29 06

00001210: 0E 49 00 B3 F3 53 BB 80 36 63 CD E3 DD F2 D1 CB

00001220: 10 23 9B 5A 39 8F EA C2 43 EC F4 4B 9A 62 29 1B

00001230: 1A 4C 9D CD

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo

Salt (16 bytes)

...

...

EncryptedVerifier (16 bytes)

...

...

EncryptedVerifierHash (16 bytes)

100 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

...

...

EncryptionVersionInfo (4 bytes): A value specifying that Version.vMajor is 0x0001 and
Version.vMinor is 0x0001.

Salt (16 bytes): "C4 DC 85 69 91 13 EC 1C F1 E5 29 06 0E 49 00 B3" specifies a randomly
generated value that is used when generating the encryption key.

EncryptedVerifier (16 bytes): "F3 53 BB 80 36 63 CD E3 DD F2 D1 CB 10 23 9B 5A" specifies that

the verifier is encrypted using a 40-bit RC4 cipher initialized as specified in section 2.3.6.2, with a
block number of 0x00000000.

EncryptedVerifierHash (16 bytes): "39 8F EA C2 43 EC F4 4B 9A 62 29 1B 1A 4C 9D CD" specifies
an MD5 hash of the verifier used to create the EncryptedVerifier field.

3.11 PasswordKeyEncryptor (Agile Encryption)

 00000000: 04 00 04 00 40 00 00 00 3C 3F 78 6D 6C 20 76 65
 00000010: 72 73 69 6F 6E 3D 22 31 2E 30 22 20 65 6E 63 6F
 00000020: 64 69 6E 67 3D 22 55 54 46 2D 38 22 20 73 74 61
 00000030: 6E 64 61 6C 6F 6E 65 3D 22 79 65 73 22 3F 3E 0D
 00000040: 0A 3C 65 6E 63 72 79 70 74 69 6F 6E 20 78 6D 6C
 00000050: 6E 73 3D 22 68 74 74 70 3A 2F 2F 73 63 68 65 6D
 00000060: 61 73 2E 6D 69 63 72 6F 73 6F 66 74 2E 63 6F 6D
 00000070: 2F 6F 66 66 69 63 65 2F 32 30 30 36 2F 65 6E 63
 00000080: 72 79 70 74 69 6F 6E 22 20 78 6D 6C 6E 73 3A 70
 00000090: 3D 22 68 74 74 70 3A 2F 2F 73 63 68 65 6D 61 73
 000000A0: 2E 6D 69 63 72 6F 73 6F 66 74 2E 63 6F 6D 2F 6F
 000000B0: 66 66 69 63 65 2F 32 30 30 36 2F 6B 65 79 45 6E
 000000C0: 63 72 79 70 74 6F 72 2F 70 61 73 73 77 6F 72 64
 000000D0: 22 3E 3C 6B 65 79 44 61 74 61 20 73 61 6C 74 53
 000000E0: 69 7A 65 3D 22 31 36 22 20 62 6C 6F 63 6B 53 69
 000000F0: 7A 65 3D 22 31 36 22 20 6B 65 79 42 69 74 73 3D
 00000100: 22 31 32 38 22 20 68 61 73 68 53 69 7A 65 3D 22
 00000110: 32 30 22 20 63 69 70 68 65 72 41 6C 67 6F 72 69
 00000120: 74 68 6D 3D 22 41 45 53 22 20 63 69 70 68 65 72
 00000130: 43 68 61 69 6E 69 6E 67 3D 22 43 68 61 69 6E 69
 00000140: 6E 67 4D 6F 64 65 43 42 43 22 20 68 61 73 68 41
 00000150: 6C 67 6F 72 69 74 68 6D 3D 22 53 48 41 31 22 20
 00000160: 73 61 6C 74 56 61 6C 75 65 3D 22 2F 61 34 69 57
 00000170: 71 50 79 49 76 45 32 63 55 6F 6C 4A 4D 4B 72 49
 00000180: 77 3D 3D 22 2F 3E 3C 64 61 74 61 49 6E 74 65 67
 00000190: 72 69 74 79 20 65 6E 63 72 79 70 74 65 64 48 6D
 000001A0: 61 63 4B 65 79 3D 22 75 77 70 41 45 46 57 31 68
 000001B0: 51 79 44 32 4F 30 31 6B 7A 31 6C 68 6A 65 76 4E
 000001C0: 77 30 45 43 79 41 41 30 75 32 4F 78 44 79 67 73
 000001D0: 66 59 3D 22 20 65 6E 63 72 79 70 74 65 64 48 6D
 000001E0: 61 63 56 61 6C 75 65 3D 22 75 66 36 48 62 4A 6A
 000001F0: 74 72 79 4A 4F 6A 53 46 71 72 6B 71 6B 4E 51 59
 00000200: 39 4E 6A 4E 51 55 50 49 2B 78 63 6B 38 51 38 79
 00000210: 34 6D 6B 6F 3D 22 2F 3E 3C 6B 65 79 45 6E 63 72
 00000220: 79 70 74 6F 72 73 3E 3C 6B 65 79 45 6E 63 72 79
 00000230: 70 74 6F 72 20 75 72 69 3D 22 68 74 74 70 3A 2F
 00000240: 2F 73 63 68 65 6D 61 73 2E 6D 69 63 72 6F 73 6F
 00000250: 66 74 2E 63 6F 6D 2F 6F 66 66 69 63 65 2F 32 30
 00000260: 30 36 2F 6B 65 79 45 6E 63 72 79 70 74 6F 72 2F
 00000270: 70 61 73 73 77 6F 72 64 22 3E 3C 70 3A 65 6E 63
 00000280: 72 79 70 74 65 64 4B 65 79 20 73 70 69 6E 43 6F
 00000290: 75 6E 74 3D 22 31 30 30 30 30 30 22 20 73 61 6C
 000002A0: 74 53 69 7A 65 3D 22 31 36 22 20 62 6C 6F 63 6B
 000002B0: 53 69 7A 65 3D 22 31 36 22 20 6B 65 79 42 69 74
 000002C0: 73 3D 22 31 32 38 22 20 68 61 73 68 53 69 7A 65

101 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 000002D0: 3D 22 32 30 22 20 63 69 70 68 65 72 41 6C 67 6F
 000002E0: 72 69 74 68 6D 3D 22 41 45 53 22 20 63 69 70 68
 000002F0: 65 72 43 68 61 69 6E 69 6E 67 3D 22 43 68 61 69
 00000300: 6E 69 6E 67 4D 6F 64 65 43 42 43 22 20 68 61 73
 00000310: 68 41 6C 67 6F 72 69 74 68 6D 3D 22 53 48 41 31
 00000320: 22 20 73 61 6C 74 56 61 6C 75 65 3D 22 70 70 73
 00000330: 36 42 31 62 6D 71 43 46 58 67 6F 70 73 6D 31 72
 00000340: 57 6E 51 3D 3D 22 20 65 6E 63 72 79 70 74 65 64
 00000350: 56 65 72 69 66 69 65 72 48 61 73 68 49 6E 70 75
 00000360: 74 3D 22 4A 59 55 34 51 30 75 32 42 68 71 7A 51
 00000370: 41 35 44 34 4A 2F 76 6F 41 3D 3D 22 20 65 6E 63
 00000380: 72 79 70 74 65 64 56 65 72 69 66 69 65 72 48 61
 00000390: 73 68 56 61 6C 75 65 3D 22 65 42 32 6A 58 35 6D
 000003A0: 76 68 42 4A 2B 39 4F 37 66 66 43 2B 36 58 32 4D
 000003B0: 79 64 7A 32 67 6C 48 4F 58 78 30 54 39 50 6E 36
 000003C0: 6E 4B 2B 77 3D 22 20 65 6E 63 72 79 70 74 65 64
 000003D0: 4B 65 79 56 61 6C 75 65 3D 22 32 46 38 36 48 47
 000003E0: 2B 78 56 33 6E 47 61 32 37 44 45 6C 67 71 67 77
 000003F0: 3D 3D 22 2F 3E 3C 2F 6B 65 79 45 6E 63 72 79 70
 00000400: 74 6F 72 3E 3C 2F 6B 65 79 45 6E 63 72 79 70 74
 00000410: 6F 72 73 3E 3C 2F 65 6E 63 72 79 70 74 69 6F 6E
 00000420: 3E

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo.vMajor EncryptionVersionInfo.vMinor

Reserved

XmlEncryptionDescriptor (variable)

...

EncryptionVersionInfo.vMajor (2 bytes): 0x0004 specifies the major version.

EncryptionVersionInfo.vMinor (2 bytes): 0x0004 specifies the minor version.

Reserved (4 bytes): 0x00000040 is a reserved value.

XmlEncryptionDescriptor (variable): An XML block that specifies the encryption algorithms used

and that contains the following XML:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <encryption
 xmlns="http://schemas.microsoft.com/office/2006/encryption"
 xmlns:p="http://schemas.microsoft.com/office/2006/keyEncryptor/password">
 <keyData
 saltSize="16"
 blockSize="16"
 keyBits="128"
 hashSize="20"
 cipherAlgorithm="AES"
 cipherChaining="ChainingModeCBC"
 hashAlgorithm="SHA-1"
 saltValue="/a4iWqPyIvE2cUolJMKrIw=="/>

 <dataIntegrity
 encryptedHmacKey="uwpAEFW1hQyD2O01kz1lhjevNw0ECyAA0u2OxDygsfY="
 encryptedHmacValue="uf6HbJjtryJOjSFqrkqkNQY9NjNQUPI+xck8Q8y4mko="/>

102 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 <keyEncryptors>
 <keyEncryptor uri="http://schemas.microsoft.com/office/2006/keyEncryptor/password">
 <p:encryptedKey
 spinCount="100000"
 saltSize="16"
 blockSize="16"
 keyBits="128"
 hashSize="20"
 cipherAlgorithm="AES"
 cipherChaining="ChainingModeCBC"
 hashAlgorithm="SHA-1"
 saltValue="pps6B1bmqCFXgopsm1rWnQ=="
 encryptedVerifierHashInput="JYU4Q0u2BhqzQA5D4J/voA=="
 encryptedVerifierHashValue="eB2jX5mvhBJ+9O7ffC+6X2Mydz2glHOXx0T9Pn6nK+w="
 encryptedKeyValue="2F86HG+xV3nGa27DElgqgw=="/>
 </keyEncryptor>
 </keyEncryptors>
 </encryption>

keyData: The cryptographic attributes used to encrypt the data.

saltSize: 16 specifies that the salt value is 16 bytes in length.

blockSize: 16 specifies that 16 bytes were used to encrypt each block of data.

keyBits: 128 specifies that the key used to encrypt the data is 128 bits in length.

hashSize: 20 specifies that the hash size is 20 bytes in length.

cipherAlgorithm: "AES" specifies that the cipher algorithm used to encrypt the data is AES.

cipherChaining: "ChainingModeCBC" specifies that the chaining mode to encrypt the data is CBC.

hashAlgorithm: "SHA-1" specifies that the hashing algorithm used to hash the data is SHA-1.

SaltValue: "/a4iWqPyIvE2cUolJMKrIw==" specifies a randomly generated value used when

generating the encryption key.

dataIntegrity: Specifies the encrypted copies of the salt and hash values used to help ensure that
the integrity of the encrypted data has not been compromised.

encryptedHmacKey: "uwpAEFW1hQyD2O01kz1lhjevNw0ECyAA0u2OxDygsfY=" specifies the
encrypted copy of the randomly generated value used when generating the encryption key.

encryptedHmacValue: "uf6HbJjtryJOjSFqrkqkNQY9NjNQUPI+xck8Q8y4mko=" specifies the

encrypted copy of the hash value that is generated during the creation of the encryption key.

keyEncryptors: Specifies the key encryptors used to encrypt the data.

keyEncryptor: "http://schemas.microsoft.com/office/2006/keyEncryptor/password" specifies that the
schema used by this encryptor is the schema specified in section 2.3.4.10 for password-based
encryptors.

p:encryptedKey: The attributes used to generate the encrypting key.

spinCount: 100000 specifies that there are 100000 iterations on the hash of the password.

saltSize: 16 specifies that the salt value is 16 bytes long.

blockSize: 16 specifies that 16 bytes were used to encrypt each block of data.

keyBits: 128 specifies that the key is 128 bits in length.

103 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

hashSize: 20 specifies that the hash is 20 bytes in length.

cipherAlgorithm: "AES" specifies that the cipher used to encrypt the data is AES.

cipherChaining: "ChainingModeCBC" specifies that the chaining mode used for encrypting is CBC.

hashAlgorithm: "SHA-1" specifies that the hashing algorithm used is SHA-1.

saltValue: "pps6B1bmqCFXgopsm1rWnQ==" specifies the randomly generated value used for
encrypting the data.

encryptedVerifierHashInput: "JYU4Q0u2BhqzQA5D4J/voA==" specifies the
encryptedVerifierHashInput attribute encoded as specified in section 2.3.4.13.

encryptedVerifierHashValue: "eB2jX5mvhBJ+9O7ffC+6X2Mydz2glHOXx0T9Pn6nK+w=" specifies
the encryptedVerifierHashValue encoded as specified in section 2.3.4.13.

encryptedKeyValue: "2F86HG+xV3nGa27DElgqgw==" specifies the encryptedKeyValue encoded

as specified in section 2.3.4.13.

3.12 LabelInfo Stream

This section provides example LabelInfo streams (2) (section 2.6.4).

The example below has both applied sensitivity labels (id="{1e5447a7-0548-4856-b1af-

4c253c3ad016}", id="{989510b7-9e58-40d7-98bf-60b911cb0ea9}", and id="{f5ad6165-baa2-

492b-b3cc-e7925d2faba7}") and removed sensitivity labels (id="{30863317-b7ea-4af9-ba77-

23ca2107d146}" and id="{ec916be2-2331-4c51-b61a-32f19fd0a1e3}").

 <?xml version="1.0" encoding="utf-8" standalone="yes"?><clbl:labelList
xmlns:clbl="http://schemas.microsoft.com/office/2020/mipLabelMetadata"><clbl:label

id="{1e5447a7-0548-4856-b1af-4c253c3ad016}" enabled="1" method="Privileged"

siteId="{f44a5b26-9898-45b5-9cf1-e62a1a758d3c}" contentBits="15" removed="0" /><clbl:label

id="{30863317-b7ea-4af9-ba77-23ca2107d146}" enabled="0" method="" siteId="{30863317-b7ea-

4af9-ba77-23ca2107d146}" removed="1" /><clbl:label id="{989510b7-9e58-40d7-98bf-

60b911cb0ea9}" enabled="1" method="Standard" siteId="{d1b22d3d-8585-53a6-acb3-0e803c7e8d2a}"

contentBits="0" removed="0" /><clbl:label id="{ec916be2-2331-4c51-b61a-32f19fd0a1e3}"

enabled="0" method="" siteId="{ec916be2-2331-4c51-b61a-32f19fd0a1e3}" removed="1"

/><clbl:label id="{f5ad6165-baa2-492b-b3cc-e7925d2faba7}" enabled="1" method="Privileged"

siteId="{1dc653f2-77f1-4cac-9644-656982d12f12}" contentBits="0" removed="0"

/></clbl:labelList>

This example provides a extLst element (section 2.6.4.5) showing two separate hypothetical features.

 <?xml version="1.0" encoding="utf-8" standalone="yes"?><clbl:labelList
xmlns:clbl="http://schemas.microsoft.com/office/2020/mipLabelMetadata"><clbl:extLst><clbl:ext

uri="{FFFFFFFF-EEEE-DDDD-CCCC-111122223333}"><clblX:foo1

xmlns:clblX="http://schemas.microsoft.com/office/futureMipLabelData" bar1="bam"

/></clbl:ext><clbl:ext uri="{AAAAAAAA-EEEE-DDDD-CCCC-111122223333}"><clblY:foo2

xmlns:clblY="http://schemas.microsoft.com/office/futureMipLabelData" bar2="1"

/></clbl:ext></clbl:extLst></clbl:labelList>

104 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

4 Security

4.1 Security Considerations for Implementers

4.1.1 Data Spaces

None.

4.1.2 Information Rights Management

It is recommended that software components that implement the Information Rights Management
(IRM) Data Space make a best effort to respect the licensing limitations applied to the protected
content in the document.

Security considerations concerning rights management are as described in [MS-RMPR].

4.1.3 Encryption

4.1.3.1 ECMA-376 Document Encryption

ECMA-376 document encryption [ECMA-376] using standard encryption does not support CBC and
does not have a provision for detecting corruption, although a block cipher (specifically, AES) is not
known to be subject to bit-flipping attacks. ECMA-376 documents using agile encryption are required
to use CBC and corruption detection, and are not subject to the issues noted for standard encryption.

When setting algorithms for agile encryption, the SHA-2 series of hashing algorithms is preferred.
MD2, MD4, and MD5 are not recommended. Older cipher algorithms, such as DES, are also not

recommended.

Passwords are limited to 255 Unicode code points.

4.1.3.2 Office Binary Document RC4 CryptoAPI Encryption

The Office binary document RC4 CryptoAPI encryption method is not recommended and ought to be

used only when backward compatibility is required.

Passwords are limited to 255 Unicode characters.

Office binary document RC4 CryptoAPI encryption has the following known cryptographic weaknesses:

 The key derivation algorithm described in section 2.3.5.2 is weak because of the lack of a
repeated iteration mechanism, and the password might be subject to rapid brute-force attacks.

 Encryption begins with the first byte and does not throw away an initial range as is recommended

to overcome a known weakness in the RC4 pseudorandom number generator.

 No provision is made for detecting corruption within the encryption stream (1), which exposes
encrypted data to bit-flipping attacks.

 When used with small key lengths (such as 40-bit), brute-force attacks on the key without
knowing the password are possible.

 Some streams (1) are not encrypted.

%5bMS-RMPR%5d.pdf#Section_d8ed4b1ee6054668b1736312cba6977e
https://go.microsoft.com/fwlink/?LinkId=200054

105 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 Key stream (1) reuse can occur in document data streams (1), potentially with known plaintext,
implying that certain portions of encrypted data can be either directly extracted or trivially

retrieved.

 Key stream (1) reuse occurs multiple times within the RC4 CryptoAPI Encrypted Summary stream

(1).

 Document properties might not be encrypted, which could result in information leakage.

Because of the cryptographic weaknesses of the Office binary document RC4 CryptoAPI encryption, it
is considered insecure, and therefore is not recommended when storing sensitive materials.

4.1.3.3 Office Binary Document RC4 Encryption

The Office binary document RC4 encryption method is not recommended, and ought to be used only
when backward compatibility is required.

Passwords are limited to 255 Unicode characters.

Office binary document RC4 encryption has the following known cryptographic weaknesses:

 The key derivation algorithm is not an iterated hash, as described in [RFC2898], which allows

brute-force attacks against the password to be performed rapidly.

 Encryption begins with the first byte, and does not throw away an initial range as is recommended
to overcome a known weakness in the RC4 pseudorandom number generator.

 No provision is made for detecting corruption within the encryption stream (1), which exposes
encrypted data to bit-flipping attacks.

 While the derived encryption key is actually 128 bits, the input used to derive the key is fixed at
40 bits, and current hardware enables brute-force attacks on the encryption key without knowing

the password in a relatively short period of time so that even if the password cannot easily be
recovered, the information could still be disclosed.

 Some streams (1) might not be encrypted.

 Depending on the application, key stream (1) reuse could occur, potentially with known plaintext,
implying that certain portions of encrypted data could be either directly extracted or easily
retrieved.

 Document properties might not be encrypted, which could result in information leakage.

Because of the cryptographic weaknesses of the Office Binary Document RC4 Encryption, it is
considered easily reversible and therefore is not recommended when storing sensitive materials.

4.1.3.4 XOR Obfuscation

XOR obfuscation is not recommended. Document data can easily be extracted. The document

password could be retrievable.

Passwords are truncated to 15 characters. It is possible for multiple passwords to map to the same
key.

4.1.3.5 Information Rights Management Cypher Block Chaining

To generate the Initialization Vector (IV) for Cipher block chaining (CBC) encryption mode for
Information Rights Management (IRM) encrypted documents, document writers shall use a 128
bit IV buffer, cast the 0-based block starting offset (not the block number) of the document stream

https://go.microsoft.com/fwlink/?LinkId=119708

106 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

as an unsigned 32-bit integer, and write it to the buffer little-endian to form the first 4 bytes of the
buffer, leaving the remaining 12 bytes set to 0. Then the IV shall be encrypted with Advanced

Encryption Standard (AES) electronic codebook (ECB) encryption.

4.1.4 Document Write Protection

Document write protection methods 1 (section 2.4.2.1) and 3 (section 2.4.2.3) both embed the
password in plaintext into the file. Although method 3 subsequently encrypts the file, the encryption is
flawed, and the password is described in section 2.4.2.3. In both cases, the password can be

extracted with little difficulty. Document write protection is not considered to be a security
mechanism, and the write protection can easily be removed by using a binary editor. Document write
protection is meant to protect against accidental modification only.

Some file formats, such as those described in [MS-DOC] and [MS-XLS], restrict password length to 15
characters. It is possible for multiple passwords to map to the same key when using document write
protection method 2 (section 2.4.2.2).

4.1.5 Binary Document Digital Signatures

Certain streams (1) and storages are not subject to signing. Tampering with these streams (1) or
storages does not invalidate the signature.

4.2 Index of Security Fields

None.

%5bMS-DOC%5d.pdf#Section_ccd7b4867881484ca13751170af7cc22
%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06

107 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Microsoft Office 97

 Microsoft Office 2000

 Microsoft Office XP

 Microsoft Office 2003

 The 2007 Microsoft Office system

 Microsoft Office 2010 suites

 Microsoft Office 2013

 Microsoft Office 2016

 Microsoft Office 2019

 Microsoft Office SharePoint Server 2007

 Microsoft SharePoint Server 2010

 Microsoft SharePoint Server 2013

 Microsoft SharePoint Server 2016

 Microsoft SharePoint Server 2019

 Microsoft Office 2021

 Microsoft SharePoint Server Subscription Edition

 Microsoft Office 2024 Preview

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.2: Applications in Office 2003, the 2007 Microsoft Office system, Microsoft Office 2010
suites and Office 2013 versions encrypt the Microsoft Office binary documents by persisting the entire

document to a temporary OLE compound file and then transforming the physical representation of the
OLE compound file as a single stream of bytes. Similarly, ECMA-376 documents [ECMA-376] are

encrypted by adding the entire file package to a temporary file and then transforming the physical
representation of the file as a single stream of bytes.

The following streams are also stored outside the protected content to preserve interoperability with
applications that do not understand the IRMDS structure:

 _signatures

https://go.microsoft.com/fwlink/?LinkId=200054

108 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 0x01CompObj

 Macros

 _VBA_PROJECT_CUR

 0x05SummaryInformation

 0x05DocumentSummaryInformation

 MsoDataStore

Applications in Office 2003, the 2007 Office system, Office 2010 and Office 2013 also create the
streams and storages necessary to create a default document within the OLE compound file. This
default document contains a short message to the user indicating that the actual document contents
are encrypted. This allows versions of Microsoft Office that do not understand the IRMDS structure to
open the default document instead of rejecting the file.

<2> Section 2.2.1: Office 2003, the 2007 Office system, Office 2010 and Office 2013 offer the user
the option of creating a transformed MHTML representation of the document when applying a rights
management policy to a document. This option is on by default in Microsoft Office Excel 2003 and off
by default in all other applications in Office 2003, and it is off by default in all applications in the 2007
Office system, Office 2010 and Office 2013. If the transformed MHTML representation is created, the
0x09LZXDRMDataSpace data space definition is applied to it (which includes both LZX compression

and encryption).

<3> Section 2.2.2: Office 2003, the 2007 Office system, Office 2010 and Office 2013 offer the user
the option of creating a transformed MHTML representation of the document when applying a rights
management policy to a document. This option is on by default in Office Excel 2003 and off by default
in all other Office 2003 applications, and it is off by default in all applications in the 2007 Office system
and newer versions. If the transformed MHTML representation is created, the
0x09LZXDRMDataSpace data space definition is applied to it (which includes both LZX compression

and encryption).

<4> Section 2.2.3: Office 2003, the 2007 Office system, Office 2010 and Office 2013 offer the user
the option of creating a transformed MHTML representation of the document when applying a rights
management policy to a document. This option is on by default in Office Excel 2003 and off by default
in all other Office 2003 applications, and it is off by default in all applications in the 2007 Office
system, Office 2010 and Office 2013. If the transformed MHTML representation is created, the
0x09LZXDRMDataSpace data space definition is applied to it (which includes both LZX compression

and encryption).

<5> Section 2.2.6: Office SharePoint Server 2007 uses the AUTHENTICATEDDATA element with
the name set to "ListGUID" as the application-specific GUID that identifies the storage location for the
document. This is stored encrypted within the element as follows.

 <AUTHENTICATEDDATA id="Encrypted-Rights-Data">

Once decrypted, the XrML document contains an element named AUTHENTICATEDDATA, containing
an attribute named id with a value of "APPSPECIFIC" and an attribute named name with a value of
ListGUID with the contents of the ListGUID.

<6> Section 2.2.11: Office 2003, the 2007 Office system, Office 2010 and Office 2013 offer the user
the option of creating a transformed MHTML representation of the document when applying a rights

management policy to a document. This option is on by default in Office Excel 2003 and off by default
in all other Office 2003 applications, and it is off by default in all applications in the 2007 Office
system, Office 2010 and Office 2013. If the transformed MHTML representation is created, the
0x09LZXDRMDataSpace data space definition is applied to it (which includes both LZX compression
and encryption).

109 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

<7> Section 2.3.1: In the 2007 Office system, the 2007 Office system, Office 2010 and Office 2013,
the default encryption algorithm for ECMA-376 standard encryption documents [ECMA-376] is 128-bit

AES, and both 192-bit and 256-bit AES are also supported. It is possible to use alternate encryption
algorithms, and for best results, a block cipher supporting ECB mode is recommended. Additionally,

the algorithm ought to convert one block of plaintext to one block of encrypted data, where both
blocks are the same size. This information is for guidance only, and it is possible that if alternate
algorithms are used, the applications in the 2007 Office system, Office 2010 and Office 2013 might
not open the document properly or that information leakage could occur.

<8> Section 2.3.2: Several of the cryptographic techniques specified in this document use the
Cryptographic Application Programming Interface (CAPI) or CryptoAPI when implemented by
Microsoft Office on the Microsoft Windows operating systems. While an implementation is not required

to use CryptoAPI, if an implementation is required to interoperate with the 2007 Office system, the
2007 Office system, Office 2010 and Office 2013 on the Windows XP operating system, Windows Vista
operating system, Windows 7 operating system, Windows 8 operating system and Windows 8.1
operating systems, the following are required:

Cryptographic service provider (CSP): A library containing implementations of cryptographic

algorithms. Several CSPs that support the algorithms required in this specification are present by

default on Windows XP, Windows Vista, Windows 7, Windows 8 and Windows 8.1 operating systems.
Alternate CSPs can be used, if the CSP is installed on all systems consuming or producing a document.

AlgID: An integer representing an encryption algorithm in the CryptoAPI. Required AlgID values are
specified in the remainder of this document. Alternate AlgID values can be used if the CSP supporting
the alternate AlgID is installed on all systems consuming or producing a document.

AlgIDHash: An integer representing a hashing algorithm in the CryptoAPI. Required AlgIDHash
values are specified in the remainder of this document. For encryption operations, the hashing

algorithm is fixed and cannot vary from the algorithms specified.

The following cryptographic providers are recommended to facilitate interoperability across all
supported versions of Windows:

 Microsoft Base Cryptographic Provider v1.0

 Microsoft Enhanced Cryptographic Provider v1.0

 Microsoft Enhanced RSA and AES Cryptographic Provider

Note that the following providers are equivalent:

 Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)

 Microsoft Enhanced RSA and AES Cryptographic Provider

The provider listed as "Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)" is found
on Windows XP. An implementation needs to treat these providers as equivalent when attempting to
resolve a CSP on a Windows system.

When using AES encryption for ECMA-376 documents [ECMA-376], the Microsoft Enhanced RSA and

AES Cryptographic Provider is written into the header, unless AES encryption facilities are obtained
from an alternate cryptographic provider as noted in the next paragraph. When using CryptoAPI RC4
encryption, be aware that the Microsoft Base Cryptographic Provider v1.0 is limited to 56-bit key
lengths. The other providers listed support up to 128-bit key lengths.

Other cryptographic providers can be used, but documents specifying other providers will not open
properly if the cryptographic provider is not present. On a non-Windows system, the cryptographic
provider will be ignored when opening a file, and the algorithm and key length will be determined by

the EncryptionHeader.AlgID and EncryptionHeader.KeySize fields. When writing a file from a

110 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

non-Windows system, a correct cryptographic provider needs to be supplied for implementations on
Windows systems to properly open the file.

Additionally, a ProviderType parameter is required for an EncryptionHeader structure that is
compatible with the CSP and encryption algorithm chosen. To facilitate interoperability, the

ProviderTypes listed in section 2.3.2 are recommended.

Additionally, see section 4.1.3 for additional information regarding the cryptography used.

<9> Section 2.3.4.5: Office 2003 applications set a Version.vMajor version value of 0x0002.
Applications in the 2007 Office system and Microsoft Office 2007 Service Pack 1 (SP1) set a
Version.vMajor value of 0x0003. Versions Microsoft Office 2007 Service Pack 2 (SP2), Office 2010
and Office 2013 set a Version.vMajor value of 0x0004.

<10> Section 2.3.4.5: In the 2007 Office system, Office 2010 and Office 2013, the default encryption

algorithm for ECMA-376 standard encryption documents [ECMA-376] is 128-bit AES, and both 192-bit
and 256-bit AES are also supported. It is possible to use alternate encryption algorithms, and for best
results, a block cipher supporting ECB mode is recommended. Additionally, the algorithm ought to

convert one block of plaintext to one block of encrypted data, where both blocks are the same size.
This information is for guidance only, and it is possible that if alternate algorithms are used, the
applications in the 2007 Office system, Office 2010 and Office 2013 might not open the document

properly or that information leakage could occur.

<11> Section 2.3.4.5: In the 2007 Office system, Office 2010 and Office 2013, the default encryption
algorithm for ECMA-376 standard encryption documents [ECMA-376] is 128-bit AES, and both 192-bit
and 256-bit AES are also supported. It is possible to use alternate encryption algorithms, and for best
results, a block cipher supporting ECB mode is recommended. Additionally, the algorithm ought to
convert one block of plaintext to one block of encrypted data, where both blocks are the same size.
This information is for guidance only, and it is possible that if alternate algorithms are used, the

applications in the 2007 Office system, Office 2010 and Office 2013 might not open the document
properly or that information leakage could occur.

<12> Section 2.3.4.6: On Windows XP, Windows Vista, Windows 7, Windows 8 and Windows 8.1,
CSPName specifies the GUID of the extensible encryption module used for this file format. This GUID

specifies the CLSID of the COM module containing cryptographic functionality. The CSPName is
required to be a null-terminated Unicode string.

<13> Section 2.3.4.10: The use of RC2 is not recommended. If RC2 is used with a key length of less

than 128 bits, documents could interoperate incorrectly across different operating system versions.

<14> Section 2.3.4.10: The use of DES is not recommended. If DES is used, the key length specified
in the KeyBits element is required to be set to 64 for 56-bit encryption, and the key decrypted from
encryptedKeyValue of KeyEncryptor is required to include the DES parity bits.

<15> Section 2.3.4.10: The use of DESX is not recommended. If DESX is used, documents could
interoperate incorrectly across different operating system versions.

<16> Section 2.3.4.10: If 3DES or 3DES_112 is used, the key length specified in the KeyBits
element is required to be set to 192 for 168-bit encryption and 128 for 112-bit encryption, and the
key decrypted from encryptedKeyValue of KeyEncryptor is required to include the DES parity bits.

<17> Section 2.3.4.10: If 3DES or 3DES_112 is used, the key length specified in the KeyBits
element is required to be set to 192 for 168-bit encryption and 128 for 112-bit encryption, and the
key decrypted from encryptedKeyValue of KeyEncryptor is required to include the DES parity bits.

<18> Section 2.3.4.10: Any algorithm that can be resolved by name by the underlying operating

system can be used for hashing or encryption. Only block algorithms are supported for encryption.
AES-128 is the default encryption algorithm, and SHA-1 is the default hashing algorithm if no other
algorithms have been configured.

111 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

<19> Section 2.3.4.10: Any algorithm that can be resolved by name by the underlying operating
system can be used for hashing or encryption. Only block algorithms are supported for encryption.

AES-128 is the default encryption algorithm, and SHA-1 is the default hashing algorithm if no other
algorithms have been configured.

<20> Section 2.3.4.10: All ECMA-376 documents [ECMA-376] encrypted by Microsoft Office using
agile encryption will have a DataIntegrity element present. The schema allows for a DataIntegrity
element to not be present because the encryption schema can be used by applications that do not
create ECMA-376 documents [ECMA-376].

<21> Section 2.3.5.1: Office 2003 applications set a Version.vMajor version of 0x0002.
Applications in the 2007 Office system and Office 2007 SP1 set a Version.vMajor value of 0x0003.
Versions such as Office 2007 SP2, Office 2010 and Office 2013set a Version.vMajor value of 0x004.

<22> Section 2.3.5.1: Several of the cryptographic techniques specified in this document use the
Cryptographic Application Programming Interface (CAPI) or CryptoAPI when implemented by Microsoft
Office on the Windows operating systems. While an implementation is not required to use CryptoAPI,
if an implementation is required to interoperate with Microsoft Office on the Windows operating

systems, the following are required:

Cryptographic service provider (CSP): A CSP refers to a library containing implementations of

cryptographic algorithms. Several CSPs that support the algorithms required in this specification are
present by default on the latest versions of Windows. Alternate CSPs can be used, if the CSP is
installed on all systems consuming or producing a document.

AlgID: An integer representing an encryption algorithm in the CryptoAPI. Required AlgID values are
specified in the remainder of this document. Alternate AlgIDs can be used if the CSP supporting the
alternate AlgID is installed on all systems consuming or producing a document.

AlgIDHash: An integer representing a hashing algorithm in the CryptoAPI. Required AlgIDHash

values are specified in the remainder of this document. For encryption operations, the hashing
algorithm is fixed and cannot vary from the algorithms specified.

The following cryptographic providers are recommended to facilitate interoperability across all

supported versions of Windows:

 Microsoft Base Cryptographic Provider v1.0

 Microsoft Enhanced Cryptographic Provider v1.0

 Microsoft Enhanced RSA and AES Cryptographic Provider

Note that the following providers are equivalent:

 Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)

 Microsoft Enhanced RSA and AES Cryptographic Provider

The provider listed as "Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)" is found
on Windows XP. An implementation needs to treat these providers as equivalent when attempting to

resolve a CSP on a Windows system.

When using AES encryption for ECMA-376 documents [ECMA-376], the Microsoft Enhanced RSA and
AES Cryptographic Provider is written into the header, unless AES encryption facilities are obtained
from an alternate cryptographic provider as noted in the next paragraph. When using CryptoAPI RC4
encryption, be aware that the Microsoft Base Cryptographic Provider v1.0 is limited to 56-bit key
lengths. The other providers listed support up to 128-bit key lengths.

Other cryptographic providers can be used, but documents specifying other providers might not open
properly if the cryptographic provider is not present. On a non-Windows system, the cryptographic

provider will be ignored when opening a file, and the algorithm and key length will be determined by

112 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

the EncryptionHeader.AlgID and EncryptionHeader.KeySize fields. When writing a file from a
non-Windows system, a correct cryptographic provider needs to be supplied for implementations on

Windows systems to properly open the file.

Additionally, a ProviderType parameter is required for an EncryptionHeader structure that is

compatible with the CSP and encryption algorithm chosen. To facilitate interoperability, the
ProviderTypes listed in section 2.3.2 are recommended.

Additionally, see section 4.1.3 for additional information regarding the cryptography used.

<23> Section 2.3.5.4: Office 2003, the 2007 Office system, Office 2010 and Office 2013 allow the
user to optionally encrypt the \0x05SummaryInformation and
\0x05DocumentSummaryInformation streams. Additional streams and storages can also be
encrypted within the RC4 CryptoAPI summary stream.

<24> Section 2.4.1: Documents generated by Microsoft Office Excel 2007, Microsoft Excel2010 and
Microsoft Excel 2013 can be encrypted as specified in section 2.3 with the following password:
"\x56\x65\x6C\x76\x65\x74\x53\x77\x65\x61\x74\x73\x68\x6F\x70". The conditions under which

this password is used are described in [MS-XLS] and [MS-XLSB].

<25> Section 2.4.2.2: Documents generated by Office Excel 2007, Excel 2010 and Excel 2013 can be
encrypted as specified in section 2.3 with the following password:

"\x56\x65\x6C\x76\x65\x74\x53\x77\x65\x61\x74\x73\x68\x6F\x70". The conditions under which
this password is used are described in [MS-XLS] and [MS-XLSB].

<26> Section 2.4.2.3: Documents created by Microsoft Office PowerPoint 2003, Microsoft Office
PowerPoint 2007 and Microsoft Office PowerPoint 2007 Service Pack 1 use the default password.
Microsoft Office PowerPoint 2007 Service Pack 2 does not use the default password. A document
created without the default password can be opened in earlier versions. Due to security concerns, it is
preferable not to use the default password.

<27> Section 2.4.2.4: Any algorithm that can be resolved by name by the underlying operating
system can be used for hashing or encryption. Only block algorithms are supported for encryption.
AES-128 is the default encryption algorithm, and SHA-1 is the default hashing algorithm if no other

algorithms have been configured.

<28> Section 2.5.2.1: In the 2007 Office system, the SHA-1 hashing algorithm is required to be used
for this purpose. Office 2010 and Office 2013 require only that the underlying operating system
support the hashing algorithm.

<29> Section 2.5.2.1: In the 2007 Office system, the SHA-1 hashing algorithm is required to be used
for this purpose. Office 2010 and Office 2013 require only that the underlying operating system
support the hashing algorithm.

<30> Section 2.5.2.4: In the 2007 Office system, the SHA-1 hashing algorithm is required to be used
for this purpose. Office 2010 and Office 2013 versions require only that the underlying operating
system support the hashing algorithm.

<31> Section 2.5.2.5: Office 2010, Office 2013 and the 2007 Office system reserve the value of
{00000000-0000-0000-0000-000000000000} for their default signature providers and {000CD6A4-

0000-0000-C000-000000000046} for their East Asian signature providers.

<32> Section 2.5.2.6: Office 2010 and Office 2013 adds XML Advanced Electronic Signatures
([XAdES]) extensions to xmldsig signatures when configured to do so by the user. By default, XAdES-
EPES signatures are used, as specified in [XAdES] section 4.4.2.

<33> Section 2.5.2.6: By default, Office 2010 and Office 2013 places the reference to the

SignedProperties element within the SignedInfo element. the 2007 Office system needs an update
to correctly validate a reference within the SignedInfo element that is not to a top-level Object
element, and incorrectly rejects these signatures as invalid. To ensure compatibility with earlier

%5bMS-XLS%5d.pdf#Section_cd03cb5fca024934a391bb674cb8aa06
%5bMS-XLSB%5d.pdf#Section_acc8aa921f02416799f584f9f676b95a
https://go.microsoft.com/fwlink/?LinkId=151586

113 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

versions of Office that have not been updated to validate the signature correctly, an implementation
can place the Reference element within a manifest.

114 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

6 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

5 Appendix A: Product Behavior Updated list of supported products. Major

mailto:dochelp@microsoft.com

115 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

7 Index

\

_signatures stream 70
\0x06DataSpaces\DataSpaceInfo storage –

encryption 38
\0x06DataSpaces\DataSpaceInfo storage – IRMDS

29
\0x06DataSpaces\DataSpaceMap stream –

encryption 38
\0x06DataSpaces\DataSpaceMap stream – IRMDS

28
\0x06DataSpaces\TransformInfo storage –

encryption 38
\0x06DataSpaces\TransformInfo storage for ECMA-

376 documents – IRMDS 30
\0x06DataSpaces\TransformInfo storage for Office

binary documents – IRMDS 29
\EncryptedPackage stream – encryption 39
\EncryptionInfo stream (agile encryption) –

encryption 44
\EncryptionInfo stream (extensible encryption) –

encryption 40
\EncryptionInfo stream (standard encryption) –

encryption 39
\EncryptionInfo Stream (Third-Party Extensible

Encryption) example 98
\EncryptionInfo Stream example 96

_

_xmlsignatures storage 77

0

0x06Primary Stream example 90

4

40-bit RC4 encryption overview 17

A

Applicability overview
 data spaces 19
 encryption 20

Array overview 19

B

Binary document digital signatures
 _signatures stream 70
 _xmlsignatures storage 77
 CryptoAPI digital signature CertificateInfo structure

68
 CryptoAPI digital signature generation 70
 CryptoAPI digital signature structure 70
 idOfficeObject object element 73
 idPackageObject object element 73
 KeyInfo element 73
 security
 implementer considerations 106

 SignatureValue element 72
 SignedInfo element 72
 TimeEncoding structure 67
 XAdES elements 76
 Xmldsig digital signature elements 72
Binary document digital signatures structure 67
Binary document password verifier derivation Method

1 – encryption 60
Binary document password verifier derivation Method

2 – encryption 63
Binary document write protection Method 1 65
Binary document write protection Method 2 65
Binary document write protection Method 3 66
Binary document XOR array initialization Method 1 –

encryption 60
Binary document XOR array initialization Method 2 –

encryption 64
Binary document XOR data transformation Method 1

– encryption 62
Binary document XOR data transformation Method 2

– encryption 65
Byte ordering
 overview 18

C

Certificate chain example 93
Change tracking 114
CryptoAPI digital signature CertificateInfo structure

68
CryptoAPI digital signature generation 70
CryptoAPI digital signature structure 70
CryptoAPI RC4 encryption overview 17

D

Data encryption (agile encryption) – encryption 52
Data spaces
 applicability 19
 DataSpaceDefinition structure 26
 DataSpaceMap structure 24
 DataSpaceMapEntry structure 25
 DataSpaceReferenceComponent structure 25
 DataSpaceVersionInfo structure 23
 EncryptionTransformInfo structure 27
 File 21
 Length-Prefixed Padded Unicode String (UNICODE-

LP-P4) structure 22
 Length-Prefixed UTF-8 String (UTF-8-LP-P4)

structure 23
 overview 14
 security
 implementer considerations 104
 TransformInfoHeader structure 27
 version structure 23
Data spaces structure 21
DataIntegrity generation (agile encryption) –

encryption 52
DataSpaceDefinition structure – data spaces 26
DataSpaceMap Stream example 88
DataSpaceMap structure – data spaces 24

116 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

DataSpaceMapEntry structure – data spaces 25
DataSpaceMapEntry structure example 89
DataSpaceReferenceComponent structure – data

spaces 25
DataSpaceVersionInfo structure – data spaces 23
Details
 _signatures stream 70
 \0x06DataSpaces\DataSpaceInfo storage (section

2.2.2 29, section 2.3.4.2 38)
 \0x06DataSpaces\DataSpaceMap stream (section

2.2.1 28, section 2.3.4.1 38)
 \0x06DataSpaces\TransformInfo storage 38
 \0x06DataSpaces\TransformInfo storage for

ECMA-376 documents 30
 \0x06DataSpaces\TransformInfo storage for Office

binary documents 29
 \EncryptedPackage stream 39
 \EncryptionInfo stream (agile encryption) 44
 \EncryptionInfo stream (extensible encryption) 40
 \EncryptionInfo stream (standard encryption) 39
 _xmlsignatures storage 77
 binary document digital signatures structure 67
 binary document password verifier derivation

Method 1 60
 binary document password verifier derivation

Method 2 63
 binary document write protection Method 1 65
 binary document write protection Method 2 65
 binary document write protection Method 3 66
 binary document XOR array initialization Method 1

60
 binary document XOR array initialization Method 2

64
 binary document XOR data transformation Method

1 62
 binary document XOR data transformation Method

2 65
 CertificateInfo structure - CryptoAPI digital

signature 68
 CryptoAPI digital signature CertificateInfo structure

68
 CryptoAPI digital signature generation 70
 CryptoAPI digital signature structure 70
 data encryption (agile encryption) 52
 data spaces structure 21
 DataIntegrity generation (agile encryption) 52
 DataSpaceDefinition structure 26
 DataSpaceMap structure 24
 DataSpaceMapEntry structure 25
 DataSpaceReferenceComponent structure 25
 DataSpaceVersionInfo structure 23
 document write protection structure 65
 ECMA-376 document encryption 38
 ECMA-376 document encryption key generation

(standard encryption) 42
 ECMA-376 document write protection 65
 encryption key derivation 59
 encryption key generation (agile encryption) 49
 encryption structure 33
 EncryptionHeader structure 34
 EncryptionHeaderFlags structure 34
 EncryptionTransformInfo structure 27
 EncryptionVerifier structure 36
 end-user license stream 31
 EndUserLicenseHeader structure 32

 ExtensibilityHeader structure 31
 File structure 21
 idOfficeObject object element 73
 idPackageObject object element 73
 Information Rights Management Data Space

structure 28
 initialization vector generation (agile encryption)

50
 IRMDSTransformInfo structure 31
 ISO write protection method 66
 KeyInfo element 73
 Length-Prefixed Padded Unicode String (UNICODE-

LP-P4) structure 22
 Length-Prefixed UTF-8 String (UTF-8-LP-P4)

structure 23
 LicenseID 32
 Office binary document RC4 CryptoAPI encryption

53
 Office binary document RC4 encryption 58
 password verification - Office binary document RC4

CryptoAPI encryption 57
 password verification - Office binary document RC4

encryption 59

 password verification - XOR obfuscation 65
 password verification (standard encryption) 43
 password verifier generation - Office binary

document RC4 CryptoAPI encryption 57
 password verifier generation - Office binary

document RC4 encryption 59
 password verifier generation (standard encryption)

43
 PasswordKeyEncryptor generation (agile

encryption) 50
 protected content stream 32
 RC4 CryptoAPI encrypted summary stream 55
 RC4 CryptoAPI EncryptedStreamDescriptor

structure 55
 RC4 CryptoAPI encryption header 53
 RC4 CryptoAPI encryption key generation 54
 RC4 encryption header 58
 SignatureValue element 72
 SignedInfo element 72
 TimeEncoding structure 67
 TransformInfoHeader structure 27
 version structure 23
 viewer content stream 33
 XAdES elements 76
 Xmldsig digital signature elements 72
 XOR obfuscation 60
Digital signature elements - Xmldsig 72
Digital signatures
 overview 18
Document write protection
 binary document write protection Method 1 65
 binary document write protection Method 2 65
 binary document write protection Method 3 66
 ECMA-376 65
 ISO write protection method 66
 security
 implementer considerations 106
Document write protection structure 65
DRMEncryptedDataSpace Stream example 90

E

117 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

ECMA-376 document encryption
 security
 implementer considerations 104
ECMA-376 document encryption – encryption 38
ECMA-376 document encryption key generation

(standard encryption) – encryption 42
ECMA-376 document encryption overview 17
ECMA-376 document write protection 65
Elements
 idOfficeObject object 73
 idPackageObject object 73
 KeyInfo 73
 SignatureValue 72
 SignedInfo 72
 XAdES 76
 Xmldsig digital signature 72
Encryption
 \0x06DataSpaces\DataSpaceInfo storage 38
 \0x06DataSpaces\DataSpaceMap stream 38
 \0x06DataSpaces\TransformInfo storage 38
 \EncryptedPackage stream 39
 \EncryptionInfo stream (agile encryption) 44
 \EncryptionInfo stream (extensible encryption) 40

 \EncryptionInfo stream (standard encryption) 39
 40-bit RC4 encryption overview 17
 applicability 20
 binary document password verifier derivation

Method 1 60
 binary document password verifier derivation

Method 2 63
 binary document XOR array initialization Method 1

60
 binary document XOR array initialization Method 2

64
 binary document XOR data transformation Method

1 62
 binary document XOR data transformation Method

2 65
 CryptoAPI RC4 encryption overview 17
 data encryption (agile encryption) 52
 DataIntegrity generation (agile encryption) 52
 ECMA-376 document 38
 ECMA-376 document encryption key generation

(standard encryption) 42
 ECMA-376 document encryption overview 17
 encryption key derivation 59
 encryption key generation (agile encryption) 49
 EncryptionHeader structure 34
 EncryptionHeaderFlags structure 34
 EncryptionVerifier structure 36
 initialization vector generation (agile encryption)

50
 Office binary document RC4 58
 Office binary document RC4 CryptoAPI 53
 overview 17
 password verification - Office binary document RC4

59
 password verification - Office binary document RC4

CryptoAPI 57
 password verification – XOR obfuscation 65
 password verification (standard encryption) 43
 password verifier generation - Office binary

document RC4 59
 password verifier generation - Office binary

document RC4 CryptoAPI 57

 password verifier generation (standard encryption)
43

 PasswordKeyEncryptor generation (agile
encryption) 50

 RC4 CryptoAPI encrypted summary stream 55
 RC4 CryptoAPI EncryptedStreamDescriptor

structure 55
 RC4 CryptoAPI encryption header 53
 RC4 CryptoAPI encryption key generation 54
 RC4 encryption header 58
 XOR obfuscation 60
 XOR obfuscation overview 17
Encryption header example 99
Encryption key derivation – encryption 59
Encryption key generation (agile encryption) –

encryption 49
Encryption structure 33
EncryptionHeader structure – encryption 34
EncryptionHeader Structure example 94
EncryptionHeaderFlags structure – encryption 34
EncryptionTransformInfo structure – data spaces 27
EncryptionVerifier structure – encryption 36
EncryptionVerifier Structure example 96

End-user license stream – IRMDS 31
EndUserLicenseHeader structure – IRMDS 32
EndUserLicenseHeader structure example 93
EUL-ETRHA1143ZLUDD412YTI3M5CTZ Stream

example 92
Examples 87
 \EncryptionInfo Stream 96
 \EncryptionInfo Stream (Third-Party Extensible

Encryption) 98
 0x06Primary Stream 90
 certificate chain 93
 DataSpaceMap Stream 88
 DataSpaceMapEntry structure 89
 DRMEncryptedDataSpace Stream 90
 encryption header 99
 EncryptionHeader Structure 94
 EncryptionVerifier Structure 96
 EndUserLicenseHeader structure 93
 EUL-ETRHA1143ZLUDD412YTI3M5CTZ Stream 92
 LabelInfo Stream 103
 PasswordKeyEncryptor (Agile Encryption) 100
 Version Stream 87
Examples overview 87
ExtensibilityHeader structure – IRMDS 31

F

Fields - security index 106
Fields - vendor-extensible 20
File – data spaces 21

G

Glossary 8

I

idOfficeObject object element 73
idPackageObject object element 73
Implementer - security considerations
 binary document digital signatures 106
 data spaces 104

118 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 document write protection 106
 ECMA-376 document encryption 104
 Information Rights Management 104
 Office binary document RC4 CryptoAPI encryption

104
 Office binary document RC4 encryption 105
 XOR obfuscation 105
Index of security fields 106
Information Rights Management
 security
 implementer considerations 104
Information Rights Management Data Space
 applicability 20
 overview 15
Information Rights Management Data Space

structure 28
Informative references 14
Initialization vector generation (agile encryption) –

encryption 50
Introduction 8
IRMDS
 \0x06DataSpaces\DataSpaceInfo storage 29
 \0x06DataSpaces\DataSpaceMap stream 28

 \0x06DataSpaces\TransformInfo storage for
ECMA-376 documents 30

 \0x06DataSpaces\TransformInfo storage for Office
binary documents 29

 end-user license stream 31
 EndUserLicenseHeader structure 32
 ExtensibilityHeader structure 31
 IRMDSTransformInfo structure 31
 LicenseID 32
 protected content stream 32
 viewer content stream 33
IRMDSTransformInfo structure – IRMDS 31
ISO write protection method 66

K

KeyInfo element 73

L

LabelInfo Stream example 103
Length-Prefixed Padded Unicode String (UNICODE-

LP-P4) structure – data spaces 22
Length-Prefixed UTF-8 String (UTF-8-LP-P4)

structure – data spaces 23
LicenseID – IRMDS 32
Localization 20

N

Normative references 12

O

Office binary document RC4 CryptoAPI encryption
 security
 implementer considerations 104
Office binary document RC4 CryptoAPI encryption –

encryption 53
Office binary document RC4 encryption
 security
 implementer considerations 105

Office binary document RC4 encryption – encryption
58

OLE compound file path encoding
 overview 18
Overview
 40-bit RC4 encryption 17
 array 19
 byte ordering 18
 CryptoAPI RC4 encryption 17
 data spaces - applicability 19
 data spaces – overview (synopsis) 14
 digital signatures 18
 ECMA-376 document encryption 17
 encryption 17
 encryption - applicability 20
 Information Rights Management Data Space 15
 OLE compound file path encoding 18
 pseudocode standard objects 18
 storage 19
 stream 19
 string 19
 string encoding 18
 write protection 18

 XOR obfuscation 17

P

Password verification – Office binary document RC4

CryptoAPI encryption 57
Password verification – Office binary document RC4

encryption 59
Password verification – XOR obfuscation 65
Password verification (standard encryption) –

encryption 43
Password verifier generation – Office binary

document RC4 CryptoAPI encryption 57
Password verifier generation – Office binary

document RC4 encryption 59
Password verifier generation (standard encryption) –

encryption 43
PasswordKeyEncryptor (Agile Encryption) example

100
PasswordKeyEncryptor generation (agile encryption)

– encryption 50
Product behavior 107
Protected content stream – IRMDS 32
Pseudocode standard objects
 array overview 19
 overview 18
 storage overview 19
 stream overview 19
 string overview 19

R

RC4 CryptoAPI encrypted summary stream –

encryption 55

RC4 CryptoAPI EncryptedStreamDescriptor structure
– encryption 55

RC4 CryptoAPI encryption header – encryption 53
RC4 CryptoAPI encryption key generation –

encryption 54
RC4 encryption header – encryption 58
References 12
 informative 14

119 / 119

[MS-OFFCRYPTO] - v20240416
Office Document Cryptography Structure
Copyright © 2024 Microsoft Corporation
Release: April 16, 2024

 normative 12
Relationship to protocols and other structures 19

S

Security
 field index 106
 implementer considerations
 binary document digital signatures 106
 data spaces 104
 document write protection 106
 ECMA-376 document encryption 104
 Information Rights Management 104
 Office binary document RC4 CryptoAPI

encryption 104
 Office binary document RC4 encryption 105
 XOR obfuscation 105

SignatureValue element 72
SignedInfo element 72
Storage - _xmlsignatures 77
Storage overview 19
Stream overview 19
String encoding
 overview 18
String overview 19
Structure overview
 40-bit RC4 encryption 17
 array 19
 byte ordering 18
 CryptoAPI RC4 encryption 17
 data spaces 14
 digital signatures 18
 ECMA-376 document encryption 17
 encryption 17
 Information Rights Management Data Space 15
 OLE compound file path encoding 18
 pseudocode standard objects 18
 storage 19
 stream 19
 string 19
 string encoding 18
 write protection 18
 XOR obfuscation 17
Structures
 binary document digital signatures 67
 data spaces 21
 document write protection 65
 encryption 33
 Information Rights Management Data Space 28

T

TimeEncoding structure 67
Tracking changes 114
TransformInfoHeader structure – data spaces 27

U

UNICODE-LP-P4 structure – data spaces 22
UTF-8-LP-P4 structure – data spaces 23

V

Vendor-extensible fields 20
Version Stream example 87

Version structure – data spaces 23
Versioning 20
Viewer content stream – IRMDS 33

W

Write protection
 overview 18

X

XAdES elements 76

Xmldsig digital signature elements 72
XOR obfuscation
 security
 implementer considerations 105
XOR obfuscation – encryption 60
XOR obfuscation overview 17

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Data Spaces
	1.3.2 Information Rights Management Data Space
	1.3.3 Encryption
	1.3.3.1 XOR Obfuscation
	1.3.3.2 40-bit RC4 Encryption
	1.3.3.3 CryptoAPI RC4 Encryption
	1.3.3.4 ECMA-376 Document Encryption

	1.3.4 Write Protection
	1.3.5 Digital Signatures
	1.3.6 Byte Ordering
	1.3.7 String Encoding
	1.3.8 OLE Compound File Path Encoding
	1.3.9 Pseudocode Standard Objects
	1.3.9.1 Array
	1.3.9.2 String
	1.3.9.3 Storage
	1.3.9.4 Stream

	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.5.1 Data Spaces
	1.5.2 Information Rights Management Data Space
	1.5.3 Encryption

	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 Data Spaces
	2.1.1 File
	2.1.2 Length-Prefixed Padded Unicode String (UNICODE-LP-P4)
	2.1.3 Length-Prefixed UTF-8 String (UTF-8-LP-P4)
	2.1.4 Version
	2.1.5 DataSpaceVersionInfo
	2.1.6 DataSpaceMap
	2.1.6.1 DataSpaceMapEntry Structure
	2.1.6.2 DataSpaceReferenceComponent Structure

	2.1.7 DataSpaceDefinition
	2.1.8 TransformInfoHeader
	2.1.9 EncryptionTransformInfo

	2.2 Information Rights Management Data Space
	2.2.1 \0x06DataSpaces\DataSpaceMap Stream
	2.2.2 \0x06DataSpaces\DataSpaceInfo Storage
	2.2.3 \0x06DataSpaces\TransformInfo Storage for Office Binary Documents
	2.2.4 \0x06DataSpaces\TransformInfo Storage for ECMA-376 Documents
	2.2.5 ExtensibilityHeader
	2.2.6 IRMDSTransformInfo
	2.2.7 End-User License Stream
	2.2.8 LicenseID
	2.2.9 EndUserLicenseHeader
	2.2.10 Protected Content Stream
	2.2.11 Viewer Content Stream

	2.3 Encryption
	2.3.1 EncryptionHeaderFlags
	2.3.2 EncryptionHeader
	2.3.3 EncryptionVerifier
	2.3.4 ECMA-376 Document Encryption
	2.3.4.1 \0x06DataSpaces\DataSpaceMap Stream
	2.3.4.2 \0x06DataSpaces\DataSpaceInfo Storage
	2.3.4.3 \0x06DataSpaces\TransformInfo Storage
	2.3.4.4 \EncryptedPackage Stream
	2.3.4.5 \EncryptionInfo Stream (Standard Encryption)
	2.3.4.6 \EncryptionInfo Stream (Extensible Encryption)
	2.3.4.7 ECMA-376 Document Encryption Key Generation (Standard Encryption)
	2.3.4.8 Password Verifier Generation (Standard Encryption)
	2.3.4.9 Password Verification (Standard Encryption)
	2.3.4.10 \EncryptionInfo Stream (Agile Encryption)
	2.3.4.11 Encryption Key Generation (Agile Encryption)
	2.3.4.12 Initialization Vector Generation (Agile Encryption)
	2.3.4.13 PasswordKeyEncryptor Generation (Agile Encryption)
	2.3.4.14 DataIntegrity Generation (Agile Encryption)
	2.3.4.15 Data Encryption (Agile Encryption)

	2.3.5 Office Binary Document RC4 CryptoAPI Encryption
	2.3.5.1 RC4 CryptoAPI Encryption Header
	2.3.5.2 RC4 CryptoAPI Encryption Key Generation
	2.3.5.3 RC4 CryptoAPI EncryptedStreamDescriptor Structure
	2.3.5.4 RC4 CryptoAPI Encrypted Summary Stream
	2.3.5.5 Password Verifier Generation
	2.3.5.6 Password Verification

	2.3.6 Office Binary Document RC4 Encryption
	2.3.6.1 RC4 Encryption Header
	2.3.6.2 Encryption Key Derivation
	2.3.6.3 Password Verifier Generation
	2.3.6.4 Password Verification

	2.3.7 XOR Obfuscation
	2.3.7.1 Binary Document Password Verifier Derivation Method 1
	2.3.7.2 Binary Document XOR Array Initialization Method 1
	2.3.7.3 Binary Document XOR Data Transformation Method 1
	2.3.7.4 Binary Document Password Verifier Derivation Method 2
	2.3.7.5 Binary Document XOR Array Initialization Method 2
	2.3.7.6 Binary Document XOR Data Transformation Method 2
	2.3.7.7 Password Verification

	2.4 Document Write Protection
	2.4.1 ECMA-376 Document Write Protection
	2.4.2 Binary Document Write Protection
	2.4.2.1 Binary Document Write Protection Method 1
	2.4.2.2 Binary Document Write Protection Method 2
	2.4.2.3 Binary Document Write Protection Method 3
	2.4.2.4 ISO Write Protection Method

	2.5 Binary Document Digital Signatures
	2.5.1 CryptoAPI Digital Signature Structures and Streams
	2.5.1.1 TimeEncoding Structure
	2.5.1.2 CryptoAPI Digital Signature CertificateInfo Structure
	2.5.1.3 CryptoAPI Digital Signature Structure
	2.5.1.4 _signatures Stream
	2.5.1.5 CryptoAPI Digital Signature Generation

	2.5.2 Xmldsig Digital Signature Elements
	2.5.2.1 SignedInfo Element
	2.5.2.2 SignatureValue Element
	2.5.2.3 KeyInfo Element
	2.5.2.4 idPackageObject Object Element
	2.5.2.5 idOfficeObject Object Element
	2.5.2.6 XAdES Elements

	2.5.3 _xmlsignatures Storage

	2.6 Sensitivity Labels
	2.6.1 Sensitivity Label Metadata
	2.6.2 LabelInfo Stream Locations
	2.6.3 LabelInfo versus Custom Document Properties
	2.6.4 LabelInfo Stream Schema
	2.6.4.1 Namespaces
	2.6.4.2 xml Preprocessor Directive
	2.6.4.3 labelList Element
	2.6.4.4 label Element
	2.6.4.5 extLst Element
	2.6.4.6 ext Element

	2.6.5 LabelInfo Stream Structures
	2.6.5.1 ST_ClassificationGuid
	2.6.5.2 CT_ClassificationExtension
	2.6.5.3 CT_ClassificationExtenstionList
	2.6.5.4 CT_ClassificationLabel
	2.6.5.5 CT_ClassificationLabelList

	2.6.6 LabelInfo Stream Extensions

	2.7 MsoDataStore
	2.7.1 IsRedundantDataStorePromotion Storage
	2.7.2 IsModifiedDataStorePromotion Storage

	2.8 EncryptedSIHash Stream
	2.9 EncryptedDSIHash Stream
	2.10 EncryptedPropertyStreamInfo Structure

	3 Structure Examples
	3.1 Version Stream
	3.2 DataSpaceMap Stream
	3.2.1 DataSpaceMapEntry Structure

	3.3 DRMEncryptedDataSpace Stream
	3.4 0x06Primary Stream
	3.5 EUL-ETRHA1143ZLUDD412YTI3M5CTZ Stream
	3.5.1 EndUserLicenseHeader Structure
	3.5.2 Certificate Chain

	3.6 EncryptionHeader Structure
	3.7 EncryptionVerifier Structure
	3.8 \EncryptionInfo Stream
	3.9 \EncryptionInfo Stream (Third-Party Extensible Encryption)
	3.10 Office Binary Document RC4 Encryption
	3.10.1 Encryption Header

	3.11 PasswordKeyEncryptor (Agile Encryption)
	3.12 LabelInfo Stream

	4 Security
	4.1 Security Considerations for Implementers
	4.1.1 Data Spaces
	4.1.2 Information Rights Management
	4.1.3 Encryption
	4.1.3.1 ECMA-376 Document Encryption
	4.1.3.2 Office Binary Document RC4 CryptoAPI Encryption
	4.1.3.3 Office Binary Document RC4 Encryption
	4.1.3.4 XOR Obfuscation
	4.1.3.5 Information Rights Management Cypher Block Chaining

	4.1.4 Document Write Protection
	4.1.5 Binary Document Digital Signatures

	4.2 Index of Security Fields

	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

