
1 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

[MS-GRVHENC]:  
HTTP Encapsulation of Simple Symmetric Transport 
Protocol (SSTP) 

 

Intellectual Property Rights Notice for Open Specifications Documentation 

 Technical Documentation. Microsoft publishes Open Specifications documentation for 
protocols, file formats, languages, standards as well as overviews of the interaction among each 
of these technologies.  

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other 

terms that are contained in the terms of use for the Microsoft website that hosts this 
documentation, you may make copies of it in order to develop implementations of the 
technologies described in the Open Specifications and may distribute portions of it in your 
implementations using these technologies or your documentation as necessary to properly 
document the implementation. You may also distribute in your implementation, with or without 

modification, any schema, IDL’s, or code samples that are included in the documentation. This 
permission also applies to any documents that are referenced in the Open Specifications.  

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation. 

 Patents. Microsoft has patents that may cover your implementations of the technologies 
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the 
documentation grants any licenses under those or any other Microsoft patents. However, a given 
Open Specification may be covered by Microsoft Open Specification Promise or the Community 

Promise. If you would prefer a written license, or if the technologies described in the Open 

Specifications are not covered by the Open Specifications Promise or Community Promise, as 
applicable, patent licenses are available by contacting iplg@microsoft.com. 

 Trademarks. The names of companies and products contained in this documentation may be 
covered by trademarks or similar intellectual property rights. This notice does not grant any 
licenses under those rights. 

 Fictitious Names. The example companies, organizations, products, domain names, e-mail 

addresses, logos, people, places, and events depicted in this documentation are fictitious.  No 
association with any real company, organization, product, domain name, email address, logo, 
person, place, or event is intended or should be inferred. 

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights 
other than specifically described above, whether by implication, estoppel, or otherwise. 

Tools. The Open Specifications do not require the use of Microsoft programming tools or 

programming environments in order for you to develop an implementation. If you have access to 
Microsoft programming tools and environments you are free to take advantage of them. Certain 
Open Specifications are intended for use in conjunction with publicly available standard 
specifications and network programming art, and assumes that the reader either is familiar with the 
aforementioned material or has immediate access to it. 

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com


2 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Revision Summary 

Date 

Revision 

History 

Revision 

Class Comments 

04/04/2008 0.1   Initial Availability 

06/27/2008 1.0 Major Revised and edited the technical content 

12/12/2008 1.01 Editorial Revised and edited the technical content 

07/13/2009 1.02 Major Changes made for template compliance 

08/28/2009 1.03 Editorial Revised and edited the technical content 

11/06/2009 1.04 Editorial Revised and edited the technical content 

02/19/2010 2.0 Major Updated and revised the technical content 

03/31/2010 2.01 Editorial Revised and edited the technical content 

04/30/2010 2.02 Editorial Revised and edited the technical content 

06/07/2010 2.03 Editorial Revised and edited the technical content 

06/29/2010 2.04 Editorial Changed language and formatting in the technical 
content. 

07/23/2010 2.05 Minor Clarified the meaning of the technical content. 

09/27/2010 2.05 No change No changes to the meaning, language, or formatting of 
the technical content. 

11/15/2010 2.05 No change No changes to the meaning, language, or formatting of 
the technical content. 

12/17/2010 2.05 No change No changes to the meaning, language, or formatting of 
the technical content. 

03/18/2011 2.05 No change No changes to the meaning, language, or formatting of 
the technical content. 

06/10/2011 2.05 No change No changes to the meaning, language, or formatting of 
the technical content. 

01/20/2012 2.6 Minor Clarified the meaning of the technical content. 

04/11/2012 2.6 No change No changes to the meaning, language, or formatting of 
the technical content. 

07/16/2012 2.6 No change No changes to the meaning, language, or formatting of 
the technical content. 

10/08/2012 2.6 No change No changes to the meaning, language, or formatting of 
the technical content. 

02/11/2013 2.6 No change No changes to the meaning, language, or formatting of 
the technical content. 



3 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 



4 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Table of Contents 

1   Introduction ........................................................................................................... 12 
1.1   Glossary ............................................................................................................. 13 
1.2   References .......................................................................................................... 13 

1.2.1   Normative References ..................................................................................... 14 
1.2.2   Informative References ................................................................................... 14 

1.3   Protocol Overview (Synopsis) ................................................................................ 15 
1.3.1   HTTP Encapsulation Protocols........................................................................... 18 

1.3.1.1   HTTP LongLived Encapsulation Connections ................................................. 19 
1.3.1.2   HTTP KeepAlive Encapsulation Connections .................................................. 20 
1.3.1.3   HTTP Polling Encapsulation Connections ...................................................... 22 

1.3.2   Secure Tunnel Connections .............................................................................. 24 
1.3.3   SOCKS Connections ........................................................................................ 26 
1.3.4   Performance Considerations ............................................................................ 26 

1.4   Relationship to Other Protocols .............................................................................. 27 
1.5   Prerequisites/Preconditions ................................................................................... 28 
1.6   Applicability Statement ......................................................................................... 28 
1.7   Versioning and Capability Negotiation ..................................................................... 28 
1.8   Vendor-Extensible Fields ....................................................................................... 29 
1.9   Standards Assignments ........................................................................................ 29 

2   Messages................................................................................................................ 30 
2.1   Transport ............................................................................................................ 30 
2.2   Message Syntax .................................................................................................. 30 

2.2.1   Common HTTP Data Types .............................................................................. 30 
2.2.1.1   Encapsulation Data Types .......................................................................... 30 

2.2.1.1.1   Virtual-Connection-GUID ...................................................................... 30 
2.2.1.1.2   Relay-Server-Name ............................................................................. 31 
2.2.1.1.3   Encapsulation-Echo-String .................................................................... 31 
2.2.1.1.4   Application-Data ................................................................................. 31 

2.2.1.1.4.1   SSTP_COMMAND ........................................................................... 31 
2.2.1.1.5   Server-User-Agent .............................................................................. 32 

2.2.1.2   Request-Header ....................................................................................... 32 
2.2.1.2.1   Accept ............................................................................................... 33 
2.2.1.2.2   Content-Type...................................................................................... 33 
2.2.1.2.3   User-Agent ......................................................................................... 33 
2.2.1.2.4   Pragma .............................................................................................. 34 
2.2.1.2.5   Expires .............................................................................................. 34 
2.2.1.2.6   Connection ......................................................................................... 34 
2.2.1.2.7   Host .................................................................................................. 34 
2.2.1.2.8   Cache-Control ..................................................................................... 35 
2.2.1.2.9   Proxy-Connection ................................................................................ 35 

2.2.1.3   Response Headers .................................................................................... 35 
2.2.1.3.1   Date .................................................................................................. 35 
2.2.1.3.2   Server ............................................................................................... 36 

2.2.1.4   Response Status Code and Reason Phrase ................................................... 36 
2.2.2   LongLived Encapsulation ................................................................................. 36 

2.2.2.1   LongLived-GET-Request ............................................................................ 36 
2.2.2.1.1   LongLived-GET-Request-URI ................................................................. 37 

2.2.2.1.1.1   LongLived-Encapsulation-Version ..................................................... 37 
2.2.2.1.1.2   LongLived-Encapsulation-Type-Token .............................................. 38 



5 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

2.2.2.1.1.3   LongLived-Encapsulation-Content-Length ......................................... 38 
2.2.2.1.1.4   LongLived-Encapsulation-Request-ID ............................................... 38 

2.2.2.1.2   LongLived-GET-Request Example .......................................................... 38 
2.2.2.2   LongLived-POST-Request ........................................................................... 38 

2.2.2.2.1   LongLived-POST-Request-URI ............................................................... 39 
2.2.2.2.2   LongLived-Content-Length ................................................................... 39 
2.2.2.2.3   LongLived-Entity-Body ......................................................................... 40 
2.2.2.2.4   LongLived-POST-Request Example ........................................................ 40 

2.2.2.3   LongLived-GET-Response .......................................................................... 40 
2.2.2.3.1   Response-Status-Line .......................................................................... 41 
2.2.2.3.2   LongLived-GET-Response-Content-Length .............................................. 41 
2.2.2.3.3   LongLived-GET-Response Example ........................................................ 41 

2.2.2.4   LongLived-POST-Response ......................................................................... 42 
2.2.2.4.1   LongLived-POST-Response-Content-Length ............................................ 42 

2.2.3   KeepAlive Encapsulation .................................................................................. 42 
2.2.3.1   KeepAlive-GET-Request ............................................................................. 42 

2.2.3.1.1   KeepAlive-Request-URI ........................................................................ 43 
2.2.3.1.1.1   KeepAlive-Encapsulation-Type-Token ............................................... 43 
2.2.3.1.1.2   KeepAlive-Encapsulation-Version ..................................................... 43 
2.2.3.1.1.3   KeepAlive-Encapsulation-Request-ID ............................................... 44 

2.2.3.1.2   KeepAlive-GET-Request Example .......................................................... 44 
2.2.3.2   KeepAlive-POST-Request ........................................................................... 44 

2.2.3.2.1   KeepAlive-Content-Length .................................................................... 45 
2.2.3.2.2   KeepAlive-Entity-Body ......................................................................... 45 
2.2.3.2.3   KeepAlive-POST-Request...................................................................... 45 

2.2.3.3   KeepAlive-GET-Response ........................................................................... 45 
2.2.3.3.1   KeepAlive-GET-Response Example ........................................................ 46 

2.2.3.4   KeepAlive-POST-Response ......................................................................... 46 
2.2.3.4.1   KeepAlive-POST-Response-Entity-Body .................................................. 46 

2.2.3.4.1.1   KeepAlive-POST-Response-No-Data ................................................. 46 
2.2.3.4.2   KeepAlive-POST-Response Example ....................................................... 47 

2.2.4   Polling Encapsulation ...................................................................................... 47 
2.2.4.1   Polling-POST-Request................................................................................ 47 

2.2.4.1.1   Polling-Request-URI ............................................................................ 47 
2.2.4.1.2   Polling-Content-Length ........................................................................ 48 
2.2.4.1.3   Polling-Request-Entity-Body ................................................................. 48 

2.2.4.1.3.1   Polling-Virtual-Connection-Message ................................................. 48 
2.2.4.1.3.1.1   Polling-Encapsulation-Version .................................................... 48 
2.2.4.1.3.1.2   Sequence-Number ................................................................... 49 
2.2.4.1.3.1.3   Checksum ............................................................................... 49 
2.2.4.1.3.1.4   Relay-Server-URL .................................................................... 49 

2.2.4.1.4   Polling-POST-Request Example ............................................................. 49 
2.2.4.2   Polling-POST-Response.............................................................................. 50 

2.2.4.2.1   Polling-Response-Entity-Body ............................................................... 50 
2.2.4.2.1.1   Polling-Virtual-Connection-Response-Message ................................... 50 

2.2.4.2.1.1.1   Max-Poll-Interval ..................................................................... 50 
2.2.4.2.1.1.2   Min-Poll-Interval ...................................................................... 50 
2.2.4.2.1.1.3   Poll-Repetition ......................................................................... 51 

2.2.4.2.2   Polling-POST-Response Example ........................................................... 51 
2.2.5   Secure Tunnel Proxy ....................................................................................... 51 
2.2.6   SOCKS Encapsulation ..................................................................................... 52 

3   Protocol Details ...................................................................................................... 55 



6 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.1   LongLived Encapsulation Protocol Client Details ....................................................... 55 
3.1.1   LongLived Client Abstract Data Model ............................................................... 55 

3.1.1.1   Connection State Information ..................................................................... 57 
3.1.1.2   Proxy State Information ............................................................................ 58 

3.1.2   LongLived Client Timers .................................................................................. 59 
3.1.2.1   ConnectionEstablishment Timer .................................................................. 59 
3.1.2.2   NetworkReceiveIO Timer ........................................................................... 59 
3.1.2.3   KeepAlive Timer ....................................................................................... 59 

3.1.3   LongLived Client Initialization .......................................................................... 59 
3.1.3.1   Protocol Initialization ................................................................................. 59 

3.1.4   LongLived Client Higher-Layer Triggered Events ................................................. 59 
3.1.4.1   Establishing a LongLived Encapsulation Connection ....................................... 59 

3.1.4.1.1   Establishing GET Session without Proxy ................................................. 60 
3.1.4.1.2   Establishing GET Session with Proxy ...................................................... 60 
3.1.4.1.3   Establishing POST Session without Proxy................................................ 61 
3.1.4.1.4   Establishing POST Session with Proxy .................................................... 61 

3.1.4.2   Closing a LongLived Connection .................................................................. 61 
3.1.4.3   Sending Application Data ........................................................................... 62 

3.1.5   LongLived Client Message Processing Events and Sequencing Rules ...................... 62 
3.1.5.1   Receiving Data on the POST Session ........................................................... 62 

3.1.5.1.1   LongLived-POST-Response Processing ................................................... 62 
3.1.5.1.1.1   Status code: 400 (Bad Request) ...................................................... 62 
3.1.5.1.1.2   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication 

Required) .................................................................................... 62 
3.1.5.1.1.3   All Other Status Codes ................................................................... 63 

3.1.5.1.2   POST Session Data Processing .............................................................. 63 
3.1.5.2   Receiving Data on the GET Session ............................................................. 63 

3.1.5.2.1   LongLived-GET-Response Processing ..................................................... 63 
3.1.5.2.1.1   Status code: 200 (OK) ................................................................... 63 
3.1.5.2.1.2   Status code: 400 (Bad Request) ...................................................... 64 
3.1.5.2.1.3   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication 

Required) .................................................................................... 64 
3.1.5.2.1.4   All Other Status Codes ................................................................... 64 

3.1.5.2.2   Receiving Application Data (GET Session Data Processing) ....................... 64 
3.1.6   LongLived Client Timer Events ......................................................................... 64 

3.1.6.1   ConnectionEstablishment Timer Event ......................................................... 64 
3.1.6.2   Network Receive IO Timer Event ................................................................ 65 
3.1.6.3   KeepAlive Timer Event .............................................................................. 65 

3.1.7   LongLived Client Other Local Events ................................................................. 65 
3.2   LongLived Encapsulation Protocol Server Details ...................................................... 65 

3.2.1   LongLived Server Abstract Data Model .............................................................. 65 
3.2.1.1   Connection State Information ..................................................................... 65 

3.2.2   LongLived Server Timers ................................................................................. 66 
3.2.2.1   ConnectionEstablishment Timer .................................................................. 66 
3.2.2.2   Network Receive IO Timer ......................................................................... 66 
3.2.2.3   KeepAlive Timer ....................................................................................... 66 

3.2.3   LongLived Server Initialization ......................................................................... 66 
3.2.3.1   Protocol Initialization ................................................................................. 66 
3.2.3.2   LongLived Listener .................................................................................... 66 

3.2.4   LongLived Server Higher-Layer Triggered Events ................................................ 66 
3.2.4.1   Closing a LongLived Connection .................................................................. 66 
3.2.4.2   Sending Application Data ........................................................................... 67 

3.2.5   LongLived Server Message Processing Events and Sequencing Rules ..................... 67 



7 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.2.5.1   GET Session Processing ............................................................................. 67 
3.2.5.1.1   Receiving a LongLived-GET-Request ...................................................... 67 

3.2.5.1.1.1   Sending a LongLived-GET-Response with Status Code 200 ................. 68 
3.2.5.1.1.2   Sending a LongLived-GET-Response with Status Code 400 ................. 69 

3.2.5.1.2   Receiving Data on LongLived-GET-Request ............................................. 69 
3.2.5.2   POST Session Processing ........................................................................... 69 

3.2.5.2.1   Receiving a LongLived-POST-Request .................................................... 69 
3.2.5.2.1.1   Sending a LongLived-POST-Response because of a Protocol Error ........ 70 

3.2.5.2.2   Receiving Application Data ................................................................... 70 
3.2.6   LongLived Server Timer Events ........................................................................ 70 

3.2.6.1   ConnectionEstablishment Timer Event ......................................................... 70 
3.2.6.2   NetworkReceiveIO Timer Event .................................................................. 71 
3.2.6.3   KeepAlive Timer Event .............................................................................. 71 

3.2.7   LongLived Server Other Local Events ................................................................ 71 
3.3   KeepAlive Encapsulation Protocol Client Details ....................................................... 71 

3.3.1   KeepAlive Client Abstract Data Model ................................................................ 71 
3.3.1.1   Connection State Information ..................................................................... 73 
3.3.1.2   Proxy State Information ............................................................................ 74 

3.3.2   KeepAlive Client Timers................................................................................... 75 
3.3.2.1   ConnectionEstablishment Timer .................................................................. 75 
3.3.2.2   GetNetworkReceiveIO Timer ...................................................................... 75 
3.3.2.3   PostNetworkReceiveIO Timer ..................................................................... 75 
3.3.2.4   KeepAlive Timer ....................................................................................... 75 

3.3.3   KeepAlive Client Initialization ........................................................................... 75 
3.3.3.1   Protocol Initialization ................................................................................. 75 

3.3.4   KeepAlive Client Higher-Layer Triggered Events ................................................. 76 
3.3.4.1   Establishing a KeepAlive Encapsulation Connection ....................................... 76 

3.3.4.1.1   Establishing GET Session without Proxy ................................................. 76 
3.3.4.1.2   Establishing GET Session with Proxy ...................................................... 76 
3.3.4.1.3   Establishing POST Session without Proxy................................................ 77 
3.3.4.1.4   Establishing POST Session with Proxy .................................................... 77 

3.3.4.2   Closing a KeepAlive Connection .................................................................. 77 
3.3.4.3   Closing a KeepAlive POST Session .............................................................. 77 
3.3.4.4   Closing a KeepAlive GET Session ................................................................ 78 
3.3.4.5   Re-Opening a KeepAlive POST Session ........................................................ 78 
3.3.4.6   Re-Opening a KeepAlive GET Session .......................................................... 78 
3.3.4.7   Sending Application Data ........................................................................... 78 

3.3.4.7.1   Sending Application Data without Proxy ................................................. 78 
3.3.4.7.2   Sending Application Data with Proxy ...................................................... 79 

3.3.5   KeepAlive Client Message Processing Events and Sequencing Rules ...................... 79 
3.3.5.1   KeepAlive-POST-Response Processing ......................................................... 79 

3.3.5.1.1   Status Code: 200 (OK) ........................................................................ 80 
3.3.5.1.1.1   Handshake POST Response Processing ............................................. 80 
3.3.5.1.1.2   Application Data Posted .................................................................. 80 

3.3.5.1.2   Status code: 400 (Bad Request) ........................................................... 81 
3.3.5.1.3   Status codes: 401 (Unauthorized) / 407 (ProxyAuthentication Required) .... 81 
3.3.5.1.4   All Other Status Codes ......................................................................... 81 

3.3.5.2   KeepAlive-GET-Response Processing ........................................................... 81 
3.3.5.2.1   Status code: 200 (OK) ......................................................................... 81 

3.3.5.2.1.1   Handshake GET Response Processing ............................................... 81 
3.3.5.2.1.2   Application Data GET Response Processing ....................................... 82 

3.3.5.2.2   Status code: 400 (Bad Request) ........................................................... 82 



8 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.3.5.2.3   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication 

Required) .......................................................................................... 82 
3.3.5.2.4   All Other Status Codes ......................................................................... 83 

3.3.5.3   Sending a KeepAlive-GET-Request .............................................................. 83 
3.3.5.3.1   Sending Request for Application Data without Proxy ................................ 83 
3.3.5.3.2   Sending Request for Application Data with Proxy ..................................... 83 

3.3.6   KeepAlive Client Timer Events .......................................................................... 84 
3.3.6.1   ConnectionEstablishment Timer Event ......................................................... 84 
3.3.6.2   GetNetworkReceiveIO Timer Event ............................................................. 84 
3.3.6.3   PostNetworkReceiveIO Timer Event ............................................................ 84 
3.3.6.4   KeepAlive Timer Event .............................................................................. 84 

3.3.7   KeepAlive Client Other Local Events .................................................................. 84 
3.3.7.1   Re-Opening the POST Session after a Transport Disconnect ........................... 84 

3.4   KeepAlive Encapsulation Protocol Server Details ...................................................... 86 
3.4.1   KeepAlive Server Abstract Data Model .............................................................. 86 

3.4.1.1   Connection State Information ..................................................................... 87 
3.4.2   KeepAlive Server Timers ................................................................................. 87 

3.4.2.1   ConnectionEstablishment Timer .................................................................. 87 
3.4.2.2   IdleConnection Timer ................................................................................ 87 
3.4.2.3   KeepAlive Timer ....................................................................................... 87 

3.4.3   KeepAlive Server Initialization .......................................................................... 87 
3.4.3.1   Protocol Initialization ................................................................................. 87 
3.4.3.2   KeepAlive Listener .................................................................................... 88 

3.4.4   KeepAlive Server Higher-Layer Triggered Events ................................................ 88 
3.4.4.1   Closing a KeepAlive Connection .................................................................. 88 
3.4.4.2   Closing a POST Session ............................................................................. 88 
3.4.4.3   Sending Application Data ........................................................................... 88 

3.4.5   KeepAlive Server Message Processing Events and Sequencing Rules ..................... 89 
3.4.5.1   GET Session Processing ............................................................................. 89 

3.4.5.1.1   Receiving a KeepAlive-GET-Request (Handshake) .................................... 89 
3.4.5.1.1.1   Handshake GET Response Processing ............................................... 90 
3.4.5.1.1.2   Sending a KeepAlive-GET-Response with Status code 400 .................. 90 

3.4.5.1.2   Receiving a KeepAlive-GET-Request for Application Data .......................... 90 
3.4.5.2   POST Session Processing ........................................................................... 91 

3.4.5.2.1   Receiving a KeepAlive-POST-Request (KeepAlive Handshake) ................... 92 
3.4.5.2.2   Receiving a KeepAlive-POST-Request with Application Data ...................... 92 
3.4.5.2.3   Sending a KeepAlive-POST-Response with Status code 200 ...................... 92 

3.4.5.2.3.1   Handshake POST Response Processing ............................................. 92 
3.4.5.2.3.2   Application Data POST Response Processing ..................................... 93 

3.4.5.2.4   Sending a KeepAlive-POST-Response with Status Code 400...................... 93 
3.4.6   KeepAlive Server Timer Events ........................................................................ 93 

3.4.6.1   ConnectionEstablishment Timer Event ......................................................... 93 
3.4.6.2   IdleConnection Timer ................................................................................ 93 
3.4.6.3   KeepAlive Timer Event .............................................................................. 94 

3.4.7   KeepAlive Server Other Local Events ................................................................ 94 
3.5   Polling Encapsulation Protocol Client Details ............................................................ 94 

3.5.1   Polling Client Abstract Data Model .................................................................... 94 
3.5.1.1   Connection State Information ..................................................................... 96 
3.5.1.2   Proxy State Information ............................................................................ 98 
3.5.1.3   Client State Information ............................................................................ 98 

3.5.2   Polling Client Timers ....................................................................................... 98 
3.5.2.1   ConnectionEstablishment Timer .................................................................. 98 
3.5.2.2   Network Receive IO Timer ......................................................................... 98 



9 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.5.2.3   Polling Encapsulation Timer........................................................................ 99 
3.5.3   Polling Client Initialization ............................................................................... 99 

3.5.3.1   Protocol Initialization ................................................................................. 99 
3.5.4   Polling Client Higher-Layer Triggered Events ..................................................... 100 

3.5.4.1   Establishing a Polling Encapsulation Connection ........................................... 100 
3.5.4.1.1   Establishing POST Session without Proxy............................................... 100 
3.5.4.1.2   Establishing POST Session with Proxy ................................................... 100 

3.5.4.2   Closing a Polling Connection ...................................................................... 101 
3.5.4.3   Sending Application Data .......................................................................... 101 

3.5.4.3.1   Sending Application Data without Proxy ................................................ 102 
3.5.4.3.2   Sending Application Data through a Proxy ............................................. 102 

3.5.5   Polling Client Message Processing Events and Sequencing Rules .......................... 103 
3.5.5.1   Polling-POST-Response Processing ............................................................. 103 

3.5.5.1.1   Status code: 200 (OK) ........................................................................ 103 
3.5.5.1.1.1   When ConnectionState is Connecting (last handshake response) ........ 103 
3.5.5.1.1.2   When ConnectionState is Established (Receiving Application Data) ..... 104 

3.5.5.1.2   Status code: 400 (Bad Request) .......................................................... 105 
3.5.5.1.2.1   When PostSessionState is Probing .................................................. 105 
3.5.5.1.2.2   All other PostSessionState States ................................................... 106 

3.5.5.1.3   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication 
Required) ......................................................................................... 106 

3.5.5.1.4   All Other Status Codes ........................................................................ 106 
3.5.5.1.5   Closing the POST Session .................................................................... 106 
3.5.5.1.6   Closing a Polling Connection because of Protocol Error ............................ 106 

3.5.6   Polling Client Timer Events ............................................................................. 106 
3.5.6.1   ConnectionEstablishment Timer Event ........................................................ 106 
3.5.6.2   NetworkReceiveIO Timer Event ................................................................. 107 
3.5.6.3   Polling Encapsulation Timer....................................................................... 107 

3.5.7   Polling Client Other Local Events ..................................................................... 107 
3.6   Polling Encapsulation Protocol Server Details .......................................................... 107 

3.6.1   Polling Server Abstract Data Model .................................................................. 107 
3.6.1.1   Connection State Information .................................................................... 107 

3.6.2   Polling Server Timers ..................................................................................... 108 
3.6.2.1   ConnectionEstablishment Timer ................................................................. 108 

3.6.3   Polling Server Initialization ............................................................................. 108 
3.6.3.1   Protocol Initialization ................................................................................ 108 
3.6.3.2   Polling Encapsulation Listener ................................................................... 108 

3.6.4   Polling Server Higher-Layer Triggered Events.................................................... 108 
3.6.4.1   Closing a Polling Connection ...................................................................... 108 
3.6.4.2   Closing a Polling Session .......................................................................... 108 
3.6.4.3   Sending Application Data .......................................................................... 109 

3.6.5   Polling Server Message Processing Events and Sequencing Rules ........................ 109 
3.6.5.1   Receiving a Polling-POST-Request (Initial Handshake Request) ..................... 109 

3.6.5.1.1   Sending a Polling-POST-Response with Status code 400 (Handshake) ....... 110 
3.6.5.2   Receiving a Polling-POST-Request (Last Handshake Request) ........................ 110 

3.6.5.2.1   Sending a Polling-POST-Response with Status code 200 (OK) .................. 110 
3.6.5.3   Receiving a Polling-POST-Request (After Handshake) ................................... 111 

3.6.6   Polling Server Timer Events ............................................................................ 112 
3.6.6.1   ConnectionEstablishment Timer Event ........................................................ 112 
3.6.6.2   Polling Encapsulation Timer....................................................................... 112 

3.6.7   Polling Server Other Local Events .................................................................... 112 
3.7   Secure Tunnel Encapsulation of SSTP Protocol Client Details .................................... 112 

3.7.1   Secure Tunnel Client Abstract Data Model ........................................................ 112 



10 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.7.1.1   Connection State Information .................................................................... 113 
3.7.1.2   Proxy State Information ........................................................................... 114 

3.7.2   Secure Tunnel Client Timers ........................................................................... 114 
3.7.2.1   ConnectionEstablishment Timer ................................................................. 114 
3.7.2.2   NetworkReceiveIO Timer .......................................................................... 114 
3.7.2.3   KeepAlive Timer ...................................................................................... 115 

3.7.3   Secure Tunnel Client Initialization.................................................................... 115 
3.7.3.1   Protocol Initialization ................................................................................ 115 
3.7.3.2   Secure Tunnel Listener Endpoints .............................................................. 115 
3.7.3.3   Timers Started ........................................................................................ 115 

3.7.4   Secure Tunnel Client Higher-Layer Triggered Events .......................................... 115 
3.7.4.1   Establishing a Secure Tunnel Encapsulation Connection ................................ 115 

3.7.4.1.1   Establishing a Secure Tunnel connection without proxy ........................... 115 
3.7.4.1.2   Establishing a Secure Tunnel connection with a proxy ............................. 116 

3.7.4.2   Closing a Secure Tunnel Connection ........................................................... 116 
3.7.4.3   Sending Application Data .......................................................................... 116 

3.7.5   Secure Tunnel Client Message Processing Events and Sequencing Rules ............... 116 
3.7.5.1   HTTP Response Processing ........................................................................ 116 

3.7.5.1.1   Status code: 200................................................................................ 117 
3.7.5.1.2   Status code: 400 (Bad Request) .......................................................... 117 
3.7.5.1.3   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication 

Required) ......................................................................................... 117 
3.7.5.1.4   All Other Status Codes ........................................................................ 117 

3.7.5.2   Application Data Processing ...................................................................... 117 
3.7.6   Secure Tunnel Client Timer Events .................................................................. 118 

3.7.6.1   ConnectionEstablishment Timer Event ........................................................ 118 
3.7.6.2   NetworkReceiveIO Timer Event ................................................................. 118 
3.7.6.3   KeepAlive Timer Event ............................................................................. 118 

3.7.7   Secure Tunnel Client Other Local Events .......................................................... 118 
3.8   Secure Tunnel Encapsulation of SSTP Protocol Server Details ................................... 118 

3.8.1   Secure Tunnel Server Abstract Data Model ....................................................... 118 
3.8.2   Secure Tunnel Server Timers .......................................................................... 118 

3.8.2.1   SSTP KeepAlive Timer .............................................................................. 118 
3.8.3   Secure Tunnel Server Initialization .................................................................. 119 

3.8.3.1   Secure Tunnel Encapsulation Listener ......................................................... 119 
3.8.4   Secure Tunnel Higher-Layer Triggered Events ................................................... 119 
3.8.5   Secure Tunnel Server Message Processing Events and Sequence Rules ................ 119 
3.8.6   Secure Tunnel Server Timer Events ................................................................. 119 
3.8.7   Secure Tunnel Server Other Local Events ......................................................... 119 

3.9   SOCKS Encapsulation of SSTP Protocol Client Details .............................................. 119 
3.9.1   SOCKS Client Abstract Data Model ................................................................... 119 

3.9.1.1   Connection State Information .................................................................... 120 
3.9.1.2   Proxy State Information ........................................................................... 121 

3.9.2   SOCKS Client Timers ..................................................................................... 121 
3.9.2.1   ConnectionEstablishment Timer ................................................................. 121 
3.9.2.2   NetworkReceiveIO Timer .......................................................................... 121 
3.9.2.3   KeepAlive Timer ...................................................................................... 121 

3.9.3   SOCKS Client Initialization .............................................................................. 122 
3.9.3.1   SOCKS Protocol Initialization ..................................................................... 122 

3.9.4   SOCKS Client Higher-Layer Triggered Events .................................................... 122 
3.9.4.1   Establishing a SOCKS Encapsulation Connection .......................................... 122 

3.9.4.1.1   Establishing a SOCKS Encapsulation Connection ..................................... 122 
3.9.4.2   Closing a SOCKS Connection ..................................................................... 122 



11 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.9.4.3   Sending Application Data .......................................................................... 123 
3.9.5   SOCKS Client Message Processing Events and Sequencing Rules ......................... 123 

3.9.5.1   SOCKS Connection Negotiation Processing .................................................. 123 
3.9.5.1.1   Version Identifier Response ................................................................. 123 
3.9.5.1.2   Connect Request ................................................................................ 124 
3.9.5.1.3   Connect Response .............................................................................. 124 

3.9.5.2   Application Data Processing ...................................................................... 124 
3.9.6   SOCKS Client Timer Events ............................................................................ 124 

3.9.6.1   ConnectionEstablishment Timer Event ........................................................ 124 
3.9.6.2   NetworkReceiveIO Timer Event ................................................................. 125 
3.9.6.3   KeepAlive Timer Event ............................................................................. 125 

3.9.7   SOCKS Client Other Local Events ..................................................................... 125 
3.10   SOCKS Encapsulation of SSTP Protocol Server Details ........................................... 125 

3.10.1   SOCKS Server Abstract Data Model ................................................................ 125 
3.10.2   SOCKS Server Timers .................................................................................. 125 
3.10.3   SOCKS Server Initialization ........................................................................... 125 
3.10.4   SOCKS Server Higher-Layer Triggered Events ................................................. 125 
3.10.5   SOCKS Server Message Processing Events and Sequencing Rules ...................... 125 
3.10.6   SOCKS Server Timer Events ......................................................................... 126 
3.10.7   SOCKS Server Other Local Events.................................................................. 126 

4   Protocol Examples ................................................................................................ 127 
4.1   HTTP LongLived Encapsulation Examples ............................................................... 127 
4.2   HTTP KeepAlive Encapsulation Examples ................................................................ 129 
4.3   HTTP Polling Encapsulation Examples .................................................................... 134 
4.4   Secure Tunnel Proxy Protocol Examples ................................................................. 142 
4.5   SOCKS Proxy ..................................................................................................... 142 
4.6   Proxy Authentication using NTLM Example ............................................................. 143 

5   Security ................................................................................................................ 147 
5.1   Security Considerations for Implementers .............................................................. 147 
5.2   Index of Security Parameters ............................................................................... 147 

6   Appendix A: Product Behavior .............................................................................. 148 

7   Change Tracking................................................................................................... 159 

8   Index ................................................................................................................... 160 



 

12 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

1   Introduction 

This document specifies protocols and methodologies to route Simple Symmetric Transport Protocol 
(SSTP) through firewalls and proxies. SSTP is defined separately in the Simple Symmetric Transport 
Protocol (SSTP). These protocols and methods are used to traverse firewalls and proxy servers. 
Multiple protocols are necessary because no one protocol is capable of traversing all firewalls and 
proxy configurations, because of lack of standards, different implementation characteristics and 
different transport restrictions common to various firewall and proxy implementations. 

The protocols defined in this specification are: 

LongLived Encapsulation Protocol 

KeepAlive Encapsulation Protocol 

Polling Encapsulation Protocol 

These three protocols use different forms of HTTP encapsulation and collectively referred to as the 

HTTP Encapsulation protocols. 

Also, the use of two tunneling protocols is described: 

Secure Tunnel Proxy Protocol  

SOCKS Protocol  

Collectively, these protocols are known as the HTTP Encapsulation of SSTP protocols. 

The focus of this document is the encapsulation of the SSTP protocol, but these protocols could 
encapsulate any protocol. 

The LongLived, KeepAlive and Polling encapsulation protocols provide an alternative transport 
mechanism to TCP for encapsulating SSTP protocols within HTTP. Using HTTP as a transport allows 
SSTP application data to seamlessly traverse firewalls and proxies. This is accomplished by wrapping 

SSTP commands inside of HTTP messages. The main benefit of HTTP encapsulation is that it makes 
it possible to route data across network topologies that allow HTTP communications that require 
little or no network configuration changes. 

The Secure Tunnel Proxy Protocol and SOCKS Protocol are proxy negotiation protocols based on 

Internet standard protocols that use TCP as a transport. The benefit of using these industry 
standard protocols is to allow the SSTP data stream to tunnel through firewalls and proxies. The 
Secure Tunnel Proxy uses an HTTP protocol, intended for use by SSL, to negotiate a secure tunnel 
through an HTTP proxy. The SOCKS protocol uses a binary protocol commonly implemented by 
HTTP servers. 

Firewall traversal is accomplished using LongLived, KeepAlive and Polling encapsulation protocols 

without proxy negotiation. These protocols enable end-to-end communication through firewalls that 
inspect HTTP traffic or block non-port 80 traffic. 

Proxy traversal is accomplished using any of the protocols defined in this specification. These 

protocols provide a proxy negotiation mechanism. When a proxy is traversed for SSTP 
communication, clients first establish a connection to a proxy. Proxy negotiation includes a message 
exchange between client and proxy that includes the target servers name and port number. The 
proxy then establishes a TCP connection with the target server on the specified port. After 

successfully negotiating the proxy connection, the proxy transfers the application data between the 
client and target server. Proxies do not do OSI model Level 3 routing as do firewalls. Instead, data 
is transferred across two TCP connections at the application layer. For additional security, proxies 



 

13 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

commonly support proxy authentication which introduces additional headers and message 
exchanges as part of proxy negotiation. 

Clients commonly attempt proxy access serially and use the first encapsulation method that 
succeeds. This specification documents each of these protocols in detail in subsequent sections. 

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD, 
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also 
normative but cannot contain those terms. All other sections and examples in this specification are 
informative. 

1.1   Glossary 

The following terms are defined in [MS-GLOS]: 

firewall rule 
fully qualified domain name (FQDN) 
HTTP proxy 

Hypertext Transfer Protocol (HTTP) 
Secure Sockets Layer (SSL) 
Transmission Control Protocol (TCP) 

tunnel 

The following terms are defined in [MS-OFCGLOS]: 

basic authentication scheme 
connection 
endpoint 
HTTP encapsulation 
Internet Assigned Numbers Authority (IANA) 

keepalive message 
session 
Simple Symmetric Transport Protocol (SSTP) 
SOCKS proxy 

The following terms are specific to this document: 

access protocols: A set of protocols that are supported by proxies to enable protocol clients and 
protocol servers to communicate with and share proxy services. A single proxy can support 

multiple proxy protocols, such as an HTTP proxy that is configured to support HTTP with proxy 
headers, secure tunnel proxy, and SOCKS. 

timeout: An integer value, measured in seconds, that indicates the duration of an instance of 
session data. 

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as 
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or 

SHOULD NOT. 

1.2   References 

References to Microsoft Open Specifications documentation do not include a publishing year because 
links are to the latest version of the technical documents, which are updated frequently. References 
to other documents include a publishing year when one is available. 

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317


 

14 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

1.2.1   Normative References 

We conduct frequent surveys of the normative references to assure their continued availability. If 
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We 

will assist you in finding the relevant information. Please check the archive site, 
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an 
additional source. 

[ISO/IEC 7498-1:1994] International Organization for Standardization, "Information technology -- 
Open Systems Interconnection -- Basic Reference Model: The Basic Model", ISO/IEC 7498-1:1994, 
June 1996, 
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=20269 

[MS-GRVSSTP] Microsoft Corporation, "Simple Symmetric Transport Protocol (SSTP)". 

[MS-GRVSSTPS] Microsoft Corporation, "Simple Symmetric Transport Protocol (SSTP) Security 
Protocol". 

[RFC1123] Braden, R., "Requirements for Internet Hosts - Application and Support", STD 3, RFC 
1123, October 1989, http://www.ietf.org/rfc/rfc1123.txt 

[RFC1928] Leech, M., Ganis, M., Lee, Y., et al., "SOCKS Protocol Version 5", RFC 1928, March 1996, 

http://www.rfc-editor.org/rfc/rfc1928.txt 

[RFC1929] Leech, M., "Username/Password Authentication for SOCKS V5", RFC 1929, March 1996, 
http://www.rfc-editor.org/rfc/rfc1929.txt 

[RFC1945] Berners-Lee, T., Fielding, R., and Frystyk, H., "Hypertext Transfer Protocol -- HTTP/1.0", 
RFC 1945, May 1996, http://www.ietf.org/rfc/rfc1945.txt 

[RFC2068] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC 
2068, January 1997, http://www.ietf.org/rfc/rfc2068.txt 

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt 

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., et al., "HTTP Authentication: Basic and Digest 
Access Authentication", RFC 2617, June 1999, http://www.ietf.org/rfc/rfc2617.txt 

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI): 
Generic Syntax", STD 66, RFC 3986, January 2005, http://www.ietf.org/rfc/rfc3986.txt 

[RFC4559] Jaganathan, K., Zhu, L., and Brezak, J., "SPNEGO-based Kerberos and NTLM HTTP 

Authentication in Microsoft Windows", RFC 4559, June 2006, http://www.ietf.org/rfc/rfc4559.txt 

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD 
68, RFC 5234, January 2008, http://www.rfc-editor.org/rfc/rfc5234.txt 

[TCPPROXY] Luotonen, A., "Tunneling TCP based protocols through Web proxy servers", February 
1998, http://tools.ietf.org/html/draft-luotonen-web-proxy-tunneling-00 

1.2.2   Informative References 

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary". 

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary". 

mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=114764
%5bMS-GRVSSTP%5d.pdf
%5bMS-GRVSSTPS%5d.pdf
%5bMS-GRVSSTPS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90268
http://go.microsoft.com/fwlink/?LinkId=113494
http://go.microsoft.com/fwlink/?LinkId=114954
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90310
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90483
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=113488
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf


 

15 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

[RFC1961] McMahon, P., "GSS-API Authentication Method for SOCKS Version 5", RFC 1961, June 
1996, http://www.rfc-editor.org/rfc/rfc1961.txt 

[RFC2459] Housley, R., Ford, W., Polk, W., and Solo, D., "Internet X.509 Public Key Infrastructure 
Certificate and CRL Profile", RFC 2459, January 1999, http://www.ietf.org/rfc/rfc2459.txt 

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC 
2616, June 1999, http://www.ietf.org/rfc/rfc2616.txt 

[RFC3143] Cooper, I., and Dilley, J., "Known HTTP Proxy/Caching Problems", RFC 3143, June 2001, 
http://www.rfc-editor.org/rfc/rfc3143.txt 

[RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981, 
http://www.ietf.org/rfc/rfc0793.txt 

[SSL3] Netscape, "SSL 3.0 Specification", http://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00 

If you have any trouble finding [SSL3], please check here. 

[SSLPROXY] Luotonen, A., "Tunneling SSL Through a WWW Proxy", March 1997, 
http://tools.ietf.org/html/draft-luotonen-ssl-tunneling-03 

1.3   Protocol Overview (Synopsis) 

Hypertext Transfer Protocol (HTTP), as described in [RFC1945], is both an application layer 

protocol and a transport. HTTP facilitates communication between clients and servers over multi-tier 
network architectures that use firewalls and proxies. 

Firewalls allow a client and server to communicate directly with one another as long as they use a 
protocol that has been explicitly allowed by the firewall rules. Firewalls are used to enforce 
corporate policies and can inspect HTTP payload content. Firewalls typically limit protocol use using 
two main schemes. The first is based on limiting the destination machines to well-known port 
addresses. The second scheme inspects the packets flowing over a TCP [RFC793]  connection (1) 

to validate that the connection is sending packets that are legal for the specified protocol and for the 

defined firewall policies. Firewalls are generally not detectable. 

Proxies typically provide value-added services, such HTML caching, authentication, and auditing 
services. Using a layered approach, a proxy works in concert with the firewall to provide and enforce 
protocol specific rules. In the OSI model described in [ISO/IEC 7498-1:1994], proxies route traffic 
Layer 7, the application layer. The impact of Layer 7 routing is that proxies introduce a tiered 
architecture, and the proxy requires an extra hop for all client-server traffic. There are many 

different proxy types and access protocols, especially for HTTP. Firewall architectures typically use 
a small subset of the available proxy access protocols. 

HTTP uses the Transmission Control Protocol (TCP) as its underlying transport. Clients establish 
TCP connections with servers listening on the well-known TCP port 80. Port 80/TCP is the default 
port assigned to HTTP by the Internet Assigned Numbers Authority (IANA). See the following 
figure. 

http://go.microsoft.com/fwlink/?LinkId=113495
http://go.microsoft.com/fwlink/?LinkId=90356
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=113496
http://go.microsoft.com/fwlink/?LinkId=90493
http://go.microsoft.com/fwlink/?LinkId=90534
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=90535
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90300
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90493
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=114764
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf


 

16 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 1: Firewall infrastructure 

Depending on the network infrastructure, clients can be blocked from establishing communication 
directly with servers. Within such infrastructures, firewalls and proxies can provide the only means 
of communication with a remote server. If a client is unable to communicate directly with a server 
and instead tries to establish communication with the server via a proxy, it first opens a TCP 

connection with the proxy using the proxy’s well known port. The client then exchanges information 

about the target server with the proxy, such as its fully qualified domain name (FQDN), IP 
address, and port number. Upon successful completion of the proxy negotiation handshake, the 
proxy opens a TCP connection with the target server on behalf of the client. Target servers typically 
have no knowledge that they are communicating with a client via a proxy. Ports 80/TCP and 
8080/TCP are IANA assigned ports for HTTP. The IANA ports for Secure Sockets Layer (SSL) and 
SOCKS proxy are 443/TCP and 1080/TCP respectively. The preceding figure and the following 

figure show typical firewall and proxy configurations. 

 

Figure 2: Firewall and proxy infrastructure 

There are two HTTP versions in wide use today, HTTP 1.0 [RFC1945] and HTTP 1.1 [RFC2068]. 
HTTP encapsulation of Simple Symmetric Transport Protocol (SSTP) is based on HTTP 1.0 
because of firewall and proxy traversal dependencies. HTTP 1.0 was chosen because it provides the 
widest degree of compatibility, which maximizes the chances of establishing an SSTP connection. 

HTTP encapsulation of SSTP is designed to specifically encapsulate SSTP. SSTP is documented 
separately in [MS-GRVSSTP]. SSTP uses TCP as its default transport. A single SSTP connection is 

layered on a single TCP connection. SSTP allows multiple SSTP sessions to flow between clients and 
servers. Each session represents an independent communication path between two resources. See 
the following figure. 

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90310
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-GRVSSTP%5d.pdf
%5bMS-OFCGLOS%5d.pdf


 

17 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 3: Relationship of SSTP connections and sessions 

SSTP message data is optionally encrypted by application level protocols using SSTP as a transport. 
SSTP authentication is provided by SSTP security, a security sub-protocol of SSTP, which is 

documented separately in [MS-GRVSSTPS]. 

HTTP encapsulation of SSTP specifies how an SSTP client and server communicate with one another 
across a network boundary that prevents direct SSTP connectivity on the default 2492/TCP port 

used by SSTP. These protocols are used when the SSTP protocol fails to establish end-to-end 
connectivity with a server. This document defines multiple protocols that can be used to navigate 
through firewalls and proxies. Some protocols, such as Secure Tunnel and SOCKS, negotiate 

connections with proxies to allow SSTP data to pass through firewalls and proxies. These protocols 
essentially tunnel though intervening firewalls and proxies. Other protocols, such as the HTTP 
encapsulation protocols, replace the TCP transport with HTTP, to provide a reliable full-duplex 
connection-oriented stream, using only the HTTP protocol as a transport. Because proxy 
implementations vary widely, a suite of HTTP encapsulation protocols are defined to overcome 
common firewall and proxy restrictions. 

These protocols deploy a variety of encapsulation and tunneling techniques to route SSTP across a 

network boundary that only allows HTTP traffic. These transports are less efficient than SSTP over 
TCP for a number of reasons, such as the extra proxy hop and overhead required for HTTP 
encapsulation and connection management. 

There are three HTTP encapsulation protocols: LongLived, KeepAlive, and Polling and two tunneling 
protocols, Secure Tunnel and SOCKS. Each of these protocols is optimized for different proxy 
architectures. The following table summarizes the various transports supporting SSTP connections.  

Client and 

Server 

Protocols Functions 

Listening Ports 

Used 

SSTP Used by clients and servers to transport SSTP messages. 

Firewall Traversal: Requires firewall rule to allow SSTP Port 
2492/TCP. 

Proxy Traversal: None. 

Servers default well 
known port: 
2492/TCP 

SSTP over SSL 
Port 

Used by clients to transport SSTP messages to servers when 
port 2492/TCP is blocked by a firewall/proxy. Uses alternate 

SSTP port. 

Firewall Traversal: Requires firewall rule to allow SSL Port 
443/TCP. 

Proxy Traversal: None. 

To Proxy SSTP over the SSL Port see Secure Tunnel Proxy 
Protocol. 

Comments: Supports direct connections between client and 

Servers default well 
known port: SSL 

443/TCP 

%5bMS-GRVSSTPS%5d.pdf
%5bMS-GLOS%5d.pdf


 

18 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Client and 

Server 

Protocols Functions 

Listening Ports 

Used 

server on the SSL port. Data stream is SSTP protocol 
messages; no SSL protocol is used. 

Secure Tunnel 
Proxy  

Used by clients to transport SSTP messages to servers when 
port 2492/TCP is blocked by a firewall/proxy. Uses HTTP 
proxy. 

Firewall Traversal: See SSTP over SSL Port. 

Proxy Traversal: Requires HTTP Connect Method negotiation 
with proxy. Also requires a firewall rule to allow traffic 
originating from the proxy with destination port of 443/TCP. 

Comments: Proxy negotiation message exchange is followed 
by SSTP command data stream with no additional HTTP or SSL 
framing. Servers do not detect that connection is with proxy. 

HTTP proxy default 
well known port: 
SSL 443/TCP 

Servers default well 
known port: 
443/TCP 

SOCKS Used by clients to transport SSTP messages to servers when 
port 2492/TCP is blocked by a firewall or proxy. Uses SOCKS 
protocol [RFC1928] to pass through firewalls and proxies. 

Firewall Traversal: Requires firewall rule to allow SOCKS 
Port 1080/TCP. 

Proxy Traversal: Requires SOCKS proxy message exchange. 
Also requires a firewall rule to allow traffic originating from the 
proxy with destination port of 2492/TCP. 

Comments: Proxy negotiation message exchange is followed 
by SSTP command data stream with no additional SOCKS 
specific messages. Servers do not detect that connection is 
with proxy. 

SOCKS proxy well 
known port: 
1080/TCP 

Servers default well 
known port SSTP: 
2492/TCP 

HTTP 
Encapsulation of 
SSTP 

Used by clients to transport SSTP messages to servers when 
port 2492/TCP is blocked by a firewall or proxy. Used as an 
HTTP transport to encapsulate SSTP messages. 

Firewall Traversal: Requires a firewall rule to allow HTTP 
Port 80/TCP. 

Proxy Traversal: Supports proxy traversal through 
encapsulation of SSTP within HTTP requests and responses. 
Also requires firewall rule to allow traffic originating from the 
proxy with destination port of 80/TCP. 

Comments: SSTP data stream is encapsulated using one of 
the following HTTP encapsulation protocols: LongLived, 
KeepAlive, Polling. Servers do not detect that connection is 
with proxy. 

HTTP proxy default 
well known port: 
80/TCP 

HTTP proxy 
alternate well 
known: port 
8080/TCP 

Servers default well 
known port: 
80/TCP 

1.3.1   HTTP Encapsulation Protocols 

This document defines three HTTP encapsulation protocols, LongLived, KeepAlive and Polling. Each 
of these HTTP encapsulation protocols is designed to replace TCP as the transport for SSTP. Multiple 
encapsulation protocols exist because of different proxy implementations and lack of proxy 

standards. All of the HTTP encapsulated connections specified in this document are designed to 

traverse firewalls and HTTP proxies. 

These encapsulation protocols are used to navigate firewalls and proxies when both are working 
together. When allowed by firewall rules, these encapsulation protocols can be used to connect 
directly to a target server on port 80/TCP. If a direct connection to the target server is blocked by a 
firewall, these encapsulation protocols can be used to traverse an HTTP proxy. The server listens on 

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113494


 

19 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

the well-known HTTP port 80/TCP. The HTTP proxy typically listens on the well-known HTTP port 
80/TCP or the alternate well known port 8080/TCP. 

SSTP is the preferred protocol for client and server communication because it avoids the overhead 
associated with HTTP encapsulation of SSTP. HTTP Encapsulation of SSTP protocols are adaptable to 

various types of network topologies that block SSTP traffic on 2492/TCP. Because the encapsulation 
protocols are optimized for different network topologies, each protocol has its own advantages and 
constraints. This adaptability comes with the cost of additional protocol overhead, in the form of 
additional headers, message exchanges and connection management. For performance reasons, 
described in section 1.3.4, HTTP encapsulation   connections are used when direct SSTP connections 
to a server are blocked and when both Secure Tunnel and SOCKS proxy connections fail. 

1.3.1.1   HTTP LongLived Encapsulation Connections 

LongLived Encapsulation Protocol is an HTTP based protocol used for firewall and proxy traversal. It 
provides an HTTP transport which can also negotiate and authenticate with HTTP proxies. LongLived 
Encapsulation is designed to specifically be used with HTTP proxies that do not buffer inbound or 
outbound proxy traffic. Proxies that buffer data can have a negative impact on the performance of 

the LongLived protocol. Proxy data buffering is designed to be efficient for typical HTTP 

request/response exchanges. Buffering is an efficient mechanism for proxies that support a large 
number of connections. Proxy buffering can cause problems for clients using the LongLived protocol 
because it streams a large amount of data within each HTTP request and response message. Proxy 
buffering introduces network latency and can cause network IO stalls. Stalls occur because an 
application processing SSTP commands on one session block waiting for related SSTP commands to 
arrive on the other session. If the delay caused by the application reaches a response timeout 
threshold, a LongLived client will terminate the connection.  

LongLived Encapsulation of SSTP uses two half-duplex sessions, a GET session and a POST session, 
to support the full-duplex requirements of SSTP. The POST session is used by the client to send data 
to the server while the GET session is used by the server to send data to the client. Together these 
sessions provide a single full-duplex LongLived connection, which supports a single SSTP 
Connection. See the following figure. 

 

Figure 4: LongLived Encapsulation connection 

LongLived protocol information is described as part of the URI [RFC3986]. The client sends an 
Encapsulation-Echo-String on the POST session, which the server echoes back to the client on the 

GET session. The LongLived handshake uses the Encapsulation-Echo-String to test for short 

timeouts common with proxies that are caching. Proxies that use short timeouts when caching close 
the TCP connection before the Encapsulation-Echo-String has a chance to complete a round trip. No 
application data is sent or received until after the Encapsulation-Echo-String round trip to avoid 
flushing the proxy caches, thereby defeating the short timeout test.  

http://go.microsoft.com/fwlink/?LinkId=90453


 

20 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Each session can send approximately 2 gigabytes (0x7ffff000 bytes) of data, as specified in the 
content length header on the initial GET and POST requests. This allows each endpoint (3) to 

independently send up to 0x7ffff000 (2147479552 decimal) octets of data per session. Each session 
carries one large GET response or POST request with the encapsulated data streaming within the 

entity body of the corresponding GET response or POST request.  

The following figure shows how the GET response and POST request are issued as part of the HTTP 
LongLived Encapsulation connection establishment.  

 

Figure 5: HTTP LongLived Encapsulation message exchange 

When a GET response or POST request reaches its content length limit, the client and server closes 
the session and physical TCP connection. The client opens a new LongLived connection, and new 
GET response or POST request are issued on the session. This process repeats each time a 
request/response reaches the specified content length limit. 

1.3.1.2   HTTP KeepAlive Encapsulation Connections 

KeepAlive Encapsulation Protocol is an HTTP-based protocol used for firewall and proxy traversal. It 
provides an HTTP transport that also allows authentication with HTTP proxies. KeepAlive 
encapsulation is designed to be used with HTTP servers and proxies that support persistent 
connections. KeepAlive connections provide acceptable performance when used with some proxies 
that buffer inbound and outbound traffic and support persistent connections. 

KeepAlive encapsulation uses more frequent HTTP request and response message exchanges to 
traverse proxies that do not allow LongLived encapsulation connections because of proxy buffering. 

Multiple request and response messages are sent over the wire, with only a single request or 
response outstanding at a time, on each session. KeepAlive encapsulation of SSTP uses two half-
duplex sessions, GET and POST, to support the full-duplex requirements of SSTP. Each session is a 
separate TCP connection which, when combined, provide a virtual KeepAlive connection. The POST 
session is used by the client to send data to the server while the GET session is used by the server 

%5bMS-OFCGLOS%5d.pdf


 

21 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

to send data to the client. Together these sessions provide a single full-duplex KeepAlive connection, 
which supports a single SSTP Connection. See the following figure. 

 

Figure 6: HTTP KeepAlive connection 

GET and POST request and response messages are issued independently of one another, each on its 
own session. The KeepAlive encapsulation protocol sends many requests and responses over the 
same session. 

Each request or response that contains data has a chunk of the SSTP data stream encapsulated in 
an HTTP entity body, and is sent on the GET/POST session. When the request and response 

message exchange is complete, the next chunk of the SSTP data stream is sent. In this context, a 
chunk is a buffer’s worth of data, where the buffer size is implementation-defined. The POST and 
GET sessions are dependent on one another, which means that an SSTP command request can be 
sent across one session and the SSTP command response can flow across the other session. The 
following figure illustrates the KeepAlive encapsulation message flow. 

HTTP KeepAlive encapsulation of SSTP uses the HTTP 1.0 Connection request header with the 

KeepAlive connection token, as described in [RFC2068], section 19.7.1. The Connection header, 
which is the persistent connection extension described in [RFC2068], is not part of the original HTTP 
1.0 specification, and is not necessarily honored by all proxies [RFC3143]. 

If the POST session is closed because of a TCP disconnect, the client is capable of re-opening the 
POST session and re-binding it to the existing KeepAlive connection. This ability is asymmetrical, 
and does not apply to the GET session. If the GET session is closed, the client tears down the 
KeepAlive connection. The client can open a new KeepAlive connection if desired. 

http://go.microsoft.com/fwlink/?LinkId=90310
http://go.microsoft.com/fwlink/?LinkId=90310
http://go.microsoft.com/fwlink/?LinkId=113496


 

22 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 7: HTTP KeepAlive Encapsulation message flows 

1.3.1.3   HTTP Polling Encapsulation Connections 

The Polling Encapsulation Protocol is an HTTP based protocol for firewall and proxy traversal. It 
provides an HTTP transport which can also negotiate and authenticate with HTTP proxies. Polling 
Encapsulation is designed to interoperate with the widest possible range of proxy implementations. 
However with this ubiquity comes the cost of performance.  

Polling Encapsulation of SSTP differs from the previous HTTP encapsulation protocols in that it uses 

a single session. A Polling Encapsulation connection is virtualized across many short lived POST 
request/responses, where each request/response pair of messages uses a separate TCP connection. 
See the following figure. 



 

23 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 8: HTTP polling connection 

POST requests for an encapsulated connection are associated using a virtual connection identifier. 
These requests are used by the client to send data to the server while POST responses are used by 
the server to send data to the client. A new POST request is sent only after the previous POST 

response is received.  

Polling requests use a simple URI [RFC3986] and a minimum number of request headers. Virtual 
connection information is sent on every request and response. This virtual connection information is 

embedded in the entity body, preceding the encapsulated messages. The content length header 
includes the length of virtual connection information as well as the length of the application data 
(SSTP data stream chunk). The Polling session uses traditional HTTP request/response semantics 
which means that the session operates in a half-duplex mode. The server can only send data to the 
client on a POST response, which requires that the client has issued a POST request. The other 
encapsulation protocols specified in this document are full-duplex. This half-duplex constraint on 

Polling Encapsulation means the client and server communication streams cannot operate 
independently of one another. To allow a full-duplex protocol such as SSTP to communicate over 
this half-duplex session, a polling model is required. Polling solves the challenge of how the server 
sends a message to the client when the client has no messages to send to the server. In the case 
where the client has no data to send to the server, the client periodically polls the server via a POST 
request. This polling request allows the server to send data to the client on the POST response. The 

following figure shows the Polling Encapsulation message flow. 

http://go.microsoft.com/fwlink/?LinkId=90453


 

24 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 9: HTTP Polling Encapsulation message flow 

1.3.2   Secure Tunnel Connections 

The Secure Tunnel Proxy Protocol, also known as the SSL Tunnel Protocol [SSLPROXY], is an 
internet draft standard described in Secure Tunnel Proxy Protocol [TCPPROXY]. It was originally 

designed to allow SSL traffic through an HTTP proxy and uses the well-known port 443/TCP. SSL 
requires a tunnel because traffic is encrypted. Without a tunnel the HTTP proxy would need the 
client’s and server’s X.509 keys [RFC2459] to decrypt and parse the SSL stream, which would 
weaken the security of the system. The Secure Tunnel Proxy Protocol  solves this problem by using 

the HTTP Connect Method [RFC1945] for proxy negotiation. The initial handshake negotiates a 
tunnel connection with the proxy, before the stream in encrypted. A Secure Tunnel handshake 
[TCPPROXY], section 3.1, stipulates that once the handshake is finished, all subsequent data is to be 

ignored by the proxy, with the intent that all data after the plaintext handshake is SSL encrypted. 
From this point onward the Secure Tunnel Proxy Protocol simply proxies the application data stream 

http://go.microsoft.com/fwlink/?LinkId=90535
http://go.microsoft.com/fwlink/?LinkId=113488
http://go.microsoft.com/fwlink/?LinkId=114439
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=113488


 

25 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

between the client and server. This specification substitutes an SSTP data steam for the SSL data 
stream after completion of the Secure Tunnel handshake. 

The Secure Tunnel Proxy Protocol has evolved over time to become a general purpose tunnel 
mechanism for permitting non-HTTP protocols, such as SSTP, to traverse an HTTP proxy. The 

following figure shows this tunnel mechanism. The Secure Tunnel Proxy can listen on any port while 
the Connect Method allows clients to select any target port on the remote server. The application 
data that follows the Connection Method handshake can be an SSL data stream or any data stream. 
SSL encryption is optional, but some Secure Tunnel Proxy implementations still attempt to validate 
the presence of an SSL handshake within the data stream to provide increased security.  

 

Figure 10: Relationship of SSTP connections/sessions and Secure Tunnel Proxy 
handshake 

In this specification a Secure Tunnel connection is used to explicitly traverse firewall and proxies 
where direct connections are not possible. Although the Secure Tunnel handshake uses HTTP, the 
application data following the Secure Tunnel proxy protocol handshake contains the SSTP data 
stream. The SSTP data stream is possible because the proxy treats all data following the handshake 
as SSL data which implicitly cannot be decrypted. The SSTP data stream does not need the added 

security provided by SSL because it has already been authenticated by SSTP Security [MS-
GRVSSTPS] and encrypted and integrity protected by the SSTP application layer.  

During the Secure Tunnel connection handshake, the client specifies the server’s well known port 
443/TCP. Although the SSTP 2492/TCP port could have been specified, port 443/TCP is used in favor 
of 2492/TCP to avoid firewall and proxy configurations that block the Secure Tunnel Proxy 
connections on ports other than 443/TCP. Although the secure tunnel connection uses port 443/TCP, 

which is the well-known SSL port, the connection does not use the SSL protocol and the server does 
not support the SSL handshake on the port. 

A server has no knowledge that it is communicating with a Secure Tunnel Proxy. Meanwhile the 
Secure Tunnel Proxy has no knowledge that it is communicating using the SSTP Protocol [MS-
GRVSSTP].  

A variant of the Secure Tunnel Proxy Protocol is used by the client for direct end-to-end 
communication when no intermediate proxy is involved. The client connections to the server use the 

well-known SSL 443/TCP port to send and receive SSTP protocol messages. In this case, the client 
requires that the server’s SSL Tunnel listener does not support SSL handshake or SSL messages. 

The client requires that the SSL listener is essentially the same as the SSTP listener except it uses 
the SSL port. This mode is referred to as SSTP over SSL, which defines a technique, not a protocol. 

%5bMS-GRVSSTPS%5d.pdf
%5bMS-GRVSSTPS%5d.pdf
%5bMS-GRVSSTP%5d.pdf
%5bMS-GRVSSTP%5d.pdf


 

26 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

1.3.3   SOCKS Connections 

The SOCKS proxy is an internet standard as described in SOCKS Protocol Version 5 [RFC1928]. 
SOCKS is designed to be a general purpose application proxy which is also known as a circuit level 

proxy. SOCKS uses its own binary protocol, which is not based on HTTP. The SOCKS protocol allows 
any application that supports the SOCKS protocol to negotiate proxy connections. A SOCKS 
connection works similar to a Secure Tunnel Connection, where there is a proxy negotiation 
handshake followed by the application data stream. From this point forward the SOCKS proxy 
transfers the application data stream between the client and server. The following figure shows this 
connection.  

The SOCKS Protocol is designed to provide an application neutral proxy protocol for firewall and 

proxy traversal. SOCKS provides a proxy traversal handshake so tunneled application protocols can 
negotiate and authenticate with SOCKS proxies. SOCKS connections are NOT used for direct end-to-
end communications. Rather, they are used for proxy traversal only. The application data stream 
following the SOCKS handshake is application defined; in this specification the application data is the 
SSTP data stream. During the SOCKS handshake, the client specifies the server’s FQDN and the 
SSTP well known port 2492/TCP on the SOCKS Connect request [RFC1928], section 4. Using the 

connection information that is provided, the SOCKS proxy establishes an SSTP connection with the 
target server on the well-known port 2492/TCP. This is shown in the following figure. 

 

Figure 11: Relationship of SSTP connections/sessions and SOCKS handshake 

The target server does not take part in the SOCKS handshake as the handshake is carried out only 

between the client and SOCK proxy. SOCKS connections persist for the life of the encapsulated 
protocol connection.  

1.3.4   Performance Considerations 

Secure Tunnel and SOCKS are the best performing protocols within the HTTP encapsulation of SSTP 
suite of protocols. They incur minimum handshake overhead during connection establishment. They 

use TCP as the transport and incur no additional per-message overhead transferring the application 
data. A SOCKS or Secure Tunnel Proxy connection is created for the life of the SSTP connection. 
Discounting the extra hop through a proxy, the SOCKS and Secure Tunnel Proxy Protocols provide 
an efficient conduit for SSTP data. Except for the proxy handshake that occurs just before SSTP 
connection establishment, there is no protocol overhead when using the SOCKS or Secure Tunnel 

Proxy Protocol. 

LongLived encapsulation of SSTP is the most efficient of the HTTP encapsulation protocols. 

LongLived uses two TCP connections bound into one virtual LongLived encapsulation connection. 
Large content lengths allow this protocol to stream application data across both sessions with low 
protocol overhead. Because it is common for SSTP connections to transfer less than the specified 
content length of data, there is often no need to create subsequent LongLived connections. Except 

http://go.microsoft.com/fwlink/?LinkId=113494
http://go.microsoft.com/fwlink/?LinkId=113494


 

27 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

for the requirement of two TCP connections per LongLived connection, LongLived encapsulation 
introduces minimal overhead. 

KeepAlive is less efficient than LongLived encapsulation, because of an increased framing overhead. 
There are two main reasons why KeepAlive connections introduce more overhead than LongLived 

connections. First, KeepAlive encapsulation breaks the application data into small pieces where each 
chunk is encapsulated within an HTTP request. As a result, HTTP headers take up a larger 
percentage of the connection’s throughput. The second reason is latency; KeepAlive encapsulation 
allows only one outstanding request per session. Each request waits for the corresponding HTTP 
response before issuing a new request. HTTP-persistent connections provide a performance boost by 
reducing the TCP connection overhead, which would otherwise be required for every new request.  

HTTP polling encapsulation is the least efficient of all the encapsulation protocols. When other 

encapsulation protocols fail because of individual firewall and proxy implementations, polling 
encapsulation often succeeds because of its traditional HTTP request and response semantics and 
connection behavior. There are three main sources of polling inefficiencies. First, polling 
encapsulation requires each new HTTP request or response to be a new TCP connection, which 
implies that TCP connections are established before each request and closed after each response. 

Second, each SSTP data chunk is encapsulated within a POST request or response message, which 

increases polling protocol overhead by decreasing, as a percentage, the amount of application data 
on the wire. Third, polling encapsulation uses one half-duplex session, where other encapsulation 
protocols use two half-duplex sessions to provide a virtual full-duplex session. Half-duplex mode 
introduces latency as each endpoint waits for its response. Even when the client has no data to send 
to the server, it needs to send a POST request to poll for data. To minimize the overhead of polling, 
in the absence of application data arriving from the server, the client polls less and less frequently 
using a back-off algorithm. 

1.4   Relationship to Other Protocols 

The HTTP based protocols depend on the HTTP 1.0 protocol [RFC1945]. Where noted the protocol 
makes use of additional HTTP 1.1 request headers as specified in HTTP 1.1 [RFC2616]. These 
headers are ignored by HTTP 1.0 servers, but can be interpreted by proxies. Proxies which accept 
inbound HTTP 1.0 connections from clients can establish HTTP 1.1 outbound connections to servers. 

These proxies can use the HTTP 1.1 protocol headers found on the HTTP 1.0 connections or silently 

drop them. A proxy’s exact behavior in this situation is implementation specific because these 
headers are only treated as hints [RFC2068].  

The HTTP Encapsulation of SSTP protocols is layered on top of the TCP protocol and by default uses 
the IANA-registered ports of 80/HTTP, 443/SSL and 8080/HTTP. When used with the SOCKS 
protocol for firewall and proxy transversal, the IANA-registered port of 1080/TCP is used. These 
protocols are used either as a transport or for proxy negotiation to encapsulate or tunnel the SSTP 

protocol [MS-GRVSSTP]. They are used when direct SSTP connections to a server cannot be 
established over the default SSTP port. Using HTTP as a transport or the defined tunnel protocols is 
not as efficient as using TCP because of the significant overhead caused by encapsulation and 
connection management of the HTTP Encapsulation of SSTP connections. For performance reasons 
when an SSTP connection is available, the client will always choose it over the equivalent HTTP 
Encapsulation of SSTP connection.  

The following figure shows the relationship between these protocols in the HTTP Encapsulation of 

SSTP protocol stack: 

http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90310
%5bMS-GRVSSTP%5d.pdf


 

28 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 12: This protocol in relation to other protocols 

1.5   Prerequisites/Preconditions 

To use the protocols defined by this specification, the client needs to be able to establish a 
connection to a server over TCP/IP using the well-known HTTP or SSL ports. 

In order for one of these protocols to succeed, the client needs to be able to establish a TCP/IP 
connection through any firewall or proxy that is present. Firewall traversal is usually transparent to 
the client application. For proxy traversal the client requires proxy connection information to 
successfully establish proxy connections. This proxy connection information includes the proxy’s 
FQDN or IP address, the proxy’s well known port number, and the proxy type (HTTP, SSL or 
SOCKS). The proxy type provides the client with the correct proxy protocol to use. 

If a firewall or proxy is present, then the firewall or proxy device needs to be configured to proxy 

data from clients to servers. These configuration requirements are generic client-server 
requirements which include enabling at least one of the proxy protocols (HTTP, SSL, SOCKS) shared 
in common with the client. The firewall or proxy needs to be able to resolve server names 
[RFC1123] to IP addresses and establish connections to servers using TCP/IP. The firewall/proxy 
also needs to be configured to allow connections to at least one of the server’s well known ports 

(HTTP or SSL). 

1.6   Applicability Statement 

HTTP Encapsulation of SSTP protocols are designed to provide an alternate transport for SSTP. 
Protocols such as SSTP that use TCP as a transport can fail to establish connections when firewalls, 
proxies, or routing restrictions, or both are in place. However, it is common for firewalls to allow 
HTTP traffic via one or more of the methods specified here, while at the same time blocking other 
application ports. In concert with firewalls, proxies can be inserted between clients and servers to 

act as gateways. Proxies provide a means to enforce security policies and can provide inspection of 
application protocol payloads. HTTP Encapsulation of SSTP protocols provide a conduit for SSTP 
messages to traverse firewalls and proxies that permit HTTP traffic, and to increase the likelihood of 
successful end-to-end communication.  

1.7   Versioning and Capability Negotiation 

This document covers versioning issues in the following areas: 

Supported Transports: HTTP Encapsulation of SSTP protocols rely on a number of transports to 

provide reliable end-to-end connectivity as described in section 2.1. 

http://go.microsoft.com/fwlink/?LinkId=90268


 

29 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Protocol Versions: Secure Tunnel Proxy Protocol relies on HTTP version 1.0 [RFC1945]. SOCKS 

relies on SOCKS Version 5 [RFC1928]. HTTP Encapsulation protocols rely on HTTP version 1.0 

[RFC1945]. Some HTTP version 1.1 Request-Headers [RFC2068], section 5.3, are used for proxy 

navigation. HTTP proxies that strictly follow HTTP 1.0 will ignore the HTTP 1.1 Request-Headers. 
HTTP proxies that do not strictly follow HTTP 1.0 [RFC1945] can use HTTP 1.1 Request-Headers 
as part of proxy traversal requests. The HTTP LongLived and KeepAlive Encapsulation protocols 
use a version value of "2.0" as specified in the request URI, in sections 2.2.2.1.1.1 and section 
2.2.3.1.1.2.The HTTP Polling Encapsulation protocol uses version value of "1.2", as specified in 
the virtual connection entity body (section 2.2.4.1.3.1.1). 

Security and Authentication Methods: SOCKS authentication as described in [RFC1929]. The 

HTTP Encapsulation protocols and the Secure Tunnel Proxy Protocol support HTTP access 
authentication, as specified in section 11 of the HTTP 1.0 specification [RFC1945]. 

Localization: None. 

Capability Negotiation: None. 

1.8   Vendor-Extensible Fields 

HTTP Encapsulation of SSTP protocol uses and specifies the following vendor extensible fields as 
specified in sections 2.2.1.2.3 and 2.2.1.3.2 respectively. 

User-Agent product token value: "Mozilla/4.0 (compatible; MSIE 5.5; Win32)"  

HTTP Response Server header server-product-name token value: "Groove-Relay/12.0" or 
"GrooveRelay/14.0"  

HTTP Encapsulation of SSTP protocol supports HTTP extensible headers and header-entity fields as 

specified in HTTP 1.0 [RFC1945] sections 5.2, 6.2 and 7.1. 

1.9   Standards Assignments 

HTTP Encapsulation of SSTP uses standard IANA port assignments for HTTP, SSL and SOCKS. These 

standard port assignments used the IANA assigned ports as specified in the following table. 

Parameter Value 

IANA assigned port for SSTP 2492  

IANA assigned port for SSL 443  

IANA assigned port for HTTP 80 

IANA assigned port for HTTP–Alternate (Alternate for port 80) 8080 

IANA assigned port for SOCKS 1080 

http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=113494
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90310
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=114954
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90300


 

30 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

2   Messages 

2.1   Transport 

The HTTP encapsulation of SSTP Protocol uses the HTTP 1.0 Protocol as a transport. While no port 
has been reserved specifically for The HTTP encapsulation of SSTP Protocol, it uses well known HTTP 
port 80. The Secure Tunnel Proxy Protocol uses HTTP 1.0 as a transport between a client and an 
HTTP proxy, and uses TCP as transport between an HTTP proxy and a server listening on port 443. 
The SOCKS Connection<1> uses TCP as transport between the client and the SOCKS proxy and 

between the SOCKS proxy and the server listening on port 2492.  

2.2   Message Syntax 

Section 2.2.1 defines the data types that are common to the LongLived, KeepAlive and Polling 
encapsulation protocols. Section 2.2.1.1 defines the Encapsulation Data Types. These data types are 
specific to the HTTP Encapsulation of SSTP protocol. Section 2.2.1.2 defines the HTTP Request 

Header, section 2.2.1.3 defines the HTTP Response Headers, and section 2.2.1.4 defines the 

Response Status Code and Reason Phrase. Sections 2.2.2 to 2.2.6 define the message syntax for 
LongLived Encapsulation, KeepAlive Encapsulation, Polling Encapsulation, Secure Tunnel, and 
SOCKS Connection, respectively. 

This section defines the syntax of the HTTP headers and the messages in the Augmented Backus-
Naur Form (ABNF) as specified in [RFC5234]. SOCKS as specified in [RFC1928], a binary protocol, is 
specified using binary block diagrams. 

The following are the three HTTP Encapsulation Protocols: 

LongLived Encapsulation 

KeepAlive Encapsulation 

Polling Encapsulation 

In addition to the HTTP Encapsulation of SSTP Protocol, this section also defines the message syntax 
for the following proxy negotiation protocols: 

Secure Tunnel 

SOCKS 

This section also provides examples of the protocols and encapsulation to highlight the message 
structure as sent to or received from the wire. To make it more readable, the CRLF tokens in the 
examples of HTTP messages are replaced by a new-line token. An empty line indicates additional 

CRLF token. 

2.2.1   Common HTTP Data Types 

2.2.1.1   Encapsulation Data Types 

2.2.1.1.1   Virtual-Connection-GUID 

The Virtual-Connection-GUID is a GUID that identifies a connection to the server.  

Virtual-Connection-GUID = 39(ALPHA / DIGIT) 

http://go.microsoft.com/fwlink/?LinkId=113442
http://go.microsoft.com/fwlink/?LinkId=113494


 

31 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Example: hczn5kctbrpxfgkgxzqs6zmkp9uwvswszvs6f72 

2.2.1.1.2   Relay-Server-Name 

The Relay-Server-Name defines the host domain name of the server in FQDN format. 

Relay-Server-Name = <A legal Internet host domain name>; [RFC1123], section 2.1 

An Example of Relay-Server-Name is as following: 

Relay-Server-Name = "Server.Domain.com" 

2.2.1.1.3   Encapsulation-Echo-String 

The Encapsulation-Echo-String is exchanged between a client and a server. This message is 
exchanged as a payload in the HTTP Request/Response during initial encapsulation connection 

establishment. 

Encapsulation-Echo-String = "GroovePing: 1.0,"ping-data  

ping-data = 1*CHAR 

Example: GroovePing: 1.0,Ping 

2.2.1.1.4   Application-Data 

Application-Data refers to a payload consisting of one or more Simple Symmetric Transport Protocol 

(SSTP) Commands. The SSTP Commands are treated as an opaque block and MUST NOT have any 
effect on the encapsulation behavior. 

Application-Data = 1*(SSTP_COMMAND); section 2.2.1.1.4.1 

2.2.1.1.4.1   SSTP_COMMAND 

SSTP is an application-layer protocol designed to allow two programs to engage in bi-directional, 

asynchronous communication. For more information about SSTP protocol command definitions and 
command exchange sequences, refer to the "Simple Symmetric Transport Protocol (SSTP)" [MS-
GRVSSTP], sections 3.1.5, 3.2.5 and 3.3.5. 

SSTP_COMMAND = (Connect 

    / ConnectResponse 

    / ConnectAuthenticate 

    / ConnectClose 

    / Open 

    / FanoutOpen 

    / OpenResponse 

    / Attach 

    / AttachResponse 

    / AttachAuthenticate 

    / Register 

    / RegisterResponse 

    / Message 

    / Data 

    / EndMessage 

    / Noop 

    / Close 

    / SessionStatus) 

http://go.microsoft.com/fwlink/?LinkId=90268
%5bMS-GRVSSTP%5d.pdf
%5bMS-GRVSSTP%5d.pdf
%5bMS-GRVSSTP%5d.pdf
%5bMS-GRVSSTP%5d.pdf
%5bMS-GRVSSTP%5d.pdf


 

32 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Connect = 1*OCTET 

ConnectResponse = 1*OCTET 

ConnectAuthenticate = 1*OCTET 

ConnectClose        = 1*OCTET 

Open             = 1*OCTET 

FanoutOpen         = 1*OCTET 

OpenResponse         = 1*OCTET 

Attach             = 1*OCTET 

AttachResponse= 1*OCTET 

AttachAuthenticate= 1*OCTET 

Register         = 1*OCTET 

RegisterResponse = 1*OCTET 

Message         = 1*OCTET 

Data             = 1*OCTET 

EndMessage         = 1*OCTET 

Noop             = 1*OCTET 

Close             = 1*OCTET 

SessionStatus         = 1*OCTET 

Application-Data can include a fragment of an SSTP_COMMAND. In such cases, the receiving client 

or the server MUST wait until it receives a complete command before taking further action. 

2.2.1.1.5   Server-User-Agent 

The Server-User-Agent request header field contains the target server’s FQDN. 

Server-User-Agent = "UserAgent:" server-name 

server-name = Relay-Server-Name 

Example1: UserAgent: server.domain.com  

2.2.1.2   Request-Header 

The HTTP Encapsulation of SSTP Protocol uses several HTTP request headers defined by the HTTP 

1.0 protocol (see [RFC1945], section 5.2) and the HTTP 1.1 protocol (see [RFC2068], section 5.3). 
Most of the HTTP headers used by the HTTP Encapsulation of SSTP Protocol are further constrained 
in how they can be used. This section defines all of the HTTP headers used by the HTTP 
Encapsulation of SSTP, and all of these HTTP headers apply only to the HTTP Requests unless 
otherwise specified. 

A client SHOULD NOT send any HTTP header not specified in this section. It is possible that a proxy 

between a client and a server will add additional headers. For example, a proxy can add an 
additional header indicating the method it used to serve the request made by the client. In this 
case, the server or the client can receive HTTP headers not specified in this section. In such cases, 
the server MUST interpret the header in accordance with the HTTP 1.0 or HTTP 1.1 protocol. If the 
server receives an HTTP header that is specified in this section but that contains a value that is not 
specified in this section, the header SHOULD be ignored. 

Following is the Common ABNF definition used for the HTTP request headers and HTTP response 

headers: 

SP = " "; Space 

CR = %x0D ; carriage return 

http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90310


 

33 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

LF = %x0A; linefeed 

CRLF = CR LF 

NUL = ""; NULL Character ‘\0’ 

DIGIT = "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8" / "9" 

OCTET = %x00-FF; 8 bits of data 

ALPHA = %x41-5A / %x61-7A; A-Z / a-z 

CHAR = %x01-7F; any 7-bit US-ASCII character, excluding NUL 

wkday = "Mon" / "Tue" / "Wed" / "Thu" / "Fri" / "Sat" / "Sun" 

date-month-year = 2DIGIT SP month SP 4DIGIT    

month = "Jan" / "Feb" / "Mar" / "Apr" /"May" / "Jun" / "Jul" / "Aug"/ "Sep" / "Oct" / "Nov" / "Dec" 

time = 2DIGIT ":" 2DIGIT ":" 2DIGIT 

HTTP-date = wkday "," SP date-month-year SP time SP "GMT" 

HTTP-Version = DIGIT "." DIGIT 

HTTP-URL = "http://" Relay-Server-Name" ; section 2.2.1.1.2 

2.2.1.2.1   Accept 

The Accept request-header field specifies the media types (see [RFC1945], section 3.6) the 

requesting application is willing to accept for a response to the request. 

Accept = "Accept:" media-range CRLF; as specified in [RFC1945], section D.2.1 

media-range = "*/*" 

Example: Accept: */*  

2.2.1.2.2   Content-Type 

The Content-Type request-header field specifies the media type (see [RFC1945], section 3.6) of the 

Entity-Body sent to the recipient. 

Content-Type = "Content-Type:" media-type CRLF; as specified in [RFC1945], section 10.5 

media-type = "application/octet-stream" 

This media-type specifies that the response consists of a sequence of OCTETs.  

Example: Content-Type: application/octet-stream  

2.2.1.2.3   User-Agent 

The User-Agent request-header field contains information about the user agent originating the 
request. 

User-Agent = "User-Agent:" 1*product CRLF; as specified in [RFC1945], section 10.15 

http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90300


 

34 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

product = 1*CHAR 

The client sets the token value to "Mozilla/4.0 (compatible; MSIE 5.5; Win32)", but the implementer 

of the HTTP Encapsulation of SSTP Protocol can choose to use their product name as token 
value<2>. 

Example: User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32) 

2.2.1.2.4   Pragma 

The Pragma request-header field contains implementation specific directives (see [RFC1945], 
section 10.12). The client uses this request-header to indicate that the proxy between the client and 
the server SHOULD NOT cache the data. 

Pragma = «Pragma:» pragma-directive CRLF; as specified in [RFC1945], section 10.12 

pragma-directive = "no-cache" 

Example: Pragma: no-cache  

2.2.1.2.5   Expires 

The Expires header field provides the date/time after which the entity SHOULD be considered stale. 
The server is a data-producing application; any data produced by the server MUST NOT be cached.  

Expires = "Expires" ":" HTTP-date CRLF; as specified in [RFC1945], section 10.7 

The applications SHOULD be tolerant of non-valid date formats. The "Expires" value of zero or other 
non-valid date is equivalent to making the entity expire immediately. The client sets the value of 
this header to zero indicating that the proxy SHOULD not buffer any information in the request. 

Example: Expires: 0  

2.2.1.2.6   Connection 

The Connection header field allows the sender to select options that are desired for the particular 
connection. This field can be used both as a Request-header field as well as a Response header field. 
The header field indicates to the proxy that the client is requesting a persistent connection to the 
server. 

Connection = "Connection:" groove-connection-token CRLF ; as specified in [RFC2068], section 
14.10 

groove-connection-token = "Keep-Alive" 

Example: Connection: Keep-Alive  

2.2.1.2.7   Host 

The Host Request-header field specifies the server of the resource being requested. 

Host-address = (OCTET "." OCTET "." OCTET "." OCTET)  

    / Relay-Server-Name             ; section 2.2.1.1.2 

port = 1*DIGIT 

Host = "Host:" host-address [":" port] CRLF; (see [RFC2068], section 14.23) 

http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90310


 

35 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Example1: Host: 10.150.1.226 

Example2: Host: server.domain.net 

2.2.1.2.8   Cache-Control 

This header is used to request that any intermediate caching server such as a proxy, not cache the 
content of the HTTP Response, as specified in [RFC2068], section 14.9.  

Cache-Control = 2(«Cache-Control:» cache-directive CRLF) 

cache-directive = "no-cache"; (see [RFC2068], section 14.9.1) 

    / "max-age=" delta-seconds; (see [RFC2068], section 14.9.3) 

delta-seconds = 1*DIGIT 

If the "no-cache" directive is specified for Cache-Control, the server MUST NOT use its cache to 

respond to any request from the client. The "max-age" directive can be set to 0 to force the 
intermediate caching server to re-validate the cache entry before responding to any request. 

Some proxies honor one cache directive while other proxies honor the other. The client MUST send 

both of the cache directives as part of the request to be compatible with the widest variety of 
proxies. This header is repeated for the two values of Cache-directive. 

Example: Cache-Control: max-age=0 CRLF Cache-Control: no-cache CRLF<3> 

2.2.1.2.9   Proxy-Connection 

The client adds the proxy-Connection header to the Request-headers requesting the proxy to keep 
this connection alive. This header is only added if the client detects that a proxy will be making a 

connection on its behalf. 

Proxy-Connection = "Proxy-Connection:" proxy-connection-directive CRLF 

proxy-connection-directive = "Keep-Alive" 

Example: Proxy-Connection: Keep-Alive CRLF 

2.2.1.3   Response Headers 

The HTTP Encapsulation of SSTP protocol uses a subset of the HTTP Response Headers defined by 

the HTTP 1.0 Protocol (see [RFC1945], section 10).  

A server SHOULD NOT send any HTTP Response Header not specified in this section. An HTTP 
Response Header received by the client not specified in this list SHOULD be interpreted in 
accordance to the HTTP 1.0 Protocol. If the client or the server receives an HTTP header that is 
specified in this section but that contains a value that is not specified in this section, the header 
SHOULD be ignored. 

2.2.1.3.1   Date 

The Date Response header field specifies the date at which the message was created by the sending 
server. 

Date = "Date:" HTTP-date; (see [RFC1945], section 10.6) 

Example: Date: Mon, 17 Dec 2007 22:18:31 GMT  

http://go.microsoft.com/fwlink/?LinkId=90310
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90300


 

36 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

2.2.1.3.2   Server 

The Server Response header field specifies the software that handled the request and originated the 
response. 

Server = "Server:" server-product-name "/" version CRLF; (see [RFC1945], section 10.14) 

server-product-name = 1*CHAR 

The version uses the <Major Version>.<Minor Version> numbering scheme. 

Version = 1*DIGIT "." 1*DIGIT 

The server sets the token value to a string identifying the server product. The implementers 
SHOULD set the token value to a string identifying their product and product version.<4> 

2.2.1.4   Response Status Code and Reason Phrase 

The HTTP Encapsulation of SSTP does not use all HTTP response codes defined by the HTTP 1.0 

Protocol and HTTP 1.1 Protocol. The server MUST always send the Response status codes and the 
reason phrases from the ones listed in this section. 

If a client receives a status code and reason phrase not specified in the following list, it SHOULD be 
interpreted as a failure status code. 

Response-Status-Code-And-Reason-Phrase = Response-Status-Code SP Reason-Phrase     

Response-Status-Code = 3DIGIT 

Reason-Phrase = *<TEXT, excluding CR, LF> 

The following is the list of the Response-Code-And-Reason-Phrase defined by the HTTP 
Encapsulation of SSTP Protocol: 

Response-Status-Code-And-Reason-Phrase =  

    "200 OK" 

    / "302 Moved Temporarily" 

    / "304 Not Modified" 

    / "400 Bad Request" 

    / "401 Unauthorized" 

    / "403 Not Valid" 

    / "404 Not Found" 

    / "407 ProxyAuthentication Required" 

    / "408 Request Time-out" 

    / "500 Internal Server Error" 

    / "501 Not Implemented" 

    / "505 HTTP Version Not Supported")  

2.2.2   LongLived Encapsulation 

2.2.2.1   LongLived-GET-Request 

The LongLived-GET-Request is sent from a client to a server to retrieve the information identified by 
the LongLived-GET-Request-URI. The server MUST respond with a LongLived-GET-Response 
Message (section 2.2.2.3). 

http://go.microsoft.com/fwlink/?LinkId=90300


 

37 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

LongLived-GET-Request = LongLived-GET-Request-Line 

    LongLived-GET-Request-Required-Headers 

    CRLF 

LongLived-GET-Request-Line = "GET" SP  

    LongLived-GET-Request-URI SP; section 2.2.2.1.1.1 

    HTTP-Version CRLF 

LongLived-GET-Request-Required-Headers = ( 

    Accept; section 2.2.1.2.1 

    Content-Type; section 2.2.1.2.2 

    User-Agent; section 2.2.1.2.3 

    Pragma; section 2.2.1.2.4 

    Expires; section 2.2.1.2.5 

    Host; section 2.2.1.2.7 

    Cache-Control); section 2.2.1.2.8 

2.2.2.1.1   LongLived-GET-Request-URI 

The LongLived-GET-Request-URI is a Uniform Resource Identifier (URI) (see [RFC3986]) that 
identifies the resource upon which to apply the request.  

LongLived-GET-Request-URI = LongLived-GET-Request-absoluteURI 

    /LongLived-GET-Request-relative-path 

The format of the URI depends on the nature of the request. The LongLived-GET-Request-

absoluteURI MUST be used if a client is connecting to a proxy to communicate with a server. The 
LongLived-GET-Request-relative-path MUST be used if the client is directly connecting to the server. 

LongLived-GET-Request-relative-path =  

     "/" LongLived-Encapsulation-Version; section 2.2.2.1.1.1.1 

     "/" Relay-Server-Name; section 2.2.1.1.2 

     "/" Virtual-Connection-GUID; section 2.2.1.1.1 

     "," LongLived-Encapsulation-Type-Token; section 2.2.2.1.1.1.2 

     "," LongLived-Encapsulation-Content-Length; section 2.2.2.1.1.1.3 

     ["," LongLived-Encapsulation-Request-ID]; section 2.2.2.1.1.1.4 

 

LongLived-GET-Request-absoluteURI = HTTP-URL; section 2.2.1.2 

     LongLived-GET-Request-relative-path 

Example (LongLived-GET-Request-relative-path): 
/2.0/server.domain.net/hczn5kctbrpxfgkgxzqs6zmkp9uwvswszvs6f72,ConnType=LongLived,Content

Length=2147479552 

Example (LongLived-GET-Request-absoluteURI): 
http://server.domain.net/2.0/server.domain.net/hczn5kctbrpxfgkgxzqs6zmkp9uwvswszvs6f72,Conn
Type=LongLived,ContentLength=2147479552, ID=ugqrvphxsc2yqfjqh8ijah6crkziz8qrspvh9ja 

2.2.2.1.1.1   LongLived-Encapsulation-Version 

The LongLived-Encapsulation-Version indicates the version of the Encapsulation and uses a "<Major 

Version >.<Minor Version>" numbering scheme. 

LongLived-Encapsulation-Version = 1*DIGIT "." 1*DIGIT 

LongLived-Encapsulation-Version MUST be set to 2.0 

http://go.microsoft.com/fwlink/?LinkId=90453


 

38 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Example: 2.0 

2.2.2.1.1.2   LongLived-Encapsulation-Type-Token 

The LongLived-Encapsulation-Type-Token defines the type of encapsulation used by the connection. 

It is defined as following: 

LongLived-Encapsulation-Type-Token = "ConnType=LongLived" 

Example: ConnType=LongLived 

2.2.2.1.1.3   LongLived-Encapsulation-Content-Length 

The LongLived-Encapsulation-Content-Length field specifies the maximum number of OCTETs that a 
server can send to a client as a response to one request. LongLived-Encapsulation-Content-Length 

MUST be set to 2147479552<5>. 

LongLived-Encapsulation-Content-Length = "ContentLength=" 1*DIGIT 

Example: ContentLength=2147479552 

2.2.2.1.1.4   LongLived-Encapsulation-Request-ID 

The client appends LongLived-Encapsulation-Request-ID to the LongLived-Encapsulation-GET-URI to 
uniquely identify a request on the proxy. This is done to prevent the caching proxies from returning 

stale data to the client. This token MUST NOT be included if the client is directly connected to the 
server. 

LongLived-Encapsulation-Request-ID = "ID=" 39(ALPHA / DIGIT) 

Example: ID=ugqrvphxsc2yqfjqh8ijah6crkziz8qrspvh9ja 

2.2.2.1.2   LongLived-GET-Request Example 

The following is an example of a LongLived-GET-Request: 

----------------------------------Message START----------------------------------- 

GET 

/2.0/server.domain.net/hczn5kctbrpxfgkgxzqs6zmkp9uwvswszvs6f72,ConnType=LongLived,ContentLeng

th=2147479552 HTTP/1.0 

Accept: */* 

Content-Type: application/octet-stream 

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32) 

Host: 10.150.1.226 

Pragma: no-cache 

Cache-Control: no-cache 

Expires: 0 

Cache-Control: max-age=0 

----------------------------------Message END------------------------------------- 

2.2.2.2   LongLived-POST-Request 

The LongLived-POST-Request is sent from a client to a server and it MUST include the LongLived-
Request-Line and the LongLived-Entity-Body.  



 

39 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

LongLived-POST-Request = LongLived-POST-Request-Line 

    LongLived-POST-Request-Required-Headers 

    CRLF 

    LongLived-Entity-Body; section 2.2.2.1.2.3 

LongLived-POST-Request-Line = "POST" SP  

    LongLived-POST-Request-URI SP; section 2.2.2.1.2.1 

    HTTP-Version; (see [RFC1945], section 3.1) 

    CRLF 

The HTTP-Version MUST be set to "HTTP/1.0." 

LongLived-POST-Request-Required-Headers = ( 

    Accept; section 2.2.1.2.1 

    Content-Type; section 2.2.1.2.2 

    User-Agent; section 2.2.1.2.3 

    Server-User-Agent; section 2.2.1.1.5 

    LongLived-Content-Length; section 2.2.2.1.2.2 

    Pragma; section 2.2.1.2.4 

    Expires; section 2.2.1.2.5 

    Cache-Control); section 2.2.1.2.8 

2.2.2.2.1   LongLived-POST-Request-URI 

The LongLived-POST-Request-URI is a Uniform Resource Identifier (URI) [RFC3986] that identifies 
the resource upon which to apply the request.  

LongLived-POST-Request-URI = LongLived-POST-Request-URI-absoluteURI 

     / LongLived-POST-Request-URI-relative-path     

The format of the URI depends on the nature of the request. The LongLived-POST-Request-URI-

absoluteURI  MUST be used if a client is connecting to a proxy. The LongLived-POST-Request-URI-

relative-path URI MUST be used if the client is directly connecting to the server. 

LongLived-POST-Request-URI-relative-path =  

    "/" LongLived-Encapsulation-Version; section 2.2.2.1.1.1.1 

    "/" Relay-Server-Name; section 2.2.1.1.2 

    "/" Virtual-Connection-GUID; section 2.2.1.1.1 

    "," LongLived-Encapsulation-Type-Token; section 2.2.2.1.1.1.2 

LongLived-POST-Request-URI-absoluteURI = HTTP-URL; section 2.2.1.2 

    LongLived-POST-Request-URI-relative-path 

Example (LongLived-POST-Request-URI-relative-path): 

/2.0/server.domain.net/hczn5kctbrpxfgkgxzqs6zmkp9uwvswszvs6f72,ConnType=LongLived 

Example (LongLived-POST-Request-URI-absoluteURI): 

http://server.domain.net/2.0/server.domain.net/hczn5kctbrpxfgkgxzqs6zmkp9uwvswszvs6f72,Conn

Type=LongLived 

2.2.2.2.2   LongLived-Content-Length 

The LongLived-Content-Length header field specifies the number of OCTETs present in the 
LongLived-Entity-Body and can be used in the Request-header as well as Response header.  

http://go.microsoft.com/fwlink/?LinkId=90453


 

40 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

LongLived-Content-Length = "Content-Length:" 1*DIGIT 

The LongLived-Content-Length value MUST be set to 2147479552 indicating that the Client or the 

server could send a LongLived-Entity-Body up to 2147479552 OCTETs.  

Example: Content-Length: 2147479552  

2.2.2.2.3   LongLived-Entity-Body 

The LongLived-Entity-Body is sent with a LongLived-POST-Request and LongLived-GET-Response. 

LongLived-Entity-Body = 1*(Encapsulation-Echo-String; section 2.2.1.1.3 

    / Application-Data); section 2.2.1.1.4  

    CRLF 

The LongLived-Entity-Body MUST be fragmented into multiple messages, each of which is either 
Encapsulation-Echo-String or Application-Data. As part of the protocol handshake, the 

Encapsulation-Echo-String MUST be sent as the first fragment of LongLived-Entity-Body. 
Subsequent fragments MUST be set to Application-Data. 

2.2.2.2.4   LongLived-POST-Request Example 

The following is an example of a LongLived-POST-Request: 

----------------------------------Message START----------------------------------- 

POST /2.0/server.domain.net/hczn5kctbrpxfgkgxzqs6zmkp9uwvswszvs6f72,ConnType=LongLived 

HTTP/1.0 

Accept: */* 

Content-Type: application/octet-stream 

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32) 

UserAgent: server.domain.net 

Content-Length: 2147479552 

Pragma: no-cache 

Cache-Control: no-cache 

Expires: 0 

Cache-Control: max-age=0 

 

GroovePing: 1.0,Ping 

----------------------------------Message END------------------------------------- 

2.2.2.3   LongLived-GET-Response 

The LongLived-GET-Response is the HTTP response message from the server to the client on the 
connection on which a LongLived-GET-Request (section 2.2.2.1) was sent. 

LongLived-GET-Response = Response-Status-Line; section 2.2.2.1.3.1 

    LongLived-GET-Response-Required-Headers 

    CRLF 

    LongLived-Entity-Body; section 2.2.2.1.2.3 

LongLived-GET-Response-Required-Headers = ( 

    Date; section 2.2.1.3.1 

    Server; section 2.2.1.3.2 

    Connection; section 2.2.1.2.6 

    LongLived-GET-Response-Content-Length); section 2.2.2.3.2 



 

41 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

2.2.2.3.1   Response-Status-Line 

The Response-Status-Line is the first line sent from the server to the client and it consists of the 
protocol version followed by numeric status code and its corresponding reason phrase (see 

[RFC1945], section 6.1). 

Response-Status-Line = HTTP-Version SP; (see [RFC1945], section 3.1) 

    Response-Status-Code-And-Reason-Phrase; section 2.2.1.4 

    CRLF 

The HTTP-Version MUST be set to "HTTP/1.0". 

Example: HTTP/1.0 200 OK  

2.2.2.3.2   LongLived-GET-Response-Content-Length 

The LongLived-GET-Response-Content-Length header field specifies the number of OCTETs present 

in the LongLived-Entity-Body and can be used in the Request-header as well as Response header.  

LongLived-GET-Response-Content-Length = "Content-Length:" 1*DIGIT 

The LongLived-GET-Response-Content-Length value MUST be set to one of two values: 

Value equals 2147479552. 

Value equals 0. 

A LongLived-GET-Response-Content-Length value equal to 2147479552 indicates that the Client or 
the server could send a LongLived-Entity-Body up to 2147479552 OCTETs. 

Example: Content-Length: 2147479552 

A LongLived-GET-Response-Content-Length value equal to 0 indicates that the Client or the server 

MUST not send a LongLived-Entity-Body. 

Example: Content-Length: 0 

2.2.2.3.3   LongLived-GET-Response Example 

The following is an example of a LongLived-GET-Response: 

----------------------------------Message START----------------------------------- 

HTTP/1.0 200 OK 

Date: Wed, 26 Dec 2007 20:31:28 GMT 

Server: Groove-Relay/12.0 

Connection: Keep-Alive 

Content-Length: 2147479552 

 

GroovePing: 1.0,Ping 

 

----------------------------------Message END------------------------------------- 

http://go.microsoft.com/fwlink/?LinkId=90300


 

42 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

2.2.2.4   LongLived-POST-Response 

The LongLived-POST-Response refers to the response message from the server to the client on the 
connection on which a Request with POST Method was sent. The HTTP Encapsulation of SSTP 

Protocol MUST NOT send any response on this connection during normal operation (when no errors 
have occurred). The proxy or server can send this response on the connection if there is an error 
during connection establishment. 

LongLived-POST-Response = Response-Status-Line; section 2.2.2.1.3.1 

    LongLived-POST-Response-Required-Headers 

    CRLF 

LongLived-POST-Response-Required-Headers = ( 

    Date; section 2.2.1.3.1 

    Server; section 2.2.1.3.2 

    Connection; section 2.2.1.2.6 

    LongLived-POST-Response-Content-Length); section 2.2.2.1.4.1 

2.2.2.4.1   LongLived-POST-Response-Content-Length 

The LongLived-POST-Response-Content-Length specifies the number of OCTETs present in the 
LongLived-POST-Response as Entity-Body.  

LongLived-POST-Response-Content-Length = "Content-Length: 0" CRLF 

Example: Content-Length: 0 

2.2.3   KeepAlive Encapsulation 

2.2.3.1   KeepAlive-GET-Request 

The KeepAlive-GET-Request message is sent from a client to a server and it MUST include the 
KeepAlive-GET-Request-Line and the KeepAlive-GET-Request-Required-Headers. 

KeepAlive-GET-Request = KeepAlive-GET-Request-Line 

    KeepAlive-GET-Request-Required-Headers 

    [KeepAlive-GET-Request-Other-Headers] 

    CRLF 

KeepAlive-GET-Request-Line = "GET" SP 

    KeepAlive-Request-URI SP; section 2.2.2.2.1.1 

    HTTP-Version; (see [RFC1945], section 3.1) 

    CRLF 

The HTTP-Version MUST be set to "HTTP/1.0." 

KeepAlive-GET-Request-Required-Headers = ( 

    Accept; section 2.2.1.2.1 

    Content-Type; section 2.2.1.2.2 

    User-Agent; section 2.2.1.2.3 

    Pragma; section 2.2.1.2.4 

    Expires; section 2.2.1.2.5 

    Host; section 2.2.1.2.7 

    Connection; section 2.2.1.2.6 

    Cache-Control); section 2.2.1.2.8 



 

43 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Note that the following header is only present in case a client is connecting to a proxy. 

KeepAlive-GET-Request-Other-Headers = Proxy-Connection; section 2.2.1.2.9 

2.2.3.1.1   KeepAlive-Request-URI 

The KeepAlive-Request-URI is a Uniform Resource Identifier (URI) as specified in [RFC3986] that 
identifies the resource upon which to apply the request.  

KeepAlive-Request-URI = KeepAlive-Request-absoluteURI 

    / KeepAlive-Request-relative-path 

The format of the URI depends on the nature of the request. The KeepAlive-Request-absoluteURI 

MUST be used if a proxy is making the connection to the server on behalf of the client. The 
KeepAlive-Request-relative-path URI MUST be used if the client is directly connecting to the server. 

KeepAlive-Request-relative-path =  

    "/" KeepAlive-Encapsulation-Version; section 2.2.2.2.1.1.2 

    "/" Relay-Server-Name; section 2.2.1.1.2 

    "/" Virtual-Connection-GUID; section 2.2.1.1.1 

    "," KeepAlive-Encapsulation-Type-Token; section 2.2.2.2.1.1.1 

    ["," KeepAlive-Encapsulation-Request-ID]; section 2.2.2.2.1.1.3 

KeepAlive-Request-absoluteURI = HTTP-URL; section 2.2.1.2 

 

    KeepAlive-Request-relative-path 

Example (KeepAlive-Request-relative-path): 

/2.0/server.domain.net/kicxp8rrgwqdwhf7c6xsgbagmcdnxm9phtvbj5a,ConnType=KeepAlive 

Example (KeepAlive-Request-absoluteURI): 

http://server.domain.net/2.0/server.domain.net/kicxp8rrgwqdwhf7c6xsgbagmcdnxm9phtvbj5a,Con
nType=KeepAlive,ID=ugqrvphxsc2yqfjqh8ijah6crkziz8qrspvh9ja 

2.2.3.1.1.1   KeepAlive-Encapsulation-Type-Token 

The KeepAlive-Encapsulation-Type-Token defines the type of encapsulation used by the connection. 

It is defined as follows: 

KeepAlive-Encapsulation-Type-Token = "ConnType=KeepAlive" 

Example: ConnType=KeepAlive 

2.2.3.1.1.2   KeepAlive-Encapsulation-Version 

The Encapsulation-Version indicates the version of the encapsulation and uses a "<Major Version 
>.<Minor Version>" numbering scheme. 

KeepAlive-Encapsulation-Version = 1*DIGIT "." 1*DIGIT 

Encapsulation-Version MUST be set to 2.0 

Example: 2.0 

http://go.microsoft.com/fwlink/?LinkId=90453


 

44 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

2.2.3.1.1.3   KeepAlive-Encapsulation-Request-ID 

The client appends KeepAlive-Encapsulation-Request-ID to a KeepAlive-Request-URI to uniquely 
identify a request on the proxy. This is done to prevent the caching proxies from returning stale 

data to the client. This token MUST NOT be included if the client is directly connected to the server. 
This token is only included for the KeepAlive-GET-Request-Line. 

KeepAlive-Encapsulation-Request-ID = "ID=" 39(ALPHA / DIGIT) 

Example: ID=ugqrvphxsc2yqfjqh8ijah6crkziz8qrspvh9ja 

2.2.3.1.2   KeepAlive-GET-Request Example 

The following is an example of complete KeepAlive-GET-Request: 

----------------------------------Message START----------------------------------- 

GET /2.0/server.domain.net/kicxp8rrgwqdwhf7c6xsgbagmcdnxm9phtvbj5a,ConnType=KeepAlive 

HTTP/1.0 

Accept: */* 

Content-Type: application/octet-stream 

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32) 

Host: 10.150.1.226 

Pragma: no-cache 

Cache-Control: no-cache 

Expires: 0 

Connection: Keep-Alive 

Cache-Control: max-age=0 

----------------------------------Message END------------------------------------- 

2.2.3.2   KeepAlive-POST-Request 

The KeepAlive-POST-Request is sent from the client to the server and it MUST include the 
KeepAlive-POST-Request line, the KeepAlive-POST-Required-Headers, and the KeepAlive-POST-

Request-Entity-Body. 

KeepAlive-POST-Request = KeepAlive-POST-Request-Line 

    KeepAlive-POST-Request-Required-Headers 

    [KeepAlive-POST-Request-Other-Headers] 

    CRLF 

    KeepAlive-Entity-Body; section 2.2.2.2.2.2 

KeepAlive-POST-Request-Line = "POST" SP  

    KeepAlive-Request-URI SP; section 2.2.2.2.1.1 

    HTTP-Version; (see [RFC1945],  section 3.1) 

    CRLF 

The HTTP-Version MUST be set to "HTTP/1.0." 

KeepAlive-POST-Request-Required-Headers = ( 

    Accept; section 2.2.1.2.1 

    Content-Type; section 2.2.1.2.2 

    User-Agent; section 2.2.1.2.3 

    Server-User-Agent; section 2.2.1.1.5 

    KeepAlive-Content-Length; section 2.2.2.2.2.1 

    Pragma; section 2.2.1.2.4 

    Expires; section 2.2.1.2.5 

    Connection; section 2.2.1.2.6 

    Cache-Control); section 2.2.1.2.8 



 

45 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Note that the following header is only present when a client is connecting to a proxy.  

KeepAlive-POST-Request-Other-Headers = Proxy-Connection; section 2.2.1.2.9 

2.2.3.2.1   KeepAlive-Content-Length 

The Content-Length header field specifies the number of OCTETs present in the Entity-Body. 

KeepAlive-Content-Length = "Content-Length" ":" 1*DIGIT  

Content-Length of greater than or equal to 0 is a valid value.  

2.2.3.2.2   KeepAlive-Entity-Body 

The Entity-Body is sent as part of the KeepAlive-POST-Request and KeepAlive-GET-Response. 

KeepAlive-Entity-Body = Encapsulation-Echo-String; section 2.2.1.1.3 

    / Application-Data; section 2.2.1.1.4 

As part of the protocol handshake, the Encapsulation-Echo-String MUST be sent as the first 

fragment of LongLived-Entity-Body. Subsequent fragments MUST be set to Application-Data. 

2.2.3.2.3   KeepAlive-POST-Request 

The following is an example of a complete KeepAlive-POST-Request: 

----------------------------------Message START-----------------------------------POST 

/2.0/server.domain.net/kicxp8rrgwqdwhf7c6xsgbagmcdnxm9phtvbj5a,ConnType=KeepAlive HTTP/1.0 

Accept: */* 

Content-Type: application/octet-stream 

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32) 

UserAgent: server.domain.net 

Connection: Keep-Alive 

Content-Length: 22 

Pragma: no-cache 

Cache-Control: no-cache 

Expires: 0 

Cache-Control: max-age=0 

 

GroovePing: 1.0,Ping 

 

----------------------------------Message END------------------------------------- 

2.2.3.3   KeepAlive-GET-Response 

The KeepAlive-GET-Response is sent from the server to the client in response to the KeepAlive-GET-
Request (section 2.2.3.1). 

KeepAlive-GET-Response = Response-Status-Line; section 2.2.2.1.3.1 

    KeepAlive-GET-Response-Required-Headers 

    CRLF 

             KeepAlive-Entity-Body; section 2.2.2.2.2.2 

KeepAlive-GET-Response-Required-Headers = ( 

    Date; section 2.2.1.3.1 

    Server; section 2.2.1.3.2 



 

46 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

    Connection; section 2.2.1.2.6 

    KeepAlive-Content-Length); section 2.2.2.2.2.1 

2.2.3.3.1   KeepAlive-GET-Response Example 

The following is an example of KeepAlive-GET-Response message: 

----------------------------------Message START----------------------------------- 

HTTP/1.0 200 OK 

Date: Wed, 26 Dec 2007 19:50:26 GMT 

Server: Groove-Relay/12.0 

Connection: Keep-Alive 

Content-Length: 15 

 

GroovePing: 1.0,Ping 

 

----------------------------------Message END------------------------------------- 

 

2.2.3.4   KeepAlive-POST-Response 

The KeepAlive-POST-Response is sent from the server to the client on the connection on which a 
KeepAlive-POST-Request (section: 2.2.3.2) was sent. 

KeepAlive-POST-Response = Response-Status-Line; section 2.2.2.1.3.1 

    KeepAlive-POST-Response-Required-Headers 

    CRLF 

              [KeepAlive-POST-Response-Entity-Body] 

KeepAlive-POST-Response-Required-Headers = ( 

    Date; section 2.2.1.3.1 

    Server; section 2.2.1.3.2 

    Connection; section 2.2.1.2.6 

    KeepAlive-Content-Length); section 2.2.2.2.2.1 

2.2.3.4.1   KeepAlive-POST-Response-Entity-Body 

The KeepAlive-POST-Response-Entity-Body is sent from the server to the client with a KeepAlive-
POST-Response. 

KeepAlive-POST-Response-Entity-Body = [KeepAlive-POST-Response-No-Data] ; section 2.2.3.4.1.1 

The server MUST set the Entity-Body of the first POST Response to KeepAlive-POST-Response-No-
Data. The subsequent POST Responses MUST NOT include KeepAlive-POST-Response-Entity-Body. 

2.2.3.4.1.1   KeepAlive-POST-Response-No-Data 

The KeepAlive-POST-Response-Entity-Body is only sent as the entity body of the first message sent 

by the server.  

KeepAlive-POST-Response-No-Data = "<HTML></HTML>" 



 

47 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

2.2.3.4.2   KeepAlive-POST-Response Example 

Following is an example of a KeepAlive-POST-Response message: 

----------------------------------Message START----------------------------------- 

HTTP/1.0 200 OK 

Date: Wed, 26 Dec 2007 19:50:26 GMT 

Server: Groove-Relay/12.0 

Connection: Keep-Alive 

Content-Length: 15 

 

<HTML></HTML> 

 

----------------------------------Message END------------------------------------- 

2.2.4   Polling Encapsulation 

2.2.4.1   Polling-POST-Request 

The Polling-POST-Request is sent from the client to the server and it includes the request line, the 
request-header, and the Entity-Body. 

Polling-POST-Request = Polling-POST-Request-URI 

    Polling-Request-Headers 

    CRLF 

    Polling-Request-Entity-Body; section 2.2.2.3.1.3 

Polling-POST-Request-URI = "POST" SP  

    Polling-Request-URI SP; section 2.2.2.3.1.1 

    HTTP-Version; (see [RFC1945],  section 3.1) 

    CRLF 

The HTTP-Version MUST be set to "HTTP/1.0." 

Polling-Request-Headers = ( 

    Accept; section 2.2.1.2.1 

    Content-Type; section 2.2.1.2.2 

    User-Agent; section 2.2.1.2.3 

    Polling-Content-Length; section 2.2.2.3.1.2 

    Pragma; section 2.2.1.2.4 

    Expires; section 2.2.1.2.5  

    Host; section 2.2.1.2.7 

    Cache-Control); section 2.2.1.2.8 

2.2.4.1.1   Polling-Request-URI 

The Polling-Request-URI identifies the resource on the server upon which to apply the request. 

Polling-Request-URI = Polling-Request-absoluteURI       

    / Polling-Request-relative-path         

The format of the URI depends on the nature of the request. The Polling-Request-absoluteURI MUST 
be used if a proxy is making the connection to the server on behalf of the client. The Polling-

Request-relative-path MUST be used if the client is directly connecting to the server. 



 

48 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Polling-Request-relative-path = "/" 

Polling-Request-absoluteURI = HTTP-URL 

The followings are the examples Polling-Request-URI: 

Example (Polling-Request-absoluteURI) = http://server.domain.com 

Example (Polling-Request-relative-path) = / 

2.2.4.1.2   Polling-Content-Length 

The Polling-Content-Length header field specifies the number of OCTETs present in the Entity-Body 
including the Polling-Virtual-Connection-Message and Application-Data. 

Polling-Content-Length = "Content-Length:" 1*DIGIT 

Polling-Content-Length is equal to the length of Polling-Virtual-Connection-Message plus the length 

of the Application_Data. The maximum length of Polling-Content-Length header is 32768 OCTETs. 

2.2.4.1.3   Polling-Request-Entity-Body 

The Polling-Request-Entity-Body is sent from the client to the server with an HTTP POST Request. 

Polling-Request-Entity-Body = Polling-Virtual-Connection-Message; section 2.2.2.3.1.3.1 

    / Application-Data; section 2.2.1.1.4 

It is possible for the Polling-Request-Entity-Body to contain only the Polling-Virtual-Connection-

Message when the client has no data to transfer to the server.  

The value in the Polling-Content-Length header field MUST include the size of both the Polling-
Virtual-Connection-Message and the Application-Data. 

2.2.4.1.3.1   Polling-Virtual-Connection-Message 

The Polling-Virtual-Connection-Message is the additional data pre-pended to the Application-Data to 

uniquely identify the Entity-Body on a client and a server. 

Polling-Virtual-Connection-Message =  

    Polling-Encapsulation-Version NUL; section 2.2.2.3.1.3.1.1 

    Relay-Server-URL NUL; section 2.2.2.3.1.3.1.4 

    Virtual-Connection-GUID NUL; section 2.2.1.1.1 

    Sequence-Number NUL; section 2.2.2.3.1.3.1.2 

    Checksum NUL; section 2.2.2.3.1.3.1.3 

2.2.4.1.3.1.1   Polling-Encapsulation-Version 

The Polling-Encapsulation-Version indicates the version of the Encapsulation and uses a "<Major 

Version >.<Minor Version>" numbering scheme. 

Polling-Encapsulation-Version = 1*DIGIT "." 1*DIGIT 

Polling-Encapsulation-Version MUST be set to 1.2 

Example: 1.2 



 

49 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

2.2.4.1.3.1.2   Sequence-Number 

Each message sent using the HTTP Polling Encapsulation includes a sequence number. The 
Sequence-Number starts from 0 and is incremented for every message sent thereafter on the same 

virtual connection. 

Sequence-Number = 1*DIGIT 

2.2.4.1.3.1.3   Checksum 

The checksum field in the Polling-Virtual-Connection-Message provides the receiving device with a 
way to validate the consistency of the received data. The checksum is computed strictly using the 
Application-Data. Any Polling-Virtual-Connection-Message or any of the other HTTP 

request/response headers MUST NOT be included when computing the checksum. 

Checksum = 1*DIGIT 

The following pseudo-code specifies the checksum generation: 

On First SignedByte of Application-Data initialize value of CheckSum: 

CheckSum = 0 

For each subsequent SignedByte in Application Data: 

Checksum = Checksum + ((SignedByte + 1) * (index of SignedByte + 1)) 

2.2.4.1.3.1.4   Relay-Server-URL 

The Relay-Server-URL is a unique identifier for the server device. The Relay-Server-URL is specified 
with the "grooveDNS" schema. 

Relay-Server-URL = "grooveDNS://" 

    Relay-Server-Name; section 2.2.1.1.2 

Example: grooveDNS://server.domain.net 

2.2.4.1.4   Polling-POST-Request Example 

An example of Polling-Request without any Application-Data is as follows: 

----------------------------------Message START----------------------------------- 

POST / HTTP/1.0 

Accept: */* 

Content-Type: application/octet-stream 

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32) 

Host: 10.150.1.226 

Content-Length: 79 

Pragma: no-cache 

Cache-Control: no-cache 

Expires: 0 

Cache-Control: max-age=0 

 

1.2.grooveDNS://server.domain.net.a5s2fj8q55cxne2v4wr48ad9ciffsznzq9apczi.0.0. 

----------------------------------Message END------------------------------------- 



 

50 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

2.2.4.2   Polling-POST-Response 

The Polling-POST-Response is the response message from the server to the client in response to the 
Polling-POST-Request (see section 2.2.4.1). 

Polling-POST-Response = Response-Status-Line; section 2.2.2.1.3.1 

    Polling-POST-Response-Required-Headers 

    CRLF 

    Polling-Response-Entity-Body; section 2.2.2.3.2.1 

Polling-POST-Response-Required-Headers = ( 

    Date; section 2.2.1.3.1 

    Server; section 2.2.1.3.2 

    Connection; section 2.2.1.2.6 

    Polling-Content-Length); section 2.2.2.3.1.2 

2.2.4.2.1   Polling-Response-Entity-Body 

The Entity-Body is sent from the server to the client with an HTTP POST Response. 

Polling-Response-Entity-Body =  

    Polling-Virtual-Connection-Message; section 2.2.2.3.1.3.1 

    Polling-Virtual-Connection-Response-Message; section 2.2.2.3.2.1.1   

    [Application-Data] 

It is possible for the Entity-Body to contain only the Polling-Virtual-Connection-Message and Polling-

Virtual-Connection-Response-Message when the server has no data to transfer to the client.  

2.2.4.2.1.1   Polling-Virtual-Connection-Response-Message 

The Polling-Virtual-Connection-Response-Message is sent from the server the client. 

Polling-Virtual-Connection-Response-Message =  

    Max-Poll-Interval ","; section 2.2.2.3.2.1.1.1 

    Min-Poll-Interval ","; section 2.2.2.3.2.1.1.2 

    Poll-Repetition NUL; section 2.2.2.3.2.1.1.3 

2.2.4.2.1.1.1   Max-Poll-Interval 

The Max-Poll-Interval is sent by the server to the client specifying the maximum time (in seconds) 
the client SHOULD wait before polling for the available data on the server. 

Max-Poll-Interval = 1*DIGIT 

The default value for Max-Poll-Interval is 120 seconds. 

2.2.4.2.1.1.2   Min-Poll-Interval 

The Min-Poll-Interval is sent by the server to the client, specifying the minimum amount of time (in 

seconds) the client SHOULD wait before sending another poll request. 

Min-Poll-Interval = 1*DIGIT 

The default value for Min-Poll-Interval is 5 seconds. 



 

51 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

2.2.4.2.1.1.3   Poll-Repetition 

Poll-Repetition specifies the number of times the client SHOULD poll for each interval value. The 
interval value varies between the Min-Poll-Interval  (see section 2.2.4.2.1.1.2) and the Max-Poll-

Interval (see section 2.2.2.3.2.1.1.1) based on the frequency of Application-Data received from the 
server. The interval value is initially set to Min-Poll-Interval and is incremented (doubled, up to Max-
Poll-Interval) every time the Poll-Repetition count is reached. This progression continues for as long 
as the server does not return any Application-Data. When a poll to the server returns Application-
Data, the interval value is reset to Min-Poll-Interval and the Poll-Repetition starts over again from 0. 

Poll-Repetition = 1*DIGIT 

The default value for Poll-Repetition is 3. 

2.2.4.2.2   Polling-POST-Response Example 

The following is an example of a Polling-POST-Response without any Application-Data: 

----------------------------------Message START-----------------------------------HTTP/1.0 

200 OK 

Date: Wed, 26 Dec 2007 19:01:56 GMT 

Server: Groove-Relay/12.0 

Connection: Keep-Alive 

Content-Length: 88 

 

1.2.grooveDNS://server.domain.net.a5s2fj8q55cxne2v4wr48ad9ciffsznzq9apczi.16.0.120,5,3 

----------------------------------Message END------------------------------------- 

2.2.5   Secure Tunnel Proxy 

Use of the Secure Tunnel Proxy Protocol for encapsulation is implemented in accordance with the 

[TCPPROXY] which defines a mechanism for TCP based protocols to communicate through an HTTP 
proxy. 

The client sends an HTTP request to the proxy, requesting the proxy to establish a connection to the 
server. The proxy evaluates the request from the client, attempts to create a connection to the 
server, and responds to the client with a status code and reason phrase indicating the status of the 
connection to the server. The Secure Tunnel Proxy negotiation messages are specified in 
[TCPPROXY], section 3.1. 

The following is an example of an initialization request, sent from the client to the proxy: 

----------------------------------Message START-----------------------------------CONNECT 

server.domain.net:443 HTTP/1.0 

User-Agent:Mozilla/4.0 (compatible; MSIE 5.5; Win32) 

proxy-Connection: Keep-Alive 

Pragma: no-cache 

 

----------------------------------Message END------------------------------------- 

The following is an example of an initialization response, from the proxy indicating a successful 

connection establishment to the server: 

----------------------------------Message START----------------------------------- 

HTTP/1.0 200 Connection established  

http://go.microsoft.com/fwlink/?LinkId=113488
http://go.microsoft.com/fwlink/?LinkId=113488


 

52 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

----------------------------------Message END------------------------------------- 

After the initialization process, the application data can be exchanged between the server and the 

client. 

2.2.6   SOCKS Encapsulation 

Use of the SOCKS Protocol for encapsulation is implemented in accordance to [RFC1928], which 
enables a client-server application to use the service of a proxy. 

The client MUST negotiate the use of an appropriate authentication method with the SOCKS proxy 
as specified in [RFC1928] section 3. 

The following are examples of SOCKS proxy negotiation messages exchanged between the client 
and the SOCKS proxy. 

The following table shows the message sent from the client to the SOCKS proxy. 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Socks Proxy Version A B (variable) 

... 

Socks Proxy Version (1 byte): Set to 05. 

A - Authentication Method Count (1 byte): Set to 02. 

B - Authentication Supported by the Client (variable): Set to 00 02. In this message, the 
client indicates that it can support two authentication methods: "No Authentication" (00) and 

"Username/Password Authentication" (02). 

The following table shows the message sent from the SOCKS proxy to the client. 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

A B 

A - Socks Proxy Version (1 byte): Set to 05. 

B - Authentication Method Selected by Proxy (1 byte): Set to 00. The server replies with 
the authentication method supported by the server: "No Authentication" (00). 

After initial authentication, the client then requests the SOCKS proxy to create a connection to the 
server. 

The following are examples of the messages exchanged between the client and the SOCKS proxy. 

The following table shows the format of a message sent from the client to the SOCKS proxy. 

http://go.microsoft.com/fwlink/?LinkId=113494
http://go.microsoft.com/fwlink/?LinkId=113494


 

53 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

In this example, the client is requesting the SOCKS proxy to create a TCP connection to the server 
at destination address (server.domain.net) and destination port (2492). 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Socks Proxy Version CommandID Reserved Address Type 

Destination Address (variable) 

... 

Destination Port 

Socks Proxy Version (1 byte): Set to 05. 

CommandID (1 byte): Set to 01. 

Reserved (1 byte): Set to 00. 

Address Type (1 byte): Set to 03. 

Destination Address (variable): Set to 6D 6F 6E 73 74 65 72 32 2E 72 65 6C 61 79 2E 65 74. 
The maximum size of this field is 256 bytes. 

Destination Port (2 bytes): Set to 09 BC. 

The following table shows the message sent from the SOCKS proxy to the client in response to the 
connection request. 

In this example, the ResponseID (00) indicates that the SOCKS proxy is successful in creating a 
connection to the server. In addition the response message includes the server address 

(10.150.2.110) and port (1046). 

After the successful response from the SOCKS proxy, the application data (SSTP) can be exchanged 
between the server and the client transparently to the SOCKS proxy. 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Socks Proxy Version ResponseID Reserved Address Type 

Server Bound Address 

Server Bound port 

Socks Proxy Version (1 byte): Set to 05. 

ResponseID (1 byte): Set to 00. 

Reserved (1 byte): Set to 00. 

Address Type (1 byte): Set to 01. 



 

54 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Server Bound Address (4 bytes): Set to 0A 96 02 6E. 

Server Bound port (2 bytes): Set to 04 16. 



 

55 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3   Protocol Details 

3.1   LongLived Encapsulation Protocol Client Details 

LongLived Encapsulation Protocol is an HTTP based protocol used for firewall<6> and proxy 
traversal<7>. It provides an HTTP transport which can also negotiate and authenticate with HTTP 
proxies. LongLived Encapsulation is designed to specifically be used with HTTP proxies that do not 
buffer inbound or outbound proxy traffic.  

LongLived Encapsulation provides a virtual connection composed of two HTTP sessions: the first is a 

GET session and the second is a POST session. Each of these HTTP sessions is layered on a 
dedicated TCP connection. The POST session is used to send SSTP commands and data from the 
client to the server, while the GET session is used by the client to receive SSTP commands and data 
from the server. Each session can send or receive up to the maximum of 0x7ffff000/(2147479552 
decimal) bytes of data, as specified by the content length. 

If the send operation on a POST session would exceed the content length, the client MUST close the 

GET and POST sessions and then reestablish a new virtual LongLived connection. If the next GET 

session response would exceed the maximum number of bytes, then the server MUST close the GET 
and POST sessions. The client SHOULD respond to the server’s closing of the virtual LongLived 
connection by initiating new GET and POST requests.  

3.1.1   LongLived Client Abstract Data Model 

This section describes a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The described organization is provided to facilitate the 

explanation of how the protocol behaves. This document does not mandate that implementations 
adhere to this model as long as their external behavior is consistent with that described in this 
document. 

The following diagram provides a detailed look at the LongLived client session state machine.  



 

56 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 13: Client LongLived session state diagram 

For a detailed view of the LongLived client connection state machine, see the following diagram. 



 

57 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 14: Client LongLived connection state diagram 

3.1.1.1   Connection State Information 

The state information detailed in this section defines the context needed to manage a single 
LongLived virtual connection. When a LongLived connection is terminated, this state information is 
no longer relevant and SHOULD be discarded. 

A client SHOULD support LongLived connections to multiple servers concurrently. A client SHOULD 
support one LongLived virtual connection (2 TCP connections) to the same target server (see 
ServerHost state information). In all cases, each LongLived connection MUST maintain separate 
connection state variable information. 

ServerPort: The well-known port number of the target server. By default this is the HTTP well 
known port 80/TCP. 

ServerHost: The host name of the target server. Name is in the form of a FQDN or IP Address. 
There is no default value. 

GetSessionState: The variable used to maintain the current disposition of the GET session. 



 

58 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

There are four possible states: 'Connecting', 'Connected', 'Established' and ‘Closed’. The 'Connecting' 
state indicates that the GET session request has been sent and the LongLived handshake has 

started. The 'Connected' state indicates that proxy negotiations are in progress. Non-proxy 
connections immediately transition through the 'Connected' state, bypassing the proxy Negotiation 

state. The 'Established' state indicates the GET session response has been received. The ‘Closed’ 
state indicates a session cleanup in progress.  

PostSessionState: The variable used to maintain the current disposition of the POST session. 
There are four possible states: 'Connecting', 'Connected', 'Established' and ‘Closed’. The 'Connecting' 
state indicates that the POST session request has been sent and the LongLived handshake has 
started. The 'Connected' state indicates that proxy negotiations are in progress. Non-proxy 
connections immediately transition through to the 'Connected' state, bypassing the proxy 

Negotiation state. The 'Established' state indicates the POST session response has been received. 
The ‘Closed’ state indicates a session cleanup in progress.  

ConnectionState: The variable used to maintain the current disposition of the virtual LongLived 
connection. There are three possible states: 'Connecting' and 'Established', and 'Closed'. The 
'Connecting' state indicates that the GET/POST session creation is in progress. The 'Established' 

state indicates that both GET/POST sessions have been successfully created, and application data 

can begin to flow over the virtual connection. The 'Closed' state indicates that the connection can no 
longer send or receive application data; the virtual connection sessions are closed. 

VirtualConnectionGUID: A GUID used to uniquely identify the virtual connection. This GUID is 
generated by the client when initiating the encapsulation connection. The GUID is exchanged 
between the client and the server and MUST be unique within each server. There is no default value. 

ConnectionContentLength: The maximum content length value specified by the application to be 
used by the GET and POST session. 

PostContentLength: The current number of entity body octets sent over the POST session. It is 
used by both the client and server to keep track how many octets that have been sent or received 
on the POST session. 

GetContentLength: The current number of entity body bytes received over the GET session. It is 

used by both the client and server to keep track of how many octets have been received or sent on 
the GET session. 

ProxyConnection: The indicator of whether the current connection is a connection to a proxy or a 

direct connection to a server. The value is set to TRUE after the client determines that a proxy is to 
be used. The default value is FALSE. 

3.1.1.2   Proxy State Information 

The state information detailed in this section defines the context clients need to use to establish 
connections with proxies. This proxy configuration information MUST be provided by the application 

to the LongLived client prior to connection establishment. The source of this configuration 
information is external to the LongLived Protocol<8>. 

ProxyServerPort: The well-known port number of the target proxy. It is used for establishing a 
TCP connection to a proxy. By default this is the HTTP well known port 80/TCP or the HTTP alternate 

well known port 8080/TCP. 

ProxyServerHostName: The host name of the target proxy. The name is in the form of an FQDN 
or an IP Address. If the name is an FQDN, then the client MUST resolve this name to its IP Address. 

There is no default value. 



 

59 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

ProxyAuthRequired: A variable used to indicate whether a proxy requires authentication. The 
client sets this variable to TRUE when it discovers that the proxy needs authentication during its first 

negotiation with the proxy. When the client initiates a new virtual connection through the same 
proxy, it SHOULD provide the cached credentials without waiting to be challenged to avoid the 

overhead of additional message exchanges. 

3.1.2   LongLived Client Timers 

3.1.2.1   ConnectionEstablishment Timer 

The ConnectionEstablishment timer SHOULD be used by clients to limit the amount of time 
LongLived connection negotiations take to complete. This timer measures the time it takes for a 

connection to move from the connecting’ to the established state. The recommended timeout value 
is 30 seconds. ConnectionEstablishment timer event processing is handled as specified in section 
3.1.6.1. 

3.1.2.2   NetworkReceiveIO Timer 

The NetworkReceiveIO timer SHOULD be used by clients to limit the amount of time a client waits 
for the network to receive IO to complete. This timer applies to the GET session only. A 

NetworkReceiveIO timer SHOULD NOT be started on the POST session because a receive on the 
POST session is expected to never complete unless there are session errors or TCP disconnects. The 
timer duration SHOULD be greater than the KeepAlive timer specified in section 3.1.2.3. The 
recommended timeout value is 5 minutes. The NetworkReceiveIO timer event processing is 
handled as specified in section 3.1.6.2. 

3.1.2.3   KeepAlive Timer 

The HTTP Encapsulation protocols do not define a KeepAlive timer. The underlying encapsulated 
protocol MUST implement a KeepAlive timer. The SSTP protocol uses the KeepAlive mechanism 
provided by the SSTP_NOOP command (see [MS-GRVSSTP] section 2.2.13)<9>. 

The keepalive message serves to keep the LongLived connection from being closed by firewalls 

and proxies. All LongLived Connections SHOULD use KeepAlive timers, regardless of whether the 
client detects if a connection is a proxy connection or not, as some firewalls and proxies are 

undetectable. The recommended client KeepAlive timeout value is 45 seconds<10>. KeepAlive timer 
event processing is handled as specified in section 3.1.6.3. 

3.1.3   LongLived Client Initialization 

3.1.3.1   Protocol Initialization 

The LongLived Protocol is not initialized until a request to open an encapsulated connection is 

received by the client. The variables defined by the abstract data model are initialized to their 
default values when a LongLived connection request is made. 

3.1.4   LongLived Client Higher-Layer Triggered Events 

3.1.4.1   Establishing a LongLived Encapsulation Connection 

When an application requests a LongLived Connection, the LongLived protocol layer MUST initialize 

the LongLived connection state variables as specified in the abstract data model (see section 3.1.1). 
After the connection state variables are initialized, the LongLived protocol enters into the connection 
establishment phase<11>.  

%5bMS-GRVSSTP%5d.pdf
%5bMS-OFCGLOS%5d.pdf


 

60 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The client opens two connections to the server, one for GET session and one for POST session, as 
specified in sections 3.1.4.1.1 and 3.1.4.1.2. If proxy configuration information is supplied, the 

client MUST go through the proxy for each connection by performing proxy negotiation as specified 
in sections 3.1.4.1.2 and 3.1.4.1.4. 

The ConnectionEstablishment timer SHOULD be started. 

The client SHOULD set the ConnectionContentLength to 0x7ffff000/(2147479552 decimal) octets as 
specified in section 2.2.2.1.1.3. 

The client MUST generate a new virtual connection GUID and store it in the VirtualConnectionGUID 
state variable. 

The ConnectionState MUST be set to 'Connecting'. 

3.1.4.1.1   Establishing GET Session without Proxy 

The GetSessionState MUST be set to 'Connecting'. 

The client MUST construct the LongLived-GET-Request-URI as the LongLived-GET-Request-Relative-
URI, with the ServerHost as Relay-Server-Name, with Virtual-Connection-GUID as the 
VirtualConnectionGUID variable, and the LongLived-Encapsulation-Content-Length as the 
ConnectionContentLength variable.  

The client MUST construct a LongLived-GET-Request as specified in section 2.2.2.1, with required 
headers. 

The client specifies the HOST header and sets the value to equal the ServerHost variable as 
specified in section 2.2.1.2.7. 

The client MUST establish a TCP connection to the server identified with ServerHost and ServerPort 
and send the LongLived-Get-Request. 

3.1.4.1.2   Establishing GET Session with Proxy 

The GetSessionState MUST be set to 'Connecting'. 

The client sets the ProxyConnection to TRUE. 

The client generates a Request ID GUID. 

The client MUST construct the LongLived GET-Request-URI as the LongLived-GET-Request-Absolute-
URI, with the ServerHost as Relay-Server-Name, virtual connection GUID using the 
VirtualConnectionGUID variable and the preceding generated Request ID GUID for the LongLived-

Encapsulation-Request-ID. 

The client MUST construct a LongLived-GET-Request as specified in section 2.2.2.1, with the 
required headers. 

The client specifies the HOST header and sets the value to equal the ServerHost variable as 
specified in section 2.2.1.2.7. 

If the ProxyAuthRequired is set, the client MUST add additional proxy authentication<12> headers 

to the request. 

The client MUST establish a TCP connection to the server identified with ProxyServerHostName and 
ProxyServerPort and send the LongLived-GET-Request. 



 

61 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.1.4.1.3   Establishing POST Session without Proxy 

The PostSessionState MUST be set to 'Connecting'. 

The client MUST construct the LongLived-POST-Request-URI as the LongLived-POST-Request-

Relative-URI, with the ServerHost as Relay-Server-Name, virtual connection GUID as 
VirtualConnectionGUID variable, and the LongLived-Encapsulation-Content-Length as 
ConnectionContentLength variable.  

The client MUST construct a LongLived-POST-Request with required headers, as specified in section 
2.2.2.2. 

The LongLived-Entity-Body MUST contain the Encapsulation-Echo-String message.  

The client MUST construct the LongLived-Content-Length header with the value of the 

ConnectionContentLength variable. 

The client MUST establish a TCP connection to the server identified with ServerHost and ServerPort 
and send the LongLived-POST-Request. 

3.1.4.1.4   Establishing POST Session with Proxy 

The PostSessionState MUST be set to 'Connecting'. 

The client sets the ProxyConnection to TRUE. 

The client generates a Request ID GUID. 

The client MUST construct the LongLived-POST-Request-URI as the LongLived-POST-Request-
Absolute-URI, with the ServerHost as Relay-Server-Name, virtual connection GUID using the 
VirtualConnectionGUID variable and the preceding generated Request ID GUID for the LongLived-
Encapsulation-Request-ID. 

The client MUST construct a LongLived-POST-Request as specified in section 2.2.2.2, with required 

headers. 

If the ProxyAuthRequired is set, the client MUST add additional proxy authentication headers to the 
request. 

The LongLived-Entity-Body MUST contain the Encapsulation-Echo-String message. 

The client MUST construct the LongLived-Content-Length header with the value of the 
ConnectionContentLength variable. 

The client MUST establish a TCP connection to the server identified with ProxyServerHostName and 

ProxyServerPort and send the LongLived-POST-Request. 

3.1.4.2   Closing a LongLived Connection 

The client SHOULD close the POST and GET sessions by sending a graceful TCP disconnect on each 
session to the server. The connection then transitions into the connection ‘Closed’ state. 

TCP client or server connections are closed using either a Graceful Close (TCP FIN Flag set to 1) or 
Abortive Close (TCP Reset Flag set to 1) mechanism. Closing the connection gracefully provides 

clients and servers with the benefit of never having to resend unacknowledged payload data. 
Abortive Closed connections are efficient in connection tear down but can require the client or server 
to resend payload data which has not been acknowledged at the TCP level. HTTP Encapsulation of 



 

62 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

SSTP Protocols relies on SSTP to ensure that any unacknowledged payload data is later resent. The 
choice of connection close mechanism is one of efficiency (efficient connection tear down verses 

efficient byte transmission). This document does not mandate that implementations adhere to one 
approach or another. Implementations can choose to close HTTP Encapsulated Connections either 

gracefully or abortively based on the implementation's requirements.  

3.1.4.3   Sending Application Data 

The LongLived connection MUST be in the 'Established' state to send application data. If the virtual 
connection is still being established, the client MUST buffer the data and wait until the connection is 
in the 'Established' state. 

The client sends the SSTP stream data over the POST session. The SSTP stream data is in the 

LongLived-Entity-Body fragment (see section 2.2.2.2.3). 

The client MUST keep track of the number of octets sent, as defined by the PostContentLength state 
variable, to ensure that the content length is not exceeded. It is a protocol error if 
PostContentLength exceeds the value specified in ConnectionContentLength. 

If sending the entity body fragment would cause the PostContentLength to exceed the 
ConnectionContentLength, the client SHOULD close the LongLived connection and immediately re-

establish a new LongLived virtual connection with the target server as specified in section 3.1.4.1
<13>. 

3.1.5   LongLived Client Message Processing Events and Sequencing Rules 

Unlike traditional HTTP clients, LongLived clients MUST NOT use the content length header to 
determine the length of the message and MUST NOT wait to receive the entire content before 
returning received data to the application. After the LongLived connection handshake (see section 

3.1.4.1), clients SHOULD return the application data to the application layer as the data is received. 

3.1.5.1   Receiving Data on the POST Session 

Upon receiving data on the POST session, the client MUST first check to see if the data starts with 
the HTTP response status line, as specified in section 2.2.2.4. If so, the client processing proceeds 
as in section 3.1.5.1.1. If not, the client processing proceeds as in section 3.1.5.1.2. 

3.1.5.1.1   LongLived-POST-Response Processing 

The HTTP response header MUST be parsed, and the status code and reason phrase  extracted (see 
section 2.2.1.4). 

A client SHOULD NOT receive a LongLived-POST-Response message (see section 2.2.2.4), on the 
POST session unless there is a proxy authentication challenge or a protocol error.  

3.1.5.1.1.1   Status code: 400 (Bad Request) 

The server has rejected the connection request because of a protocol error or because an 
encapsulation version is not equal to the required value (see section 2.2.2.1.1.1). The client MUST 

close the virtual LongLived connection (see section 3.2.4.1).  

3.1.5.1.1.2   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication 

Required) 

HTTP status code values of 401 (Unauthorized) or 407 (ProxyAuthentication Required)  



 

63 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

indicate that the proxy requires the client to authenticate to gain access to the proxy. Common 
authentication schemes include Basic and Digest, as specified in [RFC2617], and NTLM HTTP 

Authentication, as specified in [RFC4559].  

The client sets the ProxyAuthRequired state variable to TRUE. Subsequent connection attempts to 

the same proxy SHOULD avoid the proxy challenge message by sending the proxy authentication 
credentials as part of the LongLived-POST-Request.  

Depending on the authentication method, multiple round trips can happen to complete the 
authentication process. That is, the client MUST expect to get multiple 401 and 407 messages. It 
MUST follow [RFC2617] and [RFC4559] to set proper authentication headers and retry the proxy 
connection. 

For processing required to retry the proxy connection, see section 3.1.4.1.4. 

The ConnectionEstablishment timer SHOULD be restarted before re-attempting the LongLived 
handshake (see section 3.1.4.1).  

3.1.5.1.1.3   All Other Status Codes 

All other status codes are fatal; the virtual connection MUST be closed as specified in section 
3.1.4.2. 

3.1.5.1.2   POST Session Data Processing 

The client MUST never receive application data on the POST session. This event is a protocol error. 
The LongLived connection MUST be closed as specified in section 3.2.4.1. 

3.1.5.2   Receiving Data on the GET Session 

Upon receiving data on the GET session, the client MUST first check to see if the data starts with the 

HTTP response status line, as specified in section 2.2.2.3.1. If so, the client processing proceeds as 
specified in section 3.1.5.2.1. If not, the client processing proceeds as specified in section 3.1.5.2.2. 

3.1.5.2.1   LongLived-GET-Response Processing 

The HTTP response header MUST be parsed and the status code and response body extracted. 

The receipt of a LongLived-GET-Response message on the GET session causes both the GET session 
and POST session to transition into the 'Connected' state. 

3.1.5.2.1.1   Status code: 200 (OK) 

The client MUST compare the response body string against the Encapsulation-Echo-String sent 
earlier on the POST session in sections 3.1.4.1.2 and 3.1.4.1.4. If they are not equal, it is a violation 
of the protocol and the connection MUST be closed (see section 3.1.4.2). 

The receipt of Encapsulation-Echo-String on the GET session completes the virtual connection 
establishment. The GET and POST sessions move to the ‘Established’ state, and the ConnectionState 

transitions into the ‘Established’ state. The connection is ready to send and receive application data 
as entity body fragments. 

The ConnectionEstablishment timer SHOULD be stopped and no further timer expiration processing 
is performed. 

The NetworkReceiveIO and KeepAlive timer SHOULD be started. 

http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90483
http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90483


 

64 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

If there is any buffered data to send, the client MUST now send it, as specified in section 3.1.4.3. 

3.1.5.2.1.2   Status code: 400 (Bad Request) 

The server has rejected the connection request because of a  protocol error or because an 

encapsulation version does not equal the required value (see section 2.2.2.1.1.1). The client MUST 
close all connections associated with this virtual connection (see section 3.2.4.1). 

3.1.5.2.1.3   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication 

Required) 

HTTP status code values of 401 (Unauthorized) or 407 (ProxyAuthentication Required)  

indicate that the proxy requires the client to authenticate to gain access to the proxy. Common 
authentication schemes include Basic and Digest, as specified in [RFC2617], and NTLM HTTP 
Authentication, as specified in [RFC4559].  

The client sets the ProxyAuthRequired state variable to TRUE. Subsequent connection attempts to 

the same proxy SHOULD avoid the proxy challenge message by sending the proxy authentication 
credentials as part of the LongLived-GET-Request.  

Depending on the authentication method, multiple round trips can happen to complete the 

authentication process. That is, the client MUST expect to get multiple 401 and 407 messages. The 
client MUST follow [RFC2617] and [RFC4559] to set proper authentication headers and retry the 
proxy connection. 

For processing required to retry the proxy connection, see section 3.3.4.1.2. 

The ConnectionEstablishment timer SHOULD be restarted before re-attempting the LongLived 
handshake (see section 3.1.4.1).  

3.1.5.2.1.4   All Other Status Codes 

All other status codes are fatal; the virtual connection MUST be closed as specified in section 

3.1.4.2. 

3.1.5.2.2   Receiving Application Data (GET Session Data Processing) 

The LongLived connection MUST be in the 'Established' state to receive application data. If the 

connection state is not ’Established‘, this is a violation of the protocol. The data MUST be discarded 
and the connection closed. 

The client receives the SSTP stream data over the GET session. The SSTP stream data is contained 
within the LongLived-GET-Response-Entity-Body. The client MUST pass the application data to a 
higher layer for processing. 

The NetworkReceiveIO Timer MUST be restarted after each LongLived-GET-Response-Entity-Body 
fragment is received. 

3.1.6   LongLived Client Timer Events 

3.1.6.1   ConnectionEstablishment Timer Event 

The ConnectionEstablishment Timer Event fires when enforcing a limit on the time it takes to 
establish a LongLived connection with the server. If this timer expires before the LongLived 

http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90483
http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90483


 

65 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

connection enters the 'Established' state, the virtual LongLived connection SHOULD be closed by the 
client.  

3.1.6.2   Network Receive IO Timer Event 

The NetworkReceiveIO Timer Event fires when an entity body fragment is not received on the GET 
session within the specified amount of time. If the NetworkReceiveIO event triggers, the client 
SHOULD close the LongLived connection, but can retry immediately as specified in section 3.1.4.1. 
This timer event will not occur on well behaved connections, as the encapsulated protocol SHOULD 
have implemented the KeepAlive timer as specified in section 3.1.2.3, which SHOULD have used a 
timer value smaller than the NetworkReceiveIO timer value.  

3.1.6.3   KeepAlive Timer Event 

A KeepAlive Timer Event SHOULD trigger an encapsulated protocol message such as an SSTP_NOOP 
command to be sent across the wire by LongLived Client implementations<14>. Well behaved 
connections will see this event every KeepAlive timer interval when the session is idle. After firing, 
the KeepAlive timer SHOULD be restarted. 

3.1.7   LongLived Client Other Local Events 

A transport disconnect event on either session causes the client to close the virtual LongLived 
connection, thereby closing both sessions. The ConnectionState transitions into the ‘Closed’ state. 
All connection state information MUST be discarded.  

The client SHOULD close the LongLived connection, but can retry immediately (see section 3.1.4.1). 
If the retry attempt fails, the client SHOULD let the higher layer decide whether to wait before 
establishing a new LongLived virtual connection to the target server again, or switch to using a 

different encapsulation protocol to establish a connection to the server. 

3.2   LongLived Encapsulation Protocol Server Details 

3.2.1   LongLived Server Abstract Data Model 

This section specifies a conceptual model of possible data organization that a server implementation 
maintains to participate in LongLived encapsulation protocol. The specified organization is provided 

to facilitate the explanation of how the protocol behaves. This document does not mandate that 
implementations adhere to this model as long as their external behavior is consistent with that 
specified in this document. 

3.2.1.1   Connection State Information 

See section 3.1.1.1 for a list of connection state variables that are shared with the client. 

VirtualConnectionGUIDList: The global list of virtual connection GUIDs of all active connections. 

This list allows the application to quickly look up a virtual connection GUID to determine if it is a 
known virtual connection GUID. This list also contains a reference to the per-connection state 
variables for the associated GUID. 

GetSessionReady: The state variable enforces the requirement that the server MUST NOT send 
application data on the GET session until the client has received the LongLived-GET-Response 
containing the Encapsulation-Echo-String. The first packet of application data received by the server 
on the POST session is an implied acknowledgement that indicates that the client has received the 

Encapsulation-Echo-String. The default state is FALSE. 



 

66 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.2.2   LongLived Server Timers 

3.2.2.1   ConnectionEstablishment Timer 

The ConnectionEstablishment timer SHOULD be used by the server to limit the amount of time a 
LongLived connection handshake takes to complete. This timer measures the time it takes for a 
connection to move from the connecting to the established state. This is a per-connection timer 
whose recommended timeout value is 90 seconds. The ConnectionEstablishment timer event 
processing is handled as specified in section 3.2.3.  

3.2.2.2   Network Receive IO Timer 

The NetworkReceiveIO timer SHOULD be used by the server to determine if a connection has 
become idle. This timer is set after the LongLived handshake is finished. The timer MUST be greater 
than the KeepAlive timer used by the server, specified in section 3.2.2.3. This is a per-connection 
timer. The recommended timeout value is 90 seconds. The  

NetworkReceiveIO timer event processing is handled as specified in section 3.2.6.2. 

3.2.2.3   KeepAlive Timer 

HTTP Encapsulation protocols do not support a native KeepAlive timer, but rely on the encapsulated 
protocol to provide a KeepAlive mechanism. Encapsulated protocols SHOULD implement their own 
KeepAlive mechanisms. The SSTP protocol provides its own KeepAlive mechanism using the 
SSTP_NOOP command<15>. This data serves to keep the LongLived connection from being closed 
by firewalls and proxies. All LongLived connections SHOULD use KeepAlive timers, regardless of 
whether or not the client detects if a connection is a proxy connection, as some firewalls and proxies 

are undetectable. The default server KeepAlive timeout value is 45 seconds. The maximum 
KeepAlive value is limited by proxy implementations. The KeepAlive timer event processing is 
handled as specified in section 3.2.6.3. 

3.2.3   LongLived Server Initialization 

3.2.3.1   Protocol Initialization 

When the server starts, it MUST initialize the HTTP stack<16>.  

A LongLived connection protocol is not initialized until a request to open an encapsulated connection 
is received by the server. The variables defined by the abstract data model are initialized when the 
LongLived connection request is received.  

3.2.3.2   LongLived Listener 

The Server MUST create a listener socket on the LongLived port. The LongLived connection port is 

typically the well-known HTTP port 80/TCP. Alternate ports MAY be used, but non-default port 
information MUST be conveyed to the client independently of the LongLived protocol. 

3.2.4   LongLived Server Higher-Layer Triggered Events 

3.2.4.1   Closing a LongLived Connection 

The server MUST close the POST and GET sessions by sending a graceful TCP disconnect on each 

session. The ConnectionState then transitions into the ‘Closed’ state. All connection state 
information SHOULD be discarded. 



 

67 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

TCP client or server connections are closed using either a Graceful Close (TCP FIN Flag set to 1) or 
Abortive Close (TCP Reset Flag set to 1) mechanism. Closing the connection gracefully provides 

clients and servers with the benefit of never having to resend unacknowledged payload data. 
Abortive Closed connections are efficient in connection tear down but can require the client or server 

to resend payload data which has not been acknowledged at the TCP level. HTTP Encapsulation of 
SSTP Protocols relies on SSTP to ensure that any unacknowledged payload data is later resent. The 
choice of connection close mechanism is one of efficiency (efficient connection tear down verses 
efficient byte transmission). This document does not mandate that implementations adhere to one 
approach or another. Implementations can choose to close HTTP Encapsulated Connections either 
gracefully or abortively based on the implementation's requirements. 

3.2.4.2   Sending Application Data 

The LongLived connection MUST be in the 'Established' state to send application data.  

If the GetSessionReady state variable is set to FALSE, the application data MUST be buffered in the 
order that it was sent. If GetSessionReady is TRUE, the server MUST send the data.  

The server sends the SSTP stream data over the GET session. The SSTP stream data is contained 
within the LongLived-Entity-Body fragment (see section 2.2.2.2.3). 

The server MUST keep track of the number of octets sent, as defined by the GetContentLength state 
variable, and ensure that the content length is not exceeded. It is a protocol error if 
GetContentLength exceeds the value specified in ConnectionContentLength. If sending the entity 
body fragment would cause the GetContentLength to exceed the ConnectionContentLength, the 
server MUST close the LongLived connection immediately and let the client establish a new 
LongLived virtual connection with the target server<17>. 

3.2.5   LongLived Server Message Processing Events and Sequencing Rules 

Unlike traditional HTTP servers, LongLived servers MUST NOT use the content length header to 
specify the length of the message. 

3.2.5.1   GET Session Processing 

Upon receiving data on the GET session, the server MUST first check to see if the data starts with an 
HTTP GET request line as specified in section 2.2.2.1. If so, the server processing continues as 

specified in section 3.2.5.1.1. If not, application data is received, and the server processing 
continues as specified in section 3.2.5.1.2. 

3.2.5.1.1   Receiving a LongLived-GET-Request 

Upon receipt of a LongLived-GET-Request (see section 2.2.2.1), the server transitions the 
GetSessionState to 'Connected'. If the PostSessionState is ‘Connected’, the ConnectionState 
transitions into the 'Connected' state. If the PostSessionState is uninitialized, the 

ConnectionEstablishment timer is started. 

The server validates the LongLived-GET-Request message (see section 2.2.2.1) using the following 
procedure:  

1. The server MUST validate the LongLived-GET-Request-URI (see section 2.2.2.1.1) and extract 
the version, server name, virtual connection GUID, encapsulation type, content length, and 
Request ID. If the parsing fails, it is a protocol error and the server MUST close the connections 

(see section 3.2.4.1). The content length is saved in the variable ConnectionContentLength. 



 

68 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

2. The server SHOULD<18> check the LongLived-Encapsulation-Version and, if the value does not 
equal the required value (see section 2.2.2.1.1.1), send a LongLived-GET-Response with a status 

code of 400. See section 3.2.5.1.1.2. 

3. If the encapsulation type is not LongLived, it is a protocol error and the virtual connection MUST 

be closed. 

4. The server SHOULD<19> verify that the server name in the message equals its own name and, if 
they are not equal, close the virtual connection. 

5. The server SHOULD ignore the Request ID. 

6. The server MUST examine the Virtual-Connection-GUID to validate that the LongLived-GET-
Request is a new connection request. Virtual-Connection-GUID SHOULD be maintained in the 
VirtualConnectionGUIDList. If the PostSessionState is 'Connected', the virtual connection GUID 

SHOULD be found in the VirtualConnectionGUIDList. If the PostSessionState is uninitialized, the 
Virtual-Connection-GUID SHOULD be added to the VirtualConnectionGUIDList. If the Virtual-
Connection-GUID is found and the PostSessionState is not ‘Connected’, this is a protocol error. 

See section 3.2.5.1.1.2. 

If the PostSessionState is not ‘Connected’, the processing stops here. 

If the PostSessionState is 'Connected', the virtual connection is established. The server transitions 

GetSessionState, PostSessionState and ConnectionState to the 'Established' state.  

The ConnectionEstablishment timer is stopped and no timer expiration processing is performed. 

The server as described in section 3.2.5.1.1.1 to complete the handshake by sending a LongLived-
GET-Response. 

3.2.5.1.1.1   Sending a LongLived-GET-Response with Status Code 200 

The server MUST send a LongLived-GET-Response message on the GET session to complete the 

LongLived Encapsulation connection handshake.  

A successful LongLived-GET-Response message MUST contain a Response-Status-Line (see section 
2.2.2.3.1) with a status code equal to 200 (OK). 

The LongLived-GET-Response message sent to the client MUST contain the Encapsulation-Echo-
String within the LongLived-Entity-Body.  

The LongLived-Content-Length response header value MUST be set to the ConnectionContentLength 
value. 

The LongLived connection response MUST construct the extended HTTP 1.0 response as specified in 
section 2.2.2.3.  

The server sends a LongLived-GET-Response on the GET session. 

The connection is now ready to receive the SSTP data stream as LongLived-Entity-Body fragments. 
The server MUST NOT send any data to client until after receiving the first non-Encapsulation-Echo-

String entity body.  

A NetworkReceiveIO timer SHOULD be started on the POST session. The KeepAlive timer is started 
after the LongLived Connection handshake completes and moves into the established state. The 
KeepAlive timer is set and maintained by the protocol encapsulated by the LongLived connection (for 
example SSTP). 



 

69 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.2.5.1.1.2   Sending a LongLived-GET-Response with Status Code 400 

If the protocol version does not equal the required LongLived version value (see section 
2.2.2.1.1.1), the server sends on the GET session a LongLived-GET-Response message which MUST 

contain a Response-Status-Line (see section 2.2.2.3.1) with a status code equal to 400 (Bad 
Request).  

The LongLived-GET-Response message with Status code of 400 can also be sent on protocol errors. 

3.2.5.1.2   Receiving Data on LongLived-GET-Request 

This event is a protocol error. The server MUST close the virtual LongLived connection (see section 
3.2.4.1). 

3.2.5.2   POST Session Processing 

Upon receiving data on the POST session, the server MUST first check to see if the data starts with 
HTTP POST request line, as specified in section 2.2.2.2. If so, the server processing follows section 

3.2.5.2.1. If not, application data is received, the server processing proceeds as specified in section 
3.2.5.2.2. 

3.2.5.2.1   Receiving a LongLived-POST-Request 

Upon receipt of a LongLived-POST-Request, the server transitions the PostSessionState to 
'Connected'. If the GetSessionState is ‘Connected’, the ConnectionState transitions into the 
'Connected' state. If the GetSessionState is uninitialized, the ConnectionEstablishment timer is 
started. 

The server validates the LongLived-POST-Request message (see section 2.2.2.2) using the following 

procedure: 

The server MUST validate the URI (see section 2.2.2.2.1) and extract the version, server name, 
virtual connection GUID, encapsulation type, and content length. If the parsing fails, it is a protocol 

error and the server MUST close the connections (see section 3.2.4.1). The content length is saved 
in the variable ConnectionContentLength. 

1. The server SHOULD<20> check the LongLived-Encapsulation-Version  . If the version does not 
equal the required value (see section 2.2.2.1.1.1), the server MUST send a LongLived-POST-

Response with a status code of 400. See section 3.2.5.2.1.1. 

2. If the encapsulation type is not LongLived, it is a protocol error and the virtual connection MUST 
be closed. 

3. The server SHOULD<21> verify that the server name in the message equals its own name and, if 
they are not equal, close the virtual connection. 

4. The server MUST examine the Virtual-Connection-GUID to validate that the LongLived-POST-
Request is a new connection request. The virtual connection GUID SHOULD be maintained in the 

VirtualConnectionGUIDList. If the GetSessionState is 'Connected', the Virtual-Connection-GUID 

SHOULD be found in the VirtualConnectionGUIDList. If the GetSessionState is uninitialized, the 
Virtual-Connection-GUID SHOULD be added to VirtualConnectionGUIDList. If the Virtual-
Connection-GUID is found and GetSessionState is not ‘Connected’, this is a protocol error. See 
section 3.2.5.2.1.1. 



 

70 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The LongLived-POST-Request MUST contain the Encapsulation-Echo-String (see section 2.2.2.2.3) in 
the message entity body. The Encapsulation-Echo-String is saved so it can later be echoed back to 

the client on the LongLived-GET-Response message (see section 3.2.5.1.1.1). 

If the GetSessionState is not ‘Connected’, the processing stops here. 

If the GetSessionState is 'Connected', the virtual connection is established. The server transitions 
the GetSessionState, PostSessionState, ConnectionState to the 'Established' state.  

The server clears the ConnectionEstablishment timer. 

The server continues with the procedure in section 3.2.5.1.1.1 to complete the handshake by 
sending a LongLived-GET-Response. 

3.2.5.2.1.1   Sending a LongLived-POST-Response because of a Protocol Error 

If the protocol version does not equal the required LongLived version value (see section 2.2.2.1.1.1) 
or if protocol errors occur during the handshake, the server optionally can send a LongLived-POST-

Response message which contains a Response-Status-Line (see section 2.2.2.4) with a status code 
equal to 400 (Bad Request).  

Regardless of protocol version not equaling the required LongLived version value or a protocol error 
occurring during the handshake, the server MUST close the virtual LongLived connection as specified 

in section 3.2.4.1. 

3.2.5.2.2   Receiving Application Data 

If any data is received before the ConnectionState is 'Established', it is a violation of protocol and 
the server MUST close the virtual LongLived connection, as specified in section 3.2.4.1. 

The server sets the GetSessionReady state to TRUE so that the server can send application data at 
any time. 

The server receives encapsulated application data over the POST session. The server passes the 

application data to a higher layer for processing. The server can keep track of the amount of octets 
received with the PostContentLength variable, to ensure that it does not exceed the 
ConnectionContentLength value. If the PostContentLength exceeds this value, it is a protocol 
violation and is handled as specified in section 3.2.5.2.1.1. 

If there is buffered data to be sent to the client, the sever can now send the data in one chunk<22> 
as specified in section 3.2.4.2. 

The NetworkReceiveIO timer MUST be restarted after each entity body fragment is received.  

3.2.6   LongLived Server Timer Events 

3.2.6.1   ConnectionEstablishment Timer Event 

The ConnectionEstablishment Timer Event fires when the ConnectionEstablishment timer for a given 
LongLived connection expires before the connection can be established. If this timer expires before 

the LongLived connection enters the established state, all established TCP connections on the 
LongLived virtual connection SHOULD be closed by the server.  



 

71 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.2.6.2   NetworkReceiveIO Timer Event 

The NetworkReceiveIO Timer Event fires when no data is received on the POST session within the 
NetworkReceiveIO interval. If the NetworkReceiveIO event triggers, the server SHOULD close the 

LongLived connection (see section 3.2.4.1).  

3.2.6.3   KeepAlive Timer Event 

The KeepAlive timer fires every KeepAlive interval to trigger a send of a KeepAlive Message on the 
GET Session from the server to the client. A KeepAlive Event SHOULD trigger the server to send an 
encapsulated protocol message, such as an SSTP_NOOP command, to the client<23>. Well behaved 
KeepAlive connections will see this event every KeepAlive interval when the session is idle. After the 

KeepAlive event timer fires, the timer SHOULD be restarted. 

3.2.7   LongLived Server Other Local Events 

A transport disconnect event on one session causes the server to close the virtual LongLived 
connection (see section 3.2.4.1).  

3.3   KeepAlive Encapsulation Protocol Client Details 

KeepAlive Encapsulation Protocol is an HTTP-based protocol used for firewall and proxy traversal. It 
provides an HTTP transport which can also negotiate and authenticate with HTTP proxies. KeepAlive 
Encapsulation provides a virtual connection composed of two HTTP sessions, a GET session and the 
POST session. Each of these HTTP sessions is layered on a dedicated TCP connection. The POST 
session is used to send SSTP commands and data from the client to the server, while the GET 
session is used by the client to receive SSTP commands and data from the server. Each session is 

capable of sending/receiving multiple request/response messages over a single TCP connection.  

3.3.1   KeepAlive Client Abstract Data Model 

This section specifies a conceptual model of possible data organization that an implementation 
maintains to participate in the KeepAlive encapsulation protocol. The specified organization is 

provided to facilitate the explanation of how the protocol behaves. This document does not mandate 
that implementations adhere to this model as long as their external behavior is consistent with that 

specified in this document. See the following figure for a detailed view of the KeepAlive client 
session state machine.  



 

72 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 15: Client KeepAlive session state diagram 

For a detailed view of the KeepAlive client connection state machine, see the following diagram. 



 

73 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 16: Client KeepAlive connection state diagram 

3.3.1.1   Connection State Information 

The following details about the state information define the context needed to manage a KeepAlive 
virtual connection. Unless otherwise noted, the following connection state variables are scoped to a 
single KeepAlive connection. When a KeepAlive connection is terminated, this state information is no 

longer relevant and SHOULD be discarded. 

A client SHOULD support multiple KeepAlive connections to multiple servers concurrently. A client 

SHOULD support one KeepAlive virtual connection (2 TCP connections) to the same target server 
(see ServerHost state information). In all cases, each KeepAlive connection MUST maintain separate 
connection state variable information. 

ServerPort: The well-known port number of the target server. By default this is the HTTP well 

known port 80/TCP. 



 

74 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

ServerHost: The host name of the target server, in the form of an FQDN or IP Address. There is no 
default value. 

VirtualConnectionGUID: A GUID used to uniquely identify the virtual connection. This GUID is 
generated by the client when initiating the encapsulation connection. The GUID is exchanged 

between the client and server and MUST be unique within each server. There is no default value. 

ClientOKtoSend: The state variable enforces the requirement that the client MUST NOT send 
application data when there is an outstanding KeepAlive-POST-Request. Only when the KeepAlive-
POST-Response is received can the client send a new KeepAlive-POST-Request. 

GetSessionState: The variable used to maintain the current disposition of the GET session. There 
are four possible states: 'Connecting', 'Connected', 'Established', and ‘Closed’. The 'Connecting' state 
indicates that the GET session request has been sent and the KeepAlive handshake has started. The 

'Connected' state indicates that proxy negotiations are in progress. Non-proxy connections 
immediately transition through the 'Connected' state. The 'Established' state indicates that the GET 
session response has been received. The ‘Closed’ state indicates a session cleanup in progress.  

PostSessionState: The variable used to maintain the current disposition of the POST session. 
There are four possible states: 'Connecting', 'Connected', 'Established', and ‘Closed’. The 
'Connecting' state indicates that the POST session request has been sent and the KeepAlive 

handshake has started. The 'Connected' state indicates that proxy negotiations are in progress. 
Non-proxy connections immediately transition through the 'Connected' state. The 'Established' state 
indicates the POST session response has been received. The ‘Closed’ state indicates a session 
cleanup in progress.  

ConnectionState: The variable used to maintain the current disposition of the virtual KeepAlive 
connection. There are three possible states: 'Connecting', 'Established', and 'Closed'. The 
'Connecting' indicates that the GET/POST session creation is in progress. The 'Established' state 

indicates that both GET/POST sessions have been successfully created and application data can 
begin to flow over the virtual connection. The 'Closed' state indicates that the connection can no 
longer send or receive application data; the virtual connection sessions are closed. 

ProxyConnection: The indicator of whether the current connection is a connection to a proxy or a 

direct connection to a server. The value is set to TRUE after the client determines that a proxy is to 
be used. The default value is FALSE. 

3.3.1.2   Proxy State Information 

The following details about the state information define the context clients need to establish 
connections with proxies. This proxy configuration information MUST be provided to the client prior 
to connection establishment. The source of this configuration information is external to the 
KeepAlive Protocol<24>.  

ProxyServerPort: The well-known port number of the target proxy. It is used for establishing a 

TCP connection to a proxy. By default this is the HTTP well known port 80/TCP or the HTTP alternate 
well known port 8080/TCP. 

ProxyServerHostName: The host name of the target proxy. The name is in the form of an FQDN 
or an IP Address. If the name is an FQDN, then the client MUST resolve this name to its IP Address. 

There is no default value. 

ProxyAuthRequired: A variable used to indicate if a proxy requires authentication. The client sets 
this variable to TRUE when it discovers that the proxy needs authentication during its first 

negotiation with the proxy. When the client initiates a new virtual connection through the same 



 

75 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

proxy, it SHOULD provide the cached credentials without waiting to be challenged to avoid the 
overhead of additional message exchanges. 

3.3.2   KeepAlive Client Timers 

3.3.2.1   ConnectionEstablishment Timer 

The ConnectionEstablishment timer SHOULD be used by clients to limit the amount of time a virtual 
connection negotiation takes to complete. This timer measures the time it takes for a connection to 
move from the non-established state to the established state. The recommended timeout value is 30 
seconds. The ConnectionEstablishment timer event processing is handled as specified in section 
3.3.6.1. 

3.3.2.2   GetNetworkReceiveIO Timer 

The GetNetworkReceiveIO timer SHOULD be used by clients to limit the amount of time a client 
waits for a KeepAlive connection GET session response. This timer is set after sending the 

KeepAlive-GET-Request when the KeepAlive connection handshake is finished. The timer SHOULD be 
greater than the KeepAlive timer (see section 3.3.2.4). The recommended timeout value is 5 
minutes. The GetNetworkReceiveIO timer event processing is handled as specified in section 

3.3.6.2. 

3.3.2.3   PostNetworkReceiveIO Timer 

The PostNetworkReceiveIO timer SHOULD be used by clients to limit the amount of time a client 
waits for a KeepAlive connection POST session response. This timer is set after sending the 
KeepAlive-POST-Request when the KeepAlive connection handshake is finished. The timer SHOULD 

be greater than the KeepAlive timer (see section 3.3.2.4). The recommended timeout value is 5 
minutes. The PostNetworkReceiveIO timer event processing is handled as specified in section 
3.3.6.3. 

3.3.2.4   KeepAlive Timer 

HTTP Encapsulation protocols do not support a native KeepAlive timer, but rather rely on the 
encapsulated protocol to provide a KeepAlive mechanism. Encapsulated protocols SHOULD 

implement their own KeepAlive mechanisms. The SSTP protocol provides its own KeepAlive 
mechanism using the SSTP_NOOP command<25>. This data serves to keep the KeepAlive 
connection from being closed by firewalls and proxies. All KeepAlive Connections SHOULD use 
KeepAlive timers, regardless of whether or not the client detects if a connection is a proxy 
connection, as some firewalls and proxies are undetectable. The default client KeepAlive timeout 
value is 45 seconds. The KeepAlive timer event processing is handled as specified in section 3.3.6.4. 

3.3.3   KeepAlive Client Initialization 

3.3.3.1   Protocol Initialization 

The KeepAlive protocol is not initialized until a request to open an encapsulated connection is made 
by the application. The variables defined by the abstract data model are initialized to their default 

values when a KeepAlive connection request is made. 



 

76 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.3.4   KeepAlive Client Higher-Layer Triggered Events 

3.3.4.1   Establishing a KeepAlive Encapsulation Connection 

When the application requests a KeepAlive connection, the KeepAlive protocol layer MUST initialize 
the KeepAlive connection state variables as specified in the abstract data model (see section 3.3.1). 
After the connection state variables are initialized, the KeepAlive protocol enters into the connection 
establishment phase. Initialization SHOULD include fetching any proxy configuration 
information<26>. 

The ConnectionState MUST be set to 'Connecting'. The ConnectionEstablishment timer SHOULD be 
started. 

The client opens two connections to the server, one for a GET session and one for a POST session, 
as specified in sections 3.3.4.1.1 and 3.3.4.1.3. If proxy configuration information is supplied, the 
client MUST go through the proxy for each connection as specified in sections 3.3.4.1.2 and 
3.3.4.1.4. 

The client generates a new virtual connection GUID, stores it in the VirtualConnectionGUID variable, 
and sets the GetSessionState and PostSessionState to ‘Connecting’. 

3.3.4.1.1   Establishing GET Session without Proxy 

The client MUST construct the KeepAlive-GET-Request-URI as the KeepAlive-GET-Request-Relative-
URI, with the ServerHost as Relay-Server-Name, and the VirtualConnectionGUID variable as Virtual-
Connection-GUID. 

The client specifies the HOST header and sets the value to equal the ServerHost variable as 
specified in section 2.2.1.2.7. 

The client MUST construct a KeepAlive-GET-Request as specified in section 2.2.3.1 with required 
headers. 

The client MUST establish a TCP connection to the server identified with ServerHost and ServerPort 

and send the KeepAlive-Get-Request. 

3.3.4.1.2   Establishing GET Session with Proxy 

The client sets the ProxyConnection to TRUE. 

The client generates a Request ID GUID. 

The client MUST construct the KeepAlive-GET-Request-URI as the KeepAlive-GET-Request-Absolute-
URI, with the ServerHost as Relay-Server-Name, the VirtualConnectionGUID variable as Virtual-
Connection-GUID, and the preceding generated Request ID GUID as the KeepAlive-Encapsulation-
Request-ID. 

The client specifies the HOST header and sets the value to equal the ServerHost variable as 
specified in section 2.2.1.2.7. 

The client specifies the proxy-Connection header with the Keep-Alive value as specified in section 
2.2.1.2.9. 

The client MUST construct a KeepAlive-GET-Request as specified in section 2.2.3.1 with required 
headers. 



 

77 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

If the ProxyAuthRequired is set, the client MUST add additional proxy authentication headers to the 
request. 

The client MUST establish a TCP connection to the server identified with ProxyServerHostName and 
ProxyServerPort and send the KeepAlive-GET-Request. 

3.3.4.1.3   Establishing POST Session without Proxy 

The client MUST construct the KeepAlive-POST-Request-URI as the KeepAlive-POST-Request-
Relative-URI, with the ServerHost as Relay-Server-Name and the VirtualConnectionGUID variable as 
Virtual-Connection-GUID. 

The client MUST construct a KeepAlive-POST-Request as specified in section 2.2.3.2.with required 
headers. 

The KeepAlive-Entity-Body MUST contain the Encapsulation-Echo-String message. 

The client MUST establish a TCP connection to the server identified with ServerHost and ServerPort 

and send the KeepAlive-POST-Request. 

3.3.4.1.4   Establishing POST Session with Proxy 

The client sets the ProxyConnection to TRUE. 

The client generates a Request ID GUID. 

The client MUST construct the KeepAlive-GET-Request-URI as the KeepAlive-POST-Request-
Absolute-URI, with the ServerHost as Relay-Server-Name, the VirtualConnectionGUID variable as 
Virtual-Connection-GUID, and the newly generated Request ID GUID for the KeepAlive-
Encapsulation-Request-ID. 

The client specifies the proxy-Connection header with the Keep-Alive value as specified in section 
2.2.1.2.9. 

The client MUST construct a KeepAlive-POST-Request as specified in section 2.2.3.2.with required 
headers. 

If the ProxyAuthRequired is set, the client MUST add additional proxy authentication headers to the 
request. 

The KeepAlive-Entity-Body MUST contain the Encapsulation-Echo-String message. 

The client MUST establish a TCP connection to the server identified with ProxyServerHostName and 
ProxyServerPort and send the KeepAlive-POST-Request. 

3.3.4.2   Closing a KeepAlive Connection 

The client SHOULD close the KeepAlive virtual connection by closing both the POST and GET 
sessions as specified in sections 3.3.4.3 and 3.3.4.4. 

The ConnectionState then transitions into the ‘Closed’ state. The connection state variables SHOULD 
be discarded. 

3.3.4.3   Closing a KeepAlive POST Session 

The client SHOULD close the POST session by sending a graceful TCP disconnect. The 
PostSessionState is set to the ‘Closed’ state. 



 

78 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

TCP client or server connections are closed using either a Graceful Close (TCP FIN Flag set to 1) or 
Abortive Close (TCP Reset Flag set to 1) mechanism. Closing the connection gracefully provides 

clients and servers with the benefit of never having to resend unacknowledged payload data. 
Abortive Closed connections are efficient in connection tear down but can require the client or server 

to resend payload data which has not been acknowledged at the TCP level. HTTP Encapsulation of 
SSTP Protocols relies on SSTP to ensure that any unacknowledged payload data is later resent. The 
choice of connection close mechanism is one of efficiency (efficient connection tear down verses 
efficient byte transmission). This document does not mandate that implementations adhere to one 
approach or another. Implementations can choose to close HTTP Encapsulated Connections either 
gracefully or abortively based on the implementation's requirements. 

3.3.4.4   Closing a KeepAlive GET Session 

The client SHOULD close the GET session by sending a graceful TCP disconnect. The 
GetSessionState is set to the ‘Closed’ state. 

TCP client or server connections are closed using either a Graceful Close (TCP FIN Flag set to 1) or 
Abortive Close (TCP Reset Flag set to 1) mechanism. Closing the connection gracefully provides 

clients and servers with the benefit of never having to resend unacknowledged payload data. 

Abortive Closed connections are efficient in connection tear down but can require the client or server 
to resend payload data which has not been acknowledged at the TCP level. HTTP Encapsulation of 
SSTP Protocols relies on SSTP to ensure that any unacknowledged payload data is later resent. The 
choice of connection close mechanism is one of efficiency (efficient connection tear down verses 
efficient byte transmission). This document does not mandate that implementations adhere to one 
approach or another. Implementations can choose to close HTTP Encapsulated Connections either 
gracefully or abortively based on the implementation's requirements. 

3.3.4.5   Re-Opening a KeepAlive POST Session 

The client SHOULD re-open the KeepAlive POST session, as directed by the application layer, after 
the closing of the KeepAlive POST session (see section 3.3.4.3). The POST session MUST NOT be re-
opened after the KeepAlive virtual connection has been closed (see section 3.3.4.2). 

3.3.4.6   Re-Opening a KeepAlive GET Session 

The GET session MUST NOT be re-opened, after closing of the KeepAlive GET session. 

3.3.4.7   Sending Application Data 

To send, the KeepAlive connection MUST be in the 'Established' state, and the ClientOKtoSend state 
MUST be TRUE. If either condition is not met, the client MUST buffer the data and the processing 
stops.  

If the client is able to send, the client MUST set the ClientOKtoSend state to FALSE. The client sends 

the application data as specified in section 3.3.4.7.1. If the ProxyConnection state variable is set to 
TRUE, the client MUST instead send the application data with additional proxy headers (see section 
3.3.4.7.2). 

3.3.4.7.1   Sending Application Data without Proxy 

The client sends the SSTP stream data over the POST session within a KeepAlive-POST-Request. The 
SSTP stream data is contained within the KeepAlive-Entity-Body. This content length MUST NOT 

exceed the 32768 octet limit imposed by the KeepAlive protocol. 

The client constructs a KeepAlive-POST-Request as defined in section 2.2.3.2. 



 

79 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The client MUST construct the KeepAlive-POST-Request-URI as the KeepAlive-POST-Request-
Relative-URI, with the ServerHost as Relay-Server-Name and the VirtualConnectionGUID variable as 

Virtual-Connection-GUID. 

The KeepAlive-Content-Length header is set equal to the application data length.  

The client specifies the HOST header and sets the value to equal the ServerHost variable as 
specified in section 2.2.1.2.7. 

The client MUST send the KeepAlive-POST-Request message on the POST session.  

The client SHOULD start the PostNetworkReceiveIO timer. 

3.3.4.7.2   Sending Application Data with Proxy 

The client sends the SSTP stream data over the POST session within a KeepAlive-POST-Request. The 

SSTP stream data is contained within the KeepAlive-Entity-Body. This content length MUST NOT 
exceed the 32768 octet limit imposed by the KeepAlive protocol. 

The client constructs a KeepAlive-POST-Request as defined in section 2.2.3.2. 

The client generates a Request ID GUID. 

The client MUST construct the KeepAlive-POST-Request-URI as the KeepAlive-POST-Request-
Absolute-URI, with the ServerHost as Relay-Server-Name, the VirtualConnectionGUID variable as 

Virtual-Connection-GUID, and the preceding generated Request ID GUID as the KeepAlive-
Encapsulation-Request-ID. 

The KeepAlive-Content-Length header is set equal to the application data length.  

The client specifies the proxy-Connection header with the Keep-Alive value as specified in section 
2.2.1.2.9. 

The client specifies the HOST header and sets the value to equal the ServerHost variable as 
specified in section 2.2.1.2.7. 

If the ProxyAuthRequired is set, the client MUST add additional proxy authentication headers to the 
request. 

The client MUST send the KeepAlive-POST-Request message on the POST session. 

The client SHOULD start the PostNetworkReceiveIO timer. 

3.3.5   KeepAlive Client Message Processing Events and Sequencing Rules 

3.3.5.1   KeepAlive-POST-Response Processing 

Upon receiving data on the POST session, the client MUST scan the data to verify that it has 
received an HTTP response status line, as specified in section 2.2.2.3.1. If not, this is a protocol 
error on the POST session, and the client MUST close the virtual KeepAlive connection (see section 

3.3.4.2). 

The HTTP response header MUST be parsed and the status code and response body extracted. 



 

80 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.3.5.1.1   Status Code: 200 (OK) 

Status Code 200 is processed differently depending on state of the KeepAlive connection. If the 
KeepAlive virtual connection handshake is in progress, that is, the PostSessionState is ‘Connecting’, 

then Status Code 200 is processed as specified in section 3.3.5.1.1.1, otherwise the response is 
processed as specified in section 3.3.5.1.1.2. 

3.3.5.1.1.1   Handshake POST Response Processing 

If the ConnectionState is 'Established' and the PostSessionState is 'Connecting', the POST session 
has been successfully re-opened., the PostSessionState MUST transition to the 'Established' state. 

If the PostSessionState is 'Connecting', the receipt of a KeepAlive-POST-Response causes the 

PostSessionState to transition to 'Connected'. 

If the ConnectionState is 'Connecting', the client SHOULD validate that the response entity body 
contains the KeepAlive-POST-Response-No-Data message. If they are not the same it is a protocol 
error and the connection MUST be closed (see section 3.3.4.2). 

The receipt of KeepAlive-POST-Response-No-Data on the POST session completes the POST session 
establishment. The client transitions the PostSessionState to ‘Established’.  

If the GetSessionState is not ‘Established’, the response processing stops here. 

If the GetSessionState is 'Established', then the virtual connection is established and the server 
transitions ConnectionState to the 'Established' state.  

The ConnectionState timers SHOULD be stopped and no further timer expiration processing is 
performed. The KeepAlive timer SHOULD be started. The ClientOKtoSend state MUST be set to 
TRUE. The client is now ready to send application data. 

If there is buffered data to send, the data MUST be sent now as specified in section 3.3.4.7.  

A KeepAlive-GET-Request MUST be sent (see section 3.3.5.3) to allow the server to send data back 

to the client. 

3.3.5.1.1.2   Application Data Posted 

The ConnectionState MUST be in the 'Established' state. If not, it is a protocol error and the virtual 
connection MUST be closed (see section 3.3.4.2). 

The receipt of a status code of 200 indicates that the previously sent application data has been 

received by the server. 

The KeepAlive-Content-Length MUST be 0. If not, it is a protocol error and the virtual connection 
MUST be closed.(see section 3.3.4.2). 

The PostNetworkReceiveIO timer SHOULD be stopped and no further timer expiration processing is 
performed. 

The ClientOKtoSend state MUST be set to TRUE. If there is buffered data to send, the data MUST be 
sent now as specified in section 3.3.4.7. 



 

81 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.3.5.1.2   Status code: 400 (Bad Request) 

The server has rejected the connection request because an encapsulation version does not equal the 
required value (see section 2.2.3.1.1.2) or because of a protocol error. The client MUST close all 

connections associated with this virtual connection (see section 3.3.4.2). 

3.3.5.1.3   Status codes: 401 (Unauthorized) / 407 (ProxyAuthentication Required) 

HTTP status code values of 401 (Unauthorized) or 407 (ProxyAuthentication Required)  

indicate that the proxy requires the client to authenticate. Common authentication schemes include 
Basic and Digest, as specified in [RFC2617], and NTLM HTTP Authentication, as specified in 
[RFC4559].  

The client sets the ProxyAuthRequired state variable to TRUE. Subsequent connection attempts to 
the same proxy SHOULD avoid the proxy challenge message by sending the proxy authentication 
credentials as part of the KeepAlive-POST-Request.  

Depending on the authentication method, multiple round trips can happen to complete the 
authentication process. That is, the client MUST expect to get multiple 401 and 407 messages. It 
MUST follow [RFC2617] and [RFC4559] to set proper authentication headers and retry the proxy 

connection. 

For processing required to retry the proxy connection, see section 3.3.4.1.4. 

The ConnectionEstablishment timer SHOULD be restarted before re-attempting the KeepAlive 
connection handshake.  

3.3.5.1.4   All Other Status Codes 

All other status codes are fatal, the virtual connection MUST be closed as specified in section 

3.3.4.2. 

3.3.5.2   KeepAlive-GET-Response Processing 

Upon receiving data on the GET session, the client MUST scan the data to verify that it has received 
an HTTP response status line, as specified in section 2.2.2.3.1. If not, a protocol error exists on the 
GET session, and the client MUST close the virtual KeepAlive connection (see section 3.3.4.2). 

The HTTP response header MUST be parsed, and the status code and response body extracted. 

3.3.5.2.1   Status code: 200 (OK) 

Status Code 200 is processed differently depending on state of the KeepAlive connection. If the 
ConnectionState is 'Connecting', then Status Code 200 is processed as specified in section 
3.3.5.2.1.1; otherwise see section 3.3.5.2.1.2 to handle the response with application data. 

3.3.5.2.1.1   Handshake GET Response Processing 

The receipt of a KeepAlive-GET-Response message on the GET session causes the GetSessionState 
variable to transition into the 'Connected' state. 

The client MUST compare the response body string against the Encapsulation-Echo-String sent 
earlier on the POST session. If they are not equal, it is a violation of the protocol and the connection 
MUST be closed (see section 3.3.4.2). 

http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90483
http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90483


 

82 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The receipt of Encapsulation-Echo-String on the GET session completes the GET session 
establishment. The client transitions GetSessionState to ‘Established’.  

If the PostSessionState is not ‘Established’, the processing stops here. 

If the PostSessionState is 'Established', then the virtual connection is established. The client 

transitions ConnectionState to the 'Established' state. 

The ConnectionEstablishment timer SHOULD be stopped and no further timer expiration processing 
is performed. The KeepAlive timer SHOULD be started. The ClientOKtoSend state MUST be set to 
TRUE. The client is ready to send and receive application data. 

If there is buffered data, the data MUST be sent now as defined in section 3.3.4.7.  

The client MUST send a KeepAlive-GET-Request as specified in section 3.3.5.3 to allow the server to 
send data back to the client. 

3.3.5.2.1.2   Application Data GET Response Processing 

The receipt of a KeepAlive-GET-Response message with status code of 200 indicates application 
data has arrived.  

The KeepAlive-Content-Length MUST be greater than zero. 

The KeepAlive-GET-Response-Entity-Body contains the application data which is passed to the 

application layer for processing. 

The GetNetworkReceiveIO timer SHOULD be cleared.  

The client MUST immediately send a KeepAlive-GET-Request (see section 3.3.5.3) on the GET 
session so the client can receive more application data from the server.  

3.3.5.2.2   Status code: 400 (Bad Request) 

The server has rejected the connection request because an encapsulation version does not equal the 

required value (see section 2.2.3.1.1.2). The client MUST close all connections associated with this 
virtual connection (see section 3.3.4.2) and SHOULD NOT retry this connection attempt. 

3.3.5.2.3   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication 

Required) 

HTTP status code values of 401 (Unauthorized) or 407 (Proxy Authentication Required)  

indicate that the proxy requires the client to authenticate. Common authentication schemes include 
Basic and Digest, as specified in [RFC2617], and Negotiated or NTLM HTTP Authentication, as 
specified in [RFC4559].  

The client sets the ProxyAuthRequired state variable to TRUE. Subsequent connection attempts to 
the same proxy SHOULD avoid the proxy challenge message by sending the proxy authentication 
credentials as part of the KeepAlive-GET-Request.  

Depending on the authentication method, multiple round trips can happen to complete the 

authentication process. That is, the client MUST expect to get multiple 401 and 407 messages. It 
MUST follow [RFC2617] and [RFC4559] to set proper authentication headers and retry the proxy 
connection. 

For processing required to retry the proxy connection, see section 3.3.4.1.2. 

http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90483
http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90483


 

83 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The ConnectionEstablishment timer SHOULD be reset before re-attempting the KeepAlive handshake 
(see section 3.3.4.1).  

3.3.5.2.4   All Other Status Codes 

All other status codes are fatal, the virtual connection MUST be closed as specified in section 
3.3.4.2. 

3.3.5.3   Sending a KeepAlive-GET-Request 

The client sends the KeepAlive-GET-Request message as specified in section 3.3.5.3.2. If the 
ProxyConnection state variable is set to TRUE, the client MUST instead send the KeepAlive-GET-
Request message with additional proxy headers (see section 3.3.5.3.2). 

3.3.5.3.1   Sending Request for Application Data without Proxy 

The client constructs a KeepAlive-GET-Request as defined in section 2.2.3.1. 

The client MUST construct the KeepAlive-GET-Request-URI as the KeepAlive-GET-Request-Relative-
URI, with the ServerHost as Relay-Server-Name and the VirtualConnectionGUID variable as Virtual-
Connection-GUID. 

The client specifies the HOST header and sets the value to equal the ServerHost variable as 

specified in section 2.2.1.2.7. 

The client MUST send the KeepAlive-GET-Request message on the GET session.  

The client MUST start the GetNetworkReceiveIO timer. 

3.3.5.3.2   Sending Request for Application Data with Proxy 

The client constructs a KeepAlive-GET-Request as defined section 2.2.3.1. 

The client generates a Request ID GUID. 

The client MUST construct the KeepAlive-GET-Request-URI as the KeepAlive-GET-Request-Absolute-
URI, with the ServerHost as Relay-Server-Name, the VirtualConnectionGUID variable as the Virtual-
Connection-GUID, and the preceding generated Request ID GUID for the KeepAlive-Encapsulation-
Request-ID. 

The client specifies the HOST header and sets the value to equal the ServerHost variable as 
specified in section 2.2.1.2.7. 

The client specifies the proxy-Connection header with the Keep-Alive value as specified in section 
2.2.1.2.9. 

If the ProxyAuthRequired is set, the client MUST add additional proxy authentication headers to the 
request. 

The client MUST send the KeepAlive-GET-Request message on the GET session.  

The client MUST start the GetNetworkReceiveIO timer. 



 

84 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.3.6   KeepAlive Client Timer Events 

3.3.6.1   ConnectionEstablishment Timer Event 

The ConnectionEstablishment timer event fires when the ConnectionEstablishment timer for a given 
KeepAlive connection expires before the connection can be established. If this timer expires before 
the KeepAlive connection enters the 'Established' state, the virtual KeepAlive connection SHOULD be 
closed by the client.  

3.3.6.2   GetNetworkReceiveIO Timer Event 

The GetNetworkReceiveIO timer event fires when a GET session response is not received within the 

GetNetworkReceiveIO interval. If the GetNetworkReceiveIO event triggers, the client SHOULD close 
the KeepAlive connection and MAY retry immediately. Well behaved connections will not see this 
event, so clients can expect this event to be transient, and SHOULD always attempt to establish a 
new KeepAlive connection with the target server. 

3.3.6.3   PostNetworkReceiveIO Timer Event 

The PostNetworkReceiveIO timer event fires when a POST session response is not received within 

the PostNetworkReceiveIO interval. If the PostNetworkReceiveIO event triggers, the client SHOULD 
close the KeepAlive connection and MAY retry immediately. Well behaved connections will not see 
this event, so clients can expect this event to be transient, and SHOULD always attempt to establish 
a new KeepAlive connection with the target server. 

3.3.6.4   KeepAlive Timer Event 

A KeepAlive Event SHOULD trigger an encapsulated protocol message such as an SSTP_NOOP 

command to be sent across the wire<27>. Well behaved connections will see this event every 
KeepAlive timer interval when the session is idle. The timer SHOULD be restarted each time it fires. 

3.3.7   KeepAlive Client Other Local Events 

If the POST session receives a transport disconnect, the client SHOULD set the PostSessionState to 
‘Closed’ and attempt to re-open the POST session (see section 3.3.7.1). If re-opening the POST 

session fails, the KeepAlive connection MUST be closed (see section 3.3.4.2). The application layer 
can immediately attempted a new KeepAlive connection as specified in section 3.3.4.1. 

If the GET session receives a transport disconnect, the KeepAlive connection MUST be closed (see 
section 3.3.4.2). The application layer can immediately attempted a new KeepAlive connection as 
specified in section 3.3.4.1. 

The client SHOULD let the higher layer decide whether to wait before establishing a new KeepAlive 
virtual connection to the target server, or use a different encapsulation protocol to establish a 

connection to the server. 

3.3.7.1   Re-Opening the POST Session after a Transport Disconnect 

On a POST session TCP disconnect event, the client can re-open the POST session without 
reestablishing a new virtual KeepAlive connection. Re-opening the POST session can only be 
reattempted if the GET session remains connected. If the GET session also receives a TCP 
disconnect, the KeepAlive virtual connection SHOULD be closed (see section 3.3.4.2). 



 

85 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The PostSessionState MUST be in the ‘Closed’ state and the KeepAlive ConnectionState MUST be in 
the 'Established' state. Otherwise it is a protocol error and the virtual connection MUST be closed 

(see section 3.3.4.2). 

To re-open the POST session, the client MUST set the PostSessionState to 'Connecting' and follow 

section 3.3.4.5 to reopen POST TCP connection. The following figure shows the PostSessionState 
transitions. 

The client MUST use the existing virtual connection GUID in the VirtualConnectionGUID state 
variable to open the POST session. 

The Encapsulation-Echo-String message MUST NOT be sent. Instead the previously failed, buffered, 
KeepAlive-POST-Request-Entity-Body SHOULD be resent. If no KeepAlive-POST-Request was 
outstanding when the TCP disconnect occurred, then the client SHOULD send the next available 

chunk of application data.  

The client MUST set the ClientOKtoSend to TRUE and sends the application data as specified in 
section 3.3.4.7.  



 

86 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 17: Client re-opening the post-session state diagram 

3.4   KeepAlive Encapsulation Protocol Server Details 

3.4.1   KeepAlive Server Abstract Data Model 

This section specifies a conceptual model of possible data organization that a server implementation 
maintains to participate in KeepAlive encapsulation protocol. The specified organization is provided 
to facilitate the explanation of how the protocol behaves. This document does not mandate that 

implementations adhere to this model as long as their external behavior is consistent with that 
specified in this document.  



 

87 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.4.1.1   Connection State Information 

See section 3.3.1.1 for a list of connection state variables that are shared with the client. 

VirtualConnectionGUIDList: The global list of virtual connection GUIDs of all active connections. 

This list allows the application to quickly lookup a virtual connection GUID to determine if it is a 
known virtual connection GUID. This list also contains a reference to the per-connection state 
variables for the associated GUID. 

ServerOKtoSend: The state variable enforces the requirement that the server MUST NOT send 
application data on a KeepAlive-GET-Response until after receiving a KeepAlive-GET-Request. All 
subsequent KeepAlive-GET-Response messages MUST only be sent in response to an outstanding 
KeepAlive-GET-Request messages. 

GetSessionReady: The state variable enforces the requirement that the server MUST NOT send 
application data on the GET session until the client has received the KeepAlive-POST-Response 
containing the Encapsulation-Echo-String. The first packet of application data received by the server 
on the POST session is an implied acknowledgement, which indicates that the client has received the 

Encapsulation-Echo-String. A value of TRUE indicates that the server is ready to send application 
data. The default state is FALSE. 

3.4.2   KeepAlive Server Timers 

3.4.2.1   ConnectionEstablishment Timer 

The ConnectionEstablishment timer SHOULD be used by the server to limit the amount of time a 
KeepAlive connection handshake takes to complete. This timer measures the time it takes for a 
connection to move from the connected to the established state. This is a per-connection timer. The 

recommended timeout value is 90 seconds. The ConnectionEstablishment timer event processing is 
handled as specified in section 3.4.6.1. 

3.4.2.2   IdleConnection Timer 

The IdleConnection timer SHOULD be used by the server to determine if a connection has become 
idle. This timer is set after the KeepAlive handshake is finished. The timer SHOULD be greater than 
the KeepAlive timer used by the client, as specified in section 3.3.2.4. This is a per-connection 

timer. The recommended timeout value is 90 seconds. The IdleConnection timer event processing is 
handled as specified in section 3.4.6.2. 

3.4.2.3   KeepAlive Timer 

HTTP Encapsulation protocols do not support a native KeepAlive timer, but rely on the encapsulated 
protocol to provide a KeepAlive mechanism. Encapsulated protocols SHOULD implement their own 
KeepAlive mechanisms. The SSTP protocol provides its own KeepAlive mechanism using the 

SSTP_NOOP command<28>. This data serves to keep the KeepAlive connection from being closed 
by firewalls and proxies. All KeepAlive Connections SHOULD use KeepAlive timers, regardless of 
whether or not the client detects if a connection is a proxy connection, as some firewalls and proxies 
are undetectable. The default client KeepAlive timeout value is 45 seconds. The KeepAlive timer 
event processing is handled as specified in section 3.4.6.3. 

3.4.3   KeepAlive Server Initialization 

3.4.3.1   Protocol Initialization 

When the server starts it MUST initialize the HTTP stack<29>.  



 

88 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

A KeepAlive connection protocol is not initialized until a request to open an encapsulated connection 
is received by the server. The variables defined by the abstract data model are initialized when the 

KeepAlive connection request is received.  

3.4.3.2   KeepAlive Listener 

The Server MUST open a listener socket on the KeepAlive port. The KeepAlive connection port uses 
the well-known HTTP port 80/TCP. Alternate ports MAY be used, but non-default port information 
MUST be conveyed to the client. 

3.4.4   KeepAlive Server Higher-Layer Triggered Events 

3.4.4.1   Closing a KeepAlive Connection 

The server MUST close the POST and GET sessions by sending a graceful TCP disconnect on each 
session. The ConnectionState then transitions into the ‘Closed’ state. All connection state 
information SHOULD be discarded. 

TCP client or server connections are closed using either a Graceful Close (TCP FIN Flag set to 1) or 
Abortive Close (TCP Reset Flag set to 1) mechanism. Closing the connection gracefully provides 
clients and servers with the benefit of never having to resend unacknowledged payload data. 

Abortive Closed connections are efficient in connection tear down but can require the client or server 
to resend payload data which has not been acknowledged at the TCP level. HTTP Encapsulation of 
SSTP Protocols relies on SSTP to ensure that any unacknowledged payload data is later resent. The 
choice of connection close mechanism is one of efficiency (efficient connection tear down verses 
efficient byte transmission). This document does not mandate that implementations adhere to one 
approach or another. Implementations can choose to close HTTP Encapsulated Connections either 

gracefully or abortively based on the implementation's requirements. 

3.4.4.2   Closing a POST Session 

The server MUST close the POST session by sending a graceful TCP disconnect. The connection then 
transitions into the ‘Closed’ state. 

The PostSessionState MUST be set to ‘Closed’. 

All connection state information MUST be retained. 

3.4.4.3   Sending Application Data 

To send, the KeepAlive ConnectionState MUST be in the 'Established' state, and the 
GetSessionReady state MUST be TRUE, and the ServerOKtoSend state MUST be TRUE. If any of the 
conditions are not met, the application data MUST be buffered in the order it was received.  

If the application data needs to be buffered, the processing stops here. 

To send, the server sends the SSTP stream data over the GET session framed within a KeepAlive-

GET-Responses. The SSTP stream data is contained within the KeepAlive-GET-Response-Entity-
Body. The server MUST construct a KeepAlive-Content-Length header that is equal to the length of 

the entity body. This content length MUST NOT exceed the 32768 octet limit imposed by the 
KeepAlive protocol. 

The Response-Status-Line MUST be set to a status code of 200 and Reason-Phrase of "OK" 

as specified in section 2.2.2.3.1. 



 

89 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The server constructs a KeepAlive-GET-Response as defined in section 2.2.3.3. 

The Connection header with Keep-Alive token MUST be specified as specified in section 2.2.1.3 for 

persistent connection interoperability with HTTP 1.1 proxies as recommended in [RFC2068].  

The server MUST set ServerOKtoSend to FALSE. 

The server MUST send the KeepAlive-GET-Response message on the GET session. 

3.4.5   KeepAlive Server Message Processing Events and Sequencing Rules 

3.4.5.1   GET Session Processing 

Upon receiving data on the GET session, the server MUST first parse the data to verify that it starts 
with HTTP GET request line, as specified in section 2.2.3.1.  

The server then checks if the ConnectionState is 'Connecting'; if so, the KeepAlive-GET-Request 
message is handled as specified in section 3.4.5.1.1, otherwise see section 3.4.5.1.2. 

3.4.5.1.1   Receiving a KeepAlive-GET-Request (Handshake) 

Upon receipt of a KeepAlive-GET-Request, the server transitions the ConnectionState and 
GetSessionState to the 'Connected' state. If the GetSessionState is uninitialized, the 
ConnectionEstablishment timer MUST be started. 

The server validates the KeepAlive-GET-Request message (see section 2.2.3.1) using the following 
procedure: 

1. The server MUST validate the KeepAlive-GET-Request-URI (see section 2.2.3.1.1) and extract the 
version, server name, virtual connection GUID, encapsulation type, content length, and Request 
ID. If the parsing fails, it is a protocol error and the server MUST close the connections (see 
section 3.3.4.2).  

2. The server SHOULD<30> check the KeepAlive-Encapsulation-Version and send a KeepAlive-

Response with a status code of 400. See section 3.4.5.1.1.2 if the version does not equal the 
required version (see section 2.2.3.1.1.2). 

3. If the encapsulation type is not KeepAlive, it is a protocol error and the virtual connection MUST 
be closed. 

4. The server SHOULD<31> verify that the server name in the message equals its own name and 
close the virtual connection if the names are not equal. 

5. The server SHOULD ignore the Request ID. 

6. The server MUST examine the Virtual-Connection-GUID to validate that the KeepAlive-GET-
Request is a new connection request. The Virtual-Connection-GUID SHOULD be maintained in the 
VirtualConnectionGUIDList. If the PostSessionState is 'Connected', then the Virtual-Connection-
GUID SHOULD be found in the VirtualConnectionGUIDList. If the PostSessionState is uninitialized, 
the Virtual-Connection-GUID MUST be new and the Virtual-Connection-GUID SHOULD be added 

to VirtualConnectionGUIDList. If the PostSessionState is anything else, it is a protocol error and 

the server closes the virtual KeepAlive connection (see section 3.3.4.2). 

If the PostSessionState is not ‘Connected’, the processing stops here. 

http://go.microsoft.com/fwlink/?LinkId=90310


 

90 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

If the PostSessionState is 'Connected', the virtual connection is established. The server transitions 
the GetSessionState and the PostSessionState and the ConnectionState to the 'Established' state. 

The server clears the ConnectionEstablishment timer. 

The server continues as described in section 3.4.5.1.1.1 to complete the handshake by sending a 

KeepAlive-GET-Response. 

3.4.5.1.1.1   Handshake GET Response Processing 

The server MUST send a KeepAlive-GET-Response message on the GET session to complete the 
KeepAlive Encapsulation connection handshake.  

A successful KeepAlive-GET-Response message MUST contain a Response-Status-Line (see section 
2.2.2.3.1) with a status code equal to 200 (OK). 

The KeepAlive-GET-Response message sent to the client MUST contain the Encapsulation-Echo-
String received on the first KeepAlive-POST-Request.  

The KeepAlive-Content-Length response header value MUST be set to the length of the 
Encapsulation-Echo-String. 

The KeepAlive connection response MUST construct the extended HTTP 1.0 response as specified in 
section 2.2.3.3.  

The server sends a KeepAlive-GET-Response on the GET session. 

The KeepAlive timer MUST be started.  

3.4.5.1.1.2   Sending a KeepAlive-GET-Response with Status code 400 

If the protocol version does not equal the required KeepAlive version value (see section 
2.2.3.1.1.2), the server SHOULD<32> sends a KeepAlive-GET-Response message with a Response-
Status-Line (see section 2.2.2.3.1) that contains a status code of 400 and phrase of "Bad Request". 

The KeepAlive-GET-Response message with Status code of 400 and phrase of "Bad Request" can 
also be sent on protocol errors. 

The KeepAlive-GET-Response MUST be sent on the GET session. The KeepAlive virtual connection 
MUST be closed (see section 3.3.4.2). 

The server sets ServerOKtoSend to FALSE.  

3.4.5.1.2   Receiving a KeepAlive-GET-Request for Application Data 

The server validates the KeepAlive-GET-Request message (see section 2.2.3.1) using the following 
procedure: 

1. The server MUST validate the KeepAlive-GET-Request-URI (see section 2.2.3.1.1) and extract the 
version, server name, virtual connection GUID, encapsulation type, content length, and Request 
ID. If the parsing fails, it is a protocol error and the server MUST close the connections (see 

section 3.4.4.1).  

2. The server SHOULD<33> check the KeepAlive-Encapsulation-Version and if the version does not 

equal the required value (see section 2.2.3.1.1.2), send a KeepAlive-Response with a status code 
of 400. See section 3.4.5.1.1.2. 



 

91 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3. If the encapsulation type is not KeepAlive, it is a protocol error and the virtual connection MUST 
be closed. 

4. The server SHOULD<34> verify that the server name in the message equals its own name and 
close the virtual connection if they are not equal. 

5. The server SHOULD ignore Request ID 

6. The server MUST examine the Virtual-Connection-GUID. The Virtual-Connection-GUID SHOULD 
be bound in the VirtualConnectionGUIDList.  

If any of the preceding validations fails, it is a protocol error, and the virtual KeepAlive connection 
MUST be closed (see section 3.4.4.1). 

The GetSessionReady and the ServerOKtoSend state variables MUST be set to TRUE. 

The server MUST follow section 3.4.4.3 to send a KeepAlive-GET-Response on the GET session if 

there is buffered application data to send to the client. 

If there is no application data buffered, the server SHOULD wait for application data. The KeepAlive 
timer makes sure that there is always some data to be sent. 

3.4.5.2   POST Session Processing 

Upon receiving data on the POST session, the server MUST first check to see if the data starts with 

an HTTP POST request line, as specified in section 2.2.3.2. Otherwise it is handled as a protocol 
error as specified in section 3.4.5.2.4. 

The server validates the KeepAlive-POST-Request message (see section 2.2.3.2) using the following 
procedure: 

1. The server MUST validate the KeepAlive-Request-URI (see section 2.2.3.1.1) and extract the 
version, server name, virtual connection GUID, encapsulation type, and content length. If the 
parsing fails, it is a protocol error and the server MUST close the connections (see section 

3.4.4.2).  

2. The server SHOULD<35> check the KeepAlive-Encapsulation-Version and, if the version does not 
equal the required value (see section 2.2.3.1.1.2), send a KeepAlive-POST-Response with a 
status code of 400. See section 3.4.5.2.4. 

3. If the encapsulation type is not KeepAlive, it is a protocol error and the virtual connection MUST 
be closed. 

4. The server SHOULD<36> verify that the server name in the message equals its own name,  and, 

if they are not equal, close the virtual connection. 

If the ConnectionState is 'Connecting', the KeepAlive-POST-Request message is further handled as 
specified in section 3.4.5.2.1. 

If the ConnectionState is 'Established', the server handles the KeepAlive-POST-Request message 
and application data as specified in section 3.4.5.2.2.  

All other states are protocol errors. 



 

92 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.4.5.2.1   Receiving a KeepAlive-POST-Request (KeepAlive Handshake) 

Upon receipt of a KeepAlive-POST-Request, the server moves the ConnectionState to 'Connected', 
transitions the PostSessionState to 'Connecting', and starts the ConnectionEstablishment timer if the 

GetSessionState is uninitialized. 

The server validates the KeepAlive-POST-Request message as specified in section 2.2.3.2. 

The server MUST examine the Virtual-Connection-GUID to validate that the KeepAlive-POST-Request 
is a new connection request. The Virtual-Connection-GUID SHOULD be maintained in a 
VirtualConnectionGUIDList. If the GetSessionState is 'Connected', then the Virtual-Connection-GUID 
SHOULD be found in the VirtualConnectionGUIDList. If the GetSessionState is uninitialized, the 
Virtual-Connection-GUID MUST be new and the Virtual-Connection-GUID SHOULD be added to the 

VirtualConnectionGUIDList. Otherwise it is a protocol error. 

The KeepAlive-POST-Request MUST contain the Encapsulation-Echo-String (see section 2.2.1.1.3) in 
the message entity body. The Encapsulation-Echo-String MUST be saved so it can later be echoed 
back to the client on the KeepAlive-GET-Response message. If the Encapsulation-Echo-String is 

missing it is a protocol error.  

The server transitions the PostSessionState to the "Connected" state. The server MUST send the 

KeepAlive-POST-Response as specified in section 3.4.5.2.3.1. 

If the GetSessionState is not ‘Connected’, the processing stops here. 

If the GetSessionState is 'Connected', the virtual connection is established. The server transitions 
the GetSessionState, the PostSessionState, and the ConnectionState to the 'Established' state. The 
ConnectionEstablishment timer MUST be cleared. The server continues as described in section 
3.4.5.1.1.1 to complete the handshake by sending a KeepAlive-GET-Response. 

3.4.5.2.2   Receiving a KeepAlive-POST-Request with Application Data 

Application data is received when the ConnectionState is in the 'Established' state. Otherwise it is a 
violation of protocol and the server MUST close the virtual KeepAlive connection, as specified in 

section 3.4.4.1. 

The IdleConnection timer MUST be cleared. 

The server validates the KeepAlive-POST-Request message as defined in section 2.2.3.2. 

The server MUST examine the Virtual-Connection-GUID to validate that it is an existing virtual 

connection GUID in the VirtualConnectionGUIDList.  

The server can validate that the specified KeepAlive-Content-Length is equal to the length of the 
KeepAlive-POST-Response-Entity-Body. If the lengths are not equal, it is a protocol error and it 
MUST be handled as specified in section 3.4.4.1. 

The server passes the application data to a higher layer for processing.  

The server MUST send the KeepAlive-POST-Response as specified in section 3.4.5.2.3.2. 

3.4.5.2.3   Sending a KeepAlive-POST-Response with Status code 200 

3.4.5.2.3.1   Handshake POST Response Processing 

A successful KeepAlive-POST-Response message MUST contain a Response-Status-Line (see section 
2.2.2.3.1) with a status code equal to 200 (OK). 



 

93 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The KeepAlive-POST-Response message sent to the client MUST contain the KeepAlive-POST-
Response-No-Data within the KeepAlive-POST-Response-Entity-Body. 

The KeepAlive-Content-Length response header value MUST be set to the length of the KeepAlive-
POST-Response-No-Data message. 

The KeepAlive connection response MUST construct the extended HTTP 1.0 response as specified in 
section 2.2.3.4.  

The server sends a KeepAlive-POST-Response on the POST session. 

The KeepAlive timer is started.  

3.4.5.2.3.2   Application Data POST Response Processing 

A successful KeepAlive-POST-Response message MUST contain a Response-Status-Line (see section 

2.2.2.3.1) with a status code equal to 200 (OK). 

The KeepAlive-POST-Response message sent to the client MUST contain an empty body. 

The KeepAlive-Content-Length response header value MUST be to 0. 

The KeepAlive connection response MUST construct the extended HTTP 1.0 response as specified in 
section 2.2.3.4.  

The server sends a KeepAlive-POST-Response on the POST session. 

A IdleConnection timer SHOULD be restarted on the POST session.  

3.4.5.2.4   Sending a KeepAlive-POST-Response with Status Code 400 

On protocol version that are not equal to the required KeepAlive version value (see section 
2.2.3.1.1.2) or protocol error, the server sends a KeepAlive-POST-Response message. The 
Response-Status-Line (see section 2.2.2.3.1) MUST contain a status code of 400 and phrase of "Bad 
Request".  

The KeepAlive-POST-Response message with Status code of 400 and phrase of "Bad Request" can 
also be sent on protocol errors. 

The KeepAlive-POST-Response MUST be sent on the POST session. The KeepAlive virtual connection 
MUST be closed (see section 3.4.4.2). 

3.4.6   KeepAlive Server Timer Events 

3.4.6.1   ConnectionEstablishment Timer Event 

The ConnectionEstablishment Timer Event fires when the ConnectionEstablishment timer for a given 
KeepAlive connection expires before the connection can be established. If this timer expires before 
the KeepAlive connection enters the established state, all established TCP connections on the 
KeepAlive virtual connection SHOULD be closed by the server.  

3.4.6.2   IdleConnection Timer 

The IdleConnection timer fires when the IdleConnection interval expires with any interleaving 
KeepAlive-GET-Request. If this timer expires, all the virtual KeepAlive connections SHOULD be 
closed by the server. The timer SHOULD be started after receiving a KeepAlive-GET-Request. 



 

94 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.4.6.3   KeepAlive Timer Event 

The KeepAlive timer fires every KeepAlive interval to trigger a send of a KeepAlive-Message across 
the GET Session from the server to the client. A KeepAlive event SHOULD trigger the server to send 

an encapsulated protocol message such as an SSTP_NOOP command<37>. Well behaved KeepAlive 
connections will see this event every KeepAlive interval when the session is idle. 

3.4.7   KeepAlive Server Other Local Events 

Transport disconnect events are handed differently depending on the session. 

If the POST session receives a transport disconnect, the server SHOULD close the POST session (see 
section 3.4.4.2). The client can then re-open the POST session or close the KeepAlive connection. 

If the GET session receives a transport disconnect, the server MUST close the KeepAlive connection 
(see section 3.3.4.2).  

If both sessions simultaneously receive transport disconnects, the KeepAlive connection MUST be 

closed (see section 3.3.4.2). 

3.5   Polling Encapsulation Protocol Client Details 

The Polling Encapsulation Protocol is an HTTP based protocol used for firewall and proxy traversal. It 

provides an HTTP transport which can also negotiate and authenticate with HTTP proxies. Polling 
Encapsulation provides a virtual connection composed of a single HTTP session. This POST session is 
layered across multiple TCP connections, where each connection is serialized. The life of a TCP 
connection is a single HTTP request/response.  

POST requests are used to send the application data from the client to the server, while POST 
responses are used by the client to receive application data from the server. To encapsulate a full-

duplex protocol such as SSTP, the client MUST periodically poll the server. The client polls the server 
with a POST request, which allows the server to respond with a POST response.  

3.5.1   Polling Client Abstract Data Model 

This section specifies a conceptual model of possible data organization that an implementation 
maintains to participate in the Polling encapsulation protocol. The specified organization is provided 
to facilitate the explanation of how the protocol behaves. This document does not mandate that 

implementations adhere to this model as long as their external behavior is consistent with that 
specified in this document. The following figure shows a detailed view of the state machine for the 
polling client session.  



 

95 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 18: Client polling session state diagram 

For a detailed view of the state machine of the polling client connection, see the following diagram. 



 

96 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 19: Client polling connection state diagram 

3.5.1.1   Connection State Information 

The following details about the state information define the context needed to manage a Polling 
connection. Unless otherwise noted, the following connection state variables are scoped to a single 
Polling Encapsulation connection. When a Polling virtual connection is terminated, this state 

information is no longer relevant and SHOULD be discarded. 

A client SHOULD support multiple Polling connections to multiple servers concurrently. A client 
SHOULD support one Polling connection to the same target server (see ServerHost state 

information). In all cases, each Polling connection MUST maintain separate connection state variable 
information. 

ServerPort: The well-known port number of the target server. By default this is the HTTP well 
known port 80/TCP. 



 

97 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

ServerHost: The host name of the target server, in the form of an FQDN or IP Address. There is no 
default value. 

PostSessionState: The variable used to maintain the current disposition of the POST session. 
There are six possible states: ‘Probing’, ‘Probed’, ‘Connecting’, ‘Connected’, ‘Established’, and 

‘Closed’. The ‘Probing’ state indicates that the first Polling-POST-Request message of the Polling 
handshake has been sent. The ‘Probed’ state indicates that the first Polling-POST-Response message 
of the Polling handshake has been received. The 'Connecting' state indicates that the Polling-POST-
Request with application data was sent on the Polling handshake. The 'Connected' state indicates 
that proxy negotiations are in progress. Non-proxy connections immediately transition through the 
'Connected' state. The 'Established' state indicates that the POST session response was received. 
The ‘Closed’ state indicates that session cleanup is in progress.  

ConnectionState: The variable used to maintain the current disposition of the  

virtual Polling connection. There are three possible states: 'Connecting', 'Established', and 'Closed'. 
The 'Connecting' state indicates that POST session creation is in progress. The 'Established' state 
indicates that the POST sessions have been successfully created and application data MAY begin to 

flow over the virtual connection. The 'Closed' state indicates that the connection can no longer send 
or receive application data, and the virtual connection session MUST be closed. 

ClientOKtoSend: The state variable that enforces the requirement that the client MUST NOT send 
application data if a Polling-POST-Request is outstanding. This state is set to FALSE each time a 
Polling-POST-Request is sent, and set to TRUE each time a Polling-POST-Response is received. 

VirtualConnectionGUID: A GUID used to uniquely identify the virtual connection. This GUID is 
generated by the client when initiating the encapsulation connection. The GUID is exchanged 
between the client and server and MUST be unique within each server. There is no default value. 

ProxyConnection: The indicator of whether the connection is a connection using a proxy or a direct 

connection to a server. The value is set to TRUE after the client determines that a proxy is to be 
used. The default value is FALSE. 

RequestSequenceNum: The current sequence number of the request, as it appears on the wire. It 

is used to ensure sequencing of request messages. Its initial value starts at 0 and is incremented by 
1 on each new request message. The sequence number SHOULD NOT repeat for the life of the 
virtual connection. 

ResponseSequenceNum: The current sequence number of the response. It is used to ensure 

sequencing of response messages. Its initial value starts at 0 and is incremented by 1 for each new 
response message. The sequence number SHOULD NOT repeat for the life of the virtual connection. 

The PollingMinRepetitionInterval, PollingMaxRepetitionInterval and PollingRepetitionCount values are 
used by Polling Encapsulation connections to determine the frequency of poll requests for Polling 
Encapsulation connections. They are sent by the server to the client on each response message. 

PollingMinRepetitionInterval: The minimal amount of time in seconds to poll for data on an idle 

session. It is used by Polling Encapsulation connection logic to send the next polling POST 
command. The minimum value is used as the low water mark interval in the back off timer 
calculation (see section 3.5.2.3). The back off calculation is equal to two times the current interval. 

This value is sent by the server to the client on every POST response<38>. 

PollingMaxRepetitionInterval: The maximum amount of time in seconds to poll for data on an 
idle session. It is used by the application to send the next polling POST command. The maximum 
value is used as the high water mark interval in the back off timer calculation (see section 3.5.2.3). 

This value is sent from the server to the client on every POST response<39>. 



 

98 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

PollingRepetitionCount: The number of times a client is to poll the server at the current poll 
interval. It is used by Polling Encapsulation connection logic to keep track of the current poll 

repetition count. This current poll repetition count is initialized to 0 and incremented each time by 1, 
until it reaches the PollingRepetitionCount value at which point it recalculates (see section 3.5.2.3) 

the repetition interval based on the PollingMinRepetitionInterval and PollingMaxRepetitionInterval 
values. If no application data is received before this limit is reached, the back off algorithm 
recalculates the poll interval. This value is sent by the server to the client on every POST 
response<40>. 

3.5.1.2   Proxy State Information 

The state information detailed in this section defines the context clients need to use to establish 

connections with proxies. This proxy configuration information MUST be provided to the client prior 
to connection establishment. The source of this configuration information is external to the Polling 
Protocol<41>.  

ProxyServerPort: The well-known port number of the target proxy. It is used for establishing a 
TCP connection to a proxy. By default this is the HTTP well known port 80/TCP or the HTTP alternate 

well known port 8080/TCP. 

ProxyServerHostName: The host name of the target proxy. The name is in the form of an FQDN 
or an IP Address. If the name is an FQDN, then the client MUST resolve this name to its IP Address. 
There is no default value. 

ProxyAuthRequired: A variable used to indicate if a proxy requires authentication. The client sets 
this variable to TRUE when it discovers that the proxy needs authentication during its first 
negotiation with the proxy. When the client initiates a new virtual connection through the same 
proxy, it SHOULD provide the cached credentials without waiting to be challenged to avoid the 

overhead of additional message exchanges. 

3.5.1.3   Client State Information 

VirtualConnectionGUIDList: The global list of virtual connection GUIDs of all active connections. 

This list allows the application to quickly lookup a virtual connection GUID to determine if it is a 
known virtual connection GUID. This list also contains a reference to the per-connection state 
variables for the associated GUID. 

3.5.2   Polling Client Timers 

3.5.2.1   ConnectionEstablishment Timer 

The ConnectionEstablishment timer can be used to limit the amount of time a Polling connection 
negotiation takes to complete. This timer measures the time it takes for a connection to move from 
the connecting to the established state. The recommended timeout value is 3 minutes. The 

ConnectionEstablishment timer event processing is handled as specified in section 3.5.6.1). 

3.5.2.2   Network Receive IO Timer 

The NetworkReceiveIO timer SHOULD be used to limit the amount of time a client waits for a Polling 
connection’s POST session network receive operation to complete. The recommended timeout value 
is 120 seconds. The NetworkReceiveIO timer event processing is handled as specified in section 
3.5.6.2. 



 

99 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.5.2.3   Polling Encapsulation Timer 

The polling encapsulation timer is used by clients to determine the next interval for polling the 
server. Because the POST session is half-duplex, a polling mechanism is needed to allow the server 

to send data to the client, even when the client has no data to send the server. The timer value 
algorithm has a built in back off mechanism to reduce the overhead of the client polling the server 
for application data. 

The Poll Timer is comprised of three values that are updated by the client on every response 
received from the server. These values are MaxPollInterval, MinPollInterval, and PollRepetitions. 
MinPollInterval is measured in seconds and defines the starting poll interval value. PollRepetitions 
defines the amount of times the client polls using the initial starting value. MaxPollInterval is 

measured in seconds and defines the poll interval ceiling. Together these values are used to 
implement the back off algorithm used to manage the frequency at which a client polls the server 
for data. 

The Poll timer determines the current poll interval to be used for the next poll request. The current 
poll interval value is initialized with the MinPollInterval value. Using the current poll interval, the 

client polls the number of times specified by PollRepetitions. When the current repetition count 

reaches the PollRepetitions value, the current poll value is doubled and becomes the new poll 
interval. This interval is also used by the client to poll the server the number of times specified by 
PollRepetitions. The doubling of the current poll interval continues until the interval exceeds the 
MaxPollInterval value. When the MaxPollInterval value is exceeded, the client continues to poll the 
server indefinitely, using the current value. Polling SHOULD continue at the current poll interval, 
until the client has data to send to the server, at which point the client resets the current poll 
interval back to MinPollInterval value. The back off algorithm resets and starts over again.  

Once the client establishes a Polling connection, the per-connection polling interval is updated with 
the server’s timer values. The server Poll timer values are returned on the last Polling-POST-
Response message of the Polling connection handshake and on every subsequent Polling-POST-
Response message. The poll value applies to the next poll operation. Clients SHOULD refresh their 
local Poll timer values after every Polling-POST-Response, if the timer values changed in the latest 
Polling-POST-Response message from the server. The Poll Timer values are scoped to a single 
connection. When the client receives data from the server, the Poll timer values are reset back to 

the Poll timer values found in the current Polling-POST-Response. 

The recommended Poll timer values used for Polling for application data are specified in section 
2.2.4.2.1.1. The maximum poll interval value used by polling connections is constrained by limits 
imposed by firewall and proxies<42>. The Poll timer event processing is handled as specified in 
section 3.5.6.3. The recommended MaxPollInterval, MinPollInterval, and PollRepetitions values are 
120, 5, and 3, respectively. 

3.5.3   Polling Client Initialization 

3.5.3.1   Protocol Initialization 

The Polling Encapsulation protocol is not initialized until a request to open an encapsulated 
connection is made by the client. The variables defined by the abstract data model are initialized to 
their default values when a Polling connection request is made. 



 

100 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.5.4   Polling Client Higher-Layer Triggered Events 

3.5.4.1   Establishing a Polling Encapsulation Connection 

When applications requests a Polling Connection, the Polling protocol layer MUST initialize the Polling 
connection state variables as specified in the abstract data model (see section 3.5.1). After the 
connection state variables are initialized, the Polling protocol enters into the connection 
establishment phase. Initialization SHOULD include fetching any proxy configuration 
information<43>. 

The ConnectionEstablishment timer SHOULD be started. 

The client generates a new virtual connection GUID and stores it in the VirtualConnectionGUID 

variable. 

The client set PostSessionState to 'Probing'. 

The client opens one connection and a POST session to a target determined by the availability of 

proxy configuration information. If the client has proxy configuration information available; it uses 
the port and hostname found in the ProxyServerPort and ProxyServerHostName state information 
and uses section 3.5.4.1.2 to open a POST session. If no proxy configuration information is 

available; the client uses the port and hostname found in the ServerPort and ServerHostName state 
information and uses section 3.5.4.1.1 to open a POST session. 

3.5.4.1.1   Establishing POST Session without Proxy 

The client MUST construct the Polling-POST-Request-URI as the Polling-POST-Request-Relative-URI 
(see section 2.2.4.1.1). 

The client MUST construct a Polling-POST-Request as specified in section 2.2.4.1 with required 

headers. 

The client MUST construct the Polling-Virtual-Connection-Message as specified in section 
2.2.4.1.3.1. This message is embedded within the Polling-Request-Entity-Body 

The client MUST construct the Polling-Virtual-Connection-Message with the ServerHost as Relay-
Server-Name and VirtualConnectionGUID as Virtual-Connection-GUID. 

If the PostSessionState is ‘Probing’, the Sequence-Number and Checksum MUST both be set to 0. 
The Polling-Content-Length header MUST contain the length of the Polling-Virtual-Connection-

Message. 

If the PostSessionState is ‘Probed’, the Sequence-Number is set to 0, and the Checksum MUST be 
calculated over the length of the application data that is to be sent, as specified in section 
2.2.4.1.3.1.3. 

The Polling-Content-Length header MUST contain the length of the Polling-Request-Entity-Body.  

The client MUST establish a TCP connection to the server using ServerHost and ServerPort and send 
the Polling-POST-Request. 

3.5.4.1.2   Establishing POST Session with Proxy 

The client sets the ProxyConnection to TRUE. 

The client MUST construct the Polling-POST-Request-URI as the Polling-POST-Request-Absolute-URI 
(see section 2.2.4.1.1), with the ServerHost as the HTTP-URL target host name. 



 

101 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The client MUST construct a Polling-POST-Request with required headers, as specified in section 
2.2.4.1. 

The client MUST construct the Polling-Virtual-Connection-Message as specified in section 
2.2.4.1.3.1. This message is embedded within the Polling-Request-Entity-Body. 

The client MUST construct the Polling-Virtual-Connection-Message with the ServerHost as Relay-
Server-Name and VirtualConnectionGUID as Virtual-Connection-GUID.  

If the PostSessionState is ‘Probing’, the Sequence-Number and Checksum MUST both be set to 0. 
The Polling-Content-Length header MUST contain the length of the Polling-Virtual-Connection-
Message. 

If the PostSessionState is ‘Probed’, Sequence-Number is set to 0. The Checksum MUST be calculated 
(see section 2.2.4.1.3.1.3) over the length of the application data that is to be sent. 

The Polling-Content-Length header MUST contain the length of the Polling-Request-Entity-Body. 

If the ProxyAuthRequired is set, the client MUST add additional proxy authentication headers to the 

request. 

The client MUST establish a TCP connection to the server identified with ProxyServerHostName and 
ProxyServerPort and send the Polling-POST-Request. 

3.5.4.2   Closing a Polling Connection 

The client SHOULD close the POST session by sending a graceful TCP disconnect. 

The ConnectionState then transitions into the ‘Closed’ state. All connection state information 
SHOULD be discarded. 

TCP client or server connections are closed using either a Graceful Close (TCP FIN Flag set to 1) or 
Abortive Close (TCP Reset Flag set to 1) mechanism. Closing the connection gracefully provides 
clients and servers with the benefit of never having to resend unacknowledged payload data. 

Abortive Closed connections are efficient in connection tear down but can require the client or server 

to resend payload data which has not been acknowledged at the TCP level. HTTP Encapsulation of 
SSTP Protocols relies on SSTP to ensure that any unacknowledged payload data is later resent. The 
choice of connection close mechanism is one of efficiency (efficient connection tear down verses 
efficient byte transmission). This document does not mandate that implementations adhere to one 
approach or another. Implementations can choose to close HTTP Encapsulated Connections either 
gracefully or abortively based on the implementation's requirements. 

3.5.4.3   Sending Application Data 

The Polling Connection MUST be in the 'Established' state to send application data. If the virtual 
connection is still being established, the client MUST buffer the data in the order it was received. 

If ClientOKtoSend is FALSE, the client MUST buffer the application data. The application data MUST 
be sent on the next Polling-POST-Request, after the outstanding Polling-POST-Response is received. 

If ClientOKtoSend is TRUE, the client sets ClientOKtoSend to FALSE. The client sends the application 
data as specified in section 3.5.4.3.1. If ProxyConnection state variable is set to TRUE, the client 
MUST instead send the application data with additional proxy headers (see section 3.5.4.3.2). 

The Polling Timer MUST be restarted. 



 

102 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.5.4.3.1   Sending Application Data without Proxy 

The application data is included within a Polling-POST-Request. 

The client MUST construct the Polling-POST-Request-URI as the Polling-POST-Request-Relative-URI. 

The client MUST construct a Polling-POST-Request with required headers, as specified in section 
2.2.4.1. 

The client MUST construct the Polling-Virtual-Connection-Message as specified in section 
2.2.4.1.3.1. This message is embedded within the Polling-Request-Entity-Body. The client MUST 
construct the Polling-Virtual-Connection-Message with the ServerHost as Relay-Server-Name, and 
VirtualConnectionGUID state variable as Virtual-Connection-GUID.  

The first Polling-POST-Request after the Polling handshake MUST have a Sequence-Number of 1. 

Sequence-Number values MUST increase by 1 after each Polling-POST-Request sent. The last 
SequenceNumber sent SHOULD be stored in the RequestSequenceNum state variable and be 
incremented by 1 on every Polling-POST-Response sent. 

The Polling-Virtual-Connection-Message Checksum field value MUST be calculated over the 
application data of each Polling-POST-Request message sent, as specified in section 2.2.4.1.3.1.2.  

The application data, if present, is appended after the Polling-Virtual-Connection-Message; together 

they comprise the Polling-POST-Request-Entity-Body. 

The client MUST construct a Polling-Content-Length header that is equal to the length of the 

Polling-Virtual-Connection-Message plus the length of the application data. This content length 
MUST NOT exceed the 32768 octet limit imposed by the Polling protocol. The client opens one 
connection, a POST session, to the server as in sections 3.5.4.1.1 and 3.5.4.1.2, based on whether 
it has been given the proxy configuration information. 

The NetworkReceiveIO timer SHOULD be restarted. 

The client MUST establish a TCP connection to the server identified with ServerHost and ServerPort 

and send the Polling-POST-Request. 

If there is no application data, the Polling timer MUST be restarted with the current polling interval. 

3.5.4.3.2   Sending Application Data through a Proxy 

The client sets the ProxyConnection to TRUE. 

The application data, if present, MUST be included within a Polling-POST-Request. 

The client MUST construct the Polling-POST-Request-URI as the Polling-POST-Request-Absolute-URI, 
with the ServerHost as the HTTP-URL target host name. 

The client MUST construct a Polling-POST-Request with required headers, as specified in section 
2.2.4.1. 

The client MUST construct the Polling-Virtual-Connection-Message as specified in section 
2.2.4.1.3.1. This message is embedded within the Polling-Request-Entity-Body 

The client MUST construct the Polling-Virtual-Connection-Message with the ServerHost as Relay-
Server-Name, and VirtualConnectionGUID state variable as Virtual-Connection-GUID.  



 

103 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The first Polling-POST-Request after the Polling handshake MUST have a Sequence-Number of 1. 
Sequence-Number values MUST increase by 1 for each Polling-POST-Request sent. The last 

SequenceNumber sent SHOULD be stored in the RequestSequenceNum state variable and be 
incremented by 1 on every Polling-POST-Response sent. 

The Polling-Virtual-Connection-Message Checksum field value MUST be calculated over the 
application data of each Polling-POST-Request message sent, as specified in section 2.2.4.1.3.1.2.  

The application data, if present, is appended after the Polling-Virtual-Connection-Message; together 
they comprise the Polling-POST-Request-Entity-Body. 

The client MUST construct a Polling-Content-Length header that is equal to the length of the Polling-
Virtual-Connection-Message plus the length of the application data chunk. This content length MUST 
NOT exceed the 32768 octet limit imposed by the Polling protocol. If the content length would 

exceed the 32768 size limit, the Polling-Response-Entity-Body MUST be broken into 32768 chunks. 

The NetworkReceiveIO timer SHOULD be restarted. 

If ProxyAuthRequired is set, the client MUST add additional proxy authentication headers to the 

request. 

The client MUST establish a TCP connection to the server identified with ProxyServerHostName and 
ProxyServerPort, and send the Polling-POST-Request. 

If there is no application data, the Polling timer MUST be started with the current polling interval. 

3.5.5   Polling Client Message Processing Events and Sequencing Rules 

3.5.5.1   Polling-POST-Response Processing 

Upon receiving data on the POST session, the client MUST scan the data to verify that it has 
received an HTTP response status line, as specified in section 2.2.2.2.3. If not, a protocol error 

exists on the POST session, and the client MUST close the virtual Polling connection (see section 
3.5.4.2). 

The HTTP response header MUST be parsed and the status code and response body extracted. 

The NetworkReceiveIO timer SHOULD be stopped and no further timer expiration processing is 
performed. 

If the PostSessionState is in the 'Connecting' state, the receipt of a Polling-POST-Response causes 
the PostSessionState to transition to 'Connected'. 

3.5.5.1.1   Status code: 200 (OK) 

Status code 200 is handled differently based on the ConnectionState value. If ConnectionState is 
‘Connecting’, the client processing proceeds as specified in section 3.5.5.1.1.1. If the 
ConnectionState is ‘Established’, processing continues as specified in section 3.5.5.1.1.2. All other 
ConnectionState values are not valid and are protocol errors; the client MUST close the virtual 
Polling connection (see section 3.5.4.2). 

3.5.5.1.1.1   When ConnectionState is Connecting (last handshake response) 

The Polling-POST-Response message of the polling handshake MUST have a Polling-POST-
Response-Entity-Body that contains application data. 



 

104 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The client validates the Polling-POST-Response message, as specified in section 2.2.4.2, as 
follows: 

1. The client MUST validate the polling Polling-Virtual-Connection-Message, as specified in 
section 2.2.4.1.3.1, and extract the version, server name, virtual connection GUID, sequence 

number and checksum. If parsing fails, it is a protocol error and the server MUST close the 
connection, as specified in section 3.5.4.2. The sequence number value is saved in the variable 
ResponseSequenceNum. 

2. The client SHOULD<44> check the Polling-Encapsulation-Version and, if the version does not 
equal the required value (see section 2.2.4.1.3.1.1), close the polling virtual connection, as 
specified in section 3.5.4.2. 

3. The client SHOULD<45> verify that the server name in the message equals its own name and, if 

the names are not equal, close the virtual connection. 

4. The client MUST examine the Virtual-Connection-GUID to validate that it is found in the 
VirtualConnectionGUIDList. Otherwise it is a protocol error, and the client MUST close the 

polling connection, as specified in section 3.5.4.2. 

5. The Sequence-Number MUST be verified and stored in the ResponseSequenceNum. The 
sequence number MUST be zero ("0"). 

6. The Checksum field MUST be calculated with the application data and verified as specified in 
section 2.2.4.1.3.1.3. 

The receipt of application data on the POST session completes POST session establishment. The 
client sets PostSessionState and ConnectionState both to "Established". 

The ConnectionEstablishment timer is stopped and no further timer expiration processing is 
performed. 

The Polling Encapsulation Poll timer MUST be started if there is no application data to send now. 

The clients sets the ClientOKtoSend state variable to "true". 

The client MUST close the POST session as specified in section 3.5.5.1.5. 

The application data is passed to the application layer to be processed and consumed. 

The client is ready to send application data. If there is any buffered data to send, the client MUST 
send it now, as specified in section 3.5.4.3. 

3.5.5.1.1.2   When ConnectionState is Established (Receiving Application Data) 

The client validates the Polling-POST-Response message, as specified in section 2.2.4.2, as 
follows: 

1. The client MUST validate the Polling-Virtual-Connection-Message, as specified in section 
2.2.4.1.3, and extract the version, server name, virtual connection GUID, sequence number, and 
checksum. If parsing fails, it is a protocol error and the client MUST close the connections, as 

specified in section 3.5.4.2. 

2. The client SHOULD<46> check the Polling-Encapsulation-Version and, if the version does not 
equal the required value (see section 2.2.4.1.3.1.1), close the polling virtual connection, as 
specified in section 3.5.4.2. 



 

105 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3. The client SHOULD<47> verify that the Relay-Server-URL in the message equals its own name 
and, if the names are not equal. close the virtual connection, as specified in section 3.5.4.2. 

4. The client MUST examine the Virtual-Connection-GUID to validate that it is found in the 
VirtualConnectionGUIDList. Otherwise it is a protocol error and the client MUST close the 

polling connection, as specified in section 3.5.4.2. 

5. The value of Sequence-Number MUST be verified and stored in ResponseSequenceNum. 

6. The received sequence number MUST be equal to the value stored in the 
ResponseSequenceNum plus 1. Verification failure results in polling virtual connection closure, 
as specified in section 3.5.4.2. 

7. The Checksum field MUST be calculated with the application data and verified as specified in 
section 2.2.4.1.3.1.3. The Checksum value is calculated only in the presence of application data 

and does not include the Polling-Virtual-Connection-Request-Messages. If there is no 
application data, the Checksum field MUST be zero ("0"). 

If Polling-Content-Length is greater than the length of Polling-Virtual-Connection-Message 

plus the length of Polling-Virtual-Connection-Response-Message, there is application data. 
Otherwise, the Polling-POST-Response message contains no application data. 

Any verification failure results in polling virtual connection closure, as specified in section 3.5.4.2. 

The clients sets the ClientOKtoSend state variable to "true". 

The Polling timer MUST be started if there is no data to be sent now. 

The client MUST refresh PollingMinRepetitionInterval, PollingMinRepetitionInterval, and 
PollingRepetitionCount values, if they have changed, with the contents of the Polling-Virtual-
Connection-Response-Message. 

The application data is passed to the application layer to be processed and consumed. 

The client MUST close the POST session, as specified in section 3.5.5.1.5. 

If there is buffered data, the client MUST send the data as specified in section 3.5.4.3. 

3.5.5.1.2   Status code: 400 (Bad Request) 

For processing a Polling-POST-Response with 400 status code when the PostSessionState is in the 
‘Probing’ state, see section 3.5.5.1.2.1. For all other PostSessionState states, see section 
3.5.5.1.2.2. 

3.5.5.1.2.1   When PostSessionState is Probing 

The receipt of a Polling-Response-Response transitions the PostSessionState to 'Probed'. 

The client MUST close the Poll session. 

The client MUST send the second and last Polling-POST-Request of the Polling connection handshake 

as specified in section 3.5.4.1.1. 

If ProxyConnection is TRUE, then processing continues as specified in section 3.5.4.1.2. 



 

106 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.5.5.1.2.2   All other PostSessionState States 

The server has rejected the Polling-POST-Request because an encapsulation version does not equal 
the required value (see section 2.2.4.1.3.1.1) or because of a protocol error. The client MUST close 

the Polling connection (see section 3.6.4.1). 

3.5.5.1.3   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication 

Required) 

HTTP status code values of 401 (Unauthorized) or 407 (ProxyAuthentication Required)  

indicate that the proxy requires the client to authenticate. Common authentication schemes include 

Basic and Digest, as specified in [RFC2617], and NTLM HTTP Authentication, as specified in 
[RFC4559].  

The client sets the ProxyAuthRequired state variable to TRUE. Subsequent connection attempts to 
the same proxy SHOULD avoid the proxy challenge message by sending the proxy authentication 
credentials as part of the Polling-POST-Request.  

Depending on the authentication method, multiple round trips can happen to complete the 
authentication process. That is, the client MUST expect to get multiple 401 and 407 messages. It 

MUST follow [RFC2617] and [RFC4559] to set authentication headers and retry the proxy 
connection. 

For processing required to retry the proxy connection, see section 3.5.4.1.2. 

The ConnectionEstablishment timer SHOULD be reset before re-attempting the Polling handshake 
(see section 3.5.4.1).  

3.5.5.1.4   All Other Status Codes 

All other status codes are fatal; the virtual connection MUST be closed as specified in section 
3.5.4.2. 

3.5.5.1.5   Closing the POST Session 

The client SHOULD close the POST session by sending a graceful TCP disconnect.  

All connection state information MUST NOT be discarded. 

3.5.5.1.6   Closing a Polling Connection because of Protocol Error 

On protocol errors the client can receive a Polling-POST-Response with a status code indicating the 
reason for closure. 

The client MUST close the virtual Polling Connection as specified in section 3.5.4.2. 

3.5.6   Polling Client Timer Events 

3.5.6.1   ConnectionEstablishment Timer Event 

The ConnectionEstablishment Timer Event fires when the ConnectionEstablishment timer for a given 
Polling connection expires before the connection can be established. If this timer expires before the 
Polling connection enters the 'Established' state, the virtual Polling connection SHOULD be closed by 
the client.  

http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90483
http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90483


 

107 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.5.6.2   NetworkReceiveIO Timer Event 

The NetworkReceiveIO Timer Event fires when a POST session response is not received within the 
NetworkReceiveIO interval. If the NetworkReceiveIO event triggers, the client SHOULD close the 

Polling connection. The client can retry the connection again at a later time. The NetworkReceiveIO 
SHOULD be reset on subsequent POST session responses. Well behaved connections will not see this 
event, so clients that expect this event to be transient SHOULD always attempt to establish a new 
Polling connection with the target server. 

3.5.6.3   Polling Encapsulation Timer 

The Polling timer uses a back off algorithm as specified in section 3.5.2.3.When the Polling timer 

event fires, the client MUST send a Polling-POST-Request poll message to the server. The current 
polling interval MUST be recalculated based on the algorithm specified in section 3.5.2.3. 

The client sends (see section 3.5.4.3) the Poll requests with no application data.  

3.5.7   Polling Client Other Local Events 

On transport disconnect events, the virtual Polling Connection MUST be closed as specified in section 
3.5.4.2. 

The application layer SHOULD attempt to re-establish the Polling virtual connection. Upon repeated 
connection failures, the application layer SHOULD implement a back off algorithm for re-establishing 
the Polling connection to the target server. 

3.6   Polling Encapsulation Protocol Server Details 

3.6.1   Polling Server Abstract Data Model 

This section specifies a conceptual model of possible data organization that a server implementation 
maintains to participate in Polling encapsulation protocol. The specified organization is provided to 
facilitate the explanation of how the protocol behaves. This document does not mandate that 

implementations adhere to this model as long as their external behavior is consistent with that 
specified in this document. 

3.6.1.1   Connection State Information 

See section 3.5.1.1 for a list of connection state variables that are shared with the client. 

VirtualConnectionGUIDList: The global list of virtual connection GUIDs of all active connections. 
This list allows the application to quickly lookup a virtual connection GUID to determine if it is a 
known virtual connection GUID. This list also contains a reference to the per-connection state 
variables for the associated GUID. 

ServerOKtoSend: The state variable enforces the requirement that the server MUST NOT send 

application data on a Polling-POST-Response until receiving a Polling-POST-Request. All subsequent 
Polling-POST-Response messages MUST only be sent in response to an outstanding Polling-POST-
Request. 



 

108 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.6.2   Polling Server Timers 

3.6.2.1   ConnectionEstablishment Timer 

The ConnectionEstablishment timer can be used to limit the amount of time a Polling connection 
negotiation takes to complete. This timer measures the time it takes for a connection to move from 
the non-established state to the established state. The recommended timeout value is 3 minutes. 
The ConnectionEstablishment timer event processing is handled as specified in section 3.6.6.1. 

3.6.3   Polling Server Initialization 

3.6.3.1   Protocol Initialization 

When the server starts it MUST initialize the HTTP stack<48>.  

A Polling connection protocol is not initialized until a request to open an encapsulated connection is 
received by the server. The variables defined by the abstract data model are initialized when the 

Polling connection request is received. 

3.6.3.2   Polling Encapsulation Listener 

The Server MUST open a listener socket on the Polling port. The Polling connection port uses the 
well-known HTTP port 80/TCP. Alternate ports MAY be used, but non-default port information MUST 
be conveyed to the client. 

3.6.4   Polling Server Higher-Layer Triggered Events 

3.6.4.1   Closing a Polling Connection 

The server MUST close the POST session by sending a graceful TCP disconnect. The ConnectionState 
then transitions into the ‘Closed’ state.  

Connection State variables are discarded. 

TCP client or server connections are closed using either a Graceful Close (TCP FIN Flag set to 1) or 
Abortive Close (TCP Reset Flag set to 1) mechanism. Closing the connection gracefully provides 
clients and servers with the benefit of never having to resend unacknowledged payload data. 
Abortive Closed connections are efficient in connection tear down but can require the client or server 

to resend payload data which has not been acknowledged at the TCP level. HTTP Encapsulation of 
SSTP Protocols relies on SSTP to ensure that any unacknowledged payload data is later resent. The 
choice of connection close mechanism is one of efficiency (efficient connection tear down verses 
efficient byte transmission). This document does not mandate that implementations adhere to one 
approach or another. Implementations can choose to close HTTP Encapsulated Connections either 
gracefully or abortively based on the implementation's requirements. 

3.6.4.2   Closing a Polling Session 

The server MUST close the POST session by sending a graceful TCP disconnect. The connection then 

transitions into the connection closed state.  

The PostSessionState is set to the ‘Closed’ state. 

All connection state information MUST NOT be discarded. 



 

109 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.6.4.3   Sending Application Data 

The data to be sent SHOULD be buffered, waiting for the next POST request to come in. After 
processing of the request and before sending the response, the server always checks to see if there 

is buffered data to be sent. 

3.6.5   Polling Server Message Processing Events and Sequencing Rules 

Upon receiving data on the POST session, the server MUST first check to see if the data starts with 
an HTTP POST request line, as specified in section 2.2.4.1.1. If not then it is a protocol error, and 
the virtual Polling connection MUST be closed (see section 3.6.4.1). 

The server MUST validate the Polling Polling-Virtual-Connection-Message by performing the 

following: 

1. The server extracts the version, server name, virtual connection GUID, sequence number, and 
checksum. If the parsing fails, it is a protocol error and the server MUST close the virtual Polling 
connection (see section 3.6.4.1).  

2. The server SHOULD<49> check the Polling-Encapsulation-Version and, if the version does not 
equal the required value (see section 2.2.4.1.3.1.1), close (see section 3.6.4.1) the virtual Polling 

connection. 

3. The server SHOULD<50> verify that the server name in the message equals its own name.  

The server extracts the Virtual-Connection-GUID from the Polling-Virtual-Connection-Message. The 
server performs a lookup on the global VirtualConnectionGUIDList values to: 

1. Determine if the Virtual-Connection-GUID is a new connection or existing connection. 

2. Retrieve the ConnectionState and PostSessionState connection state variables for the existing 
connection. 

A new Virtual-Connection-GUID event is handled as specified in section 3.6.5.1. Existing Virtual-

Connection-GUIDs events whose ConnectionState is 'Connecting' are processed as specified in 
section 3.6.5.2. Existing Virtual-Connection-GUID event whose ConnectionState is 'Established' are 
processed as specified in section 3.6.5.3.  

3.6.5.1   Receiving a Polling-POST-Request (Initial Handshake Request) 

Upon receipt of a Polling-POST-Request the server sets the PostSessionState to 'Probing', the 

ConnectionState to "Connect" and starts the ConnectionEstablishment timer. 

The server validates the Polling-POST-Request message as defined in section 2.2.2.1. 

The server MUST validate the remain Polling-Virtual-Connection-Message (see section 2.2.4.1.3.1 
)fields, not already validated in section 3.6.5. 

1. The Sequence-Number MUST be verified and stored in the ResponseSequenceNum. The sequence 
number MUST be 0<51>. 

2. The Checksum MUST be 0. 

3. The Polling-POST-Request MUST NOT contain application data. The server validates the lack of 
application data by examining the Polling-Content-Length value whose length MUST be equal to 
the length of the Polling-Virtual-Connection-Message. 



 

110 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

If any of the preceding validations procedures fails, the virtual Polling Connection MUST be closed as 
specified in section 3.6.4.1. 

The server transitions PostSessionState to the "Probed" state and ConnectionState to the 
‘Connecting" state. The server continues to complete the handshake by sending a Polling-POST-

Response, as specified in section 3.6.5.2.1. 

3.6.5.1.1   Sending a Polling-POST-Response with Status code 400 (Handshake) 

The initial Polling-POST-Response message (see section 3.6.5.1) of the polling Handshake overloads 
the 400 status to indicate a successful response.  

A successful response MUST contain the a Response-Status-Line (see section 2.2.2.3.1) with a 
status code of 400 and phrase of "Bad Request". 

The Polling-POST-Response-Required-Headers MUST be specified. 

The Polling-Virtual-Connection-Message MUST NOT be sent on this response. Application data MUST 

NOT be supplied. The Polling-Content-Length is set to 0. 

The Polling-POST-Response MUST be sent on the POST session. The server MUST close the Polling 
session (see section 3.6.4.2). 

3.6.5.2   Receiving a Polling-POST-Request (Last Handshake Request) 

The server MUST validate the Polling-Virtual-Connection-Message, as specified in section 
2.2.4.1.3.1. 

1. The Polling-POST-Request Sequence-Number field value on the received message MUST be 
equal to 0. If the Sequence-Number field value is not equal to 0 it is a protocol error and the 
Polling connection MUST be closed as specified in section 3.6.4.2.  

2. The Polling-POST-Request MUST contain application data. The server validates the presence of 

application data by examining the Polling-Content-Length value. The length MUST be greater 

than the length of the Polling-Virtual-Connection-Message. If not, it is a protocol error, and 
the virtual connection is closed, as specified in section 3.6.4.1. 

3. The Polling-POST-Request Checksum field value MUST be calculated as specified in section 
2.2.4.1.3.1.3 over the length of the application data received. The calculated Checksum value 
MUST be equal to the Checksum value found in the Polling-POST-Request field. 

If any of the preceding validation procedures fail, the virtual polling connection MUST be closed, as 

specified in section 3.6.4.1. 

The server sets ConnectionState to "Established" and sets PostSessionState to "Established". 

The application data is handed off to the application layer for further processing. 

The server continues as described in section 3.6.5.2.1 to complete the handshake, by sending a 
Polling-POST-Response with a status code of "200". 

3.6.5.2.1   Sending a Polling-POST-Response with Status code 200 (OK) 

A Polling-POST-Response message with a status code of "200" is sent as a successful response to 
the second and last Polling-Post-Request of the polling connection handshake or as a successful 
response to a Polling-POST-Request after the handshake. 



 

111 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

If ConnectionState is "Connected", the Sequence-Number field specified on the Polling-Virtual-
Connection-Message uses the value of ResponseSequenceNum, which is set to zero. If 

ConnectionState is "Established", the ResponseSequenceNum field is incremented by 1 and 
used as the Sequence-Number field value. 

The Polling-POST-Response MUST include a Response-Status-Line, as specified in section 
2.2.2.3.1, with a status code of 200 and a phrase of "OK". 

The Polling-POST-Response-Required-Headers MUST be included. 

The Polling-Virtual-Connection-Message MUST be prepared using the ServerHost as Relay-Server-
Name, and VirtualConnectionGUID as Virtual-Connection-GUID. The Polling-POST-Request 
Checksum field value MUST be calculated (see section 2.2.4.1.3.1.3) over the length of the 
application data that is to be sent. If there is no application data to send, the Checksum field MUST 

be set to 0. 

All buffered application data and any new application data SHOULD be included in the Polling-POST-
Response-Entity-Body. If there is no application data to send, the Polling-POST-Response message 

MUST be sent without application data. If the content length would exceed the 32768 size limit, the 
Polling-Response-Entity-Body MUST be broken into 32768 chunks. 

The Polling-Virtual-Connection-Response-Message MUST be prepared using the 

PollingMinRepetitionInterval, PollingMinRepetitionInterval, and PollingRepetitionCount connection 
state variables. Server implementations MAY use various load balancing techniques to control the 
clients poll timer interval (see section 3.5.2.3)<52>.  

The Polling-Content-Length is set to the length of the Polling-Virtual-Connection-Response-Message 
plus the length of the buffered application data. 

If there is no application data to send, the Polling time MUST be started with the current polling 
interval. 

The Polling-POST-Response MUST be sent on the POST session. The Polling session MUST be closed 
(see section 3.6.4.2). 

3.6.5.3   Receiving a Polling-POST-Request (After Handshake) 

Polling-POST-Request events that are received while the virtual Polling Connection is in the 
'Established' state define how the server processes application data and Poll requests.  

Once the ConnectionState is in the 'Established' state all Polling-POST-Requests MUST contain 

Application data, otherwise it is a protocol error, and the server MUST close the virtual polling 
connection as specified in section 3.6.4.1. 

The server MUST validate the Polling-Virtual-Connection-Message (see section 2.2.4.1.3.1) using the 
following steps: 

1. The Polling-POST-Request Sequence-Number field value on the received message SHOULD be 
compared against the expected Sequence-Number found in the RequestSequenceNum connection 

variable. Non-valid values are protocol errors. The new Sequence-Number SHOULD be stored in 

the RequestSequenceNum. 

2. The Polling-POST-Request Checksum field value MUST be calculated over the length of the 
application data received on each Polling-POST-Request message received, as specified in section 
2.2.4.1.3.1.3. The calculated Checksum value MUST be equal to the Checksum value found in the 
Polling-POST-Request field. If there is no application data, the Checksum MUST be 0. 



 

112 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The server validates the presence of application data by examining the Polling-Content-Length 
value. Application data MUST be present when the content length is greater than the length of the 

Polling-Virtual-Connection-Message. 

If any of the preceding validation procedures fail, the virtual Polling Connection MUST be closed as 

specified in section 3.6.4.1. 

Any application data is handed off to the application layer for further processing. 

The server MUST respond to the Polling-POST-Request message with a Polling-POST-Response 
message containing a status code of 200, as specified in section 3.6.5.2.1. If the server has no 
buffered application data to send on the Polling-POST-Response, then it MUST send the Polling-
POST-Response (see section 3.6.5.2.1) with no application data. 

3.6.6   Polling Server Timer Events 

3.6.6.1   ConnectionEstablishment Timer Event 

The ConnectionEstablishment Timer Event fires when enforcing a limit on the time it takes to 
establish a Polling connection with the server. If this timer expires before the Polling connection 
enters the established state, the virtual connection SHOULD be closed by the client. The timer 

SHOULD be set before starting the Polling Connection handshake. 

3.6.6.2   Polling Encapsulation Timer 

None.  

3.6.7   Polling Server Other Local Events 

On transport disconnect events, the virtual Polling Session MUST be closed as specified in section 

3.6.4.2. 

3.7   Secure Tunnel Encapsulation of SSTP Protocol Client Details 

Secure Tunnel Encapsulation is layered on a single TCP connection. After the TCP connection is 
established, the HTTP Connect method flows over the connection and is used to negotiate a tunnel 
connection through the proxy. When the Secure Tunnel connection handshake is complete, the SSTP 
data stream flows across the Secure Tunnel connection, through the proxy, to the server. The 

connection is a full duplex connection. SSTP commands and data from the client to the server flow 
in their SSTP format using TCP as a transport.  

A Secure Tunnel connection is negotiated between the client and the proxy. The server is not 
involved in the proxy negotiation. Direct connections between a client and server do not perform the 
Secure Tunnel handshake. Instead, direct connections send and receive the SSTP data stream over 
a TCP connection, just as they do for SSTP over 2492/TCP. The only difference is that the target 
port is 443/TCP with no SSL handshake (see [SSL3], section 5.5) or protocol (see [SSL3]). 

3.7.1   Secure Tunnel Client Abstract Data Model 

This section specifies a conceptual model of possible data organization that an implementation 
maintains to participate in the Secure Tunnel Proxy protocol. The specified organization is provided 
to facilitate the explanation of how the protocol behaves. This document does not mandate that 
implementations adhere to this model as long as their external behavior is consistent with that 
specified in this document. The following figure shows a detailed view of the client state machine for 

Secure Tunnel.  

http://go.microsoft.com/fwlink/?LinkId=90534
http://go.microsoft.com/fwlink/?LinkId=90534


 

113 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 20: Client Secure Tunnel state diagram 

3.7.1.1   Connection State Information 

The following details about the state information define the context needed to manage a Secure 
Tunnel connection. Unless otherwise noted, the following connection state variables are scoped to a 

single Secure Tunnel connection. When a Secure Tunnel connection is terminated, this state 
information is no longer relevant and SHOULD be discarded. 

A client SHOULD support multiple Secure Tunnel connections to multiple servers concurrently. A 
client SHOULD support one Secure Tunnel connection to the same target server (see ServerHost 

state information). In all cases, each Secure Tunnel connection MUST maintain separate connection 
state variable information. 



 

114 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

ServerPort: The well-known port number of the target server. By default this is the SSL well known 
port 443/TCP. 

ServerHost: The host name of the target server, in the form of an FQDN or IP Address. There is no 
default value. 

ConnectionState: The variable used to maintain the current disposition of the Secure Tunnel 
connection. There are four possible states: 'Connecting', ‘Connected’, 'Established', and 'Closed'. The 
'Connecting' indicates that the connection creation is in progress. The 'Connected' state indicates 
that the connection has finished any proxy negotiation. The 'Established' state indicates that 
connection has been successfully created, and application data MAY begin to flow over the 
connection. The 'Closed' state indicates the connection can no longer send or receive application 
data, and the connection is closed. 

ProxyConnection: The indicator of whether the current connection is a connection to a proxy or a 
direct connection to a server. The value is set to TRUE after the client determines that a proxy is to 
be used. The default value is FALSE. 

3.7.1.2   Proxy State Information 

The following details about the state information define the context clients need to establish 

connections with proxies. This proxy configuration information MUST be provided to the client prior 
to connection establishment. The source of this configuration information is external to the Secure 
Tunnel Proxy Protocol<53>.  

ProxyServerPort: The well-known port number of the target proxy. It is used for establishing a 
TCP connection to a proxy. By default this is the SSL well known port 443/TCP. 

ProxyServerHostName: The host name of the target proxy. The name is in the form of an FQDN 
or an IP Address. If the name is an FQDN, then the client MUST resolve this name to its IP Address. 

There is no default value. 

ProxyAuthRequired: A variable used to indicate if a proxy requires authentication. The client sets 
this variable to TRUE when it discovers that the proxy needs authentication during its first 

negotiation with the proxy. When the client initiates a new virtual connection through the same 
proxy, it SHOULD provide the cached credentials without waiting to be challenged, to avoid the 
overhead of additional message exchanges. 

3.7.2   Secure Tunnel Client Timers 

3.7.2.1   ConnectionEstablishment Timer 

The ConnectionEstablishment timer SHOULD be used by clients to limit the amount of time a Secure 
Tunnel connection negotiation takes to complete. This timer measures the time it takes for a 
connection to move from the connecting to the established state. The recommended timeout value 
is 90 seconds. The ConnectionEstablishment timer event processing is handled as specified in 

section 3.7.6.1. 

3.7.2.2   NetworkReceiveIO Timer 

The NetworkReceiveIO timer SHOULD be used by clients to limit the amount of time a client waits 
for a Secure Tunnel connection network receive to complete. This timer is set on the first network IO 
after the Secure Tunnel connection handshake is finished. The NetworkReceiveIO timer value 

SHOULD be larger than the KeepAlive timer to avoid premature timeouts. The recommended 



 

115 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

timeout value is 90 seconds. The NetworkReceiveIO timer event processing is handled as specified 
in section 3.7.6.2. 

3.7.2.3   KeepAlive Timer 

HTTP Encapsulation protocols do not support a native KeepAlive timer, but rather rely on the 
encapsulated protocol to provide a KeepAlive mechanism. Encapsulated protocols SHOULD 
implement their own KeepAlive mechanisms. The SSTP protocol provides its own KeepAlive 
mechanism using the SSTP_NOOP command<54>. The default client KeepAlive timeout value is 45 
seconds. KeepAlive timers with short intervals SHOULD be used to interoperate with firewalls and 
proxies. The maximum KeepAlive value is limited by proxy implementations. The KeepAlive timer 
event processing is handled as specified in section 3.7.6.3. 

3.7.3   Secure Tunnel Client Initialization 

3.7.3.1   Protocol Initialization 

The protocol is not initialized until a request to open an encapsulated connection is made by the 
application layer. The variables defined by the abstract data model are initialized when a Secure 
Tunnel connection request is made. 

3.7.3.2   Secure Tunnel Listener Endpoints 

None. 

3.7.3.3   Timers Started 

None. 

3.7.4   Secure Tunnel Client Higher-Layer Triggered Events 

3.7.4.1   Establishing a Secure Tunnel Encapsulation Connection 

When the application layer requests a Secure Tunnel connection, the Secure Tunnel Proxy Protocol 
layer MUST initialize the Secure Tunnel connection state variables as specified in the abstract data 
model (see section 3.7.1). After the connection state variables are initialized, the Secure Tunnel 
Proxy Protocol enters into the connection establishment phase. Initialization SHOULD include 

fetching any proxy configuration information<55>. 

The client opens a connection to the server as define in section 3.7.4.1.2. If proxy configuration is 
provided, processing continues as specified in section 3.7.4.1.2. 

The ConnectionEstablishment timer SHOULD be started. 

3.7.4.1.1   Establishing a Secure Tunnel connection without proxy 

The ConnectionState MUST be set to 'Connecting'. 

The client MUST establish a TCP connection to the server identified with ServerHost and ServerPort. 
The client uses the SSTP protocol over the Secure Tunnel port.  

When the TCP connection is successfully established, the ConnectionState MUST transition to the 
'Connected' state. 



 

116 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.7.4.1.2   Establishing a Secure Tunnel connection with a proxy 

The client sets the ProxyConnection to TRUE. 

The client MUST construct a Connect Request as defined in [TCPPROXY], section 3.1, providing 

ServerHost and ServerPort. 

The client includes the Proxy-Connection header with the Keep-Alive value as specified in section 
2.2.1.2.9. 

The client includes the required headers as specified in [TCPPROXY], section 3.1. 

If ProxyAuthRequired is set, the client MUST add additional proxy authentication headers to the 
request. 

The client MUST establish a TCP connection to the server identified with ProxyServerHostName and 

ProxyServerPort, and send the HTTP Connect Request. 

3.7.4.2   Closing a Secure Tunnel Connection 

The client MUST close the Secure Tunnel connection by sending a graceful TCP disconnect. 

The ConnectionState then transitions into the ‘Closed’ state. The connection state variables SHOULD 
be discarded. 

TCP client or server connections are closed using either a Graceful Close (TCP FIN Flag set to 1) or 
Abortive Close (TCP Reset Flag set to 1) mechanism. Closing the connection gracefully provides 
clients and servers with the benefit of never having to resend unacknowledged payload data. 
Abortive Closed connections are efficient in connection tear down but can require the client or server 
to resend payload data which has not been acknowledged at the TCP level. HTTP Encapsulation of 
SSTP Protocols relies on SSTP to ensure that any unacknowledged payload data is later resent. The 
choice of connection close mechanism is one of efficiency (efficient connection tear down verses 

efficient byte transmission). This document does not mandate that implementations adhere to one 
approach or another. Implementations can choose to close HTTP Encapsulated Connections either 

gracefully or abortively based on the implementation's requirements. 

3.7.4.3   Sending Application Data 

The Secure Tunnel connection MUST be in the 'Established' state to send application data. If the 
connection is still being established, the client MUST buffer the data . 

If the client is in the ‘Established’ state, the client sends application data over the connection.  

The KeepAlive and NetworkReceiveIO timers MUST be restarted. 

3.7.5   Secure Tunnel Client Message Processing Events and Sequencing Rules 

Data received while the ConnectionState is not 'Established' is part of the Secure Tunnel connection 
negotiation handshake as specified in section 3.7.5.1. Data received while the ConnectionState is 
'Established' is handled as specified in section 3.7.5.2. 

3.7.5.1   HTTP Response Processing 

The HTTP response header MUST be parsed and the status code and response body extracted. 

The receipt of an HTTP Response transitions the ConnectionState to 'Connected'. 

http://go.microsoft.com/fwlink/?LinkId=113488
http://go.microsoft.com/fwlink/?LinkId=113488


 

117 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.7.5.1.1   Status code: 200 

The ConnectionState transitions into the 'Established' state. 

The ConnectionEstablishment timer is stopped and no further timer expiration processing is 

performed. 

The KeepAlive timer and NetworkReceiveIO timer SHOULD both be started. 

If there is any buffered data to send, the client MUST now send it, as specified in section 3.7.4.3. 

3.7.5.1.2   Status code: 400 (Bad Request) 

The proxy has rejected the connection request. The client MUST close the Secure Tunnel connection 
(see section 3.7.4.2). 

3.7.5.1.3   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication 

Required) 

HTTP status code values of 401 (Unauthorized) or 407 (ProxyAuthentication Required) indicate that 
the proxy requires the client to authenticate. Common authentication schemes include Basic and 
Digest, as specified in [RFC2617], and NTLM HTTP Authentication, as specified in [RFC4559]. 

The client sets the ProxyAuthRequired state variable to TRUE. Subsequent connection attempts to 
the same proxy SHOULD avoid the proxy challenge message by sending the proxy authentication 
credentials as part of the Connect Request (see [TCPPROXY], section 3.1).  

Depending on the authentication method, multiple round trips can happen to complete the 
authentication process. That is, the client MUST expect to get multiple 401 and 407 messages. It 
MUST follow [RFC2617] and [RFC4559] to set authentication headers and retry the proxy 

connection. 

For processing required to retry the proxy connection, see section 3.7.4.1.2. 

The ConnectionEstablishment timer SHOULD be reset before re-attempting the Secure Tunnel 
handshake (see section 3.7.4.1).  

3.7.5.1.4   All Other Status Codes 

All other status codes are fatal; the virtual connection MUST be closed as specified in section 

3.7.4.2. 

3.7.5.2   Application Data Processing 

If the connection state is not "Established", this is a protocol error; the data MUST be discarded and 
the connection closed, as specified in section 3.7.4.2. 

The client receives application data over the connection. 

The application data is passed to the application layer for processing. 

The NetworkReceiveIO timer MUST be restarted after each transport receive operation completes. 

http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90483
http://go.microsoft.com/fwlink/?LinkId=113488
http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90483


 

118 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.7.6   Secure Tunnel Client Timer Events 

3.7.6.1   ConnectionEstablishment Timer Event 

The ConnectionEstablishment Timer Event fires when the ConnectionEstablishment timer for a given 
Secure Tunnel connection expires before the connection can be established. If this timer expires 
before the Secure Tunnel connection enters the ‘Established’ state, the TCP connection SHOULD be 
closed by the client.  

3.7.6.2   NetworkReceiveIO Timer Event 

The NetworkReceiveIO Timer Event fires when a network receive does not complete within the 

specified amount of time. If the NetworkReceiveIO Event triggers, the client SHOULD close the 
Secure Tunnel connection and MAY retry immediately.  

3.7.6.3   KeepAlive Timer Event 

A KeepAlive Event SHOULD trigger an encapsulated protocol message such as an SSTP_NOOP 
command to be sent across the wire<56>. Well behaved connections will see this event every 
KeepAlive timer interval.  

3.7.7   Secure Tunnel Client Other Local Events 

On transport disconnect events all connection state information SHOULD be discarded.  

The client SHOULD close the Secure Tunnel connection and can retry immediately. If the retry 
attempt fails, the client SHOULD let the higher layer decide whether to wait before establishing a 
new Secure Tunnel virtual connection to the target server, or use a different encapsulation protocol 
to establish a connection to the server. 

3.8   Secure Tunnel Encapsulation of SSTP Protocol Server Details 

From the server’s standpoint, the Secure Tunnel Proxy only exchanges SSTP messages with the 

server. The traffic between the proxy and the server is SSTP protocol traffic on a non-standard port 
for SSTP: 443/TCP. The server does not take part in the Secure Tunnel handshake. Secure Tunnel 
encapsulation occurs between the client and proxy server as part of the Secure Tunnel handshake. 

All messages that flow between the client and server are standard SSTP messages. See SSTP [MS-
GRVSSTP] for server processing rules. All SSTP server processing rules apply except for those listed 
in sections 3.8.2 and 3.2.3. 

3.8.1   Secure Tunnel Server Abstract Data Model 

None. 

3.8.2   Secure Tunnel Server Timers 

The following SSTP timers are used in conjunction with the client’s Secure Tunnel timers. 

3.8.2.1   SSTP KeepAlive Timer 

The HTTP Encapsulation protocols do not define a KeepAlive timer. The underlying encapsulated 
protocol MUST implement a KeepAlive timer. The SSTP protocol uses the KeepAlive mechanism 
provided by the SSTP_NOOP command<57>. 

%5bMS-GRVSSTP%5d.pdf
%5bMS-GRVSSTP%5d.pdf


 

119 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The KeepAlive message keeps the Secure Tunnel connection from being closed by firewalls and 
proxies because of connection inactivity. All Secure Tunnel connections SHOULD use KeepAlive 

timers, regardless of whether the client detects if a connection is a proxy connection or not, as some 
firewall and proxies are undetectable. The recommended client KeepAlive timeout value is 45 

seconds<58>.  

3.8.3   Secure Tunnel Server Initialization 

3.8.3.1   Secure Tunnel Encapsulation Listener 

The server MUST open a listener socket on the Secure Tunnel port. The Secure Tunnel connection 
port SHOULD be the well-known SSL port 443/TCP.  

The SSL protocol handshake is not used on this port. This listener communicates using the SSTP 
protocol.  

The Secure Tunnel listener supports both Secure Tunnel Proxy connections and direct client to 
server connections. From the perspective of the Secure Tunnel listener, there is no difference 

between a Secure Tunnel direct connection and a Secure Tunnel Proxy connection. 

3.8.4   Secure Tunnel Higher-Layer Triggered Events 

None. 

3.8.5   Secure Tunnel Server Message Processing Events and Sequence Rules 

None. 

3.8.6   Secure Tunnel Server Timer Events 

None. 

3.8.7   Secure Tunnel Server Other Local Events 

None. 

3.9   SOCKS Encapsulation of SSTP Protocol Client Details 

SOCKS Encapsulation is layered on a single TCP connection. After the TCP connection is established, 
the SOCKS handshake negotiates a tunnel through the proxy to the server. When the SOCKS 

connection handshake is complete, the SSTP data stream flows across the SOCKS connection, with 
no additional SOCK protocol messages. 

The SOCKS connection is a full duplex connection. SSTP commands and data from the client to the 
server flow in their SSTP format using the SSTP Listener and well known port number 2492/TCP.  

3.9.1   SOCKS Client Abstract Data Model 

This section specifies a conceptual model of possible data organization that an implementation 
maintains to participate in the SOCKS protocol. The specified organization is provided to facilitate 
the explanation of how the protocol behaves. This document does not mandate that 
implementations adhere to this model as long as their external behavior is consistent with that 
specified in this document. The following figure provides a detailed look at the SOCKS client state 
machine. 



 

120 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 21: SOCKS client state diagram 

3.9.1.1   Connection State Information 

The state information detailed in this section defines the context needed to manage a SOCKS 
connection. Unless otherwise noted, the following connection state variables are scoped to a single 

SOCKS connection. When a SOCKS connection is terminated, this state information is no longer 
relevant and SHOULD be discarded. 

A client SHOULD support multiple SOCKS connections to multiple servers concurrently. A client 
SHOULD support one SOCKS connection to the same target server (see ServerHost state 



 

121 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

information). Each SOCKS connection MUST maintain separate connection state variable 
information. 

ServerPort: The well-known port number of the target server. By default this is the SSTP well 
known port 2492/TCP. 

ServerHost: The host name of the target server, in the form of an FQDN or IP Address. There is no 
default value. 

ConnectionState: The variable used to maintain the disposition of the SOCKS connection. There 
are five possible states: 'Negotiating', 'Negotiated', 'Connecting', 'Established', and 'Closed'. The 
'Negotiating' state indicates that the SOCKS connection is negotiating its authentication methods. 
The 'Negotiated' state indicates that the client has successfully finished authentication. The 
'Connecting' state indicates that the SOCKS proxy connection to the target server is in progress. The 

'Established' state indicates that the SOCKS connection with the proxy has successfully established a 
connection with the target server and application data MAY begin to flow. The 'Closed' state 
indicates that the connection can no longer send or receive application data; the SOCKS connection 
is closed. 

3.9.1.2   Proxy State Information 

The following details about the state information define the context clients need to establish 
connections with proxies<59>. This proxy configuration information MUST be provided to the client 
prior to connection establishment. This source of this configuration information is external to the 
SOCKS Protocol<60>.  

ProxyServerPort: The well-known port number of the SOCKS server. It is used for establishing a 
TCP connection. By default the well-known port is 1080/TCP. 

ProxyServerHostName: The host name of the SOCKS server. The name is in the form of an FQDN 

or an IP Address. There is no default value. 

ProxyAuthRequired: A variable used to indicate that proxy authentication is required. The client 
sets this variable to TRUE when it discovers that the proxy needs authentication.  

3.9.2   SOCKS Client Timers 

3.9.2.1   ConnectionEstablishment Timer 

The ConnectionEstablishment timer SHOULD be used by clients to limit the amount of time a SOCKS 
connection negotiation takes to complete. This timer measures the time it takes for a connection to 
move from the negotiating state to the established state. The recommended timeout value is 90 
seconds. The ConnectionEstablishment timer event processing is handled as specified in section 
3.9.6.1. 

3.9.2.2   NetworkReceiveIO Timer 

The NetworkReceiveIO timer SHOULD be used by clients to limit the amount of time a client waits 
for a SOCKS connection network receive to complete. The recommended timeout value is 60 

seconds. The NetworkReceiveIO timer event processing is handled as specified in section 3.9.6.2. 

3.9.2.3   KeepAlive Timer 

HTTP Encapsulation protocols do not support a built-in KeepAlive timer, but instead rely on the 
encapsulated protocol to provide a KeepAlive mechanism. An encapsulated protocol SHOULD 



 

122 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

implement its own KeepAlive mechanism. The SSTP protocol provides its own KeepAlive mechanism 
(see [MS-GRVSSTP] section 2.2.13), using the SSTP_NOOP command<61>. The default client 

KeepAlive timeout value is 45 seconds. KeepAlive timers with short intervals SHOULD be used to 
maximize compatibility with a variety of firewalls and proxies. The KeepAlive timer event processing 

is handled as specified in section 3.9.6.3. 

3.9.3   SOCKS Client Initialization 

3.9.3.1   SOCKS Protocol Initialization 

The SOCKS Protocol is not initialized until a request to open an encapsulated connection is made by 
the application layer.  

3.9.4   SOCKS Client Higher-Layer Triggered Events 

3.9.4.1   Establishing a SOCKS Encapsulation Connection 

When the application layer requests a SOCKS connection, the SOCKS protocol layer MUST initialize 
the SOCKS state variables as defined in the abstract data model (see section 3.9.1). After the 
connection state variables are initialized, the SOCKS protocol enters the connection establishment 

phase. Initialization SHOULD include fetching the proxy configuration information<62>. 

The SOCKS handshake occurs between the client and proxy; there are no direct connections to 
servers. 

3.9.4.1.1   Establishing a SOCKS Encapsulation Connection 

The ConnectionState MUST be set to 'Negotiating'. 

The client checks the SOCKS proxy configuration information before establishing any TCP 

connections. If a proxy is NOT configured, then SOCKS connections MUST NOT be attempted. 

The client prepares a SOCKS Identifier Request Message as specified in [RFC1928], section 3. 

The VER field MUST be set to 0x05.  

The number of methods and method identifiers (see [RFC1928], section 3) supported by the client 
MUST be specified in the NMETHODS and METHODS fields<63>. The following methods SHOULD be 
specified in the message<64>: 

0x00 (NO AUTHENTICATION REQUIRED) 

0x02 (USERNAME and PASSWORD) 

The ConnectionEstablishment timer and NetworkReceiveIO timer SHOULD both be started. 

The client MUST establish a TCP connection to the proxy identified with ProxyServerHostName and 
ProxyServerPort and send the SOCKS Version Identifier Request. 

3.9.4.2   Closing a SOCKS Connection 

The client MUST close the SOCKS connection by sending a graceful TCP disconnect. 

The ConnectionState then transitions into the ‘Closed’ state. The connection state variables SHOULD 
be discarded. 

%5bMS-GRVSSTP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113494
http://go.microsoft.com/fwlink/?LinkId=113494


 

123 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

TCP client or server connections are closed using either a Graceful Close (TCP FIN Flag set to 1) or 
Abortive Close (TCP Reset Flag set to 1) mechanism. Closing the connection gracefully provides 

clients and servers with the benefit of never having to resend unacknowledged payload data. 
Abortive Closed connections are efficient in connection tear down but can require the client or server 

to resend payload data which has not been acknowledged at the TCP level. HTTP Encapsulation of 
SSTP Protocols relies on SSTP to ensure that any unacknowledged payload data is later resent. The 
choice of connection close mechanism is one of efficiency (efficient connection tear down verses 
efficient byte transmission). This document does not mandate that implementations adhere to one 
approach or another. Implementations can choose to close HTTP Encapsulated Connections either 
gracefully or abortively based on the implementation's requirements. 

3.9.4.3   Sending Application Data 

The SOCKS connection MUST be in the 'Established' state to send application data. If the connection 
is still being established, the client MUST buffer the data. 

If the connection is in ‘Established’ state, the client sends application data over the connection, no 
SOCKS protocol messages. 

The NetworkReceiveIO timer MUST be restarted. 

3.9.5   SOCKS Client Message Processing Events and Sequencing Rules 

Data received while the ConnectionState is not 'Established' is part of the SOCKS connection 
negotiation handshake as specified in section 3.9.5.1. Data received while the ConnectionState is 
'Established' is handled as specified in section 3.9.5.2. 

3.9.5.1   SOCKS Connection Negotiation Processing 

The SOCKS response message type is dependent on the SOCKS ConnectionState. When data is 
received and the ConnectionState is ‘Negotiating’, the data is handled as specified in section 
3.9.5.1.1. Data received when the ConnectionState is 'Connecting' is handled as specified in section 
3.9.5.1.3.  

3.9.5.1.1   Version Identifier Response 

ConnectionState MUST be "Negotiating". Otherwise, it is a protocol error and the SOCKS connection 

MUST be closed, as specified in section 3.9.4.2. 

The client verifies that the response message VER field number equals the client SOCKS version 
number, "0x05". If the versions are not equal, it is a protocol error, and the SOCKS connection 
MUST be closed, as specified in section 3.9.4.2. 

If the response message METHODS field contains the method "0xFF" (NO ACCEPTABLE METHOD), it 
means that the server does not support any authentication methods supported by the client. The 
client MUST close the SOCKS connection, as specified in section 3.9.4.2. 

If the response message METHODS field is "0x00" (NO AUTHENTICATION REQUIRED), the client 
sets the ConnectionState to "Negotiated" and continues as specified in section 3.9.5.1.2 to send the 

SOCKS connect request. 

If the response message METHODS field is "0x01" (GSSAPI), the client MAY perform GSSAPI 
authentication negotiation, as specified in [RFC1961].<65> 

If the response message METHODS field is "0x02" (USERNAME and PASSWORD), the client MUST 

perform USERNAME and PASSWORD authentication negotiation, as specified in [RFC1929]. 

http://go.microsoft.com/fwlink/?LinkId=113495
http://go.microsoft.com/fwlink/?LinkId=114954


 

124 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

After successfully completing the proxy authentication, the ConnectionState MUST transition to the 
"Negotiated" state. 

The client MUST send a SOCKS connect request message, as specified in section 3.9.5.1.2. 

3.9.5.1.2   Connect Request 

The ConnectionState MUST be "Negotiated". Otherwise, it is a protocol error and the SOCKS 
connection MUST be closed, as specified in section 3.9.4.2. 

The client sets ConnectionState to "Connecting". 

The client constructs the SOCKS connect request as specified in [RFC1928], section 4. 

The client sets the DEST.ADDR field with the value of the ServerHost state variable and the 
DEST.PORT field with the value of the ServerPort state variable. 

The client MUST set "CONNECT [0x01]" as the CMD identifier. 

The client SHOULD set "DOMAINNAME [0x03]" as the ATYP identifier. 

The client sends a connect request. 

3.9.5.1.3   Connect Response 

The client validates the Connect Request as specified in [RFC1928], section 6.  

A Reply field code of 0x00 indicates success. All other reply codes MUST be treated as SOCKS 
connection handshake failures. See [RFC1928], section 6, for a list of all Reply codes. In all error 
cases, the SOCKS connection MUST be closed (see section 3.9.4.2). 

The KeepAlive timer and NetworkReceiveIO timer SHOULD both be started. The 
ConnectionEstablishment timer SHOULD be stopped and no further timer expiration processing is 
performed. 

The SOCKS ConnectionState variable MUST transition to the 'Established' state.  

If there is any buffered data to send, the client MUST send it, as specified in section 3.9.4.3. 

3.9.5.2   Application Data Processing 

The SOCKS connection MUST be in the "Established" state to receive application data. 

If the connection state is not "Established", it is a protocol error. The data MUST be discarded and 
the connection closed. 

The server receives application data over the connection. There are no additional SOCKS protocol 

messages. The application data is passed to the application layer for processing. 

The NetworkReceiveIO timer MUST be stopped after each transport receive operation. 

3.9.6   SOCKS Client Timer Events 

3.9.6.1   ConnectionEstablishment Timer Event 

The ConnectionEstablishment Event fires when the ConnectionEstablishment timer for a given 

SOCKs connection expires before the connection can be established. If this timer expires before the 

http://go.microsoft.com/fwlink/?LinkId=113494
http://go.microsoft.com/fwlink/?LinkId=113494
http://go.microsoft.com/fwlink/?LinkId=113494


 

125 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

SOCKs connection enters the ‘Established’ state, the TCP connection for the SOCKs connection 
SHOULD be closed by the client.  

3.9.6.2   NetworkReceiveIO Timer Event 

The NetworkReceiveIO Timer Event fires when a network receive does not complete within the 
specified amount of time. If the NetworkReceiveIO Timer Event triggers, the client SHOULD close 
the SOCKs connection, and then MAY retry the connection immediately.  

3.9.6.3   KeepAlive Timer Event 

A KeepAlive Event SHOULD trigger an encapsulated protocol message such as an SSTP_NOOP 
command to be sent across the wire<66>. Well behaved connections will see this event every 

KeepAlive interval. All SOCKS connections SHOULD use KeepAlive timers. Well behaved connections 
will see this event every KeepAlive interval.  

3.9.7   SOCKS Client Other Local Events 

On transport disconnect events all connection state information SHOULD be discarded.  

The client SHOULD let the application layer decide whether to wait before establishing a new SOCKs 
connection to the target server again, or use a different encapsulation protocol to establish a 

connection to the server. 

3.10   SOCKS Encapsulation of SSTP Protocol Server Details 

From the server’s standpoint, the SOCKs proxy only sends SSTP protocol traffic. SOCKs proxies 
connect to servers on the SSTP well known port 2492/TCP. The server does not participate in the 
SOCKs handshake between the client and the SOCKs proxy. All messages that flow between the 

client and server are standard SSTP messages, with no SOCKs protocol messages. See SSTP [MS-
GRVSSTP] for server processing rules. 

3.10.1   SOCKS Server Abstract Data Model 

None. 

3.10.2   SOCKS Server Timers 

None. 

3.10.3   SOCKS Server Initialization 

None. 

3.10.4   SOCKS Server Higher-Layer Triggered Events 

None. 

3.10.5   SOCKS Server Message Processing Events and Sequencing Rules 

None. 

%5bMS-GRVSSTP%5d.pdf
%5bMS-GRVSSTP%5d.pdf


 

126 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

3.10.6   SOCKS Server Timer Events 

None. 

3.10.7   SOCKS Server Other Local Events 

None. 



 

127 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

4   Protocol Examples 

This section explains the sequence and structure of the messages required to successfully create an 
HTTP Encapsulation of SSTP connection to the point where the client and the server can exchange 
Application-Data (see section 2.2.1.1.4) with each other. In addition, this section also includes 
Secure Tunnel, SOCKS proxy and NTLM ProxyAuthentication examples. 

In the HTTP encapsulation examples, the data sent and received on the wire is displayed between "-
----Message START-----" and "-----Message END-----" tokens for readability. These tokens are not 
part of the protocol. The CRLF token in the HTTP headers is replaced with a new line to make the 

message more readable. An empty line indicates an additional CRLF token. 

4.1   HTTP LongLived Encapsulation Examples 

HTTP LongLived encapsulation is a full duplex virtual connection that consists of two individual TCP 
Connections made to the server on port 80. In the following examples, the connections to the server 
are named GET and POST. The POST connection is used to send data to the relay and the GET 

connection is used to request data from the relay. The following diagram shows the process used to 

establish a connection using HTTP LongLived encapsulation. 

 

Figure 22: LongLived Encapsulation connection establishment 

The following are examples of the HTTP messages exchanged to create a virtual LongLived 

Connection: 

LongLived-GET-Request: 

----------------------------------Message START ---------------------------------- 

GET 

/2.0/server.domain.net/hczn5kctbrpxfgkgxzqs6zmkp9uwvswszvs6f72,ConnType=LongLived,ContentLeng

th=2147479552 HTTP/1.0  

Accept: */*  

Content-Type: application/octet-stream  

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32)  

Host: 10.150.1.226  

Pragma: no-cache  



 

128 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Cache-Control: no-cache  

Expires: 0  

Cache-Control: max-age=0  

 

----------------------------------Message END ------------------------------------ 

LongLived-POST-Request: 

----------------------------------Message START ---------------------------------- 

POST /2.0/server.domain.net/hczn5kctbrpxfgkgxzqs6zmkp9uwvswszvs6f72,ConnType=LongLived 

HTTP/1.0  

Accept: */*  

Content-Type: application/octet-stream  

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32)  

UserAgent: server.domain.net  

Content-Length: 2147479552  

Pragma: no-cache  

Cache-Control: no-cache  

Expires: 0  

Cache-Control: max-age=0  

 

GroovePing: 1.0,Ping  

 

----------------------------------Message END ------------------------------------ 

LongLived-GET-Response: 

----------------------------------Message START ---------------------------------- 

HTTP/1.0 200 OK  

Date: Wed, 26 Dec 2007 20:31:28 GMT  

Server: Groove-Relay/12.0  

Connection: Keep-Alive  

Content-Length: 2147479552  

 

GroovePing: 1.0,Ping  

 

----------------------------------Message END ------------------------------------ 

Note that the initial response is received only on the GET connection. The HTTP return code of 200 

indicates the successful creation of a virtual LongLived Connection. 

After the virtual LongLived is established, the client and server can exchange application data as 
shown in the following figure. 



 

129 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 23: LongLived Encapsulation application data exchange 

4.2   HTTP KeepAlive Encapsulation Examples 

HTTP KeepAlive encapsulation client creates a full duplex virtual connection that consists of two 
individual TCP connections. In the following examples, the connections to the server are named GET 
and POST. The POST connection is used to send data to the server; the GET connection is used to 
request data from the server. The following figure shows how the KeepAlive encapsulation 

connection is established. 



 

130 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 24: KeepAlive Encapsulation connection establishment 

The following are the messages exchanged to initialize a KeepAlive connection: 

KeepAlive-GET-Request: 

----------------------------------Message START ---------------------------------- 

GET /2.0/server.domain.net/kicxp8rrgwqdwhf7c6xsgbagmcdnxm9phtvbj5a,ConnType=KeepAlive 

HTTP/1.0  

Accept: */*  

Content-Type: application/octet-stream  

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32)  

Host: 10.150.1.226  

Pragma: no-cache  

Cache-Control: no-cache  

Expires: 0   

Connection: Keep-Alive  

Cache-Control: max-age=0  

 

----------------------------------Message END ------------------------------------ 

KeepAlive-POST-Request: 

----------------------------------Message START ---------------------------------- 

POST /2.0/server.domain.net/kicxp8rrgwqdwhf7c6xsgbagmcdnxm9phtvbj5a,ConnType=KeepAlive 

HTTP/1.0  

Accept: */*  



 

131 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Content-Type: application/octet-stream  

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32)  

UserAgent: server.domain.net  

Connection: Keep-Alive  

Content-Length: 22  

Pragma: no-cache  

Cache-Control: no-cache  

Expires: 0  

Cache-Control: max-age=0  

 

GroovePing: 1.0,Ping  

 

----------------------------------Message END ------------------------------------ 

KeepAlive-POST-Response: 

----------------------------------Message START ---------------------------------- 

HTTP/1.0 200 OK  

Date: Wed, 26 Dec 2007 19:50:26 GMT 

Server: Groove-Relay/12.0 

Connection: Keep-Alive 

Content-Length: 15 

 

<HTML></HTML>  

 

----------------------------------Message END ------------------------------------ 

KeepAlive-GET-Response: 

----------------------------------Message START ---------------------------------- 

HTTP/1.0 200 OK  

Date: Wed, 26 Dec 2007 19:50:26 GMT  

Server: Groove-Relay/12.0  

Connection: Keep-Alive  

Content-Length: 22  

 

GroovePing: 1.0,Ping  

 

----------------------------------Message END ------------------------------------ 

For a KeepAlive connection, each request results in a response from the server. The HTTP return 

codes of 200 on both responses indicates the successful creation of both HTTP connections. The 
GroovePing message is sent on the POST Request and received on the GET Response to complete 
the establishment of the virtual KeepAlive connection. 

The following figure shows the message flow that is used to send and receive application data 
between protocol client and protocol server. 



 

132 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 25: HTTP KeepAlive Encapsulation application data exchange 

The following are examples of the messages that are exchanged to send and receive application 
data between the client and server.  

KeepAlive-GET-Request: 

----------------------------------Message START ---------------------------------- 

GET /2.0/server.domain.net/kicxp8rrgwqdwhf7c6xsgbagmcdnxm9phtvbj5a,ConnType=KeepAlive 

HTTP/1.0  

Accept: */*  

Content-Type: application/octet-stream  

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32)  

Host: 10.150.1.226  

Pragma: no-cache  



 

133 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Cache-Control: no-cache  

Expires: 0  

Connection: Keep-Alive  

Cache-Control: max-age=0  

 

----------------------------------Message END ------------------------------------ 

KeepAlive-POST-Request: 

----------------------------------Message START ---------------------------------- 

POST /2.0/server.domain.net/kicxp8rrgwqdwhf7c6xsgbagmcdnxm9phtvbj5a,ConnType=KeepAlive 

HTTP/1.0  

Accept: */*  

Content-Type: application/octet-stream  

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32)  

UserAgent: server.domain.net  

Connection: Keep-Alive  

Content-Length: 188  

Pragma: no-cache  

Cache-Control: no-cache  

Expires: 0  

Cache-Control: max-age=0  

 

Application-Data     

----------------------------------Message END ------------------------------------ 

KeepAlive-GET-Response: 

----------------------------------Message START ---------------------------------- 

HTTP/1.0 200 OK  

Date: Wed, 26 Dec 2007 19:50:26 GMT 

Server: Groove-Relay/12.0 

Connection: Keep-Alive  

Content-Length: 169  

 

Application-Data 

----------------------------------Message END ------------------------------------ 

KeepAlive-POST-Response:  

----------------------------------Message START ---------------------------------- 

HTTP/1.0 200 OK  

Date: Wed, 26 Dec 2007 19:50:26 GMT  

Server: Groove-Relay/12.0  

Connection: Keep-Alive  

Content-Length: 0  

 

----------------------------------Message END ------------------------------------ 

KeepAlive-GET-Request: 

----------------------------------Message START ---------------------------------- 

GET /2.0/server.domain.net/g5u55h8rrgwqdwhf7c6xsgbagmcdnxm9pht2kop41a,ConnType=KeepAlive 

HTTP/1.0  



 

134 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Accept: */*  

Content-Type: application/octet-stream  

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32)  

Host: 10.150.1.226  

Pragma: no-cache  

Cache-Control: no-cache  

Expires: 0  

Connection: Keep-Alive  

Cache-Control: max-age=0  

 

----------------------------------Message END ------------------------------------ 

4.3   HTTP Polling Encapsulation Examples 

HTTP Polling encapsulation uses a series of TCP connections carrying HTTP POST requests and 
responses. Each POST request-response pair forms a logical half duplex connection for transmitting 

POST data in the POST entity bodies. This logical connection is used to send and receive application 

data between the client and server. 

The following figure shows the establishment of the virtual polling connection. 

 

Figure 26: Polling connection handshake 

Polling-POST-Request: 

----------------------------------Message START ---------------------------------- 

POST / HTTP/1.0  

Accept: */*  



 

135 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Content-Type: application/octet-stream  

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32)  

Host: 10.150.1.226  

Content-Length: 79  

Pragma: no-cache  

Cache-Control: no-cache  

Expires: 0  

Cache-Control: max-age=0  

 

Polling-Request-Entity-Body-1 

----------------------------------Message END ------------------------------------ 

Polling-Request-Entity-Body-1: 

Offset                 HEX Details                       ASCII Details 

----  -----------------------------------------------  ------------------ 

0000  31 2e 32 00 67 72 6f 6f 76 65 44 4e 53 3a 2f 2f  1.2.grooveDNS:// 

0010  73 65 72 76 65 72 30 31 2e 72 65 6c 61 79 2e 6e  server01.relay.n 

0020  65 74 00 6d 33 75 37 6d 35 65 76 36 69 7a 39 68  et.m3u7m5ev6iz9h 

0030  6a 36 6d 78 39 37 73 34 6b 64 72 6e 6b 38 6b 68  j6mx97s4kdrnk8kh 

0040  61 6a 76 62 33 62 77 6e 62 61 00 30 00 30 00     ajvb3bwnba.0.0. 

Polling-POST-Response: 

----------------------------------Message START ---------------------------------- 

HTTP/1.0 400 Bad Request  

Date: Wed, 26 Dec 2007 19:01:55 GMT  

Server: Groove-Relay/12.0  

Connection: Keep-Alive  

Content-Length: 0  

 

----------------------------------Message END ------------------------------------ 

The server gracefully closes the connection. 

The client again creates a TCP connection with the server on port 80: 

Polling-POST-Request: 

----------------------------------Message START ---------------------------------- 

 POST / HTTP/1.0  

Accept: */*  

Content-Type: application/octet-stream  

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32)  

Host: 10.150.1.226  

Content-Length: 272  

Pragma: no-cache  

Cache-Control: no-cache  

Expires: 0  

Cache-Control: max-age=0  

 

Polling-Request-Entity-Body-2 

----------------------------------Message END ------------------------------------ 



 

136 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Polling-Request-Entity-Body-2: 

Offset                 HEX Details                       ASCII Details 

----  -----------------------------------------------  ------------------ 

0000  31 2e 32 00 67 72 6f 6f 76 65 44 4e 53 3a 2f 2f  1.2.grooveDNS:// 

0010  73 65 72 76 65 72 30 31 2e 72 65 6c 61 79 2e 6e  server01.relay.n 

0020  65 74 00 6d 33 75 37 6d 35 65 76 36 69 7a 39 68  et.m3u7m5ev6iz9h 

0030  6a 36 6d 78 39 37 73 34 6b 64 72 6e 6b 38 6b 68  j6mx97s4kdrnk8kh 

0040  61 6a 76 62 33 62 77 6e 62 61 00 30 00 35 33 39  ajvb3bwnba.0.539 

0050  33 30 34 00 01 bc 00 01 05 00 67 72 6f 6f 76 65  304.groove 

0060  44 4e 53 3a 2f 2f 73 65 72 76 65 72 30 31 2e 72  DNS://server01.r 

0070  65 6c 61 79 2e 6e 65 74 00 01 64 70 70 3a 2f 2f  elay.net.dpp:// 

0080  2f 6d 6b 38 6b 35 64 61 70 37 6e 66 62 6e 69 33  /mk8k5dap7nfbni3 

0090  63 74 77 79 62 6d 65 77 32 68 32 73 67 69 33 66  ctwybmew2h2sgi3f 

00a0  68 33 67 6a 35 69 75 69 00 4d 00 01 03 01 18 00  h3gj5iui.M. 

00b0  e9 4c b5 b2 b7 df 00 c9 65 ed 36 ea ed 61 26 1d .L.e.6.a&. 

00c0  a8 a0 a2 cb 5d 1b 83 66 14 00 98 90 f1 20 14 f5 .].f. 

00d0  31 cf 1d 03 93 09 0d ee 8e 70 8d 93 21 8c 18 00  1.p.!. 

00e0  59 0f 17 da 46 1a 3d 1a ae 5b 86 99 93 45 59 9f  Y.F.=.[.EY. 

00f0  41 c5 7e c4 07 f5 9e ed 47 72 6f 6f 76 65 20 43  A.~.Groove C 

0100  6c 69 65 6e 74 20 34 2e 32 20 32 36 32 33 00 00  lient 4.2 2623. 

 

Polling-POST-Response: 

----------------------------------Message START ---------------------------------- 

/1.0 200 OK  

Date: Wed, 26 Dec 2007 19:01:55 GMT  

Server: Groove-Relay/12.0  

Connection: Keep-Alive  

Content-Length: 261  

 

Polling-Response-Entity-Body-2 

----------------------------------Message END ------------------------------------ 

Polling-Response-Entity-Body-1 

Offset                 HEX Details                       ASCII Details 

----  -----------------------------------------------  ------------------ 

0000  31 2e 32 00 67 72 6f 6f 76 65 44 4e 53 3a 2f 2f  1.2.grooveDNS:// 

0010  73 65 72 76 65 72 30 31 2e 72 65 6c 61 79 2e 6e  server01.relay.n 

0020  65 74 00 6d 33 75 37 6d 35 65 76 36 69 7a 39 68  et.m3u7m5ev6iz9h 

0030  6a 36 6d 78 39 37 73 34 6b 64 72 6e 6b 38 6b 68  j6mx97s4kdrnk8kh 

0040  61 6a 76 62 33 62 77 6e 62 61 00 30 00 36 36 30  ajvb3bwnba.0.660 

0050  38 31 39 00 31 32 30 2c 35 2c 33 00 02 a9 00 01  819.120,5,3. 

0060  05 00 67 00 01 03 02 18 00 69 06 19 ae 3b ad 0b .g.i.;. 

0070  7a 5a 7a 67 e0 a2 90 41 65 28 5b f6 d2 e7 8e b4  zZzg.Ae([. 

0080  f6 14 00 9d 05 4d 7d b0 a0 ed 48 1e d7 05 ba f0 .M}.H. 

0090  24 a0 d6 be 02 2b d1 18 00 00 e8 f4 ab 6c b1 f0  $.+.l. 

00a0  c0 e9 2d c8 0b 2d 91 5e 07 4c 9a 24 34 b7 f1 b8 .-.-.^.L.$4. 

00b0  10 18 00 bc 51 27 8e 48 f5 d6 73 9a 53 32 3f 68 .Q'.H.s.S2?h 

00c0  93 b6 c5 1d 55 4f e2 42 51 21 13 03 47 72 6f 6f .UO.BQ!.Groo 

00d0  76 65 20 52 65 6c 61 79 20 31 32 2e 30 20 31 34  ve Relay 12.0 14 

00e0  30 37 00 00 01 67 72 6f 6f 76 65 44 4e 53 3a 2f  07.grooveDNS:/ 

00f0  2f 73 65 72 76 65 72 30 31 2e 72 65 6c 61 79 2e  /server01.relay. 

0100  6e 65 74 00 00                                   net. 



 

137 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

The following diagram shows the exchange of messages for data that is fragmented by TCP or by 

the application itself. 

 

Figure 27: Polling connection data exchange 

The following diagram provides an example of a polling request and response sequence in which the 
client sends data to the server but the server has no data to send in return. 



 

138 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 28: Polling connection with client polling server for data 

The following provides an example of a polling request and response for the same scenario in which 
the client sends data to the server but the server has no data to send to the client. In all of the 
following examples, the client creates a TCP connection to the server on port 80 for each request 
and the server closes the connection after each response. 

Polling-POST-Request: 

----------------------------------Message START ---------------------------------- 

POST / HTTP/1.0 

Accept: */* 

Content-Type: application/octet-stream 

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32) 

Host: 10.150.1.226 

Content-Length: 1087 

Pragma: no-cache 

Cache-Control: no-cache 



 

139 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Expires: 0 

Cache-Control: max-age=0 

 

Polling-Request-Entity-Body-3 

----------------------------------Message END ------------------------------------ 

Polling-Request-Entity-Body-3: 

Offset                 HEX Details                       ASCII Details 

----  -----------------------------------------------  ------------------ 

0000  31 2e 32 00 67 72 6f 6f 76 65 44 4e 53 3a 2f 2f  1.2.grooveDNS:// 

0010  73 65 72 76 65 72 30 31 2e 72 65 6c 61 79 2e 6e  server01.relay.n 

0020  65 74 00 61 35 73 32 66 6a 38 71 35 35 63 78 6e  et.a5s2fj8q55cxn 

0030  65 32 76 34 77 72 34 38 61 64 39 63 69 66 66 73  e2v4wr48ad9ciffs 

0040  7a 6e 7a 71 39 61 70 63 7a 69 00 33 37 00 33 33  znzq9apczi.37.33 

0050  35 36 31 33 34 30 00 0e a0 00 21 00 00 00 4d 49  561340.!.MI 

0060  4d 45 2d 56 65 72 73 69 6f 6e 3a 20 31 2e 30 20  ME-Version: 1.0  

0070  28 47 72 6f 6f 76 65 20 32 29 0d 0a 43 6f 6e 74  (Groove 2).Cont 

0080  65 6e 74 2d 54 79 70 65 3a 20 6d 75 6c 74 69 70  ent-Type: multip 

0090  61 72 74 2f 72 65 6c 61 74 65 64 3b 20 62 6f 75  art/related; bou 

00a0  6e 64 61 72 79 3d 22 3c 3c 5b 5b 26 26 26 5d 5d  ndary="<<[[&&&]] 

00b0  3e 3e 22 0d 0a 3c 3c 5b 5b 26 26 26 5d 5d 3e 3e  >>".<<[[&&&]]>> 

00c0  0d 0a 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 .Content-Type:  

        ………………………………………………………………………………………… 

0410  81 72 04 82 0b 83 82 0e 01 84 83 3f 04 83 53 83 .r..?.S. 

0420  83 59 01 01 01 0d 0a 2d 2d 3c 3c 5b 5b 26 26 26 .Y.--<<[[&&& 

0430  5d 5d 3e 3e 2d 2d 0d 0a 0f 07 00 21 00 00 00     ]]>>--.!. 

 

Polling-POST-Response: 

----------------------------------Message START ---------------------------------- 

HTTP/1.0 200 OK 

Date: Wed, 26 Dec 2007 19:02:10 GMT 

Server: Groove-Relay/12.0 

Connection: Keep-Alive 

Content-Length: 88 

 

Polling-Response-Entity-Body-3 

----------------------------------Message END ------------------------------------ 

Polling-Response-Entity-Body-3: 

Offset                 HEX Details                       ASCII Details 

----  -----------------------------------------------  ------------------ 

0000  31 2e 32 00 67 72 6f 6f 76 65 44 4e 53 3a 2f 2f  1.2.grooveDNS:// 

0010  73 65 72 76 65 72 30 31 2e 72 65 6c 61 79 2e 6e  server01.relay.n 

0020  65 74 00 61 35 73 32 66 6a 38 71 35 35 63 78 6e  et.a5s2fj8q55cxn 

0030  65 32 76 34 77 72 34 38 61 64 39 63 69 66 66 73  e2v4wr48ad9ciffs 

0040  7a 6e 7a 71 39 61 70 63 7a 69 00 33 37 00 30 00  znzq9apczi.37.0. 

0050  31 32 30 2c 35 2c 33 00                          120,5,3. 

 



 

140 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The following Polling request/response example shows the messages exchanged when the client has 

no data to send to the server but the server has some data to send to the client. 

Polling-POST-Request: 

----------------------------------Message START ---------------------------------- 

POST / HTTP/1.0 

Accept: */* 

Content-Type: application/octet-stream 

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32) 

Host: 10.150.1.226 

Content-Length: 80 

Pragma: no-cache 

Cache-Control: no-cache 

Expires: 0 

Cache-Control: max-age=0 

 

Polling-Request-Entity-Body-4 

----------------------------------Message END ------------------------------------ 

Polling-Request-Entity-Body-4: 

Offset                 HEX Details                       ASCII Details 

----  -----------------------------------------------  ------------------ 

0000  31 2e 32 00 67 72 6f 6f 76 65 44 4e 53 3a 2f 2f  1.2.grooveDNS:// 

0010  73 65 72 76 65 72 30 31 2e 72 65 6c 61 79 2e 6e  server01.relay.n 

0020  65 74 00 61 35 73 32 66 6a 38 71 35 35 63 78 6e  et.a5s2fj8q55cxn 

0030  65 32 76 34 77 72 34 38 61 64 39 63 69 66 66 73  e2v4wr48ad9ciffs 

0040  7a 6e 7a 71 39 61 70 63 7a 69 00 33 38 00 30 00  znzq9apczi.38.0. 

 

Polling-POST-Response: 

----------------------------------Message START ---------------------------------- 

HTTP/1.0 200 OK 

Date: Wed, 26 Dec 2007 19:02:10 GMT 

Server: Groove-Relay/12.0 

Connection: Keep-Alive 

Content-Length: 96 

 

Polling-Response-Entity-Body-4 

----------------------------------Message END ------------------------------------ 

Polling-Response-Entity-Body-4: 

Offset                 HEX Details                       ASCII Details 

----  -----------------------------------------------  ------------------ 

0000  31 2e 32 00 67 72 6f 6f 76 65 44 4e 53 3a 2f 2f  1.2.grooveDNS:// 

0010  73 65 72 76 65 72 30 31 2e 72 65 6c 61 79 2e 6e  server01.relay.n 

0020  65 74 00 61 35 73 32 66 6a 38 71 35 35 63 78 6e  et.a5s2fj8q55cxn 

0030  65 32 76 34 77 72 34 38 61 64 39 63 69 66 66 73  e2v4wr48ad9ciffs 

0040  7a 6e 7a 71 39 61 70 63 7a 69 00 33 38 00 36 32  znzq9apczi.38.62 

0050  00 31 32 30 2c 35 2c 33 00 10 07 00 01 00 00 00 .120,5,3. 

 



 

141 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The following Polling request/response shows the messages when the server and the client do not 

have any data to send to each other. 

Polling-POST-Request: 

----------------------------------Message START ---------------------------------- 

POST / HTTP/1.0 

Accept: */* 

Content-Type: application/octet-stream 

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Win32) 

Host: 10.150.1.226 

Content-Length: 80 

Pragma: no-cache 

Cache-Control: no-cache 

Expires: 0 

Cache-Control: max-age=0 

 

Polling-Request-Entity-Body-5 

----------------------------------Message END ------------------------------------ 

Polling-Request-Entity-Body-5: 

Offset                 HEX Details                       ASCII Details 

----  -----------------------------------------------  ------------------ 

0000  31 2e 32 00 67 72 6f 6f 76 65 44 4e 53 3a 2f 2f  1.2.grooveDNS:// 

0010  73 65 72 76 65 72 30 31 2e 72 65 6c 61 79 2e 6e  server01.relay.n 

0020  65 74 00 61 35 73 32 66 6a 38 71 35 35 63 78 6e  et.a5s2fj8q55cxn 

0030  65 32 76 34 77 72 34 38 61 64 39 63 69 66 66 73  e2v4wr48ad9ciffs 

0040  7a 6e 7a 71 39 61 70 63 7a 69 00 33 39 00 30 00  znzq9apczi.39.0. 

 

Polling-POST-Response: 

----------------------------------Message START ---------------------------------- 

HTTP/1.0 200 OK 

Date: Wed, 26 Dec 2007 19:02:10 GMT 

Server: Groove-Relay/12.0 

Connection: Keep-Alive 

Content-Length: 88 

 

Polling-Response-Entity-Body-5 

----------------------------------Message END ------------------------------------ 

Polling-Response-Entity-Body-5: 

Offset                 HEX Details                       ASCII Details 

----  -----------------------------------------------  ------------------ 

0000  31 2e 32 00 67 72 6f 6f 76 65 44 4e 53 3a 2f 2f  1.2.grooveDNS:// 

0010  73 65 72 76 65 72 30 31 2e 72 65 6c 61 79 2e 6e  server01.relay.n 

0020  65 74 00 61 35 73 32 66 6a 38 71 35 35 63 78 6e  et.a5s2fj8q55cxn 

0030  65 32 76 34 77 72 34 38 61 64 39 63 69 66 66 73  e2v4wr48ad9ciffs 

0040  7a 6e 7a 71 39 61 70 63 7a 69 00 33 39 00 30 00  znzq9apczi.39.0. 

0050  31 32 30 2c 35 2c 33 00                          120,5,3. 



 

142 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

4.4   Secure Tunnel Proxy Protocol Examples 

The Secure Tunnel Proxy Protocol [TCPPROXY] relies on an HTTP proxy to create a connection to the 
server. Once the Secure Tunnel proxy creates a connection to the server, the Application-Data (see 

section 2.2.1.1.4) can be exchanged transparently through the proxy. 

Section 2.2.5 includes examples of messages exchanged between the client and the Secure Tunnel 
proxy. After the Secure Tunnel proxy successfully creates a connection with the server, application 
data can be exchanged as shown in the following diagram. 

 

Figure 29: Secure tunnel proxy message flow 

4.5   SOCKS Proxy 

Section 2.2.6 includes examples of messages exchanged between the client and the 
SOCKS[RFC1928] proxy. After the SOCKS proxy successfully creates a connection with the relay, 
the Application-Data (see section 2.2.1.1.4) can be exchanged transparently to the SOCKS proxy as 

graphically represented in the following diagram. 

http://go.microsoft.com/fwlink/?LinkId=113488
http://go.microsoft.com/fwlink/?LinkId=113494


 

143 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 30: Client to relay message flow through a SOCKS proxy 

4.6   Proxy Authentication using NTLM Example 

The following example illustrates the sequence of messages exchanged to communicate through a 
NTLM enabled proxy. These examples use the Secure Tunnel proxy to enable the NTLM 
authentication. 



 

144 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

Figure 31: Client NTLM authentication example 

The following is an example of the messages exchanged between the client and the Secure Tunnel 
Proxy to create a connection between the client and the server. 

The client creates a TCP connection to the Secure Tunnel proxy and requests a connection to the 

server using the following message: 

----------------------------------Message START ---------------------------------- 

CONNECT server.domain.net:443 HTTP/1.0 

User-Agent:Mozilla/4.0 (compatible; MSIE 5.5; Win32)  

proxy-Connection: Keep-Alive  

Pragma: no-cache  



 

145 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

 

----------------------------------Message END ------------------------------------ 

The Secure Tunnel proxy responds with the following "Access Required" message and tears down 

the connection gracefully: 

----------------------------------Message START ---------------------------------- 

HTTP/1.1 407 ProxyAuthentication Required ( The ISA Server requires authorization to fulfill 

the request. Access to the Web proxy service is denied. )  

Via: 1.1 SPIRIT1B  

proxy-Authenticate: Negotiate  

proxy-Authenticate: Kerberos  

proxy-Authenticate: NTLM  

Connection: close  

proxy-Connection: close  

Pragma: no-cache  

Cache-Control: no-cache  

Content-Type: text/html  

Content-Length: 701   

 

----------------------------------Message END -----------------------------------------------

------ 

The client again connects to the Secure Tunnel proxy and sends the following message with 
authentication information: 

----------------------------------Message START ---------------------------------- 

CONNECT server.domain.net:443 HTTP/1.0  

User-Agent:Mozilla/4.0 (compatible; MSIE 5.5; Win32)  

proxy-Connection: Keep-Alive  

Pragma: no-cache  

proxy-Authorization: NTLM 

TlRMTVNTUAABAAAAt7II4gkACQAxAAAACQAJACgAAAAFASgKAAAAD0xBQlNNT0tFM1dPUktHUk9VUA==  

  

----------------------------------Message END ------------------------------------ 

The proxy responds with the following message indicating the denied access and an authentication 

challenge for the client: 

----------------------------------Message START ---------------------------------- 

HTTP/1.1 407 ProxyAuthentication Required ( Access is denied. )  

Via: 1.1 SPIRIT1B  

proxy-Authenticate: NTLM 

TlRMTVNTUAACAAAAEAAQADgAAAA1goriluCDYHcYI/sAAAAAAAAAAFQAVABIAAAABQLODgAAAA9TAFAASQBSAEkAVAAxA

EIAAgAQAFMAUABJAFIASQBUADEAQgABABAAUwBQAEkAUgBJAFQAMQBCAAQAEABzAHAAaQByAGkAdAAxAGIAAwAQAHMAcA

BpAHIAaQB0ADEAYgAAAAAA  

Connection: Keep-Alive  

proxy-Connection: Keep-Alive  

Pragma: no-cache  

Cache-Control: no-cache  

Content-Type: text/html  

Content-Length: 0    

 

----------------------------------Message END ------------------------------------ 



 

146 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The client again requests a connection to the server and includes the response to the authentication 

challenge: 

----------------------------------Message START ---------------------------------- 

CONNECT server.domain.net:443 HTTP/1.0  

User-Agent:Mozilla/4.0 (compatible; MSIE 5.5; Win32)  

proxy-Connection: Keep-Alive  

Pragma: no-cache  

proxy-Authorization: NTLM 

TlRMTVNTUAADAAAAGAAYAHIAAAAYABgAigAAABIAEgBIAAAABgAGAFoAAAASABIAYAAAABAAEACiAAAANYKI4gUBKAoAA

AAPTABBAEIAUwBNAE8ASwBFADMAXwBxAGEATABBAEIAUwBNAE8ASwBFADMA0NKq8HYYhj8AAAAAAAAAAAAAAAAAAAAAOI

iih3mR+AkyM4r99sy1mdFonCu2ILODro1WTTrJ4b4JcXEzUBA2Ig==  

 

----------------------------------Message END ------------------------------------ 

Upon successful proxy authentication, the Secure Tunnel proxy responds with the following message 

indicating successful authentication and establishment of a connection to the server: 

----------------------------------Message START ---------------------------------- 

HTTP/1.1 200 Connection established  

Via: 1.1 SPIRIT1B  

 

----------------------------------Message END ------------------------------------ 

The application data can be exchanged after the NTLM authentication is finished and the Secure 

Tunnel proxy successfully creates the connection to the server. 



 

147 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

5   Security 

5.1   Security Considerations for Implementers 

This section is meant to inform the implementers and users of the security shortcomings in the HTTP 
Encapsulation of SSTP Protocol. The discussion in this section includes the security considerations 
and suggests ways to reduce the security risks. These suggestions are not to be treated as the 
definitive solutions to the security issues revealed. 

The HTTP Encapsulation of SSTP Protocol implementers and investigators need to take into account 

the Security Considerations specified in [RFC2616], section 15, [RFC1945], section 12 and [MS-
GRVSSTP] section 5. This section defines the security threats that are specific to the HTTP 
Encapsulation of SSTP Protocol. 

The HTTP Encapsulation of SSTP Protocol does not provide any authentication for the client; the 
consumers of this protocol have the responsibility to provide authentication. The SSTP Security 
Protocol  [MS-GRVSSTPS] does provide initial end-to-end authentication when used with the SSTP 

Protocol [MS-GRVSSTP].  

For HTTP Polling encapsulation, it is possible for an attacker to bypass the authentication service 
provided by the SSTP Security Protocol. The attacker could use the information in the HTTP headers 
and the Polling-Virtual-Connection-Message to generate a request and receive information from the 
server or insert information destined for other clients. The consumers of the SSTP Protocol need to 
attempt to provide protection against such threats, for example, by encrypting data or employing 
other security mechanisms. 

5.2   Index of Security Parameters 

None. 

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90300
%5bMS-GRVSSTP%5d.pdf
%5bMS-GRVSSTP%5d.pdf
%5bMS-GRVSSTPS%5d.pdf


 

148 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

6   Appendix A: Product Behavior 

The information in this specification is applicable to the following Microsoft products or supplemental 
software. References to product versions include released service packs: 

Microsoft Office 2010 suites 

Microsoft Office Groove 2007 

Microsoft Office Groove Server 2007 

Microsoft Groove Server 2010 

Microsoft SharePoint Workspace 2010 

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number 
appears with the product version, behavior changed in that service pack or QFE. The new behavior 
also applies to subsequent service packs of the product unless otherwise specified. If a product 

edition appears with the product version, behavior is different in that product edition. 

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed 
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD 
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product 
does not follow the prescription. 

<1> Section 2.1: The Office Groove 2007 clients support both the Secure Tunnel and SOCKS 
tunneling protocol, but the SharePoint Workspace 2010 clients support only the Secure Tunnel 
protocol. The SharePoint Workspace 2010 clients do not support the SOCKS protocol.  

<2> Section 2.2.1.2.3: The Office Groove 2007 and SharePoint Workspace 2010 clients specify the 
following User-Agent product token value string: 

"Mozilla/4.0 (compatible; MSIE 5.5; Win32)" 

Implementers are advised to provide an implementation specific string as their product token value 
string. 

<3> Section 2.2.1.2.8: The Office Groove 2007 and SharePoint Workspace 2010 implementations 
do not follow the common usage form for multiple cache-directives.  Each cache-directive is 

specified using a separate Cache-Control Header. This syntax is used in place of the more common 
form of a single Cache-Control Header with a comma separated list of cache-directives. 

<4> Section 2.2.1.3.2: The Office Groove Server 2007 relay server specifies the following Server 
header server product name and version token value as the HTTP Response Server header string: 

"Groove-Relay/12.0" 

The Groove Server 2010 relay server specifies the following Server header server product name and 

version token value as the HTTP Response Server header string: 

"Groove-Relay/14.0" 

Implementers are advised to provide an implementation-specific server product name and version 
string to identify their implementation. 

<5> Section 2.2.2.1.1.3: The Office Groove 2007 and SharePoint Workspace 2010 implementations 
use 0x7ffff000 (2147479552 decimal) octets as the LongLived-Content-Length value. If 



 

149 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

implementers choose to increase this length, they are advised to do extensive testing with a wide 
variety of proxies to determine if the new length is within the proxies’ acceptable limits. 

<6> Section 3.1: If only port 80 is allowed through the firewall, the Office Groove 2007 and 
SharePoint Workspace 2010 clients always use the LongLived Encapsulation Protocol. The 

implementer could choose to use KeepAlive or Polling Encapsulation as their preferred protocol. 

<7> Section 3.1: The Office Groove 2007 and SharePoint Workspace 2010 client implementation 
HTTP based encapsulation protocols (LongLived, KeepAlive, Polling) use only the HTTP proxy. 

<8> Section 3.1.1.2: Firewalls are generally transparent to clients. Clients need no configuration 
information to use a firewall, as firewalls perform routing at Layer 3 (Network Layer) of the OSI 
model [ISO/IEC 7498-1:1994]. 

Proxies are not transparent to clients. Clients need to be configured with the proxy connection 

information (FQDN, PORT, and Protocol) to be able to establish a connection with a proxy. The Office 
Groove 2007 and SharePoint Workspace 2010 clients use the proxy configuration information from a 
browser. The Office Groove 2007 and SharePoint Workspace 2010 clients can also access proxy 

auth-configuration or PAC files to get this information. In this case all that is needed is the proxy 
FQDN and Port Number. Therefore Office Groove 2007 and SharePoint Workspace 2010 clients do 
not actually store the proxy configuration persistently. 

<9> Section 3.1.2.3: The Office Groove 2007 and SharePoint Workspace 2010  implementations of 
SSTP [MS-GRVSSTP] assists the HTTP encapsulation protocols by implementing KeepAlive 
semantics. SSTP's KeepAlive semantics are implemented using an SSTP_NOOP command. 
SSTP_NOOP commands are used to send SSTP ACKs over SSTP Connections. If there are no SSTP 
ACKs to send, SSTP sends an SSTP_NOOP command with a ACK count of 0. SSTP_NOOPs are sent 
at 45 second intervals. The SSTP default KeepAlive value of 5 minutes is overridden when SSTP is 
encapsulated. If HTTP Encapsulation of SSTP protocols are used to encapsulate non-SSTP data, then 

these non-SSTP protocols need to implement their own KeepAlive mechanisms, as the HTTP 
encapsulation protocols provide no KeepAlive semantics of their own. KeepAlive requests are 
important to HTTP encapsulation protocols used with proxy connections. Proxies can implement 
various timers to close idle proxy connections. Some firewalls and proxy implementations do not 
distinguish between proxy and non-proxy connections. Therefore the recommended behavior is that 

encapsulated protocols always send a KeepAlive message when used with HTTP Encapsulation. 

<10> Section 3.1.2.3: The Office Groove 2007 and SharePoint Workspace 2010 clients' HTTP 

Encapsulation implementation adjusts the SSTP protocol layer implementation’s default KeepAlive 
timer value. The HTTP Encapsulation layer overrides the SSTP default KeepAlive timer value, 
changing the default value of 5 minutes to 45 seconds. The default SSTP KeepAlive timer is modified 
to increase the frequency of the KeepAlive messages to help ensure that proxies do not treat the 
connections as idle and close them. 

<11> Section 3.1.4.1: The Office Groove 2007 and SharePoint Workspace 2010 clients' connect 

sequence without proxies configured is as follows. The client attempts to create a direct connection 
using the following protocols in the specified order. If any attempt succeeds, the direct connection to 
the target server is established. If all connection attempts fail, then the connection attempt to the 
target server fails. The Office Groove 2007 and SharePoint Workspace 2010 clients attempt 
connections in the following order: 

1. SSTP 2492/TCP connecting 

2. SSTP 443/TCP connecting 

3. HTTP LongLived Encapsulation 80/TCP connecting 

http://go.microsoft.com/fwlink/?LinkId=114764
%5bMS-GRVSSTP%5d.pdf


 

150 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

The Office Groove 2007 and SharePoint Workspace 2010 clients' connect sequence with proxies 
configured is as follows. The client attempts to create a proxy connection using the following 

protocols in the specified order. If any attempt succeeds, the connection to the target server is 
established. If all connection attempts fail, then the connection attempt to the target server fails. 

The Office Groove 2007 and SharePoint Workspace 2010 clients attempt connections in the following  
order: 

1. Secure Tunnel Encapsulation 443/TCP connecting 

2. SOCKS Encapsulation 1080/TCP connecting (Office Groove 2007 clients only; SharePoint 
Workspace 2010 clients do not support SOCKS Encapsulation.) 

3. HTTP LongLived Encapsulation 80/TCP connecting 

4. HTTP KeepAlive Encapsulation 80/TCP connecting 

5. HTTP Polling Encapsulation 80/TCP connecting 

<12> Section 3.1.4.1.2: The Office Groove 2007 and SharePoint Workspace 2010 clients support 

the following HTTP Proxy Authentication schemes: basic authentication scheme and NTLM. 

<13> Section 3.1.4.3: The Office Groove 2007 and SharePoint Workspace 2010 clients behave 
differently than recommended when the LongLived Encapsulation GET session maximum content 
length limit is reached at the server. The behavior works as expected when the client reaches the 

LongLived-Content-Length limit on the POST session. Following is the behavior when the server 
reaches the LongLived-Content-Length limit: 

Recommended behavior: 

The server closes the GET sessions. The client then detects the close connection request from the 
server and closes the virtual LongLived connection. The client then establishes a new LongLived 
virtual connection using a new Virtual-Connection-GUID. The client and server then begin sending 
and receiving data using the new LongLived connection. 

Actual behavior: 

The server closes the GET session. The client ignores the TCP disconnect request. 

The GET session data flow stops. POST session traffic continues until the encapsulated protocol 
(SSTP) blocks waiting for GET session messages, at which point the LongLived connection hangs. 
The connection eventually times out and disconnects. The KeepAlive timer eventually causes the 
virtual connection to close. The client then establishes a new LongLived virtual connection using a 
new Virtual-Connection-GUID and starts to exchange SSTP commands. 

<14> Section 3.1.6.3: The Office Groove 2007 and SharePoint Workspace 2010 implementations of 
SSTP [MS-GRVSSTP] assists the HTTP encapsulation protocols by implementing KeepAlive 
semantics. SSTP's KeepAlive semantics are implemented using an SSTP_NOOP command. 
SSTP_NOOP commands are used to send SSTP ACKs over SSTP Connections. If there are no SSTP 
ACKs to send, SSTP sends an SSTP_NOOP command with a ACK count of 0. SSTP_NOOPs are sent 
at 45 second intervals. The SSTP default KeepAlive value of 5 minutes is overridden when SSTP is 

encapsulated. If HTTP Encapsulation of SSTP protocols is used to encapsulate non-SSTP data, then 

these non-SSTP protocols need to implement their own KeepAlive mechanisms, as the HTTP 
encapsulation protocols provide no KeepAlive semantics of their own. KeepAlive requests are 
important to HTTP encapsulation protocols used with proxy connections. Proxies can implement 
various timers to close idle proxy connections. Some firewalls and proxy implementations do not 
distinguish between proxy and non-proxy connections. Therefore the recommend behavior is that 
encapsulated protocols always send a KeepAlive message when used with HTTP Encapsulation. 

%5bMS-OFCGLOS%5d.pdf
%5bMS-GRVSSTP%5d.pdf


 

151 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

<15> Section 3.2.2.3: The Office Groove Server 2007 and Groove Server 2010 implementations of 
SSTP [MS-GRVSSTP] assist the HTTP encapsulation protocols by implementing KeepAlive semantics. 

SSTP's KeepAlive semantics are implemented using an SSTP_NOOP command. SSTP_NOOP 
commands are used to send SSTP ACKs over SSTP Connections. If there are no SSTP ACKs to send, 

SSTP sends an SSTP_NOOP command with a ACK count of 0. SSTP_NOOPs are sent at 45 second 
intervals. The SSTP default KeepAlive value of 5 minutes is overridden when SSTP is encapsulated. 
If HTTP Encapsulation of SSTP protocols is used to encapsulate non-SSTP data, then these non-SSTP 
protocols need to implement their own KeepAlive mechanisms, as the HTTP encapsulation protocols 
provide no KeepAlive semantics of their own. KeepAlive requests are important to HTTP 
encapsulation protocols used with proxy connections. Proxies can implement various timers to close 
idle proxy connections. Some firewalls and proxy implementations do not distinguish between proxy 

and non-proxy connections. Therefore the recommended behavior is that encapsulated protocols 
always send a KeepAlive message when used with HTTP Encapsulation. 

<16> Section 3.2.3.1: The Office Groove Server 2007 and Groove Server 2010 servers use a special 
purpose HTTP 1.0 protocol stack. Except for the subset of HTTP Request-Headers and Response-
Headers specified in this document, all other HTTP Headers will be ignored as specified in the HTTP 
1.0 [RFC1945] sections 5.2, 6.2 and 7.1. 

<17> Section 3.2.4.2: The Office Groove Server 2007 and Groove Server 2010 servers behave 
differently than recommended when the LongLived Encapsulation GET session maximum content 
length limit is reached at the server. The behavior works as expected when the client reaches the 
LongLived-Content-Length limit on the POST session. Following is the behavior when the server 
reaches the LongLived-Content-Length limit: 

Recommended behavior: 

The server closes the GET sessions. The client then detects the close connection request from the 

server and close the virtual LongLived connection. The client then establishes a new LongLived 
virtual connection using a new Virtual-Connection-GUID. The client and server then begin sending 
and receiving data using the new LongLived connection. 

Actual behavior: 

The server closes the GET session. The client ignores the TCP disconnect request. 

The GET session data flow stops. POST session traffic continues until the encapsulated protocol 
(SSTP) blocks waiting for GET session messages, at which point the LongLived connection hangs. 

The connection eventually times out and disconnects. The KeepAlive timer eventually causes the 
virtual connection to close. The client then establishes a new LongLived virtual connection using a 
new Virtual-Connection-GUID and starts to exchange SSTP commands. 

<18> Section 3.2.5.1.1:  Office Groove Server 2007 and Groove Server 2010 do not check the 
protocol version of the encapsulation protocols. 

<19> Section 3.2.5.1.1: The Office Groove Server 2007 and Groove Server 2010 relay servers do 

not validate that the URI contains a Relay-Server-Name that equals the local server name. The 
implementer is recommended to validate this field to ensure that the message was routed to the 
intended server. 

<20> Section 3.2.5.2.1:  Office Groove Server 2007 and Groove Server 2010 do not check the 
protocol version of the encapsulation protocols. 

<21> Section 3.2.5.2.1: The Office Groove Server 2007 and Groove Server 2010 relay servers do 
not validate that the URI contains a Relay-Server-Name that equals the local server name. The 

implementer is recommended to validate this field to ensure that the message was routed to the 
intended server. 

%5bMS-GRVSSTP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90300


 

152 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

<22> Section 3.2.5.2.2:  Office Groove Server 2007 and Groove Server 2010 use an 
implementation defined internal buffer size of 32768 octets. 

<23> Section 3.2.6.3: The Office Groove Server 2007 and Groove Server 2010 implementations of 
SSTP [MS-GRVSSTP] assist the HTTP encapsulation protocols by implementing KeepAlive semantics. 

SSTP's KeepAlive semantics are implemented using an SSTP_NOOP command. SSTP_NOOP 
commands are used to send SSTP ACKs over SSTP Connections. If there are no SSTP ACKs to send, 
SSTP sends an SSTP_NOOP command with a ACK count of 0. SSTP_NOOPs are sent at 45 second 
intervals. The SSTP default KeepAlive value of 5 minutes is overridden when SSTP is encapsulated. 
If HTTP Encapsulation of SSTP protocols is used to encapsulate non-SSTP data, then these non-SSTP 
protocols need to implement their own KeepAlive mechanisms, as the HTTP encapsulation protocols 
provide no KeepAlive semantics of their own. KeepAlive requests are important to HTTP 

encapsulation protocols used with proxy connections. Proxies can implement various timers to close 
idle proxy connections. Some firewalls and proxy implementations do not distinguish between proxy 
and non-proxy connections. Therefore the recommended behavior is that encapsulated protocols 
always send a KeepAlive message when used with HTTP Encapsulation. 

<24> Section 3.3.1.2: Firewalls are generally transparent to clients. Clients need no configuration 

information to use a firewall, as firewalls perform routing at Layer 3 (Network Layer) of the OSI 

model [ISO/IEC 7498-1:1994]. 

Proxies are not transparent to clients. Clients need to be configured with the proxy connection 
information (FQDN, PORT, Protocol) to be able to establish a connection with a proxy. The Office 
Groove 2007 and SharePoint Workspace 2010 clients use the proxy configuration information from a 
browser. The Office Groove 2007 and SharePoint Workspace 2010 clients can also access proxy 
auth-configuration or PAC files to get this information. In this case all that is needed is the proxy 
FQDN and Port Number. Therefore the Office Groove 2007 and SharePoint Workspace 2010 clients 

do not actually store the proxy configuration persistently. 

<25> Section 3.3.2.4: The Office Groove 2007 and SharePoint Workspace 2010 implementations of 
SSTP [MS-GRVSSTP] assist the HTTP encapsulation protocols by implementing KeepAlive semantics. 
SSTP's KeepAlive semantics are implemented using an SSTP_NOOP command. SSTP_NOOP 
commands are used to send SSTP ACKs over SSTP Connections. If there are no SSTP ACKs to send, 
SSTP sends an SSTP_NOOP command with a ACK count of 0. SSTP_NOOPs are sent at 45 second 

intervals. The SSTP default KeepAlive value of 5 minutes is overridden when SSTP is encapsulated. 

If HTTP Encapsulation of SSTP protocols is used to encapsulate non-SSTP data, then these non-SSTP 
protocols need to implement their own KeepAlive mechanisms, as the HTTP encapsulation protocols 
provide no KeepAlive semantics of their own. KeepAlive requests are important to HTTP 
encapsulation protocols used with proxy connections. Proxies can implement various timers to close 
idle proxy connections. Some firewalls and proxy implementations do not distinguish between proxy 
and non-proxy connections. Therefore the recommend behavior is that encapsulated protocols 

always send a KeepAlive message when used with HTTP Encapsulation. 

<26> Section 3.3.4.1: Firewalls are generally transparent to clients. Clients need no configuration 
information to use a firewall, as firewalls perform routing at Layer 3 (Network Layer) of the OSI 
model [ISO/IEC 7498-1:1994]. 

Proxies are not transparent to clients. Clients need to be configured with the proxy connection 
information (FQDN, PORT, Protocol) to be able to establish a connection with a proxy. The Office 

Groove 2007 and SharePoint Workspace 2010 clients use the proxy configuration information from a 

browser. The Office Groove 2007 and SharePoint Workspace 2010 clients can also access proxy 
auth-configuration or PAC files to get this information. In this case all that is needed is the proxy 
FQDN and Port Number. Therefore the Office Groove 2007 and SharePoint Workspace 2010 clients 
do not actually store the proxy configuration persistently. 

%5bMS-GRVSSTP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=114764
%5bMS-GRVSSTP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=114764


 

153 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

<27> Section 3.3.6.4: The Office Groove 2007 and SharePoint Workspace 2010 implementations of 
SSTP, as specified in [MS-GRVSSTP], assist the HTTP encapsulation protocols by implementing 

KeepAlive semantics. SSTP's KeepAlive semantics are implemented using an SSTP_NOOP command. 
SSTP_NOOP commands are used to send SSTP ACKs over SSTP Connections. If there are no SSTP 

ACKs to send, SSTP sends an SSTP_NOOP command with a ACK count of 0. SSTP_NOOPs are sent 
at 45 second intervals. The SSTP default KeepAlive value of 5 minutes is overridden when SSTP is 
encapsulated. If HTTP Encapsulation of SSTP protocols is used to encapsulate non-SSTP data, then 
these non-SSTP protocols need to implement their own KeepAlive mechanisms, as the HTTP 
encapsulation protocols provide no KeepAlive semantics of their own. KeepAlive requests are 
important to HTTP encapsulation protocols used with proxy connections. Proxies can implement 
various timers to close idle proxy connections. Some firewalls and proxy implementations do not 

distinguish between proxy and non-proxy connections. Therefore the recommend behavior is that 
encapsulated protocols always send a KeepAlive message when used with HTTP Encapsulation. 

<28> Section 3.4.2.3: The Office Groove Server 2007 and Groove Server 2010 implementations of 
SSTP, as specified in [MS-GRVSSTP], assist the HTTP encapsulation protocols by implementing 
KeepAlive semantics. SSTP's KeepAlive semantics are implemented using an SSTP_NOOP command. 
SSTP_NOOP commands are used to send SSTP ACKs over SSTP Connections. If there are no SSTP 

ACKs to send, SSTP sends an SSTP_NOOP command with a ACK count of 0. SSTP_NOOPs are sent 
at 45 second intervals. The SSTP default KeepAlive value of 5 minutes is overridden when SSTP is 
encapsulated. If HTTP Encapsulation of SSTP protocols is used to encapsulate non-SSTP data, then 
these non-SSTP protocols need to implement their own KeepAlive mechanisms, as the HTTP 
encapsulation protocols provide no KeepAlive semantics of their own. KeepAlive requests are 
important to HTTP encapsulation protocols used with proxy connections. Proxies can implement 
various timers to close idle proxy connections. Some firewalls and proxy implementations do not 

distinguish between proxy and non-proxy connections. Therefore the recommended behavior is that 
encapsulated protocols always send a KeepAlive message when used with HTTP Encapsulation. 

<29> Section 3.4.3.1: The Office Groove Server 2007 and Groove Server 2010 servers use a special 
purpose HTTP 1.0 protocol stack. Except for the subset of HTTP Request-Headers and Response-
Headers specified in this document, all other HTTP Headers will be ignored as specified in the HTTP 
1.0 [RFC1945] sections 5.2, 6.2 and 7.1. 

<30> Section 3.4.5.1.1:  Office Groove Server 2007 and Groove Server 2010 do not check the 

protocol version of the encapsulation protocols. 

<31> Section 3.4.5.1.1: The Office Groove Server 2007 and Groove Server 2010 relay servers do 
not validate that the URI contains a Relay-Server-Name that equals the local server name. The 
implementer is recommended to validate this field to ensure that the message was routed to the 
intended server. 

<32> Section 3.4.5.1.1.2:  Office Groove Server 2007 and Groove Server 2010 do not check the 

protocol version of the encapsulation protocols. 

<33> Section 3.4.5.1.2:  Office Groove Server 2007 and Groove Server 2010 do not check the 
protocol version of the encapsulation protocols. 

<34> Section 3.4.5.1.2: The Office Groove Server 2007 and Groove Server 2010 relay servers do 
not validate that the URI contains a Relay-Server-Name that equals the local server name. The 
implementer is recommended to validate this field to ensure that the message was routed to the 

intended server. 

<35> Section 3.4.5.2:  Office Groove Server 2007 and Groove Server 2010 do not check the 
protocol version of the encapsulation protocols. 

%5bMS-GRVSSTP%5d.pdf
%5bMS-GRVSSTP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90300


 

154 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

<36> Section 3.4.5.2: The Office Groove Server 2007 and Groove Server 2010 relay servers do not 
validate that the URI contains a Relay-Server-Name that equals the local server name. The 

implementer is recommended to validate this field to ensure that the message was routed to the 
intended server. 

<37> Section 3.4.6.3: The Office Groove Server 2007 and Groove Server 2010 implementations of 
SSTP [MS-GRVSSTP] assist the HTTP encapsulation protocols by implementing KeepAlive semantics. 
SSTP's KeepAlive semantics are implemented using an SSTP_NOOP command. SSTP_NOOP 
commands are used to send SSTP ACKs over SSTP Connections. If there are no SSTP ACKs to send, 
SSTP sends an SSTP_NOOP command with a ACK count of 0. SSTP_NOOPs are sent at 45 second 
intervals. The SSTP default KeepAlive value of 5 minutes is overridden when SSTP is encapsulated. 
If HTTP Encapsulation of SSTP protocols is used to encapsulate non-SSTP data, then these non-SSTP 

protocols need to implement their own KeepAlive mechanisms, as the HTTP encapsulation protocols 
provide no KeepAlive semantics of their own. KeepAlive requests are important to HTTP 
encapsulation protocols used with proxy connections. Proxies can implement various timers to close 
idle proxy connections. Some firewalls and proxy implementations do not distinguish between proxy 
and non-proxy connections. Therefore the recommend behavior is that encapsulated protocols 
always send a KeepAlive message when used with HTTP Encapsulation. 

<38> Section 3.5.1.1: To interoperate with Office Groove 2007 and SharePoint Workspace 2010, 
clients and servers need to support the Polling Connection idle connection back off algorithm. This 
value is sent by servers to clients on every POST response. The recommended behavior is that client 
implementations refresh the idle connection back off values on a per request/response basis. 

<39> Section 3.5.1.1: To interoperate with Office Groove 2007 and SharePoint Workspace 2010, 
clients and servers need to support the Polling Connection idle connection back off algorithm. This 
value is sent by servers to clients on every POST response. The recommended behavior is that client 

implementations refresh the idle connection back off values on a per request/response basis. 

<40> Section 3.5.1.1: To interoperate with Office Groove 2007 and SharePoint Workspace 2010, 
clients and servers need to support the Polling Connection idle connection back off algorithm. This 
value is sent by servers to clients on every POST response. The recommended behavior is that client 
implementations refresh the idle connection back off values on a per request/response basis. 

<41> Section 3.5.1.2: Firewalls are generally transparent to clients. Clients need no configuration 
information to use a firewall, as firewalls perform routing at Layer 3 (Network Layer) of the OSI 

model, as specified in [ISO/IEC 7498-1:1994]. 

Proxies are not transparent to clients. Clients need to be configured with the proxy connection 
information (FQDN, PORT, Protocol) to be able to establish a connection with a proxy. The Office 
Groove 2007 and SharePoint Workspace 2010 clients use the proxy configuration information from a 
browser. The Office Groove 2007 and SharePoint Workspace 2010 clients can also access proxy 
auth-configuration or PAC files to get this information. In this case all that is needed is the proxy 

FQDN and Port Number. Therefore, the Office Groove 2007 and SharePoint Workspace 2010 clients 
do not actually store the proxy configuration persistently. 

<42> Section 3.5.2.3: The default Polling-Virtual-Connection-Response-Message values sent by the 
server to the client on a Polling-POST-Response were empirically derived using many firewall and 
proxy vendor implementations.  

In the Office Groove Server 2007 and Groove Server 2010 implementations, the default Poll Timer 
values used by Polling connections for polling servers for application data are: 

Default server specified MaxPollInterval value is 120 seconds 

Default server specified MinPollInterval value is 5 seconds 

%5bMS-GRVSSTP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=114764


 

155 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

Default server specified PollRepetitions value is 3 iterations 

The maximum MaxPollInterval value’s upper limit is determined by limits imposed by firewall and 

proxies on the maximum idle time for connections. Once the poll interval exceeds a proxy’s 
maximum idle timer value, the connection will be automatically closed by the proxy. 

<43> Section 3.5.4.1: Firewalls are generally transparent to clients. Clients need no configuration 
information to use a firewall, as firewalls perform routing at Layer 3 (Network Layer) of the OSI 
model [ISO/IEC 7498-1:1994]. 

Proxies are not transparent to clients. Clients need to be configured with the proxy connection 
information (FQDN, PORT, Protocol) to be able to establish a connection with a proxy. The Office 
Groove 2007 and SharePoint Workspace 2010 clients use the proxy configuration information from a 
browser. The Office Groove 2007 and SharePoint Workspace 2010 clients can also access proxy 

auth-configuration or PAC files to get this information. In this case all that is needed is the proxy 
FQDN and Port Number. Therefore the Office Groove 2007 and SharePoint Workspace 2010 clients 
do not actually store the proxy configuration persistently. 

<44> Section 3.5.5.1.1.1:  Office Groove 2007 and SharePoint Workspace 2010 do not check the 
protocol version of the encapsulation protocols. 

<45> Section 3.5.5.1.1.1: The Office Groove Server 2007 and Groove Server 2010 relay servers do 

not validate that the URI contains a Relay-Server-Name that equals the local server name. The 
implementer is recommended to validate this field to ensure that the message was routed to the 
intended server. 

<46> Section 3.5.5.1.1.2:  Office Groove 2007 and SharePoint Workspace 2010 do not check the 
protocol version of the encapsulation protocols. 

<47> Section 3.5.5.1.1.2: The Office Groove Server 2007 and Groove Server 2010 relay servers do 
not validate that the URI contains a Relay-Server-Name that equals the local server name. The 

implementer is recommended to validate this field to ensure that the message was routed to the 
intended server. 

<48> Section 3.6.3.1: The Office Groove Server 2007 and Groove Server 2010 servers use a special 
purpose HTTP 1.0 protocol stack. Except for the subset of HTTP Request-Headers and Response-
Headers specified in this document, all other HTTP Headers will be ignored as specified in the HTTP 
1.0 [RFC1945] sections 5.2, 6.2 and 7.1. 

<49> Section 3.6.5:  Office Groove Server 2007 and Groove Server 2010 do not check the protocol 

version of the encapsulation protocols. 

<50> Section 3.6.5: The Office Groove Server 2007 and Groove Server 2010 relay servers do not 
validate that the URI contains a Relay-Server-Name that equals the local server name. The 
implementer is recommended to validate this field to ensure that the message was routed to the 
intended server. 

<51> Section 3.6.5.1:  Office Groove Server 2007 and Groove Server 2010 do not check the 

Sequence Number on the Initial Handshake Request of the Polling Encapsulation protocol. 

<52> Section 3.6.5.2.1: The Office Groove Server 2007 and Groove Server 2010 relay servers do 
not use load balancing algorithms to control the client's poll timer interval (see section 3.5.2.3). The 
PollingMinRepetitionInterval, PollingMinRepetitionInterval and PollingRepetitionCount state variable 
values are set during application initialization. The default values are specified in <21>. 

http://go.microsoft.com/fwlink/?LinkId=114764
http://go.microsoft.com/fwlink/?LinkId=90300


 

156 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

<53> Section 3.7.1.2: Firewalls are generally transparent to clients. Clients need no configuration 
information to use a firewall, as firewalls perform routing at Layer 3 (Network Layer) of the OSI 

model, as specified in [ISO/IEC 7498-1:1994]. 

Proxies are not transparent to clients. Clients need to be configured with the proxy connection 

information (FQDN, PORT, Protocol) to be able to establish a connection with a proxy. The Office 
Groove 2007 and SharePoint Workspace 2010 clients use the proxy configuration information from a 
browser. The Office Groove 2007 and SharePoint Workspace 2010 clients can also access proxy 
auth-configuration or PAC files to get this information. In this case all that is needed is the proxy 
FQDN and Port Number. Therefore the Office Groove 2007 and SharePoint Workspace 2010 clients 
do not actually store the proxy configuration persistently. 

<54> Section 3.7.2.3: The Office Groove 2007 and SharePoint Workspace 2010 implementations of 

SSTP, as specified in [MS-GRVSSTP], assist the HTTP encapsulation protocols by implementing 
KeepAlive semantics. SSTP's KeepAlive semantics are implemented using an SSTP_NOOP command. 
SSTP_NOOP commands are used to send SSTP ACKs over SSTP Connections. If there are no SSTP 
ACKs to send, SSTP sends an SSTP_NOOP command with a ACK count of 0. SSTP_NOOPs are sent 
at 45 second intervals. The SSTP default KeepAlive value of 5 minutes is overridden when SSTP is 

encapsulated. If HTTP Encapsulation of SSTP protocols is used to encapsulate non-SSTP data, then 

these non-SSTP protocols need to implement their own KeepAlive mechanisms, as the HTTP 
encapsulation protocols provide no KeepAlive semantics of their own. KeepAlive requests are 
important to HTTP encapsulation protocols used with proxy connections. Proxies can implement 
various timers to close idle proxy connections. Some firewalls and proxy implementations do not 
distinguish between proxy and non-proxy connections. Therefore the recommended behavior is that 
encapsulated protocols always send a KeepAlive message when used with HTTP Encapsulation. 

<55> Section 3.7.4.1: Firewalls are generally transparent to clients. Clients need no configuration 

information to use a firewall, as firewalls perform routing at Layer 3 (Network Layer) of the OSI 
model [ISO/IEC 7498-1:1994]. 

Proxies are not transparent to clients. Clients need to be configured with the proxy connection 
information (FQDN, PORT, Protocol) to be able to establish a connection with a proxy. The Office 
Groove 2007 and SharePoint Workspace 2010 clients use the proxy configuration information from a 
browser. The Office Groove 2007 and SharePoint Workspace 2010 clients can also access proxy 

auth-configuration or PAC files to get this information. In this case all that is needed is the proxy 

FQDN and Port Number. Therefore the Office Groove 2007 and SharePoint Workspace 2010 clients 
do not actually store the proxy configuration persistently. 

<56> Section 3.7.6.3: The Office Groove 2007 and SharePoint Workspace 2010 implementations of 
SSTP, as specified in [MS-GRVSSTP], assist the HTTP encapsulation protocols by implementing 
KeepAlive semantics. SSTP's KeepAlive semantics are implemented using an SSTP_NOOP command. 
SSTP_NOOP commands are used to send SSTP ACKs over SSTP Connections. If there are no SSTP 

ACKs to send, SSTP sends an SSTP_NOOP command with a ACK count of 0. SSTP_NOOPs are sent 
at 45 second intervals. The SSTP default KeepAlive value of 5 minutes is overridden when SSTP is 
encapsulated. If HTTP Encapsulation of SSTP protocols is used to encapsulate non-SSTP data, then 
these non-SSTP protocols need to implement their own KeepAlive mechanisms, as the HTTP 
encapsulation protocols provide no KeepAlive semantics of their own. KeepAlive requests are 
important to HTTP encapsulation protocols used with proxy connections. Proxies can implement 
various timers to close idle proxy connections. Some firewalls and proxy implementations do not 

distinguish between proxy and non-proxy connections. Therefore the recommend behavior is that 
encapsulated protocols always send a KeepAlive message when used with HTTP Encapsulation. 

<57> Section 3.8.2.1: The Office Groove Server 2007 and Groove Server 2010 implementations of 
SSTP, as specified in [MS-GRVSSTP], assist the HTTP encapsulation protocols by implementing 
KeepAlive semantics. SSTP's KeepAlive semantics are implemented using an SSTP_NOOP command. 
SSTP_NOOP commands are used to send SSTP ACKs over SSTP Connections. If there are no SSTP 

http://go.microsoft.com/fwlink/?LinkId=114764
%5bMS-GRVSSTP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=114764
%5bMS-GRVSSTP%5d.pdf
%5bMS-GRVSSTP%5d.pdf


 

157 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

ACKs to send, SSTP sends an SSTP_NOOP command with a ACK count of 0. SSTP_NOOPs are sent 
at 45 second intervals. The SSTP default KeepAlive value of 5 minutes is overridden when SSTP is 

encapsulated. If HTTP Encapsulation of SSTP protocols is used to encapsulate non-SSTP data, then 
these non-SSTP protocols need to implement their own KeepAlive mechanisms, as the HTTP 

encapsulation protocols provide no KeepAlive semantics of their own. KeepAlive requests are 
important to HTTP encapsulation protocols used with proxy connections. Proxies can implement 
various timers to close idle proxy connections. Some firewalls and proxy implementations do not 
distinguish between proxy and non-proxy connections. Therefore, the recommend behavior is that 
encapsulated protocols always send a KeepAlive message when used with HTTP Encapsulation. 

<58> Section 3.8.2.1: The Office Groove 2007 and SharePoint Workspace 2010 clients’ HTTP 
Encapsulation implementation adjusts the SSTP protocol layer implementation’s default KeepAlive 

timer value. The HTTP Encapsulation layer overrides the SSTP default KeepAlive timer value, 
changing the default value of 5 minutes to 45 seconds. The default SSTP KeepAlive timer is modified 
to increase the frequency of the KeepAlive messages to help ensure that proxies do not treat the 
connections as idle and close them. 

<59> Section 3.9.1.2: This proxy configuration information applies to Office Groove 2007 and 

SharePoint Workspace 2010. 

<60> Section 3.9.1.2: Firewalls are generally transparent to clients. Clients need no configuration 
information to use a firewall, as firewalls perform routing at Layer 3 (Network Layer) of the OSI 
model [ISO/IEC 7498-1:1994]. 

Proxies are not transparent to clients. Clients need to be configured with the proxy connection 
information (FQDN, PORT, Protocol) to be able to establish a connection with a proxy. The Office 
Groove 2007 and SharePoint Workspace 2010 clients use the proxy configuration information from a 
browser. The Office Groove 2007 and SharePoint Workspace 2010 clients can also access proxy 

auth-configuration or PAC files to get this information. In this case all that is needed is the proxy 
FQDN and Port Number. Therefore the Office Groove 2007 and SharePoint Workspace 2010 clients 
do not actually store the proxy configuration persistently. 

<61> Section 3.9.2.3: The Office Groove 2007 and SharePoint Workspace 2010 implementations of 
SSTP as specified in [MS-GRVSSTP], assist the HTTP encapsulation protocols by implementing 

KeepAlive semantics. SSTP's KeepAlive semantics are implemented using an SSTP_NOOP command. 
SSTP_NOOP commands are used to send SSTP ACKs over SSTP Connections. If there are no SSTP 

ACKs to send, SSTP sends an SSTP_NOOP command with a ACK count of 0. SSTP_NOOPs are sent 
at 45 second intervals. The SSTP default KeepAlive value of 5 minutes is overridden when SSTP is 
encapsulated. If HTTP Encapsulation of SSTP protocols is used to encapsulate non-SSTP data, then 
these non-SSTP protocols need to implement their own KeepAlive mechanisms, as the HTTP 
encapsulation protocols provide no KeepAlive semantics of their own. KeepAlive requests are 
important to HTTP encapsulation protocols used with proxy connections. Proxies can implement 

various timers to close idle proxy connections. Some firewalls and proxy implementations do not 
distinguish between proxy and non-proxy connections. Therefore the recommend behavior is that 
encapsulated protocols always send a KeepAlive message when used with HTTP Encapsulation. 

<62> Section 3.9.4.1: Firewalls are generally transparent to clients. Clients need no configuration 
information to use a firewall, as firewalls perform routing at Layer 3 (Network Layer) of the OSI 
model [ISO/IEC 7498-1:1994]. 

Proxies are not transparent to clients. Clients need to be configured with the proxy connection 

information (FQDN, PORT, Protocol) to be able to establish a connection with a proxy. The Office 
Groove 2007 and SharePoint Workspace 2010 clients use the proxy configuration information from a 
browser. The Office Groove 2007 and SharePoint Workspace 2010 clients can also access proxy 
auth-configuration or PAC files to get this information. In this case all that is needed is the proxy 

http://go.microsoft.com/fwlink/?LinkId=114764
%5bMS-GRVSSTP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=114764


 

158 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

FQDN and Port Number. Therefore the Office Groove 2007 and SharePoint Workspace 2010 clients 
do not actually store the proxy configuration persistently. 

<63> Section 3.9.4.1.1: The Office Groove 2007 and SharePoint Workspace 2010 clients support 
two SOCKS authentication methods: 0x00 (NO AUTHENTICATION REQUIRED) and 0x02 

(USERNAME/PASSWORD). These two methods are represented by a sequence of two hex octets: 
[00 02]. The SharePoint Workspace 2010 client will not support the SOCKS protocol. 

<64> Section 3.9.4.1.1: The Office Groove 2007 and SharePoint Workspace 2010 clients do not 
support GSSAPI. 

<65> Section 3.9.5.1.1: The Office Groove 2007 and SharePoint Workspace 2010 clients do not 
support GSSAPI. 

<66> Section 3.9.6.3: The Office Groove 2007 and SharePoint Workspace 2010 implementations of 

SSTP, as specified in [MS-GRVSSTP], assist the HTTP encapsulation protocols by implementing 
KeepAlive semantics. SSTP's KeepAlive semantics are implemented using an SSTP_NOOP command. 
SSTP_NOOP commands are used to send SSTP ACKs over SSTP Connections. If there are no SSTP 

ACKs to send, SSTP sends an SSTP_NOOP command with a ACK count of 0. SSTP_NOOPs are sent 
at 45 second intervals. The SSTP default KeepAlive value of 5 minutes is overridden when SSTP is 
encapsulated. If HTTP Encapsulation of SSTP protocols is used to encapsulate non-SSTP data, then 

these non-SSTP protocols need to implement their own KeepAlive mechanisms, as the HTTP 
encapsulation protocols provide no KeepAlive semantics of their own. KeepAlive requests are 
important to HTTP encapsulation protocols used with proxy connections. Proxies can implement 
various timers to close idle proxy connections. Some firewalls and proxy implementations do not 
distinguish between proxy and non-proxy connections. Therefore, the recommend behavior is that 
encapsulated protocols always send a KeepAlive message when used with HTTP Encapsulation. 

%5bMS-GRVSSTP%5d.pdf


 

159 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

7   Change Tracking 

No table of changes is available. The document is either new or has had no changes since its last 
release. 



 

160 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

8   Index 

A 

Abstract data model 
client (section 3.1.1 55, section 3.3.1 71, section 

3.5.1 94, section 3.7.1 112, section 3.9.1 119) 
KeepAlive encapsulation protocol client 71 
KeepAlive encapsulation protocol server 86 
LongLived encapsulation protocol client 55 
LongLived encapsulation protocol server 65 
Polling encapsulation protocol client 94 
Polling encapsulation protocol server 107 
Secure Tunnel encapsulation protocol client 112 
server (section 3.2.1 65, section 3.4.1 86, 

section 3.6.1 107, section 3.8.1 118, section 
3.10.1 125) 

SOCKS encapsulation of SSTP protocol client 119 
Applicability 28 

C 

Capability negotiation 28 
Change tracking 159 
Client 

abstract data model (section 3.1.1 55, section 
3.3.1 71, section 3.5.1 94, section 3.7.1 112, 
section 3.9.1 119) 

message processing (section 3.1.5 62, section 
3.7.5 116, section 3.9.5 123) 

other local events (section 3.1.7 65, section 3.3.7 
84, section 3.5.7 107, section 3.7.7 118, 
section 3.9.7 125) 

overview (section 3.1 55, section 3.3 71, section 
3.5 94, section 3.7 112, section 3.9 119) 

sequencing rules (section 3.1.5 62, section 3.7.5 
116, section 3.9.5 123) 

Client - KeepAlive encapsulation protocol 

closing a KeepAlive connection 77 
closing a KeepAlive GET session 78 
closing a KeepAlive POST session 77 
connection state information 73 
ConnectionEstablishment timer event 84 
establishing a KeepAlive encapsulation connection 

76 
GetNetworkReceiveIO timer event 84 
KeepAlive timer event 84 
KeepAlive-GET-Response processing 81 
KeepAlive-POST-Response processing 79 
overview 71 
PostNetworkReceiveIO timer event 84 
proxy state information 74 
re-opening a KeepAlive GET session 78 
re-opening a KeepAlive POST session 78 
sending a KeepAlive-GET-Request 83 
sending application data 78 

Client - KeepAlive encapsulation protocol - abstract 
data model 71 

Client - KeepAlive encapsulation protocol - 
initialization 75 

Client - KeepAlive encapsulation protocol - local 
events 84 
re-opening the POST session after a transport 

disconnect 84 
Client - LongLived encapsulation protocol 

closing a LongLived connection 61 
connection state information 57 
ConnectionEstablishment timer (section 3.1.2.1 

59, section 3.3.2.1 75) 
ConnectionEstablishment timer event 64 
establishing a LongLived encapsulation 

connection 59 
GetNetworkReceiveIO timer 75 
KeepAlive timer (section 3.1.2.3 59, section 

3.3.2.4 75) 
KeepAlive timer event 65 
NetworkReceiveIO timer 59 
NetworkReceiveIO timer event 65 
overview 55 
PostNetworkReceiveIO timer 75 
proxy state information 58 
receiving data on the GET session 63 
receiving data on the POST session 62 
sending application data 62 

Client - LongLived encapsulation protocol - abstract 
data model 55 

Client - LongLived encapsulation protocol - 
initialization 59 

Client - LongLived encapsulation protocol - local 
events 65 

Client - Polling encapsulation protocol 
client state information 98 
closing a Polling connection 101 
connection state information 96 
ConnectionEstablishment timer 98 
ConnectionEstablishment timer event 106 
establishing a Polling encapsulation connection 

100 
NetworkReceiveIO timer 98 
NetworkReceiveIO timer event 107 
overview 94 
polling encapsulation timer 99 
Polling encapsulation timer event 107 
Polling-POST-Response processing 103 

proxy state information 98 
sending application data 101 

Client - Polling encapsulation protocol - abstract 
data model 94 

Client - Polling encapsulation protocol - initialization 
99 

Client - Polling encapsulation protocol - local events 
107 

Client - Secure Tunnel encapsulation protocol 
closing a Secure Tunnel connection 116 
connection state information 113 
ConnectionEstablishment timer 114 
ConnectionEstablishment timer event 118 
establishing a Secure Tunnel encapsulation 

connection 115 



 

161 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

KeepAlive timer 115 
KeepAlive timer event 118 
NetworkReceiveIO timer 114 
NetworkReceiveIO timer event 118 
overview 112 
proxy state information 114 
sending application data 116 

Client - Secure Tunnel encapsulation protocol - 
abstract data model 112 

Client - Secure Tunnel encapsulation protocol - 
initialization 115 
Secure Tunnel listener endpoints 115 
timers started 115 

Client - Secure Tunnel encapsulation protocol - local 
events 118 

Client - Secure Tunnel encapsulation protocol - 
message processing 116 

Client - Secure Tunnel encapsulation protocol - 
sequencing rules 116 

Client - SOCKS encapsulation of SSTP protocol 
closing a SOCKS connection 122 
connection state information 120 
ConnectionEstablishment timer 121 

ConnectionEstablishment timer event 124 
establishing a SOCKS encapsulation connection 

122 
KeepAlive timer 121 
KeepAlive timer event 125 
NetworkReceiveIO timer 121 
NetworkReceiveIO timer event 125 
proxy state information 121 
sending application data 123 

Client - SOCKS encapsulation of SSTP protocol - 
abstract data model 119 

Client - SOCKS encapsulation of SSTP protocol - 
initialization 122 

Client - SOCKS encapsulation of SSTP protocol - 
local events 125 

Client - SOCKS encapsulation of SSTP protocol - 
message processing 123 

Client - SOCKS encapsulation of SSTP protocol - 
sequencing rules 123 

Client - SOCKS encapsulation of SSTP protocol 
client 
overview 119 

Client state information 
Polling encapsulation protocol client 98 

Closing a KeepAlive connection event 
KeepAlive encapsulation protocol client 77 
KeepAlive encapsulation protocol server 88 

Closing a KeepAlive GET session event 
KeepAlive encapsulation protocol client 78 

Closing a KeepAlive POST session event 
KeepAlive encapsulation protocol client 77 

Closing a LongLived connection event 
LongLived encapsulation protocol client 61 
LongLived encapsulation protocol server 66 

Closing a Polling connection event 
Polling encapsulation protocol client 101 
Polling encapsulation protocol server 108 

Closing a Polling session event 

Polling encapsulation protocol server 108 
Closing a POST session event 

KeepAlive encapsulation protocol server 88 
Closing a Secure Tunnel connection event 

Secure Tunnel encapsulation protocol client 116 
Closing a SOCKS connection event 

SOCKS encapsulation of SSTP protocol client 122 
Common HTTP data types 

encapsulation data types - Application-Data 31 
encapsulation data types - Encapsulation-Echo-

String 31 
encapsulation data types - Relay-Server-Name 31 
encapsulation data types - Server-User-Agent 32 
encapsulation data types - Virtual-Connection-

GUID 30 
HTTP response headers 35 
Request-Header 32 
Response-Code-And-Reason-Phrase 36 

Connection state information 
KeepAlive encapsulation protocol client 73 
LongLived encapsulation protocol client 57 
Polling encapsulation protocol client 96 
Secure Tunnel encapsulation protocol client 113 

SOCKS encapsulation of SSTP protocol client 120 
ConnectionEstablishment timer event - KeepAlive 

encapsulation protocol client 84 
ConnectionEstablishment timer event - KeepAlive 

encapsulation protocol server 93 
ConnectionEstablishment timer event - LongLived 

encapsulation protocol client 64 
ConnectionEstablishment timer event - LongLived 

encapsulation protocol server 70 
ConnectionEstablishment timer event - Polling 

encapsulation protocol client 106 
ConnectionEstablishment timer event - Polling 

encapsulation protocol server 112 
ConnectionEstablishment timer event - Secure 

Tunnel encapsulation protocol client 118 
ConnectionEstablishment timer event - SOCKS 

encapsulation of SSTP protocol client 124 
ConnectionEstablishment timer- KeepAlive 

encapsulation protocol server 87 
ConnectionEstablishment timer- LongLived 

encapsulation protocol client (section 3.1.2.1 59, 
section 3.3.2.1 75) 

ConnectionEstablishment timer- LongLived 
encapsulation protocol server 66 

ConnectionEstablishment timer- Polling 
encapsulation protocol client 98 

ConnectionEstablishment timer- Polling 
encapsulation protocol server 108 

ConnectionEstablishment timer- Secure Tunnel 
encapsulation protocol client 114 

ConnectionEstablishment timer- SOCKS 
encapsulation of SSTP protocol client 121 

D 

Data model - abstract 
client (section 3.1.1 55, section 3.3.1 71, section 

3.5.1 94, section 3.7.1 112, section 3.9.1 119) 
KeepAlive encapsulation protocol client 71 



 

162 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

KeepAlive encapsulation protocol server 86 
LongLived encapsulation protocol client 55 
LongLived encapsulation protocol server 65 
Polling encapsulation protocol client 94 
Polling encapsulation protocol server 107 
Secure Tunnel encapsulation protocol client 112 
server (section 3.2.1 65, section 3.4.1 86, 

section 3.6.1 107, section 3.8.1 118, section 
3.10.1 125) 

SOCKS encapsulation of SSTP protocol client 119 

E 

Establishing a KeepAlive encapsulation connection 
event 
KeepAlive encapsulation protocol client 76 

Establishing a LongLived encapsulation connection 
event 
LongLived encapsulation protocol client 59 

Establishing a Polling encapsulation connection 
event 
Polling encapsulation protocol client 100 

Establishing a Secure Tunnel encapsulation 
connection event 
Secure Tunnel encapsulation protocol client 115 

Establishing a SOCKS encapsulation connection 
event 
SOCKS encapsulation of SSTP protocol client 122 

Examples 
HTTP KeepAlive encapsulation 129 
HTTP LongLived encapsulation 127 
HTTP Polling encapsulation 134 
overview 127 
proxy authentication using NTLM 143 
Secure Tunnel proxy protocol 142 
SOCKS proxy 142 

F 

Fields - vendor-extensible 29 

G 

GetNetworkReceiveIO timer event - KeepAlive 
encapsulation protocol client 84 

GetNetworkReceiveIO timer- LongLived 
encapsulation protocol client 75 

Glossary 13 

H 

Higher-layer triggered events 
server (section 3.8.4 119, section 3.10.4 125) 

HTTP encapsulation protocols 
HTTP KeepAlive encapsulation connections 20 
HTTP LongLived encapsulation connections 19 
HTTP Polling encapsulation connections 22 

HTTP KeepAlive encapsulation example 129 
HTTP LongLived encapsulation example 127 
HTTP Polling encapsulation example 134 

I 

IdleConnection timer event - KeepAlive 
encapsulation protocol server 93 

IdleConnection timer- KeepAlive encapsulation 
protocol server 87 

Implementer - security considerations 147 
Index of security parameters 147 
Informative references 14 
Initialization 

server 125 
Initialization - KeepAlive encapsulation protocol 

client 75 
Initialization - KeepAlive encapsulation protocol 

server 87 
KeepAlive listener 88 

Initialization - LongLived encapsulation protocol 
client 59 

Initialization - LongLived encapsulation protocol 
server 66 
LongLived listener 66 

Initialization - Polling encapsulation protocol client 
99 

Initialization - Polling encapsulation protocol server 
108 

Polling encapsulation listener 108 
Initialization - Secure Tunnel encapsulation of SSTP 

protocol server 
Secure Tunnel encapsulation listener 119 

Initialization - Secure Tunnel encapsulation protocol 
client 115 
Secure Tunnel listener endpoints 115 
timers started 115 

Initialization - SOCKS encapsulation of SSTP 
protocol client 122 

Introduction 12 

K 

KeepAlive encapsulation 
KeepAlive-GET-Request 42 
KeepAlive-GET-Response 45 
KeepAlive-POST-Request 44 
KeepAlive-POST-Response 46 

KeepAlive encapsulation client 
overview 71 

KeepAlive encapsulation server 
connection state information 87 

KeepAlive timer event - KeepAlive encapsulation 
protocol client 84 

KeepAlive timer event - KeepAlive encapsulation 
protocol server 94 

KeepAlive timer event - LongLived encapsulation 
protocol client 65 

KeepAlive timer event - LongLived encapsulation 
protocol server 71 

KeepAlive timer event - Secure Tunnel 
encapsulation protocol client 118 

KeepAlive timer event - SOCKS encapsulation of 
SSTP protocol client 125 

KeepAlive timer- KeepAlive encapsulation protocol 
server 87 

KeepAlive timer- LongLived encapsulation protocol 
client (section 3.1.2.3 59, section 3.3.2.4 75) 



 

163 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

KeepAlive timer- LongLived encapsulation protocol 
server 66 

KeepAlive timer- Secure Tunnel encapsulation 
protocol client 115 

KeepAlive timer- SOCKS encapsulation of SSTP 
protocol client 121 

L 

Local events - KeepAlive encapsulation protocol 
client 84 
re-opening the POST session after a transport 

disconnect 84 
Local events - KeepAlive encapsulation protocol 

server 94 
Local events - LongLived encapsulation protocol 

client 65 
Local events - LongLived encapsulation protocol 

server 71 

Local events - Polling encapsulation protocol client 
107 

Local events - Polling encapsulation protocol server 
112 

Local events - Secure Tunnel encapsulation protocol 
client 118 

Local events - SOCKS encapsulation of SSTP 
protocol client 125 

LongLived encapsulation 
LongLived-GET-Request 36 
LongLived-GET-Response 40 
LongLived-POST-Request 38 
LongLived-POST-Response 42 

LongLived encapsulation client 
overview 55 

LongLived encapsulation server 
connection state information 65 

M 

Message processing 
client (section 3.1.5 62, section 3.7.5 116, 

section 3.9.5 123) 
server (section 3.2.5 67, section 3.6.5 109, 

section 3.10.5 125) 
Message processing - KeepAlive encapsulation 

protocol client 
KeepAlive-GET-Response processing 81 
KeepAlive-POST-Response processing 79 
sending a KeepAlive-GET-Request 83 

Message processing - KeepAlive encapsulation 
protocol server 
GET session processing 89 
POST session processing 91 

Message processing - LongLived encapsulation 
protocol client 
receiving data on the GET session 63 
receiving data on the POST session 62 

Message processing - LongLived encapsulation 
protocol server 67 
GET session processing 67 
POST session processing 69 

Message processing - Polling encapsulation protocol 
client 
Polling-POST-Response processing 103 

Message processing - Polling encapsulation protocol 
server 109 
receiving a Polling-POST-request (after 

handshake) 111 
receiving a Polling-POST-request (initial 

handshake request) 109 
receiving a Polling-POST-request (last handshake 

request) 110 
Message processing - Secure Tunnel encapsulation 

protocol client 116 
application data processing 117 
HTTP response processing 116 

Message processing - SOCKS encapsulation of SSTP 
protocol client 123 
application data processing 124 
SOCKS connection negotiation processing 123 

Messages 
Secure Tunnel Proxy 51 
SOCKS Encapsulation 52 
syntax 30 

syntax - Secure Tunnel Proxy 51 
syntax - SOCKS encapsulation 52 
transport 30 

N 

NetworkReceiveIO timer event - LongLived 
encapsulation protocol client 65 

NetworkReceiveIO timer event - LongLived 
encapsulation protocol server 71 

NetworkReceiveIO timer event - Polling 
encapsulation protocol client 107 

NetworkReceiveIO timer event - Secure Tunnel 
encapsulation protocol client 118 

NetworkReceiveIO timer event - SOCKS 
encapsulation of SSTP protocol client 125 

NetworkReceiveIO timer- LongLived encapsulation 
protocol client 59 

NetworkReceiveIO timer- LongLived encapsulation 
protocol server 66 

NetworkReceiveIO timer- Polling encapsulation 
protocol client 98 

NetworkReceiveIO timer- Secure Tunnel 
encapsulation protocol client 114 

NetworkReceiveIO timer- SOCKS encapsulation of 
SSTP protocol client 121 

Normative references 14 

O 

Other local events 
client (section 3.1.7 65, section 3.3.7 84, section 

3.5.7 107, section 3.7.7 118, section 3.9.7 
125) 

server (section 3.2.7 71, section 3.4.7 94, 
section 3.6.7 112, section 3.8.7 119, section 
3.10.7 126) 

Overview (synopsis) 15 

HTTP encapsulation protocols 18 



 

164 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

performance considerations 26 
Secure Tunnel connections 24 
SOCKS connections 26 

P 

Parameters - security index 147 
Polling encapsulation 

Polling-POST-Request 47 
Polling-POST-Response 50 

Polling encapsulation client 
overview 94 

Polling encapsulation server 
connection state information 107 

Polling encapsulation timer event - Polling 
encapsulation protocol client 107 

Polling encapsulation timer event - Polling 
encapsulation protocol server 112 

Polling encapsulation timer- Polling encapsulation 

protocol client 99 
PostNetworkReceiveIO timer event - KeepAlive 

encapsulation protocol client 84 
PostNetworkReceiveIO timer- LongLived 

encapsulation protocol client 75 
Preconditions 28 
Prerequisites 28 
Product behavior 148 
proxy authentication using NTLM example 143 
Proxy state information 

KeepAlive encapsulation protocol client 74 
LongLived encapsulation protocol client 58 
Polling encapsulation protocol client 98 
Secure Tunnel encapsulation protocol client 114 
SOCKS encapsulation of SSTP protocol client 121 

R 

References 13 
informative 14 
normative 14 

Relationship to other protocols 27 
Re-opening a KeepAlive GET session event 

KeepAlive encapsulation protocol client 78 
Re-opening a KeepAlive POST session event 

KeepAlive encapsulation protocol client 78 

S 

Secure Tunnel encapsulation client 
overview 112 

Secure Tunnel encapsulation of SSTP server 
overview 118 

Secure Tunnel Proxy message 51 
Secure Tunnel proxy protocol example 142 
Security 

authentication of clients 147 
implementer considerations 147 

overview 147 
parameter index 147 

Sending application data 
KeepAlive encapsulation protocol client 78 
KeepAlive encapsulation protocol server 88 

LongLived encapsulation protocol client 62 
LongLived encapsulation protocol server 67 
Polling encapsulation protocol client 101 
Polling encapsulation protocol server 109 
Secure Tunnel encapsulation protocol client 116 
SOCKS encapsulation of SSTP protocol client 123 

Sequencing rules 
client (section 3.1.5 62, section 3.7.5 116, 

section 3.9.5 123) 
server (section 3.2.5 67, section 3.6.5 109, 

section 3.10.5 125) 
Sequencing rules - LongLived encapsulation 

protocol server 67 
Sequencing rules - Polling encapsulation protocol 

server 109 
Sequencing rules - Secure Tunnel encapsulation 

protocol client 116 
Sequencing rules - SOCKS encapsulation of SSTP 

protocol client 123 
Server 

abstract data model (section 3.2.1 65, section 
3.4.1 86, section 3.6.1 107, section 3.8.1 118, 
section 3.10.1 125) 

higher-layer triggered events (section 3.8.4 119, 
section 3.10.4 125) 

initialization 125 
message processing (section 3.2.5 67, section 

3.6.5 109, section 3.10.5 125) 
other local events (section 3.2.7 71, section 3.4.7 

94, section 3.6.7 112, section 3.8.7 119, 
section 3.10.7 126) 

overview (section 3.8 118, section 3.10 125) 
sequencing rules (section 3.2.5 67, section 3.6.5 

109, section 3.10.5 125) 
timer events (section 3.8.6 119, section 3.10.6 

126) 
timers (section 3.8.2 118, section 3.10.2 125) 

Server - KeepAlive encapsulation protocol 
closing a KeepAlive connection 88 
closing a POST session 88 
connection state information 87 
ConnectionEstablishment timer 87 
ConnectionEstablishment timer event 93 
GET session processing 89 
IdleConnection timer 87 
IdleConnection timer event 93 
KeepAlive timer 87 
KeepAlive timer event 94 
POST session processing 91 
sending application data 88 

Server - KeepAlive encapsulation protocol - abstract 
data model 86 

Server - KeepAlive encapsulation protocol - 
initialization 87 
KeepAlive listener 88 

Server - KeepAlive encapsulation protocol - local 
events 94 

Server - LongLived encapsulation protocol 
closing a LongLived connection 66 
connection state information 65 
ConnectionEstablishment timer 66 



 

165 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

ConnectionEstablishment timer event 70 
GET session processing 67 
KeepAlive timer 66 
KeepAlive timer event 71 
NetworkReceiveIO timer 66 
NetworkReceiveIO timer event 71 
POST session processing 69 
sending application data 67 

Server - LongLived encapsulation protocol - 
abstract data model 65 

Server - LongLived encapsulation protocol - 
initialization 66 
LongLived listener 66 

Server - LongLived encapsulation protocol - local 
events 71 

Server - LongLived encapsulation protocol - 
message processing 67 

Server - LongLived encapsulation protocol - 
sequencing rules 67 

Server - Polling encapsulation protocol 
closing a Polling connection 108 
closing a Polling session 108 
connection state information 107 

ConnectionEstablishment timer 108 
ConnectionEstablishment timer event 112 
Polling encapsulation timer event 112 
receiving a Polling-POST-request (after 

handshake) 111 
receiving a Polling-POST-request (initial 

handshake request) 109 
receiving a Polling-POST-request (last handshake 

request) 110 
sending application data 109 

Server - Polling encapsulation protocol - abstract 
data model 107 

Server - Polling encapsulation protocol - 
initialization 108 
Polling encapsulation listener 108 

Server - Polling encapsulation protocol - local 
events 112 

Server - Polling encapsulation protocol - message 
processing 109 

Server - Polling encapsulation protocol - sequencing 
rules 109 

Server - Secure Tunnel encapsulation of SSTP 
protocol 
overview 118 
STTP KeepAlive timer 118 

Server - Secure Tunnel encapsulation of SSTP 
protocol - initialization 
Secure Tunnel encapsulation listener 119 

Server - Secure Tunnel encapsulation of SSTP 
protocol - timers 118 

Server - SOCKS encapsulation of SSTP protocol 
overview 125 

SOCKS Encapsulation message 52 
SOCKS encapsulation of SSTP protocol client 

overview 119 
SOCKS encapsulation of SSTP protocol server 

overview 125 
SOCKS proxy example 142 

Standards assignments 29 
STTP KeepAlive timer- Secure Tunnel encapsulation 

of SSTP protocol server 118 
Syntax 30 

T 

Timer events 
server (section 3.8.6 119, section 3.10.6 126) 

Timers 
server (section 3.8.2 118, section 3.10.2 125) 

Timers - Secure Tunnel encapsulation of SSTP 
protocol server 118 

Tracking changes 159 
Transport 30 
Triggered events - higher-layer 

server (section 3.8.4 119, section 3.10.4 125) 
Triggered events - KeepAlive encapsulation protocol 

client 

closing a KeepAlive connection 77 
closing a KeepAlive GET session 78 
closing a KeepAlive POST session 77 
establishing a KeepAlive encapsulation connection 

76 
re-opening a KeepAlive GET session 78 
re-opening a KeepAlive POST session 78 
sending application data 78 

Triggered events - KeepAlive encapsulation protocol 
server 
closing a KeepAlive connection 88 
closing a POST session 88 
sending application data 88 

Triggered events - LongLived encapsulation protocol 
client 
closing a LongLived connection 61 
establishing a LongLived encapsulation 

connection 59 
sending application data 62 

Triggered events - LongLived encapsulation protocol 
server 
closing a LongLived connection 66 
sending application data 67 

Triggered events - Polling encapsulation protocol 
client 
closing a Polling connection 101 
establishing a Polling encapsulation connection 

100 
sending application data 101 

Triggered events - Polling encapsulation protocol 
server 
closing a Polling connection 108 
closing a Polling session 108 
sending application data 109 

Triggered events - Secure Tunnel encapsulation 
protocol client 
closing a Secure Tunnel connection 116 
establishing a Secure Tunnel encapsulation 

connection 115 
sending application data 116 

Triggered events - SOCKS encapsulation of SSTP 
protocol client 
closing a SOCKS connection 122 



 

166 / 166 

[MS-GRVHENC] — v20130206   
 HTTP Encapsulation of Simple Symmetric Transport Protocol (SSTP)  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: February 11, 2013  

establishing a SOCKS encapsulation connection 
122 

sending application data 123 

V 

Vendor-extensible fields 29 
Versioning 28 


	Table of Contents
	1   Introduction
	1.1   Glossary
	1.2   References
	1.2.1   Normative References
	1.2.2   Informative References

	1.3   Protocol Overview (Synopsis)
	1.3.1   HTTP Encapsulation Protocols
	1.3.1.1   HTTP LongLived Encapsulation Connections
	1.3.1.2   HTTP KeepAlive Encapsulation Connections
	1.3.1.3   HTTP Polling Encapsulation Connections

	1.3.2   Secure Tunnel Connections
	1.3.3   SOCKS Connections
	1.3.4   Performance Considerations

	1.4   Relationship to Other Protocols
	1.5   Prerequisites/Preconditions
	1.6   Applicability Statement
	1.7   Versioning and Capability Negotiation
	1.8   Vendor-Extensible Fields
	1.9   Standards Assignments

	2   Messages
	2.1   Transport
	2.2   Message Syntax
	2.2.1   Common HTTP Data Types
	2.2.1.1   Encapsulation Data Types
	2.2.1.1.1   Virtual-Connection-GUID
	2.2.1.1.2   Relay-Server-Name
	2.2.1.1.3   Encapsulation-Echo-String
	2.2.1.1.4   Application-Data
	2.2.1.1.4.1   SSTP_COMMAND

	2.2.1.1.5   Server-User-Agent

	2.2.1.2   Request-Header
	2.2.1.2.1   Accept
	2.2.1.2.2   Content-Type
	2.2.1.2.3   User-Agent
	2.2.1.2.4   Pragma
	2.2.1.2.5   Expires
	2.2.1.2.6   Connection
	2.2.1.2.7   Host
	2.2.1.2.8   Cache-Control
	2.2.1.2.9   Proxy-Connection

	2.2.1.3   Response Headers
	2.2.1.3.1   Date
	2.2.1.3.2   Server

	2.2.1.4   Response Status Code and Reason Phrase

	2.2.2   LongLived Encapsulation
	2.2.2.1   LongLived-GET-Request
	2.2.2.1.1   LongLived-GET-Request-URI
	2.2.2.1.1.1   LongLived-Encapsulation-Version
	2.2.2.1.1.2   LongLived-Encapsulation-Type-Token
	2.2.2.1.1.3   LongLived-Encapsulation-Content-Length
	2.2.2.1.1.4   LongLived-Encapsulation-Request-ID

	2.2.2.1.2   LongLived-GET-Request Example

	2.2.2.2   LongLived-POST-Request
	2.2.2.2.1   LongLived-POST-Request-URI
	2.2.2.2.2   LongLived-Content-Length
	2.2.2.2.3   LongLived-Entity-Body
	2.2.2.2.4   LongLived-POST-Request Example

	2.2.2.3   LongLived-GET-Response
	2.2.2.3.1   Response-Status-Line
	2.2.2.3.2   LongLived-GET-Response-Content-Length
	2.2.2.3.3   LongLived-GET-Response Example

	2.2.2.4   LongLived-POST-Response
	2.2.2.4.1   LongLived-POST-Response-Content-Length


	2.2.3   KeepAlive Encapsulation
	2.2.3.1   KeepAlive-GET-Request
	2.2.3.1.1   KeepAlive-Request-URI
	2.2.3.1.1.1   KeepAlive-Encapsulation-Type-Token
	2.2.3.1.1.2   KeepAlive-Encapsulation-Version
	2.2.3.1.1.3   KeepAlive-Encapsulation-Request-ID

	2.2.3.1.2   KeepAlive-GET-Request Example

	2.2.3.2   KeepAlive-POST-Request
	2.2.3.2.1   KeepAlive-Content-Length
	2.2.3.2.2   KeepAlive-Entity-Body
	2.2.3.2.3   KeepAlive-POST-Request

	2.2.3.3   KeepAlive-GET-Response
	2.2.3.3.1   KeepAlive-GET-Response Example

	2.2.3.4   KeepAlive-POST-Response
	2.2.3.4.1   KeepAlive-POST-Response-Entity-Body
	2.2.3.4.1.1   KeepAlive-POST-Response-No-Data

	2.2.3.4.2   KeepAlive-POST-Response Example


	2.2.4   Polling Encapsulation
	2.2.4.1   Polling-POST-Request
	2.2.4.1.1   Polling-Request-URI
	2.2.4.1.2   Polling-Content-Length
	2.2.4.1.3   Polling-Request-Entity-Body
	2.2.4.1.3.1   Polling-Virtual-Connection-Message
	2.2.4.1.3.1.1   Polling-Encapsulation-Version
	2.2.4.1.3.1.2   Sequence-Number
	2.2.4.1.3.1.3   Checksum
	2.2.4.1.3.1.4   Relay-Server-URL


	2.2.4.1.4   Polling-POST-Request Example

	2.2.4.2   Polling-POST-Response
	2.2.4.2.1   Polling-Response-Entity-Body
	2.2.4.2.1.1   Polling-Virtual-Connection-Response-Message
	2.2.4.2.1.1.1   Max-Poll-Interval
	2.2.4.2.1.1.2   Min-Poll-Interval
	2.2.4.2.1.1.3   Poll-Repetition


	2.2.4.2.2   Polling-POST-Response Example


	2.2.5   Secure Tunnel Proxy
	2.2.6   SOCKS Encapsulation


	3   Protocol Details
	3.1   LongLived Encapsulation Protocol Client Details
	3.1.1   LongLived Client Abstract Data Model
	3.1.1.1   Connection State Information
	3.1.1.2   Proxy State Information

	3.1.2   LongLived Client Timers
	3.1.2.1   ConnectionEstablishment Timer
	3.1.2.2   NetworkReceiveIO Timer
	3.1.2.3   KeepAlive Timer

	3.1.3   LongLived Client Initialization
	3.1.3.1   Protocol Initialization

	3.1.4   LongLived Client Higher-Layer Triggered Events
	3.1.4.1   Establishing a LongLived Encapsulation Connection
	3.1.4.1.1   Establishing GET Session without Proxy
	3.1.4.1.2   Establishing GET Session with Proxy
	3.1.4.1.3   Establishing POST Session without Proxy
	3.1.4.1.4   Establishing POST Session with Proxy

	3.1.4.2   Closing a LongLived Connection
	3.1.4.3   Sending Application Data

	3.1.5   LongLived Client Message Processing Events and Sequencing Rules
	3.1.5.1   Receiving Data on the POST Session
	3.1.5.1.1   LongLived-POST-Response Processing
	3.1.5.1.1.1   Status code: 400 (Bad Request)
	3.1.5.1.1.2   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication Required)
	3.1.5.1.1.3   All Other Status Codes

	3.1.5.1.2   POST Session Data Processing

	3.1.5.2   Receiving Data on the GET Session
	3.1.5.2.1   LongLived-GET-Response Processing
	3.1.5.2.1.1   Status code: 200 (OK)
	3.1.5.2.1.2   Status code: 400 (Bad Request)
	3.1.5.2.1.3   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication Required)
	3.1.5.2.1.4   All Other Status Codes

	3.1.5.2.2   Receiving Application Data (GET Session Data Processing)


	3.1.6   LongLived Client Timer Events
	3.1.6.1   ConnectionEstablishment Timer Event
	3.1.6.2   Network Receive IO Timer Event
	3.1.6.3   KeepAlive Timer Event

	3.1.7   LongLived Client Other Local Events

	3.2   LongLived Encapsulation Protocol Server Details
	3.2.1   LongLived Server Abstract Data Model
	3.2.1.1   Connection State Information

	3.2.2   LongLived Server Timers
	3.2.2.1   ConnectionEstablishment Timer
	3.2.2.2   Network Receive IO Timer
	3.2.2.3   KeepAlive Timer

	3.2.3   LongLived Server Initialization
	3.2.3.1   Protocol Initialization
	3.2.3.2   LongLived Listener

	3.2.4   LongLived Server Higher-Layer Triggered Events
	3.2.4.1   Closing a LongLived Connection
	3.2.4.2   Sending Application Data

	3.2.5   LongLived Server Message Processing Events and Sequencing Rules
	3.2.5.1   GET Session Processing
	3.2.5.1.1   Receiving a LongLived-GET-Request
	3.2.5.1.1.1   Sending a LongLived-GET-Response with Status Code 200
	3.2.5.1.1.2   Sending a LongLived-GET-Response with Status Code 400

	3.2.5.1.2   Receiving Data on LongLived-GET-Request

	3.2.5.2   POST Session Processing
	3.2.5.2.1   Receiving a LongLived-POST-Request
	3.2.5.2.1.1   Sending a LongLived-POST-Response because of a Protocol Error

	3.2.5.2.2   Receiving Application Data


	3.2.6   LongLived Server Timer Events
	3.2.6.1   ConnectionEstablishment Timer Event
	3.2.6.2   NetworkReceiveIO Timer Event
	3.2.6.3   KeepAlive Timer Event

	3.2.7   LongLived Server Other Local Events

	3.3   KeepAlive Encapsulation Protocol Client Details
	3.3.1   KeepAlive Client Abstract Data Model
	3.3.1.1   Connection State Information
	3.3.1.2   Proxy State Information

	3.3.2   KeepAlive Client Timers
	3.3.2.1   ConnectionEstablishment Timer
	3.3.2.2   GetNetworkReceiveIO Timer
	3.3.2.3   PostNetworkReceiveIO Timer
	3.3.2.4   KeepAlive Timer

	3.3.3   KeepAlive Client Initialization
	3.3.3.1   Protocol Initialization

	3.3.4   KeepAlive Client Higher-Layer Triggered Events
	3.3.4.1   Establishing a KeepAlive Encapsulation Connection
	3.3.4.1.1   Establishing GET Session without Proxy
	3.3.4.1.2   Establishing GET Session with Proxy
	3.3.4.1.3   Establishing POST Session without Proxy
	3.3.4.1.4   Establishing POST Session with Proxy

	3.3.4.2   Closing a KeepAlive Connection
	3.3.4.3   Closing a KeepAlive POST Session
	3.3.4.4   Closing a KeepAlive GET Session
	3.3.4.5   Re-Opening a KeepAlive POST Session
	3.3.4.6   Re-Opening a KeepAlive GET Session
	3.3.4.7   Sending Application Data
	3.3.4.7.1   Sending Application Data without Proxy
	3.3.4.7.2   Sending Application Data with Proxy


	3.3.5   KeepAlive Client Message Processing Events and Sequencing Rules
	3.3.5.1   KeepAlive-POST-Response Processing
	3.3.5.1.1   Status Code: 200 (OK)
	3.3.5.1.1.1   Handshake POST Response Processing
	3.3.5.1.1.2   Application Data Posted

	3.3.5.1.2   Status code: 400 (Bad Request)
	3.3.5.1.3   Status codes: 401 (Unauthorized) / 407 (ProxyAuthentication Required)
	3.3.5.1.4   All Other Status Codes

	3.3.5.2   KeepAlive-GET-Response Processing
	3.3.5.2.1   Status code: 200 (OK)
	3.3.5.2.1.1   Handshake GET Response Processing
	3.3.5.2.1.2   Application Data GET Response Processing

	3.3.5.2.2   Status code: 400 (Bad Request)
	3.3.5.2.3   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication Required)
	3.3.5.2.4   All Other Status Codes

	3.3.5.3   Sending a KeepAlive-GET-Request
	3.3.5.3.1   Sending Request for Application Data without Proxy
	3.3.5.3.2   Sending Request for Application Data with Proxy


	3.3.6   KeepAlive Client Timer Events
	3.3.6.1   ConnectionEstablishment Timer Event
	3.3.6.2   GetNetworkReceiveIO Timer Event
	3.3.6.3   PostNetworkReceiveIO Timer Event
	3.3.6.4   KeepAlive Timer Event

	3.3.7   KeepAlive Client Other Local Events
	3.3.7.1   Re-Opening the POST Session after a Transport Disconnect


	3.4   KeepAlive Encapsulation Protocol Server Details
	3.4.1   KeepAlive Server Abstract Data Model
	3.4.1.1   Connection State Information

	3.4.2   KeepAlive Server Timers
	3.4.2.1   ConnectionEstablishment Timer
	3.4.2.2   IdleConnection Timer
	3.4.2.3   KeepAlive Timer

	3.4.3   KeepAlive Server Initialization
	3.4.3.1   Protocol Initialization
	3.4.3.2   KeepAlive Listener

	3.4.4   KeepAlive Server Higher-Layer Triggered Events
	3.4.4.1   Closing a KeepAlive Connection
	3.4.4.2   Closing a POST Session
	3.4.4.3   Sending Application Data

	3.4.5   KeepAlive Server Message Processing Events and Sequencing Rules
	3.4.5.1   GET Session Processing
	3.4.5.1.1   Receiving a KeepAlive-GET-Request (Handshake)
	3.4.5.1.1.1   Handshake GET Response Processing
	3.4.5.1.1.2   Sending a KeepAlive-GET-Response with Status code 400

	3.4.5.1.2   Receiving a KeepAlive-GET-Request for Application Data

	3.4.5.2   POST Session Processing
	3.4.5.2.1   Receiving a KeepAlive-POST-Request (KeepAlive Handshake)
	3.4.5.2.2   Receiving a KeepAlive-POST-Request with Application Data
	3.4.5.2.3   Sending a KeepAlive-POST-Response with Status code 200
	3.4.5.2.3.1   Handshake POST Response Processing
	3.4.5.2.3.2   Application Data POST Response Processing

	3.4.5.2.4   Sending a KeepAlive-POST-Response with Status Code 400


	3.4.6   KeepAlive Server Timer Events
	3.4.6.1   ConnectionEstablishment Timer Event
	3.4.6.2   IdleConnection Timer
	3.4.6.3   KeepAlive Timer Event

	3.4.7   KeepAlive Server Other Local Events

	3.5   Polling Encapsulation Protocol Client Details
	3.5.1   Polling Client Abstract Data Model
	3.5.1.1   Connection State Information
	3.5.1.2   Proxy State Information
	3.5.1.3   Client State Information

	3.5.2   Polling Client Timers
	3.5.2.1   ConnectionEstablishment Timer
	3.5.2.2   Network Receive IO Timer
	3.5.2.3   Polling Encapsulation Timer

	3.5.3   Polling Client Initialization
	3.5.3.1   Protocol Initialization

	3.5.4   Polling Client Higher-Layer Triggered Events
	3.5.4.1   Establishing a Polling Encapsulation Connection
	3.5.4.1.1   Establishing POST Session without Proxy
	3.5.4.1.2   Establishing POST Session with Proxy

	3.5.4.2   Closing a Polling Connection
	3.5.4.3   Sending Application Data
	3.5.4.3.1   Sending Application Data without Proxy
	3.5.4.3.2   Sending Application Data through a Proxy


	3.5.5   Polling Client Message Processing Events and Sequencing Rules
	3.5.5.1   Polling-POST-Response Processing
	3.5.5.1.1   Status code: 200 (OK)
	3.5.5.1.1.1   When ConnectionState is Connecting (last handshake response)
	3.5.5.1.1.2   When ConnectionState is Established (Receiving Application Data)

	3.5.5.1.2   Status code: 400 (Bad Request)
	3.5.5.1.2.1   When PostSessionState is Probing
	3.5.5.1.2.2   All other PostSessionState States

	3.5.5.1.3   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication Required)
	3.5.5.1.4   All Other Status Codes
	3.5.5.1.5   Closing the POST Session
	3.5.5.1.6   Closing a Polling Connection because of Protocol Error


	3.5.6   Polling Client Timer Events
	3.5.6.1   ConnectionEstablishment Timer Event
	3.5.6.2   NetworkReceiveIO Timer Event
	3.5.6.3   Polling Encapsulation Timer

	3.5.7   Polling Client Other Local Events

	3.6   Polling Encapsulation Protocol Server Details
	3.6.1   Polling Server Abstract Data Model
	3.6.1.1   Connection State Information

	3.6.2   Polling Server Timers
	3.6.2.1   ConnectionEstablishment Timer

	3.6.3   Polling Server Initialization
	3.6.3.1   Protocol Initialization
	3.6.3.2   Polling Encapsulation Listener

	3.6.4   Polling Server Higher-Layer Triggered Events
	3.6.4.1   Closing a Polling Connection
	3.6.4.2   Closing a Polling Session
	3.6.4.3   Sending Application Data

	3.6.5   Polling Server Message Processing Events and Sequencing Rules
	3.6.5.1   Receiving a Polling-POST-Request (Initial Handshake Request)
	3.6.5.1.1   Sending a Polling-POST-Response with Status code 400 (Handshake)

	3.6.5.2   Receiving a Polling-POST-Request (Last Handshake Request)
	3.6.5.2.1   Sending a Polling-POST-Response with Status code 200 (OK)

	3.6.5.3   Receiving a Polling-POST-Request (After Handshake)

	3.6.6   Polling Server Timer Events
	3.6.6.1   ConnectionEstablishment Timer Event
	3.6.6.2   Polling Encapsulation Timer

	3.6.7   Polling Server Other Local Events

	3.7   Secure Tunnel Encapsulation of SSTP Protocol Client Details
	3.7.1   Secure Tunnel Client Abstract Data Model
	3.7.1.1   Connection State Information
	3.7.1.2   Proxy State Information

	3.7.2   Secure Tunnel Client Timers
	3.7.2.1   ConnectionEstablishment Timer
	3.7.2.2   NetworkReceiveIO Timer
	3.7.2.3   KeepAlive Timer

	3.7.3   Secure Tunnel Client Initialization
	3.7.3.1   Protocol Initialization
	3.7.3.2   Secure Tunnel Listener Endpoints
	3.7.3.3   Timers Started

	3.7.4   Secure Tunnel Client Higher-Layer Triggered Events
	3.7.4.1   Establishing a Secure Tunnel Encapsulation Connection
	3.7.4.1.1   Establishing a Secure Tunnel connection without proxy
	3.7.4.1.2   Establishing a Secure Tunnel connection with a proxy

	3.7.4.2   Closing a Secure Tunnel Connection
	3.7.4.3   Sending Application Data

	3.7.5   Secure Tunnel Client Message Processing Events and Sequencing Rules
	3.7.5.1   HTTP Response Processing
	3.7.5.1.1   Status code: 200
	3.7.5.1.2   Status code: 400 (Bad Request)
	3.7.5.1.3   Status codes: 401 (Unauthorized) and 407 (ProxyAuthentication Required)
	3.7.5.1.4   All Other Status Codes

	3.7.5.2   Application Data Processing

	3.7.6   Secure Tunnel Client Timer Events
	3.7.6.1   ConnectionEstablishment Timer Event
	3.7.6.2   NetworkReceiveIO Timer Event
	3.7.6.3   KeepAlive Timer Event

	3.7.7   Secure Tunnel Client Other Local Events

	3.8   Secure Tunnel Encapsulation of SSTP Protocol Server Details
	3.8.1   Secure Tunnel Server Abstract Data Model
	3.8.2   Secure Tunnel Server Timers
	3.8.2.1   SSTP KeepAlive Timer

	3.8.3   Secure Tunnel Server Initialization
	3.8.3.1   Secure Tunnel Encapsulation Listener

	3.8.4   Secure Tunnel Higher-Layer Triggered Events
	3.8.5   Secure Tunnel Server Message Processing Events and Sequence Rules
	3.8.6   Secure Tunnel Server Timer Events
	3.8.7   Secure Tunnel Server Other Local Events

	3.9   SOCKS Encapsulation of SSTP Protocol Client Details
	3.9.1   SOCKS Client Abstract Data Model
	3.9.1.1   Connection State Information
	3.9.1.2   Proxy State Information

	3.9.2   SOCKS Client Timers
	3.9.2.1   ConnectionEstablishment Timer
	3.9.2.2   NetworkReceiveIO Timer
	3.9.2.3   KeepAlive Timer

	3.9.3   SOCKS Client Initialization
	3.9.3.1   SOCKS Protocol Initialization

	3.9.4   SOCKS Client Higher-Layer Triggered Events
	3.9.4.1   Establishing a SOCKS Encapsulation Connection
	3.9.4.1.1   Establishing a SOCKS Encapsulation Connection

	3.9.4.2   Closing a SOCKS Connection
	3.9.4.3   Sending Application Data

	3.9.5   SOCKS Client Message Processing Events and Sequencing Rules
	3.9.5.1   SOCKS Connection Negotiation Processing
	3.9.5.1.1   Version Identifier Response
	3.9.5.1.2   Connect Request
	3.9.5.1.3   Connect Response

	3.9.5.2   Application Data Processing

	3.9.6   SOCKS Client Timer Events
	3.9.6.1   ConnectionEstablishment Timer Event
	3.9.6.2   NetworkReceiveIO Timer Event
	3.9.6.3   KeepAlive Timer Event

	3.9.7   SOCKS Client Other Local Events

	3.10   SOCKS Encapsulation of SSTP Protocol Server Details
	3.10.1   SOCKS Server Abstract Data Model
	3.10.2   SOCKS Server Timers
	3.10.3   SOCKS Server Initialization
	3.10.4   SOCKS Server Higher-Layer Triggered Events
	3.10.5   SOCKS Server Message Processing Events and Sequencing Rules
	3.10.6   SOCKS Server Timer Events
	3.10.7   SOCKS Server Other Local Events


	4   Protocol Examples
	4.1   HTTP LongLived Encapsulation Examples
	4.2   HTTP KeepAlive Encapsulation Examples
	4.3   HTTP Polling Encapsulation Examples
	4.4   Secure Tunnel Proxy Protocol Examples
	4.5   SOCKS Proxy
	4.6   Proxy Authentication using NTLM Example

	5   Security
	5.1   Security Considerations for Implementers
	5.2   Index of Security Parameters

	6   Appendix A: Product Behavior
	7   Change Tracking
	8   Index

