[MS -OFFCR YPTOJ:
Office Document Cryptography Structure

Intellectual Property Rights Notice for Open Specifications Documentation

A Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

A Copyrights. This documentation is covered by Microsoft copyrights. Regardles s of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute p ortions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without
modi ficati on, any schema, | Dardiirecludedin thedacurentagian.iipid es t hat
permission also applies to any documents that are referenced in the Open Specifications.

>

No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

>

Patents. Microsoft has patents that may cover your implementations of the technologies

described in the Open Specifications. Neither this notice nor Microsoft's delivery of the

documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise orthe Community

Promise . If you would prefer a written license, or if the te chnologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com

A Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks

A Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
associatio n with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specific ally described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to

Micr osoft programming tools and environments you are free to take advantage of them. Certain

Open Specifications are intended for use in conjunction with publicly available standard

specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

1/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

Revision Summary

Revision Revision

Date History Class Comments

04/04/2008 0.1 Initial Availability

06/27/2008 1.0 Major Revised and edited the technical content

10/06/2008 1.01 Editorial Revised and edited the technical content

12/12/2008 1.02 Editorial Revised and edited the technical content

03/18/2009 1.03 Editorial Revised and edited the technical content

07/13/2009 1.04 Major Revised and edited the technical content

08/28/2009 1.05 Major Updated and revised the technical content

11/06/2009 1.06 Editorial Revised and edited the technical content

02/19/2010 2.0 Editorial Revised and edited the technical content

03/31/2010 2.01 Editorial Revised and edited the technical content

04/30/2010 2.02 Editorial Revised and edited the technical content

06/07/2010 2.03 Editorial Revised and edited the technical content

06/29/2010 2.04 Editorial Changed language and formatting in the technical
content.

07/23/2010 2.05 Minor Clarified the meaning of the technical content.

09/27/2010 2.05 No change No changes to the meaning, language, or formatting of
the technical content.

11/15/2010 2.05 No cha nge No changes to the meaning, language, or formatting of
the technical content.

12/17/2010 2.05 No change No changes to the meaning, language, or formatting of
the technical content.

03/18/2011 2.05 No change No changes to the meaning, language, or formatting of
the technical content.

06/10/2011 2.05 No change No changes to the meaning, language, or formatting of
the technical content.

01/20/2012 2.6 Minor Clarified the meaning of the technical content.

04/1 1/2012 2.6 No change No changes to the meaning, language, or formatting of
the technical content.

07/16/2012 2.7 Minor Clarified the meaning of the technical content.

10/08/2012 2.8 Minor Clarified the meaning of the technical content.

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

2/ 112

Revision Revision

Date History Class Comments

02/11/2013 2.8 No change No changes to the meaning, language, or formatting of
the technical content.

07/30/2013 2.8 No change No changes to the meaning, language, or formatting of
the technical content.

11/18/2013 2.8 No change No changes to the meaning, language, or formatting of
the technical content.

02/10/2014 2.8 No change No changes to the meaning, language, or formatting of
the technical content.

04/30/2014 3.0 Major Significantly changed the technical content.

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

3/ 112

Table of Contents

T 1o o U T o T o PR 7
R R €110 1= Y- T oY/ PSP 7
1.2 REfEIENCES oot et e aaeaneeeeas 8

1.2.1 Normative REfErenCes ..iiiiiiiiiiiiis s e 8
1.2.2 Informative References 10
1.3 OVerviewcccovvcvevieeneennenn, 10
1.3.1 Data@ SPACES cioiviviciiiiiiiie s e aaeeaaeeee e .. 10
1.3.2 Information Rights Manage ment Data SPace ... e 11
1.3.3 ENCIYPLion oot e e, e 12
1.3.3.1 XOR ODbfUSCAtION oo et aeeeeee e 13
1.3.3.2 40 -bit RCAENCIYPLION oo et eeeenieeeas 13
1.3.3.3 CryptoAPI RC4 ENCryption ...ococeevieeieeeieeeiieeens 13
1.3.3.4 ECMA -376 Document Encryption 13
1.3.4 Write Protection ccooeoviiinecneene 14
1.3.5 Digital SIgNatUrES oo e e 14
1.3.6 BYI€ OrderiNg .ioocceiiieiiiiiiiie i eeveeree s nes aareeseee e nnaeas 14
1.3.7 String Encoding ..o, 14
1.3.8 OLE Compound File Path Encoding 14
1.3.9 Pseudocode Standard Objects 14
1.3.9.1 AITAY it e e eeens 15
1.3.9.2 SHING cooovciiiiiicriivririiieene e e e aenaee 15
1.3.9.3 SHOrA0E oo e eeereee e .. 15
1.3.9.4 SHEAM i e e ... 15
1.4 Relationship to Protocols and Other StructuresS s e 15
1.5 Applicability Statement —ccccoiiiiiiie 15
151 Data SPacCeS .o e .. 15
1.5.2 Information Rights Management Data Space 16
1.5.3 ENCIYPtON oo e 16
1.6 Versioning and Localization ... e e 16
1.7 Vendor -Extensible FieldScccociiiiiiiiiccs i e 16

2 SHUCIUIES it e e e e e eeeeeeene e e aaeeaeaeneee 17

2.1 Dat@ SPACES cooocciiiiiiieerieis e e e 17
201 File oot e e e 17
2.1.2 Length -Prefixed Padded Unicode String (UNICODE SLP-P4) ... 18
2.1.3 Length -Prefixed UTF -8 String (UTF -8-LP-P4) oo v 19
2.1.4 Versioncccoceeiiiiiiieennnnn 19
2.1.5 DataSpaceVersioninfo 20
2.1.6 DataSpaceMap ... e e 20

2.1.6.1 DataSpaceMapENntry StruCture ... e e 21
2.1.6.2 DataSpaceReferenceComponent StruCtUre ..o e 22
2.1.7 DataSpaceDefinition .t e e 22
2.1.8 TransformInfoHeader — .iiiiiiis e e 23
2.1.9 EncryptionTransfo rmInfocccccoiiiiiinnnne 24

2.2 Information Rights Management Data Space 24
2.2.1 \OxO6DataSpaces \DataSpaceMap Streamcccccocvciiiiiiiiiiies e 25
2.2.2 \Ox0O6DataSpaces \DataSpacelnfo Storage cccccieviiiiinies eeveenee e 25
2.2.3 \Ox0O6DataSpaces \Transforminfo Storage for Office Binary Documents ... 26
2.2.4 \Ox06DataSpaces \Transforminfo Storage for ECMA -376 Documentsc.c..... 26
2.2.5 ExtensibilityHeader —cciiiiiiiiies e e 27

47112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

2.2.6 IRMDSTransformInfo ccccoovveveeenneiinnnn.
2.2.7 End -User License Stream
2.2.8 LicenselDccoovvevvrvnniiiniinnnnn,
2.2.9 EndUserLicenseHeader
2.2.10 Protected Content Stream
2.2.11 Viewer Content Stream
2.3 Encryptioncooeeiiiieeieiieees
2.3.1 EncryptionHeaderFlags
2.3.2 EncryptionHeadercccccoeiiiiiiiiennnnen.
2.3.3 EncryptionVerifier ..o,

2.3.4 ECMA -376 Document ENCryption ..ooooiiiiiiiiiicciie i vt sinneees e

2.3.4.1 \Ox0O6DataSpaces \DataSpaceMap Streamcccccccvciiiiiieeiiiies ceveeesiree e
2.3.4.2 \OxO6DataSpaces \DataSpacelnfo Storagecccoovcviiiiiciiiees e
2.3.4.3 \Ox0O6DataSpaces \Transforminfo Storage cccccviiiiiiiiiiiiies e

2.3.4.4 \EncryptedPackage Streamcccciiiiiiicins e e

2.3.45 \Encryptioninfo Stream (Standard Encryption) . e,
2.3.4.6 \Encryptioninfo Stream (Extensible Encryption) . e

2.3.47 ECMA -376 Document Encryption Key Generation (Standard Encryption) ~

2.3.4.8 Password Verifier Generation (Standard Encryption) .,
2.3.4.9 Password Verification (Standard E NCryption) ooocvevieerieenreeneneen
2.3.4.10 \Encryptioninfo Stream (Agile Encryption) — ...ccooiiiiiiiieniieneee
2.3.4.11 Encryption Key Generation (Agile Encryption) ..
2.3.4.12 Initialization Vector Generation (Agile Encryption) .
2.3.4.13 PasswordKeyEncryptor Generation (Agile Encryption)
2.3.4.14 Datalntegrity Generation (Agile Encryption) e
2.3.4.15 Data Encryption (Agile Encryption) ..o

2.3.5 Office Binary Document RC4 CryptoAPI Encryption e
2.3.5.1 RCA4 CryptoAPI Encryption Header —cccoooiiiviiieeieene
2.3.5.2 R C4 CryptoAPI Encryption Key Generation —ccccoceevivenieeinenns
2.3.5.3 RC4 CryptoAPI EncryptedStreamDescriptor Structure
2.3.5.4 RCA4 CryptoAPI Encrypted Summary Stream — ..ooooiveviiiee e
2.3.5.5 Password Verifier GENeration . e
2.3.5.6 Password Verification ..o e

2.3.6 Office Binary = Document RC4 Encryption cccccvvvveeieeeninnennn
2.3.6.1 RC4 Encryption Header cccciiiiiiiiiiiiiiiiiiee e
2.3.6.2 Encryption Key Derivation ..o e
2.3.6.3 Password Verifier Generation ... e
2.3.6.4 Password Verification ..o e

2.3.7 XOR ObfuSCation ..o e
2.3.7.1 Binary Document Password Verifier Derivation Method 1
2.3.7.2 Binary Document XOR Array Initialization Method 1 =~ ...
2.3.7.3 Binary Document XOR Data Transformation Method 1
2.3.7.4 Binary Document Password Verifier Derivation Method 2
2.3.7.5 Binary Document XOR Array Initialization Method 2 =~ ...,
2.3.7.6 Binary Document XOR Data Transformation Metho d2 ..
2.3.7.7 Password Verification ... e

2.4 Document Write Protection .. e

2.41 ECMA -376 Document Write Protection cccovivivienieennen,

2.4.2 Bin ary Document Write Protection —cccceiiiiiieniiiennn.
2.4.2.1 Binary Document Write Protection Method 1 =~ ...,
2.4.2.2 Binary Document Write Protection Method 2 =~ ...,
2.4.2.3 Binary Document Write Protection Method 3
2.4.2.4 1SO Write Protection Method ...,

34
34
35
35
35
36
37
39

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

5/ 112

2.5 Binary Do cument Digital SIgnatureS .oociiiiiiiiiiiiiiieies s e 65

2.5.1 CryptoAPI Digital Signature Structures and Streams .. e 66
2.5.1.1 TimeEncoding SITUCIUrE i e eerree e 66
2.5.1.2 CryptoAPI Digital Signature Certificatelnfo Structure .. 66
2.5.1.3 CryptoAPI Digital Signature Structure . e 68
2.5.1.4 _SIgNatures StreamM ..o e e 69
2.5.1.5 CryptoAPI Digital Signature Generation ..o e 69
2.5.2 Xmldsig Digital Signature Elements s e .71
2.5.2.1 Signedinfo Element s e eeeerea e, 71
2.5.2.2 SignatureValue Element .t s e 71
2523 KeyInfoEle mentccccoeeviiveiiiienennns 71
2.5.2.4 idPackageObject Object Element 72
2.5.25 idOfficeObject Object Element ... e v 12
2.52.6 XAJES EIEMENLS oo et e 75
2.5.3 _XMISIGNALUIES SIOrAJE oo e e 76
3 Structure Examples 77
3.1 Version Stream .77
3.2 DataSpaceMap Stream 78
3.2.1 DataSpaceMapENtry StrUCIUIE® ..o e eeeenene 79
3.3 DRMENcryptedDataSpace Stream ccccevciiiiiiviieniieiee e eeereeens 80
3.4 OXO6Primary SIreAmM oo et aeeaee e 81
3.5 EUL -ETRHA1143ZLUDDA412YT I3M5CTZ SIre@mM ..cccccovvviiiiiieiiieeiiees eeeieeenieeeeee e 82

3.5.1 EndUserLicenseHeader StrUCtUre .o e e 83

3.5.2 Certificate Chain cccooovviiiiiieeeee 84
3.6 EncryptionHeader Structure 85
3.7 EncryptionVerif ier Structure 86
3.8 \ENCryptionInfo Stream ..o e eeeee e 87
3.9 \Encryptioninfo Stream (Third -Party Extensible Encryption) .o e 89
3.10 Office Binary Document RC4 Encryption ccoiviiiieeiieeeee 90

3.10.1 Encryption HEAder i et e 20
3.11 PasswordKeyEncryptor (Agile EnCryption) i e 90

A S ECUMLY coiiiiiiiicii e criiieeeiie eeeerire e eeeeeeee e e er et eeeaesaaeeeeans 95
4.1 Security Considerations for Implementers ..., 95

4.1.1 Data SPACES cceeeiiiiiiiiiiiiiiiiee s e .. 95

4.1.2 Information Rights Management s e e 95

e N = o3V o] A o) o U 95
4.1.3.1 ECMA -376 Document ENCryption ..o e 95
4.1.3.2 Office Binary Document RC4 CryptoAPI Encryption .iieeiee e 95
4.1.3.3 Office Binary Document RC4 ENCryption = oo ieeeviees e ereee e 96
4.1.3.4 XOR ODbfUSCAtION iiiiiiiiiiiiiiiiiiiiiiiies e e 96

4.1.4 Document Write ProteCtion iiiiiiiiiiiiies e eee e 97

4.1.5 Binary Document Digital SIgnatureS .o e .97

4.2 Index of Security FIeldS it s e 97

5 Appendix A: Product BEhavior =~ s s aereeee e 98

6 Change TraCkiNng oot e eeeee e e a e ... 105

N 170 1= PR 108

6/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

1

Introduction

The Office Document Cryptography Structure is relevant to documents that have Information Rights
Management (IRM) policies, document encryption, or signing and write protection applied. More
specifically, this file format describes the following:

A Astructu re that acts as a generic mechanism for storing data that has been transformed along
with information about that data.

A A structure for storing rights management policies that have been applied to a particular
document.

A Encryption, signing, and write protec tion structures.

Sections 1.7 and 2 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. All other sections and examples in this
specification are informative.

1.1 Glossary

The following terms are defined in MS -GLOS]:

ASCII

base64

certificate

certificate chain

Component Object Model (COM)

Coordinated Universal Time (UTC)

Cryptographic Application Programming Interface (CAPI) or CryptoAPI
cryptographic service provider (CSP)

Data Encryption Standard (DES)

Distinguished Encoding Rules (DER)

encryption key

GUID

Hash -based Message Authentication Code (HMAC)
language code ident ifier (LCID)

little -endian

RC4

salt

Unicode

UTF-8

X.509

The following terms are defined in MS -OFCGLOS]:

Advanced Encryption Standard (AES)
block cipher

cipher block chaining (CBC)

data space reader

data space updater

data space writer

Information Rights Management (IRM)
MD5

OLE compound file

protected content

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

71112

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

SHA-1

storage

stream

transform

Uniform Resource ldentifier (URI)
Uniform Resource Locator (URL)
XOR obfuscation

The following terms are specific to this document:

data space: A series of transforms that operate on original document content in a specific order.
The first transform in a data space takes untransformed data as input and passes the
transformed output to the next transform. The last transform in the data space produces data
that is stored in the compound file. When the process is reversed, each transform in the data
space is applied in reverse order to return the data to its original state.

electronic codebook (ECB): A block cipher mode that does not use f eedback and encrypts each
block individually. Blocks of identical plaintext, either in the same message or in a different
message that is encrypted with the same key, are transformed into identical ciphertext blocks.
Initialization vectors cannot be used.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com . We
will assist you in finding the relevant information.

[BCMOB800 -38A] National Institute of Standards and Technology, "Recommendation for Block Cipher

Modes of Operation: Methods and Techniques”, NIST Special Publication 800 -38A, Dec ember 2001,
http://csrc.nist.gov/publications/nistpubs/800 -38a/sp800 -38a.pdf

[Can -XML-1.0] Boyer, J., "Canonical XML Version 1.0", W3C Recommendation, March 2001,
http://www.w3.0rg/TR/2001/REC -xml -¢14n -20010315

[DRAFT -DESX] Simpson, W.A. and Baldwin R., "The ESP DES -XEX3-CBC Transform", July 1997,
http://tools.ietf.org/html/ draft -ietf -ipsec - ciph -desx -00

[ECMA -376] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA -376, December
2006, http://www.ecma __ -international.org/publications/standards/Ecma -376.htm

[ISO/IEC 10118] International Organization for Standardization, "Hash -functions -- Part 3:
Dedicated hash -functions", March 2004,

http://www.iso.org/iso/iso_catalogue/catalogu e_tc/catalogue_detail.htm?csnumber=39876

8/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=113491
http://go.microsoft.com/fwlink/?LinkId=120197
http://go.microsoft.com/fwlink/?LinkId=128905
http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409

[ITUX680 -1994]ITU -T, "Information Technology = & Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation", ITU -T Recommendation X.680, July 1994, http://www.itu.int/rec/T -
REC-X.680 -199407 -S/en

[MS - CFB] Microsoft Corporation, ™ Compound File Binary File Format

[MS - DOC] Microsoft Corporation, * Word Binary File Format (.doc) Structure Speci fication ".

[MS -DTYP] Microsoft Corporation, " Windows Data Types ".

[MS - OSHARED] Microsoft Corporation, " Office Common Data Types and Objects Structures
[MS - PPT] Microsoft Corporation, " PowerPoint Binary File Format (.ppt) Structure Specification
[MS -RMPR] Microsoft Corporation, " Rights Management Services (RMS): Client -to - Server Protocol "

[MS - UCODEREF] Microsoft Corporation, " Windows Protocols Unicode Reference "

[MS - XLS] Microsoft Corporation," Excel Binary File Format (.xIs) Structure

[MS - XLSB] Microsoft Corporation, " Excel Binary File Format (.xIsb) Structure Specification

[RFC1319] Kaliski, B., "The MD2 Message -Digest Algorithm", RFC 1319, April 1992,
http://www.ietf.org/rfc/rfc1319.txt

[RFC1320] Rivest, R ., "The MD4 Message -Digest Algorithm", RFC 1320, April 1992,
http://www.ietf.org/rfc/rfc1320.txt

[RFC1851] Karn, P., Metzger, P., and Simpson, W., "The ESP Triple DES Transform", RFC 1851,
Septem ber 1995, http://www.rfc -editor.org/rfc/rfc1851.txt

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed -Hashing for Message
Authentication”, RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc _ -editor.org/rfc/rfc2119.txt

[RFC2268] Rivest, R., "A Description of the RC2(r) Encryption Algorithm", RFC 2268, March 1998,
http://www.ietf.org/rfc/rfc2268.txt

[RFC2822] Resnick, P., Ed., "Internet Message Format", STD 11, RFC 2822, April 2001,
http://www.ietf.org/rfc/rfc2822.txt

[RFC2898] Kaliski, B., "PKCS #5: Password -Based Cryptography Specification Version 2.0", RFC
2898, September 2000, http://www.rfc - editor.org/rfc/rfc2898.txt

[RFC3280] Housley, R., Polk, W., Ford, W., and Solo, D., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Rev ocation List (CRL) Profile”, RFC 3280, April 2002,
http://www.ietf.org/rfc/rfc3280.txt

[RFC3447] Jonsson, J., and Kaliski, B., "Public -Key Cryptography Standards (PKCS) #1: RSA
Cryptography Speci fications Version 2.1", RFC 3447, February 2003,
http://www.ietf.org/rfc/rfc3447.txt

[RFC4634] Eastlake Ill, D., and Hansen, T., "US Secure Hash Algorithms (SHA and HMAC -SHA)",
RFC 4634, July 200 6, http://www.ietf.org/rfc/rfc4634.txt

9/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=120478
http://go.microsoft.com/fwlink/?LinkId=120478
%5bMS-CFB%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-OSHARED%5d.pdf
%5bMS-PPT%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-UCODEREF%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-XLSB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90273
http://go.microsoft.com/fwlink/?LinkId=90274
http://go.microsoft.com/fwlink/?LinkId=128901
http://go.microsoft.com/fwlink/?LinkId=90314
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90330
http://go.microsoft.com/fwlink/?LinkId=90385
http://go.microsoft.com/fwlink/?LinkId=119708
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90422
http://go.microsoft.com/fwlink/?LinkId=90486

[W3C -XSD] World Wide Web Consortium, "XML Schema Part 2: Datatypes Second Edition", October
2004, http://www.w3.0rg/TR/2004/REC -xmlschema -2-20041028

[XAdES] ETSI, "XML Advanced Electronic Signatures (XAdES)", ETSI TS 101 903 V1.3.2,
http://uri.etsi.org/01903/v1.3.2/

[XMLDSig] Bartel, M., Boyer, J., Fox, B., et al., "XML - Signature Syntax and Processing", W3C
Recommendation, February 2002, http://www.w3.0rg/TR/2002/REC -xmldsig -core -20020212/

1.2.2 Informative References

[ISO/IEC29500 -1:2011] ISO/IEC, "Information Technology -- Document description and processing
languages -- Office Open XML File Formats -- Part 1: Fundamentals and Markup Language
Reference", ISO/IEC 29500 -1:2011, 2011,
http://www.iso.org/isol/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=59575

[MSDN - CAB] Microsoft Corporation, "Microsoft Cabinet Format", http://msdn.microsoft.com/en -
us/library/bb417343.aspx

[MS - GLOS] Microsoft Corporation, " Windows Protocols Master Glossary "

[MS - OFCGLOS] Microsoft Corporation, " Microsoft Office M _aster Glossary "

1.3 Overview

1.3.1 Data Spaces

The data spaces structure describes a consistent method of storing content in OLE compound files
that has been transformed in some way. The structure stores both the protected content and
information about the transforms that have been applied to the content. By storing all of this

information inside an OLE compound file, client software has all of the information required to read,

writ e, or manipulate the content. A standard structure of streams (1) and storages allows various
software components to interact with the data in a consistent manner.

The data spaces structure allows client applications to describe one or more arbitrary transforms.

Each transform represents a single arbitrary operation to be performed on a set of storages or

streams (1) in the original document content. One or more transforms can then be composi ted into
a data space definition. Data space definitions can then be applied to arbitrary storages or streams

(1) in the original document content in the data space map (section 2.1).

Because of the layers of indirection between transforms and document content, different transforms
can be applied to different parts of the document content, and transforms can be composited in any
order.

The following figure illustrates the relationshi ps between the DataSpaceMap stream (1), the
DataSpacelnfo storage, the Transforminfo storages, and the protected content. Note that other
streams (1) and storages exist in this file format; this figure describes only the relationships

between these storage s and streams (1).

10 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=90563
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=130861
http://go.microsoft.com/fwlink/?LinkId=252374
http://go.microsoft.com/fwlink/?LinkId=226293
http://go.microsoft.com/fwlink/?LinkId=226293
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

Compound File

Storage: Ox06DataSpaces

Stream: DataSpaceMap

Structure: DataSpaceMap
rname of

ReferenceComponent

name of
DataSpaceName

name of
Storage: DataSpacelnfo
Stream: (name defined by implementation)
&= TransformReference
-
name of

Storage: TransformInfo

Figure 1: Relationships among the DataSpaceMap stream, the DataSpacelnfo storage, the
TransformInfo storages, and the protected content

1.3.2 Information Rights Management Data Space

The Information Rights Management Data Space (IRMDS) structure is used to enforce a rights

management policy applied to a document. The structure defines a transform that is used to encrypt
document content, and it defines a second transform that can be us ed for certain document types to
compress document content.

The original document content is transformed through encryption and placed in a storage not
normally accessed by the application. When needed, the application uses the transforms defined in
the do cument to decrypt the protected content.

This structure is an implementation of the data spaces structure. Therefore, implementing the
structure implies storing document content in an OLE compound file.

11/ 112

[MS -OFFCRYPTO] 8 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

Applications that implement this structure will typic ally store a second document in the OLE
compound file called the placeholder document . The placeholder document is place into the streams
(1) or storages normally identified by the application as containing document content, such that an
application thatd oes not detect the IRMDS structure will instead open the placeholder document.

Applications that implement this structure will typically try to follow the licensing limitations placed
on a document. Typical licensing limitations include the right to view, print, edit, forward, or view
rights data, as described in [MS -RMPR].

The following figure shows the specific storages, streams (1), structures, and relationships among
them that are created when the IRMDS structure is used i n an ECMA -376 document [ECMA-376] .

Compound File

Storage: 0x06DataSpaces

Stream: DataSpaceMap

Structure: DataSpaceMap

name of Storage/Stream:
4 EncryptedPackage

ReferenceComponent: EncryptedPackage Protected ECMA-376
Document
/'__ DataSpaceName: DRMEncryptedDataSpace

(other streams can
name of exist in the file)

Storage: DataSpacelnfo

Stream: DRMEncryptedDataSpace

K— TransformReference: DRMEncryptedTransform

name of Storage: TransformInfo

Stream: Ox06Primary

| stream: EUL-?777

Stream: Version

‘ Structure: DataSpaceVersionInfo |

Figure 2: An ECMA -376 word processing document with the IRMDS structure applied

1.3.3 Encryption
Password -protected documents can be created by using one of four mechanisms:

A XOR obfuscation

12 / 112

[MS -OFFCRYPTO] 8 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-RMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113493
%5bMS-OFCGLOS%5d.pdf

A 40-bit RC4 encryption.
A Cryptographic Application Programming Interface (CAPI) or CryptoAPI encryption.
A ECMA-376 document encryption ECMA -376] , which can include one of three approaches:
AStandard encryption: This appr oach uses a binary Encryptioninfo structure. It uses
Advanced Encryption Standard (AES) as an encryption algorithm and SHA -1 as a hashing
algorithm.
AAgile encryption: This approach uses an X ML Encryptioninfo structure. The encryption and

hashing algorithms are specified in the structure and can be for any encryption supported on
the host computer.

AExtensible encryption: This approach uses an extensible mechanism to allow arbitrary
cryptograph ic modules to be used.

1.3.3.1 XOR Obfuscation

XOR obfuscation is performed on portions of Office binary documents. The normal streams (1)
contained within the document are modified in place. For more information about how an application
can determine whether XOR obfuscation is being used and the placement of the password verifier
see [MS-XLS] and [MS-DOC].

There are two methods for performing XOR obfuscation, known as Method 1 and Method 2. Method

1 specifies structures and procedures used by the Excel Binary File Format (.xIs) Structure [MS -
XLS], and Method 2 specifies structures and procedures used by the Word Binary File Format (.doc)
Structure [MS -DOC].

1.3.3.2 40 -bit RC4 Encryption

40 - bit RC4 encryption is performed on portions of Office binary documents. For more information

about how to determine whether 40 -bit RC4 encryption is being used and the placement of the
password verifier, see [MS-XLS] and [MS -DOC]. The same mechanisms for generating the password
verifier, deriving the encryption key , and encrypting data are used for all file formats supporting

40 - bit RC4 encryption.

1.3.3.3 CryptoAPI RC4 Encryption

CryptoAPI RC4 encryption is performed on portions of Office binary documents. The documents will

contain a new stream (1) to contain encrypted information but can also encrypt other streams (1) in
place. For more information about how to determine whether CryptoAPI RC4 encryption is being

used and the placement of the password verifier, see [MS-XLS], [MS-DOC], and [MS-PPT]. The
same mechanisms for generating the password verifier, storing data specifying the cryptography,

deriving the encryption key, and encrypting data are used for all fil e formats supporting CryptoAPI
RC4 encryption.

1.3.3.4 ECMA -376 Document Encryption

Encrypted ECMA -376 documents [ECMA -376] use the data spaces functionality (section 1.31)to
contain the entire document as a single stream (1) in an OLE compound file. All ECMA -376

documents [ECMA-376] adhere to the approaches specified in this document and do not require
knowledg e of application -specific behavior to perform encryption operations. The overall approach is
very similar to that used by IRMDS (section 1.3.2).

13/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113493
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-PPT%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

1.3.4 Write Protection

The application of password -based write protection for Office binary documents is specified in
section 2.4.2 . Write -protected binary documents vary according to the file format. A summary of
each type follows:

A The Excel Binary File Format (.xls) MS - XLS]: The password is converted to a 16 - bit password
verifier, stored in the document as described in [MS -XLS], and the document is then encrypted
as described in [MS - XLS] and in this specification. If the user does not supply an encryption
password, a fixed password is used.

A The Word (.doc) Binary File Format MS -DOC] : The password is stored in the clear, as described
in [MS -DOC], and the document is not encrypted.

A The PowerPoint (.ppt) Binary File Format MS -PPT]: The password is stored in the clear, as
described in [MS -PPT], and t he document can then be encrypted as described in [MS -PPT]and in

this specification. If encryption is used and the user does not supply an encryption password, a
fixed password is used.

1.3.5 Digital Signatures

Office binary documents can be signed by using one of the following methods:

A A binary format stored in a _signatures storage. This approach is described in section 25.1.
A Aformat that uses XML -Signature Syntax and Processing, as described in XMLDSiqg] , stored in
an _xmlsignatures storage. This approach is described in sections 252 and 253.

1.3.6 Byte Ordering

All data and structures in this file format are assumed to be in little -endian format.

1.3.7 String Encoding

In this file format, several storages and stream (1) nhames include the strings "0x01", "0x05",
"0x06", and "0x09".These strings are not literally included in the name. Instead, they represent the
ASCII characters with hexadecimal values 0x01, 0x05, 0x06, and 0x09 respectively.

1.3.8 OLE Compound File Path Encoding

Paths to specific storages and streams (1) in an OLE compound file are separated by the backslash

(\). The backslash is a delimiter between parts of the path and, therefore, is not part of the name of

any specific storage or stream (1). Paths that begin with a backslash signify the root storage of the
OLE compound file.

1.3.9 Pseudocode Standard Objects

The pseudocode in this document refers to several objects with associated properties. Accessing a
property of an object is denoted with the following syntax: Object.Property . This section describes
the properties of each object as it is used in this document.

14 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-XLS%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-PPT%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=130861
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

1.3.9.1 Array

An array is a collection of zero or more child objects of uniform type, where each child is
addressable by using an unsigned integer index. Referencing a child object of an array is denoted by
using the following syntax: array[index]

Indexes are zero -based and monotonically increase by 1. Therefore, Index 0O references the first
element in an array, and Index 1 references the second child in the array.

Arrays have the following property:

A Length: The number of child objects in the array.

1.3.9.2 String

A string is an array of ASCII characters. As in arrays, individual characters in the string are
addressable by using a zero -based index.

1.3.9.3 Storage

A storage is an OLE storage as described by MS - CFB]. Storages have the following properties:

>

Name: A unique identifier for the storage within its parent, as described in [MS -CFB].

A GUID: A 16 -byte identifier associated with the storage, as described in [MS -CFB].

A Children: Zero or more child storages or streams (1). Each child is addressable by its name.

1.3.9.4 Stream

A stream (1) is an OLE storage as described in MS -CFB]. Streams (1) have the following
properties:

A Name: A unique identifier for the stream (1) within its parent, as described in [MS -CFB].
A Data: An array of zero or more unsigned 8 -bit integers containing the data in the stream (1).

1.4 Relationship to Protocols and Other Structures

This file format builds on the file format as described in MS - CFB].
Some structures in this specification reference structures described in MS -RMPR]. In addition, the

protocols described in [MS -RMPR] are necessary for obtaining the information required to
understand the transformed data in a document with a rights management policy applied.

For encryption operations, this specification also r equires an understanding of the file formats as
described in [MS-XLS], [MS-PPT], or [MS-DOC].

1.5 Applicability Statement

1.5.1 Data Spaces

The data spaces structure specifies a set of storages and streams (1) within an OLE compound file,
the structures contained in them, and relationships among them. OLE compound files that conform

to the data spaces structure can also have other storages or streams (1) in them that are not

specified by this file format.

15/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-CFB%5d.pdf
%5bMS-CFB%5d.pdf
%5bMS-CFB%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-PPT%5d.pdf
%5bMS-DOC%5d.pdf

1.5.2 Information Rights Management Data Space

The IRMDS structure is required when reading, modifying, or creating documents with rights
management policies applied.

1.5.3 Encryption

The ECMA-376 [ECMA-376] encryption structure, streams (1) , and storages are required when
encrypting ECMA -376 documents. When binary file types are encrypted, either CryptoAPI RC4
encryption, RC4 encryption, or XOR obfuscation is required.

1.6 Versioning and Localization

None.

1.7 Vendor -Extensible Fields

The data spaces structure allows vendors to implement arbitrary transforms, data space definitions,
and data space maps. In this way, the structure can be used to represent any arbitrary
transformation to any arbitrary data.

The IRMDS structure does not contain any vendor -extensible fields.

ECMA-376 document encryption ECMA-376] MAY be extended if either additional CryptoAPI
providers are installed or extensible e ncryption is used.

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

16 / 112

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

2 Structures

2.1 Data Spaces

The data spaces structure consists of a set of interrelated storages and streams (1) in an OLE
compound file as specified in MS -CFB].

Software components that interact with data spaces MUST check the DataSpaceVersioninfo
structure (section 2.1.5) contained inthe \ Ox06DataSpaces \ Version stream (1) for the version
numbers and respect the following rules.

Data space readers:

A Data space readers MUST read the protected content when the reader version is less than or
equal to the highest data spaces structure version understood by the software component.

A Readers MUST NOT read the protected content when the reader version is greater than the
highest data spaces structure version understood by the software component.

Data space updaters:

A Data space updaters MUST preserve the format of the protected content when the updater
version is less than or equal to the highest data spaces structure version understood by the
software component.

A Updaters MUST NOT change the protected content when the updater version is greater than the
highest data spaces structure version understood by the software compone nt.

Data space writers:

>

Data space writers MUST set the writer version to "1.0".

>

Writers MUST set the updater version to "1.0".

>

Writers MUST set the reader version to "1.0".

2.1.1 File

Every document that conforms to the data spaces structure (section 2.1) MUST be an OLE
compound File structure as specified in MS -CFB]. The File structure MUST contain the following
storages and streams (1):

A \ OxO6DataSpaces storage: A storage that contains all of the necessary information to
understand the transforms applied to original document content in a given OLE compound file.

A \ OxO6DataSpace s\ Version stream: A stream (1) containing the DataSpaceVersioninfo
structure, as specified in section 2.1.5 . This stream (1) specifies the version of the data spaces
structure used in the file.

A \ OxO6Data Spaces \ DataSpaceMap stream: A stream (1) containing a DataSpaceMap
structure as specified in section 2.1.6 . This stream (1) associates protected content with the data
space definition used to transformi t.

A \ Ox06DataSpaces \ DataSpacelnfo storage: A storage containing the data space definitions
used in the file. This storage MUST contain one or more streams (1), each of which contains a
DataSpaceDefinition structure as specified in section 2.1.7 . The storage MUST contain exactly
one stream (1) for each DataSpaceMapEntry structure (section 2.1.6.1)inthe

17 1 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-CFB%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-CFB%5d.pdf

\ OxO6DataSpaces \ DataSpaceMap stream (1) (section 2.2.1). The name of each stream (1)
MUST be equal to the DataSpaceName field of exactly one DataSpaceMapEntry structure
contained in the \ OxO6DataSpaces \ DataSpaceMap stream (1).

A Transformed content streams and storages: One or more storages or streams (1) containing
protected content. The transformed content is associated with a data space definition by an entry
inthe \ OxO6DataSpaces \ DataSpaceMap stream (1).

A \ Ox06DataSpaces \ Transforminfo storage: A storage containing definitions for the
transforms used in the data space definitions stored in the \ OxO6DataSpaces \ DataSpacelnfo
storage as specified in section 2.2.2 . The stream (1) contains zero or more defin itions for the

possible transforms that can be applied to the data in content streams (1).

Every transform referenced from a data space MUST be defined in a child storage of the
\ OxO6DataSpaces \ Transforminfo storage (section 2.2.3), each of which is called a transform
storage . Transform storages MUST have a valid storage name.

Each transform storage identifies an algorithm used to transform data and any parameters needed

by th at algorithm. Transform storages do not contain actual implementations of transform

algorithms but merely definitions and parameters. It is presumed that all software components that
interact with the protected content have access to an existing implementa tion of the transform
algorithm.

Every transform storage MUST contain a stream (1) named "0x06Primary". The OxO6Primary stream
(1) MUST begin witha TransforminfoHeader structure (section 2.1.8). Transfo rm storages can
contain other streams (1) or storages if needed by a particular transform.

2.1.2 Length -Prefixed Padded Unicode String (UNICODE -LP-P4)

The Length -Prefixed Padded Unicode String structure (UNICODE -LP-P4) contains a length -prefixed
Unicode string, which MUST be padded so it is a multiple of 4 bytes.

Length

Data (variable)

Padding (variable)

Length (4 bytes): An unsigned integer that specifies the size, in bytes, of the Data field. It
MUST be a multiple of 2 bytes.

Data (variable): A Unicode string containing the value of the UNICODE -LP-P4 structure. It
MUST NOT be null -terminated.

18 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-GLOS%5d.pdf

Padding (variable): A set of bytes that MUST be of the correct size such that the size of the
UNICODE -LP-P4 structure is a multiple of 4 bytes. If Padding is present, it MUST be exactly
2 bytes long, and each byte MUST be 0x00.

2.1.3 Length -Prefixed UTF -8 String (UTF -8-LP-P4)

The Length -Prefixed UTF -8 String structure (UTF-8-LP-P4) contains a length -prefixed UTF-8
string, padded to always use a multiple of 4 bytes.

Length

Data (variable)

Padding (variable)

Length (4 bytes): An unsigned integer that specifies the size, in bytes, of the Data field.

Data (variable): A UTF-8 string that specifies the value of the UTF-8-LP-P4 structure. It MUST
NOT be null -terminated.

Padding (variable): A set of bytes that MUST be of correct size such that the size of the UTF -
8-LP-P4 structure is a multiple of 4 bytes. If Padding is present, each byte MUST be 0x00. If
the value of the Length field is exactly 0x00000000, the Data field specifies a null string, and
the entire structure uses exactly 4 bytes. If the value of the Length field is exactly

0x00000004, the Data field speci fies an empty string, and the entire structure also uses
exactly 4 bytes.

2.1.4 Version

The Version structure specifies the version of a product or feature. It contains a major and a minor
version number. When comparing version numbers, vMajor MUST be considered the most
significant component and vMinor MUST be considered the least significant component.

0|1(2|3|4|(5|6(7(8|9|0|1|2(3|4|5(6|7|8(9|0(1|2|3(4|5|6(|7|8[9|0]1

vMajor vMinor
vMajor (2 bytes): An unsigned integer that specifies the major version number.
vMinor (2 bytes): An unsigned integer that specifies the minor version number.

19 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-GLOS%5d.pdf

2.1.5 DataSpaceVersioninfo

The DataSpaceVersioninfo structure indicates the version of the data spaces structure used in a
given file.

1 2 &
0|1(2|3|4(5|6|7(8|9|0|1|2(|3|4|5(6|7|8|9|0(1|2|3(4|5|6(|7|8[9|0]1

Featureldentifier (variable)

ReaderVersion

UpdaterVersion

WriterVersion

Featureldentifier (variable): A UNICODE -LP-P4 structure (section 2.1.2) that specifies the
functionality for which the Dat aSpaceVersionInfo structure specifies version information. It
MUST be "Microsoft.Container.DataSpaces".

ReaderVersion (4 bytes): A Version structure (section 2.1.4) that specifies the reader version
of the data spaces structure (section 2.1). ReaderVersion.vMajor MUST be 1.
ReaderVersion.vMinor MUST be 0.

UpdaterVersion (4 bytes): A Version structure that specifies the updater version of the data
spaces structure. UpdaterVersion.vMajor MUST be 1. UpdaterVersion.vMinor MUST be 0.

WriterVersion (4 bytes): A Version structure that specifies the writer version of the data
spaces structure. Write rVersion.vMajor MUST be 1. WriterVersion.vMinor MUST be 0.

2.1.6 DataSpaceMap

The DataSpaceMap structure associates protected content with data space definitions. The data
space definition, in turn, describes the series of transforms that MUST be applied to that protected
content to restore it to its original form.

By using a map to associate data space definitions with content, a single data space definition can
be used to define the transforms applied to more than one piece of protected content. However, a
given piece of protected content can be referenced only by a single data space definition.

HeaderLength

EntryCount

MapEntries (variable)

20 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

HeaderLength (4 bytes): An unsigned integer that specifies the number of bytes in the

DataSpaceMap structure before the first entry in the MapEntries array. It MUST be equal to
0x00000008.
EntryCount (4 bytes): An unsigned integer that specifies the number of DataSpaceMapEntry

items (section 2.1.6.1)inthe MapEntries array.

MapEntries (variable): An array of one or more DataSpaceMapEntry structures.

2.1.6.1 DataSpaceMapEntry Structure

The DataSpaceMapEntry structure associates protected content with a specific data space
definition. It is contained within the DataSpaceMap structure (section 2.1.6).

Reference components MUST be listed from the most general d thatis, storages 0 to the most
specific 8 that is, streams (1). For example, a stream (1) titled "Chapter 1" in a substorage called

"Book" off the root storage of an OLE compound file would have two reference components: "Book"
and "Chapter 1", in that order. The simplest content stream (1) reference is one with a single

reference component indicating the name of a stream (1) in the root storage of the OLE compound

file.

Length

ReferenceComponentCount

ReferenceComponents (variable)

DataSpaceName (variable)

Length (4 bytes): An unsigned integer that specifies the size, in bytes, of the
DataSpaceMapEntry structure.

ReferenceComponentCount (4 bytes): An unsigned integer that specifies the number of
DataSpaceReferenceComponent items (section 2.1.6.2)inthe ReferenceComponents
array.

Refe renceComponents (variable): An array of one or more
DataSpaceReferenceComponent structures. Each DataSpaceReferenceComponent
structure specifies the name of a storage or stream (1) containing protected content that is
associated with the data space definit ion named inthe DataSpaceName field.

DataSpaceName (variable): A UNICODE -LP-P4 structure (section 2.1.2) that specifies the
name of the data space definition associated with the protected content specif ied in the

21/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

ReferenceComponents field. It MUST be equal to the name of a stream (1) in the
\ OxO6DataSpaces \ DataSpacelnfo storage as specified in section 222 .

2.1.6.2 DataSpaceReferenceComponent Structure

The DataSpaceReferenceComponent structure stores the name of a specific storage or stream
(1) containing protected content. It is contained within the DataSpaceMapEntry structure (section
2.1.6.1).

1 2 3

ReferenceComponentType

ReferenceComponent (variable)

ReferenceComponentType (4 bytes): An unsigned integer that specifies whether the
referenced component is a stream (1) or storage. It MUST be 0x00000000 for a stream (1) or
0x00000001 for a storage.

ReferenceComponent (variable): A UNICODE -LP-P4 structure (section 2.1.2) that specifies
the name of the stream (1) or storage containing the protected content to be transformed. If
ReferenceComponentType is 0x00000000, then ReferenceComponent MUST be equal to
the name of a stream (1) contained in the root storage of the OLE compound file. If
ReferenceComponentType is 0x00000001, then ReferenceComponent MUST be equal to
the name of a storage contained in the root storage of the OLE compound file.

2.1.7 DataSpaceDefinition

Each DataSpaceDefinition structure stores a data space definition. A document can contain more
than one data space definition o for example, if one content stream (1) is both compressed and
encrypted while a second stream (1) is merely encrypted.

Each DataSpaceDefinition structure MUST be stored in a stream (1) in the

\ Ox06DataSpaces \ DataSpacelnfo storage (section 2.2.2). The name of the stream (1) MUST be
referenced by a DataSpaceReferenceComponent structure (section 2.1.6.2) within a
DataSpaceMapEntry structure (section 2.1.6.1) stored in the

\ OxO6DataSpaces \ DataSpaceMap stream (1) (section 2.2.1).

TransformReferences MUST be stored in the reverse order in which they have been applied to the
protected content. ~ When reversing the transformation, a software component will apply the
transforms in the order specified in the TransformReferences array.

HeaderLength

TransformReferenceCount

22 | 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

TransformReferences (variable)

HeaderLength (4 bytes): An unsigned integer that specifies the number of bytes in the
DataSpaceDefinition structure before the TransformReferences field. It MUST be
0x00000008.

TransformReferenc eCount (4 bytes):

inthe TransformReferences

TransformReferences (variable):

array.

An array of one or more

An unsigned integer that specifies the number of items

UNICODE -LP-P4 structures

(section 2.1.2) that specify the transforms associated with this data space definition. Each
transform MUST be equal to the name of a storage contained in the
\ OxO6DataSpaces \ Transforminfo storage (section 2.2.3 and 2.2.4).

2.1.8 TransforminfoHeader

The TransforminfoHeader structure specifies the identity of a transform. Additional data or
structures can follow this header in a stream (1). See section

additional data.

2.2.6 for an example of the usage of

TransformLength

TransformType

TransformID (variable)

TransformName (variable)

ReaderVersion

UpdaterVersion

WriterVersion

TransformLength (4 bytes): An unsigned integer that specifies the number of bytes in this
structure before the TransformName field.

TransformType (4 bytes): An unsigned integer that specifies the type of transform to be

applied. It MUST be 0x00000001.

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

23/ 112

TransformID (variable): A UNICODE -LP-P4 structure (section 2.1.2) that specifies an
identifier associated wi th a specific transform.

TransformName (variable): A UNICODE -LP-P4 structure that specifies the friendly name of
the transform.

ReaderVersion (4 bytes): A Version structure (section 2.1.4) that specifie s the reader
version.

UpdaterVersion (4 bytes): A Version structure that specifies the updater version.

WriterVersion (4 bytes): A Version structure that specifies the writer version.

2.1.9 EncryptionTransforminfo

The EncryptionTransforminfo structure specifies the encryption used for ECMA -376 document

encryption [ECMA-376] .

EncryptionName (variable)

EncryptionBlockSize

CipherMode

Reserved

EncryptionName (variable): A UTF-8-LP-P4 structure (section 2.1.3) that specifies the name
of the encryption algorithm. The name MUST be the name of an encryption algorithm, such as
"AES 128", "AES 192", or "AES 256". When used with extensible encryption, this value is
specified by the extensible encryption module.

Encr yptionBlockSize (4 bytes): An unsigned integer that specifies the block size for the
encryption algorithm specified by EncryptionName . It MUST be 0x00000010 as specified by
the Advanced Encryption Standard (AES). When used with extensible encryption, this value is

specified by the extensible encryption module.

CipherMode (4 bytes): A value that MUST be 0x00000000, except when used with extensible
encryption. When used with extensible encryption, this value is specified by the extensible
encryption module.

Reserved (4 bytes): A value that MUST be 0x00000004.

2.2 Information Rights Management Data Space

IRMDS defines several data space definitions used to enforce rights management policies that have
been applied to a document. This structure is an extension of the data spaces structure specified in
section 2.1.

IRMDS can be applied to the following types of documents:

24 | 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493

A Office binary documents
A ECMA-376 documents [ECMA -376]

In each case, the protect ed content contains the original document transformed as specified by the
IRMDS structure. <1>

2.2.1 \ OxO6DataSpaces \ DataSpaceMap Stream

If the original document content is an Office binary document:

A The \ Ox06DataSpaces \ DataSpaceMap stream (1) MUST contain a DataSpaceMap structure
(section 2.1.6) containing at least one DataSpaceMapEntry structure (section 2.1.6.1). The
DataSpaceMapEntry structure:

AMUST have a DataSpaceName equal to "0x09DRMDataSpace".

AMUST have exactly one ReferenceCompon ents entry with the name "0x09DRMContent" and
the type 0x00000000, which signifies a stream (1).

A The \ OxO6DataSpaces \ DataSpaceMap stream (1) MAY <2> contain a second
DataSpaceMapEntry structure inthe DataSpaceMap structure. The second
DataSpaceMapEntry structure:

AMUST have a DataSpaceName equal to "0x09LZXDRMDataSpace".

AMUST have exactly one ReferenceComponents entry with the name "0x09DRMViewerContent"
and the type 0x00000000, which signifies a stream (1).

If the original document con tentis an ECMA -376 document [ECMA-376] :

A The \ OxO6DataSpaces \ DataSpaceMap stream (1) MUST contain a DataSpaceMap structure
containing exactly one DataSpaceMapEntry structure.

A The DataSpaceMapEnt ry substructure:
AMUST have a DataSpaceName equal to "DRMEncryptedDataSpace".

AMUST have exactly one ReferenceComponents entry with the name "EncryptedPackage" and
the type 0x00000000, which signifies a stream (1).

2.2.2 \ OxO6DataSpaces \ DataSpacelnfo Storage

If the original document content is an Office binary document:

A The \ OxO6DataSpaces \ DataSpacelnfo storage MUST contain a stream (1) named
"0x09DRMDataSpace", which MUST contain a DataSpaceDefinition structure (section 2.1.7):

AThe DataSpaceDefinition structure MUST have exactly one TransformReferences entry,
which MUST be "0x09DRMTransform".

A The \ Ox0O6DataSpaces \ DataSpacelnfo storage MAY <3> contain a stream (1) named

"Ox09LZXDRMDataSpace". If this stream (1) exists, it MUST contain a DataSpaceDefinition
structure:
AThe DataSpaceDefinition structure MUST have exactly two TransformReferences entries.
AThe first TransformReferences entry MUST be "0x09DRMTransform®.
25/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

AThe second TransformReferences entry MUST be "0x09LZXTransform".

If the original document content is an ECMA -376 document [ECMA-376] :

p>N

The \ OxO6DataSpaces \ DataSp acelnfo storage MUST contain a stream (1) named
"DRMEncryptedDataSpace”, which MUST contain a DataSpaceDefinition structure.

p>N

The DataSpaceDefinition structure MUST have exactly one TransformReferences entry,
which MUST be "DRMEncryptedTransform".

2.2.3 \ OxO6DataSpaces \ Transforminfo Storage for Office Binary Documents

If the original document content is an Office binary document, the

\ OxO6DataSpaces \ Transforminfo storage MUST contain one storage named

"0Ox09DRMTransform". The "Ox09DRMTransform" storage MUST contain a stream (1) named

"Ox06Primary". The "0x06Primary" stream (1) MUST contain an IRMDSTransforminfo structure

(section 2.2.6). Withinthe IRMDSTransforminfo structure, the following values MUST be set:

A TransforminfoHeader. TransformType MUST be 0x00000001.

A TransforminfoHeader.TransformID MUST be "{C73DFACD -061F -43B0 -8B64 -
0C620D2A8B50}".

A TransforminfoHeader .TransformName MUST be "Microsoft.Metadata.DRMTransform".

A TransforminfoHeader.ReaderVersion MUST be "1.0".

A TransforminfoHeader.UpdaterVersion MUST be "1.0".

A TransforminfoHeader.WriterVersion MUST be "1.0".

The 0x09DRMTransform storage MUST also contain one or more end -user license streams (1) as

specified in section 2.2.7 .

The \ OxO6DataSpaces \ Transforminfo storage MAY <4> contain a substorage named
"Ox09LZXTransform". If the OX09LZXT ransform storage exists, it MUST contain a stream (1) named
"Ox06Primary". The 0x06Primary stream (1) MUST contain a TransforminfoHeader structure
(section 2.1.8). Withinthe TransforminfoHeader structur e, the following values MUST be set:

>

TransformType MUST be 0x00000001.

>

TransformID MUST be "{86DE7F2B -DDCE-486d -B016 -405BBE82B8BC}".

>

TransformName MUST be "Microsoft.Metadata.CompressionTransform".

>

ReaderVersion MUST be "1.0".

>

UpdaterVersion MUST be "1.0".

>

WriterVersion MUST be "1.0".

2.2.4 \ OxO6DataSpaces \ Transforminfo Storage for ECMA - 376 Documents

If the original document is an ECMA -376 document [ECMA-376] conforming to the IRMDS structure,
the \ OxO6DataSpaces \ Transforminfo storage MUST contain one storage named
"DRMEncryptedTransform”. The "DRMEncryptedTransform" storage MUST contain a stream (1)

named "0x06Primary". The "0x06Primary" stream (1) MUST contain an IRMDSTransforminfo

26 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

structure (sect ion 2.2.6). Within the IRMDSTransforminfo structure, the following values MUST
be set:

A TransforminfoHeader. TransformType MUST be 0x00000001.

A TransformInfoHeader.TransformID MUST be "{C73DFACD -061F-43B0-8B64 -
0C620D2A8B50}".

A TransformInfoHeader.TransformName MUST be "Microsoft.Metadata.DRMTransform".

A TransforminfoHeader.ReaderVersion MUST be 1.0.

A TransformInfoHeader.UpdaterVersion MUST be 1.0.

A TransformInfoHeader.WriterVersion MUST be 1.0.

The DRMEncryptedT ransform storage MUST also contain one or more end -user license streams (1)

as specified in section 2.2.7 .

2.2.5 ExtensibilityHeader

The ExtensibilityHeader structure provides a facility to allow an updated header with more
information to be inserted into a larger structure in the future. This structure consists of a single
element.

Length
Length (4 bytes): An unsigned integer that specifies the size of the ExtensibilityHeader
structure. It MUST be 0x00000004.
2.2.6 IRMDSTransforminfo
The IRMDSTransforminfo structure specifies a specific transform that has been applied to

protected content to enforce rights management policies applied to the document.

TransforminfoHeader (variable)

ExtensibilityHeader

XrMLLicense (variable)

27 | 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

TransforminfoHeader (variable): A TransformInfoHeader structure (section 2.1.8) that
specifies the identity of the transform applied.

ExtensibilityHeader (4 bytes): An ExtensibilityHeader structure (section 2.2.5).

XrMLLicense (variable): A UTF-8-LP-P4 structure (section 2.1.3) containing a valid XrML
signed issuance license as specified in MS -RMPR] section 2.2.9.9. The signed issuance license
MAY<5> contain the applica tion -specific name -value attribute pairs name and id, as specified
in [MS -RMPR] section 2.2.9.7.6 , as part ofthe AUTHENTICATEDDATA element.

2.2.7 End -User License Stream

The end -user license stream (1) contains cached use licenses.

The end -user license stream (1) name MUST be prefixed with "EUL -", with a base -32-encoded GUID
as the remainder of the stream (1) name.

The license stream (1) MUST consist of an EndUserLicenseHeader structure (section 2.2.9),
followed bya UTF-8-LP-P4 string (section 2.1.3) containing XML specifying a certificate chain

The certificate chain MUST include a use license with an enablingbits element containing the
symmetric content key encrypted with the user's RAC pub lic key, as specified in MS -RMPR] section
2.2.9.1.13. The XML in this string is derived from a certificatechain element as specified in MS -

RMPR] section 2.2.3.2 . Each XrML certificate (1) or license froma certificate element as specified
in [MS -RMPR] section 2.2.3.1 isencoded asa base64 -encoded Unicode string.

The certificate chain has been transformed in the following manner:

1. Foreach certificate element in the certificate chai n:
1. The XrML content of the certificate element is encoded as Unicode.
2. Each resulting string is subsequently base64 -encoded.
3. Each resulting string is then placed in a certificate ~ element.

2. The resulting collection of new certificate elements is accumulated in a certificatechain

element.
3. The XML header <?xml version="1.0"?> is prefixed to the resulting certificatechain element.
4. The resulting XML is stored in the stream (1) as a UTF-8-LP-P4 string.

2.2.8 LicenselD
A LicenselD specifies the identity of a user as a Unicode string. The string MUST be of the form

"Windows:< emailaddr >" or "Passport:< emailaddr >", where emailaddr represents a valid email
address as specified in RFC2822] .

2.2.9 EndUserLicenseHeader

The EndUserLicenseHeader structure is a container for a LicenselD (section 2.2.8) as specified
in [MS -RMPR].
28 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-RMPR%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90385
%5bMS-RMPR%5d.pdf

Length

ID_String (variable)

Length (4 bytes): An unsigned integer that specifies the size of the EndUserLicenseHeader
structure.
ID_String (variable): A UTF-8-LP-P4 structure (section 2.1.3) that contains a base64 -

encoded Unicode LicenselD

2.2.10 Protected Content Stream

The protected content stream (1) MUST be contained within the root storage. If the original
document content is an ECMA -376 document [ECMA-376] , the stream (1) MUST be named

"EncryptedPackage". For all other original document content types, it MUST be named
"\ 0Xx09DRMContent".

The protected content stream (1) has the following structure.

Length

Contents (variable)

Length (8 bytes): An unsigned 64 -bit integer that specifies the size, in bytes, of the plaintext
data that is stored encrypted in the Contents field.

Contents (variable): Specifies the protected content. The protected content MUST be encrypted
or decrypted with the content symmetric key encrypted for the user in the end -user license as
specified in [MS -RMPR]. Protected content MUST be encrypted or decrypted using AES -128, a
16 - byte block size, electronic codebook (ECB) mode, and an initialization vector of all
zeros.

2.2.11 Viewer Content Stream

The viewer content stream (1) MAY <6> be present. The purpose of the viewer content stream (1) is
to provide a MIME Encapsulation of Aggregate HTML Documents (MHTML) representation of the
document to enable an application that cannot parse the protected content stream (1) (section

2.2.10)to presentaread -only representation of the document to the user. If the viewer content
stream (1) is present, the stream (1) MUST be named " \ 0XO9DRMViewerContent".

29 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493
%5bMS-RMPR%5d.pdf

The viewer content stream (1) has the fo llowing structure.

Length

Contents (variable)

Length (8 bytes): An unsigned 64 -bit integer that specifies the size, in bytes, of the
compressed plaintext data stored encrypted in the Contents field.

Contents (variable): The MHTML representation of the protected content. The protected
content MUST be encrypted or decrypted as specified in MS - RMPR]. Once decrypted, the
plaintext MUST be decompressed with the LZX compression algorithm, as descr ibed in [MSDN -
CAB].

2.3 Encryption
This section specifies encryption and obfuscation. The four different techniques are:

A ECMA-376 encryption [ECMA-376] , which leverages the data spaces storages specified in section
21.

A CryptoAPI RC4 encryption.

A RC4 encryption.

A XOR obfuscation.

ECMA-376 encryption [ECMA-376] also includes encryption using a third - party cryptography
extension, which will be called extensible encryption in the remainder of this document.

2.3.1 EncryptionHeaderFlags

The EncryptionHeaderFlags structure specifies properties of the encryption algorithm used. It

MUST be contained within an EncryptionHeader structure (section 2.3.2).

Ifthe fCryptoAPI bitissetandthe fAES bitis not set, RC4 encryption MUST be used. If the fAES
encryption bit is set, a block cipher that supports ECB mode MUST be used. For compatibility with

current implementations, A ES encryption with a key length of 128, 192, or 256 bits SHOULD <7> be
used.

1 2 5
0|1|2|3|4|5|6(7|8|9|0|1|2|3|4|5|6|7|8|9|0(1|2(3|4|5(6|7|8|9]|0](1
A|B|C|D|E|F Unused

A T Reservedl (1 bit): A value that MUST be 0 and MUST be ignored.

30 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-RMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=226293
http://go.microsoft.com/fwlink/?LinkID=226293
http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493
%5bMS-OFCGLOS%5d.pdf

B i Reserved?2 (1 bit): A value that MUST be 0 and MUST be ignored.

C i fCryptoAPI (1 bit): A flag that specifies whether CryptoAPI RC4 or ECMA -376 encryption
ECMA-376] is used. It MUST be 1 unless fExternal is 1.If fExternal is1, it MUST be 0.

D i fDocProps (1 hit): A value that MUST be 0 if document properties are encrypted. The
encryption of document properties is specified in section 2354 .

E 1 fExternal (1 bit): A value that MUST be 1 if extensible encryption is used. If this value is 1,
the value of every other field in this structure MUST be O.

F i fAES (1 bit): A value that MUST be 1 if the protected content is an ECMA - 376 document
ECMA -376] ; otherwise, it MUST be 0. If the fAES bitis 1, the fCryptoAPI bit MUST also be
1.

Unused (26 bits): A value that is undefined an d MUST be ignored.

2.3.2 EncryptionHeader

The EncryptionHeader structure is used by ECMA -376 document encryption ECMA-376] and
Office binary document RC4 CryptoAPI encryption, as defined in section 2.3.5 , to specify encryption
properties for an encrypted stream (1).

Flags

SizeExtra

AlgID

AlgIDHash

KeySize

ProviderType

Reservedl

Reserved2

CSPName

Flags (4 bytes): An EncryptionHeaderFlags structure, as specified in section 2.3.1 ,that
specifies properties of the encryption algorithm used.

SizeExtra (4 bytes): A field that is reserved and for which the value MUST be 0x00000000.

31/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

AlgID (4 bytes): A signed integer that specifies the encryption algorithm. It MUST be one of the
values described in the following table.

Value Algorithm

0x00000000 Determined by Flags
0x00006801 RC4

0x0000660E 128 -bit AES
0x0000660F 192 -bit AES
0x00006610 256 -bit AES

The Flags field and AlgID field contain related values and MUST be set to one of the
combinations in the following table.

Flags.fCryptoAPI Flags.fAES Flags.fExternal AlgID Algorithm
0 0 1 0x00000000 Determined by the
application
1 0 0 0x00000000 RC4
1 0 0 0x00006801 RC4
1 1 0 0x00000000 128 - bit AES
1 1 0 0x0000660E 128 - bit AES
1 1 0 0x0000660F 192 -bit AES
1 1 0 0x00006610 256 -bit AES
AlgIDHash (4 bytes): A signed integer that specifies the hashing algorithm together with the
Flags.fExternal bit. It MUST be one of the combinations in the following table.
AlgIDHash Flags.fExternal Algorithm
0x00000000 1 Determined by the application
0x 00000000 0 SHA-1
0x00008004 0 SHA-1
KeySize (4 bytes): An unsigned integer that specifies the number of bits in the encryption key.
It MUST be a multiple of 8 and MUST be one of the values in the following table.
Algorithm Value Comment
Any 0x00000000 Determined by Flags
RC4 0x00000028 i 0x00000080 (inclusive) 8-bit increments
AES 0x00000080, 0x000000C0, 0x00000100 128 -bit, 192 -bit, or 256 -bit

32/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

If the Flags field does not have the fCryptoAPl bit set, the KeySize field MUST be
0x00000000. If RC4 is used, the value MUST be compatible with the chosen cryptographic
service provider (CSP)

ProviderType (4 bytes): An implementation - specific value that corresponds to constants
accepted by t he specified CSP. It MUST be compatible with the chosen CSP. It SHOULD <8> be
one of the following values.
Algorithm Value Comment
Any 0x00000000 Determined by Flags
RC4 0x00000001
AES 0x00000018

If the Flags field does not have the fCryptoAPI bit set, the ProviderType field MUST be

0x00000000.
Reservedl (4 bytes): A value that is undefined and MUST be ignored.
Reserved? (4 bytes): A value that MUST be 0x00000000 and MUST be ignored.
CSPName (variable): A nul I-terminated Unicode string that specifies the CSP name.

2.3.3 EncryptionVerifier

The EncryptionVerifier structure is used by Office Binary Document RC4 CryptoAPI Encryption
(section 2.3.5) and ECMA -376 Document Encryption (section 2.3.4). Every usage of this structure

MUST specify the hashing algorithm and encryption algorithm used in the EncryptionVerifier
structure.
Verifier can be 16 bytes of data randomly generated each time the structure is created. Verifier is

not stored in this structure directly.

The EncryptionVerifier structure MUST be set by using the following process:
1. Generate random data and write itinto the Salt field.
2. Derive the encryption key from the password and salt , as specified in either section 2.3.4.7 or

section 2.3.5.2 , with block number 0.

3. Generate 16 bytes of additional random data as the Verifier
4. Encrypt the result of step 3 and write it into the EncryptedVerifier field.
5. For the chosen hashing algorithm, obtain the size of the hash data and write this value into the

VerifierHashSize field.
6. Obtain the hashing algorithm output by using as input the data generated in step 3.

7. Encrypt the hashing algorithm output from step 6 by using the chosen encryption algorithm, and
write the output into the EncryptedVe rifierHash field.

33/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

SaltSize

Salt (16 bytes)

EncryptedVerifier (16 bytes)

VerifierHashSize

EncryptedVerifierHash (variable)

SaltSize (4 bytes): An unsigned integer that specifies the size of the Salt field. It MUST be
0x00000010.

Salt (16 bytes): An array of bytes that specifies the salt value used during password hash
generation. It MUST NOT be the same data used for the verif ier stored encrypted in the

EncryptedVerifier field.

EncryptedVerifier (16 bytes): A value that MUST be the randomly generated Verifier value
encrypted using the algorithm chosen by the implementation.

VerifierHashSize (4 bytes): An unsigned integer that specifies the number of bytes needed to
contain the hash of the data used to generate the EncryptedVerifier field.

EncryptedVerifierHash (variable): An array of bytes that contains the encrypted form of the
hash of the randomly generated Verifier value. The length of the array MUST be the size of
the encryption block size multiplied by the number of blocks needed to encrypt the hash of the
Verifier . If the encryption algorithm is RC4, the length MUST be 20 bytes. If the encryption
algorithm is AES, the le ngth MUST be 32 bytes. After decrypting the EncryptedVerifierHash
field, only the first VerifierHashSize bytes MUST be used.

2.3.4 ECMA -376 Document Encryption

When an ECMA -376 document [ECMA-376] is encrypted as specified in ECMA-376] Part2 Annex C

Table C -5 BIT 0, a structured storage utilizing the data spaces construct as specified in section 2.1
MUST be used. Unless exceptions are noted in the following subsections, streams (1) a nd storages
contained within the \ Ox06DataSpaces storage MUST be present as specified in section 2.1.1 .

23.4.1 \ Ox0O6DataSpaces \ DataSpaceMap Stream
The data space map MUST contain the following structure:

A The \ Ox0O6DataSpaces \ DataSpaceMap stream (1) MUST contain a DataSpaceMap structure
(section 2.1.6) containing exactly one DataSpaceMapEntry structure (section 2.1.6.1).

34 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

A The DataSpaceMapEntry structure:
A MUST have a DataSpaceName equal to "StrongEncryptionDataSpace".
A MUST have exactly one ReferenceCom ponents entry with the name "EncryptedPackage" and

the type 0x00000000, which signifies a stream (1).

2.3.4.2 \ Ox06DataSpaces \ DataSpacelnfo Storage
The DataSpacelnfo storage MUST contain a stream (1) that is defined as follows:

A The \ Ox06DataSpaces \ DataSpacelnfo storage MUST contain a stream (1) named

"StrongEncryptionDataSpace”, which MUST contain a DataSpaceDefinition structure (section
2.1.7).
A The DataSpaceDefinition structure MUST have exactly one TransformReferences entry,

which MUST be "StrongEncryptionTransform".

2.3.4.3 \ OxO6DataSpaces \ Transforminfo Storage

The \ OxO6DataSpaces \ Transforminfo storage MUST contain one storage named

"StrongEncryptionTransform”. The "StrongEncryptionTransform" storage MUST contain a stream (1)

named "0x06Primary". The "0x06Primary" stream (1) MUST contain an IRMDSTransforminfo

structure (section 2.2.6). Withinthe IRMDSTransformInfo structure, the following values MUST

be set:

A TransforminfoHe ader.TransformType MUST be 0x00000001.

A TransforminfoHeader.TransformID MUST be "{FF9A3F03 -56EF-4613 -BDD5 -
5A41C1D07246}".

A TransforminfoHeader.TransformName MUST be "Microsoft.Container.EncryptionTransform".

A TransforminfoHeader.ReaderVersion MUST be "1.0".

A TransforminfoHeader.UpdaterVersion MUST be "1.0".

A TransformiInfoHeader.WriterVersion MUST be "1.0".

Following the IRMDSTransforminfo structure, an EncryptionTransforminfo structure (section

2.1.9) MUST exi st that specifies the encryption algorithms to be used. However, if the algorithms

specified in the EncryptionTransforminfo structure differ from the algorithms specified in the

Encryptioninfo stream (1) (as specified in section 2.3.4.5 ,section 2.3.4.6 ,and section 2.3.4.10),

the Encryptioninfo stream (1) MUST be considered authoritative. If the agil e encryption method is

used, the EncryptionName field of the EncryptionTransforminfo structure MUST be a null string

(0x00000000).

2.3.4.4 \ EncryptedPackage Stream

The \ EncryptedPackage stream is an encrypted stream (1) of bytes containing the entire ECMA -
376 source file [ECMA-376] in compressed form.

35/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493

StreamSize

EncryptedData (variable)

StreamSize (8 bytes): An unsigned integer that specifies the number of bytes used by data
encrypted within the EncryptedData field, not including the size of the StreamSize field.
Note that the actual size of the \ EncryptedPackage stream (1) can be larger than this

value, depending on the block size of the chosen encryption algorithm

EncryptedData (variable): A block of data that is encrypted by using the algorithm specified
within the \ Encryptioninfo stream (1) (section 2.3.4.5).

2.3.45 \ Encryptioninfo Stream (Standard Encryption)

The \ Encryptioninfo stream (1) contains detailed information that is used to initialize the
cryptography used to encrypt the \ EncryptedPackage stream (1), as specified in section 2.34.4 ,
when standard encryption is used.
If an external encryption provider is used, see section 2.3.4.6 .
1 2 3
0(1(2(3(4(5(6(7|8|9|0|1|2|3|4|5(6|7|8[9|0|1|2|3|4|5|6(|7(8[9|0]1

EncryptionVersioninfo

EncryptionHeader.Flags

EncryptionHeaderSize

EncryptionHeader (variable)

EncryptionVerifier (variable)

EncryptionVersioninfo (4 bytes): A Version structure (section 2.1.4) where Version.vMajor
MUST be 0x0002, 0x0003 or 0x0004 <9> ,and Version.vMinor MUST be 0x0002.

EncryptionHeader.Flags (4 bytes): A copy ofthe Flags stored inthe EncryptionHeader field
of this structure.

36 / 112
[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure
Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

EncryptionHeaderSize (4 bytes): An unsigned integer that specifies the size, in bytes, of the
EncryptionHeader field of this structure.

EncryptionHeader (variable): An EncryptionHeader structure (section 2.3.2) that specifies
parameters used to encrypt data. The values MUST be set as specified in the following table.

Field Value

Flags The fCryptoAPI and fAES bits MUST be set. The fDocProps bit MUST be 0.

SizeExtra This value MUST be 0x00000000.

AlgID This value MUST be 0x0000660E (AES -128), 0OxO000660F (AES -192), or
0x00006610 (AES -256).

AlgIDHash This value MUST be 0x00008004 (SHA -1).

KeySize This value MUST be 0x00000080 (AES -128), 0x000000CO (AES -192), or
0x00000100 (AES -256).

ProviderType This value SHOULD <10> be 0x00000018 (AES).

Reservedl This value is undefined and MUST be ignored.

Reserved2 This value MUST be 0x00000000 and MUST be ignored.

CSPName This value SHOULD <11> be set to either "Microsoft Enhanced RSA and AES
Cryptographic Provider" or "Microsoft Enhanced RSA and AES Cryptographic
Provider (Prototype)" as a nu Il-terminated Unicode string.

EncryptionVerifier (variable): An EncryptionVerifier structure, as specified in section 233,
that is generated as specified in section 2.3.4.8 .

2.3.4.6 \ Encryptioninfo Stream (Extensible Encryption)

ECMA-376 documents [ECMA-376] can optionally use user -provided custom (extensible) encryption
modules. When extensible encryption is used, the \ Encryptioninfo stream (1) MUST contain the
structure described in the following table.

EncryptionVersioninfo

EncryptionHeader.Flags

EncryptionHeaderSize

EncryptionHeader (variable)

Encryptioninfo(variable)

37 /112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493

EncryptionVerifier (variable)

EncryptionVersioninfo (4 bytes): A Version structure (section 2.1.4) where Version.vMajor
MUST be 0x0003 or 0x0004 and Version.vMinor MUST be 0x0003.

EncryptionHeader.Flags (4 bytes): A copy of the Flags stored inthe EncryptionHeader field
of t his structure as specified in section 2.3.1 . It MUST have the fExternal bitsetto 1. All
other bits in this field MUST be set to 0.

EncryptionHeaderSize (4 bytes): An unsigned integer that specifies the size, in bytes, of the
EncryptionHeader field of this structure, including the GUID specifying the extensible
encryption module.

EncryptionHeader (variable): An EncryptionHeader structure (section 2.3.2) used to encrypt
the structure. The values MUST be set as described in the following table.
Field Value
Flags A value that MUST have the fExternal bit set to 1. All other bits MUST be set to
0.
SizeExtra A value that MUST be 0x00000000.
AlgID A value that MUST be 0x00000000.
AlgIDHash A value that MUST be 0x00000000.
KeySize A value that MUST be 0x00000000.
ProviderType A value that MUST be 0x00000000.
Reservedl A value that is undefined and MUST be ignored.
Reserved2 A value that MUST be 0x00000000 and MUST be ignored.
CSPName A unigue identifier of an encryption module. <12>
Encryptioninfo (variable): A Unicode string that specifies an EncryptionData element. The

first Unicode code point MUST be OxFEFF.

The EncryptionData XML element MUST conform to the following XMLSchema namespace as

specified by [W3C -XSD].

<?xml version="1.0" encoding="utf -8"7>
<xs:schema targetNamespace="urn:schemas - microsoft - com:office:office"

xmins:xs="http://mww.w3.0rg/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="EncryptionData">
<xs:complexType>
<xs:.sequence>
<xs:element name="EncryptionProvider">
<xs:complexType>

38 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=90563

<Xxs:.sequence>

<xs:element name="EncryptionProviderData">
<xs:simpleType>
<xs:restriction base="xs:base64Binary"/>
<Ixs:simpleType>

<Ixs:element>
</xs:sequence>

<xs:attribute name="ld" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="
[0 - 9A- Fa- fl{4}

</xs:restriction>
<Ixs:simpleType>

</xs:attribute>

\{[0 - 9A- Fa- fl{8}
\ - [0 - 9A- Fa- fl{4}

\-[0 - 9A- Fa- fl{4} \-

\-[0 - 9A- Fa- fl{12} \}'7>

<xs:attribute name="Url" type="xs:anyURI" use="required"/>

</xs:complexType>
<Ixs:element>
<Ixs:sequence>
<I/xs:complexType>
</xs:element>
<Ixs:schema>

Element Parent Attribute Value
EncryptionData
EncryptionProvider EncryptionData

Id The GUID of the extensible
encryption module, expressed
as a string.

Url A URL where the extensible
encryption module can be
obtained.

EncryptionProviderData EncryptionProvider Base64 -encoded data used by
the extensible module.
EncryptionVerifier (variable): An EncryptionVerifier structure, as specified in section 233,

that is generated as specified in section 23438 .

2.3.4.7 ECMA -376 Document Encryption Key Generation (Standard Encryption)

The encryption key for ECMA -376 document encryption

RFC2898] .

Let H() be a hashing algorithm as determined by the

Encryption

ECMA-376] MUST be generated by using
the following method, which is derived from PKCS #5: Password

-Based Cryptography Version 2.0

Header.AlgIDHash field, H , be

the hash dataofthen " iteration, and a plus sign (+) represent concatenation. This hashing
algorithm MUST be SHA -1. The password MUST be provided as an array of Unicode characters.

Limitations on the length of the password

and the characters used by the password are

implementation -dependent. The initial password hash is generated as follows:

A Hq = H(salt + password)

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

39 / 112

%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=119708

The salt used MUST be generated randomly and MUST be 16 bytes in size. The salt MUST be stored
inthe Encryptio nVerifier.Salt field contained within the \ Encryptioninfo stream (1) as specified
in section 2.3.4.5 . The hash is then iterated by using the following approach:

A H, =H(terator+H ;)

where iterator is an unsigned 32 -bit value that is initially set to 0x00000000 and then incremented
monotonically on each iteration until 50,000 iterations have been performed. The value of iterator
on the last iteration MUST be 49,999.

After the final hash data has been ob tained, the encryption key MUST be generated by using the

final hash data, and the block number MUST be 0x00000000. The encryption algorithm MUST be

specified in the EncryptionHeader.AlgID field. The encryption algorithm MUST use ECB mode. The
method used to generate the hash data that is the input into the key derivation algorithm is as

follows:

A Hfina = H(H nt blOCk)

The encryption key derivation method is specified by the following steps:

1. Let cbRequiredKeyLength be equal to the size, in bytes, of the required key length for the
relevant encryption algorithm as specified by the EncryptionHeader structure. Note that
cbRequiredKeyLength MUST be less than or equal to 40.

2. Let cbHash be t he number of bytes output by the hashing algorithm H.

3. Form a 64 -byte buffer by repeating the constant 0x36 64 times. XOR H fina iNto the first cbHash
bytes of this buffer, and compute a hash of the resulting 64 -byte buffer by using hashing
algorithm H. Thi s will yield a hash value of length cbHash . Let the resulting value be called X1.

4. Form another 64 -byte buffer by repeating the constant Ox5C 64 times. XOR H final INtO the first
cbHash bytes of this buffer, and compute a hash of the resulting 64 -byte buffer by using hash
algorithm H. This yields a hash value of length cbHash . Let the resulting value be called X2.

5. Concatenate X1 with X2 to form X3, which will yield a value twice the leng th of cbHash .

6. Let keyDerived be equal to the first ~ cbRequiredKeyLength bytes of X3.

2.3.4.8 Password Verifier Generation (Standard Encryption)

The password verifier uses an EncryptionVerifier structure as specified in section 2.3.3 . The
password verifier Salt field MUST be equal to the salt created during password key generation, as

specified in section 2.3.4.7 . Arandomly generated verifier is then hashed using the SHA -1 hashing
algorithm specified in the EncryptionHeader structure, and encrypted using the key generated as
specified in section 2.3.4.7 , with a block number of 0x00000000.

2.3.4.9 Password Verification (Standard Encryption)

Passwords MUST be verified by using the following steps:

1. Generate an encryption key as specified in section 2.3.4.7 .
2. Decryptthe EncryptedVerifier field of the EncryptionVerifier structure as specified in section
2.3.3 , and generated as specified in section 2.3.4.8 ,to obtainthe Verifier value. The resulting

Verifier value MUST be an array of 16 bytes.

40 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

3. Decryptthe EncryptedVerifierHash field of the EncryptionVerifier structure to obtain the

hash of the Verif ier value. The number of bytes used by the encrypted Verifier hash MUST be
32. The number of bytes used by the decrypted Verifier hash is given by the VerifierHashSize

field, which MUST be 20.
4. Calculate the SHA -1 hash value of the Verifier value calculated in step 2.

5. Compare the results of step 3 and step 4. If the two hash values do not match, the password is
incorrect.

2.3.4.10 \ Encryptioninfo Stream (Agile Encryption)

The \ Encryptioninfo stream (1) contains detailed information about the cryptography used to
encrypt the \ EncryptedPackage stream (1) (section 2.3.4.4) when agile encryption is used.

EncryptionVersionInfo

Reserved

XmlEncryptionDescriptor (variable)

EncryptionVersioninfo (4 bytes): A Version structure (section 2.1.4), where
Version.vMajor MUST be 0x0004 and Version.vMinor MUST be 0x0004.

Reserved (4 bytes): A value that MUST be 0x00000040.

XmlEncryptionDescriptor (variable): An XML element that MUST conform to the following
XML schema namespace, as specified in W3C -XSD] :

<?xml version="1.0" encoding="utf -8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://schemas.microsoft.com/office/2006/encryption"
xmins="http://schemas.microsoft.com/office/2006/encryption"
xmins:xs="http://www.w3.0rg/2001/XMLSchem a">

<xs:simpleType name="ST_SaltSize">
<xs:restriction base="xs:unsignedInt">
<xs:mininclusive value="1" />
<xs:maxInclusive value="65536" />
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="ST_BlockSize">
<xs:restr iction base="xs:unsignedInt">
<xs:mininclusive value="2" />
<xs:maxlInclusive value="4096" />
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="ST_KeyBits">

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

41 / 112

http://go.microsoft.com/fwlink/?LinkId=90563

<xs:restriction base="xs:unsignedInt">
<xs:mininclusive value=" 8" />
</xs:restriction>
<Ixs:simpleType>

<xs:simpleType name="ST_HashSize">
<xs:restriction base="xs:unsignedInt">
<xs:mininclusive value="1" />
<xs:maxInclusive value="65536" />
</xs:restriction>
</xs:simpleType>

<xs:simpleType hame="ST_SpinCount">
<xs:restriction base="xs:unsignedInt">
<xs:mininclusive value="0" />
<xs:maxInclusive value="10000000" />
</xs:restriction>
<Ixs:simpleType>

<xs:simpleType name="ST_CipherAlgorithm">
<xs:restr iction base="xs:string">
<xs:minLength value="1" />
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="ST_CipherChaining">
<xs:restriction base="xs:string">
<xs:minLength value="1" />
</xs:restriction>
<Ixs:simpleType>

<xs:simpleType name="ST_HashAlgorithm">
<xs:restriction base="xs:string">
<xs:minLength value="1" />
</xs:restriction>
</xs:simpleType>

<xs:complexType name="CT_KeyData">
<xs:attribute name="saltSize" type="ST_SaltSize" use="required" />
<xs:attribute name="blockSize" type="ST_BlockSize" use="required" />
<xs:attribute name="keyBits" type="ST_KeyBits" use="required" />
<xs:attribute name="hashSize" type="ST_HashS ize" use="required" />
<xs:attribute name="cipherAlgorithm" type="ST_CipherAlgorithm" use="required"
/>
<xs:attribute name="cipherChaining" type="ST_CipherChaining" use="required" />
<xs:attribute name="hashAlgorithm" type="ST_HashAlgorithm" us e="required" />
<xs:attribute name="saltValue" type="xs:base64Binary" use="required" />
</xs:complexType>

<xs:complexType name="CT_Datalntegrity">
<xs:attribute name="encryptedHmacKey" type="xs:base64Binary" use="required" />
<xs:attribute name="encryptedHmacValue" type="xs:base64Binary" use="required"
/>
</xs:complexType>

<xs:complexType name="CT_KeyEncryptor">
<xs:.sequence>
<xs:any processContents="lax" />
</xs:sequence>

42 | 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

<xs:attribute name="uri" type="xs:token" />
</xs:complexType>

<xs:complexType name="CT_KeyEncryptors">
<xs:.sequence>

<xs:element name="keyEncryptor" type="CT_KeyEncryptor" minOccurs="1"
maxOccurs="unbounded" />

</xs:sequence>
</xs:complexType>

<xs:complexType name="CT_Encrypti on">
<xs:.sequence>
<xs:element name="keyData" type="CT_KeyData" minOccurs="1" maxOccurs="1" />
<xs:element name="datalntegrity" type="CT_Datalntegrity" minOccurs="0"
maxOccurs="1" />
<xs:element name="keyEncryptors" type="CT_KeyEncryptors" minOccurs="1"
maxOccurs="1" />
</xs:sequence>
</xs:complexType>

<xs:element name="encryption" type="CT_Encryption" />
</xs:schema>
SaltSize: An unsigned integer that specifies the number of b ytes used by a salt. It MUST be at least

1 and no greater than 65,536.

BlockSize: An unsigned integer that specifies the number of bytes used to encrypt one block of
data. It MUST be at least 2, no greater than 4096, and a multiple of 2.

KeyBits: An unsigned integer that specifies the number of bits used by an encryption algorithm. It
MUST be at least 8 and a multiple of 8.

HashSize: An unsigned integer that specifies the number of bytes used by a hash value. It MUST
be at least 1, no greater tha n 65,536, and the same number of bytes as the hash algorithm emits.

SpinCount: An unsigned integer that specifies the number of times to iterate on a hash of a
password. It MUST NOT be greater than 10,000,000.

CipherAlgorithm: A string that specifies the cipher algorithm. The values in the following table are
defined.

Value Cipher algorithm

AES MUST conform to the AES algorithm.

RC2 MUST conform to the algorithm as specified in RFC2268] .<13>

RC4 MUST NOT be used.

DES MUST conformto the DES algorithm. <14>

DESX MUST conform to the algorithm as specified in [DRAFT -DESX] .<15>

3DES MUST conform to the algorithm as specified in RFC1851] .<16>

3DES_112 MUST conform to the algorithm as specified in RFC1851] .<17>

43 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=128904
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=128905
http://go.microsoft.com/fwlink/?LinkId=128901
http://go.microsoft.com/fwlink/?LinkId=128901

Values that are not defined MAY <18> be used, and a compliant implementation is not required to
support all defined values. The string MUST be at least 1 character.

CipherChaining: A string that specifies the chaining mode used by CipherAlgorithm . For more
details about chaining modes, see [BCMOB800 -38A] . It MUST be one of the values described in the
following table.

Value Chaining mode

ChainingModeCBC Cipher block chaining (CBC)

ChainingModeCFB Cipher feedback chaining (CFB), with an 8 - bit window
HashAlgorithm: A string specifying a hashing algorithm. The values described in the following table
are defined.

Value Hash algorithm

SHA-1 MUST conform to the algorithm as specified in RFC4634] .

SHA256 MUST conform to the algorithm as specified in RFC4634] .

SHA384 MUST conform to the algorithm as specified in RFC4634] .

SHA512 MUST conform to the algorithm as specified in RFC4634] .

MD5 MUST conformto MD5 .

MD4 MUST conform to the algorithm as specified in RFEC1320] .

MD2 MUST conform to the algorithm as specified in RFC1319] .

RIPEMD-128 MUST conform to the hash functions specified in ISO/IEC 10118] .

RIPEMD-160 MUST conform to the hash functions specified in ISO/IEC 10118] .

WHIRLPOOL MUST conform to the hash functions specified in ISO/IEC 10118] .

Values that are not defined MAY <19> be used, and a compliant implementation is not required to
support all defined values. The string MUST be at least 1 character. For more information, see
section 4.

KeyData: A complex type that specifies the encryption used within this element. The saltValue
attribute is a base64 -encoded binary value that is randomly generated. The number of bytes

required to decode the saltValue attribute MUST be equal to the value of the saltSize attribute.
Datalntegrity: A complex type that specifies data used to verify whether the encrypted data

passes an integrity check. It MUST be generated using the method specified in section 2.3.4. 14. This

type is composed of the following simple types:

A encryptedHmacKey: A base64 -encoded value that specifies an encrypted key used in
calculating the encryptedHmacValue

A encryptedHmacValue: A base64 -encoded value that specifies an HMAC derived from
encryptedHmacKey and the encrypted data.

KeyEncryptor: A complex type that specifies the parameters used to encrypt an intermediate key,
which is used to perform the final encryption of the document. To ensure extensibility, ar bitrary

44 | 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113491
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90486
http://go.microsoft.com/fwlink/?LinkId=90486
http://go.microsoft.com/fwlink/?LinkId=90486
http://go.microsoft.com/fwlink/?LinkId=90486
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90274
http://go.microsoft.com/fwlink/?LinkId=128903
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409
%5bMS-GLOS%5d.pdf

elements can be defined to encrypt the intermediate key. The intermediate key MUST be the same
for all KeyEncryptor elements. PasswordKeyEncryptor and CertificateKeyEncryptor are
defined later in this section.

KeyEncryptors: A sequence of KeyEncry ptor elements. Exactly one KeyEncryptors element
MUST be present, and the KeyEncryptors element MUST contain at least one KeyEncryptor

Encryption: A complex type composed of the following elements that specify the encryption
properties:

A keyData: One KeyData element MUST be present.
A datalntegrity: One Datalntegrity element MUST <20> be present.

A keyEncryptors: One KeyEncryptors sequence MUST be present.

The KeyEncryptor element, which MUST be used when encrypting password -protect ed agile
encryption documents, is either a PasswordKeyEncryptor or a CertificateKeyEncryptor . Exactly
one PasswordKeyEncryptor MUST be present. Zero or more CertificateKeyEncryptor elements

are contained within the KeyEncryptors element. The PasswordKeyEnc ryptor is specified by the
following schema:

<?xml version="1.0" encoding="utf -8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://schemas.microsoft.com/office/2006/keyEncryptor/password"
xmins="h ttp://schemas.microsoft.com/office/2006/keyEncryptor/password"
xmins:e="http://schemas.microsoft.com/office/2006/encryption”
xmins:xs="http://mww.w3.0rg/2001/XMLSchema">

<xs:import namespace="http://schemas.microsoft.com/office/2006/encryption"
sc hemalocation="encryptioninfo.xsd" />

<xs:simpleType name="ST_PasswordKeyEncryptorUri">
<xs:restriction base="xs:token">
<xs:enumeration value="http://schemas.microsoft.com/office/2006/keyEncryptor/password"
/>
</xs:restriction>
</xs:simp leType>

<xs:complexType name="CT_PasswordKeyEncryptor">
<xs:attribute name="saltSize" type="e:ST_SaltSize" use="required" />
<xs:attribute name="blockSize" type="e:ST_BlockSize" use="required" />
<xs:attribute name="keyBits" type="e:ST_KeyBits" use="required" />
<xs:attribute name="hashSize" type="e:ST_HashSize" use="required" />
<xs:attribute name="cipherAlgorithm" type="e:ST_CipherAlgorithm" use="required" />
<xs:attribute name="cipher Chaining" type="e:ST_CipherChaining" use="required" />
<xs:attribute name="hashAlgorithm" type="e:ST_HashAlgorithm" use="required" />
<xs:attribute name="saltValue" type="xs:base64Binary" use="required" />
<xs:attribute name="spinCount" type="e :ST_SpinCount" use="required" />
<xs:attribute name="encryptedVerifierHashlnput" type="xs:base64Binary" use="required" />
<xs:attribute name="encryptedVerifierHashValue" type="xs:base64Binary" use="required" />
<xs:attribute name="encryptedKeyValue" type="xs:base64Binary" use="required" />
</xs:complexType>

<xs:element name="encryptedKey" type="CT_PasswordKeyEncryptor" />
</xs:schema>

saltSize: A SaltSize that specifies the size of the salt for a PasswordKeyE ncryptor

45 [112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

blockSize: A BlockSize that specifies the block size for a PasswordKeyEncryptor
keyBits: A KeyBits that specifies the number of bits for a PasswordKeyEncryptor

hashSize: A HashSize that specifies the size of the binary form of the hash for a
PasswordKeyEncryptor

cipherAlgorithm: A CipherAlgorithm that specifies the cipher algorithm for a
PasswordKeyEncryptor . The cipher algorithm specified MUST be the same as the cipher algorithm
specified for the Encryption.keyData element.

cipherChaining: A CipherChaining that specifies the cipher chaining mode for a
PasswordKeyEncryptor

hashAlgorithm: A HashAlgorithm that specifies the hashing algorithm for a
PasswordKeyEncryptor . The hashing algorithm specified MUST be the same as the hashing
algorithm spe cified for the Encryption.keyData element.

saltValue: A base64 -encoded binary byte array that specifies the salt value for a

PasswordKeyEncryptor . The number of bytes required by the decoded form of this element MUST
be saltSize

spinCount: A SpinCount that specifies the spin count for a PasswordKeyEncryptor
encryptedVerifierHashinput: A base64 -encoded value that specifies the encrypted verifier hash
input fora PasswordKeyEncryptor used in password verification.

encryptedVerifierHashValue: A base64 -encode d value that specifies the encrypted verifier hash
value fora PasswordKeyEncryptor used in password verification.

encryptedKeyValue: A base64 -encoded value that specifies the encrypted form of the

intermediate key.

The CertificateKeyEncryptor is specified by the following schema:

<?xml version="1.0" encoding="utf -8"?>
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://schemas.microsoft.com/office/2006/keyEncryptor/certificate"
xmins="http://schemas.microsoft.com/office/2006/keyEncryptor/certificate"
xmins:e="http://schemas.microsoft.com/office/2006/encryption”
xmins:xs="http://mww.w3.0rg/2001/XMLSchema">
<xs:import namespace="http://schemas.microsoft.com/office/2006/encryption
schemalocation="encryptioninfo.xsd" />
<xs:simpleType name="ST_PasswordKeyEncryptorUri">
<xs:restriction base="xs:token">
<xs:enumeration
value="http://schemas.microsoft.com/office/2006/keyEncryptor/certificate" />
</xs:restriction>
</x s:simpleType>
<xs:complexType name="CT_CertificateKeyEncryptor">
<xs:attribute name="encryptedKeyValue" type="xs:base64Binary" use="required" />
<xs:attribute name="X509Certificate" type="xs:base64Binary" use="required" />
<xs:attribute name= "certVerifier" type="xs:base64Binary" use="required" />
</xs:complexType>
<xs:element name="encryptedKey" type="CT_CertificateKeyEncryptor" />
</xs:schema>

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

46 / 112

encryptedKeyValue: A base64 -encoded value that specifies the encrypted form of the
intermediate key, which is encrypted with the public key contained within the X509Certificate
attribute.

X509Certificate: A base64 -encoded value that specifies a DER-encoded X.509 certificate (1) used
to encr ypt the intermediate key. The certificate (1) MUST contain only the public portion of the
public - private key pair.

certVerifier: A base64 -encoded value that specifies the HMAC of the binary data obtained by

base64 -decoding the X509Certificate attribute. Th e hashing algorithm used to derive the HMAC
MUST be the hashing algorithm specified for the Encryption.keyData element. The secret key used
to derive the HMAC MUST be the intermediate key.

If the intermediate key is reset, any CertificateKeyEncryptor eleme nts are also reset to contain
the new intermediate key, except that the certVerifier attribute MUST match the value calculated
using the current intermediate key, to verify that the CertificateKeyEncryptor element actually
encrypted the current intermediat e key. Ifa CertificateKeyEncryptor element does not have a
correct certVerifier attribute, it MUST be discarded.

2.3.4.11 Encryption Key Generation (Agile Encryption)

The encryption key for ECMA -376 document encryption ECMA-376] using agile encryption MUST be
generated by using the following method, which is derived from PKCS #5: Password -Based

Cryptography Version 2.0 RFC2898] .

Let H() be a hashing algorithm as dete rmined by the PasswordKeyEncryptor.hashAlgorithm
element, H , be the hash data ofthen ' iteration, and a plus sign (+) represent concatenation. The
password MUST be provided as an array of Unicode characters. Limitations on the length of the
password and the characters used by the password are implementation -dependent. The initial
password hash is generated as follows:

A Hq = H(salt + password)

The salt used MUST be generated randomly. The salt MUST be stored in the
PasswordKeyEncryptor.saltValue element con tained within the \ Encryptioninfo stream (1) as
specified in section 2.3.4.10 . The hash is then iterated by using the following approach:

A H, =H(terator+H ;)

where iterator is an unsigned 32 -bit valu e that is initially set to 0x00000000 and then incremented
monotonically on each iteration until PasswordKey.spinCount iterations have been performed.
The value of iterator on the last iteration MUST be one less than PasswordKey.spinCount

The final hash d ata that is used for an encryption key is then generated by using the following
method:

A Hgna =H(H , + blockKey)

where blockKey represents an array of bytes used to prevent two different blocks from encrypting
to the same cipher text.

If the size of the resulting H f,4 is smaller than that of PasswordKeyEncryptor.keyBits , the key
MUST be padded by appending bytes with a value of 0x36. If the hash value is larger in size than
PasswordKeyEncryptor.keyBits , the key is obtained by truncating the hash value.

47 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=119708

2.3.4.12 Initialization Vector Generation (Agile Encryption)

Initialization vectors are used in all cases for agile encryption. An initialization vector MUST be
generated by using the following method, where H() is a hash function that MUST be the same as
specified in section 2.3.4.11 and a plus sign (+) represents concatenation:

1. Ifa blockkey isprovided,let IV be ahashofthe KeySalt and the following value:
AblockKey:IV = H(KeySalt + bloc kKey)
2. Ifa blockKey is not provided, let IV be equal to the following value:

AKeySalt:lV = KeySalt.

3. If the number of bytes in the value of IV is less than the value of the blockSize attribute
corresponding to the cipherAlgorithm attribute, pad the array of bytes by appending 0x36 until
the array is blockSize bytes. If the array of bytes is larger than blockSize Dbytes, truncate the

array to blockSize bytes.

2.3.4.13 PasswordKeyEncryptor Generation (Agile Encryption)

For agile encryption, the password key encryptor XML element specified in section 2.3.4.10 MUST be
created as follows:

saltSize: Set this attribute to the number of bytes used by the binary form of the saltValue
attribute. It MUST conform to a SaltSize type.

blockSize: Set this attribute to the number of bytes needed to contain an encrypted block of data,
as defined by the cipherA Igorithm used. It MUST conform to a BlockSize type.

keyBits: Set this attribute to the number of bits needed to contain an encryption key, as defined by
the cipherAlgorithm used. It MUST conform to a KeyBits type.

hashSize: Set this attribute to the number of bytes needed to contain the output of the hashing
algorithm defined by the hashAlgorithm element. It MUST conform to a HashSize type.

cipherAlgorithm: Set this attribute to a string containing the cipher algorithm used to encrypt the
encryptedVerifierH ashinput , encryptedVerifierHashValue ,and encryptedKeyValue . It MUST
conformtoa CipherAlgorithm type.

cipherChaining: Set this attribute to the cipher chaining mode used to encrypt
encryptedVerifierHashInput , encryptedVerifierHashValue ,and encryptedKeyV alue . It MUST
conformtoa CipherChaining type.

hashAlgorithm: Set this attribute to the hashing algorithm used to derive the encryption key from
the password and that is also used to obtain the encryptedVerifierHashValue . It MUST conform
to a HashAlgorit hm type.

saltValue: Set this attribute to a base64 -encoded, randomly generated array of bytes. It MUST
conformtoa SaltValue type. The number of bytes required by the decoded form of this element
MUST be saltSize

spinCount: Set this attribute to the nu mber of times to iterate the password hash when creating

the key used to encrypt the encryptedVerifierHashinput , encryptedVerifierHashValue ,and
encryptedKeyValue . It MUST conform to a SpinCount type.
encryptedVerifierHashinput: This attribute MUST be gen erated by using the following steps:

48 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

1. Generate a random array of bytes with the number of bytes used specified by the saltSize

attribute.
2. Generate an encryption key as specified in section 2.3.4.11 by using the user -supplied password,
the binary byte array used to create the saltValue attribute, and a blockKey byte array

consisting of the following bytes: Oxfe, Oxa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, and 0x79.

3. Encrypt the random array of bytes generated in step 1 by using the binary form of the saltValue
attribute as an initialization vector as specified in section 2.3.4.12 . If the array of bytes is not an
integral multiple of blockSize bytes, pad the array with 0x00 to the next integral multiple of
blockSize bytes.

4. Use base64 to encode the result of step 3.
encryptedVerifierHashValue: This at tribute MUST be generated by using the following steps:

1. Obtain the hash value of the random array of bytes generated in step 1 of the steps for
encryptedVerifierHashinput

2. Generate a n encryption key as specified in section 2.3.4.11 by using the user -supplied password,
the binary byte array used to create the saltValue attribute,anda blockKey byte array
consisting of the following bytes: 0xd7, Oxaa, OxOf, Ox6d, 0x30, 0x61, 0x34, and Ox4e.

3. Encrypt the hash value obtained in step 1 by using the binary form of the saltValue attribute as
an initialization vector as specified in section 2.3.4.12 .If hashSize is not an integral multiple of
blockSize bytes, pad the hash value with 0x00 to an integral multiple of blockSize bytes.

4. Use base64 to encode the result of step 3.

encryptedKeyValue: This attribute MUST be generated by using the fol lowing steps:

1. Generate a random array of bytes that is the same size as specified by the
Encryptor.KeyData.keyBits attribute of the parent element.

2. Generate an encryption key as spec ified in section 2.3.4.11 , using the user -supplied password,
the binary byte array used to create the saltValue attribute,anda blockKey byte array
consisting of the following bytes: 0x14, Ox6e, 0x0b, 0 xe7, Oxab, Oxac, 0xd0, and 0xd6.

3. Encrypt the random array of bytes generated in step 1 by using the binary form of the saltValue
attribute as an initialization vector as specified in section 2.3.4.12 . If the array of bytes is not an

integral multiple of blockSize bytes, pad the array with 0x00 to an integral multiple of
blockSize Dbytes.

4. Use base64 to encode the result of step 3.

2.3.4.14 Datalntegrity Generation (Agile Encryption)

The Datalntegrity element contained within an Encryption element MUST be generated by using
the following steps:

1. Obtain the intermediate key by decrypting the encryptedKeyValue froma KeyEncryptor
contained within the ~ KeyEncryptors sequence. Use this key for encryption operations in the
remaining steps of this section.

2. Generate a random array of bytes, known as Salt , of the same length as the value of the
KeyData.saltSize attribute.

49 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

3. Encrypt the random array of bytes generated in step 2 by using the binary form of the
KeyData.saltValue attribute and a blockKey byte array consisting of the following bytes: Ox5f,
0xb2, 0 xad, 0x01, 0xOc, 0xb9, Oxel, and 0xf6 used to form an initialization vector as specified in
section 2.3.4.12 . If the array of bytes is not an integral multiple of blockSize bytes, pad the
array with 0x00 to the next integral multiple of blockSize bytes.

4. Assignthe encryptedHmacKey attribute to the base64 -encoded form of the result of step 3.

5. Generate an HMAC, as specified in RFC2104] , of the en crypted form of the data (message),
which the Datalntegrity element will verify by using the Salt generated in step 2 as the key.
Note that the entire EncryptedPackage stream (1), including the StreamSize field, MUST be
used as the message.

6. Encryptthe HMA C asin step 3 by using a blockKey byte array consisting of the following bytes:
0Oxa0, 0x67, Ox7f, 0x02, Oxb2, 0x2c, 0x84, and 0x33.

7. Assign the encryptedHmacValue attribute to the base64 -encoded form of the result of step 6.

2.3.4.15 Data Encryption (Agile Encryption)

The EncryptedPackage stream (1) MUST be encrypted in 4096 -byte segments to facilitate nearly
random access while allowing CBC modes to be used in the encryption process.

The initialization vector for the encryption process MUST be obtained by using the zero -based
segment numberasa blockkKey and the binary form of the KeyData.saltValue as specified in
section 2.3.4.12 . T he block number MUST be represented as a 32 -bit unsigned integer.

Data blocks MUST then be encrypted by using the initialization vector and the intermediate key
obtained by decrypting the encryptedKeyValue froma KeyEncryptor contained within the
KeyEncry ptors sequence as specified in section 2.3.4.10 . The final data block MUST be padded to

the next integral multiple of the KeyData.blockSize value. Any padding bytes can be used. Note
that the StreamSize field of the EncryptedPackage stream (1) specifies the number of bytes of
unencrypted data as specified in section 2.3.4.4 .

2.3.5 Office Binary Document RC4 CryptoAPI Encryption

The storages and streams (1) encrypted by Office binary document RC4 CryptoAPI encryption are

specified in the documentation for the relevant application; for more information see MS -DOC],
[MS-XLS], and [MS -PPT]. The following subsections specify the structures and key generation

methods used by the application.

2.3.5.1 RC4 CryptoAPI Encryption Header

The encryption header structure used for RC4 CryptoAPI encryption is specified as shown in the
following diagram.

EncryptionVersioninfo

EncryptionHeader.Flags

EncryptionHeaderSize

50 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=90314
%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-PPT%5d.pdf

EncryptionHeader (variable)

EncryptionVerifier (variable)

EncryptionVersioninfo (4 bytes): A Version structure (section 2.1.4) that specifies the
encryption version used to create the document and the encryption version required to open
the document. Version.vMajor MUST be 0x0002, 0x0003, or 0x0004 <21> and
Version.vMinor MUST be 0x0002.

EncryptionHeader.Flags (4 bytes): A copy ofthe Flags storedinthe EncryptionHeader
structure (section 2.3.2) that is stored in this stream (1).
EncryptionHeaderSize (4 bytes): An unsigned integer that specifies the size, in bytes, of the
EncryptionHeader structure.
EncryptionHeader (variable): An EncryptionHeader structure (section 2.3.2) used to encrypt
the structure. The values MUST be set as descri bed in the following table.
Field Value
Flags The fCryptoAPI bit MUST be set. The fDocProps bit MUST be set if the
document properties are not encrypted.
SizeExtra MUST be 0x00000000.
AlgID MUST be 0x00006801 (RC4 encryption).
AlgIDHash MUST be 0x00008004 (SHA -1).
KeySize MUST be greater than or equal to 0x00000028 bits and less than or equal to

0x00000080 bits, in increments of 8 bits. If set to 0x00000000, it MUST be
interpreted as 0x00000028 bits. It MUST be compatible with the chosen
cryptographic service provider (CSP).

ProviderType MUST be 0x00000001.
Reservedl Undefined and MUST be ignored.
Reserved2 MUST be 0x00000000 and MUST be ignored.
CSPName MUST be set to a recognized CSP name that supports RC4 and SHA -1 algorithms
with a key length compatible with the KeySize field value. <22>
EncryptionVerifier (variable): An EncryptionVerifier structure as specified in section 233
that is generated as specified in section 2355 .

2.3.5.2 RC4 CryptoAPI Encryption Key Generation

The encryption key for RC4 CryptoAPI binary document encryption MUST be generated by using the
following approach.

51/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

Let H() be a hashing algorithm as determined by the EncryptionHeader.AlgIDHash field, and a
plus sign (+) represents concatenation. The password MUST be provided as an array of Unicode
characters.

Limitations on the length of the password and the characters used by the password are

implementation -dependent. For details about behavi or variations, see [MS-DOC], [MS-XLS], and
MS - PPT]. Unless otherwise specified, the maximum password length MUST be 255 Unicode

characters.

The password hash is genera ted as follows:
A Hy = H(salt + password)

The salt used MUST be generated randomly and MUST be 16 bytes in size. The salt MUST be stored
in the EncryptionVerifier.Salt field as specified in section 2.3.4.5 . Note that the hash MUST NOT
be iterated. See section 4 for additional notes.

After the hash has been obtained, the encryption key MUST be generated by using the hash data
and a block number that is pro vided by the application. The encryption algorithm MUST be specified
in the EncryptionHeader.AlgID field.

The method used to generate the hash data that is the input into the key derivation algorithm is as
follows:

A Hfinal = H(H 0 + b|OCk)
The block number MUST be a 32 -bit unsigned value provided by the application.

Let keyLength be the key length, in bits, as specified by the RC4 CryptoAPI Encryption Header
KeySize field.

The first keyLength bits of H 5,4 MUST be considered the derived encryption key, unl ess keylLength
is exactly 40 bits long. An SHA -1 hash is 160 bits long, and the maximum RC4 key length is 128

bits; therefore, keyLength MUST be less than or equal to 128 bits. If keyLength is exactly 40 bits,
the encryption key MUST be composed of the firs t 40 bits of H .4 and 88 bits set to zero, creating a
128 - bit key.

2.3.5.3 RC4 CryptoAPI EncryptedStreamDescriptor Structure

The RC4 CryptoAPI EncryptedStreamDescriptor structure specifies information about encrypted
streams (1) and storages contained within an RC4 CryptoAPI Encrypted Summary stream (1) as
specified in section 2.3.5.4 . Itis specified as shown in the following diagram.

0123456789(1)123456789512345678931
StreamOffset
StreamSize
Block NameSize AlB Unused
Reserved2

52 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-PPT%5d.pdf

StreamName (variable)

StreamOffset (4 bytes): An unsigned integer that specifies the offset, in bytes, within the
summary stream (1) where the encrypted stream (1) is written.

StreamSize (4 bytes): An unsigned integer that specifies the size, in bytes, of the encrypted
stream (1).

Block (2 bytes): An unsigned integer that specifies the block number used to derive the
encryption key for this encrypted stream (1).

NameSize (1 byte): An unsigned integer that specifies the number of characters used by the
StreamName field, not including the terminating NUL L character.

A i1 fStream (1 bit): A value that MUST be 1 if the encrypted data is a stream (1). It MUST be O
if the encrypted data is a storage.

B i Reservedl (1 bit): A value that MUST be 0 and MUST be ignored.

Unused (6 bits): A value that MUST be ignore d.

Reserved? (4 bytes): A value that MUST be ignored.

StreamName (variable): A null -terminated Unicode string specifying the name of the stream

(1) (or storage) stored within the encrypted summary stream (1).

2.3.5.4 RC4 CryptoAPI Encrypted Summary Stream

When RC4 CryptoAPI encryption is used, an encrypted summary stream (1) MAY <23> be created.
The name of the stream (1) MUST be specified by the application. If the encrypted summary stream

(1) is present, the \ Ox05DocumentSummarylnformation stream (1) MUST be present, MUST
conform to the details as specified in MS -OSHARED] section 2.3.3.2, and MUST contain no

properties. The \ OxO5SummaryInformation stream (1) MUST NOT be present.

For details about the contents of the \ 0x05Summarylnformation and
\ Ox05DocumentSummarylnformation streams (1), see [MS-OSHARED] section 2.3.3.2.1 and
MS -OSHARED] section 2.3.3.2.2 .

For brevity, this section refers to the RC4 CryptoAPI Encrypted Summary stream (1) as the
encrypted summary stream (1)

The stream (1) MUST have the format that is shown in the following diagram.

StreamDescriptorArrayOffset

StreamDescriptorArraySize

EncryptedStreamData (variable)

53 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-OSHARED%5d.pdf
%5bMS-OSHARED%5d.pdf
%5bMS-OSHARED%5d.pdf

EncryptedStreamDescriptorCount

EncryptedStreamDescriptorArray (variable)

StreamDescriptorArrayOffset (4 bytes): An unsigned integer that specifies the offset within
the encrypted summary stream (1) where the EncryptedStreamDescriptorCount structure
is found.

StreamDescriptorArraySize (4 bytes): An unsigned integer that specifies the number of bytes
used by the Encry ptedStreamDescriptorArray structure.

EncryptedStreamData (variable): One or more encrypted streams (1) stored within the

encrypted summary stream (1).

EncryptedStreamDescriptorCount (4 bytes): An encrypted unsigned integer specifying the
count of Encrypted StreamDescriptor structures (section 2.3.5.3).

EncryptedStreamDescriptorArray (variable): One or more EncryptedStreamDescriptor
structures that specify the offsets and names of the encrypted streams (1) and storages

contained within the encrypted summary stream (1).
The encrypted summary stream (1) MUST be written as specified in the following steps:

1. Seek forward from the start of t he encrypted summary stream (1) by 8 bytes to provide space
for the StreamDescriptorArrayOffset and StreamDescriptorArraySize fields, which will be
written in step 8. Let BlockNumber initially be 0x00000000.

2. If additional streams (1) or storages are provid ed by the application, for each stream (1) or
storage the following steps MUST be performed:

1. If the data is contained within a stream (1), retrieve the contents of the stream (1). In itialize
the encryption key as specified in section 2.3.5.2 , using a block number of 0x00000000, and
encrypt the stream (1) data. Write the encrypted bytes into the encrypted summary stream

).

2. Ifthe d atais contained within a storage, convert the storage into a file as specified in MS -
CEB]J. Initialize the encryption key as specified in section 2.3.5.2 , using a block number of
BlockNumber , and encrypt the storage data as a stream (1) of bytes. Write the encrypted
bytes into the encrypted summary stream (1).

3. Set the fields within the associated EncryptedStreamDescriptor for the stream (1) or
storage. Do not write it to the encrypted summary stream (1) yet.

4. Increment BlockNumber

3. Generate or retrieve the entire contents of the \ Ox05Summarylnformation stream (1).
Initialize the encryption key as specified in section 2.3.5.2 , using a block number of
BlockNumber , and encryptthe \ OxO5SummarylnformationStream data. Write the
encrypted bytes into the encrypted summary stream (1). Increment BlockNumber

54 [112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-CFB%5d.pdf
%5bMS-CFB%5d.pdf

4. Set the fields within the associated EncryptedStreamDescri ptor for the

\ Ox05Summarylnformation stream (1). Do not write it to the encrypted summary stream (1)
yet.

5. Generate or retrieve data contained within the \ Ox05DocumentSummarylnformation stream
(2). Initialize the encryption key as specified in section 2.3.5.2 , using a block number of
BlockNumber , and encryptthe \ OxO5DocumentSummaryinformationStream data. Write

the encrypted bytes into the encrypted summary stream (1) immediately following the data
written in step 2.

6. Set the fields within the associated EncryptedStreamDescriptor for the
\ OxO5DocumentSummarylnformation stream (1). Do not write it to the encrypted summary
stream (1) yet.

7. Write the EncryptedStreamDescriptorCount and EncryptedStreamDescriptorArray by
initializing the encryption key as specified in section 2.3.5.2 , using a block number of
0x00000000. Concatenate and encrypt the EncryptedStreamDescriptorCount and the
EncryptedStreamDescriptor . Write the encrypted bytes into the encrypted summary stream
D).

8. Initialize the StreamDescriptorArrayOffset and StreamDescriptorArraySize fields to specify
the encrypted location of the EncryptedStreamDescriptorCount and size of the
EncryptedStreamDescriptorCount and EncryptedStreamDescriptorArray within the
encrypted summary stream (1). Initialize the encryption key as specified in section 2.3.5.2 ,using

a block number of 0x000 00000.

2.3.5.5 Password Verifier Generation

The password verifier uses an EncryptionVerifier structure, as specified in section 2.3.3 . The
password verifier ~ Salt field MUST be populated with the salt created during password key

generation, as specified in section 2.3.5.2 . An additional 16 -byte verifier is then hashed using the
SHA- 1 hashing algorithm specified i n the encryption header structure, and encrypted using the key
generated in section 2.3.5.2 , with a block number of 0x00000000.

2.3.5.6 Password Verification

The password verification process is specified by the following steps:

1. Generate an encryption key as specified in section 2.3.3 , using a block number of 0x00000000.

2. Decryptthe EncryptedVerifier field of the EncryptionVerifier structure to obtain the Verifier
value. The resulting Verifier value MUST be an array of 16 bytes.

3. Decryptthe EncryptedVerifierHash field of the EncryptionVerifier structure to obtain the
hash of the Verifier value. The number of bytes used by the encrypted Verifier hash MUST be
20.

4. Calculate the SHA -1 hash value of the Verifier value calculatedins tep 2.

5. Compare the results of step 3 and step 4. If the two hash values do not match, the password is
incorrect.

The RC4 decryption stream (1) MUST NOT be reset between the two decryption operations specified
in steps 2 and 3.

55 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

2.3.6 Office Binary Document RC4 Encryption
Office binary document RC4 encryption does not alter the storages and streams (1) used. If a

stream (1) is encrypted, it is encrypted in place. The following subsections specify the structures
and key generation methods used by the application.

2.3.6.1 RC4 Encryption Header

The encryption header used for RC4 encryption is specified as shown in the following diagram.

EncryptionVersioninfo

Salt (16 bytes)

EncryptedVerifier (16 bytes)

EncryptedVerifierHash (16 bytes)

EncryptionVersioninfo (4 bytes): A Version structure (section 2.1.4), where
Version.vMajor MUST be 0x0001 and Version.vMinor MUST be 0x0001.

Salt (16 bytes): A randomly generated array of bytes that specifies the salt value used during
password hash generation. It MUST NOT be the same data used for the verifier stored
encrypted inthe Encrypted Verifier field.

EncryptedVerifier (16 bytes): An additional 16 -byte verifier encrypted using a 40 -bit RC4
cipher initialized as specified in section 2.3.6.2 , with a block number of 0x00000000.
EncryptedV erifierHash (16 bytes): A 40 -bit RC4 encrypted MD5 hash of the verifier used to

generate the EncryptedVerifier field.

2.3.6.2 Encryption Key Derivation

The encryption key for Office binary document RC4 encryption is generated by using the following

method: Let H() be the MD5 hashing algorithm, H . be the hash dataofthen ™ iteration, and a plus
sign (+) represent concatenation. The password MUST be provided as an array of Unicode

characters.

Limitations on the length of the password and the characters used by the password are
implementation -dependent. For details about beh avior variations, see [MS-DOC] and [MS-XLS].
Unless otherwise specified, the maximum password length MUST be 255 Unicode characters.

The initial password hash is generated as follows.

56 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf

A Hy = H(passwor d)

The salt used MUST be generated randomly and MUST be 16 bytes in size. The salt MUST be stored
inthe Salt field ofthe RC4 Encryption Header structure (section 2.3.6.1). The hash is then
computed by using the following approach:

1. Let TruncatedHash be the first 5 bytes of H .

2. Let IntermediateBuffer be a 336 -bhyte buffer.

3. Form a 21 -byte buffer by concatenating TruncatedHash plus the salt. Initialize
IntermediateBuffer by copying the 21 -byte buffer into IntermediateBuffer a total of 16
times.

4. Use the following: H | = H(IntermediateBuffer).

After the final hash has been obtained, the encryption key MUST be generated by using the first 5
bytes of the final hash data and a block number that is provided by the application. The encryption
algorithm MUST be RC4. The method used to generate the hash data that is the input into the key
derivation algorithm is the following:

A Let TruncatedHash be the first 5 bytesof H ;.
A Use the following: H na €quals H(TruncatedHash + block).
The block number MUST be a 32 -bit unsigned value provided by the application.

The first 128 bits of H 5,y MUST then be used as the derived encryption key.

2.3.6.3 Password Verifier Generation

The password verifier uses a BinaryRC4EncryptionHeader structure, as specified in section

2.3.6.1 . The password verifier Salt field MUST be populated with the salt created during password

key generation, as specified in section 2.3.6.2 . An additional 16 -byte verifier is then hashed by

using the MD5 hashing algorithm and encryp ted by using the key generated in section 2.3.6.2 , with
a block number of 0x00000000.

The RC4 decryption stream (1) MUST NOT be reset between decrypting EncryptedVerifier and
EncryptedVerifierHash

2.3.6.4 Password Verification
The password verification process is specified by the following steps:
1. Generate an encryption key as specified in section 2.3.6.2 , using a block number of 0x00000000.

2. Decryptthe EncryptedVerifier field of the RC4 Encryption Header structure to obtain the
Verifier value. The resulting Verifier value MUST be an array of 16 by tes.

3. Decryptthe EncryptedVerifierHash field of the RC4 Encryption Header structure to obtain the
hash of the Verifier value. The number of bytes used by the encrypted Verifier hash MUST be
16.

4. Calculate the MD5 hash value of the results of step 2.

5. Compa re the results of step 3 and step 4. If the two hash values do not match, the password is
incorrect.

57 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

The RC4 decryption stream (1) MUST NOT be reset between decrypting EncryptedVerifier and
EncryptedVerifierHash

2.3.7 XOR Obfuscation

XOR obfuscation is supported for backward compatibility with older file formats.

2.3.7.1 Binary Document Password Verifier Derivation Method 1

The CreatePasswordVerifier_Method1 procedure specifies how a 16 -bit password verifier is
obtained from an ASCII password string. The password verifier is used in XOR obfuscation as well as
for document write protection.

The CreatePasswordVerifier_Method1 procedure takes the following para meter:

A Password: An ASCII string that specifies the password to be used when generating the verifier.

FUNCTION CreatePasswordVerifier_Method1
PARAMETERS Password
RETURNS 16 bit unsigned integer

DECLARE Verifier AS 16 - bit unsigned integer
DECLARE PasswordArray AS array of 8 - bit unsigned integers

SET Verifier TO 0x0000

SET PasswordArray TO (empty array of bytes)
SET PasswordArray[0] TO Password.Length
APPEND Password TO PasswordArray

FOR EACH PasswordByte IN PasswordArr ay IN REVERSE ORDER
IF (Verifier BITWISE AND 0x4000) is 0x0000
SET Intermediatel TO O
ELSE
SET Intermediatel TO 1
ENDIF

SET Intermediate2 TO Verifier MULTIPLED BY 2
SET most significant bit of Interme diate2 TO 0

SET Intermediate3 TO Intermediatel BITWISE OR Intermediate2
SET Verifier TO Intermediate3 BITWISE XOR PasswordByte
ENDFOR
RETURN Verifier BITWISE XOR 0xCE4B
END FUNCTION

For more information, see section 4.

2.3.7.2 Binary Document XOR Array Initialization Method 1

The CreateXorArray_Method1 procedure specifies how a 16 -byte XOR obfuscation array is
initialized. The procedure takes the following parameter:

A Password: An ASCII string that specifies the password to be used to encrypt the data. Password
MUST NOT be longer than 15 characters.

58 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

SET PadArray TO (OxBB, OxFF, OXFF, OXBA, OxFF, OXFF, 0xB9, 0x80,
0x00, OxBE, 0x0F, 0x00, 0xBF, 0XOF, 0x00)

SET InitialCode TO (OXE1FO, Ox1DOF, 0xCC9C, 0x84CO0, 0x110C,
0x0E10, OxF1CE, 0x313E, 0x1872, 0XE139,
0xD40F, 0x84F9, 0x280C, OXA96A, 0X4EC3)

SET XorMatrix TO (OXAEFC, 0x4DD9, 0x9BB2, 0x2745, Ox4E8A, 0x9D14, 0x2A09,
0x7B61, OxF6C2, OXFDAS, OXEB6B, 0OXC6F7, 0OX9DCF, 0x2BBF,
0x4563, 0X8AC6, 0X05AD, 0xOB5A, 0x16B4, 0x2D68, 0X5ADO,
0x0375, OXO6EA, 0xODD4, 0x1BA8, 0x3750, OX6EAO, 0xDD40,
0xD849, OxA 0B3, 0x5147, OXxA28E, 0x553D, OXAATA, 0x44D5,
0x6F45, OXDE8A, OXxAD35, 0x4A4B, 0x9496, 0x390D, Ox721A,
O0xEB23, 0xC667, 0x9CEF, 0x29FF, 0x53FE, OXA7FC, Ox5FD9,
0x47D3, 0x8FA6, 0XOF6D, Ox1EDA, 0x3DB4, 0x 7B68, 0xF6DO,
0xB861, OX60E3, 0xC1C6, 0x93AD, 0x377B, OX6EF6, OXDDEC,
0x45A0, 0x8B40, 0x06A1, 0x0D42, 0x1A84, 0x3508, 0x6A10,
0xAA51, 0x4483, 0x8906, 0x022D, 0x045A, 0x08B4, 0x1168,
0x76B4, OXED68, OXCAF1, 0x85C3, 0x1BA7, 0x374E, OX6E9C,
0x3730, 0x6E60, 0XDCCO, 0XxA9A1, 0x4363, 0x86C6, 0X1DAD,
0x3331, 0x6662, 0XCCC4, 0x89A9, 0x0373, 0XO6E6, 0xODCC,
0x1021, 0x2042, 0x4084, 0x810 8, 0x1231, 0x2462, 0x48C4)

FUNCTION CreateXorArray_Method1
PARAMETERS Password
RETURNS array of 8 - bit unsigned integers

DECLARE XorKey AS 16 - bit unsigned integer
DECLARE ObfuscationArray AS array of 8 - bit unsigned integers

SET XorKey TO CreateXorKey_Method1(Password)
SET Index TO Password.Length
SET ObfuscationArray TO (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)

IF Index MODUL O2IS1

SET Temp TO most significant byte of XorKey

SET ObfuscationArray[Index] TO XorRor(PadArray[0], Temp)

DECREMENT Index

SET Temp TO least significant byte of XorKey

SET PasswordLastChar TO Password[Password. Length MINUS 1]
SET ObfuscationArray[Index] TO XorRor(PasswordLastChar, Temp)
END IF

WHILE Index IS GREATER THAN to O
DECREMENT Index
SET Temp TO most significant byte of XorKey
SET ObfuscationArray[Index] TO XorRor (Password[Index], Temp)

DECREMENT Index

SET Temp TO least significant byte of XorKey

SET ObfuscationArray[Index] TO XorRor(Password[Index], Temp)
END WHILE

SET Index TO 15

59 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

SET Padindex TO 15 MINUS Password.Length
WHILE Padindex IS greater than O

SET Temp TO most significant byte of XorKey

SET ObfuscationArray[Index] TO XorRor(PadArray[PadIndex], Temp)
DECREMENT Index

DECREMENT PadIndex

SET Temp TO least significant byte of XorKey
SET ObfuscationArray[Index] TO XorRor(PadArray[PadIndex], Temp)
DECREMENT Index
DECREMENT PadIindex
END WHILE

RETURN ObfuscationArray
END FUNCTION

FUNCTION CreateXorKey Method1
PARAMETERS Password
RETURIS 16 - bit unsigned integer

DECLARE XorKey AS 16 - bit unsigned integer
SET XorKey TO InitialCode[Password.Length MINUS 1]
SET CurrentElement TO 0x00000068

FOR EACH Char IN Password IN REVERSE ORDER
FOR 7 iterations
IF (Char BITWISE AND 0x40) IS NOT 0
SET XorKey TO XorKey BITWISE XOR XorMatrix[CurrentElement]
END IF
SET Char TO Char MULTIPLIED BY 2
DECREMENT CurrentElement
END FOR
END FOR

RETURN XorKey
END FUNCTION

FUNCTION XorRor
PARAMETERS bytel, byte2
RETURNS 8 bit unsigned integer

RETURN Ror(bytel XOR byte2)
END FUNCTION

FUNCTION Ror
PARAMETERS byte
RETURNS 8 bit unsigned integer

SET templ TO byte DIVIDED BY 2

SET temp2 TO byte MULTIPLIED BY 128
SET temp3 TO templ BITWISE OR temp2
RETURN temp3 MODULO 0x100

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

60 / 112

END FUNCTION

2.3.7.3 Binary Document XOR Data Transformation Method 1

Data transformed by Binary Document XOR Data Transformation Method 1 for encryption MUST be
as specified inthe EncryptData_Method1 procedure. This procedure takes the following
parameters:

A Password: An ASCII string that specifies the password to be used to encrypt the data.
A Data: An array of unsigned 8 -bit integers that specifies the data to be encrypted.

A XorArraylndex: An unsigned integer that specifies the initial index into the XOR obfusc ation
array to be used.

FUNCTION EncryptData_Method1
PARAMETERS Password, Data, XorArraylndex
DECLARE XorArray as array of 8 - bit unsigned integers

SET XorArray TO CreateXorArray_Method1(Password)

FOR Index FROM 0 TO Data.Length
SET Value TO Data[lndex]
SET Value TO (Value rotate left 5 bits)
SET Value TO Value BITWISE XOR XorArray[XorArraylndex]
SET DATA[Index] TO Value

INCREMENT XorArraylndex
SET XorArraylndex TO XorArraylndex MODULO 16
END FOR
END FUNCTION

Data transformed by the Binary Document XOR Data Transformation Method 1 for decryption MUST
be as specified inthe DecryptData_Method1 procedure. This procedure takes the following
parameters:

>

Password: An ASCII string that specifies the password to be used to decrypt the data.

>

Data: An array of unsigned 8 -bit integers that specifies the data to be decrypted.

>

XorArraylndex: An unsigned integer that specifies the initial index into the XOR obfuscation
array to be used.

FUNCTION Decry ptData_Method1
PARAMETERS Password, Data, XorArraylndex
DECLARE XorArray as array of 8 - bit unsigned integers

SET XorArray TO CreateXorArray_Method1(Password)

FOR Index FROM 0 to Data.Length
SET Value TO Data[Index]
SET Value TO Value BITWISE XOR XorArray[XorArraylndex]
SET Value TO (Value rotate right 5 bits)
SET Data[lndex] TO Value

61 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

INCREMENT XorArraylndex
SET XorArraylndex TO XorArraylndex MODULO 16
END FOR
END FUNCTION

2.3.7.4 Binary Document Password Verifier Derivation Method 2

The CreatePasswordVerifier_Method2 procedure specifies how a 32 -bit password verifier is
obtained from a string of single -byte characters that has been transformed from a Unicode string.
The password verifier is used in XOR obfuscation.

Two different approaches exist for preprocessing the password string to convert it from Unicode to
single -byte characters:

A Using the current language code identifier (LCID) , convert Unicode input into an ANSI string,
as specified in [MS -UCODEREF]. Truncate the resulting string to 15 single -byte characters.
A For each input Unicode character, copy the least significant byte into the single -byte string,

unless the least significant byte is 0x00. If the least significant byte is 0x00, copy the most
significant byte. Truncate the resulting string to 15 characters.

When writing files, the second approach MUST be used. When reading files, both methods MUST be
tried, and the password MUST be considered correct if either approach results in a match.

The CreatePasswordVerifier_Method?2 procedure takes the following parameter:

A Password: Astring of single -byte characters that specifies the password to be used to encrypt
the data. Password MUST NOT be longer than 15 characters. Password MUST be transformed
from Unicode to single -byte characters by using the method specified in this section.

FUNCTION CreatePasswordVerifier_Method2
PARAMETERS Password
RETURNS 32 bit unsigned integer

DECLARE Verifier as 32 - bit unsigned integer
DECLARE KeyHigh as 16 - bit unsigned integer
DECLARE KeyLow as 16 - bit unsigned integer

SET KeyHigh TO CreateXorKey_Method1(Password)
SET KeyLow TO CreatePasswordVerifier_Method1(Password)

SET most significant 16 bits of Verifier TO KeyHigh
SET least signifi cant 16 bits of Verifier TO KeyLow

RETURN Verifier
END FUNCTION

2.3.7.5 Binary Document XOR Array Initialization Method 2

The CreateXorArray Method2 procedure specifies how a 16 -byte XOR obfuscation array is
initialized. The procedure takes the following parameter:

A Password: A string of single -byte characters that specifies the password to be used to encrypt
the data. Password MUST NOT be longer than 15 characters. Password MUST be transformed

62 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-GLOS%5d.pdf
%5bMS-UCODEREF%5d.pdf

from Unicode to single -byte characters by using the method specified in section 2.3.7.4 , which
results in the password verifier matching.

FUNCTION CreateXorArray_Method2
PARAMETERS Password
RETURNS array of 8 - bit unsigned integers

DECLARE Verifier as 32 - bit unsigned in teger
DECLARE VerifierHighWord as 16 - bit unsigned integer
DECLARE KeyHigh as 8 - bit unsigned integer

DECLARE KeyLow as 8 - bit unsigned integer

SET Verifier TO CreatePasswordVerifier_Method2(Password)

SET VerifierHighWord TO 16 most signi ficant bits of Verifier
SET KeyHigh TO 8 most significant bits of VerifierHighWord

SET KeyLow TO 8 least significant bits of VerifierHighWord

SET PadArray TO (0xBB, OxFF, OxFF, OxBA, OxFF, OxFF, 0xB9, 0x80,
0x00, OxBE, 0x0 F, 0x00, OxBF, 0xOF, 0x00)
SET ObfuscationArray TO (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)

SET Index TO 0
WHILE Index IS LESS THAN Password.Length
SET ObfuscationArray[Index] TO Password[Index]
INCREMENT Index
END WHILE
WHILE Index IS LESS THAN 16
SET ObfuscationArray[Index] TO PadArray[Index MINUS Password.Length]
INCREMENT Index
END WHILE

SET Index TO 0

WHILE Index IS LESS THAN 16
SET Templ TO ObfuscationArray[Index] BITWISE XOR KeyLow
SET ObfuscationArray[Index] TO Ror(Temp1l)

INCREMENT Index

SET Templ TO ObfuscationArray[Index] BITWISE XOR KeyHigh
SET Obfusca tionArray[Index] TO Ror(Templ)

INCREMENT Index
END WHILE

RETURN ObfuscationArray
END FUNCTION

2.3.7.6 Binary Document XOR Data Transformation Method 2

Data transformed by Binary Document XOR data transformation method 2 takes the result of an

XOR operation on each byte of input in sequence and the 16 -byte XOR obfuscation array that is
initialized as specified in section 2.3.7.2 , except when the byte of input is 0x00 or the binary XOR of
the input and the obfuscation array element is 0x00, in which case the byte of input is not modified.

When the end of the XOR obfuscation array is reached, start again a t the beginning.

63 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

2.3.7.7 Password Verification

Calculate the password verifier for the applicable password verifier derivation method, as specified
in section 2.3.7.1 orsection 2.3.7.4 , depending on the document type. Compare the derived
password verifier with the password verifier stored in the file. If the two do not match, the password
is incorrect.

2.4 Document Write Protection

Document write protection is meant to discourage tampering with the file or sections of the file by
users. See section 4.1.4 for more information.

Limitations on the length of the password and the characters used by the password are
implementation -dependent. For more details about behavior variations, see [MS -DOC] and [MS -
XLS] . Unless otherwis e specified, the maximum password length MUST be 255 Unicode characters.

2.4.1 ECMA -376 Document Write Protection

ECMA-376 document write protection ECMA-376] is as specified in [ECMA-376] Part 4 Sections
2.15.1.28,2.15.1.94, 3.2.12, and 4.3.1.17. <24>

2.4.2 Binary Document Write Protection

2.4.2.1 Binary Document Write Protection Method 1

Binary documents that conform to the file format as specified in MS -DOC] MUST store the write
protection password in the file in plaintext as specified in MS -DOC] section 2.9.276.

2.4.2.2 Binary Document Write Protection Method 2

Binary documents that conform to the file format as specified in MS -XLS] MUST store the write
protection password verifier in the file, as specified in MS - XLS] section 2.2.9 and created by using
the method specified in section 2.3.7.1 . When a binary document using write protection method 2 is
write protected, the document can also be encrypted by using one of the methods specified in

section 2.3 .<25>

2.4.2.3 Binary Document Write Protection Method 3

Binary documents that conform to the file format as specified in MS -PPT] MUST store the write
protection password in the file in plaintext, as specified in MS - PPT] section 2.4.7. When a binary
document using write protection method 3 is write protected, it SHOULD NOT <26> also be
encrypted by using one of the methods specified in section 2.3.

If the user has not supplied an encryption password and the document is encrypted, the default
encryption choice using the techniques specified in section 2.3 MUST be the following password:
"\x2f\x30 \x31 \x48 \x61 \ x6e \ x6e \ x65 \ x73 \x20 \ x52 \ x75 \x65 \x73 \ x63 \ x68 \ x65 \ x72 \ x2f \ x30 \ x31".

2.4.2.4 SO Write Protection Method

Cases where binary documents use the following hashing algorithm, intended to be compatible with
ISO/IEC 29500 (for more information, see [ISO/IEC29500 -1:2011]), are specified in MS -XLSB].
The ISO password hashing algorithm takes the following parameters:

A Password: An array of Unicode characters specifying the write protection password. The
password MUST be am inimum of 1 and a maximum of 255 Unicode characters.

64 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-XLS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493
%5bMS-DOC%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-PPT%5d.pdf
%5bMS-PPT%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=252374
%5bMS-XLSB%5d.pdf

AlgorithmName: A Unicode string specifying the name of the cryptographic hash algorithm used to
compute the password hash value. The values in the following table are reserved. (Values that are
not defin ed MAY <27> be used, and a compliant implementation is not required to support all

defined values. The string MUST be at least 1 character. See section 4 for additional information.)
Value Hash algorithm
SHA-1 MUST conform to the details as specified in RFC4634] .
SHA-256 MUST conform to the details as specified in RFC4634] .
SHA-384 MUST conform to the details as specified in RFC4634] .
SHA-512 MUST conform to the details as specified in RFC4634] .
MD5 MUST conform to MD5.
MD4 MUST conform to the details as specified in RFC1320] .
MD2 MUST conform to the details as specified in RFC1319] .
RIPEMD-128 MUST conform to the details as specified in ISO/IEC 10118] .
RIPEMD-160 MUST conform to the details as specified in ISO/IEC 10118] .
WHIRLPOOL MUST conform to the details as specified in ISO/IEC 10118] .

A Salt: Anarray of by tes that specifies the salt value used during password hash generation. When
computing hashes for new passwords, this MUST be generated using an arbitrary pseudorandom
function. When verifying a password, the salt value retrieved from the document MUST be used.
The salt MUST NOT be larger than 65,536 bytes.

A SpinCount: A 32 -bit unsigned integer that specifies the number of times to iterate on a hash of
a password. It MUST NOT be greater than 10,000,000.

Let H() be an implementation of the hashing algorithm s pecified by AlgorithmName , iterator be an
unsigned 32 -bitinteger, H , be the hash dataofthen ™ iteration, and a plus sign (+) represent
concatenation. The initial password hash is generated as follows.

A Hy = H(salt + password)
The hash is then iterated using the following approach.
A H, =H(H ., +iterator)

where iterator is initially set to O and is incremented monotonically on each iteration until
SpinCount iterations have been performed. The value of iterator on the lastiterat ion MUST be one
less than SpinCount . The final hashisthen H fna = H spincount -1-

2.5 Binary Document Digital Signatures

This section specifies the process used to create and store digital signatures within Office binary

documents, and it specifies XML Advanced Electronic Signatures XAdES] support for all documents
using xmldsig digital signatures. There are two digital signature formats. The first is referred to as a
CryptoAPI digital signature, and the second is referred t 0 as an xmldsig digital signature.

The process used by ECMA -376 documents [ECMA-376] for xmldsig digital signatures is very similar
to the process used by xmldsig digital signatures when applied to Office binary documents, as

65 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=90486
http://go.microsoft.com/fwlink/?LinkId=90486
http://go.microsoft.com/fwlink/?LinkId=90486
http://go.microsoft.com/fwlink/?LinkId=90486
http://go.microsoft.com/fwlink/?LinkId=90274
http://go.microsoft.com/fwlink/?LinkId=128903
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=113493

specified in [ECMA-376] Part 2 Section 12. Both document types use an XML signature format as

specified in [XMLDSig] . For details about a schema reference, see ECMA -376] Part 2 Section
12.2.4.

2.5.1 CryptoAPI Digital Signature Structures and Streams

2.5.1.1 TimeEncoding Structure

The TimeEncoding structure specifies a date and time in Coordinated Universal Time (UTC)
with the most significant 32 bits and the least significant 32 bits of the structure swapped. To be
processed as avalid UTC time, HighDateTime and LowDateTime MUST be assigned to a
FILETIME structure as specified in MS -DTYP]. Because of the reverse ordering, the
HighDateTime field MUST be assigned to the dwHighDateTime field of the FILETIME structure,
and the LowDateTime field MUST be assigned to the dwLowDateTime field of the FILETIME
structur e. After the HighDateTime and LowDateTime fields are correctly assigned to a FILETIME
structure, the UTC time can be obtained.

HighDateTime

LowDateTime
HighDateTime (4 bytes): An unsigned integer specifying the high order 32 bits of a UTCTime .
LowDateTime (4 bytes): An unsigned integer specifying the low order 32 bits of a UTCTime .

2.5.1.2 CryptoAPI Digital Signature Certificatelnfo Structure

The Certificatelnfo structure has the format that is shown in the following diagram.

CertificatelnfoSize

SignerLength

IssuerLength

ExpireTime

SignTime

AlgIDHash

66 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=130861
http://go.microsoft.com/fwlink/?LinkId=113493
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf

SignatureSize

EncodedCertificateSize

Version

SerialNumberSize

IssuerBlobSize

Reserved

SignerName (variable)

IssuerName (variable)

Signature (variable)

EncodedCertificate (variable)

SerialNumber (variable)

IssuerBlob (variable)

CertificatelnfoSize (4 bytes): An unsigned integer specifying the number of bytes used by the
remainder of this structure, not includin g CertificateInfoSize
SignerLength (4 bytes): An unsigned integer specifying the number of characters needed to

store the SignerName field, not including the terminating null character.

IssuerLength (4 bytes): An unsigned integer specifying the number of characters needed to
store the IssuerName field, not including the terminating null character.

ExpireTime (8 bytes): A TimeEncoding structure (section 2.5.1.1) specifying the expiration
time of this sign ature.

67 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

SignTime (8 bytes): A TimeEncoding structure specifying the time this signature was created.

AlgIDHash (4 bytes): A signed integer specifying the algorithm identifier. It MUST be
0x00008003 (MD5).

SignatureSize (4 bytes): An unsigned integer specify ing the number of bytes used by the
Signature field.

EncodedCertificateSize (4 bytes): An unsigned integer specifying the number of bytes used
by the EncodedCertificate field.

Version (4 bytes): A value that MUST be 0x00000000.

SerialNumberSize (4 bytes): An unsigned integer specifying the number of bytes used by the
SerialNumber field.

IssuerBlobSize (4 bytes): An unsigned integer specifying the number of bytes used by the
IssuerBlob field.

Reserved (4 bytes): A value that MUST be 0x00000000.
SignerName (v ariable): A null -terminated Unicode string specifying the name of the signer.
IssuerName (variable): A null -terminated Unicode string specifying the name of the issuer.

Signature (variable): A binary representation of the signature, generated as specified in
RFC3280] , except stored in little -endian form.

EncodedCertificate (variable): An encoded representation of the certificate (1). MUST contain
the ASN.1 [ITUX680 -1994] DER encoding of an X.509 certificate (1). For more details, see
REC3280] .

SerialNumber (variable): An array of bytes sp ecifying the serial number of the certificate (1)

as specified in [REC3280] , with the least significant byte first. Any leading 0x00 bytes MUST
be truncated.

IssuerBlob (variable): An ASN.1 struc ture as specified in IETF RFC3280] section 4.1.2.4.

2.5.1.3 CryptoAPI Digital Signature Structure

A CryptoAPI digital signature structure MUST contain exactly one IntermediateCertificatesStore
and MUST contain at least one CryptoAPI Digital Signature Certificatelnfo structure (section
25.1.2).

1 2 3

CertificateSize

IntermediateCertificatesStore (variable)

Reserved

68 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=120478
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90414

CertificateInfoArray (variable)

EndMarker

CertificateSize (4 bytes): An unsigned integer specifying the number of bytes in the
IntermediateCertificatesStore field.

IntermediateCertificatesStore (variable): A binary representation of the certificates in the
certificate chains of the certificates used to sign the document, excluding the self -signed root
CA certificates and end -entity certificates. This store is generated as specified in MS -
OSHARED] section 2.3.9.1.

Reserved (4 bytes): A value that MUST be 0x00000000.

CertificatelnfoArray (variable): An array that MUST contain a single Certificatelnfo

structure for every signature included in this stream (1).

EndMarker (4 bytes) : A value that MUST be 0x00000000.

2514 \ _signatures Stream

A binary document containing a CryptoAPI digital signature MUST have a stream (1) named
"_signatures" in the root storage. The contents of the \ _signatures stream (1) MUST contain
exactly one CryptoAPI Digital Signature structure (section 2.5.1.3).

2.5.1.5 CryptoAPI Digital Signature Generation

The hash used to generate a document signature is created by recursively traversing the OLE
compound file streams (1) and storages. Certain streams (1) and storages MUST NOT be used, as
specified later in this section. A document MAY have more than one signature, each of which MUST

be generated by using the GenerateSignature function. Each individual certificate (1) MUST be
stored inthe CertificatelnfoArray of the CryptoAPI Digital Signature structure.

Let H() be a hashing function, which MUST be MD5 , and a plus sign (+) represent concatenation.

Let HashObject be an object that can be initialized, that can append data in blocks into the object,
and that can finalize to extract the resultant hash value H final -

Let CIsID be the GUID identifier for an OLE compound file storage as specified in MS -CFB].

Let TimeStamp bea FILETIME structure as spe cified in [MS -DTYP], containing the current system
time, expressed in Coordinated Universal Time (UTC). TimeStamp MUST be stored in the CryptoAPI
Digital Signature Structure SignTime field, as specified in section 2513 .

Let ExcludedStorages be defined as follows:
A 0x06DataSpaces

A 0x05Bagaaqy23kudbhchAag5u2chNd

Let ExcludedStreams be defined as follows:

A _signatures

69 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-OSHARED%5d.pdf
%5bMS-OSHARED%5d.pdf
%5bMS-CFB%5d.pdf
%5bMS-DTYP%5d.pdf

A 0x09DRMContent

FUNCTION GenerateSignature
PARAMETERS Storage, Certificate
RETURNS Signature

CALL HashObject.Initialize
CALL GenerateSignatureHash(Storage, HashObject, IsFiltered, AppFilter)
SET Hdata TO HashObiject.Finalize
SET Hfinal TO H(Hdata + TimeStamp)
SET Signature TO RFC3447(Hfinal, Cert ificate)
RETURN Signature
END FUNCTION

Inthe GenerateSignatureHash function, IsFiltered MUST be true if the document conforms to
the details as specified in MS -XLS] and the stream (1) name is "Workbook" or if the document
conforms to the details as specified in MS -PPT] and the stream (1) name is "Current User". It MUST
be false for all other document types and streams (1).

For documents that conform to the details as specified in [MS -XLS], let AppFilter be defined as the
process specified in [MS -XLS] section 2.1.7.15, which appends data to HashObject , excluding a
portion of the stream (1) from being used in th e hashing operation.

For documents that conform to the details as specified in [MS -PPT], let AppFilter be defined as a
process that returns without appending data to HashObject . The result is that the name of the
CurrentUser stream (1) MUST be appended to the HashObject , butthe data contained within the
CurrentUser stream (1) MUST NOT be appended to the HashObject

When stream (1) or storage names are appended to a HashObject , the terminating Unicode null
character MUST NOT be included.

Let SORT be a stri ng sorting method that is case sensitive and ascending and that skips any
nonprintable characters, such that if two streams (1) named "Data" and
"Ox05DocumentSummarylnformation” are input, the stream (1) named "Data" is ordered first.

FUNCTION GenerateSign atureHash
PARAMETERS Storage, HashObject, IsFiltered, AppFilter
RETURNS VOID

DECLARE StorageNameArray as (empty array of Unicode strings)
DECLARE StreamNameArray as (empty array of Unicode strings)

SET CIsID TO Storage.GUID
CALL HashObject.AppendData(ClIsID)
FOR EACH Child IN Storage.Children
IF Child IS a storage AND Child.Name NOT IN ExcludedStorages
APPEND Child.Name to StorageNameArray
END IF
IF Child IS a stream AND Child.Name N OT IN ExcludedStreams
APPEND Child.Name to StreamNameArray
END IF
END FOR

SORT StorageNameArray SORT StreamNameArray

FOR EACH StreamName IN StreamNameArray

70 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-XLS%5d.pdf
%5bMS-PPT%5d.pdf
%5bMS-XLS%5d.pdf

CALL HashObject.AppendData(StreamName)

SET ChildStream TO Storage.Children[StreamName]
IF IsFiltered IS true
CALL AppFilter(ChildStream, HashObject)
ELSE
CALL HashObject.AppendData(ChildStream.Data)
ENDIF
ENDFOR

FOR EACH StorageName IN StorageNameArray
CALL HashObject.AppendData(StorageName)

SET ChildStorage TO Storage.Children[StorageName]

CALL GenerateSignatureHash(ChildStorage, HashObject,
| sFiltered, AppFilter)

END FOR

END FUNCTION

When signing H ., the certificate (1) MUST be an RSA certificate (1) as specified in RFC3447] , and
the signing operation MUST be performed as s pecified in [REC3447] section 9.2.

If a document is protected as specified in section 2.2, the hash MUST be created by first appending

the un encrypted form of the storage that is decrypted from the 0x09DRMContent stream (1),
followed by the entire original encrypted file storage with the 0x09DRMContent stream (1)

excluded as noted previously.

2.5.2 Xmldsig Digital Signature Elements
A binary document digital signature is specified as containing the elements that are specified in the

following subsections. If not explicitly stated in each subsection, the content of an element MUST be
generated as specified in XMLDSIqg] .

2.5.2.1 Signedinfo Element

The Signedinfo element MUST contain the following elements:

A CanonicalizationMethod , Where the algorithm MUST be as specified in Can -XML-1.0] .
A Reference ,wherethe URI attribute MUST be "#idPackageObject", and DigestMethod is

provided by the application. <28>

A Reference , where the URI attribute MUST be "#idOfficeObject", and DigestMethod is provided
by the applica tion. <29>

2.5.2.2 SignatureValue Element
The SignatureValue element contains the value of the signature, as specified in XMLDSIq] .
2.5.2.3 Keylnfo Element

The KeyInfo element contains the key information, as specified in XMLDSiq] .

71/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=90422
http://go.microsoft.com/fwlink/?LinkId=90422
http://go.microsoft.com/fwlink/?LinkId=130861
http://go.microsoft.com/fwlink/?LinkId=120197
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=130861
http://go.microsoft.com/fwlink/?LinkId=130861

2.5.2.4 idPackageObject Object Element
The idPackageObject element contains the following:

A A Manifest element as specified in XMLDSig] , which contains Reference elements
corresponding to each stream (1) that is signed. Except for streams (1) and storages enumerated
later in this section, all streams (1) and storages MUST be included in the Manifest element.
DigestMethod is provided by the application. <30>

A A SignatureProperties element containinga SignatureProperty element with a time stamp,
as specified in [ECMA-376] Part 2 Section 12.2.4.20.

When constructing the Manifest elemen t, the following storages and any storages or streams (1)
contained within listed storages MUST be excluded:

A 0x05Bagaaqy23kudbhchAaqg5u2chNd

A Ox06DataSpaces

A Xmlsignatures

A MsoDataStore

The following streams (1) MUST also be excluded:
A 0x09DRMContent

A _signature s

A 0x05Summarylinformation

A 0x05DocumentSummarylnformation

If the document conforms to the details as specified in MS - XLS], and the name of the stream (1) is
Workbook, the stream (1) MUST be filtered as specified in MS -XLS] section 2.1.7.21.

If the document conforms to the details as specified in MS - PPT], the hash of the CurrentUser
stream (1) MUST be calculated when verifying the signature as if the stream (1) were empty , which

would be the result of hashing 0 bytes.

2.5.2.5 idOfficeObject Object Element
The idOfficeObject element contains the following:

A A SignatureProperties element containinga SignatureProperty element, which MUST contain
a SignaturelnfoV1 element that specifies the details of a digital signature in a document. The
following XML Schema specifies the contents of the SignatureProperty element:

<?xml version="1.0" encoding="utf - 8"?>
<xsd:schema targetNamespace="http://schemas.microsoft.com/off ice/2006/digsig"
elementFormDefault="qualified" xmIns="http://schemas.microsoft.com/office/2006/digsig"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:simpleType name="ST_Positivelnteger">
<xsd:restriction base="xsd:int">
<xsd:minExclusive value="0" />
<Ixsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="ST_SignatureComments">

72] 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=130861
http://go.microsoft.com/fwlink/?LinkId=113493
%5bMS-XLS%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-PPT%5d.pdf

<xsd:restriction base="xsd:string">
<xsd:maxLength value="255" />
<Ixsd:restriction>
<I/xsd:simpleType>
<xsd:simpleType name="ST_Signatu reProviderUrl">
<xsd:restriction base="xsd:string">
<xsd:maxLength value="2083" />
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="ST_SignatureText">
<xsd:restriction base="xsd:string">
<xsd:maxLength value="100" />
</xsd:restriction>
<I/xsd:simpleType>
<xsd:simpleType name="ST_SignatureType">
<xsd:restriction base="xsd:int">
<xsd:enumeration value="1"></xsd:enumeration>
<xsd:enumeration value="2"></xsd:enumeration>
<Ixsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="ST_Version">
<xsd:restriction base="xsd:string">
<xsd:maxLength value="64" />
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="ST_UniqueldentifierWithBraces">
<xsd:restriction base="x sd:string">
<xsd:pattern value=" \{[0 -9a-fA-F){8 \-[0-9a-fA-F){4} \-[0-9a-fA-F){4} \-[0-9a-fA-
FK4} \-[0-9a-fA-FK12} \}|"/>
<Ixsd:restriction>
<Ixsd:simpleType>
<xsd:group hame="EG_RequiredChildren">
<xsd:sequence>
<xsd:element name="SetupID" type="ST_UniqueldentifierWithBraces"></xsd:element>
<xsd:element name="SignatureText" type="ST_SignatureText"></xsd:element>
<xsd:element name="Signaturelmage" type="xsd:base64Binary"></xsd:element>
<xsd:element name="SignatureComments" type="ST_SignatureComments"></xsd:element>
<xsd:element name="WindowsVersion" type="ST_Version"></xsd:element>
<xsd:element name="0OfficeVersion" type="ST_Version"></xsd:element>
<xsd:element name="ApplicationVers ion" type="ST_Version"></xsd:element>
<xsd:element name="Monitors" type="ST_Positivelnteger"></xsd:element>
<xsd:element name="HorizontalResolution"
type="ST_Positivelnteger"></xsd:element>
<xsd:element name="VerticalResolution" type="ST_ Positivelnteger"></xsd:element>
<xsd:element name="ColorDepth" type="ST_Positivelnteger"></xsd:element>
<xsd:element name="SignatureProviderld"
type="ST_UniqueldentifierWithBraces"></xsd:element>
<xsd:element name="SignatureProviderUrl"
t ype="ST_SignatureProviderUrl"></xsd:element>
<xsd:element name="SignatureProviderDetails" type="xsd:int"></xsd:element>
<xsd:element name="SignatureType" type="ST_SignatureType"></xsd:element>
</xsd:sequence>
</xsd:group>
<xsd:group name="EG_OptionalChildren">
<xsd:sequence>
<xsd:element name="DelegateSuggestedSigner" type="xsd:string"></xsd:element>
<xsd:element name="DelegateSuggestedSigner2" type="xsd:string"></xsd:element>
<xsd:element name="Delegat eSuggestedSignerEmail"
type="xsd:string"></xsd:element>

73/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

<xsd:element name="ManifestHashAlgorithm" type="xsd:anyURI"
minOccurs="0"></xsd:element>
<I/xsd:sequence>
</xsd:group>
<xsd:group name="EG_OptionalChildrenV2">
<xsd:sequence>
<xsd:element name="Address1" type="xsd:string"></xsd:element>
<xsd:element name="Address2" type="xsd:string"></xsd:element>
</xsd:sequence>
</xsd:group>
<xsd:complexType name="CT_SignaturelnfoV1">
<xsd:sequence>
<xsd:group ref="EG_Req uiredChildren" />
<xsd:group ref="EG_OptionalChildren" minOccurs="0" />
<I/xsd:sequence>
</xsd:complexType>
<xsd:complexType name="CT_SignaturelnfoV2">
<xsd:sequence> <xsd:group ref="EG_OptionalChildrenV2" minOccurs="0" />
</xsd:s equence>
</xsd:complexType>
<xsd:element name="SignaturelnfoV1" type="CT_SignaturelnfoV1"></xsd:element>
<xsd:element name="SignaturelnfoV2" type="CT_SignaturelnfoV2"></xsd:element>
</xsd:schema>

The child elements of the SignaturelnfoV1 element are further specified as follows:
ApplicationVersion: The version of the application that created the digital signature.

ColorDepth: The color depth of the primary monitor of the computer on which the digital signature
was created.

HorizontalResolution: The horizontal resolution of the primary monitor of the computer on which
the digital signature was created.

ManifestHashAlgorithm: An optional element containing a URI that identifies the particular hash
algorithm for the signature. The value of this element MUST be ignored.

Monitors: The count of monitors on the computer where the digital signature was created.
OfficeVersion: The version of the application suite that created the digital signature.

SetuplD: A GUID that can be cross -referenced with the identifier of the signature line stored in the
document content.

SignatureComments: The comments on the digital signature.
Signaturelmage: An image for the digital signature.
SignatureProviderDetails: The details of the signature provide r. The value MUST be an integer
computed from a bitmask of the flags that are described in the following table.
Value Description
0x00000000 Specifies that there are no restrictions on the provider's usage.
0x00000001 Specifies that the provider MUST only be used for the user interface (Ul).

74 | 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

Value Description

0x00000002 Specifies that the provider MUST only be used for invisible signatures.

0x00000004 Specifies that the provider MUST only be used for visible signatures.

0x00000008 Specifies that the application Ul MUST be used for the provider.

0x00000010 Specifies that the application stamp Ul MUST be used for the provider.
SignatureProviderld: The class identifier of the signature provider. <31>

SignatureProvi derUrl: The URL of the software used to generate the digital signature.
SignatureText: The text of actual signature in the digital signature.

SignatureType: The type of the digital signature. Its value MUST be one of those in the following
table.

Value Des cription
1 The digital signature MUST NOT be printed.
2 The digital signature MUST be printed.

If set to 2, there MUST be two additional objects in the signature with the following identifier values:

A idvalidSigLnimg: The image of a valid signature.
A idinvalidSigLnimg: The image of an invalid signature.
VerticalResolution: The vertical resolution of the primary monitor of the computer on which the

digital signature was created.

WindowsVersion: The version of the operating system on which the digital si gnature was created.
DelegateSuggestedSigner: The name of a person to whom the signature has been delegated.
DelegateSuggestedSigner2: The title of a person to whom the signature has been delegated.
DelegateSuggestedSignerEmail: The email address of a person to whom the signature has been
delegated.

The child elements of the SignaturelnfoV2 element are specified as follows:

Addressl: The location at which the signature was created.

Address2: The location at which the signature wa S created.
The optional SignaturelnfoV2 element is used to provide additional information to the
SignatureProductionPlace element, which is specified in XAdES] section 7.2.7.

2.5.2.6 XAdES Elements

XML Advanced Electronic Signatures XAdES] extensions to xmldsig signatures MAY <32> be present
in either binary or ECMA -376 documents [ECMA-376] when using xmldsig signatures. XAdES -EPES

75/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=113493

through XAdES -X-L extensions are specified within a signature. Unless otherwise specified, any
optional elements as specified in XAdES] are ignored.

The Object element containing the information as specified in XAdES] has a number of optional
elements, and many of the elem ents have more than one method specified. A document compliant

with this file format uses the following options:

A The SignedSignatureProperties element MUST containa SigningCertificate property as
specified in [XAdES] section 7.2.2.

A SigningTime element MUST be present as specified in XAdES] section 7.2.1.

> >

A SignaturePolicyldentifier element MUST be present as specified in XAdES] section 7.2.3.

>

If the information as specified in XAdES] contains a time stamp as specified by the requirements
for XAdES -T, the time stamp information MUST be specified as an EncapsulatedTimeStamp
element containing DER encoded ASN.1. data.

A If the information as specified in XAdES] contains references to validation data, th e certificates
used in the certificate chain, except for the signing certificate (1), MUST be contained within the
CompleteCertificateRefs element as specified in XAdES] section 7.4.1. In addit ion, for the
signature to be considered a well -formed XAdES -C signature, a CompleteRevocationRefs
element MUST be present, as specified in XAdES] section 7.4.2.

A If the information as specified in XAdES] contains time stamps on references to validation data,
the SigAndRefsTimestamp element as specified in XAdES] section 7.5.1 and [XAdES] section
7.5.1.1 MUST be used. The SigAndRefsTimestamp element MUST specify the time stamp
information as an EncapsulatedTimeStamp element containi ng DER encoded ASN.1. data.

A If the information as specified in XAdES] contains properties for data validation values, the
CertificateValues and RevocationValues elements MUST be constructed as specified in
XAdES] section 7.6.1 and [XAdES] section 7.6.2. Except for the signing certificate (1), all
certificates used in the v alidation chain MUST be entered into the CertificateValues element.

There MUST be a Reference element specifying the digest of the SignedProperties element, as
specified in [XAdES] , section 6.2. 1. A Reference element is placed in one of two parent elements,

as specified in [XMLDSiqg] :
A The Signedinfo element of the top -level Signature XML.
A A Manifest element contained within an Object element.

A document compliant with this file format SHOULD <33> place the Reference element specifying
the digest of the SignedProperties element withinthe Signedinfo element. Ifthe Reference
element is instead placed in a Manifest element, the containing Object element MUST have an id
attribute set to "idXAdESReferenceObiject".

2.5.3 _xmlsignatures Storage

Digital signatures MUST be stored as streams (1) contained in a storage named "_xmlsignatures",
based on the root of the compound document. Streams (1) containing a signature MUST be named
using a base -10 string representation of a random number. The name of the stream (1) MUST NOT

be the same as an exi sting signature contained within the storage. A single signature is stored

directly into each stream (1), as UTF -8 characters, with no leading header. The content of each
stream (1) MUST be a valid signature as specified in XMLDSig] and generated as specified in

section 2.5.2 . More than one signature can be present in the "_xmlsignatures” storage.

76 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=130861
http://go.microsoft.com/fwlink/?LinkId=130861

3 Structure Examples
This section provides examples of the following structures:
A An ECMA-376 document [ECMA-376] conformingtothe IRMDS structure.
A Office binary data file structures with corresponding hexadecimal and graphical representation.

The example for the ECMA -376 document [ECMA-376] contains the following streams (1) and
storages:

A Ox06DataSpaces storage:
Aversion stream (1) containing a DataSpaceVersioninfo structure as specified in section 31.

ADataSpaceMap stream (1) containing a DataSpaceMap structure as specified in section 3.2

ADataSpacelnfo storage:

A DRMEncryptedDataSpace stream (1) containing a DataSpaceDefinition structure as
described in section 3.3.
ATransforminfo storag e:
A 0x06Primary stream (1) containing an IRMDSTransforminfo structure as described in
section 3.4.
A EUL -ETRHA1143ZLUDD412YTI3M5CTZ stream (1) containing an
EndUserLicenseHeader structure and a certificate chain as described in section 35.

A EncryptedPackage stream (1).
A 0x05Summarylnformation stream (1).
A 0x05DocumentSummarylnformation stream (1).

Note that not all of the streams (1) and storages in the file, including the

0x05Summaryinformation stream (1) and 0x05DocumentSummarylnformation stream (1),
are specified inthe IRMDS structure, and examples are not provided for those streams (1) in this

section. OLE compound files conforming to this structure frequently contain other storages and

streams (1).

3.1 Version Stream

This section provides an example of a Version stream (1) that contains a DataSpaceVersioninfo
structure (section 2.1.5).

00000000: 3C 00 00 00 4D 00 69 00 63 00 72 00 6F 00 73 00
00000010: 6F 00 66 00 74 00 2E 00 43 00 6F 00 6E 00 74 00
00000020: 61 00 69 00 6E 00 65 00 72 00 2E 00 44 00 61 00
00000030: 74 00 61 00 53 00 70 00 61 00 63 00 65 00 73 00

00000040: 01 00 00 00 01 00 00 00O 01 00 00 00

77 1 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

Featureldentifier (variable)

ReaderVersion.vMajor ReaderVersion.vMinor
UpdaterVersion.vMajor UpdaterVersion.vMinor
WriterVersion.vMajor WriterVersion.vMinor
Featureldentifier (variable): "Microsoft.Container.DataSpaces" specifies the functionality for
which this version information applies. This string is contained in a UNICODE -LP-P4
structure (section 2.1.2); therefore, the first 4 bytes of the structure contain 0x0000003C,
which specifies the length, in bytes, of the string. The string is not null -terminated.
ReaderVersion.vMajor (2 bytes): 0x0001 specifies the major component of the reader version

of the s oftware component that created this structure.

ReaderVersion.vMinor (2 bytes): 0x0000 specifies the minor component of the reader version
of the software component that created this structure.

UpdaterVersion.vMajor (2 bytes): 0x0001 specifies the major com ponent of the updater
version of the software component that created this structure.

UpdaterVersion.vMinor (2 bytes): 0x0000 specifies the minor component of the updater
version of the software component that created this structure.

WriterVersion.vMajor (2 bytes): 0x0001 specifies the major component of the writer version
of the software component that created this structure.

WriterVersion.vMinor (2 bytes): 0x0000 specifies the minor component of the writer version
of the software component that created thi s structure.

3.2 DataSpaceMap Stream

This section provides an example of a DataSpaceMap stream (1) that contains a DataSpaceMap
structure (section 2.1.6). The DataSpaceMap structure, in turn, contains a DataSpaceMapEntry
structure (section 2.1.6.1).

00000000: 08 00 00 00 01 00 00 00 60 00 00 00 01 00 00 00
00000010: 00 00 00 00 20 00 00 00 45 00 6E 00 63 00 72 00
00000020: 79 00 70 00 74 00 65 00 64 00 50 00 61 00 63 00
00000030: 6B 00 61 00 67 00 6500 2A 00 00 00 44 00 52 00
00000040: 4D 00 45 00 6E 00 63 00 72 00 79 00 70 00 74 00
00000050: 65 00 64 00 44 00 61 00 74 00 61 00 53 00 70 00
00000060: 61 00 63 00 65 00 00 00

78 | 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

HeaderLength

EntryCount

MapEntries (variable)

HeaderLength (4 bytes): 0x00000008 specifies the number of bytes in the
structure before the first MapEntry

DataSpaceMap

EntryCount (4 bytes): 0x00000001 specifies the number of DataSpaceMapEntry items in the
MapEntries array.

MapEntries (variable): The contents of the MapEntries array. For more information, see
section 3.2.1 .

3.2.1 DataSpaceMapEntry Structure

This section provides an example of a DataSpaceMapEntry structure (section

00000000:
00000010:
00000020:
00000030:
00000040:
00000050:
00000060:

60 00 00 00 01 00 00 00
00 00 00 00 20 00 00 00 45 00 6E 00 63 00 72 00
79007000 74 00 65 00 64 00 50 00 61 00 63 00
6B 00 61 00 67 00 65 00 2A 00 00 00 44 00 52 00
4D 00 45 00 6E 00 63 00 72 00 79 00 70 00 74 00
65 00 64 00 44 0061 00 74 00 61 00 53 00 70 00
61 00 63 00 65 00 00 00

2.1.6.1).

Length

ReferenceComponentCount

ReferenceComponent.ReferenceComponentType

ReferenceComponent.ReferenceComponent

DataSpaceName

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

79/ 112

Length (4 bytes): 0x00000060 specifies the size, in bytes, of the DataSpaceMapEntry

structure.

ReferenceComponentCount (4 bytes): 0x00000001 specifies the number of
DataSpaceReferenceComponent items (section 2.1.6.2)inthe ReferenceComponents
array.

ReferenceComponent.ReferenceComponentType (4 bytes): 0x00000000 specifies that the

referenced component is a stream (1).

ReferenceComponent.Refe renceComponent (variable): "EncryptedPackage" specifies the
functionality for which this version information applies. This string is contained in a
UNICODE -LP-P4 structure (section 2.1.2); therefore, the first 4 bytes of the structure
contain 0x00000020, which specifies the length, in bytes, of the string. The string is not null -
terminated. "EncryptedPackage" matches the name of the stream (1) in the OLE compound
file that contains the protected contents.

DataSpaceName (variable): "DRMEncryptedDataSpace" specifies the functionality that this
version information applies to. This string is contained in a UNICODE -LP-P4 structure;
therefore, the first 4 bytes of the structure contain 0x0000002A, which specifie s the length, in
bytes, of the string. The string is not null -terminated; however, the structure is padded with 2
bytes to ensure that its length is a multiple of 4 bytes.

3.3 DRMEncryptedDataSpace Stream

This section provides an example of a stream (1) in the \ OxO6DataSpaces \ DataSpacelnfo
storage (section 2.2.2) that containsa DataSpaceDefinition structure (section 2.1.7).

00000000: 08 00 00 00 01 00 00 00 2A 00 00 00 44 00 52 00
00000010: 4D 00 45 00 6E 00 63 00 72 00 79 00 70 00 74 00
00000020: 65 00 64 00 54 00 72 00 61 00 63 00 73 00 66 00
00000030: 6F 00 72 00 6D 00 00 00

HeaderLength

TransformReferenceCount

TransformReferences

HeaderLength (4 bytes): 0x00000008 specifies the number of bytes in the
DataSpaceDefinition before the TransformReferences field.

TransformReferenceCount (4 bytes): 0x00000001 specifies the number of items in the
TransformReferences array.

TransformReferences (variable): "DRMEncryptedTransform" specifies the transform
associat ed with this DataSpaceDefinition structure. This string is contained in a UNICODE -
LP-P4 structure (section 2.1.2); therefore, the first 4 bytes of the structure contain
0x0000002A, which specifies the le ngth, in bytes, of the string. The string is not null -

80 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

terminated; however, the structure is padded with 2 bytes to ensure that its length is a
multiple of 4 bytes. "DRMEncryptedTransform" matches the name of the transform storage
contained inthe \ OxO6Data Spaces \ Transforminfo storage (section 2.2.3).

3.4 0x06Primary Stream

This section provides an example of a 0x06Primary stream (1) that contains an
IRMDSTransformInfo structure (section 2.2.6). Note that the first portion of this structure
consists of a TransformInfoHeader structure (section 2.1.8).

00000000: 58 00 00 00 01 00 00 00 4C 00 00 00 7B 00 43 00
00000010: 37 0033 0044 00460 0 4100430044 002D 00
00000020: 30 00 36 00 31 00 46 00 2D 00 34 00 33 00 42 00
00000030: 30 00 2D 00 38 00 42 00 36 00 34 00 2D 00 30 00
00000040: 43 00 36 00 32 00 30 00 44 00 32 00 41 00 38 00
00000050: 42 0035003000 7D 00 3E 0000 00 4 D 00 69 00
00000060: 63 00 72 00 69 00 73 00 6F 00 66 00 74 00 2E 00
00000070: 4D 00 65 00 74 00 61 00 64 00 61 00 74 00 61 00
00000080: 2E 00 44 00 52 00 4D 00 54 00 72 00 61 00 6E 00
00000090: 73 00 66 00 6F 00 72 00 6D 00 00 00 01 00 00 00

00000 0OAO: 01 00 00 00 01 00 00 00 04 00 00 00 26 2F 00 00
000000B0: 3C 3F 78 6D 6C 20 76 65 72 73 69 6F 6E 3D 22 31

TransforminfoHeader. TransformLength

TransforminfoHeader.TransformType

TransforminfoHeader.TransformID (variable)

TransforminfoHeader. TransformName (variable)

TransforminfoHeader.ReaderVersion.vMajor TransforminfoHeader.ReaderVersion.vMinor
TransforminfoHeader.UpdaterVersion.vMa jor TransforminfoHeader.UpdaterVersion.vMinor
TransforminfoHeader.WriterVersion.vMajor TransforminfoHeader.WriterVersion.vMinor

ExtensibilityHeader

XrMLLicense (variable)

81/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

TransforminfoHeader.TransformLength (4 bytes): 0x00000058 specifies the number of
bytes in this structure before TransforminfoHeader. TransformName

TransforminfoHeader.TransformType (4 bytes): 0x00000001 specifies the type of
transform to be applied.

TransforminfoHeader.TransformID (variable): "{C73DFA CD-061F -43B0 -8B64 -
0C620D2A8B50}" specifies a unique, invariant identifier associated with this transform. This
string is contained in a UNICODE -LP-P4 structure (section 2.1.2); therefore, the first 4 byt es
of the structure contain 0x0000004C, which specifies the length, in bytes, of the string. The
string is not null -terminated.

TransforminfoHeader.TransformName (variable): "Microsoft.Metadata. DRMTransform"
specifies the logical name of the transform. Thi S string is contained in a UNICODE -LP-P4
structure; therefore, the first 4 bytes of the structure contain 0Ox0000003E, which specifies the
length, in bytes, of the string. The string is not null -terminated; however, the structure is

padded with 2 bytesto e nsure that its length is a multiple of 4 bytes.

TransforminfoHeader.ReaderVersion.vMajor (2 bytes): 0x0001 specifies the major
component of the reader version of the software component that created this structure.

TransforminfoHeader.ReaderVersion.vMinor (2 bytes): 0x0000 specifies the minor
component of the reader version of the software component that created this structure.

TransforminfoHeader.UpdaterVersion.vMajor (2 bytes): 0x0001 specifies the major
component of the updater version of the software com ponent that created this structure.
TransforminfoHeader.UpdaterVersion.vMinor (2 bytes): 0x0000 specifies the minor

component of the updater version of the software component that created this structure.

TransforminfoHeader.WriterVersion.vMajor (2 bytes): 0x0001 specifies the major
component of the writer version of the software component that created this structure.

TransforminfoHeader.WriterVersion.vMinor (2 bytes): 0x0000 specifies the minor
component of the writer version of the software component that created this structure.

ExtensibilityHeader (4 bytes): 0x00000004 specifies that no further information exists in the
ExtensibilityHeader structure (section 2.2.5).

XrMLLicense (variable): An XrML license as described in MS -RMPR]. This string is contained in
a UTF-8-LP-P4 structure (section 2.1.3); therefore, the first 4 bytes of the structure contain
0x00002 F26, which specifies the length, in bytes, of the string. The string is not null -
terminated; however, the structure is padded with 2 bytes to ensure that its length is a
multiple of 4 bytes.

3.5 EUL -ETRHA1143ZLUDD412YTI3M5CTZ Stream

This section provides an example of an end -user license stream (1) (section 2.2.7), which contains
an EndUserLicenseHeader structure (section 2.2.9) followed by a certificate chain containing one
use license.

00000000: 48 00 00 0040 00 00 00 56 77 4270 41 47 34 41
00000010: 5A 4142764148 6341 6377 413641485541
00000020: 6377 4 26C 41484941 5141426A 41473841
00000030: 62 67 423041473841 6377427641433441
00000040: 59 77 4276 41 47 30 41 94 BE 00 00 3C 3F 78 6D
00000050: 6C 20 76 65 72 73 69 6F 6E 3D 22 31 2E 30 22 3F

82 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-RMPR%5d.pdf

00000060: 3E 3C 43 45 52 54 49 46 49 43 41 54 4543 48 41
00000070: 49 4E 3E 3C 43 455254 49 46 49 43 41 54 45 3E
00000080: 5041 425941484941 545142 4D 41434141

00000090: 64 67 42 6C 41484941 63 77 42704147 38 41

000000a0: 62 67 413941434941 4D 51417541 44 49 41
000000b0: 49 67 41 67 41 48 67 41 62514273 4147 3441

000000c0: 63 77 413941434941 4967 4167 41484141

000000d0: 64 51427941484141 6277 427A 41475541

000000e0: 50514169 41454D 41 6277 4275414851 41

000000 fO: 5A 514275414851 41 4C 5142 4D 41 47 6B 41
00000100: 59 77 42 6C 41 47 34 41 63 77 42 6C 4143 49 41

00000110: 50 67 41 38 41 4549 41 54 77 42 45 41 46 6B 41

00000120: 49 41 42304148 6B 41 6341426C 41443041

00000130: 49 67 42 4D 41456B 41 51774246 41453441
00000140: 5577 424641434941 4941423241475541

00000150: 63 6742 7A41476B 41 6277 427541443041

00000160: 496741 7A 41433441 4D 41416941443441

00000170: 5041 42 4A 41 46 4D 41 55 774256 41 4555 41
00000180: 52 41 42 55 41 45 6B 41 54 51 42 46

Bytes 0x00000000 through 0x000000047 specify an EndUserLicenseHeader structure (section
2.2.9). The contents of this section are illu strated in section 3.5.1 .

Byte 0x00000048 through the end of this stream (1) specify a certificate chain stored in a UTF-8-
LP-P4 structure (section 2.1.3). The contents of this section are illustrated in section 3.5.2

3.5.1 EndUserLicenseHeader Structure

This section provides an example of an EndUserLicenseHeader structure (section 2.2.9)
containing one Licenseld (section 2.2.8).

00000000: 48 00 00 00400000 00 56 77 4270 41 47 34 41
00000010: 5A 414276 4148 6341 63 77 41 36 41 485541
00000020: 63 77 42 6C 41 48 49 41 51 41 42 6A 4147 3841
00000030: 62 67 423041473841 6377427641433441
00000040: 59 77 4276 41 47 30 41

Length

ID_String.Length (variable)

ID_String.Data (variable)

Length (4 bytes): 0x00000048 specifies the size of the EndUserLicenseHeader structure.

83/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

ID_String.Length (variable): 0x00000040 specifies the size of the ASCII string that follows.
Note that ID_String.Size and ID_String.Data together forma UTF-8-LP-P4 stru cture
(section 2.1.3).

ID_String.Data (variable):
"VWBpAG4AZABVAHCACWABAHUACWBIAHIAQAB]AG8AbgBOAG8ACWBVACAAYWBVAGOA"
specifies a base64 -encoded Licenseld that has the value "Windows:user@contoso.com".

3.5.2 Certificate Chain

This section provides an example of a certificate chain contained in an end -user license stream (1)
(section 2.2.7).

00000040: 94 BE 00 00 3C 3F 78 6D

00000050: 6C 20 76 65 72 73 69 6F 6E 3D 22 31 2E 30 22 3F
00000060: 3E 3C 43455254 4946 4943 415445434841
00000070: 49 4E 3E 3C 43 455254 49 46 49 43 41 54 45 3E
00000080: 50414259 4148 4941 545142 4D 41434141
00000090: 646 7426C 41484941 637742704147 3841
000000a0: 62 67 413941434941 4D51417541444941
000000b0: 49 67 41 67 41 48 67 41 625142734147 3441
000000c0: 6377 413941434941 4967 416741484141
000000d0: 64 514279 414841 41 6277 42 7A 41475541
000000e0: 50514169 41454D 41 6277 4275414851 41
000000f0: 5A 5142 7541485141 4C51424D 4147 6B 41
00000100: 59 77 42 6C 4147 3441 6377 426C 41434941
00000110: 50 67 41 38 41 4549 41 5477 42 45 41 46 6B 41
00000120: 494142 3041486B 41 634142 6C 41443041
00000130: 4967 424D 41456B 41 5177 424641453441
00000140: 55774246 41 4349 41 4941423241 475541
00000150: 636742 7A41476B 41 62 77 427541 44 30 41
00000160: 49 67 41 7A 41433441 4D 414169 41 4434 41
00000170: 5041 42 4A 41 46 4D 41 5577 4256 41 4555 41
00000180: 52 41 42 55 41 45 6B 41 54 51 42 46

Length

Data

Length (4 bytes): 0x0000BE94 specifies the size of the ASCII string that follows. Note that
Length and Data togetherforma UTF-8-LP-P4 structure (section 2.1.3).

Data (variable): <?xml version="1.0"?><CERTIFICATECHAIN><CERTIFICATE>PABYAH
| ATQBMACAAdg B Agddifidsscawdhgpéed certificate chain.

The Data field has been transformed from the form of certificate chain, as described in MS -RMPR],
in the following way:

1. The original SOAP response contained the following certificate chain:

84 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-RMPR%5d.pdf

<CertificateChain><Certificate><XrML version="1.2" xmIns="" purpose="Content -
License"><BODY type="LI CENSE" version="3.0"><| SSUEDTI VE>¢

2. The body of the Certificate element was then base64 -encoded to yield the following:

PABYAHIATQBMACAAdgBIAHIAcwBpAG8AbgA9ACIAMQAUADIAIGAgGAHgADQBSAGAACWAIACIAIGAgGAHAAAQBYAF
AAbwBzAGUAPQAIAEMAbwBUAHQARRHQALQBMAGKAYWBIAG4AACWBIACIAPgASBAEIATWBEAFKAIABOAHKACABI
ADOAIgBMAEKAQWBFAE4AUWBFACIAIAB2AGUAcgBzAGKAbwBUADOAIgAZAC4AMAAIAD4APABIJAFMAUWBVAEU/ RA
BUAEKATQBFEé

3. The base64 -encoded string was then placed in a Certificate element, again in a
CertificateChain elem ent, and finally prefixed with "<?xml version="1.0"?>".

4. The final value of Data is thus as follows:

<?xml version="1.0"?><CERTIFICATECHAIN><CERTIFICATE>PABYAHIATQBMACAAdgBIAH
IACWBPAGS8AbgAIACIAMQAUADIAIGAGAHGADQBSAGAACWAIACIAIGAGAHAAIQBYAHAABWBZAG UAPQAIAENBU
AHQAZQBUAHQALQBMAGKAYWBIAGAACWBIACIAPGABAEIATWBEAFKAIABOAHKACABIADOAIgBMAEKAQWBFAE4AL w

BFACI Al AB2AGUAcgBzAGKkAbWBUADOAI gAzAC4AMAAI AD4AAPABJAFMAUWBVAEUAR,

3.6 EncryptionHeader Structure

This section provides an example of an EncryptionHeader structure (section 2.3.2) used by Office
Binary Document RC4 CryptoAPI Encryption (section 2.3.5) to specify the encryption properties for
an encrypted stream (1).

00001400: 04 00 00 00

00001410: 00 00 00 00 01 68 00 00 04 80 00 00 28 00 00 00
00001420: 0 10000 00 BO OA 86 02 00 00 00 00 4D 00 69 00
00001430: 63 00 72 00 6F 00 73 00 6F 00 66 00 74 00 20 00
00001440: 42 00 61 00 73 00 6500 20 00 43 00 72 00 79 00
00001450: 70 00 74 00 6F 00 67 00 72 00 61 00 70 00 68 00
00001460: 69 00 63 00 20 00 5000 72 00 6F 00 76 00 69 00
00001470: 64 0065 00 72 002000 76 00 31 00 2E 00 30 00

Flags

SizeExtra

AlgID

AlgIDHash

KeySize

ProviderType

85/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

Reservedl

Reserved2

CSPName

Flags (4 bytes): 0x00000004 specifies that the encryption algorithm uses CryptoAPI encryption.

SizeExtra (4 bytes): 0x00000000 is the value in a reserved field.

AlgID (4 bytes): 0x00006801 specifies that the encryption a Igorithm used is RC4.
AlgiDHash (4 bytes): 0x00008004 specifies that SHA -1 is the hashing algorithm that is used.
KeySize (4 bytes): 0x00000028 specifies that the key is 40 bits long.

ProviderType (4 bytes): 0x00000001 specifies that RC4 is the provider ty pe.

Reservedl (4 bytes): 0x02860ABO is the value in a reserved field.

Reserved2 (4 bytes): 0x00000000 is the value in a reserved field.

CSPName (variable): "Microsoft Base Cryptographic Provider v1.0" specifies the name of the

cryptographic provider supplying the RC4 implementation that was used to encrypt the file.

3.7 EncryptionVerifier Structure

This section provides an example of an EncryptionVerifier structure (section 2.3.3) using AES
encryption.

000018B0: 10 00 00 00 92 25 50 F6 B6 4F FE 5B D3 96 DF 5E
000018C0: E9 17 DA 3A BF 86 E1 8F 64 9D 17 DO A5 41 D9 45
000018D0: CE FD 96 0C 14 00 00 00 12 FF DC 88 A1 BD 26 23
000018E0: 59 32 27 1F 73 0B 8F 79 4E 45 DA B3 AB 08 04 F4
000018F0: OB B9 50 46 D3 91 41 84

SaltSize

Salt (variable)

EncryptedVerifier (16 bytes)

86 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

VerifierHashSize

EncryptedVerifierHash (variable)

SaltSize (4 bytes): 0x00000010 specifies the number of bytes used by the Salt field and the
number of bytes used by EncryptedVerifier field.

Salt (variable): "92 25 50 F6 B6 4F FE 5B D3 96 DF 5E E9 17 DA 3A" specifies a randomly
generated value used when generating the encryp tion key.

EncryptedVerifier (16 bytes): An encrypted form of a randomly generated, 16 -byte verifier
value, which is the randomly generated Verifier value encrypted using the algorithm chosen
by the implementation & for example, "BF 86 E1 8F 64 9D 17 DO A5 41 D9 45 CE FD 96 0C".

VerifierHashSize (4 bytes): 0x00000014 specifies the number of bytes used by the hash of the
randomly generated Verifier

EncryptedVerifierHash (variable): An array of bytes that contains the encrypted form of the
hash of the randomly ~ generated Verifier value 8 for example, "12 FF DC 88 A1 BD 26 23 59
3227 1F 73 0B 8F 79 4E 45 DA B3 AB 08 04 F4 0B B9 50 46 D3 91 41 84".

3.8 \ Encryptioninfo Stream

This section provides an example of an \ Encryptioninfo stream (1) containing detailed information
used to initialize the cryptography that is used to encrypt the \ EncryptedPackage stream (1).

00001800: 03 00 02 00 24 00 00 00 A4 00 00 00 24 00 00 00
00001810: 00 00 00 00 OE 66 00 00 04 80 00 00 80 00 00 00
00001820: 18 00 00 00 EO BC 3B 07 00 00 00 00 4D 00 69 00
00001830: 63 00 72 00 6F 00 73 00 6F 00 66 00 74 00 20 00
00001840: 45 00 6E O 068006100 6E 00 63 00 65 00 64 00
00001850: 20 00 52 00 53 00 41 00 20 00 61 00 6E 00 64 00
00001860: 20 00 41 00 45 00 53 00 20 00 43 00 72 00 79 00
00001870: 70 00 74 00 6F 00 67 00 72 00 61 00 70 00 68 00
00001880: 69 00 63 00 20 00 50 00 72 00 6F 00 76 00 69 00
00001890: 64 00 65 00 72 00 20 00 28 00 50 00 72 00 6F 00
000018A0: 74 00 6F 00 74 00 79 00 70 00 65 00 29 00 00 00
000018B0: 10 00 00 00 92 25 50 F6 B6 4F FE 5B D3 96 DF 5E
000018C0: E9 17 DA 3A BF 86 E1 8F 64 9D 17 DO A5 41 D9 45
000018D0: CE FD 96 0C 14 00 00 00 12 FF DC 88 A1 BD 26 23
000018EO0: 59 32 27 1F 73 0B 8F 79 4E 45 DA B3 AB 08 04 F4
000018F0: 0B B9 50 46 D3 91 41 84

0|1(2|3|4|(5|6(7(8|9|0|1|2(3|4|5(6|7|8(9|0(1|2|3(4|5|6(|7|8[9|0]1

EncryptionVersionlnfo.vMajor EncryptionVersioninfo.vMinor

EncryptionHeader.Flags

87 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

EncryptionHeaderSize
EncryptionHeader
EncryptionVerifier
EncryptionVersioninfo.vMajor (2 bytes): 0x0003 specifies the major version.
EncryptionVersioninfo.vMino r (2 bytes): 0x0002 specifies the minor version.
EncryptionHeader.Flags (4 bytes): 0x00000024 specifies that the CryptoAPI implementation
(0x0000004) of the ECMA -376 AES (0x00000020) algorithm ECMA-376] was used to encrypt
the file.
EncryptionHeaderSize (4 bytes): 0x000000A4 specifies the number of bytes used by the
EncryptionHeader structure (section 2.3.2).
EncryptionHeader (variable): This field consists of the following:

A Flags: 0x00000024 is a bit flag that specifies that the CryptoAPI implementation
(0x0000004) of the ECMA -376 AES (0x00000020) algorithm ECMA-376] was used to

encrypt the file.

A SizeExtra: 0x00000000 is unused.

A AlgID: 0x0000660E specifies that the file is encrypted using the AES -128 encryption
algorithm.
A AlgiDHash: 0x00008004 specifies that the hashing algorithm used is SHA -1.

A KeySize: 0x00000080 spe cifies that the key size is 128 bits.

A ProviderType: 0x00000018 specifies that AES is the provider type.
A Reservedl: 0x073BBCEQ is a reserved value.

A Reserved2: 0x00000000 is a reserved value.

A CSPName: "Microsoft Enhanced RSA and AES Cryptographic Provider (P rototype)" specifies
the name of the cryptographic provider.

Example

24 00 00 00 00 00 00 00 OE 66 00 00 04 80 00 00

80 00 00 00 18 00 00 00 EO BC 3B 07 00 00 00 00

4D 00 69 00 63 00 72 00 6F 00 73 00 6F 00 66 00

74 00 20 00 45 00 6E 00 68 00 61 00 6E O 06300
65 00 64 00 20 00 52 00 53 00 41 00 20 00 61 00

6E 00 64 00 20 00 41 00 45 00 53 00 20 00 43 00

7200 79 00 70 00 74 00 6F 00 67 00 72 00 61 00

70 00 68 00 69 00 63 00 20 00 50 00 72 00 6F 00

88 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

76 00 69 00 64 00 65 00 72 00 20 00 28 00 50 00
72 00 6F 00 74 00 6F 00 74 00 79 00 70 00 65 00

29 00 00 00
EncryptionVerifier (variable): This field consists of the following:
A SaltSize: 0x00000010 specifies the number of bytes that make up the Salt field.

A Salt: "92 25 50 F6 B6 4F FE 5B D3 96 DF 5E E9 17 DA 3A" specifies a randomly generated
value used when generating the encryption key.

A EncryptedVerifier: "BF 86 E1 8F 64 9D 17 DO A5 41 D9 45 CE FD 96 0C" specifies the
encrypted form of the verifier.

A VerifierHashSize : 0x00000014 specifies the number of bytes needed to contain the hash
of the verifier used to generate the EncryptedVerifier field.

A EncryptedVerifierHash: "12 FF DC 88 A1 BD 26 23 59 32 27 1F 73 0B 8F 79 4E 45 DA B3
AB 08 04 F4 0B B9 50 46 D3 91 41 84" specifies the encrypted hash of the veri fier used to
generate the EncryptedVerifier field.

Example

92 25 50 F6 B6 4F FE 5B D3 96 DF 5E E9 17 DA 3A
BF 86 E1 8F 64 9D 17 DO A5 41 D9 45 CE FD 96 0C
14 00 00 00 12 FF DC 88 A1 BD 26 23 59 32 27 1F
73 0B 8F 79 4E 45 DA B3 AB 08 04 F4 0B B9 50 46

D3914184
3.9 \ Encryptioninfo Stream (Third - Party Extensible Encryption)
This section provides an example of the XML structure for an Encryptioninfo field as specified in

section 2.3.4.6 .

<EncryptionData xmIns="urn:schemas - microsoft - com:office:office">
<EncryptionProvider 1d="{05F17A8A - 189E- 42CD 9B21- E8F6B730EC8A}"
Url="http://www.contoso.com/DownloadProvider/">
<EncryptionProviderData>AAAAAA==</ EncryptionProviderData>
</EncryptionProvider>
</EncryptionData>

EncryptionData xmins: "urn:schemas -microsoft -com:office:office" specifies the XML
namespace for this XML fragment.

EncryptionProvider: Specifies the code module that contains the crypto graphic functionality
used in this document with the following attributes:

Ald: "{05F17A8A -189E-42CD-9B21 -E8F6B730ECS8A}" specifies a unique identifier for the
encryption provider.

A Url: "http://www.contoso.com/DownloadProvider/" specifies the URL for the loc ation of the
EncryptionProvider code module.

89 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

EncryptionProviderData: Data for consumption by the extensible encryption module specified

in the EncryptionProvider node.
3.10 Office Binary Document RC4 Encryption

3.10.1 Encryption Header

This section provides an example of an RC4 encryption header structure (section

2.3.6.1) used by

Office Binary Document RC4 Encryption (section 2.3.6) to specify the encryption properties for an

encrypted stream (1).

00001200: 01 00 01 00 C4 DC 8569 91 13 EC 1C F1 E5 29 06
00001210: OE 49 00 B3 F3 53 BB 80 36 63 CD E3 DD F2 D1 CB
00001220:102 3 9B5A398FEAC2 43ECF44B9A 6229 1B
00001230: 1A 4C 9D CD

EncryptionVersioninfo

Salt (16 bytes)

EncryptedVerifier (16 bytes)

EncryptedVerifierHash (16 bytes)

EncryptionVersioninfo (4 bytes): A value specifying that ~ Version.vMajor

Version.vMinor is 0x0001.

is 0x0001 and

Salt (16 bytes): "C4 DC 8569 91 13 EC 1C F1 E5 29 06 OE 49 00 B3" specifies a randomly

generated value t hat is used when generating the encryption key.

EncryptedVerifier (16 bytes): "F3 53 BB 80 36 63 CD E3 DD F2 D1 CB 10 23 9B 5A" specifies
that the verifier is encrypted using a 40 -bit RC4 cipher initialized as specified in section

2.3.6.2 , with a block number of 0x00000000.

EncryptedVerifierHash (16 bytes): "39 8F EAC2 43 EC F4 4B 9A 62 29 1B 1A 4C 9D CD"

specifies an MD5 hash of the verifier used to create the EncryptedVerifier

3.11 PasswordKeyEncryptor (Agile Encryption)

00000000: 04 00 04 00 40 00 00 00 3C 3F 78 6D 6C 20 76 65
00000010: 72 73 69 6F 6E 3D 22 31 2E 30 22 20 65 6E 63 6F
00000020: 64 69 6E 67 3D 22 5554 46 2D 38 22 20 73 74 61
00000030: 6E 64 61 6C 6F 6E 65 3D 22 79 65 73 22 3F 3E 0D

field.

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

90 / 112

00000040:
00000050:
00000060:
00000070:
00000080:
00000090:
000000AO:
000000B0:

000000CO0:
000000DO0:

000000EO:
000000FO0:
00000100:
00000110:
00000120:
00000130:

00000140:

00000150:
00000160:
00000170:
00000180:
00000190:
000001AO:
000001B0:
000001CO0:
000001D0:
000001EQ:
000001FO:
00000200:
00000210:
00000220:
00000230:
00000240:
00000250:
00000260:
00000270:
00000280:
00000290:
000002A0:
000002B0:
000002CO0:

0000 02D0:

000002EO:
000002FO0:
00000300:
00000310:
00000320:
00000330:
00000340:
00000350:
00000360:
00000370:
00000380:
00000390:
000003A0:
000003B0:
000003CO0:
000003DO0:
000003EQ:

0A 3C 65 6E 63 727970 74 69 6F 6E 20 78 6D 6C
6E 733D 2268 74 7470 3A 2F 2F 73 63 68 65 6D

61 73 2E 6D 69 63 72 6F 73 6F 66 74 2E 63 6F 6D
2F 6F 66 66 69 63 65 2F 32 30 30 36 2F 65 6E
7279 70 74 69 6F 6E 22 20 78 6D 6C 6E 73 3A 70
3D 2268 74 7470 3A 2F 2F 73 63 68 65 6D 61 73

2E 6D 69 63 72 6F 73 6F 66 74 2E 63 6F 6D 2F 6F

63

66 66 69 63 65 2F 32 30 30 36 2F 6B 65 79 45 6E

63727970746F 722F 7061737377 6F 72 64
223E3C6B65794461 74612073616C 7453
69 7A 65 3D 22 31 36 22 20 62 6C 6F 63 6B 53 69
7A 65 3D 22 31 36 22 20 6B 65 79 42
2231323822206861 73685369 7A 653D 22
323022206369 7068 6572416C 67 6F 7269
74 68 6D 3D 22 41 45 53 22 20 63 69 70 68 65 72
43 68 61 69 6E 69 6E 67 3D 22 43 68 61 69 6E 69
6E 67 4D 6F 64 65 43 42 43 22 20 68 61 73 68 41
6C 67 6F 7269 74 68 6D 3D 22 53 48 41 31 22 20
73616C 74 56 61 6C 75 65 3D 22 2F 61 34 69 57
71507949 76 4532 63 55 6F 6C 4A 4D 4B 72 49

69 7473 3D

773D 3D 22 2F 3E 3C 64 61 74 61 49 6E 74 65 67

72697479 20656E63 727970746564 48 6D
61634B65793D 2275 777041454657 3168
51794432 4F 3031 6B 7A 31 6C 68 6A 65 76 4E
7730454379414130 75324F 78447967 73
66 59 3D 22 20 65 6E 63 7279 70 74 65 64 48 6D
61 63 56 61 6C 75 65 3D 22 75 66 36 48 62 4A 6A
747279 4A 4F 6A 53 46 71726B 71 6B 4E 51 59

39 4E 6A 4E 51 55 50 49 2B 78 63 6B 38 51 38 79

34 6D 6B 6F 3D 22 2F 3E 3C 6B 65 79 45 6E 63 72
797074 6F 72 73 3E 3C 6B 657945 6E 63 72 79
7074 6F 7220757269 3D 2268 74 74 70 3A 2F

2F 73 63 68 65 6D 61 73 2E 6D 69 63 72 6F 73 6F

66 74 2E 63 6F 6D 2F 6F 66 66 69 63 65 2F 32 30
30 36 2F 6B 65 79 45 6E 63 7279 70 74 6F 72 2F
7061737377 6F 7264 22 3E 3C 70 3A 65 6E 63
7279707465644B65 79207370

75 6E 74 3D 22 31 3030 3030302220 73616C
7453 69 7A 65 3D 22 31 36 22 20 62 6C 6F 63 6B
5369 7A 653D 22 31 36 22 206B 65794269 74
733D 223132382220 686173685369 7A 65
3D 22 323022206369 706865 72416C 67 6F
72 69 74 68 6D 3D 22 41 4553 22 20 63 69 70 68
6572 43 68 61 69 6E 69 6E 67 3D 22 43 68 61 69
6E 69 6E 67 4D 6F 64 65 43 42 43 22 2068 61 73
68 41 6C 67 6F 72 69 74 68 6D 3D 22 53 48 41 31
222073616C 745661 6C75653D 22707073
3642 31626D 7143 46 58 67 6F 70 73 6D 31 72
57 6E 51 3D 3D 22 20 65 6E 63 72 79 70 74 65 64

69 6E 43 6F

56 65 726966 69 6572 48 61 73 68 49 6E 70 75

743D 22 4A 59553451 3075324268 71 7TA 51
41 3544 34 4A 2F 76 6F 41 3D 3D 22 20 65 6E 63
7279707465645665 726966 6965724861
7368 56 61 6C 75 65 3D 22 65 42 32 6A 58 35 6D
76 68 42 4A 2B 39 4F 37 66 66 43 2B 36 58 32 4D
79 64 7A 32 67 6C 48 4F 58 78 30 54 39 50 6E 36
6E 4B 2B 77 3D 22 20 65 6E 63 72 79 70 74 65 64
4B 65 7956 61 6C 7565 3D 22 32 46 38 36 48
2B 78 56 33 6E 47 61 32 37 44 456C 67 7167 77

47

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

91 / 112

000003F0: 3D 3D 22 2F 3E 3C 2F 6B 65 79 45 6E 63 72 79 70
00000400: 74 6F 72 3E3C 2F 6B 65 79 456E 63 7279 70 74
00000410: 6F 72 73 3E 3C 2F 65 6E 637279 70 74 69 6F 6E
00000420: 3E

1 2 3]
0(1|/2|3|4|5|6|7|8|9|0|1|2|3|4|5|6|7|8[9(0|1]|2|3|4]|5 0|1
EncryptionVersionInfo.vMajor EncryptionVersioninfo.vMinor
Reserved
XmlEncryptionDescriptor (variable)
EncryptionVersioninfo.vMajor (2 bytes): 0x0004 specifies the major version.
EncryptionVersionInfo.vMinor (2 bytes): 0x0004 specifies the minor version.
Reserved (4 bytes): 0x00000040 is a reserved value.
XmlEncryptionDescriptor (variable): An XML block tha t specifies the encryption algorithms
used and that contains the following XML:
<?xml version="1.0" encoding="UTF - 8" standalone="yes"?>
<encryption
xmins="http://schemas.microsoft.com/office/2006/encryption"
xmins:p="http://schemas.microsoft.com/offi ce/2006/keyEncryptor/password">
<keyData
saltSize="16"
blockSize="16"
keyBits="128"
hashSize="20"
cipherAlgorithm="AES"
cipherChaining="ChainingModeCBC"
hashAlgorithm="SHA - 1"
saltValue ="/a4iWgPylvE2cUolIMKrlw=="/>
<datalntegrity
encryptedHmacKey="uwpAEFW1hQyD2001kz1lhjevNwOECyAAQu20xDygsfY="
encryptedHmacValue="uf6HbJjtryJOjSFgrkgkNQY9NjNQUPI+xck8Q8y4mko="/>
<keyEncryptors>
<keyEncryptor
uri="http://schemas.microsoft.com/office/2006/keyEncryptor/password">
<p:encryptedKey
spinCount="100000"
saltSize="16"
blockSize="16"
keyBits="128"
hashSize="20"
cipherAlgorithm="AES"
cipherChaining="ChainingModeCBC"
hashAlgorithm="SHA - 1"
92 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

saltValue="pps6B1bmqCFXgopsm1rWwnQ=="
encryptedVerifierHashinput="JYU4Q0u2BhqzQA5D4J/voA=="
encryptedVerifierHashValue="eB2jX5mvhBJ+907ffC+6X2Mydz2gIHOXx0T9Pn6nK+w="
encryptedKeyValue="2F86HG+xV3nGa27DElgqggw=="/>
</keyEncryptor>
</keyEncryptors>
</encryption>

keyData: The cryptographic attributes used to encrypt the data.

saltS ize: 16 specifies that the salt value is 16 bytes in length.

blockSize: 16 specifies that 16 bytes were used to encrypt each block of data.
keyBits: 128 specifies that the key used to encrypt the data is 128 bits in length.

hashSize: 20 specifies that the hash size is 20 bytes in length.

cipherAlgorithm: "AES" specifies that the cipher algorithm used to encrypt the data is AES.
cipherChaining: "ChainingModeCBC" specifies that the chaining mode to encrypt the data is CBC.
hashAlgorithm 1 "SHA-1" specifies that the hashing algorithm used to hash the data is SHA -1.
SaltValue: "/a4iWgPylvE2cUolJMKrlw==" specifies a randomly generated value used when
generating the encryption key.
datalntegrity: Specifies the encrypted copies of the salt and hash values used to help ensure that
the integrity of the encrypted data has not been compromised.
encryptedHmacKey : "uwpAEFW1hQyD2001kz1lhjevNwOECYAAOu20xDygsfY=" specifies the
encrypted copy of the randoml y generated value used when generating the encryption key.
encryptedHmacValue : "uféHbJjtryJOjSFarkgkNQYINjNQUPI+xck8Q8y4mko=" specifies the
encrypted copy of the hash value that is generated during the creation of the encryption key.
keyEncryptors: Specifi es the key encryptors used to encrypt the data.
keyEncryptor: "http://schemas.microsoft.com/office/2006/keyEncryptor/password” specifies that
the schema used by this encryptor is the schema specified in section 2.3.4.10 for password -based
encryptors.
p:encryptedKey: The attributes used to generate the encrypting key.
spinCount: 100000 specifies that there are 100000 iterations on the hash of the password.
saltSize: 16 specifies that the salt value is 16 b ytes long.
blockSize: 16 specifies that 16 bytes were used to encrypt each block of data.
keyBits: 128 specifies that the key is 128 bits in length.
hashSize: 20 specifies that the hash is 20 bytes in length.
cipherAlgorithm: "AES" specifies that the ciphe r used to encrypt the data is AES.
cipherChaining: "ChainingModeCBC" specifies that the chaining mode used for encrypting is CBC.
93/ 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

hashAlgorithm: "SHA - 1" specifies that the hashing algorithm used is SHA -1.

saltValue: "pps6BlbmgCFXgopsm1lrWnQ==" specifies the randomly generated value used for
encrypting the data.

encryptedVerifierHashinput: "JYU4Q0u2BhqzQA5D4J/voA==" specifies the VerifierHashlInput
attribute encoded as specified in section 2.3.4.13 .

encrypte dVerifierHashValue: "eB2jX5mvhBJ+907ffC+6X2Mydz2gIHOXx0T9Pn6nK+w=" specifies
the VerifierHashValue encoded as specified in section 2.3.4.13 .

encryptedKeyValue: "2F86HG+xV3nGa27DElgqgw=="specifies the KeyValue encoded as

specified in section 2.3.4.13 .

94 [112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

4 Security
4.1 Security Considerations for Implementers

4.1.1 Data Spaces

None.

4.1.2 Information Rights Management

It is recommended that software components that implement the Information Rights
Management (IRM) Data Space make a best effort to respect the licensing limitations applied to
the protected content in the document.

Security considerations concerning rights management are as described in MS -RMPR].
4.1.3 Encryption

41.3.1 ECMA -376 Document Encryption

ECMA-376 document encryption ECMA-376] using standard encryption does not support CBC and
does not have a provision for detecting corruption, although a block cipher (specifically, AES) is not

known to be subject to bit -flipping attacks. ECMA -376 documents using agile encryption are

required to use CBC and corruption detection, and are not subject to the issues noted for standard
encryption.

When setting algorithms for agile encryption, the SHA -2 series of hashing algorithms is preferred.
MD2, MD4, and MD5 are not recommended. Older cipher algorithms, such as DES, are also not
recommended.

Passwords are limited to 255 Unicode code points.

4.1.3.2 Office Binary Document RC4 CryptoAPI Encryption

The Office binary document RC4 CryptoAPI encryption method is not recommended and ought to be
used only when backward compatibility is required.

Passwords are limited to 255 Unicode characters.

Office binary document RC4 CryptoAPI encryption has the following known cryptographic
weaknesses:

A The key derivation algorithm described in section 2.3.5.2 is weak because of the lack of a
repeated itera tion mechanism, and the password might be subject to rapid brute -force attacks.

A Encryption begins with the first byte and does not throw away an initial range as is recommended
to overcome a known weakness in the RC4 pseudorandom number generator.

A No provi sion is made for detecting corruption within the encryption stream (1), which exposes
encrypted data to bit -flipping attacks.

A When used with small key lengths (such as 40 -bit), brute -force attacks on the key without
knowing the password are possible.

A Some streams (1) are not encrypted.

95 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-RMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113493

A Key stream (1) reuse can occur in document data streams (1), potentially with known plaintext,
implying that certain portions of encrypted data can be either directly extracted or trivially
retrieved.

A Key stream (1) reuse occ urs multiple times within the RC4 CryptoAP| Encrypted Summary
stream (1).

A Document properties might not be encrypted, which could result in information leakage.

Because of the cryptographic weaknesses of the Office binary document RC4 CryptoAPI encryption,
it is considered insecure, and therefore is not recommended when storing sensitive materials.

4.1.3.3 Office Binary Document RC4 Encryption

The Office binary document RC4 encryption method is not recommended, and ought to be used only
when backward compatibility is required.

Passwords are limited to 255 Unicode characters.

Office binary document RC4 encryption has the following known cryptographic weaknesses:

A The key derivation algorithm is not an iterated hash, as described in RFC2898] , which allows
brute -force attacks against the password to be performed rapidly.

A Encryption begins with the first byte, and does not throw away an initial range as is
recommended to overcome a known weakness in the RC4 pseudorandom number generator.

A No provision is made for detectin g corruption within the encryption stream (1), which exposes
encrypted data to bit -flipping attacks.

A While the derived encryption key is actually 128 bits, the input used to derive the key is fixed at
40 bits, and current hardware enables brute -force attac ks on the encryption key without knowing
the password in a relatively short period of time so that even if the password cannot easily be
recovered, the information could still be disclosed.

A Some streams (1) might not be encrypted.

A Depending on the applicat ion, key stream (1) reuse could occur, potentially with known plaintext,
implying that certain portions of encrypted data could be either directly extracted or easily
retrieved.

A Document properties might not be encrypted, which could result in information leakage.

Because of the cryptographic weaknesses of the Office Binary Document RC4 Encryption, it is
considered easily reversible and therefore is not recommended when storing sensitive materials.

4.1.3.4 XOR Obfuscation

XOR obfuscation is not recommended. Document data can easily be extracted. The document
password could be retrievable.

Passwords are truncated to 15 characters. It is possible for multiple passwords to map to the same
key.

96 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=119708

4.1.4 Document Write Protection

Document write protection methods 1 (section 2.4.2.1)and 3 (section 2.4.2.3) both embed the
password in plaintext into the file. Although method 3 subsequently encrypts the file, the encryption
is flawed, and the password is described in section 2.4.2.3 . In both cases, the pass word can be

extracted with little difficulty. Document write protection is not considered to be a security
mechanism, and the write protection can easily be removed by using a binary editor. Document

write protection is meant to protect against accidental modification only.

Some file formats, such as those described in [MS -DOC] and [MS -XLS], restrict password length to
15 characters. It is possible for multiple passwords to map to the same key when u sing document
write protection method 2 (section 24.2.2).

4.1.5 Binary Document Digital Signatures

Certain streams (1) and storages are not subject to signing. Tampering with these streams (1) or
storages does not invalidate the signature.

4.2 Index of Security Fields

None.

97 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

A Microsoft Office 97
A Microsoft Office 2000
A

Microsoft Office XP

p>N

Microsoft Office 2003

p>N

The 2007 Microsoft Office system

p>N

Microsoft Office 2010 suites

p>N

Microsoft Office 2013

>

Microsoft Office SharePoint Server 2007

A Microsoft SharePoint Server 2010
A Microsoft SharePoint Server 2013

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number

appears with the product version, behavior changed in that service pack or QFE. The new behavior

also applies to subsequent service packs of the product unless otherwise specified. If a p roduct
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms SHOULD or SHOULD NOT implies product beh avior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product

does not follow the prescription.

<1> Section 2.2: Applications in Office 2003, the 2007 Office system, Office 2010 and Office 2013
versions encrypt the Microsoft Office binary documents by persisting the entire document to a
temporary OLE compound file and then transforming the physical representation of the OLE

compound file as a single stream of bytes. Si milarly, ECMA -376 documents [ECMA-376] are
encrypted by adding the entire file package to a temporary file and then transforming the physical
representation of the file as a single stream of byt es.

The following streams are also stored outside the protected content to preserve interoperability with
applications that do not understand the IRMDS structure:

>

_signatures

>

0x01CompObj

>

Macros

>

_VBA_PROJECT_CUR
0x05Summarylnformation

0x05DocumentSummaryin formation

> > >

MsoDataStore

98 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493

Applications in Office 2003, the 2007 Office system, Office 2010 and Office 2013 also create the

streams and storages necessary to create a default document within the OLE compound file. This

default document contains a short message to the user indicating that the actual document contents
are encrypted. This allows versions of Microsoft Office that do not understand the IRMDS structure

to open the default document instead of rejecting the file.

<2>Section 2.2.1 : Office 2003, the 2007 Office system, Office 2010 and Office 2013 offer the user
the option of creating a transformed MHTML representation of the document when applying a rights
management policy to a document. This option is on by default in Office Exce | 2003 and off by
default in all other applications in Office 2003, and it is off by default in all applications in the 2007

Office system, Office 2010 and Office 2013. If the transformed MHTML representation is created, the
0x09LZXDRMDataSpace data space definition is applied to it (which includes both LZX
compression and encryption).

<3> Section 2.2.2: Office 2003, the 2007 Office system, Office 2010 and Office 2013 offer the user
the option of creating a transformed MHTML represent ation of the document when applying a rights
management policy to a document. This option is on by default in Office Excel 2003 and off by

default in all other Office 2003 applications, and it is off by default in all applications in the 2007

Office system and newer versions. If the transformed MHTML representation is created, the
0x09LZXDRMDataSpace data space definition is applied to it (which includes both LZX

compression and encryption).

<4> Section 2.2.3: Office 2003, the 2007 O ffice system, Office 2010 and Office 2013 offer the user
the option of creating a transformed MHTML representation of the document when applying a rights
management policy to a document. This option is on by default in Office Excel 2003 and off by

default in all other Office 2003 applications, and it is off by default in all applications in the 2007

Office system, Office 2010 and Office 2013. If the transformed MHTML representation is created, the
0x09LZXDRMDataSpace data space definition is applied to it (which includes both LZX
compression and encryption).

<5> Section 2.2.6: Office SharePoint Server 2007 uses the AUTHENTICATEDDATA element with
the name setto "ListGUID" as the application -specific GUID that identifies the storage location for
the document. This is stored encrypted within the element as follows.

<AUTHENTICATEDDATA id="Encrypted - Rights - Data">

Once decrypted, the XrML document contains an element named AUTHENTICATEDDATA
containing an attribute named id with a value of "APPSPECIFIC" and an attribute named name with
a value of ListGUID with the contents of the ListGUID.

<6> Section 2.2.11: Office 2003, the 2007 Office system, Office 2010 and Office 2013 offer the

user the option of creating a transformed MHTML representation of the document when applying a

rights management policy to a document. This option is on by default in Office Excel 2003 and off by
default in all other Office 2003 applications, and it is off by default in all applications in the 2007

Office system, Office 2010 and Office 2013. If the transformed MHTML representation is created, the
0x09LZXDRMDataSpace data space definition is applied to it (which includes both LZX

compression and encryption).

<7> Section 2.3.1: In the 2007 Office system, the 2007 Office system, Office 2010 and Office 2013,

the default encryption algorithm for ECM A-376 standard encryption documents ECMA-376] is 128 -
bit AES, and both 192 -bit and 256 -bit AES are also supported. It is possible to use alternate

encryption algorithms, and for best results, a block cipher supporting ECB mode is recommended.
Additionally, the algorithm ought to convert one block of plaintext to one block of encrypted data,

where both blocks are the same size. This information is for guidance only, and it is possible that if

99 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493

alt ernate algorithms are used, the applications in the 2007 Office system, Office 2010 and Office
2013 might not open the document properly or that information leakage could occur.

<8> Section 2.3.2: Several of the cryptographic techniq ues specified in this document use the
Cryptographic Application Programming Interface (CAPI) or CryptoAPI when implemented by
Microsoft Office on the Windows operating systems. While an implementation is not required to use
CryptoAPI, if an implementation is required to interoperate with the 2007 Office system, the 2007
Office system, Office 2010 and Office 2013 on the Windows XP, Windows Vista, Windows 7,

Windows 8 and Windows 8.1 operating systems, the following are required:

Cryptographic service provid er (CSP): Alibrary containing implementations of cryptographic
algorithms. Several CSPs that support the algorithms required in this specification are present by
default on Windows XP, Windows Vista, Windows 7, Windows 8 and Windows 8.1 operating systems.
Alternate CSPs can be used, if the CSP is installed on all systems consuming or producing a
document.

AlgID: An integer representing an encryption algorithm in the CryptoAPI. Required AlgID values
are specified in the remainder of this document. Alternate AlgID values can be used if the CSP
supporting the alternate AlgID s installed on all systems consuming or producing a document.

AlgiDHash: An integer representing a hashing algorithm in the CryptoAPI. Required AlgIDHash
values are specified in the remai nder of this document. For encryption operations, the hashing
algorithm is fixed and cannot vary from the algorithms specified.

The following cryptographic providers are recommended to facilitate interoperability across all
supported versions of Windows:

A Microsoft Base Cryptographic Provider v1.0

A Microsoft Enhanced Cryptographic Provider v1.0

A Microsoft Enhanced RSA and AES Cryptographic Provider

Note that the following providers are equivalent:

A Microsoft Enhanced RSA and AES Cryptographic Provider (Prototyp e)
A Microsoft Enhanced RSA and AES Cryptographic Provider

The provider listed as "Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)” is
found on Windows XP. An implementation needs to treat these providers as equivalent when
attemptingtore solve a CSP on a Windows system.

When using AES encryption for ECMA -376 documents [ECMA -376] , the Microsoft Enhanced RSA and
AES Cryptographic Provider is written into the header, unless AES en cryption facilities are obtained
from an alternate cryptographic provider as noted in the next paragraph. When using CryptoAP| RC4
encryption, be aware that the Microsoft Base Cryptographic Provider v1.0 is limited to 56 - bit key
lengths. The other provider s listed support up to 128 -bit key lengths.

Other cryptographic providers can be used, but documents specifying other providers will not open

properly if the cryptographic provider is not present. On a non -Windows system, the cryptographic
provider will be ignored when opening a file, and the algorithm and key length will be determined by

the EncryptionHeader.AlgID and EncryptionHeader.KeySize fields. When writing a file from a
non -Windows system, a correct cryptographic provider needs to be supplied for im plementations on
Windows systems to properly open the file.

100 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493

Additionally, a ProviderType parameter is required for an EncryptionHeader structure that is
compatible with the CSP and encryption algorithm chosen. To facilitate interoperability, the
ProviderTy pes listed in section 2.3.2 are recommended.

Additionally, see section 4.1.3 for additional information regarding the cryptography used.

<9> Section 2.3.4.5: Office 2003 applications set a Version.vMajor version value of 0x0002.
Applications in the 2007 Office system and Office 2007 SP1 set a Version.vMajor value of 0x0003.
Versions Office 2007 SP2, Office 2010 and Of fice 2013 seta Version.vMajor value of 0x0004.

<10> Section 2.3.4.5: In the 2007 Office system, Office 2010 and Office 2013, the default

encryption algorithm for ECMA -376 standard encryption documents ECMA-376] is 128 -bit AES, and
both 192 -bit and 256 -bit AES are also supported. It is possible to use alternate encryption

algorithms, and for best results, a block cipher supporting ECB mode is recommended. Additionally,

the algorithm ought to convert one block of plaintext to one block of encrypted data, where both

blocks are the same size. This information is for guidance only, and it is possible that if alternate

algorithms are used, the applications in the 2007 Office sys tem, Office 2010 and Office 2013 might

not open the document properly or that information leakage could occur.

<11> Section 2.3.4.5: In the 2007 Office system, Office 2010 and Office 2013, the default

encryption algorithm for ECMA -37 6 standard encryption documents ECMA-376] is 128 -bit AES, and
both 192 -bit and 256 -bit AES are also supported. It is possible to use alternate encryption

algorithms, and for best results, a blo ck cipher supporting ECB mode is recommended. Additionally,

the algorithm ought to convert one block of plaintext to one block of encrypted data, where both

blocks are the same size. This information is for guidance only, and it is possible that if alterna te
algorithms are used, the applications in the 2007 Office system, Office 2010 and Office 2013 might

not open the document properly or that information leakage could occur.

<12> Section 2.3.4.6: On Windows XP, Windows Vista, Windows 7, Windows 8 and Windows 8.1,
CSPName specifies the GUID of the extensible encryption module used for this file format. This

GUID specifies the CLSID of the COM module containing cryptographic functionality. The CSPName
is re quired to be a null -terminated Unicode string.

<13> Section 2.3.4.10: The use of RC2 is not recommended. If RC2 is used with a key length of
less than 128 bits, documents could interoperate incorrectly across different operating syst em
versions.

<14> Section 2.3.4.10: The use of DES is not recommended. If DES is used, the key length
specified in the KeyBits element is required to be set to 64 for 56 -bit encryption, and the key
decrypted from encryptedKeyValue of KeyEncryptor is required to include the DES parity bits.

<15> Section 2.3.4.10: The use of DESX is not recommended. If DESX is used, documents could
interoperate incorrectly across different operating system versions.

<16> Section 2.3.4.10: If 3DES or 3DES_112 is used, the key length specified in the KeyBits
element is required to be set to 192 for 168 -bit encryption and 128 for 112 -bit encryption, and the
key decrypted from encryptedKeyValue of KeyEncryptor is required to include the DES parity
bits.

<17> Section 2.3.4.10: If 3DES or 3DES_112 is used, the key length specified in the KeyBits
element is required to be set to 192 for 168 -bit encryption and 128 for 112 -bit encryption, and the
key decrypted from encryptedKeyValue of KeyEncryptor is required to include the DES parity
bits.

<18> Section 2.3.4.10: Any algorithm that can be resolved by name by the underlying operating
system can be used for hashing or encryption. Only block algorithms are supported for encryption.

101 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493
%5bMS-GLOS%5d.pdf

AES-128 is the default encryption algorithm, and SHA -1 is the default hashing algorithm if no other
algorithms have been configured.

<19> Section 2.3.4.10: Any algorithm that can be resolved by name by the underlying operating

system can be used for hashing or encryption. Only block algorithms are supported for encrypt ion.
AES-128 is the default encryption algorithm, and SHA -1 is the default hashing algorithm if no other
algorithms have been configured.

<20> Section 2.3.4.10: All ECMA-376 documents [ECMA-376] encrypted by Microsoft Office using
agile encryption will have a Datalntegrity element present. The schema allows for a

Datalntegrity element to not be present because the encryption schema can be used by

applications that do notcr ~ eate ECMA -376 documents [ECMA-376] .

<21> Section 2.3.5.1: Office 2003 applications set a Version.vMajor version of 0x0002.
Applications in the 2007 Office system and Off ice 2007 SP1 seta Version.vMajor value of 0x0003.
Versions such as Office 2007 SP2, Office 2010 and Office 2013set a Version.vMajor value of
0x004.

<22> Section 2.3.5.1: Several of the cryptographic techniques specified in this docu ment use the
Cryptographic Application Programming Interface (CAPI) or CryptoAPI when implemented by

Microsoft Office on the Windows operating systems. While an implementation is not required to use
CryptoAPI, if an implementation is required to interopera te with Microsoft Office on the Windows
operating systems, the following are required:

Cryptographic service provider (CSP): A CSP refers to a library containing implementations of
cryptographic algorithms. Several CSPs that support the algorithms required in this specification are
present by default on the latest versions of Windows. Alternate CSPs can be used, if the CSP is

installed on all systems consuming or producing a document.

AlgID: An integer representing an encryption algorithm in the CryptoAPI. Required AlgID values
are specified in the remainder of this document. Alternate AlgIDs can be used if the CSP supporting
the alternate AlgID s installed on all systems consuming or producing a document.

AlgiDHash: An integer representing a hashing algori thm in the CryptoAPI. Required AlgIDHash
values are specified in the remainder of this document. For encryption operations, the hashing
algorithm is fixed and cannot vary from the algorithms specified.

The following cryptographic providers are recommended to facilitate interoperability across all
supported versions of Windows:

A Microsoft Base Cryptographic Provider v1.0

A Microsoft Enhanced Cryptographic Provider v1.0

A Microsoft Enhanced RSA and AES Cryptographic Provider

Note that the following providers are e quivalent:

A Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)
A Microsoft Enhanced RSA and AES Cryptographic Provider

The provider listed as "Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)" is
found on Windows XP. An implementation needs to treat these providers as equivalent when
attempting to resolve a CSP on a Windows system.

102 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493
http://go.microsoft.com/fwlink/?LinkId=113493

When using AES encrypti on for ECMA -376 documents [ECMA -376] , the Microsoft Enhanced RSA and
AES Cryptographic Provider is written into the header, unless AES encryption facilities are obtained
from an alternate crypto graphic provider as noted in the next paragraph. When using CryptoAPI RC4

encryption, be aware that the Microsoft Base Cryptographic Provider v1.0 is limited to 56 - bit key
lengths. The other providers listed support up to 128 - bit key lengths.

Other cryptog raphic providers can be used, but documents specifying other providers might not

open properly if the cryptographic provider is not present. On a non -Windows system, the
cryptographic provider will be ignored when opening a file, and the algorithm and key length will be
determined by the EncryptionHeader.AlgID and EncryptionHeader.KeySize fields. When
writing a file from a non -Windows system, a correct cryptographic provider needs to be supplied for
implementations on Windows systems to properly open the fi le.

Additionally, a ProviderType parameter is required for an EncryptionHeader structure that is
compatible with the CSP and encryption algorithm chosen. To facilitate interoperability, the

ProviderTypes listed in section 2.3.2 are recommended.

Additionally, see section 4.1.3 for additional information regarding the cryptography used.

<23> Section 2.3.5.4: Office 2003, the 2007 O ffice system, Office 2010 and Office 2013 allow the
user to optionally encrypt the \ 0x05Summarylnformation and

\ Ox05DocumentSummarylnformation streams. Additional streams and storages can also be
encrypted within the RC4 CryptoAPI summary stream.

<24> Section 2.4.1: Documents generated by Office Excel 2007, Excel 2010 and Excel 2013 can be
encrypted as specified in section 2.3 with the following password:

"\x56 \x65 \x6C\x76 \x65 \x74 \x53\x77 \x65 \x61 \ x74 \x73 \x68 \ x6F\x70". The conditions under which
this password is used are described in [MS-XLS] and [MS-XLSB].

<25> Section 2.4.2.2: Documents generated by Of fice Excel 2007, Excel 2010 and Excel 2013 can

be encrypted as specified in section 2.3 with the following password:

"\x56 \x65 \x6C\x76 \x65 \x74 \x53 \x77 \x65 \x61 \ x74 \x73 \x68 \ x6F\ x70". The conditions under w hich
this password is used are described in [MS-XLS] and [MS-XLSB].

<26> Section 2.4.2.3: Documents created by Office PowerPoint 2003, Office PowerPoint 2007 and
Office Power Point 2007 SP1 use the default password. Office PowerPoint 2007 SP2 does not use the
default password. A document created without the default password can be opened in earlier

versions. Due to security concerns, it is preferable not to use the default pass word.

<27> Section 2.4.2.4: Any algorithm that can be resolved by name by the underlying operating

system can be used for hashing or encryption. Only block algorithms are supported for encryption.

AES-128 is the default encryption algorithm, and SHA -1 is the default hashing algorithm if no other
algorithms have been configured.

<28> Section 2.5.2.1: In the 2007 Office system, the SHA -1 hashing algorithm is required to be

used for this purpose. Office 2010 and Office 2013 require only that the underlying operatin g system
support the hashing algorithm.

<29> Section 2.5.2.1: In the 2007 Office system, the SHA -1 hashing algorithm is required to be

used for this purpose. Office 2010 and Office 2013 require only that the underlying operating syst em

support the hashing algorithm.

<30> Section 2.5.2.4: In the 2007 Office system, the SHA -1 hashing algorithm is required to be
used for this purpose. Office 2010 and Office 2013 versions require only that the underlying
operating s ystem support the hashing algorithm.

103 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=113493
%5bMS-XLS%5d.pdf
%5bMS-XLSB%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-XLSB%5d.pdf

<31> Section 2.5.2.5: Office 2010, Office 2013 and the 2007 Office system reserve the value of
{00000000 -0000 -0000 -0000 -000000000000} for their default signature providers and {000CD6A4 -
0000 -0000 -C000 -000000000046} for their East Asian signature providers.

<32> Section 2.5.2.6: Office 2010 and Office 2013 adds XML Advanced Electronic Signatures
([XAdES]) extensions to xmldsig signatures when configured to do so by the user. By default,
XAdES-EPES signatures are used, as specified in XAdES] section 4.4.2.

<33> Section 2. 5.2.6: By default, Office 2010 and Office 2013 places the reference to the
SignedProperties element withinthe Signedinfo element. the 2007 Office system needs an

update to correctly validate a reference within the Signedinfo element that is not to a top -level
Object element, and incorrectly rejects these signatures as invalid. To ensure compatibility with

earlier versions of Office that have not been updated to validate the signature correctly, an

implementation can place the Reference element withinaman ifest.

104 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586

6 Change Tracking

This section identifies changes that were made to the [MS -OFFCRYPTO] protocol document between
the February 2014 and April 2014 releases. Changes are classified as New, Major, Minor, Editorial,
or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A Adocumentr evision that incorporates changes to interoperability requirements or functionality.
A The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect p rotocol interoperability or implementation. Examples of minor changes are
updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed.
Editorial chang es apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor
editorial and formatting changes may have been made, but the technical content of the document is
identical tot he last released version.

Major and minor changes can be described further using the following change types:

>

New content added.

>

Content updated.

>

Content removed.

>

New product behavior note added.

>

Product behavior note updated.

>

Product behavior note removed.

>

New protocol syntax added.

>

Protocol syntax updated.

>

Protocol syntax removed.

>

New content added due to protocol revision.

>

Content updated due to protocol revision.
Content removed due to protocol revision.
New protocol syntax added due to protocol revision

Protocol syntax updated due to protocol revision.

> > > >

Protocol syntax removed due to protocol revision.

105 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

A Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

A Protocol syntax refers to data elements (such as packets, structures, enumerations, and
methods) as well as interfaces.

A Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft .com .

Major
change

Tracking number (if applicable) (Y or Change
Section and description N) type
133 Removed a product behavior note that had N Product
Encryption information duplicated in other product behavior

behavior notes. note

removed.

212 Added prescriptive language to indicate Y Content
Length -Prefix ed Padded Unicode that the string must be padded. updated.
String (UNICODE _-LP-P4)
2.1.3 In the description for the Padding field, N Content
Length -Prefixed UTF -8 String changed "length" to "value of the Length updated.
(UTF-8-LP-P4) field" and "this field" to "the Data field" for

clarity.
2.1.7 Updated description for N Content
DataSpaceDefinition TransformReferences. updated.
2.2.7 Added a reference for certificate element. N Content
End-User License Stream updated.
231 Added prescriptive language to indi cate Y Content
EncryptionHeaderFlags that EncryptionHeaderFlags must be updated.

contained within an EncryptionHeader

structure.
23.1 Revised the description of the fAES field to N Content
EncryptionHeaderFlags more clearly indicate the conditions for updated.

each value.
232 Added a reference link for Office binary N Content
EncryptionHeader document RC4 CryptoAPI encryption. updated.
2.3.4.3 Added re ference links for Encryptioninfo N Content
\0Ox06DataSpaces \Transforminfo stream. updated.
Storage
2.3.45 Updated the value of Version.vMajor for N Product
\ Encryptioninfo Stream (Standard specific product versions. behavior
Encryption note

updated.
106 / 112

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

mailto:dochelp@microsoft.com

[MS -OFFCRYPTO] 6 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

Major
change

Tracking number (if applicable) (Y or Change
Section and description N) type
2.3.45 Revised the description for N Content
\ Encryptioninfo Stream (Standard Encr yptionVersioninfo to add 0x0002 to updated.
Encryption the list of possible values for

Version.vMajor.
2.3.46 In the table in the description of the N Content
\ Encryptioninfo Stream Encryptioninfo field, removed the details updated.
(Extensible Encr__yption) about the "xmins" attribute in the entry for

the EncryptionData element.
2.34.14 Updated description for the Datalntegrity N Content
Datalntegrity Generation (Agile element. updated.
Encryption
2.3.4.15 Updated the data type for N Content
Data Encryption (Agile Encryption) EncryptedPackage from "field" to "stream updated.

.
2351 Updated the reference for N Content
RC4 CryptoAPI Encryption Header EncryptionHeader. updated.
2351 Upd ated description for EncryptionVerifier. N Content
RC4 CryptoAPI Encryption Header updated.
2354 Updated the description for N Content
RC4 CryptoAPI Encrypted EncryptedStreamData. updated.
Summary Stream
2354 Changed EncryptedStreamDescriptor to N Content
RC4 CryptoAPI Encrypted EncryptedStreamDescriptorCount in the updated.
Summary Stream description of the

StreamDescriptorArrayOffset field.
2.3.6.2 Updated the reference for the Salt field. N Content
Encryption Key Derivation updated.
24.2.1 Updated the reference for writing N Content
Binary Document Write Protection prot ection password. updated.
Method 1
3.6 Updated the Reserved1 value for reserved N Content
EncryptionHeader Structure field. updated.

107 / 112

7

Index

_signatures stream 69
\0x06DataSpaces \DataSpacelnfo storage i

encryption 35
\0x06DataSpaces \DataSpacelnfo storage i IRMDS

25

\0x06DataSpaces \DataSpaceMap stream i
encryption 34

\0x06DataSpaces \DataSpaceMap stream i IRMDS
25

\0x06DataSpaces \Transforminfo storage i

encryption 35
\0x06DataSpaces \Transforminfo storage for ECMA

376 documents i IRMDS 26
\0x06DataSpaces \TransformInfo storage for Office

binary documents i IRMDS 26

\ EncryptedPackage stream i encryption 35

\ Encryptioninfo stream (ag ile encryption) i
encryption 41

\ Encryptioninfo stream (extensible encryption) T
encryption 37

\ Encryptioninfo stream (standard encryption) i
encryption 36

\ Encryptioninfo Stream (Third
Encryption) example 89

\ Encryptioninfo Stream example 87

x mlsignatures storage 76
0x06Primary Stream example 81
40 -bit RC4 encryption overview 13

- Party Extensible

A

Applicability overview
data spaces 15
encryption 16

Array overview 15

B

Binary document digital signatures
_signatures stream 69
xmlsignatures storage 76
CryptoAPI digital signature Certificatelnfo
structure 66

CryptoAPI digital signature generation 69
CryptoAPI digital signature structure 68
idOfficeObject object element 72

idPackageObject object element 72

Keylnfo element 71

security

implementer considerations 97

SignatureValue element 71

Signedinfo element 71

TimeEncoding structure 66

XAdES elements 75

Xmldsig digital signature elements 71
Binary document digital signatures structure 65
Binary document password verifier derivation

Method 1 i encryption 58

Binary document password verifier derivation
Method 2 i encryption 62

Binary document write protection Method 1 64

Binary document write protection Method 2 64

Binary document write protectio n Method 3 64

Binary document XOR array initialization Method 1

I_encryption 58
Binary document XOR array initialization Method 2

I_encryption 62
Binary document XOR data transformation Method

171 encryption 61

Binary document XOR data transformation Method
2 1 _encryption 63

Byte ordering
overview 14

C

Certificate chain example 84

Change tracking 105

CryptoAPI digita | signature Certificatelnfo structure
66

CryptoAPI digital signature generation 69

CryptoAPI digital signature structure 68

CryptoAPI RC4 encryption overview 13

D
Data encryption (agile encryption) i_encryption 50
Data spaces
applicability 15
DataSpaceDefinition structure 22
DataSpaceMap structure 20
DataSpaceMapEntry structure 21
DataSpaceReferenceComponent structure 22
DataSpaceVersionInfo structure 20
EncryptionTransforminfo struct ure 24
File 17
Length -Prefixed Padded Unicode String
(UNICODE -LP-P4) structure 18
Length -Prefixed UTF -8 String (UTF -8-LP-P4)
structure 19
overview 10
security
implementer considerations 95
TransforminfoHeader str ucture 23
version structure 19
Data spaces structure 17
Datalntegrity generation (agile encryption) i
encr yption 49
DataSpaceDefinition structure i _data spaces 22
DataSpaceMap Stream example 78
DataSpaceMap structure i data spaces 20
DataSpaceMapEntry structure i_data spaces 21
DataSpaceMapEntry structure example 79
DataSpaceReferenceComponent structure i _data

spaces 22
DataSpaceVersionlnfo structure

i _data spaces 20

[MS -OFFCRYPTO] 8 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

108/ 112

Details
_signatures stream 69

\Ox06DataSpaces \DataSpacelnfo storage (section

2.2.2 25, section 2.3.4.2 35)

\Ox06DataSpaces \DataSpaceMap stream (section

2.2.1 25, section 2.3.4.1 34)
\Ox06DataSpaces \TransformInfo storage 35
\0x06DataSpaces \Transforminfo stor age for

ECMA-376 documents 26
\0x06DataSpaces \Transforminfo storage for

Office binary documents 26
\ EncryptedPackage stream 35
\ Encryptioninfo stream (agile encryption) 41
\ Encryptioninfo stream (extensible encryption)

37

\ Encryptioninfo stream (standard encryption) 36
xmlsignatures storage 76
binary document digital signatures structure 65

binary document password verifier derivation
Method 1 58
binary document password verifier derivation
Method 2 62
binary document write prot ection Method 1~ 64
binary document write protection Method 2 64
binary document write protection Method 3 64
binary document XOR array initialization Method
158
binary document XOR array initialization Method
2 62
binary document XOR data transformation
Method 1 61
binary document XOR data transformation
Method 2 63
Certificatelnfo structure - CryptoAPI digital
signature 66
CryptoAPI digital signature Certificatelnfo
structure 66
CryptoAPI digital signature generation 69
CryptoAPI digital signature structure 68
data encryption (agile encryption) 50
data spaces structure 17
Datalntegrity generation (agile encryption) 49
DataSpaceDefinition structure 22
DataSpaceMap structure 20
DataSpaceMapEntry structure 21
DataSpaceReferenceComponent structure 22
DataSpaceVersioninfo structure 20
document write protection structure 64
ECMA- 376 document encryption 34
ECMA-376 document encryption key generation
(standard encryption) 39
ECMA-376 doc _ument write protection 64
encryption key derivation 56
encryption key generation (agile encryption) a7
encryption structure 30
EncryptionHeader structure 31
EncryptionHeaderFlags structure 30
EncryptionTransforml nfo structure 24
EncryptionVerifier structure 33
end -user license stream 28
EndUserLicenseHeader structure 28

ExtensibilityHeader structure 27

File structure 17

idOfficeObject object element 72

idPackageObject object element 72

Information Rights Management Data Space
structure 24

initialization vector generation (ag ile encryption)
48

IRMDSTransformiInfo structure 27

ISO write protection method 64

Keyinfo element 71

Length -Prefixed Padded Unicode String
(UNICODE -LP-P4) structure 18

Length -Prefixed UTF -8 String (UTF_-8-LP-P4)
structure 19

LicenselD 28

Office binary document RC4 CryptoAPI encryption
50

Office binary document RC4 encryption 56

password verification - Office binary document
RC4 CryptoAPI encryption 55

password verification - Office binary document
RC4 encryption 57

password verification - XOR obfuscation 64

password verification (standard encryption) 40

password verifier generation - Office binary
document RC4 CryptoA Pl encryption 55

password verifier generation - Office binary

document RC4 encryption 57
password verifier generation (standard
encryption) 40
PasswordKeyEncryptor generation (agile
encryption) 48
protected content stream 29
RC4 CryptoAPI encrypted summary stream 53
RC4 CryptoAPI EncryptedStreamDescriptor
structure 52
RC4 CryptoAPI encryption header 50
RC4 CryptoAPI encryption key generation 51
RC4 encryption header 56
SignatureValue element 71
Signedinfo element 71
TimeEncoding structure 66
TransforminfoHeader structure 23
version structure 19
viewer content stream 29
XAdES elements 75

Xmldsig digital signature elements 71
XOR obfuscation 58
Digital signature elements - Xmildsig 71

Digital signatures
overview 14

Document write protection
binary document write protection Method 1 64
binary document write protection Method 2 64
binary document write protection Method 3 64
ECMA-376 64
ISO write protection method 64

security
implementer consideratio ns 97
Document write protection structure 64

[MS -OFFCRYPTO] 8 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

109 / 112

DRMEncryptedDataSpace Stream example 80

E

ECMA- 376 document encryption

security

implementer considerations 95

ECMA- 376 document encryption i_encryption 34
ECMA-376 document encryption key generation

(standard encrypti _on) i encryption 39
ECMA-376 document encryption overview 13
ECMA-376 document write protection 64
Elements

idOfficeObject object 72

idPackageObject object 72

Keylnfo 71

SignatureValue 71

Signedinfo 71
XAdES 75

Xmldsig digital signature 71
Encryption
\0x06DataSpaces \DataSpacelnfo storage 35
\0x06DataSpaces \DataSpaceMap stream 34
\Ox06DataSpaces \Transform Info storage 35
\ EncryptedPackage stream 35
\ Encryptioninfo stream (agile encryption) 41
\Encryptioninfo s tream (extensible encryption)
37
\ Encryptioninfo stream (standard encryption) 36
40 -bit RC4 encryption overview 13
applicability 16
binary document password verifier derivation
Method 1 58
binary document password verifier derivation
Method 2 62
binary document XOR array initialization Method
158
binary document XOR array initialization Method
2 62
binary document XOR data transformation
Method 1 61
binary document XOR data transformation
Method 2 63
CryptoAP| RC4 encryption overview 13
data encryption (agile encryption) 50
Datalntegrity generation (agile encryption) 49
ECMA-376 document 34
ECMA-376 document encryption key generation
(standard encryption) 39
ECMA-376 document encryption overview 13
encryption key derivation 56
encryption key generation (agile encryption) a7
EncryptionHeader structure 31
Encryption HeaderFlags structure 30
EncryptionVerifier structure 33

initialization vector generation (agile encryption)

48
Office binary document RC4 56
Office binary document RC4 CryptoAPI 50
overview 12
password verification - Office binary document
RC4 57

password verification - Office binary document
RC4 CryptoAPI 55

password verification T XOR obfuscation 64

password verification (standard encryption) 40

password verifier generation - Office binary
document RC4 57

password verifier generation - Office binary

document RC4 CryptoAPI 55
password verifier generation (standard

encryption) 40

PasswordKeyEncryptor generation (agile
encryption) 48
RC4 CryptoAPI encrypted summary stream 53
RC4 CryptoAPI EncryptedStreamDescriptor
struct ure 52
RC4 CryptoAPI encryption header 50
RC4 CryptoAPI encryption key generation 51
RC4 encryption header 56
XOR obfuscation 58
XOR obfuscation overview 13
Encryption header example 90
Encryption key derivation i _encryption 56
Encryption key generation (agile encryption) i
encryption 47
Encryption structure 30

EncryptionHeader structure i_encryption 31
EncryptionHeader Structure example 85
EncryptionHeaderFlags structure i_encryption 30
EncryptionTransforminfo structure i _data spaces 24
EncryptionVerifier structure i_encryption 33
EncryptionVerifier Structure example 86
End-user license stream i IRMDS 28
EndUserLicenseHeader structure i IRMDS 28
EndUserLicenseHeader structure example 83
EUL-ETRHA1143Z1L.UDD412YTI3M5CTZ Stream
example 82
Examples 77

\ Encryptioninfo Stream 87
\ Encryptioninfo Stream (Third - Party Extensible
Encryption) 89

0x06Primary Stream 81
certificate chain _ 84
DataSpaceMap Stream 78
DataSpaceMapEntry structure 79
DRMEncryptedDataSpace Stream 80
encryption header 90
EncryptionHeader Structure 85
EncryptionVerifier Structure 86
EndUserLicenseHeader structure 83
EUL-ETRHA1143Z1.UDD412YTI3M5CTZ Stream 82
PasswordKeyEncryptor (Agile Encryption) 20
Version Stream _ 77

Examples overview 77

ExtensibilityHeader stru _ cture i IRMDS 27

F

Fields - security index 97

Fields - vendor -extensible 16

File i data spaces 17

[MS -OFFCRYPTO] 8 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

110 / 112

G N

Glossary 7 Normative references 8
| O
idOfficeObject object element 72 Office binary document RC4 CryptoAPI encryption
idPackageObject object element 72 security
Implementer - security considerati ons implementer considerations 95
binary document digital signatures 97 Office binary document RC4 CryptoAPI encryption]
data spaces 95 encryption 50
document write protection 97 Office binary document RC4 encryption
ECMA-376 document encryption 95 security
Information Rights Management 95 implementer considerations 96
Office binary document RC4 CryptoAPI encryption Office binary document RC4 encryption i _encryption
95 56
Office binary document RC4 encryption 96 OLE compound file path encoding
XOR obfuscation 96 overview 14
Index of security fields 97 QOverview
Information Rights Management 40-bit RC4 encryption 13
security array 15
implementer considerations 95 byte ordering 14
Information Rights Management Data Space CryptoAPI RC4 encryption 13
applicability 16 data spaces - applicability 15
overview 11 data spaces i overview (synopsis) 10
Information Rights Management Data Space digital signatures 14
structure 24 ECMA-376 documen tencryption 13
Informative references 10 encryption 12
Initialization vector generation (agile encryption i encryption - applicability 16
encryption 48 Information Rights Management Data Space 11
Introduction 7 OLE compound file path encoding 14
IRMDS pseudocode standard objects 14
\0x06DataSpaces \DataSpacel nfo storage 25 storage 15
\Ox06DataSpaces \DataSpaceMap stream 25 stream 15
\0x0O6DataSpaces \Transforminfo storage for string_ 15
ECMA-376 documents 26 string encoding 14
\0x0O6DataSpaces \Transforminfo storage for write protection 14
Office binary documents 26 XOR obfuscation 13
end -user license stream 28
EndUserLicenseHeader structure 28 P
ExtensibilityHeader structure 27
IRMDSTransforminfo structure 27 Password verification i Office binary document RC4
LicenselD 28 CryptoAPI encryption 55
protected content stream 29 Password verification i Office binary document RC4
viewer content stream 29 encryption 57
IRMDSTransforminfo structure i _IRMDS 27 Password verification i XOR obfuscation 64
ISO write protection method 64 Password verification (standard encryption) i
encryption 40
K Password verifier generation i_Office binary
document RC4 CryptoAPI encryption 55
Keylnfo element 71 Password verifier generation i_Office binary
document RC4 encryption 57
L Password verifier generation (standard encryption)
I_encryption 40
Length -Prefixed Padded Unicode String (UNICODE - PasswordKeyEncryptor (Agile Encryption) example
LP-P4) structure i data spaces 18 90
Length -Prefixed UTF -8 String (UTE _-8-LP-P4) PasswordKeyEncryptor generation (agile
structure 1 data spaces 19 encryption) T encryption 48
LicenselD 1 IRMDS 28 Product behavior 98
Localization 16 Protected content stream T IRMDS 29

Pseudocode standard obj ects

111 / 112

[MS -OFFCRYPTO] 8 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

array overview 15
overview 14

storage overview 15
stream overview 15

string overview 15
R

RC4 CryptoAPI encrypted summary stream 1
encryption 53
RC4 CryptoAPI EncryptedStreamDescriptor
structure 1 encryption 52
RC4 CryptoAPI encryption header i _encryption 50
RC4 CryptoAPI encryption key generation i
encryption 51
RC4 encryption header i encryption 56
References 8
informative 10
normative 8
Relationship to protocols and other structures 15

S

Security
field index 97
implementer considerations
binary document digital signatures 97
data spaces 95
document write pr _otection 97
ECMA-376 document encryption 95
Information Rights Management 95
Office binary document RC4 Cr___ yptoAPI
encryption 95
Office binary document RC4 encryption 96
XOR obfuscation 96
SignatureValue element 71
Signedinfo element 71
Storage - _xmisignatures 76
Storage overview 15
Stream overview 15
String encoding
overview 14
String overview 15
Structure overview
40-bit RC4 encryption 13
array 15
byte ordering 14
CryptoAP| RC4 encryption 13
data spaces 10
digital signatures 14
ECMA- 376 document encryption 13
encryption 12
Information Rights Management Data Space 11
OLE compound file path encoding 14
pseudocode standard objects 14
storage 15
stream 15
string 15
string encoding _ 14

write protection 14
XOR obfuscation 13

Structures

binary document digital signatures 65
data spaces 17
document write protection 64

encryption 30
Information Rights Management Data Space

24

T

TimeEncoding structure 66
Tracking changes 105

TransforminfoH eader structure i data spaces 23

u

UNICODE -LP-P4 structure i data spaces 18

UTF-8-LP-P4 structure 1 data spaces 19

\%

Vendor -extensible fields 16
Version Stream example 77
Version structure i data spaces 19

Versioning 16
Viewer content stream i IRMDS 29

w

Write protection
overview 14

X

XAdES elements 75
Xmldsig digital signature elements 71
XOR obfuscation
security
implementer considerations 96
XOR obfuscation i _encryption 58
XOR obfuscation overview 13

[MS -OFFCRYPTO] 8 v20140428
Office Document Cryptography Structure

Copyright © 2014 Microsoft Corporation.

Release: April 30, 2014

112 / 112

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Data Spaces
	1.3.2 Information Rights Management Data Space
	1.3.3 Encryption
	1.3.3.1 XOR Obfuscation
	1.3.3.2 40-bit RC4 Encryption
	1.3.3.3 CryptoAPI RC4 Encryption
	1.3.3.4 ECMA-376 Document Encryption

	1.3.4 Write Protection
	1.3.5 Digital Signatures
	1.3.6 Byte Ordering
	1.3.7 String Encoding
	1.3.8 OLE Compound File Path Encoding
	1.3.9 Pseudocode Standard Objects
	1.3.9.1 Array
	1.3.9.2 String
	1.3.9.3 Storage
	1.3.9.4 Stream

	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.5.1 Data Spaces
	1.5.2 Information Rights Management Data Space
	1.5.3 Encryption

	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 Data Spaces
	2.1.1 File
	2.1.2 Length-Prefixed Padded Unicode String (UNICODE-LP-P4)
	2.1.3 Length-Prefixed UTF-8 String (UTF-8-LP-P4)
	2.1.4 Version
	2.1.5 DataSpaceVersionInfo
	2.1.6 DataSpaceMap
	2.1.6.1 DataSpaceMapEntry Structure
	2.1.6.2 DataSpaceReferenceComponent Structure

	2.1.7 DataSpaceDefinition
	2.1.8 TransformInfoHeader
	2.1.9 EncryptionTransformInfo

	2.2 Information Rights Management Data Space
	2.2.1 \0x06DataSpaces\DataSpaceMap Stream
	2.2.2 \0x06DataSpaces\DataSpaceInfo Storage
	2.2.3 \0x06DataSpaces\TransformInfo Storage for Office Binary Documents
	2.2.4 \0x06DataSpaces\TransformInfo Storage for ECMA-376 Documents
	2.2.5 ExtensibilityHeader
	2.2.6 IRMDSTransformInfo
	2.2.7 End-User License Stream
	2.2.8 LicenseID
	2.2.9 EndUserLicenseHeader
	2.2.10 Protected Content Stream
	2.2.11 Viewer Content Stream

	2.3 Encryption
	2.3.1 EncryptionHeaderFlags
	2.3.2 EncryptionHeader
	2.3.3 EncryptionVerifier
	2.3.4 ECMA-376 Document Encryption
	2.3.4.1 \0x06DataSpaces\DataSpaceMap Stream
	2.3.4.2 \0x06DataSpaces\DataSpaceInfo Storage
	2.3.4.3 \0x06DataSpaces\TransformInfo Storage
	2.3.4.4 \EncryptedPackage Stream
	2.3.4.5 \EncryptionInfo Stream (Standard Encryption)
	2.3.4.6 \EncryptionInfo Stream (Extensible Encryption)
	2.3.4.7 ECMA-376 Document Encryption Key Generation (Standard Encryption)
	2.3.4.8 Password Verifier Generation (Standard Encryption)
	2.3.4.9 Password Verification (Standard Encryption)
	2.3.4.10 \EncryptionInfo Stream (Agile Encryption)
	2.3.4.11 Encryption Key Generation (Agile Encryption)
	2.3.4.12 Initialization Vector Generation (Agile Encryption)
	2.3.4.13 PasswordKeyEncryptor Generation (Agile Encryption)
	2.3.4.14 DataIntegrity Generation (Agile Encryption)
	2.3.4.15 Data Encryption (Agile Encryption)

	2.3.5 Office Binary Document RC4 CryptoAPI Encryption
	2.3.5.1 RC4 CryptoAPI Encryption Header
	2.3.5.2 RC4 CryptoAPI Encryption Key Generation
	2.3.5.3 RC4 CryptoAPI EncryptedStreamDescriptor Structure
	2.3.5.4 RC4 CryptoAPI Encrypted Summary Stream
	2.3.5.5 Password Verifier Generation
	2.3.5.6 Password Verification

	2.3.6 Office Binary Document RC4 Encryption
	2.3.6.1 RC4 Encryption Header
	2.3.6.2 Encryption Key Derivation
	2.3.6.3 Password Verifier Generation
	2.3.6.4 Password Verification

	2.3.7 XOR Obfuscation
	2.3.7.1 Binary Document Password Verifier Derivation Method 1
	2.3.7.2 Binary Document XOR Array Initialization Method 1
	2.3.7.3 Binary Document XOR Data Transformation Method 1
	2.3.7.4 Binary Document Password Verifier Derivation Method 2
	2.3.7.5 Binary Document XOR Array Initialization Method 2
	2.3.7.6 Binary Document XOR Data Transformation Method 2
	2.3.7.7 Password Verification

	2.4 Document Write Protection
	2.4.1 ECMA-376 Document Write Protection
	2.4.2 Binary Document Write Protection
	2.4.2.1 Binary Document Write Protection Method 1
	2.4.2.2 Binary Document Write Protection Method 2
	2.4.2.3 Binary Document Write Protection Method 3
	2.4.2.4 ISO Write Protection Method

	2.5 Binary Document Digital Signatures
	2.5.1 CryptoAPI Digital Signature Structures and Streams
	2.5.1.1 TimeEncoding Structure
	2.5.1.2 CryptoAPI Digital Signature CertificateInfo Structure
	2.5.1.3 CryptoAPI Digital Signature Structure
	2.5.1.4 _signatures Stream
	2.5.1.5 CryptoAPI Digital Signature Generation

	2.5.2 Xmldsig Digital Signature Elements
	2.5.2.1 SignedInfo Element
	2.5.2.2 SignatureValue Element
	2.5.2.3 KeyInfo Element
	2.5.2.4 idPackageObject Object Element
	2.5.2.5 idOfficeObject Object Element
	2.5.2.6 XAdES Elements

	2.5.3 _xmlsignatures Storage

	3 Structure Examples
	3.1 Version Stream
	3.2 DataSpaceMap Stream
	3.2.1 DataSpaceMapEntry Structure

	3.3 DRMEncryptedDataSpace Stream
	3.4 0x06Primary Stream
	3.5 EUL-ETRHA1143ZLUDD412YTI3M5CTZ Stream
	3.5.1 EndUserLicenseHeader Structure
	3.5.2 Certificate Chain

	3.6 EncryptionHeader Structure
	3.7 EncryptionVerifier Structure
	3.8 \EncryptionInfo Stream
	3.9 \EncryptionInfo Stream (Third-Party Extensible Encryption)
	3.10 Office Binary Document RC4 Encryption
	3.10.1 Encryption Header

	3.11 PasswordKeyEncryptor (Agile Encryption)

	4 Security
	4.1 Security Considerations for Implementers
	4.1.1 Data Spaces
	4.1.2 Information Rights Management
	4.1.3 Encryption
	4.1.3.1 ECMA-376 Document Encryption
	4.1.3.2 Office Binary Document RC4 CryptoAPI Encryption
	4.1.3.3 Office Binary Document RC4 Encryption
	4.1.3.4 XOR Obfuscation

	4.1.4 Document Write Protection
	4.1.5 Binary Document Digital Signatures

	4.2 Index of Security Fields

	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

