[MS-FQL2]: Fast Query Language Version 2 Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

- Technical Documentation. Microsoft publishes Open Specifications documentation for protocols, file formats, languages, standards as well as overviews of the interaction among each of these technologies.
- Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you may make copies of it in order to develop implementations of the technologies described in the Open Specifications and may distribute portions of it in your implementations using these technologies or your documentation as necessary to properly document the implementation. You may also distribute in your implementation, with or without modification, any schema, IDL's, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications.
- No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
- Patents. Microsoft has patents that may cover your implementations of the technologies described in the Open Specifications. Neither this notice nor Microsoft's delivery of the documentation grants any licenses under those or any other Microsoft patents. However, a given Open Specification may be covered by Microsoft Open Specification Promise or the Community Promise. If you would prefer a written license, or if the technologies described in the Open Specifications are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
- Trademarks. The names of companies and products contained in this documentation may be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
- Fictitious Names. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments you are free to take advantage of them. Certain Open Specifications are intended for use in conjunction with publicly available standard specifications and network programming art, and assumes that the reader either is familiar with the aforementioned material or has immediate access to it.

Revision Summary

Date	Revision History	Revision Class	Comments		
$01 / 20 / 2012$	0.1	New	Released new document.		
$04 / 11 / 2012$	0.1	No change	No changes to the meaning, language, or formatting of the technical content.		
$07 / 16 / 2012$	0.1	No change	No changes to the meaning, language, or formatting of the technical content.		
$09 / 12 / 2012$	0.1	No change	No changes to the meaning, language, or formatting of the technical content.		
$10 / 08 / 2012$	1.0	Minor	Significantly changed the technical content.		
$02 / 11 / 2013$	1.1	Minor	Clarified the meaning of the technical content.		
$07 / 30 / 2013$	1.2	1.2	No change		No changes to the meaning, language, or formatting of the technical content.
:---					
the technical content.					
$11 / 18 / 2013$					
$02 / 10 / 2014$					
1.2					

Table of Contents

1 Introduction 5
1.1 Glossary 5
1.2 References 5
1.2.1 Normative References 5
1.2.2 Informative References 5
1.3 Overview 6
1.4 Relationship to Protocols and Other Structures 6
1.5 Applicability Statement 6
1.6 Versioning and Localization 6
1.7 Vendor-Extensible Fields 6
2 Structures 7
2.1 Operators 11
2.1.1 : Operator 11
2.1.2 and Operator 11
2.1.3 andnot Operator 11
2.1.4 any Operator 11
2.1.5 count Operator 12
2.1.6 ends-with Operator 12
2.1.7 equals Operator 12
2.1.8 filter Operator 12
2.1 .9 near Operator 12
2.1.10 not Operator 13
2.1.11 onear Operator 13
2.1.12 or Operator 13
2.1.13 rank Operator 13
2.1.14 starts-with Operator 13
2.1.15 words Operator 14
2.1.16 xrank Operator 14
2.1.16.1 xrank Formula 14
2.1.16.2 xrank Legacy Syntax 15
2.1.17 Token Operators 15
2.1.17.1 datetime Token Operator 15
2.1.17.2 decimal Token Operator 15
2.1.17.3 float Token Operator 16
2.1.17.4 int Token Operator 16
2.1.17.5 phrase Token Operator 16
2.1.17.6 range Token Operator 16
2.1.17.7 string Token Operator 17
2.2 Keywords 19
2.2.1 max Keyword 19
2.2.2 min Keyword 19
3 Structure Examples 20
3.1 Operators 20
3.1 .1 : Operator 20
3.1 .2 and Operator 20
3.1.3 andnot Operator 20
3.1.4 any Operator 20
3.1.5 count Operator 20
3.1.6 ends-with Operator 21
3.1 .7 equals Operator 21
3.1.8 filter Operator. 21
3.1 .9 near Operator 21
3.1.10 not Operator 22
3.1.11 onear Operator 22
3.1.12 or Operator. 23
3.1.13 rank Operator 23
3.1.14 starts-with Operator 23
3.1 .15 words Operator 23
3.1.16 xrank Operator. 23
3.1.16.1 xrank Legacy Syntax 24
3.1.17 Token Operator 24
3.1.17.1 datetime Token Operator 24
3.1.17.2 decimal Token Operator 24
3.1.17.3 float Token Operator 24
3.1.17.4 int Token Operator 25
3.1.17.5 phrase Token Operator 25
3.1.17.6 range Token Operator 25
3.1.17.7 string Token Operator 26
3.2 Keywords 27
3.2.1 max Keyword 27
3.2.2 min Keyword 27
4 Security 28
4.1 Security Considerations for Implementers 28
4.2 Index of Security Fields 28
5 Appendix A: Product Behavior 29
6 Change Tracking 30
7 Index 31

1 Introduction

The Fast Query Language (FQL) structure specifies a language for expressing search criteria.
Sections 1.7 and 2 of this specification are normative and contain RFC 2119 language. All other sections and examples in this specification are informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

```
Augmented Backus-Naur Form (ABNF)
Coordinated Universal Time (UTC)
UTF-8
```

The following terms are defined in [MS-OFCGLOS]:

```
default index
dynamic rank
dynamic teaser
internal property
managed property
query processing
result set
search service application
stemming
token
```

The following terms are specific to this document:
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

References to Microsoft Open Specification documents do not include a publishing year because links are to the latest version of the documents, which are updated frequently. References to other documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt
[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC 5234, January 2008, http://www.rfc-editor.org/rfc/rfc5234.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-FQL2] - v20140721

Fast Query Language Version 2 Protocol
Copyright © 2014 Microsoft Corporation.
Release: July 31, 2014
[MS-KQL] Microsoft Corporation, "Keyword Query Language Structure Protocol".
[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary".
[MS-SEARCH] Microsoft Corporation, "Search Protocol".

1.3 Overview

Application implementers use FQL to express criteria for searching. A typical scenario for using FQL is an application that enables users to search for items and browse results.

An FQL expression consists of search tokens and operators. A search token consists of a value or range of values to search for, and an operator specifies how to include, exclude, and rank the search results. Examples of operators include and, andnot, or, not, and near.

The and operator applies when the user wants items that match all operands.
A search query that uses the andnot operator returns items that match only the first operand, and it excludes items that match subsequent operands.

An or operator expression returns items that match any of the operands.
The not operator excludes items that match the operand.
The near operator matches items based on the proximity of indexed tokens that match the operands.

An FQL expression can just consist of either a single search token or a single operator expression. Many operators can also accept FQL expressions as operands, which permits FQL expressions to be nested.

1.4 Relationship to Protocols and Other Structures

The Search Protocol uses FQL as described in [MS-SEARCH].
An FQL string token supports a Keyword Query Language (KQL) mode as described in [MS-KQL].

1.5 Applicability Statement

Application implementers use FQL for searches when they use the Search Protocol (as described in [MS-SEARCH]) if the Keyword Query Language (as described in [MS-KQL]) does not provide the capabilities that they need. FQL is not a search language for end users.

1.6 Versioning and Localization

None.

1.7 Vendor-Extensible Fields

None.

2 Structures

An FQL expression consists of search tokens and operators. A search token consists of a value or a range of values to search for, and an operator specifies how to include, exclude, or rank the search results.

The query processing component evaluates each token according to its type, which is expressed either implicitly or explicitly.

An operator MUST precede its operands. The operands MUST be comma-delimited and contained within parentheses. Where noted in the following subsections, operands can have named parameters that consist of a name and value separated by an equal sign.

Although FQL keywords are not case sensitive, lowercase is suggested for future compatibility. To be interpreted as a search token, a keyword MUST be contained within double quotation marks. Any word that is not a keyword MUST be interpreted as a search token.

The following list contains the FQL operators and keywords:

- :
- and
- andnot
- any
- count
- datetime
- decimal
- ends-with
- equals
- filter
- float
- int
- max
- min
- near
- not
- onear
- or
- phrase
- range

- rank

- starts-with
- string
- words
- xrank

Unless an FQL expression is qualified with the : operator as specified in section 2.1.1, the search service application MUST search the default index.

The structure of an FQL expression corresponds to the following rules, which themselves conform to Augmented Backus-Naur Form (ABNF) as specified in [RFC5234].

```
fql-expression = (operator-expression / paren-expression / token)
operator-expression = [in-expression] (and / andnot / any / or / words
    / rank / xrank / near / onear / not / equals / filter / starts-with
    / ends-with / count)
paren-expression = [in-expression] "(" fql-expression ")"
token = [in-expression] (datetime-token / decimal-token / float-token
    / int-token / phrase-token / range-token / string-token)
; Operator expressions
and = "and" "(" multiple-fql-params ")"
andnot = "andnot" "(" multiple-fql-params ")"
any = "any" "(" multiple-fql-params ")"
or = "or" "(" multiple-fql-params ")"
words = "words" "(" multiple-fql-params ")"
rank = "rank" "(" rank-param *("," rank-param) ")"
rank-param = fql-expression
xrank = "xrank" "(" xrank-param *("," xrank-param) ")"
xrank-param = ("pb" "=" float-value)
    / ("rb" "=" float-value)
    / ("cb" "=" float-value)
    / ("avgb" "=" float-value)
    / ("stdb" "=" float-value)
    / ("nb" "=" float-value)
    / ("n" "=" integer-value)
    / ("boost" "=" integer-value)
    / ("boostall" "=" yesno-value)
    / fql-expression
near = "near" "(" near-param *("," near-param) ")"
near-param = ("N" "=" token-distance) / fql-expression
onear = "onear" "(" onear-param *("," onear-param) ")"
onear-param = ("N" "=" token-distance) / fql-expression
not = "not" "(" fql-expression ")"
count = "count" "(" token
    1*("," (("from" "=" int-token) / ("to" "=" int-token))) ")"
```

[MS-FQL2] - v20140721
Fast Query Language Version 2 Protocol
Copyright © 2014 Microsoft Corporation.
Release: July 31, 2014

```
equals = "equals" "("
    [in-expression] (string-token / phrase-token) ")"
starts-with = "starts-with" "("
    [in-expression] (string-token / phrase-token) ")"
ends-with = "ends-with" "("
    [in-expression] (string-token / phrase-token) ")"
filter = "filter" "(" fql-expression ")"
; Token operator expressions
phrase-token = "phrase" "(" phrase-token-param
    *("," phrase-token-param) ")"
phrase-token-param = ("weight" "=" unsigned-integer-value)
    / ("linguistics" "=" onoff-value)
    / ("wildcard" "=" onoff-value)
    / token
string-token = explicit-string-token / implicit-string-token
explicit-string-token = "string" "(" string-token-param
    *("," string-token-param) ")"
string-token-param = ("mode" "=" mode-value)
    / ("N" "=" token-distance)
    / ("weight" "=" integer-value)
    / ("linguistics" "=" onoff-value)
    / ("wildcard" "=" onoff-value)
    / token
implicit-string-token = string-value
float-token = explicit-float-token / implicit-float-token
explicit-float-token = "float" "(" (float-value
    / (DQUOTE float-value DQUOTE) / "min" / "max") ")"
implicit-float-token = float-value
int-token = explicit-int-token / implicit-int-token
explicit-int-token = "int" "(" (integer-value
    / (DQUOTE integer-value DQUOTE) / "min" / "max"
    / (DQUOTE integer-value *(SP integer-value) DQUOTE "," numeric-or-mode)
    / (numeric-or-mode "," DQUOTE integer-value *(SP integer-value) DQUOTE))
        ")"
implicit-int-token = integer-value
datetime-token = explicit-datetime-token / implicit-datetime-token
explicit-datetime-token = "datetime" "(" (datetime-value
    / (DQUOTE datetime-value DQUOTE) / "min" / "max") ")"
implicit-datetime-token = datetime-value
decimal-token = explicit-decimal-token / implicit-decimal-token
explicit-decimal-token = "decimal" "(" (decimal-value
    / (DQUOTE decimal-value DQUOTE) / "min" / "max") ")"
implicit-decimal-token = decimal-value
range-token = "range" "(" range-token-param *("," range-token-param)
        ")"
range-token-param = ("from" "=" from-condition)
        / ("to" "=" to-condition)
        / range-limit
range-limit = datetime-token / float-token / int-token
        / "min" / "max"
from-condition = unquoted-from-condition
```

[MS-FQL2] - v20140721
Fast Query Language Version 2 Protocol

Copyright © 2014 Microsoft Corporation.

Release: July 31, 2014

```
    / (DQUOTE unquoted-from-condition DQUOTE)
unquoted-from-condition = "GE" / "GT"
to-condition = unquoted-to-condition
    / (DQUOTE unquoted-to-condition DQUOTE)
unquoted-to-condition = "LE" / "LT"
; Data types
string-value = quoted-string-value / unquoted-string-value
; <quoted-string-value> can contain any characters
; (including wide characters) that are not control
; characters, except for backslash and double quotation marks
quoted-string-value = DQUOTE 1*(quoted-escaped-character
    / %x20-21 / %x23-5b / %x5d-ffffffff) DQUOTE
quoted-escaped-character =
    quoted-escaped-backslash
    / quoted-escaped-newline
    / quoted-escaped-carriage-return
    / quoted-escaped-tab
    / quoted-escaped-backspace
    / quoted-escaped-form-feed
    / quoted-escaped-double-quote
    / quoted-escaped-single-quote
quoted-escaped-backslash = "\\"
quoted-escaped-newline = "\n"
quoted-escaped-carriage-return = "\r"
quoted-escaped-tab = "\t"
quoted-escaped-backspace = "\b"
quoted-escaped-form-feed = "\f"
quoted-escaped-double-quote = "\" DQUOTE
quoted-escaped-single-quote = "\'"
; <unquoted-string-value> can contain any characters (including wide
; characters) that are not control characters, except for spaces, commas,
; double quotation marks, parentheses, colons, and equals signs.
unquoted-string-value =
    1*(%x21 / %x23-27 / %x2a-2b / %x2d-39 / %x3b-3c / %x3e-ffffffffff)
integer-value = ["-" / "+"] 1*DIGIT
unsigned-integer-value = 1*DIGIT
float-value = ["-" / "+"] (*DIGIT "." 1*DIGIT) / 1*DIGIT
decimal-value = float-value ["m" / "M"]
datetime-value = year "-" month "-" day
    "T" hour ":" minute ":" second ["." fraction] ["Z"]]
year = 4DIGIT ; four-digit year
month = ("O" DIGIT) ; two-digit month (00-09)
    / ("1" %x30-32) ; two digit month (10-12)
day = (%x30-32 DIGIT) ; two-digit day (00-29)
    / ("3" %x30-31) ; two-digit day (30-31)
hour = (%x30-31 DIGIT) ; two-digit hour (00-19)
    / ("2" %x30-33) ; two-digit hour (20-23)
minute = (%x30-35 DIGIT) ; two-digit minute (00-59)
second = (%x30-35 DIGIT) ; two-digit second (00-59)
fraction = 1*7DIGIT ; 1-7 digit second fractions
yesno-value = quoted-yesno-value / unquoted-yesno-value
quoted-yesno-value = DQUOTE unquoted-yesno-value DQUOTE
unquoted-yesno-value = "YES" / "NO"
```

[MS-FQL2] - v20140721
Fast Query Language Version 2 Protocol

Copyright © 2014 Microsoft Corporation.

Release: July 31, 2014

```
onoff-value = quoted-onoff-value / unquoted-onoff-value
quoted-onoff-value = DQUOTE unquoted-onoff-value DQUOTE
unquoted-onoff-value = "ON" / "OFF"
; <mode-value> MUST be inside double quotation marks.
mode-value = DQUOTE ("PHRASE" / "AND" / "OR" / "ANY" / "NEAR"
    / "ONEAR" / "SIMPLEANY" / "SIMPLEALL" / "KQL") DQUOTE
; General syntax elements
in-expression = ((internal-property-name / property-name) ":")
    / (DQUOTE (internal-property-name / property-name) DQUOTE ":")
numeric-or-mode = "mode" "=" DQUOTE "OR" DQUOTE
token-distance = unsigned-integer-value
internal-property-name = property-name "." property-name
property-name = 1*(ALPHA / DIGIT)
multiple-fql-params = fql-expression 1*("," fql-expression)
```

For readability, the preceding rules assume that no extra white space exists in the FQL expression. However, FQL does permit white space to immediately precede and follow parentheses, commas, operators, keywords, and tokens.

Also, although ABNF [RFC5234] does not explicitly support any encoding other than US-ASCII, the quoted-string-value and unquoted-string-value elements support wide character values that have UTF-8 encoding.

2.1 Operators

2.1.1 : Operator

The : operator functions as an "in" operator. The name of a managed property or an internal property MUST precede the : operator, and an operator expression, a token, or a parenthetical expression MUST follow the : operator. The : operator specifies that the subsequent operator expression, token, or parenthetical expression MUST match the specified managed property or internal property (unless another: operator overrides that : operator). An ":" operator is overridden if one of the subsequent operators is another ":" operator with a different managed property or internal property preceding the ":" operator.

2.1.2 and Operator

The and operator MUST specify two or more FQL expression operands. To be returned as a match, an item MUST match all of the operands.

2.1.3 andnot Operator

The andnot operator MUST specify two or more FQL expression operands. To be returned as a match, an item MUST match the first operand but MUST NOT match any of the subsequent operands.

2.1.4 any Operator

The any operator is deprecated, and could be removed in a future version of this specification. It is not recommended for use. Use the words (section 2.1.15) operator instead. The any operator MUST be mapped to the or operator.

The any operator MUST specify two or more FQL expression operands. To be returned as a match, an item MUST match at least one of the operands.

2.1.5 count Operator

The count operator MUST specify exactly one operand, which in turn MUST specify a string token or phrase token to be matched. In addition, one or both of the named parameters from and to MUST be specified.

The value of the from named parameter MUST be a positive integer that specifies the inclusive minimum number of times that the specified string token or phrase token MUST be matched. If the from parameter is not specified, no lower limit will exist.

The value of the to named parameter MUST be a positive integer that specifies the non-inclusive maximum number of times that the specified string token or phrase token MUST be matched. For example, a to value of 11 specifies 10 times or fewer. If the to parameter is not specified, no upper limit will exist.

2.1 .6 ends-with Operator

The ends-with operator MUST specify exactly one operand, which in turn MUST specify a string token or a phrase token. The ends-with operator MUST match only managed properties that end with the specified string token or phrase token.

2.1.7 equals Operator

The equals operator MUST specify exactly one operand, which in turn MUST specify a string token or a phrase token. The equals operator MUST match only managed properties that contain the specified string token or phrase token and that do not contain any extra indexed tokens.

2.1.8 filter Operator

The filter operator MUST specify exactly one operand. The filter operator is for querying metadata or other structured data.

When a query processing component evaluates the filter operator, the following applies for the filter operand (but not any part of the query outside the filter operator):

- The linguistic features MUST be off by default.
- Ranking MUST be disabled.
- Highlighting MUST NOT be applied to the dynamic teaser.

Linguistic features can be explicitly enabled for tokens in a filter operand, see the linguistics named parameter specified in section 2.1.17.5 and section 2.1.17.7. Linguistic features are features used to improve search relevancy, like lemmatization, synonyms, and spell checking.

2.1.9 near Operator

The near operator MUST specify two or more operands, which in turn MUST each specify an expression to be matched.

If the N named parameter is specified, it specifies the maximum number of interspersed, unmatched, indexed tokens. If N is not specified, the maximum number is set to 4 .

To match the operands of the near operator, the managed property MUST match all of the specified expressions, with no more than the specified number of interspersed, unmatched, indexed tokens.

The following MUST be accepted as legal operands of the near operator:

- string token operator (section 2.1.17.7) expression
- phrase token operator (section 2.1.17.5) expression
- any operator (section 2.1.4) expression
- or operator (section 2.1.12) expression
- near operator (section 2.1.9) expression
- words operator (section 2.1.15) expression

Other expressions MUST NOT be accepted as legal operands.
If two operands match the same indexed token, the matches MUST be considered near each other.

2.1.10 not Operator

The not operator MUST specify exactly one FQL expression operand. To be returned as a match, an item MUST NOT match the operand.

2.1.11 onear Operator

The onear (ordered near) operator functions in the same way that the near operator does (as specified in section 2.1.9), except that each operand MUST match the searched items in the specified order.

For example, an onear operation on the string tokens "string1" and "string2" with the parameter N (token distance) set to 1 matches "string1 string2", but does not match "string2 string1".

2.1.12 or Operator

The or operator MUST specify two or more FQL expression operands. To be returned as a match, an item MUST match at least one of the operands. Each matching operand SHOULD increase the item's dynamic rank. The degree of increase is implementation-specific.

2.1.13 rank Operator

The rank operator is deprecated, and could be removed in a future version of this specification. It is not recommended for use. Use the xrank (section 2.1.16) operator instead. The rank operator MUST be ignored.

2.1.14 starts-with Operator

The starts-with operator MUST specify exactly one operand, which in turn MUST specify a string token or phrase token to be matched. The starts-with operator MUST match only managed properties that start with the specified string token or phrase token.

2.1.15 words Operator

The words operator MUST specify two or more string or phrase token operands. To be returned as a match, an item MUST match at least one of the operands. The words operator differs from the or (section 2.1.12) operator in the way results are ranked, and for words the operands are treated as synonyms.

2.1.16 xrank Operator

The xrank operator allows dynamic control over ranking. It boosts the dynamic rank of items based on certain term occurrences without changing which items match the query.

An xrank expression MUST contain one expression operand to be matched (called the match expression), and zero or more expression operands (called rank expressions) that contribute only to dynamic rank and MUST NOT affect which items are returned as matches. Each matching rank expression will add a boost value to the item's total rank. If no rank expression is explicitly provided, then the match expression will implicitly be used as the rank expression.

The named parameters in the following table are valid with the xrank operator:

Named parameter	Default value	0
$c b$	0	Description Spection 2.1.16.1).
$r b$	0	Specifies the range boost, which corresponds to b in the xrank formula. This factor is multiplied with the range of rank values in the result set.
$p b$	0	Specifies the percentage boost, which corresponds to c in the xrank formula. This factor is multiplied with the item's own rank compared to the minimum value in the result set.
$a v g b$	0	Specifies the average boost, which corresponds to d in the xrank formula. This factor is multiplied with the average rank value of the result set.
$s t d b$	0	Standard deviation boost, which corresponds to e in the xrank formula. This factor is multiplied with the standard deviation of the rank values of the result set.
$n b$	0	Normalized boost, which corresponds to f in the xrank formula. This factor is multiplied with the product of the variance and average score of the rank values of the result set.
n		Number of results from which to compute statistics. This parameter does not affect the number of results to which the xrank contributes; it is just a means to exclude "irrelevant" documents from the statistics calculations.

If an xrank operator expression is using the current syntax, at least one of the parameters $c b, r b$, $p b, a v g b, s t d b$, or $n b$ MUST be specified.

If an xrank operator expression is using the legacy syntax, the parameters $c b, r b, p b, a v g b, s t d b$, and $n b$ MUST NOT be specified.

2.1.16.1 xrank Formula

The following formula is used for calculating rank values:

[MS-FQL2] - v20140721

Fast Query Language Version 2 Protocol
Copyright © 2014 Microsoft Corporation.
Release: July 31, 2014
$r_{i}=a+b \cdot(\max -\min)+c \cdot\left(r_{i}-\min \right)+d \cdot \bar{x}+e \cdot \sigma+f \cdot \frac{\bar{x} \cdot \sigma^{2}}{\overline{x^{2}}}$
Where the following holds:

- r_{i} is the rank value of the $\mathrm{i}^{\text {th }}$ hit
- max is the maximum rank value among hits
- min is the minimum rank value among hits
- \bar{x} is the average rank value of the hits
- $\quad \sigma$ is the square root of the variance of the rank values
- $\overline{x^{2}}$ is the average of the squared rank values
- $\quad a, b, c, d, e$ and f are the XRANK parameters

2.1.16.2 xrank Legacy Syntax

The xrank operator has legacy syntax. This legacy syntax SHOULD be supported as well as the new syntax.

The named parameters in the following table are used in the legacy xrank syntax. They are deprecated, and could be removed in a future version of this specification. It is recommended to not use the legacy named parameters. These parameters MUST NOT be used in combination with the parameters for the current syntax (see the table of named parameters in section 2.1.16).

Named parameter	Default value	Description
boost	100	This value SHOULD be directly mapped to $c b$, the constant boost. Mapping is a data type conversion from integer to float, and no normalization is applied. Normalization here means normalizing a floating-point number to a number that is expressed in exponential notation.
boostall	"no"	This value SHOULD be ignored.

If no named parameter is specified for the xrank operator, then the query SHOULD be handled as according to the legacy syntax with boost having the default value 100.

2.1.17 Token Operators

2.1.17.1 datetime Token Operator

The datetime token operator MUST specify exactly one operand, which in turn MUST specify a token value. The token value MUST be a valid datetime-value as specified by the ABNF rules in section 2 .

The datetime token operator MUST be assumed for any valid datetime-value that is not enclosed in double quotation marks.

Every datetime-value MUST be specified according to Coordinated Universal Time (UTC).

2.1.17.2 decimal Token Operator

The decimal token operator MUST specify exactly one operand, which in turn MUST specify a token value.

The decimal token operator MUST be assumed for numeric text (a valid decimal-value) that has the " m " or " M " suffix, unless that text is enclosed in double quotation marks.

2.1.17.3 float Token Operator

The float token operator MUST specify exactly one operand, which in turn MUST specify a token value.

The float token operator MUST be assumed for numeric text (a valid float-value) that contains a decimal point, unless that text is enclosed in double quotation marks.

2.1.17.4 int Token Operator

The int token operator MUST specify exactly one operand, which in turn MUST specify a token value.

If the mode named parameter is specified and equals the value "OR", the token value MUST be a space-delimited list of token values that are enclosed in double quotation marks and MUST be evaluated as if the values were operands for an or (section 2.1.12) operator.

The int token operator MUST be assumed for numeric text (a valid integer-value) that is not enclosed in double quotation marks, unless that text contains a decimal point.

2.1.17.5 phrase Token Operator

The phrase token operator MUST specify one or more string token operands.
The phrase operator MUST match items that contain indexed tokens that match the operands, uninterrupted and in the exact order in which they are specified.

The phrase operator supports the weight, linguistics, and wildcard named parameters as specified in section 2.1.17.7.

2.1.17.6 range Token Operator

The range token operator MUST specify two numeric operands of the same type (float, int, or datetime). The first operand specifies the range start, and the second operand specifies the range end. If the range operator is used to query for a managed property (using the : operator (section 2.1.1)), the managed property MUST be of a compatible type.

The named parameters in the following table are valid with the range operator.

Named parameter	Default value	Description
from	"GE"	Specifies the condition for evaluating the start operand.
to	"LT"	Specifies the condition for evaluating the end operand.

The values in the following table are valid for the from named parameter.

Value	Description
"GE"	Specifies that matching values MUST be greater than or equal to the value of the start operand.
"GT"	Specifies that matching values MUST be greater than the value of the start operand.

[MS-FQL2] - v20140721

Fast Query Language Version 2 Protocol
Copyright © 2014 Microsoft Corporation.
Release: July 31, 2014

The values in the following table are valid for the to named parameter.

Value	Description
"LE"	Specifies that matching values MUST be less than or equal to the value of the end operand.
"LT"	Specifies that matching values MUST be less than the value of the end operand.

2.1.17.7 string Token Operator

The string token operator MUST specify exactly one operand, which in turn MUST specify a token value. The operand is case insensitive. That is, a query processing component MUST ignore case when it compares the operand to the searched items.

If the operand is numeric, it MUST be converted to a string and evaluated as such.
The string token operator MUST be assumed for text that is not enclosed in double quotation marks, unless that text is a keyword or contains another explicit token operator. The string token operator MUST be assumed for all text that is enclosed in double quotation marks.

The named parameters in the following table are valid with the string token operator.

Named parameter	Default value	"PHRASE"
mode	4	Specifies how the text operand MUST be evaluated. The value of the mode named parameter MUST be enclosed within double quotation marks.
N	100	This parameter is deprecated, and could be removed in a future version of this specification. It is recommended not to use it. The parameter MUST be ignored.
weight	"ON"	Specifies a positive integer, which in turn specifies the relative weight of the dynamic rank of this string token.
linguistics	Specifies whether linguistic features will be enabled when a query processing component evaluates the string.	
wildcard	"ON"	Specifies whether to support wildcards in the string.

The values in the following table are valid for the mode named parameter.

Value	Description
"PHRASE"	Specifies that the text MUST be evaluated as a phrase. Using this value is equivalent to using the phrase (section 2.1.17.5) operator.
"AND"	Specifies that the text MUST be evaluated as a list of tokens provided to the and (section $\underline{2.1 .2})$ operator.
"OR"	Specifies that the text MUST be evaluated as a list of tokens provided to the or (section $\underline{2.1 .12) ~ o p e r a t o r . ~}$
"ANY"	Specifies that the text MUST be evaluated as a list of tokens provided to the any (section $\underline{2.1 .4})$ operator.
"KQL"	Specifies that the text MUST be evaluated as a query according to the KQL syntax as

[MS-FQL2] - v20140721
Fast Query Language Version 2 Protocol
Copyright © 2014 Microsoft Corporation.
Release: July 31, 2014

Value	Description
	described in [MS-KQL].
"NEAR"	This mode is deprecated, and could be removed in a future version of this specification. It is not recommended for use; use the near (section 2.1.9) operator explicitly instead. This value MUST be mapped to the "AND" mode.
"ONEAR"	This mode is deprecated, and could be removed in a future version of this specification. It is not recommended for use; use the onear (section 2.1.11) operator explicitly instead. This value MUST be mapped to the "AND" mode.
"SIMPLEALL"	This mode is deprecated, and could be removed in a future version of this specification. It is not recommended for use; use the "KQL" mode instead. This value MUST be mapped to the "KQL" mode.
"SIMPLEANY"	This mode is deprecated, and could be removed in a future version of this specification. It is not recommended for use; use the "KQL" mode instead. This value MUST be mapped to the "KQL" mode.

The values in the following table are valid for the linguistics named parameter.

Value	Description
"ON"	Specifies that linguistic features MUST be applied.
"OFF"	Specifies that linguistic features MUST NOT be applied.

The values in the following table are valid for the wildcard named parameter.

Value	Description
"ON"	Specifies that the character "*" MUST be evaluated as a wildcard. A "*" character matches zero or more characters. Prefix searching (a "*" at the end of the string token) MUST be supported, infix and suffix searching MAY be supported.
"OFF"	Specifies that the character "*" MUST NOT be evaluated as a wildcard.

The escaped strings in the following table are valid within quoted strings to represent reserved characters.

Escaped string	Hexadecimal character code	Description
$\backslash \backslash$	$5 C$	Backslash.
$\backslash n$	0 A	Line feed or newline.
$\backslash r$	$0 D$	Carriage return.
$\backslash t$	09	Tab.
$\backslash b$	08	Backspace.
$\backslash f$	$0 C$	Form feed.
$\backslash "$	22	Double quotation mark.
\backslash^{\prime}	27	Single quotation mark or apostrophe.

[MS-FQL2] - v20140721
Fast Query Language Version 2 Protocol
Copyright © 2014 Microsoft Corporation.
Release: July 31, 2014

2.2 Keywords

2.2.1 max Keyword

When specified as a range operand in place of a numeric value, the max keyword MUST represent the maximum value for the expected type.

When specified as an operand for the datetime (section 2.1.17.1), decimal (section 2.1.17.2), float (section 2.1.17.3), or int (section 2.1.17.4) token operators, the max keyword MUST represent the maximum value for the given operator.

2.2.2 min Keyword

When specified as a range operand in place of a numeric value, the min keyword MUST represent the minimum value for the expected type.

When specified as an operand for the datetime (section 2.1.17.1), decimal (section 2.1.17.2), float (section 2.1.17.3), or int (section 2.1.17.4) token operator, the min keyword MUST represent the minimum value for the given operator.

3 Structure Examples

3.1 Operators

3.1.1 : Operator

Each of the following expressions matches items that have both "much" and "nothing" in the title managed property.

```
title:and(much, nothing)
and(title:much, title:nothing)
title:string("much nothing", mode="and")
```


3.1 .2 and Operator

The following expression matches items for which the default index contains "cat", "dog", and "fox".

```
and(cat, dog, fox)
```


3.1.3 andnot Operator

The following expression matches items for which the default index contains "cat" but not "dog".

```
andnot(cat, dog)
```

The following expression matches items for which the default index contains "dog" but neither "beagle" nor "chihuahua".

```
andnot(dog, beagle, chihuahua)
```


3.1.4 any Operator

The following expression matches items for which the default index contains "cat" or "dog".

```
any(cat, dog)
```


3.1.5 count Operator

The following expression matches at least 5 occurrences of the word "cat".

```
count(cat, from=5)
```

The following expression matches at least 5 but not 10 or more occurrences of the word "cat".

```
count(cat, from=5, to=10)
```


3.1.6 ends-with Operator

The following expression matches all the items for which the title managed property ends with "Odyssey".

```
title:ends-with("Odyssey")
```


3.1.7 equals Operator

The following expression matches all the items for which the title managed property is "The Iliad" and for which no extra indexed tokens exist.

```
title:equals("The Iliad")
```


3.1.8 filter Operator

The following expression matches items that have a title managed property that contains "sonata" and a doctype managed property that contains only the token "audio".

```
and(title:sonata, filter(doctype:equals("audio")))
```

For the preceding expression, no linguistic processing will be performed on "audio". And because the filter operator will be used to match "audio", that text will not be highlighted in the dynamic teaser.

3.1.9 near Operator

The following expression matches strings that contain both "cat" and "dog" as long as no more than four (the default number) indexed tokens separate them.

```
near(cat, dog)
```

The following expression matches strings that contain "cat", "dog", "fox", and "wolf" as long as no more than four indexed tokens separate them.

```
near(cat, dog, fox, wolf)
```

The following table contains examples of managed property string values and states whether they match the preceding expression.

Match?	Text
Yes	The picture shows a cat, a dog, a fox, and a wolf.
Yes (with stemming)	Dogs, foxes, and wolves are canines, but cats are felines.
No	The picture shows a cat with a dog, a fox, and a wolf.

The following expression matches all the strings in the preceding table.

```
near(cat, dog, fox, wolf, N=5)
```

If multiple operands of the near operator match the same indexed token, they are considered near each other. For example, the following expression matches a managed property that contains only the indexed token "clarinet" because both "cl*" and "clarinet" match and are considered near each other, even though both search tokens match the same indexed token. The search token "cl*" is evaluated through wildcards as specified in section 2.1.17.7.

```
near("cl*", "clarinet")
```


3.1.10 not Operator

The following expression matches items that do not contain "aardvark".

```
not(aardvark)
```


3.1.11 onear Operator

The following expression matches every occurrence of the word "cat" that appears before the word "dog", as long as no more than four (the default number) indexed tokens separate them.

```
onear(cat, dog)
```

The following expression matches all the occurrences of the words "cat", "dog", "fox", and "wolf" that appear in order, as long as no more than four indexed tokens separate them.

```
onear(cat, dog, fox, wolf)
```

The following table contains examples of managed property string values and states whether they match the preceding expression.

Match?	Text
Yes	The picture shows a cat, a dog, a fox, and a wolf.
No	Dogs, foxes, and wolves are canines, but cats are felines.
No	The picture shows a cat with a dog, a fox, and a wolf.

The following expression matches (with stemming) the text in the second row of the preceding table.

```
onear(dog, fox, wolf, cat, N=5)
```

The following expression matches the text in the first and third rows of the preceding table.

```
onear(cat, dog, fox, wolf, N=5)
```


3.1.12 or Operator

The following expression matches all the items for which the default index contains either "cat" or "dog".

```
or(cat, dog)
```

If an item's default index contains both "cat" and "dog", it will match and have a higher dynamic rank than it would if it contained only one of the tokens.

3.1.13 rank Operator

The rank operator is deprecated. The following expression and any other rank expressions will be ignored.

```
rank(dog, cat)
)
```


3.1.14 starts-with Operator

The following expression matches items for which the title managed property begins with "Yet another".

```
title:starts-with("Yet another")
```


3.1.15 words Operator

The following expression matches all the items for which the default index contains either "TV" or "television".

```
words(TV, television)
```

When using the words operator, the terms "TV" and "television" are treated as synonyms instead of separate terms. Therefore, instances of either term are ranked as if they were the same term.

3.1.16 xrank Operator

The following expression matches items for which the default index contains "cat" or "dog". The expression boosts the dynamic rank of those items that also contains "thoroughbred". The constant boost is set to 100 .

```
xrank(or(cat, dog), thoroughbred, cb=100)
```

The following expression matches items for which the default index contains "cat" or "dog". The expression boosts the dynamic rank of those items that also contains "thoroughbred". The normalized boost is set to 1.5 .

```
xrank(or(cat, dog), thoroughbred, nb=1.5)
```


3.1.16.1 xrank Legacy Syntax

The following expression matches items for which the default index contains "cat" or "dog". The expression boosts the dynamic rank of those items that also contains "thoroughbred". The constant boost is set to 100 .

```
xrank(or(cat, dog), thoroughbred)
```

The following expression matches items for which the default index contains "cat" or "dog". The expression boosts the dynamic rank of those items that contain "thoroughbred" by setting constant boost to 500 . The named parameter boostall is ignored.

```
xrank(or(cat, dog), thoroughbred, boost=500, boostall=yes)
```


3.1.17 Token Operator

3.1.17.1 datetime Token Operator

Each of the following expressions consists of an implicit datetime token.

```
2008-01-29
2008-01-29T03:37:19
2008-01-29T03:37:19Z
2008-01-29T03:37:19.1Z
2008-01-29T03:37:19.1234567Z
```

Each of the following expressions consists of an explicit datetime token.

```
datetime(2008-01-29)
datetime("2008-01-29T03:37:19")
datetime(2008-01-29T03:37:19Z)
```


3.1.17.2 decimal Token Operator

Each of the following expressions consists of an implicit decimal token.

```
5m
6.0398m
```

Each of the following expressions consists of an explicit decimal token.
decimal(5)
decimal(6.0398)

3.1.17.3 float Token Operator

The following expression consists of an implicit float token.

The following expression consists of an explicit float token.

```
float("3.14159265358979")
```


3.1.17.4 int Token Operator

Each of the following expressions consists of an implicit int token.

```
360
-25
```

Each of the following expressions consists of an explicit int token.

```
int(360)
int(-25)
```

The following expression matches items that have an authorid managed property of type integer equal to $1,3,5,7$, or 9 .

```
authorid:int("1 3 5 7 9", mode="OR")
```


3.1.17.5 phrase Token Operator

The following expression matches items that contain the phrase "to sleep perchance to dream".

```
phrase(to, sleep, perchance, to, dream)
```


3.1.17.6 range Token Operator

The following expression matches items for which the size managed property is greater than or equal to 0 and less than 100 (note that a value of 100 will not match).

```
size:range(0, 100)
```

The following expression matches items for which the size managed property is greater than 0 and less than or equal to 25 (note that a value of 0 will not match).

```
size:range(0, 25, from="GT", to="LE")
```

The following expression matches items for which the size managed property is less than 500.

```
size:range(min, 500, to="LT")
```


3.1.17.7 string Token Operator

Each of the following expressions consists of an implicit string token.

```
potato
"to be or not to be"
"and"
"100"
"3.14159265358979"
"2005-12-31"
```

The following expression consists of an explicit string token.

```
string("sigh no more")
```

Because the default mode value is "PHRASE", each of the following expressions yields the same results.

```
"what light through yonder window breaks"
string("what light through yonder window breaks")
string("what light through yonder window breaks", mode="phrase")
phrase(what, light, through, yonder, window, breaks)
```

The following string token expression and and operator expression yield the same results.

```
string("cat dog fox", mode="and")
and(cat, dog, fox)
```

The following string token expression and or operator expression yield the same results.

```
string("coyote saguaro", mode="or")
or(coyote, saguaro)
```

The following string token expression matches "cat", "calculator", "calendar", and any other indexed token that begins with "ca" because the "*" character at the end of the token is evaluated as a wildcard as specified in section 2.1.17.7.

```
string("ca*")
```

The following string token expression matches "ca*" without the evaluation of "*" as a wildcard character.

```
string("ca*", wildcard="off")
```

The following string token expression matches the word "nobler" with linguistic features disabled, so other forms of the word (such as "ennobling") are not matched by means of stemming.

```
string("nobler", linguistics="off")
```

The following expression matches items that contain "cat" or "dog", but the expression increases the dynamic rank of items that contain "dog" more than items that contain "cat".

```
or(string("cat", weight=200), string("dog", weight=500))
```


3.2 Keywords

3.2.1 max Keyword

The following expression matches items for which the size managed property is greater than or equal to 100 but less than the maximum value.

```
size:range(100, max)
```

The following expression represents the maximum integer value.

```
int(max)
```


3.2.2 min Keyword

The following expression matches items for which the size managed property is less than 10 .

```
size:range(min, 10)
```

The following expression represents the minimum integer value.

```
int(min)
```


4 Security

4.1 Security Considerations for Implementers

None.

4.2 Index of Security Fields

None.

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include released service packs:

- Microsoft SharePoint Server 2013

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears with the product version, behavior changed in that service pack or QFE. The new behavior also applies to subsequent service packs of the product unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not follow the prescription.

6 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last release.

7 Index

A

and operator 11
and operator example 20
andnot operator 11
andnot operator example 20
any operator 11
any operator example 20
Applicability 6

C

Change tracking 30
Common data types and fields 7
count operator 12
count operator example 20
D
Data types and fields - common 7
Details
operator 11
and operator 11
andnot operator 11
any operator 11
common data types and fields 7
count operator 12
ends-with operator 12
equals operator 12
filter operator 12
max keyword 19
min keyword 19
near operator 12
not operator 13
onear operator 13
or operator 13
rank operator 13
starts-with operator 13
token operators 15
words operator 14
xrank operator 14

E

ends-with operator 12
ends-with operator example 21
equals operator 12
equals operator example 21
Examples
Keywords
$\max 27$
$\min 27$
Operators
and 20
andnot 20
any 20
count 20
ends-with 21
equals 21
filter 21
near 21
not 22
onear 22
or 23
rank 23
starts-with 23
token 24
words 23
xrank 23
F
Fields - security index 28
Fields - vendor-extensible 6
filter operator 12
filter operator example 21

G

Glossary 5

I

Implementer - security considerations 28
Index of security fields 28
Informative references 5
Introduction 5

K

Keywords
max 19
$\min 19$
L

Localization 6

M

max keyword 19
max keyword example 27
min keyword 19
min keyword example 27

N

near operator 12
near operator example 21
Normative references 5 not operator 13 not operator example 22
[MS-FQL2] - v20140721
Fast Query Language Version 2 Protocol
Copyright © 2014 Microsoft Corporation.
Release: July 31, 2014
onear operator 13
onear operator example 22
Operators
and 11
andnot 11
any 11
count 12
ends-with 12
equals 12
filter 12
near 12
not 13
onear 13
or 13
rank 13
starts-with 13
token 15
words 14
xrank 14
or operator 13
or operator example 23
Overview (synopsis) 6

P

Product behavior 29

R

rank operator 13
rank operator example 23
References 5
informative 5
normative 5
Relationship to protocols and other structures 6
rank operator 13
starts-with operator 13
token operators 15
words operator 14
xrank operator 14

T

Token operator examples 24
Token operators 15
Tracking changes 30

V

Vendor-extensible fields 6
Versioning 6

W

words operator 14
words operator example 23

X

xrank operator 14
xrank operator example 23

S

Security
field index 28
implementer considerations 28
starts-with operator 13
starts-with operator example 23
Structures
operator 11
and operator 11
andnot operator 11
any operator 11
count operator 12
ends-with operator 12
equals operator 12
filter operator 12
max keyword 19
min keyword 19
near operator 12
not operator 13
onear operator 13
or operator 13
overview 7
[MS-FQL2] - v20140721
Fast Query Language Version 2 Protocol
Copyright © 2014 Microsoft Corporation.
Release: July 31, 2014

