[MS-CUSTOMUI]:
Custom UI XML Markup Specification

Intellectual Property Rights Notice for Open Specifications Documentation

Technical Documentation. Microsoft publishes Open Specifications documentation/(“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.
Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary.-to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list. of Microsoft trademarks, visit
www.microsoft.com/trademarks.

Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any.real company, organization, product, domain name, email address, logo,
person, place, or-event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

Preliminary Documentation. This particular Open Specifications document provides documentation
for past and current releases and/or for the pre-release version of this technology. This document
provides final documentation for past and current releases and preliminary documentation, as
applicable and specifically noted in this document, for the pre-release version. Microsoft will release
final documentation in connection with the commercial release of the updated or new version of this
technology. Because this documentation might change between the pre-release version and the final

1/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

version of this technology, there are risks in relying on this preliminary documentation. To the extent
that you incur additional development obligations or any other costs as a result of relying on this
preliminary documentation, you do so at your own risk.

2/ 554
[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Revision Summary

Revision Revision

Date History Class Comments

1/15/2009 1.0 Major Initial Availability

7/13/2009 1.01 Major Revised and edited the technical content

8/28/2009 1.02 Editorial Revised and edited the technical content

11/6/2009 1.03 Editorial Revised and edited the technical content

2/19/2010 2.0 Editorial Revised and edited the technical content

3/31/2010 2.01 Editorial Revised and edited the technical content

4/30/2010 2.02 Editorial Revised and edited the technical content

6/7/2010 2.03 Editorial Revised and edited the technical content

6/29/2010 2.04 Editorial Changed language and formatting in the technical content.

7/23/2010 2.04 None No ch_anges to the meaning, language, or formatting of the
technical content.

9/27/2010 2.04 None No ch_anges to the meaning, language, or formatting of the
technical content.

11/15/2010 | 2.04 None No ch_anges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

12/17/2010 | 2.04 None technical content.

3/18/2011 2.04 None No chfanges to the meaning, language, or formatting of the
technical content.

6/10/2011 2.04 None No chgnges to the meaning, language, or formatting of the
technical content.

1/20/2012 2.5 Minor Clarified the meaning of the technical content.

4/11/2012 2.5 None No chgnges to the meaning, language, or formatting of the
technical content.

7/16/2012 25 None No chgnges to the meaning, language, or formatting of the
technical content.

10/8/2012 55 None No ch_anges to the meaning, language, or formatting of the
technical content.

2/11/2013 25 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/30/2013 2.5 None No ch_anges to the meaning, language, or formatting of the
technical content.

11/18/2013 | 2.5 None No chfanges to the meaning, language, or formatting of the
technical content.

2/10/2014 25 None No chfanges to the meaning, language, or formatting of the
technical content.

4/30/2014 | 2.5 None No changes to the meaning, language, or formatting of the

3/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Revision Revision

Date History Class Comments
technical content.

7/31/2014 2.6 Minor Clarified the meaning of the technical content.
10/30/2014 | 3.0 Major Significantly changed the technical content.
3/16/2015 4.0 Major Significantly changed the technical content.
9/4/2015 4.0 None It\le%ro]::;r;iq(e;:?e:]r;.e meaning, language, or formatting of the
7/15/2016 4.0 None It\le%ro]::;r;iq(e;:?e:]r;.e meaning, language, or formatting of the
9/14/2016 4.0 None Lﬂec;r?:;g?izrfgem.e meaning, language, or formatting of the
10/17/2016 | 4.0 None Lﬂe%r:::iacglgiz:gemfa meaning, language, or formatting of the
7/10/2017 5.0 Major Significantly changed the technical content.
9/19/2017 6.0 Major Significantly changed the technical content.
4/27/2018 7.0 Major Significantly changed the technical content.
8/28/2018 8.0 Major Significantly changed the technical content.
4/22/2021 9.0 Major Significantly changed the technical content.

[MS-CUSTOMUIJ - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

4/ 554

Table of Contents

B N 112 1o T [T T ot f ' Y 4 7
1.1 [0 T1== 1 PP 7
1.2 3] =T =T g Lol PP 7

1.2.1 NOrMative RefEIENCES . ovii ittt e e e e e e e anans 8
1.2.2 INfOrmMative REFEIENCES .. vttt e aa e e 8

7] 11 o] 5 1 9

2.1 = = 9
2.1.1 Quick Access Toolbar Customizations Part..........ccviiiiiiiiiiii i iae i e 9
2.1.2 Ribbon Extensibility Part.......ccoooiiiiiiii e S e 10

2.2] 1= =T P S S 11
2.2.1 box (Box Grouping CONTAINE) ..iuiiiiiiiiiii e i e e e s et e e e e aseea s annes 11
2.2.2 BULEON (BULEON) 1eineiii e 15
2.2.3 button (Unsized BULEON) ..uieiiiiii i e s B e e 25
2.2.4 button (Button Inside of a Split BULEON) ..o i i e 34
2.2.5 buttonGroup (Button Grouping Container)c.oovviidenii i it 42
2.2.6 CheckBoX (CheCK BOX) . uiiiiiiiiiiii i i it ra s e e n e e s e e e ae e e e eaes 46
2.2.7 (ol an] o] =0) q (©e] 4] 0o TN = To)t I L Y 55
2.2.8 command (Repurposed Command)ovuivuiineibenneiie i se s biesiene aeeaeeneenneaneaaes 67
2.2.9 commands (List of Repurposed COMMAaNAS) ctue.uueurcatieiererernrnenerneneneneaerernnes 68
2.2.10 contextualTabs (List of Contextual Tab SetS) . .uiuuereieirie it eeiiieneaeaereeeeen 69
2.2.11 control (Unsized Control CIONE)ciiiiidii it i it aa e e e raeaas 69
2.2.12 control (Control ClONE) ...ueie it ie e e e e e e e s e e e 77
2.2.13 control (Quick Access Toolbar Control.ClonNe) .i..iciiiiiiiiii e 87
2.2.14 customUI (Custom UI Document/ROOL) . iu.ueeiiiiiie i ee e 96
2.2.15 dialogBoxLauncher (Dialog Box Launcher) w......oioiiiiiiiiiiii i 96
2.2.16 documentControls (List of Document-Specific Quick Access Toolbar Controls) 97
2.2.17 dropDown (Drop-down CONtrol) ... oot e e e 98
2.2.18 dynamicMenu (Unsized DyN@miC MENU) .. iuiiiiiiiiiiiiii it eetene e nieaeaeas 110
2.2.19 dynamicMenu (DynamiC MENU) ... et ereeaens 119
2.2.20 editBOX (Edit BOX) ..ucuvieiieenathe e seetststsnsaeee e e rasasasasass s s n e araans 130
2.2.21 gallery (Gallery) o st 139
2.2.22 gallery (Unsized GallEry)cuiie et ae e e naaens 155
2 B | {0 18] o (€] o1 U o) o PP 169
2.2.24 item (Selection ZEem) ..o 177
2.2.25 labelControl (TeXt Label)ouvuiuiiiiiii e 179
2.2.26 menuU (UNSIiZed MENU)iuineiiiieiiii it e e e e e e aaeaens 188
2.2.27 menu (Menu With Title) ...iiiriii i e e e e aaens 197
A RN o 1 T=1 o 6 TN (= 1) PP 207
2.2.29 " menu (Dynamic Menu Root XML Element) ...ccoviiiiiiiiiiiiiii e 218
2.2.30 menuSeparator (MenuU SeParatior).....cvviierieieiiiiiireiieaie e rearaaneaeaens 220
2.2.31 < officeMenu (OffiCe MENU) ...iuuiuiiiiiiiii e e e e raeaens 223
2.2.32 gat (Quick AcCesS TOOIDAr) ittt e 224
2.2.33 " ribbon (RIDDON) .ouiiii i et aas 225
2.2.34 SEPArator (SEPaAIAtOr) tuiieiiiiii it e 226
2.2.35 sharedControls (List of Shared Quick Access Toolbar Controls)ccccvievnnnens 229
2.2.36 splitButton (Unsized Split BULEON) ...c.cueeieiiiiii e e 230
2.2.37 splitButton (Split Button with Title) ...cccoeieiniii e 238
2.2.38 splitButton (SPlit BULLON) ...iueiiie it 247
2.2.39 @D (Tab) tueiiii i e 256
2.2.40 tabs (List Of TabS) 1.iuuiuiieiiiiiii i e 260
2.2.41 tabSet (Contextual Tab Set)......ccoiiiiiiiiiii e 261
2.2.42 toggleButton (Unsized Toggle BUtton)cveieiiiiiiiiii e 262
2.2.43 toggleButton (Toggle BULtON) ..o e 271
2.2.44 toggleButton (Toggle Button Inside of a Split Button).........cooooiiiiiiiiiiinnnnnns 281

5/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

2.3 1] T a1 LT Y 0 1= PP 290
2.3.1 ST_BOXStyle (BOX STYI) ...t e 290
2.3.2 ST_Delegate (Callback Function Name)ccoviiiiiiiiiiiiiii e 291
2.3.3 ST_GalleryltemWidthHeight (Gallery Item Width or Height)ccocoviiiiiiinnn. 293
2.3.4 ST_GalleryRowColumnCount (Gallery Row or Column Count)cccvvvviiinnnnnnnn. 294
2.3.5 ST_ID (CONEIOI ID) tiriuiitiiieiiits ettt e e e e e e e e e e e e e e e e reees 294
2.3.6 ST_ItemSize (MenU IteM SiZE) ittt e 295
2.3.7 ST_Keytip (KeYLIP) «viuiiiiiieiiii e e 296
2.3.8 ST_LongString (LONG SErNG) .iviiiiii i e e e aea e 296
2.3.9 ST_QID (Qualified Control ID) .uiuiieiiiii i e e e e 297
2.3.10 ST_Size (CoNrol SIZE) .iiviiriiiiiiii i i e e e e e aab e 299
2.3.11 ST_String (Short StrNgG) ..cceiiiiiii e e ra 299
2.3.12 ST_StringLength (String Length) ..o 300
2.3.13 ST_UniquelD (Custom Control ID) ...civeiiiiiiiiiii i i seee s ahie s e e e e e 301
2.3.14 ST_Uri (Image Relationship ID) ...cciiiiiiiiiiiiiiiiri e e s he e e s naes 301

3 Appendix A: Custom UI Control ID Tablesciccictvmimmmmimimi s smsssanssnsssssassassannas 303

3.1 (e N E=To T =1] =P S P 303
3.1.1 LA Lo T e 24 0 L0 P R R 303
3.1.2 (o= A 010 PP VP P ST 357
3.1.3 POWEIPOINE 2007 .vieiiriiiii it eaa e e s sonr e e e s n e i e e e 392

3.2 Laa=Te =17 F=To T =1 o] = T e S P S PR 418

4 Appendix B: Full XML SChemascuuriererimmnrsmsmsimmnsinsassnssssnsansinsssansassnsssansassnsnsnnsnsnns 521

4.1 http://schemas.microsoft.com/office/2006/01/customui Schemac..coceveee. 521

5 Appendix C: Product BehaVviorccuveimmmiemiemssissssssasssasssssassassasssnsasssnssnssnssnssnnnas 554

6 Change TracKiNg...cicueirerrrsmmsnsmsussasnssiastinsssnsassassnsssasansansnsassnsansnsassnsansnsasnnsansnn 555

72 13 T« = G o s 556
6/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

1 Introduction

In creating an interoperable implementation, it is helpful to understand specific implementation
choices made by other products implementing the same standard. For example, portions of the
standard may provide only general guidance, leaving specific implementation choices up to the
application implementer; in some circumstances it may be helpful for other implementers to
understand those choices.

The information contained in this document provides information about how to implement UI
customization in the context of ECMA-376 Office Open XML File Formats, as described in {ECMA-376].

1.1 Glossary
This document uses the following terms:

add-in: Supplemental functionality that is provided by an external application or macro to extend
the capabilities of an application.

KeyTip: A small, pop-up window that appears over commands on the.ribbon when users press the
ALT key. By pressing the key that is displayed in a KeyTip, users can execute the command that
is associated with the KeyTip.

macro: A set of instructions that are recorded or written, and then typically saved to a file. When a
macro is run, all of the instructions are performed automatically.

XML fragment: Lines of text that adhere to XML tag rules, as described in [XML], but do not have
a Document Type Definition (DTD) or schema; processing instructions, or any other header
information.

XML namespace: A collection of names that is used to identify elements, types, and attributes in
XML documents identified in a URI reference [RFC3986]. A combination of XML namespace and
local name allows XML documents to use elements, types, and attributes that have the same
names but come from different sources. For more information, see [XMLNS-2ED].

XML namespace prefix: An abbreviated form of an XML namespace, as described in [XML].

XML schema: A description of a type of XML document that is typically expressed in terms of
constraints on the structure and content of documents of that type, in addition to the basic
syntax constraints that are imposed by XML itself. An XML schema provides a view of a
document type at arelatively high level of abstraction.

XML schema definition (XSD): The World Wide Web Consortium (W3C) standard language that
is used in defining XML schemas. Schemas are useful for enforcing structure and constraining
the types of data that can be used validly within other XML documents. XML schema definition
refers to the fully specified and currently recommended standard for use in authoring XML
schemas.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [REC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

7/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=90598
https://go.microsoft.com/fwlink/?LinkId=90453
https://go.microsoft.com/fwlink/?LinkId=90602
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[ECMA-376] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA-376, December
2006, http://www.ecma-international.org/publications/standards/Ecma-376.htm

[MS-CUSTOMUI2] Microsoft Corporation, "Custom UI XML Markup Version 2 Specification".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP. 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[XMLNS] Bray, T., Hollander, D., Layman, A., et al., Eds., "Namespaces in XML 1.0 (Third Edition)",
W3C Recommendation, December 2009, http://www.w3.0org/TR/2009/REC-xml-names-20091208/

[XMLSCHEMA1] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N., Eds.; "XML Schema Part
1: Structures", W3C Recommendation, May 2001, http://www.w3.0rg/TR/2001/REC-xmlschema-1-
20010502/

[XMLSCHEMAZ2] Biron, P.V., Ed. and Malhotra, A., Ed., "XML Schema Part 2: Datatypes", W3C
Recommendation, May 2001, http://www.w3.0rg/TR/2001/REC-xmischema-2-20010502/

1.2.2 Informative References

None.

8/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-CUSTOMUI2%5d.pdf#Section_bad56c217b1541bcaf328b5afe6e922e
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=191840
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90610

2 Custom UI

The subordinate clauses specify the semantics for the Custom UI XML markup contained within the
ECMA-376 Office Open XML File Formats, as specified in [ECMA-376]. These semantics describe
customization of the Ul interface. Examples in the following clauses highlight customizations in the
context of the Microsoft Office Fluent interface (UI) but the concepts extend naturally to any user
interface.

Customization of the Ul is accomplished via the addition of parts containing Custom UI XML markup to
the containing document package.

2.1 Parts

The parts described in the subordinate sections detail the additional part types utilized by CustomUI in
an ECMA-376 Office Open XML File Formats [ECMA-376] file.

2.1.1 Quick Access Toolbar Customizations Part

Content application/xml

Type:

Root http://schemas.microsoft.com/office/2006/01/customui

Namespace:

Source http://schemas.microsoft.com/office/2006/relationships/ui/userCustomization
Relationship:

The syntax of the structures contained in this part uses XML schema definition (XSD), as specified
in [XMLSCHEMA1] and [XMLSCHEMAZ2].

This specification defines and references various XML namespaces by using the mechanisms
specified in [XMLNS].

An instance of this part type contains information about the quick access toolbar customizations
specific to the containing package.

For example, a user can customize the quick access toolbar for his WordProcessingML document to
contain the UI controls that they commonly use.

A package is permitted to contain at most one Quick Access Toolbar Customizations part, and that
part is the target of a relationship/in the package-relationship item for the document.

For example, the following package part-relationship item contains a relationship to a Quick Access
Toolbar Customizations part, which is stored in the ZIP item /userCustomization/customUI.xml:

<Relationships xmlns="..">

<Relationship Id="rId2"
Type="http://../2006/relationships/ui/userCustomization"
Target="/userCustomization/customUI.xml" />
</Relationships>

The root element for a part of this content type is customUI.

For example, the following Quick Access Toolbar Customizations content markup specifies that the
control with identifier "SpellingAndGrammar" is to be added to the quick access toolbar for the
package:

<mso:customUI xmlns:mso="http://schemas.microsoft.com/office/2006/01/customui">
<mso:ribbon>

9/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90610
https://go.microsoft.com/fwlink/?LinkId=191840

<mso:gat>

<mso:documentControls>

<mso:control idQ="mso:SpellingAndGrammar" visible="true" />
</mso:documentControls>

</mso:gat>

</mso:ribbon>

</mso:customUI>

A Quick Access Toolbar Customizations part is located within the package containing the source
relationship. Expressed syntactically, the TargetMode attribute of the Relationship element is
"Internal.

A Quick Access Toolbar Customizations part does not have implicit or explicit relationships to any
other part defined by ECMA-376 Office Open XML File Formats, as specified in [ECMA-376].

2.1.2 Ribbon Extensibility Part

Content application/xml

Type:

Root http://schemas.microsoft.com/office/2006/01/customui

Namespace:

Source http://schemas.microsoft.com/office/2006/relationships/ui/extensibility
Relationship:

The syntax of the structures contained in this part uses XML schema definition (XSD), as specified
in [XMLSCHEMA1] and [XMLSCHEMAZ2].

This specification defines and references various XML namespaces by using the mechanisms
specified in [XMLNS].

An instance of this part type contains information about the ribbon customizations specific to the
containing package.

For example, a SpreadsheetML document that represents a timecard could contain custom UI controls
to guide the user in filling out the timecard.

A package is permitted to contain at most one Ribbon Extensibility part, and that part is the target of
a relationship in the package-relationship item for the document.

For example, the following package part-relationship item contains a relationship to a Ribbon
Extensibility part, which is‘stored in the ZIP item /customUI/customUI.xml:

<Relationships xmlns="..">

<Relationship Id="rId5"
Type="http://../2006/relationships/ui/extensibility"
Target="/customUI/customUI.xml" />

</Relationships>

The root element for a part of this content type is customUI.

For example, the following Ribbon Extensibility content markup specifies that the ribbon tab with
identifier "TabHome" is to be hidden for the containing package:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon>

<tabs>

<tab idMso="TabHome" visible="false" />

</tabs>

</ribbon>

10/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90610
https://go.microsoft.com/fwlink/?LinkId=191840

</customUI>

A Ribbon Extensibility part is located within the package containing the source relationship. Expressed
syntactically, the TargetMode attribute of the Relationship element is "Internal”.

A Ribbon Extensibility part is permitted to have explicit relationships to the following parts defined by
ECMA-376 Office Open XML File Formats, as specified in [ECMA-376]:

= Image Part, as specified in [ECMA-376] Part 1 section15.2.13.

2.2 Elements

A Custom UI document contains customizations of an application's UI. Customizations are.mainly of
two types:

* Modifications of the application's built-in UI, such as hiding or disabling built-in UI controls or
repurposing command actions.

= Creation of custom UI controls, such as a custom ribbon tab, menu item, or quick access toolbar
button.

For example, consider the following Custom UI document:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<commands>
<command idMso="Bold" enabled="false" />
</commands>
<ribbon>
<tabs>
<tab idMso="TabHome" visible="false" />
<tab id="CustomTab" label="Custom Tab">
<group id="CustomGroup" label="Custom Group">
<button id="CustomButton" label="Custom Button"
size="large" imageMso="HappyFace" onAction="OnButtonClick" />
</group>
</tab>
</tabs >
</ribbon>
</customUI>

This example disables the command with an identifier of "Bold", hides the ribbon tab with an identifier
of "TabHome", @nd creates a new custom ribbon tab with a custom button in it.

The full XML Schema Definition of the XML Schema fragments listed in this section is defined in
Appendix A of [MS-CUSTOMUI2].

2.2.1 box (Box Grouping Container)

This element specifies a grouping container control that can be used to align controls vertically or
horizontally. Box elements can be nested to create complex UI layouts.

For example, consider a group of controls that are laid out horizontally, as follows:

11/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

https://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-CUSTOMUI2%5d.pdf#Section_bad56c217b1541bcaf328b5afe6e922e

) Button 1 23 Button 2

Clstam Graup
Figure 1: Controls grouped horizontally

This layout is specified using the following XML fragment:

<box id="box" boxStyle="horizontal">
<button id="buttonl" label="Button 1" imageMso="HappyFace" />
<button id="button2" label="Button 2" imageMso="HappyFace" />
</box>

This is contrasted to the default vertical layout that is used if the box element is not specified.

The following table summarizes the elements that are parents of this element.

Parent Elements Section
box 2.2.1
group 2.2.23

The following table summarizes the child elements of this element.

Child Elements Section
box (Box Grouping Container) 2.2.1
button (Button) 2.2.2
buttonGroup (Button Grouping Container) 2.2.5
checkBox (Check Box) 2.2.6
comboBox (Combo Box) 2.2.7
control (Control Clone) 2.2.12
dropDown (Drop-down Control) 2.2.17
dynamicMenu (Dynamic Menu) 2.2.19
editBox (Edit Box) 2.2.20
gallery (Gallery) 2.2.21
labelControl (Text Label) 2.2.25
menu (Menu) 2.2.28
splitButton (Split Button) 2.2.38
toggleButton (Toggle Button) 2.2.43
The following table summarizes the attributes of this element.
12 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

boxStyle (box
style)

Specifies the layout direction for the child controls inside of the box element.
If this attribute is omitted, the child controls SHOULD be laid out horizontally.

For example, consider a group of controls to be laid out vertically. This is specified using the
following XML:

<box id="box" boxStyle="vertical">

</box>

The possible values for this attribute are defined by the ST_BoxStyle simple type, as
specified in section 2.3.1.

getVisible
(getVisible
callback)

Specifies the name of a callback function that is called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All.custom controls MUST have unique
identifiers. The identifier.of.a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id and idQ attributes are mutually exclusive. At least one of these attributes is to be
specified.

For example, consider the following XML fragment:

<pbutton id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes is to be
specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab i1dQ="ex:0therTab" label="Shared Tab">
<group i1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>

13/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If that
tab cannot be found, it is created. A new group belonging to this file is added to the tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.

insertAfterMso
(identifier of built-
in control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an id of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.

insertBeforeMso
(identifier of built-
in control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple, as specified in
section 2.3.5.

14 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

insertBeforeQ Specifies the qualified identifier of a control that this control is to be inserted before. If the
(qualified identifier | value of this attribute is not understood, it SHOULD be ignored.

of control to insert | The jnsertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be.inserted before the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified in

section 2.3.9.
visible (control Specifies the visibility state of the control.
visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are

omitted, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is to be hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Box">
<xsd:group ref="EG Controls" minOccurs="0" maxOccurs="1000"/>
<xsd:attributeGroup ref="AG IDCustom"/>
<xsd:attributeGroup ref="AG Visible"/>
<xsd:attributeGroup ref="AG PositionAttributes"/>
<xsd:attribute name="boxStyle" type="ST BoxStyle" use="optional"/>
</xsd:complexType>

2.2.2 button (Button)
This element specifies a standard push-button control that performs an action when clicked.

For example, consider a button control, as follows:

=) Button

Custom Group
Figure 2: A button control

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace" />

15/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

The following table summarizes the elements that are parents of this element.

Parent Elements Section
box 2.2.1
group 2.2.23

The following table summarizes the attributes of this element.

Attributes Description
description Specifies a detailed description of the control, which is displayed in detailed views.
(description) The description and getDescription attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.
For example, consider a button with a detailed description, as follows:

» o Button

\ | " v .
*~:/ This is a verbase description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute €annot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This‘specifies/a new button that is always disabled. A permanently disabled button is not
very useful,thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription Specifies the name of a callback function that is called to determine the detailed description
(getDescription of this control.
callback)

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

<button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled Specifies the name of a callback function that is called to determine the enabled state of
(getEnabled this control.

16 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is to be called when the
application needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is to be called when the
application needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function that is called to determine the suggested KeyTip
(getKeytip of this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is to be called when the
application needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label' SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is to be called when the application
needs to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

17/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is to be called when the
application needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<pbutton id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is to be called when the
application needs to determine whether to/display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is to be called when the
application needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is to be called when the application
needs to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

18/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is to be called when the
application needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function s to be called when the application
needs to determine the visibility of the button:
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All. custom controls MUST have unique
identifier) identifiers. The identifier of a control'is passed to callback functions to identify which control
corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified.in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The'id,; idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

19/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image that is to be used as the icon for this
control. This attribute is used to.specify.an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD. be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies. the identifier of a built-in image that is to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

20/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id-of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are'defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5:

insertBeforeQ
(qualified identifier
oficontrol to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

21/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

ay

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string that is to be used as the label for this control.
The label and getLabel attributes are mutually exclusive: If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<putton id="button" label="Custom Button" />
This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.
onAction Specifies the name of a callback function to be called when this control is invoked by the

(onAction callback)

user.
For example, consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified. in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
__;il
b
Button

Custa dl_ll_il_lm____‘_hh

This is the screentip

li_,_ul Bookl3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"

22 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible‘values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Bl

Custam Graoup

This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified

23/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

in section 2.3.10.

supertip (supertip) Specifies a string that is to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

[wn}
=7

Button

Custam Group

i Book3.xklsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the ButtonClicked
callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an id of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

24 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

<xsd:complexType name="CT_ Button">
<xsd:complexContent>

<xsd:extension base="CT_ButtonRegular">

<xsd:attributeGroup ref="AG SizeAttributes"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

2.2.3 button (Unsized Button)

This element specifies a push-button that, because of its location, cannot have its size changed. The
size attribute is not present. This element otherwise behaves like the regular button element, as

specified in section 2.2.2.

The following table summarizes the elements that are parents of this element.

Parent Elements Section
buttonGroup 2.2.5
dialogBoxLauncher 2.2.15
documentControls 2.2.16
dropDown 2.2.17
gallery 2.2.21
gallery 2.2.22
menu 2.2.28
menu 2.2.26
menu 2.2.29
menu 2.2.27
officeMenu 2.2.31
sharedControls 2.2.35

The following table summarizes the attributes of this element.

Attributes

Description

description

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» 5 Button
o o :
=/ This is a verbose description that describes

the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes

25/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

the function of this control in detail.™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button'is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to.be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is to be called when the
application needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is to be called when the
application needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

26 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function that is called to determine the suggested KeyTip
of this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is to be called when the
application needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is to be called when the application
needs to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, theapplication SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is to be called when the
application needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowlImage
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is to be called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel

Specifies the name of a callback function to be called to determine whether the application

27/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

(getShowLabel
callback)

is to display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is to be called when the
application needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is to be called when the
application needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In-this example, the IsButtonVisible callback function is to be called when the application
needs to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes

28 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

MUST be specified.
For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. Atdeast one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, "ex" is'an XML namespace prefix for the nhamespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

29 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in.the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are-defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls; in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In_this example, a new custom tab with an id of "MyTab" is inserted after the custom tab
with a qualified identifier of "x:0OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
befare)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is inserted before the built-in tab
with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ

Specifies the qualified identifier of a control that this control is to be inserted before. If the

30/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

(qualified identifier
of control to insert
before)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is inserted before the custom tab
with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (Keytip)

Specifies a string to be used as the suggested KeyTip.for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

o

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section.2.3.7.

label (Label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or
display no screentip at all.

31/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider a button with a screentip, as follows:
-.;'I

=

Button

Custo %

This is the screentip

li,,_ul Book3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (Show
Label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (Supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

32/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

(ma}
1 __:‘:-/.

Button

Custam Group)

G_]_:jl Book3.xlsx
Press F1 for mare help.,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST..String simple type, as
specified in section 2.3.11.

tag (Tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.
If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility)

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ButtonRegular">

<xsd:complexContent>

<xsd:extension base="CT Control">
<xsd:attributeGroup ref="AG Action"/>
<xsd:attributeGroup ref="AG Enabled"/>
<xsd:attributeGroup ref="AG Description"/>
<xsd:attributeGroup ref="AG Image"/>

The possible values for this attribute are defined by the XML schema boolean datatype.

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

33/ 554

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

2.2.4 button (Button Inside of a Split Button)

This element specifies a push-button that is a child of a split button control. The visible and
getVisible attributes are not present because the visibility is controlled by the split button. This
element otherwise behaves in the same way as the unsized button element, as specified. in section

2.2.3.

The following table summarizes the elements that are parents of this element.

Parent Elements Section
splitButton 2.2.38
splitButton 2.2.36
splitButton 2.2.37

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» o Button

\ | " v .
-:/ ! This is a verbose description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description

34/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

callback) of this control.
The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback)

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

35/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip Specifies the name of a callback function that is called to determine the screentip of this
(getScreentip control.
callback) The getScreentip and screentip attributes are mutually exclusive..If neither attribute is

specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<pbutton id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST..Delegate simple type, as
specified in section 2.3.2.

getShowImage Specifies the name of a callback function that is called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) The showImage and getShowImage attributes are mutually exclusive. If neither

attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel Specifies the name of a callback function that is called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip Specifies the name of a callback function that is called to determine the supertip of this
(getSupertip control.
callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is

specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:

36 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function that is called to determine the visibility state of
this control. This attribute is prohibited.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function iscalled when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined. by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

Theid, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”

37/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image that is used as the icon for this control.
This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon'SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image that is used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an id of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

38/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id-of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are'defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5:

insertBeforeQ
(qualified identifier
oficontrol to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of x:OtherTab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

39/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

ay

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive: If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified. in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
__;il
b
Button

Custa dl_ll_il_lm____‘_hh

This is the screentip

li_,_ul Bookl3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"

40/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This-specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:
LR

=

Button

Custam Group

i Book3.xlsx
Press F1 for mare help.

41/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control. This attribute is prohibited.
visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT VisibleButton">
<xsd:complexContent>
<xsd:restriction base="CT ButtonRegular">
<xsd:attribute name="visible" use="prohibited"/>
<xsd:attribute name="getVisible" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.2.5 buttonGroup (Button Grouping Container)

This element specifies a grouping container that groups controls together visually. The child controls
are laid out horizontally.

For example, consider a group of buttons, as follows:

42 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Custam Group

Figure 3: A group of buttons

This is specified using the following XML fragment:

<buttonGroup id="buttonGroup">
<button id="buttonl" imageMso="Bold" />
<button id="button2" imageMso="Italic" />
<button id="button3" imageMso="Underline" />

</buttonGroup>

The following table summarizes the elements that are parents of this element.

Parent Elements Section
box 2.2.1
group 2.2.23

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynhamic Menu) 2.2.18
gallery (Unsized Gallery) 2.2.22
menu (Unsized Menu) 2.2.26
splitButton (Unsized Split Button) 2.2.36
toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

Attributes Description

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.

callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<pbutton id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

43/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

specified in section 2.3.2.

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idQ (qualified Specifies a qualified identifier for a control.

control identifier)

The idQ attribute can be used to reference controls‘or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.
For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, exis an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

44 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:0OtherTab".

The possible values for this attribute are defined by the ST. QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a‘new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an id of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

45/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ButtonGroup">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:element name="control" type="CT ControlCloneRegular"/>
<xsd:element name="button" type="CT ButtonRegular"/>
<xsd:element name="toggleButton" type="CT ToggleButtonRegular"/>
<xsd:element name="gallery" type="CT GalleryRegular"/>
<xsd:element name="menu" type="CT MenuRegular"/>
<xsd:element name="dynamicMenu" type="CT DynamicMenuRegular"/>
<xsd:element name="splitButton" type="CT SplitButtonRegular"/>
</xsd:choice>
</xsd:sequence>
<xsd:attributeGroup ref="AG IDCustom"/>
<xsd:attributeGroup ref="AG Visible"/>
<xsd:attributeGroup ref="AG PositionAttributes"/>
</xsd:complexType>

2.2.6 checkBox (Check Box)
This element specifies a standard checkbox control.

For example, consider a checkbox control, as follows:

CheckBox

Custom Group
Figure 4: A checkbox control

This is specified using the following XML fragment:

<checkBox id="checkBox" label="CheckBox" />

The following table summarizes the elements that are parents of this element.

Parent Elements Section
box 2.2.1
group 2.2.23
menu 2.2.28
menu 2.2.26
menu 2.2.29

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

46 / 554

Parent Elements Section
menu 2.2.27
officeMenu 2.2.31

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» o Button

\ | e v .
*~:/ This is a verbose description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail.™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

47/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually €xclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider. the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the control SHOULD default to the off state.
For example, consider the following XML fragment:

<toggleButton id="toggle" getPressed="IsButtonToggled" />

48 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

In this example, the IsButtonToggled callback function is called when the application
needs to determine the toggle state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by ‘the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to.be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel displays the label of this control.
callback) The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

49 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an id of "MyButton".
The possible values for-this attribute are defined by the ST_UniquelD simple type, as
specified in section 2/3.13.
idMso (built-in Specifies the identifier of a built-in.control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab 1dQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

50/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon'is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no.icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button to use the built-in image with an id of "Bold".

The possible‘values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

51/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be‘inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control. is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, ‘consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

o

=

52/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by.the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
-.;'I
.__:{-/.
Buttan

Custa dldll_il_lm____‘_hh

This is the screentip

li_:_;j Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

53/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custom Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

(maly
bt

Button

Custam Group

id Book3.xlsx
Press F1 for mare healp.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

54 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which‘is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an id of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT CheckBox">
<xsd:complexContent>
<xsd:restriction base="CT ToggleButtonRegular">
<xsd:attribute name="image" use="prohibited"/>
<xsd:attribute name="imageMso" use="prohibited"/>
<xsd:attribute name="getImage" use="prohibited"/>
<xsd:attribute name="showImage" use="prohibited"/>
<xsd:attribute name="getShowImage" use="prohibited"/>
<xsd:attribute name="showLabel" use="prohibited"/>
<xsd:attribute name="getShowLabel" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.2.7 comboBox (Combo Box)

This element specifies a standard combo box control that allows a user to input a text string or select
one from a list.

For example, consider a combo box control, as follows:

55/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Comba Box tex]

[Ttem 1
Item 2
Item 3

BN ——

Figure 5: A combo box control

This is specified using the following XML fragment:

<comboBox id="comboBox" label="Combo Box">
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 2" />
<item id="item3" label="Item 3" />

</comboBox>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements

Section

item (Selection Item)

2.2.24

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, ‘consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback)

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<pbutton id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

56 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemCount Specifies the name of a callback function to be called to determine the number of selection
(getItemCount items in this control.
callback) If this attribute is omitted, the control SHOULD display any selection items that are
specified as child elements. If no such items are specified, the control SHOULD be empty.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount" />
In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemID Specifies the name of a callback function to be called to determine the identifier of a
(getItemID specific dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD have empty
identifiers.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemID="GetGalleryItemID" />
In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemImage Specifies the name of a callback function to be called to determine the icon of a specific
(getltemImage dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD NOT display icons.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemImage="GetGalleryItemImage" />

In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

57/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

getItemLabel
(getItemLabel
callback)

Specifies the name of a callback function to be called to determine the label of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display labels.
For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemLabel="GetGalleryItemLabel" />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application.needs to determine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel

Specifies the name of a callback function to be called to determine the label of this control.

58/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

callback)

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is_specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In _this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowlLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

59/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getText (getText
callback)

Specifies the name of a callback function to be called to determine the text that is displayed
in the control.

For example, consider the following XML fragment:

<editBox id="editBox" getText="GetEditBoxText" />

In this example, the GetEditBoxText callback function is called when the application needs
to determine the text to display in the control.

The possible values for this attribute are defined by the/ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function:to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

60/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship.identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in

61/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST. ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a‘new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

62/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control invalidates its contents and re-queries for them when the
user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to "false".
For example, consider the following XML fragment:

<comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
getItemLabel="GetComboBoxItemLabel"
invalidateContentOnDrop="true" />

In this example, this combo box clears out its items and re-calls the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it:

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider-a button with KeyTip 'K', as follows:

o

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

maxLength
(maximum input
string length)

Specifies an integer to be used as the maximum length of a string that can be entered
into the control.

If the maxLength attribute is omitted, the length of the input string SHOULD NOT be
limited, except by application-specific constraints.

For example, consider the following XML fragment:

63/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<editBox id="editBox" maxLength="10" />

This specifies an edit box control that can only accept strings up to 10 characters in
length.

The possible values for this attribute are defined by the ST_StringLength simple type, as
specified in section 2.3.12.

onChange
(onChange
callback)

Specifies the name of a callback function to be called when the text in the(control has been
changed by the user.

For example, consider the following XML fragment:

<editBox id="editBox" onChange="EditBoxTextChanged" />

This specifies an edit box control that calls the EditBoxTextChanged callback function
when the user inputs a text string.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
-.;'I
.__:{-/.
Buttan

Custa dldll_il_lm____‘_hh

This is the screentip

li_:_;j Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:
<button id="button" imageMso="HappyFace" label="Button"

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

64 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemImage
(show item image)

Specifies whether this control displays icons on its selection items.
If this attribute is omitted, the items' icons SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemImage="false" >
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 1" />
<item id="item3" label="Item 2" />
<item id="item4" label="Item 3" />
</gallery>

This specifies a gallery control that does not show any icons on its selection items.
The possible values for this attribute are defined by the/’ XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

<editBox id="editBox" sizeString="WWWWWAWWWWWWW" />

This specifies an edit box control that SHOULD be wide enough to display the string
"WWWWWWWWWWWWW",

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

65/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

(ma}
1 __:‘:-/.

Button

Custam Group)

G_]_:jl Book3.xlsx
Press F1 for mare help.,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies.a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_ ComboBox">
<xsd:complexContent>
<xsd:extension base="CT EditBox">
<xsd:sequence>
<xsd:element name="item" type="CT Item" minOccurs="0" maxOccurs="1000"/>

66 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

</xsd:sequence>
<xsd:attributeGroup ref="AG DropDownAttributes"/>
<xsd:attributeGroup ref="AG DynamicContentAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.8 command (Repurposed Command)
This element specifies that a particular built-in command in the application is to be repurposed.
The enabled and getEnabled attributes can be specified to disable a command.

The onAction attribute allows the functionality of a command to be repurposedto run a callback
function. Only commands that execute simple actions (for example, commands represented as button
controls) can be repurposed using onAction.

For example, consider the following XML fragment:

<commands>

<command idMso="Bold" enabled="false" />

<command idMso="Paste" onAction="MyPasteFunction" />
</commands>

In this example, the Bold command is permanently disabled and that the callback function
MyPasteFunction is called when the Paste command is invoked.

The following table summarizes the elements that are parents of this element.

Parent Elements

commands (section 2.2.9)

The following table summarizes the attributes of this element.

Attributes Description
enabled (enabled Specifies the enabled state of the control.
state) The'getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

67/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes Description

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

idMso (built-in Specifies the identifier of a built-in control.
control identifier) The contents of this attribute are application-defined.
For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by.the ST_ID simple type, as specified in
section 2.3.5.

onAction Specifies the name of a callback function to be called when this control is invoked by the
(onAction callback) | user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Command" mixed="false">
<xsd:attributeGroup ref="AG Action"/>
<xsd:attributeGroup ref="AG Enabled"/>
<xsd:attributeGroup ref="AG IDMso"/>
</xsd:complexType>

2.2.9 commands (List of Repurposed Commands)

This.element specifies a list of repurposed commands. This element SHOULD NOT be specified if the
containing Custom UI XML document is a Quick Access Toolbar Customizations part.

The following table summarizes the elements that are parents of this element.

Parent Elements

customUI (section 2.2.14)

The following table summarizes the child elements of this element.

Child Elements Subclause

command (Repurposed Command) section 2.2.8

The following XML schema fragment defines the contents of this element:

68/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

<xsd:complexType name="CT_ Commands">
<xsd:sequence>
<xsd:element name="command" type="CT Command" minOccurs="1" maxOccurs="5000"/>

</xsd:sequence>
</xsd:complexType>

2.2.10 contextualTabs (List of Contextual Tab Sets)

This element specifies a list of contextual tab sets. This element SHOULD NOT be specified if the
containing Custom UI XML document is a Quick Access Toolbar Customizations part.

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

Child Elements Subclause

tabSet (Contextual Tab Set) section 2.2.41

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ContextualTabs">
<xsd:sequence>
<xsd:element name="tabSet" type="CT TabSet" minOccurs="1" maxOccurs="100"/>

</xsd:sequence>
</xsd:complexType>

2.2.11 control (Unsized Control Clone)

This element specifies a clone of @ control that, because of its location, cannot have its size changed.
The size attribute is not_present. The element otherwise behaves like the regular control element, as
specified in section 2.2/12.

The following table’'summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the attributes of this element.

Attributes Description
enabled (enabled Specifies the enabled state of the control.
state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

69 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the /ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function:to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this_control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

70/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in.section2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

71/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive./At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier-of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>

72 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded.image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section'2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

73/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

after) The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</£ab>
In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".
The possible values for this attribute are defined by the ST_QID_simple type, as specified
in section 2.3.9.
insertBeforeMso Specifies the identifier of a built-in control that this control is to be inserted before. If the

(identifier of built-in
control to insert

value of this attribute is not understood, it SHOULD be ignored.
The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</£ab>
In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertBeforeQ Specifies the qualified identifier of a control that this control is to be inserted before. If the

(qualified identifier
of control to insert
before)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

o

=

This is specified using the following XML fragment:

74 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
-.;'I
._\:{-/.
Buttan

Custa dldll_il_lm____‘_hh

This is the screentip

li_:_;}l Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

75/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:
LR

=

Button

Custam Group

G_]_:f Book3.xlsx
Press F1 for mare help.,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"

76 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this.element:

<xsd:complexType name="CT ControlCloneRegular">
<xsd:complexContent>
<xsd:restriction base="CT Control">
<xsd:attribute name="id" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.2.12 control (Control Clone)

This element specifies a clone of an existing control. Built-in controls can be cloned using the idMso
attribute. Custom controls cannot be cloned. Custom controls cannot be created using the control
element.

When an existing control is cloned, its non-location-specific properties, such as the icon and label, are
copied to the clone. Location-specific properties, such as the size and visibility of the control, are not
copied. These properties can be set by specifying additional attributes on the control element.

For example, consider the following XML fragment:

<control idMso="Paste" size="large" />

This results in a large copy of the Paste control, as follows:

i

Paste
Custom Group
Figure 6: A Paste control

The following table summarizes the elements that are parents of this element.

77 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» o Button

*-:/ /' This is averbose description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

78/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the /ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function:to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributés.are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs.to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

79/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowlLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
displays the label of this control:

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

80/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function iscalled when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined. by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

Theid, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”

81 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the.icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon'SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

82 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are'defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5:

insertBeforeQ
(qualified identifier
oficontrol to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

83/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

ay

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive: If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified. in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
__;il
b
Button

Custa dl_ll_il_lm____‘_hh

This is the screentip

li_,_ul Bookl3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"

84 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show Specifies whether this control displays an icon.

image) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show Specifies whether this control displays.its label.

label) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies /a button that has a label, but does not show it. Even though the label is
hidden, it isprovided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:
Bl

Custam Graoup

This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

85/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

N
3 "':”_"lj

Button

Custam Group

QU} Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

86 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ControlClone">
<xsd:complexContent>
<xsd:restriction base="CT Button">
<xsd:attribute name="id" use="prohibited"/>
<xsd:attribute name="onAction" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.2.13 control (Quick Access Toolbar Control Clone)

This element specifies a clone of an existing control. It is specific to control clones on the quick access
toolbar, but otherwise behaves the same way as the regular control element, as specified in section
2.2.12.

The following table summarizes the elements that are parents of this element.

Parent Elements

documentControls (section 2.2.16); sharedControls (section 2.2.35)

The following table summarizes the attributes of this element.

Attributes Description
description Specifies a detailed description of the control, which is displayed in detailed views.
(description) The description and getDescription attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.
For example, consider a button with a detailed description, as follows:

» o Button

\ | e v .
*~:/ This is a verbose description that describes
the function of this control in detail.

This_is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

87/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attribltes are‘specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this'cexample, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<pbutton id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel

callback)

Specifies the name of a callback function to be called to determine the label of this control.
The getLabel and label attributes are mutually exclusive. If neither attribute is specified,

88/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

no label SHOULD be displayed.
For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip. of the/button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) This attribute SHOULD.have no effect if the size or getSize attributes specify that the
control is "large".
The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified.in'section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

89 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (custom control
identifier)

Specifies the identifier for a custom control. All new custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive.
For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

90/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control. The identifier is qualified with an XML
namespace prefix that specifies the owner of the control. If the namespace'is equal to the
Custom UI namespace, the idQ attribute behaves in the same manner as the idMso
attribute. If the namespace is equal to the name of the current file, the idQ attribute
behaves like the id attribute. If the namespace is equal to the name of a different file, the
attribute references a control from that file.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive.
For example, consider the following XML fragment:

<tab 1dQ="x:0therTab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>

In this case x is an XML namespace equal to the name of another file that has a Custom UI
document with a tab with an identifier of "OtherTab". This example adds a custom group
to that tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

91/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it/ SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood. it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

92/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the.control automatically.

For example, consider a button with KeyTip 'K', as follows:

i

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
A
."':”:l./.
Buttan

Custa dldlldJ_I_IM'____‘H

This is the screentip

li,,_ul Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

93/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show Specifies whether this control displays an icon.

image) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon;, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show Specifies whether this control displays its label.

label) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

Foriexample, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Bl

Custam Group

This is specified using the following XML fragment:

94 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:
LR

ha”

Button

Custam Group)

i) e

iii# Book3 xlsx
2 Press F1 for mare help.,
2

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visibility)

visible (control Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ControlCloneQat">

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

complexContent>

extension base="CT ControlBase">

attribute name="id" type="ST ID" use="optional"/>
attribute name="1idQ" type="ST QID" use="optional"/>
attributeGroup ref="AG IDMso"/>

attributeGroup ref="AG Description"/>
attributeGroup ref="AG SizeAttributes"/>

</xsd:extension>
</xsd:complexContent>

95/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

</xsd:complexType>

2.2.14 customUI (Custom UI Document Root)
This element specifies the root tag in a Custom UI XML document.

The following table summarizes the child elements of this element.

Child Elements Section
commands (List of Repurposed Commands) 2.2.9
ribbon (Ribbon) 2:2.33
The following table summarizes the attributes of this element.
Attributes Description
loadImage Specifies the name of a callback function to be called when the application needs to load an
(loadImage image for a control's icon.
callback) For example, consider the following XML fragment:
<customUI xmlns=".." loadImage="LoadImageFunction" />

In this example, the LoadImageFunction callback is called to load icon images.

The possible values for this/attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

onLoad (onLoad Specifies the name of a callback function to be called when the Custom UI file is loaded by
callback) the application.

For example, consider the following XML fragment:

<customUI xmlns=".." onLoad="OnCustomUILoaded" />

In‘this example, the OnCustomUILoaded callback function is called when the containing
Custom UI file is loaded.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_ CustomUI">
<xsd:sequence>
<xsd:element name="commands" type="CT Commands" minOccurs="0" maxOccurs="1"/>
<xsd:element name="ribbon" type="CT Ribbon" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="onLoad" type="ST Delegate" use="optional"/>
<xsd:attribute name="loadImage" type="ST Delegate" use="optional"/>
</xsd:complexType>

2.2.15 dialogBoxLauncher (Dialog Box Launcher)
This element specifies a button that is the dialog box launcher control for a ribbon group.

For example, consider a dialog box launcher control, as follows:

96 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Custom Group M=

Al CHalog Box Launcher

A | &) BookLulsx

1 Prass F1 for more help.
2

Figure 7: A dialog box launcher control

This is specified using the following XML fragment:

<group id="customGroup" label="Custom Group">
<dialogBoxLauncher>
<button id="button" screentip="Dialog Box Launcher" />
</dialogBoxLauncher>
</group>

The following table summarizes the elements that<are parents of this element.

Parent Elements

group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT DialogLauncher">
<xsd:sequence>
<xsd:element name="button" type="CT ButtonRegular" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>

</xsd:complexType>

2.2.16 documentControls (List of Document-Specific Quick Access Toolbar Controls)

This element specifies the list of controls on the quick access toolbar which are specific to the
containing file.

For example, consider a set of controls on the document-specific quick access toolbar, as follows:
() BR -

.-

— Home Insert FPage Layout

Figure 8: A set of controls on the document-specific quick access toolbar

This is specified using the following XML fragment:

97/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

<documentControls>
<control idMso="CalculateNow" />
<control idMso="HyperlinkInsert" />
</documentControls>

The following table summarizes the elements that are parents of this element.

Parent Elements

qat (section 2.2.32)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
control (Quick Access Toolbar Control Clone) 2.2.13
separator (Separator) 2.2.34

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT QatItems">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:element name="control" type="CT ControlCloneQat"/>
<xsd:element name="button" type="CT ButtonRegular"/>
<xsd:element name="separator" type="CT Separator"/>
</xsd:choice>
</xsd:sequence>

</xsd:complexType>

2.2.17 dropDown (Drop-down Control)

This element specifies a drop-down control that allows users to make a selection from a list of options.

A drop-down control can optionally have buttons after its selection items.

For example, consider a drop-down control, as follows:

DropDown | Item 2 =

Item 1
Item 2
| Item 3

LS
J Buttan...

O =

e

Figure 9: A drop-down control

This is specified using the following XML fragment:

<dropDown id="dropDown" label="DropDown">
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 2" />
<item id="item3" label="Item 3" />
<button id="button" label="Button..." />

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

98 / 554

</dropDown>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.243
item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

Attributes Description
enabled (enabled Specifies the enabled state of the control.
state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback)

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.

(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

99/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemCount Specifies the name of a callback function to be called to determine the number of selection
(getItemCount items in this control.
callback) If this attribute is omitted, the control SHOULD display any selection items that are
specified as child elements. If no such items are specified, the control SHOULD be empty.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount" />
In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemID Specifies the name of a callback function to be called to determine the identifier of a
(getItemID specific dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD have empty
identifiers.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemID="GetGalleryItemID" />
In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of @ selection item.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in_section2.3.2.
getItemImage Specifies the name of a callback function to be called to determine the icon of a specific
(getItemImage dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dyhamically-created selection items SHOULD NOT display icons.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemImage="GetGalleryItemImage" />
In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemLabel Specifies the name of a callback function to be called to determine the label of a specific
(getItemLabel dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD NOT display labels.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemLabel="GetGalleryItemLabel™ />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

100 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application needs to determine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3:2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

101 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

callback)

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedIteml
D
(getSelectedItemI
D callback)

Specifies the name of a callback function to be called to determine the identifier of the item
to be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.
For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemID="GetItemID"
getSelectedItemID="GetGallerySelectedItemID" />

In this example, the GetGallerySelectedItemID callback function is called when the
application needs to determine the selected item.in the gallery. In this example the callback
function returns one of the identifiers returned by the GetItemID callback function.

The possible values for this/attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedIteml
ndex
(getSelectedItemlI
ndex callback)

Specifies the name of a callback function to be called to determine the index of the item to
be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getSelectedItemIndex="GetGallerySelectedItemIndex" />

In this example, the GetGallerySelectedItemIndex callback function is called when the
application needs to determine the selected item in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
displays the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel

Specifies the name of a callback function to be called to determine whether the application

102 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

(getShowLabel
callback)

displays the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In-this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes

103/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

MUST be specified.
For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. Atdeast one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

104 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in.the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome":

The possible values for this attribute are-defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls; in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In_this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
befare)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ

Specifies the qualified identifier of a control that this control is to be inserted before. If the

105/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

(qualified identifier
of control to insert
before)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip.for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

o

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section.2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

106 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

For example, consider a button with a screentip, as follows:
-.;'I

=

Button

Custo %

This is the screentip

li,ujl Book3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show Specifies whether this control displays an icon.

image) The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider a button that does not display an icon, as follows:
Button with no icon
Custam Graup
This is specified using the following XML fragment:
<button id="button" showImage="false"
label="Button with no icon" />
The possible values for this attribute are defined by the XML schema boolean datatype.
showItemImage Specifies whether this control displays icons on its selection items.

(showitem image) If this attribute is omitted, the items' icons SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemImage="false" >
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 1" />
<item id="item3" label="Item 2" />
<item id="item4" label="Item 3" />
</gallery>

This specifies a gallery control that does not show any icons on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showlItemLabel Specifies whether this control displays labels on its selection items.
(show item label) If this attribute is omitted, the item's labels SHOULD be shown by default.
For example, consider the following XML fragment:

107 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

<gallery id="gallery" label="Gallery" showItemLabel="false" >
<item id="iteml" image="Forest" />
<item id="item2" image="Desert" />
<item id="item3" image="Mountain" />
<item id="item4" image="Ocean" />
</gallery>

This specifies a gallery control that does not show any labels on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it..Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider.the following XML fragment:

<editBox id="editBox" sizeString="WWWWWAWNWWWWWW" />

This specifies an edit box control that is wide enough to display the string
"WWWWWWWWWWWWW",

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, .no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:
LR

=

Button

Custam Group

G_U} Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

108 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD defaultto an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT DropDownRegular">
<xsd:complexContent>
<xsd:extension base="CT Control">

<xsd:sequence>

<xsd:element name="item" type="CT Item" minOccurs="0" maxOccurs="1000"/>
<xsd:element name="button" type="CT ButtonRegular" minOccurs="0" maxOccurs="16"/>
</xsd:sequence>

<xsd:attributeGroup ref="AG Action"/>

<xsd:attributeGroup ref="AG Enabled"/>

<xsd:attributeGroup ref="AG Image"/>
<xsd:attributeGroup ref="AG DropDownAttributes"/>
<xsd:attribute name="getSelectedItemID" type="ST Delegate" use="optional"/>
<xsd:attribute name="getSelectedItemIndex" type="ST Delegate" use="optional"/>
<xsd:attribute name="showItemLabel" type="xsd:boolean" use="optional"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

109 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

2.2.18 dynamicMenu (Unsized Dynamic Menu)

This element specifies a dynamic menu control that, because of its location, cannot have its anchor
size changed. The size attribute is not present. It otherwise behaves identically to the regular
dynamicMenu element, as specified in section 2.2.19.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

e Button

Py v :
'/ This is a verbaose description that describes
the function of this contral in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail.™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies.the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<putton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getContent
(getContent
callback)

Specifies the name of a callback function to be called when the application needs to
determine the contents of the control.

For example, consider a dynamic menu control, as follows:

110/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

f |
Dynamic Menu =

Button 1
Button 2
Button 3

A

This is specified using the following XML fragment:

<dynamicMenu id="dynamic" label="Dynamic Menu"
getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this
case would return a string with the following XML:

<menu
xmlns="http://schemas.microsoft.com/office/2006/01/customui™>
<button id="buttonl" label="Button 1" />
<pbutton id="button2" label="Button 2" />
<pbutton id="button3" label="Button 3" />
</menu>

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(gﬁ;I"l':)'ge The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callbac

attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

111/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<pbutton id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined. by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes<are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip-at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) The showImage and getShowImage attributes are mutually exclusive. If neither

attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:

112 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowlLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined. by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this.control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

113/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

114 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image that is used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive{If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

115/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored:

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with‘an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re-query for them when
the user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to false.
For example, consider the following XML fragment:

<comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
getItemLabel="GetComboBoxItemLabel"
invalidateContentOnDrop="true" />

In this example, this combo box clears out its items and re-calls the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

o

-

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

116 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple.type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
-.;'I

=

Button

Custo %

This is the screentip

li,,_ul Book3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

117/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

N
3 "':”_"lj

Button

Custam Group

QU} Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible‘values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control

Specifies the visibility state of the control.

118 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT DynamicMenuRegular">
<xsd:complexContent>
<xsd:extension base="CT_ ControlBase">
<xsd:attributeGroup ref="AG Description"/>
<xsd:attributeGroup ref="AG IDAttributes"/>
<xsd:attributeGroup ref="AG GetContentAttributes"/>
<xsd:attributeGroup ref="AG DynamicContentAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.19 dynamicMenu (Dynamic Menu)
This element specifies a dynamic menu control that populates its contents dynamically.

For example, consider a dynamic menu control, as follows:

Dynamic Menu =

Button 1
Button 2
I Button 3

A

Figure 10: A dynamic menu control

This is specified‘using the following XML fragment:

<dynamicMenu id="dynamic" label="Dynamic Menu" getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this case would
return a string with the following XML:

<menu xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<pbutton id="buttonl" label="Button 1" />
<button id="button2" label="Button 2" />
<button id="button3" label="Button 3" />

</menu>

The following table summarizes the elements that are parents of this element.

119 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:
» s Button
M:f ! This is a verbose description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail.™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled

Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getContent Specifies the name of a callback function to be called when the application needs to
(getContent determine the contents of the control.
callback)

For example, consider a dynamic menu control, as follows:

Dynamic Menu =

Button 1
Button 2
Button 3

A

This is specified using the following XML fragment:

<dynamicMenu id="dynamic" label="Dynamic Menu"
getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this

120/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

case would return a string with the following XML:

<menu
xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<button id="buttonl" label="Button 1" />
<button id="button2" label="Button 2" />
<pbutton id="button3" label="Button 3" />
</menu>

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription™ />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
Inthis example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.

121 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neitherattribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is' called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified.in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control'is "large".
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".
The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

122 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider. the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

123 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier.of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control:

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

124 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive{If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these-attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

125/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be.inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re-query for them when
the user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to false.
For example, consider the following XML fragment:

<comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
getItemLabel="GetComboBoxItemLabel"
invalidateContentOnDrop="true" />

In thisiexample, this combo box clears out its items and re-calls the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contentseach time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

o

-

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

126 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
-.;'I
.__:{-/.
Buttan

Custa dldll_il_lm____‘_hh

This is the screentip

G,,_UI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control'is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

127 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:
Balel

Custam Group

This is specified using_ the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example,/consider a control with a supertip, as follows:
faw
=)

Button

Custam Group

QU} Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"

128 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible valuesfor this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT DynamicMenu">
<xsd:complexContent>
<xsd:extension base="CT DynamicMenuRegular">
<xsd:attributeGroup ref="AG SizeAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.20 editBox (Edit Box)
This element specifies an edit box control that allows a user to enter a string of text.

For example, consider an edit box control, as follows:

Edlit Box text

Custom Group
Figure 11: An edit box control

This is specified using the following XML fragment:

129 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

<editBox id="editBox" label="Edit Box" />

The following table summarizes the elements that are parents of this element.

Parent Elements
box (section 2.2.1); group (section 2.2.23)
The following table summarizes the attributes of this element.
Attributes Description
enabled (Enabled Specifies the enabled state of the control.
State) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control-that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is.not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this.example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application

needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

130/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<pbutton id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the /ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function:to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

131/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined. by the ST_Delegate simple type, as
specified in section 2.3.2.

getText (getText
callback)

Specifies the name of a callback function to be called to determine the text that SHOULD be
displayed in the control.

For example, consider the following XML fragment:

<editBox id="editBox" getText="GetEditBoxText" />

In this example, the GetEditBoxText callback function is called when the application needs
to determine the text to display in the control.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

132 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab 1dQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab_cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

133/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD. be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values. for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

134 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are'defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a-button with KeyTip 'K', as follows:

i

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

(maximum input
string length)

label (label) Specifies.a string to be used as the label for this control.
The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<putton id="button" label="Custom Button" />
This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.
maxLength Specifies an integer to be used as the maximum length of a string that can be entered

into the control.

If the maxLength attribute is omitted, the length of the input string SHOULD NOT be
limited except by application-specific constraints.

For example, consider the following XML fragment:

135/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<editBox id="editBox" maxLength="10" />

This specifies an edit box control that can only accept strings up to 10 characters in
length.

The possible values for this attribute are defined by the ST_StringLength simple type, as
specified in section 2.3.12.

onChange
(onChange
callback)

Specifies the name of a callback function to be called when the text in the(control has been
changed by the user.

For example, consider the following XML fragment:

<editBox id="editBox" onChange="EditBoxTextChanged" />

This specifies an edit box control that calls the EditBoxTextChanged callback function
when the user inputs a text string.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
-.;'I
.__:{-/.
Buttan

Custa dldll_il_lm____‘_hh

This is the screentip

li_:_;j Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:
<button id="button" imageMso="HappyFace" label="Button"

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

136 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (Show
Label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

<editBox id="editBox" sizeString="WWWWWAWNWWWWWW" />

This specifies an edit box control that is.wide enough to display the string
"WWWWWWWWWWWWW™,

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:
LR

=

Button

Custam Group

G_U} Book3.xlsx
Press F1 for mare help.,

This is specified using the following XML fragment:
<button id="button" imageMso="HappyFace" label="Button"

size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as

137/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control

visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT EditBox">
complexContent>

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
rattribute

<xsd

<xsd:

extension

base="CT Control">

attributeGroup ref="AG Enabled"/>
attributeGroup ref="AG Image"/>

attribute
attribute

attribute

name="maxLength" type="ST StringLength" use="optional"/>
name="getText" type="ST Delegate" use="optional"/>
name="onChange" type="ST Delegate" use="optional"/>
name="sizeString" type="ST String" use="optional"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

2.2.21 gallery (Gallery)

This element specifies a gallery control, which displays a drop-down grid of items that the user can
select from. A gallery can optionally have buttons following its selection items.

For example, consider a gallery control that shows a selection of pictures, as follows:

138/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

L, - N L S

Figure 12: A gallery control

This is specified using the following XML fragment:

<gallery id="gallery" label="Gallery" itemWidth="88" itemHeight="68"
size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />

</gallery>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

Attributes

Description

columns (column
count)

Specifies the number of columns that the gallery's items SHOULD be arranged into.

If the columns attribute is omitted, the application SHOULD choose the number of columns
automatically based on the number of items.

For example, consider a gallery control with six items arranged into two columns, as
follows:

139/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

(5, I S UV SR
TR

o | =] | &

{]
This is specified using the following XML fragment:

<gallery id="gallery" label="Gallery" columns="2"
size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />
<item id="item5" image="Flowers" />
<item id="item6" image="Whale" />
</gallery>

The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple.type, as specified in section 2.3.4.

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views:

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» o Button

Ve S This s a verbose description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.
The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

140 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button'is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription™ />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies.the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemCount Specifies the name of a callback function to be called to determine the number of selection
(getItemCount items in this control.
callback) If this attribute is omitted, the control SHOULD display any selection items that are

specified as child elements. If no such items are specified, the control SHOULD be empty.
For example, consider the following XML fragment:

141 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<gallery id="gallery" getItemCount="GetGalleryItemCount" />

In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemHeight
(getItemHeight
callback)

Specifies the name of a callback function to be called to determine the height of the
selection items in this control.

The itemHeight and getItemHeight attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The getItemHeight and getItemWidth attributes are mutually required. If only one of
the attributes is specified, its value is ignored.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemHeight="GetGalleryItemHeight"
getItemWidth="GetGalleryItemWidth" />

In this example, the GetGalleryItemHeight callback function is called when the
application needs to determinethe height of the items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getitemID
(getItemID
callback)

Specifies the name of a callback function to be called to determine the identifier of a
specific dynamically-created selection. item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD have empty
identifiers.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemID="GetGalleryItemID" />

In‘this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemImage
(getItemImage
callback)

Specifies the name of a callback function to be called to determine the icon of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display icons.
For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemImage="GetGalleryItemImage" />

In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemLabel
(getItemLabel
callback)

Specifies the name of a callback function to be called to determine the label of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display labels.

142 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemLabel="GetGalleryItemLabel™ />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application needs to determine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemWidth
(getItemWidth

Specifies.the name of a callback function to be called to determine the width of the
selection items in this control.

callback) The itemWidth and getItemWidth attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.
The getItemHeight and getItemWidth attributes are mutually required. If only one of
the attributes is specified, its value is ignored.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemHeight="GetGalleryItemHeight"
getItemWidth="GetGalleryItemWidth" />
In this example, the GetGalleryItemWidth callback function is called when the application
needs to determine the width of the items in the gallery.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of

143 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description
(getKeytip this control.
callback)

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all:

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In-this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedItemI
D
(getSelectedIteml
D callback)

Specifies the name of a callback function to be called to determine the identifier of the item
that is selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemID="GetItemID"
getSelectedItemID="GetGallerySelectedItemID" />

In this example, the GetGallerySelectedItemlID callback function is called when the
application needs to determine the selected item in the gallery. In this example the callback
function returns one of the identifiers returned by the GetItemID callback function.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedIteml

Specifies the name of a callback function to be called to determine the index of the item to

144 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

ndex
(getSelectedItemI
ndex callback)

be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getSelectedItemIndex="GetGallerySelectedItemIndex" />

In this example, the GetGallerySelectedItemIndex callback function is called when the
application needs to determine the selected item in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control'is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

145 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function'is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier-for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possiblevalues for this attribute are defined by the ST_UniquelD simple type, as
specifiedrin section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

146 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are-defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be

147 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this/attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually. exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the

148 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re-query for them when
the user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to false.
For example, consider the following XML fragment:

<comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
getItemLabel="GetComboBoxItemLabel"
invalidateContentOnDrop="true" />

In this example, this combo box SHOULD clear out its items and re-call the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by .the XML schema boolean datatype.

itemHeight
(selection item
height)

Specifies the height of the selection items in this control.

The itemHeight and getItemHeight attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The itemHeight and itemWidth attributes are mutually required. If only one of the
attributes is specified, its value is ignored.

For example, consider a gallery control with 68 pixel tall items. This is specified using the
following XML fragment:

<gallery id="gallery" label="Gallery" itemWidth="88"
itemHeight="68" size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />

</gallery>

The possible values for this attribute are defined by the ST_GalleryItemWidthHeight
simple type, as specified in section 2.3.3.

itemWidth
(selection item
width)

Specifies the width of the selection items in this control.

The itemWidth and getItemWidth attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The itemHeight and itemWidth attributes are mutually required. If only one of the
attributes is specified, its value is ignored.

For example, consider a gallery control with 88 pixel wide items. This is specified using the
following XML fragment:

<gallery id="gallery" label="Gallery" itemWidth="88"
itemHeight="68" size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />

</gallery>

The possible values for this attribute are defined by the ST_GalleryItemWidthHeight
simple type, as specified in section 2.3.3.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

149 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive: If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction Specifies the name of a callback function to be called when this control is invoked by the
(onAction callback) | user.

For example, consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

In this example, the button calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified.in section 2.3.2.

rows (row count) Specifies the number of rows that the gallery's items are arranged into.

If the rows attribute is omitted, the application SHOULD choose the number of rows
automatically based on the number of items.

For example, consider a gallery control with six items arranged into two rows, as follows:

Ll ke ||

L, e <

150 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

This is specified using the following XML fragment:

<gallery id="gallery" label="Gallery" rows="2"
size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />
<item id="item5" image="Flowers" />
<item id="item6" image="Whale" />
</gallery>

The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple type, as specified in section 2.3.4.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
LA
._\:{-/.
Buttan

Custa dl_lld:_l_nm___h__h

This is the screentip

G,Ujl Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"

151 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemImage
(show item image)

Specifies whether this control displays icons on its selection items.
If this attribute is omitted, the items' icons SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemImage="false" >
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 1" />
<item id="item3" label="Item 2" />
<item id="item4" label="Item 3" />
</gallery>

This specifies a gallery control that does not show any icons on-its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showlItemLabel
(show item label)

Specifies whether this control displays labels on its selection.items.
If this attribute is omitted, the item's labels SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemLabel="false" >

<item id="iteml" image="Forest" />
<item id="item2" image="Desert" />

<item id="item3" image="Mountain " />
<item id="item4" image="Ocean" />
</gallery>

In this example, the gallery control does not show any labels on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showInRibbon
(show in ribbon)

This attribute has no meaning and MUST NOT be used.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute' SHOULD have no effect if the size or getSize attributes specify that the
control.is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

152 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

B

Bl

Custam Group

This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple.type, as specified
in section 2.3.10.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

<editBox id="editBox" sizeString="WWWWWAWNWWWWWW" />

This specifies an edit box control that is wide enough to display the string
"WWWWWWWWWWWWW".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

(e}
s

Button

Custam Group

id Book3.xlsx
Press F1 for mare healp.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

153/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.
visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Gallery">
<xsd:complexContent>
<xsd:extension base="CT GalleryRegular">
<xsd:attributeGroup ref="AG SizeAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.22 gallery (Unsized Gallery)

This element specifies a‘gallery which, because of its location, cannot have its size changed. The size
attribute is not present. It otherwise behaves identically to the regular gallery element, as specified in
section 2.2.21.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

154 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

columns (column
count)

Specifies the number of columns that the gallery's items are arranged into.

If the columns attribute is omitted, the application SHOULD choose the number of columns
automatically based on the number of items.

For example, consider a gallery control with six items arranged into two columns, as
follows:

bl b |

L B =N

Go | = | &

q
This is specified using the following XML fragment:

<gallery id="gallery" label="Gallery" columns="2"
size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />
<item id="item5" image="Flowers" />
<item id="item6" image="Whale" />
</gallery>

The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple type, as specified in section 2.3.4.

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» o+ Button

Vet This is a verbose description that describes
the function of this contral in detail,

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail.™ />

155/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values.for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

156 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

getItemCount
(getItemCount
callback)

Specifies the name of a callback function to be called to determine the number of selection
items in this control.

If this attribute is omitted, the control SHOULD display any selection items that are
specified as child elements. If no such items are specified, the control SHOULD be empty.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount" />

In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemHeight
(getItemHeight

Specifies the name of a callback function to be called to determine the height of the
selection items in this control.

callback) The itemHeight and getItemHeight attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first'item, based on its contents.
The getItemHeight and getItemWidth attributes are/mutually required. If only one of
the attributes is specified, its value is ignored.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemHeight="GetGalleryItemHeight"
getItemWidth="GetGalleryItemWidth" />
In this example, the GetGalleryItemHeight callback function is called when the
application needs to determine the height of the items in the gallery.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemID Specifies the name of a callback function to be called to determine the identifier of a
(getItemID specific dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD have empty
identifiers.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemID="GetGalleryItemID" />
In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getIltemImage Specifies the name of a callback function to be called to determine the icon of a specific
(getItemImage dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD NOT display icons.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemImage="GetGalleryItemImage" />

In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as

157 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

specified in section 2.3.2.

getItemLabel
(getItemLabel
callback)

Specifies the name of a callback function to be called to determine the label of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display labels.
For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemLabel="GetGalleryItemLabel" />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to-determine the screentip of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selectionitems SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application needs to determine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemWidth
(getItemWidth
callback)

Specifies the name of a callback function to be called to determine the width of the
selection items in this control.

The itemWidth and getItemWidth attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The getItemHeight and getItemWidth attributes are mutually required. If only one of
the attributes is specified, its value is ignored.

For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount"

getItemHeight="GetGalleryItemHeight"
getItemWidth="GetGalleryItemWidth" />

158 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

In this example, the GetGalleryItemWidth callback function is called when the application
needs to determine the width of the items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in‘section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application. SHOULD display the label of the control as the screentip or display
no-screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedItemI
D
(getSelectedIteml
D callback)

Specifies the name of a callback function to be called to determine the identifier of the item
to be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount"

getItemID="GetItemID"
getSelectedItemID="GetGallerySelectedItemID" />

In this example, the GetGallerySelectedItemID callback function is called when the

159 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

application needs to determine the selected item in the gallery. The callback function
returns one of the identifiers returned by the GetItemID callback function.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedItemlI
ndex
(getSelectedIteml
ndex callback)

Specifies the name of a callback function to be called to determine the index of the item to
be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getSelectedItemIndex="GetGallerySelectedItemIndex" />

In this example, the GetGallerySelectedItemIndex callback function is called when the
application needs to determine the selected item in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage Specifies the name of a callback function to.be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

160 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for. this attribute are defined by the ST_UniquelD simple type, as
specified in section 2/3.13.
idMso (built-in Specifies the identifier of a built-in.control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab 1dQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

161 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is'added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier.of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no.icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

162 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST. QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a‘new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re-query for them when
the user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to false.
For example, consider the following XML fragment:

<comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
getItemLabel="GetComboBoxItemLabel"

163/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

invalidateContentOnDrop="true" />

In this example, this combo box SHOULD clear out its items and re-call the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

itemHeight
(selection item
height)

Specifies the height of the selection items in this control.

The itemHeight and getItemHeight attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The itemHeight and itemWidth attributes are mutually required.df only one of the
attributes is specified, its value is ignored.

For example, consider a gallery control with 68 pixel tall items. This is specified using the
following XML fragment:

<gallery id="gallery" label="Gallery" itemWidth="88"
itemHeight="68" size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />

</gallery>

The possible values for this attribute are defined by the ST_GalleryItemWidthHeight
simple type, as specified in section 2.3.3.

itemWidth
(selection item
width)

Specifies the width of the selection items in this control.

The itemWidth and getItemWidth attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD . all take the size of the first item, based on its contents.

The itemHeight and itemWidth attributes are mutually required. If only one of the
attributes is specified, its value is ignored.

For example, consider a gallery control with 88 pixel wide items. This is specified using the
following XML fragment:

<gallery id="gallery" label="Gallery" itemWidth="88"
itemHeight="68" size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />

</gallery>

The possible values for this attribute are defined by the ST_GalleryItemWidthHeight
simple type, as specified in section 2.3.3.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

i

ay

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

164 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction Specifies the name of a callback function to be called when this control is invoked by the
(onAction callback) | user.

For example, consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

In this example, the button calls.the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

rows (row count) Specifies the number of rows that the gallery's items are arranged into.

If the rows attribute is omitted, the application SHOULD choose the number of rows
automatically based on.the number of items.

For example, consider a gallery control with six items arranged into two rows, as follows:

This is specified using the following XML fragment:

<gallery id="gallery" label="Gallery" rows="2"

size="large" imageMso="HappyFace" >

<item id="iteml" image="Desert" />

<item id="item2" image="Forest" />

<item id="item3" image="Toucan" />

<item id="item4" image="Tree" />

<item id="item5" image="Flowers" />

<item id="item6" image="Whale" />
</gallery>

165/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple type, as specified in section 2.3.4.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

[wn}
=7

Button

Custa dl_ll_il_lm____‘_hh

This is the screentip

li_,_,jl Bookl3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays anicon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This'is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemImage
(show item image)

Specifies whether this control displays icons on its selection items.
If this attribute is omitted, the items' icons SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemImage="false" >
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 1" />
<item id="item3" label="Item 2" />
<item id="item4" label="Item 3" />

166 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

</gallery>

This specifies a gallery control that does not show any icons on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showlItemLabel
(show item label)

Specifies whether this control displays labels on its selection items.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemLabel="false" >
<item id="iteml" image="Forest" />
<item id="item2" image="Desert" />
<item id="item3" image="Mountain" />
<item id="item4" image="Ocean" />
</gallery>

In this example, the gallery control does not show any labels on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display_its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it.is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

<editBox id="editBox" sizeString="WWWWWAWWWWWWW" />

This specifies an edit box control that is wide enough to display the string
"WWWWWWWWWWWWW".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

167 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

(ma}
1 __:‘:-/.

Button

Custam Group)

i) e

iii# Book3 xlsx
2 Press F1 for mare help.,
2

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST..String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT GalleryRegular">
<xsd:complexContent>
<xsd:extension base="CT DropDownRegular">
<xsd:attributeGroup ref="AG Description"/>
<xsd:attributeGroup ref="AG DynamicContentAttributes"/>
<xsd:attribute name="columns" type="ST GalleryRowColumnCount" use="optional"/>
<xsd:attribute name="rows" type="ST GalleryRowColumnCount" use="optional"/>
<xsd:attribute name="itemWidth" type="ST GalleryItemWidthHeight" use="optional"/>

168 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

<xsd:attribute name="itemHeight" type="ST GalleryItemWidthHeight" use="optional"/>
<xsd:attribute name="getItemWidth" type="ST Delegate" use="optional"/>
<xsd:attribute name="getItemHeight" type="ST Delegate" use="optional"/>
<xsd:attribute name="showItemLabel" type="xsd:boolean" use="optional"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

2.2.23 group (Group)

This element specifies a grouping of controls on a ribbon tab. All controls displayed in a ribbon tab

MUST be contained within a group.

For example, consider a group with a single button, as follows:

= Button

Custom Group

Figure 13: A group with a single button

This is specified using the following XML fragment:

<group id="group" label="Custom Group">
<button id="button" label="Button" imageMso="HappyFace" />

</group>

The following table summarizes the elements that are parents of this element.

Parent Elements

tab (section 2.2.39)

The following table summarizes the child elements of this element.

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Child Elements Section
box (Box Grouping Container) 2.2.1
button (Button) 2.2.2
buttonGroup (Button Grouping Container) 2.2.5
checkBox (Check Box) 2.2.6
comboBox (Combo Box) 2.2.7
control (Control Clone) 2.2.12
dialogBoxLauncher (Dialog Box Launcher) 2.2.15
dropDown (Drop-down Control) 2.2.17
dynamicMenu (Dynamic Menu) 2.2.19
169 / 554

Child Elements Section
editBox (Edit Box) 2.2.20
gallery (Gallery) 2.2.21
labelControl (Text Label) 2.2.25
menu (Menu) 2.2.28
separator (Separator) 2.2.34
splitButton (Split Button) 2.2.38
toggleButton (Toggle Button) 2.2.43

The following table summarizes the attributes of this element.

Attributes Description
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be‘displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2/3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback)

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this.example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip

Specifies the name of a callback function to be called to determine the screentip of this

170/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

(getScreentip
callback)

control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a-callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified.in'section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

171/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex.is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. Thisattribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

172 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of"TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended.to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this'example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

173/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

o

-

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies.a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

174 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

Button

Custa dl_ll_il_luj'____‘_h

This is the screentip

li;_:f}l Book3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:
<button id="button" imageMso="HappyFace" label="Button"

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control. SHOULD. be shown.

For example, consider a control with a supertip, as follows:

N
\ ""\—"'_".j

Button

Custom Group|

G:_JI Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

175/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_ Group">

<xsd
<xsd
<xsd
<xsd
<xsd

<xsd:element name="dialogBoxLauncher" type="CT DialogLauncher" minOccurs="0"

:sequence>
:sequence>

:choice minOccurs="0" maxOccurs="1000">

:group ref="EG Controls"/>

:element name="separator" type="CT Separator"/>
</xsd:choice>
</xsd:sequence>

maxOccurs="1"/>
</xsd:sequence>

<xsd:attributeGroup ref="AG IDAttributes"/>
<xsd:attributeGroup ref="AG Label"/>
<xsd:attributeGroup ref="AG Image"/>
<xsd:attributeGroup ref="AG PositionAttributes"/>
<xsd:attributeGroup ref="AG Screentip"/>
<xsd:attributeGroup ref="AG Visible"/>
<xsd:attributeGroup ref="AG Keytip"/>

</xsd:complexType>

2.2.24 item (Selection Item)

This element specifies an item in a selection-type control.

For.example, consider a drop-down control with three selection items, as follows:

DropDown tem 2 x

L

i

Item 1
Item 2
Item 3

Buttan...

Cr =

-—p—

Figure 14: A drop-down control with selection items

This is specified using the following XML fragment:

<dropDown id="dropDown" label="DropDown">

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification

Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

176 / 554

<item id="iteml" label="Item 1" />

<item id="item2" label="Item 2" />

<item id="item3" label="Item 3" />

<button id="button" label="Button..." />
</dropDown>

The following table summarizes the elements that are parents of this element.

Parent Elements

comboBox (section 2.2.7); dropDown (section 2.2.17); gallery (section 2.2.21); gallery (section 2.2.22)

The following table summarizes the attributes of this element.

Attributes Description
id (custom control Specifies the identifier for a custom control. All new custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.
For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.

image (custom Specifies the identification information for an image to be used as the icon for this control.
image identifier) This attribute is used to specify an embedded picture that resides locally within the
containing file.

The image, and imageMso attributes are mutually exclusive.
For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

In this example, the custom button has an icon that is the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in Specifies the identifier of a built-in image to be used as the icon of this control.

image identifier) The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The image, and imageMso attributes are mutually exclusive.
For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

In this example, the custom button uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

label (label) Specifies a string to be used as the label for this control.

For example, consider the following XML fragment:

177 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.
For example, consider a button with a screentip, as follows:

.'}
S
Button

Custa _lﬂll_il_nu]____‘x

This is the screentip

G_E}I Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2,3.11.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.
For example, consider a control with a supertip, as follows:
It}
ot
Button

Custom Group|

G:_JI Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

The following XML schema fragment defines the contents of this element:

178 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

<xsd:complexType name="CT_ Item">

<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute

name="1id" type="ST UniqueID" use="optional"/>
name="label" type="ST String" use="optional"/>
name="image" type="ST Uri" use="optional"/>
name="imageMso" type="ST ID" use="optional"/>
name="screentip" type="ST String" use="optional"/>
name="supertip" type="ST String" use="optional"/>

</xsd:complexType>

2.2.25 labelControl (Text Label)

This element specifies

a control that displays a simple string of text.

For example, consider a label control, as follows:

Label Cantrol

Custom Group

Figure 15: A label control

This is specified using

the following XML fragment:

<labelControl id="label" label="Label Control" />

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

179 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the /ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributés.are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs.to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

180 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<pbutton id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

181 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

specified in section 2.3.2.

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the

182 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier-of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this. example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

183/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example; consider a button with KeyTip 'K', as follows:

0

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

184 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
-.;'I
._\:{-/.
Button

Custa dldll_il_lm____‘_hh

This is the screentip

li_:_;}l Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

185/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

N
3 "':”_"lj

Button

Custam Group

QU} Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

186 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT LabelControl">
<xsd:complexContent>
<xsd:restriction base="CT Control">
<xsd:attribute name="image" use="prohibited"/>
<xsd:attribute name="imageMso" use="prohibited"/>
<xsd:attribute name="getImage" use="prohibited"/>
<xsd:attribute name="keytip" use="prohibited"/>

<xsd:attribute name="getKeytip" use="prohibited"/>
<xsd:attribute name="showImage" use="prohibited"/>

<xsd:attribute name="getShowImage" use="prohibited"/>

</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

2.2.26 menu (Unsized Menu)

This element specifies a menu control that, because of its location, cannot have its size changed. The
size attribute is not present. It otherwise behaves identically to the regular menu element, as

specified in section 2.2.28.

The following table summarizes the elements that are parents of this element.

Parent Elements

splitButton (section 2.2.38); splitButton (section 2.2.36)

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29);

The following table summarizes the child elements of this element.

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Child Elements Section
button (Unsized Button) 2.2.3
checkBox (Check Box) 2.2.6
control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynamic Menu) 2.2.18
gallery (Unsized Gallery) 2.2.22
menu (Unsized Menu) 2.2.26
menuSeparator (Menu Separator) 2.2.30
splitButton (Unsized Split Button) 2.2.36
toggleButton (Unsized Toggle Button) 2.2.42
187 / 554

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

e Button

o - .
S/ This is a verbose description that describes
the function of this contral in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail.™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in. control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a. new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
ofthis control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription” />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback)

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<pbutton id="button" getEnabled="IsButtonEnabled" />

188 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<pbutton id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually. exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip.for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in‘section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this.example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

189 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

specified in section 2.3.2.

getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<pbutton id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the‘button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether.to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example; consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique

190 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

identifier)

identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

191 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be.ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in-tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If

192 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

(identifier of built-in
control to insert

the value of this attribute is not understood, it SHOULD be ignored.
The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</£ab>
In this example, a new custom tab with an identifier of "MyTab" is to.be inserted before the
built-in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertBeforeQ Specifies the qualified identifier of a control that this control SHOULD be inserted before. If

(qualified identifier
of control to insert
before)

the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section2.3.9.

itemSize (item
size)

Specifies the size of the child controls in this menu.
If this attribute is omitted, the menu's child controls SHOULD default to the normal size.
For example, consider a. menu control with large menu items, as follows:

Menu with large items =|

2%] Button 1

i

G J Button 2

E j Button 3
7=

This is specified using the following XML fragment:

<menu id="menu" label="Menu with large items" itemSize="large">
<button id="buttonl" label="Button 1" imageMso="HappyFace" />
<button id="button2" label="Button 2" imageMso="Paste" />
<button id="button3" label="Button 3" imageMso="Copy" />
</menu>

The possible values for this attribute are defined by the ST_ItemSize simple type, as
specified in section 2.3.6.

193/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

i

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive./If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
A
."':”:l./.
Buttan

Custa dldlldJ_I_IM'____‘H

This is the screentip

li,,_ul Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

194 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custom Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

(maly
bt

Button

Custam Group

i Book3.xklsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

195/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT MenuRegular">
<xsd:complexContent>
<xsd:extension base="CT ControlBase">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:group ref="EG MenuControlsBase"/>
<xsd:group ref="EG MenuOrSplitButtonRegular"/>
</xsd:choice>
</xsd:sequence>
<xsd:attribute name="itemSize" type="ST ItemSize" use="optional"/>
<xsd:attributeGroup ref="AG Description"/>
<xsd:attributeGroup ref="AG IDAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.27 menu (Menu with Title)

This element specifies a menu control that, because of its location, can optionally include a title string
via the title or getTitle attributes. It otherwise behaves identically to the regular menu element, as
specified in section 2.2.28.

For example, consider a menu control with a title, as follows:

196 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Title String

Figure 16: A menu control with title

fenu With Title *
Button

This is specified with the following XML fragment:

<menu id="menu" label="Menu With Title" title="Title String">

<button id="button" label="Button" />
</menu>

The following table summarizes the elements that are parents of this element.

Parent Elements

menu (section 2.2.27); officeMenu (section 2.2.31); splitButton (section 2.2.37)

The following table summarizes the child elements of this element.

by the application.

specified, the control SHOULD default to being enabled.
This attribute cannot be used to enable a built-in control that would otherwise be disabled

For example, consider the following XML fragment:

<button id="button" label="Disabled Button"

Child Elements Section
button (Unsized Button) 2.2.3
checkBox (Check Box) 2.2.6
control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynamic Menu) 2.2.18
gallery (Unsized Gallery) 2.2.22
menu (Menu with Title) 2.2.27
menuSeparator (Menu Separator) 2.2.30
splitButton (Split Button with Title) 2.2.37
toggleButton (Unsized Toggle Button) 2.2.42
The following table summarizes the attributes of this element.
Attributes Description
enabled (enabled Specifies the enabled state of the control.
state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

197 / 554

Attributes

Description

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and. keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD. generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display

198 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

no screentip at all.
For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function‘is called when the
application needs to determine whether to/display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowlLabel SHOULD display the label of this control.
callback) The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

is specified, the control.SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getTitle (getTitle
callback)

Specifies the name of a callback function to be called to determine the title of this control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified no
title SHOULD be shown.

For example, consider the following XML fragment:

<menu id="menu" label="Menu" getTitle="GetMenuTitle">

199 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

</menu>

In this example, the GetMenuTitle callback function is called when the application needs
to determine the title of the menu.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is‘called. when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The'id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”

200 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon'SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

201 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are'defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not. understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5:

insertBeforeQ
(qualified identifier
oficontrol to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

itemSize (item

Specifies the size of the child controls in this menu.

202 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

size)

If this attribute is omitted, the menu's child controls SHOULD default to the normal size.
For example, consider a menu control with large menu items, as follows:

KMenu with large items =|

| ::, J Button 1

i

§ J Button 2

E j Button 3
5=

This is specified using the following XML fragment:

<menu id="menu" label="Menu with large items" itemSize="large">
<button id="buttonl" label="Button 1" imageMso="HappyFace" />
<button id="button2" label="Button 2" imageMso="Paste" />
<button id="button3" label="Button 3" imageMso="Copy" />
</menu>

The possible values for this attribute are defined by the ST_ItemSize simple type, as
specified in section 2.3.6.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in-section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

203 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider a button with a screentip, as follows:
-.;'I

=

Button

Custo %

This is the screentip

li,,_ul Book3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST.String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.
The supertip and getSupertip attributes are mutually exclusive. If neither attribute is

204 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

specified no supertip for this control SHOULD be shown.
For example, consider a control with a supertip, as follows:
-.;'I
ha”
Button

Custam Group

G_]_:f Book3.xlsx
Press F1 for mare help.,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used.to hold data or identify the control. The
contents of this attribute. SHOULD be passed to any callback functions specified on this
control.
If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.
The possible values for this attribute are defined by the ST_String simple type, as
specified in‘section 2.3.11.

title (title) Specifies a string to be displayed as the title of the control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified, no
title SHOULD be shown.

For example, consider a menu control with a title, as follows:

Title Sti
Menu With Title » | 0 ong

Button

This is specified with the following XML fragment:
<menu id="menu" label="Menu With Title" title="Title String">

<button id="button" label="Button" />
</menu>

The possible values for this attribute are defined by the ST_String simple type, as

205 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT MenuWithTitle">
<xsd:complexContent>
<xsd:extension base="CT ControlBase">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:group ref="EG MenuControlsBase"/>
<xsd:group ref="EG MenuOrSplitButtonWithTitle"/>
</xsd:choice>
</xsd:sequence>
<xsd:attributeGroup ref="AG IDAttributes"/>
<xsd:attribute name="itemSize" type="ST ItemSize" use="optional"/>
<xsd:attributeGroup ref="AG Title"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.28 menu (Menu)
This element specifies a drop-menu control.

For example, consider a menu control, as follows:

|__,,u Menu
= Buttan i
B Button2

§) putton 3

i~A
Figure 17: A menu control

This is specified using the following XML fragment:

<menu id="menu" label="Menu" imageMso="HappyFace" >
<button id="buttonl" label="Button 1" imageMso="FileSave" />
<button id="button2" label="Button 2" imageMso="Bold" />
<button id="button3" label="Button 3" imageMso="Undo" />
</menu>

The following table summarizes the elements that are parents of this element.

206 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
checkBox (Check Box) 2.2.6
control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynamic Menu) 2.2.18
gallery (Unsized Gallery) 2.2.22
menu (Unsized Menu) 2.2.26
menuSeparator (Menu Separator) 2.2.30
splitButton (Unsized Split Button) 2.2.36
toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:
» o Button
H:/ / This is averbose description that describes
the function of this control in detail.

This is.specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

[MS-CUSTOMUI] - v2021

207 / 554
0422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription"™ />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the-enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in‘section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this.example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<pbutton id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

208 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the@pplication needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually.exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

209 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In thisilexample, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id(control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

210/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex'is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these

211/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

<pbutton id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If hone of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

212 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST. QID simple type, as specified
in section 2.3.9.

itemSize (item
size)

Specifies the size of the child controls in this menu.
If this attribute is omitted, the menu's child controls SHOULD default to the normal size.
For example, consider a menu control with large menu items, as follows:

Menu with large items =|

(2% Button 1

i

§ J Button 2

E j Button 3
7=

This is specified using the following XML fragment:

<menu id="menu" label="Menu with large items" itemSize="large">
<button id="buttonl" label="Button 1" imageMso="HappyFace" />
<button id="button2" label="Button 2" imageMso="Paste" />
<button id="button3" label="Button 3" imageMso="Copy" />
</menu>

The possible values for this attribute are defined by the ST_ItemSize simple type, as
specified in section 2.3.6.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

ay

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

213/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
__;il
b
Button

Custa dl_ll_il_lm____‘_hh

This is the screentip

li_,_,jl Bookl3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custom Group

This is specified using the following XML fragment:

<button id="button" showImage="false"

214 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Bl

Custam Group

This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:
LR

=

Button

Custam Group

G_U} Book3.xlsx
Press F1 for mare help.,

215/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are.defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Menu">
<xsd:complexContent>
<xsd:extension base="CT_MenuRegular">
<xsd:attributeGroup ref="AG SizeAttributes"/>
<xsd:attribute name="itemSize" type="ST ItemSize" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

2.2.29 menu (Dynamic Menu Root XML Element)
This element specifies the root tag of the XML string returned by a dynamic menu control.

For example, consider a dynamic menu control, as follows:

216 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Dynamic Menu x|

Button 1
Button 2
Button 3

A

Figure 18: A dynamic menu control

This is specified using the following XML fragment:

<dynamicMenu id="dynamic" label="Dynamic Menu" getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped; and in this case returns
a string with the following XML:

<menu xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<button id="buttonl" label="Button 1" />
<pbutton id="button2" label="Button 2" />
<pbutton id="button3" label="Button 3" />

</menu>

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
checkBox (Check Box) 2.2.6
control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynamic Menu) 2.2.18
gallery (Unsized Gallery) 2.2.22
menu (Unsized Menu) 2.2.26
menuSeparator (Menu Separator) 2.2.30
splitButton (Unsized Split Button) 2.2.36
toggleButton (Unsized Toggle Button) 2.2.42
The following table summarizes the attributes of this element.
Attributes Description
getTitle (getTitle Specifies the name of a callback function to be called to determine the title of this control.
callback) The title and getTitle attributes are mutually exclusive. If neither attribute is specified no
title SHOULD be shown.
For example, consider the following XML fragment:
<menu id="menu" label="Menu" getTitle="GetMenuTitle">
<7menu>

217/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

In this example, the GetMenuTitle callback function is to be called when the application
needs to determine the title of the menu.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

itemSize (item

Specifies the size of the child controls in this menu.

size) If this attribute is not specified, the menu's child controls SHOULD default to the normal
size.
For example, consider a menu control with large menu items, as follows:
Menu with large items 'i
| :_; | Button 1
? J Button 2 =
3 - =
_j Button 3
7
This is specified using the following XML fragment:
<menu id="menu" label="Menu with large items" itemSize="large">
<button id="buttonl" label="Button 1" imageMso="HappyFace" />
<button id="button2" label="Button 2" imageMso="Paste" />
<button id="button3" label="Button 3" imageMso="Copy" />
</menu>
The possible values for this attribute are defined by the ST_ItemSize simple type, as
specified in section 2.3.6.
title (title) Specifies a string to be displayed as the title of the control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified, no
title SHOULD be shown.

For example, consider a menu control with a title, as follows:

Title Stii
Menu With Title g

Button

This is specified with the following XML fragment:

<menu id="menu" label="Menu With Title" title="Title String">
<pbutton id="button" label="Button" />
</menu>

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT MenuRoot">

<xsd:sequence>

<xsd:choice minOccurs="0"

maxOccurs="1000">

<xsd:group ref="EG_MenuControlsBase"/>

218/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

<xsd:group ref="EG MenuOrSplitButtonRegular"/>

</xsd:choice>

</xsd:sequence>

<xsd:attributeGroup ref="AG Title"/>

<xsd:attribute name="itemSize" type="ST ItemSize" use="optional"/>
</xsd:complexType>

2.2.30 menuSeparator (Menu Separator)

This element specifies a horizontal separator line in a menu control. Menu separators can optionally
have title strings, which SHOULD display as headers in the menu.

For example, consider a menu with a separator in between two of its items, as follows:

! wad -Menu x|

—

H Button 1

B Button 2
(_TTEam T

Figure 19: Menu control with separator

This is specified using the following XML fragment:

<menu id="menu" label="Menu" imageMso="HappyFace" >
<button id="buttonl" label="Button 1" imageMso="FileSave" />
<menuSeparator id="separator" />
<button id="button2" label="Button 2" imageMso="Bold" />
</menu>

The following table summarizes the.elements that are parents of this element.

Parent Elements

menu (section 2.2.28); menu. (section 2.2.26); menu (section 2.2.29); menu (section 2.2.27); officeMenu
(section 2.2.31)

The following table’summarizes the attributes of this element.

Attributes Description
getTitle (getTitle Specifies the name of a callback function to be called to determine the title of this control.
callback) The title and getTitle attributes are mutually exclusive. If neither attribute is specified no

title SHOULD be shown.
For example, consider the following XML fragment:

<menu id="menu" label="Menu" getTitle="GetMenuTitle">

</menu>

In this example, the GetMenuTitle callback function is called when the application needs
to determine the title of the menu.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control Specifies the identifier for a custom control. All custom controls MUST have unique

219/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

identifier)

identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case; ex is an. XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab.cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertAfterMso
(identifier of built-in
control to insert

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

after) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</£ab>
In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertAfterQ Specifies the qualified identifier of a control that this control SHOULD be inserted after. If

(qualified identifier

220 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

of control to insert
after)

the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control. SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values.for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

title (title)

Specifies a string to be displayed as the title of the control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified, no
title SHOULD be shown.

For example, consider a menu control with a title, as follows:

Title Sti
Menu With Title » | 0 ond

Button

221/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

This is specified with the following XML fragment:

<button id="button" label="Button" />
</menu>

specified in section 2.3.11.

<menu id="menu" label="Menu With Title" title="Title String">

The possible values for this attribute are defined by the ST_String simple type, as

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT MenuSeparator">
<xsd:attributeGroup ref="AG IDCustom"/>
<xsd:attributeGroup ref="AG PositionAttributes"/>
<xsd:attributeGroup ref="AG Title"/>
</xsd:complexType>

2.2.31 officeMenu (Office Menu)

This element specifies the Office Menu of the application. It is used to reference the built-in Office
Menu. This element SHOULD NOT be specified if the containing Custom UI XML document is a Quick

Access Toolbar Customizations part.

For example, consider the following XML fragment:

<officeMenu>
<control idMso="FileSave" visible="false" />
</officeMenu>

This XML fragment specifies that the command with an identifier of "FileSave" on the Office Menu is

hidden.

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Child Elements Section

button (Unsized Button) 2.2.3

checkBox (Check Box) 2.2.6

control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynamic Menu) 2.2.18

gallery (Unsized Gallery) 2.2.22

menu (Menu with Title) 2.2.27
menuSeparator (Menu Separator) 2.2.30

222 / 554

Child Elements Section
splitButton (Split Button with Title) 2.2.37
toggleButton (Unsized Toggle Button) 2.2.42

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT OfficeMenu">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:group ref="EG MenuControlsBase"/>
<xsd:group ref="EG MenuOrSplitButtonWithTitle"/>
</xsd:choice>
</xsd:sequence>

</xsd:complexType>

2.2.32 qat (Quick Access Toolbar)

This element specifies the quick access toolbar. If the containing Custom UI file is a Ribbon
Extensibility part the qat element cannot be used unless the startFromScratch attribute on the
ribbon element is set to "true". In this case only the sharedControls child element SHOULD be used.

If the containing Custom UI file is a Quick Access Toolbar.Customizations part, the

documentControls child element SHOULD be used.

For example, consider the following controls on the document-specific quick access toolbar:

(0 d @ -

._J/'
—rt Hame Insert Page Layout

Figure 20: Controls on the quick access toolbar

This is specified using the following XML fragment:

<gat>
<documentControls>
<control idMso="CalculateNow" />
<control idMso="HyperlinkInsert" />
</documentControls>
</gat>

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

Child Elements Section
documentControls (List of Document-Specific Quick Access Toolbar Controls) 2.2.16
sharedControls (List of Shared Quick Access Toolbar Controls) 2.2.35
The following XML schema fragment defines the contents of this element:
223/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

<xsd:complexType name="CT_ Qat">
<xsd:sequence>
<xsd:element name="sharedControls" type="CT QatItems" minOccurs="0"/>
<xsd:element name="documentControls" type="CT QatItems" minOccurs="0"/>
</xsd:sequence>

</xsd:complexType>

2.2.33 ribbon (Ribbon)
This element is used to reference the Ribbon of the application and its contents.

The following table summarizes the elements that are parents of this element.

Parent Elements

customUI (section 2.2.14)

The following table summarizes the child elements of this element.

Child Elements Section
contextualTabs (List of Contextual Tab Sets) 2.2.10
officeMenu (Office Menu) 2.2.31
qat (Quick Access Toolbar) 2.2.32
tabs (List of Tabs) 2.2.40

The following table summarizes the attributes of this element.

Attributes Description

startFromScratch Specifies that the application's built-in ribbon UI is reduced to a minimal set of features,
(start from scratch) providing a clean slate on which to build custom UI.

If this attribute is omitted, its value SHOULD default to "false".
For example, consider the following XML fragment:

<ribbon startFromScratch="true">

</ribbon>

In this example, the application's ribbon is put into start from scratch mode.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Ribbon">
<xsd:all>
<xsd:element name="officeMenu" type="CT OfficeMenu" minOccurs="0" maxOccurs="1"/>
<xsd:element name="gat" type="CT Qat" minOccurs="0" maxOccurs="1">
<xsd:unique name="gatControls">
<xsd:selector xpath="*/*"/>
<xsd:field xpath="@id"/>
</xsd:unique>
</xsd:element>

224 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

<xsd:element name="tabs" type="CT Tabs" minOccurs="0" maxOccurs="1"/>
<xsd:element name="contextualTabs" type="CT ContextualTabs" minOccurs="0" maxOccurs="1"/>

</xsd:all>

<xsd:attribute name="startFromScratch" type="xsd:boolean" use="optional"/>
</xsd:complexType>

2.2.34 separator (Separator)

This element specifies a vertical separator line between two sets of controls, either in the Quick Access
Toolbar or within group elements.

For example, consider a vertical separator control between two buttons, as follows:

L] L]
Pt

M

: 2l

Button | Button
1 2
Custom Graup

Figure 21: A vertical separator control

This is specified using the following XML fragment:

<button id="buttonl" label="Button 1" imageMso="HappyFace" size="large" />
<separator id="separator" />
<button id="button2" label="Button 2" imageMso="HappyFace" size="large" />

The following table summarizes the elements that are parents of this element.

Parent Elements

documentControls (section 2.2.16); group (section 2.2.23); sharedControls (section 2.2.35)

The following table summarizes the attributes of this element.

Attributes Description
getVisible Specifies the'name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

225/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.
For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an' XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertAfterMso
(identifier of built-in
control to insert

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

after) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</£ab>
In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertAfterQ Specifies the qualified identifier of a control that this control SHOULD be inserted after. If

(qualified identifier
of control to insert
after)

the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

226 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
(identifier of built-in the value of this attribute is not understood, it SHOULD be ignored.

control to insert The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be

appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

section 2.3.5.
insertBeforeQ Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
(qualified identifier the value of this attribute is not understood, it SHOULD be ignored.
of control to insert The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be

appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

227 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

<xsd:complexType name="CT_ Separator">
<xsd:attributeGroup ref="AG IDCustom"/>
<xsd:attributeGroup ref="AG Visible"/>
<xsd:attributeGroup ref="AG PositionAttributes"/>
</xsd:complexType>

2.2.35 sharedControls (List of Shared Quick Access Toolbar Controls)

This element specifies the section of the quick access toolbar that is shared among all documents. This
element SHOULD NOT be specified if the containing Custom UI XML document is a Quick Access
Toolbar Customizations part. If the containing Custom UI XML document is a Ribbon Extensibility part,
this element can be used if the startFromScratch attribute is set to "true" on the.ribbon element.

For example, consider a Ribbon Extensibility XML document that adds the two buttons to the shared
section of the quick access toolbar:

Figure 22: Shared controls on the quick access toolbar

This is specified using the following XML fragment:

<gat>

<sharedControls>
<button id="buttonl" imageMso="HappyFace" />
<button idMso="Cut" />

</sharedControls>

</gat>

The following table summarizes the elements that are parents of this element.

Parent Elements

qat (section 2.2.32)

The following table . summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
control (Quick Access Toolbar Control Clone) 2.2.13
separator (Separator) 2.2.34

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT QatItems">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:element name="control" type="CT ControlCloneQat"/>
<xsd:element name="button" type="CT ButtonRegular"/>
<xsd:element name="separator" type="CT Separator"/>
</xsd:choice>
</xsd:sequence>

228 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

</xsd:complexType>

2.2.36 splitButton (Unsized Split Button)

This element specifies a split button control that, because of its location, cannot have its size changed.
The size attribute is not present. It otherwise behaves identically to the regular splitButton element,
as specified in section 2.2.38.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29)

The following table summarizes the child elements of this element.

Child Elements Section

button (Button Inside of a Split Button) 2.2.4

menu (Unsized Menu) 2.2.26

toggleButton (Toggle Button Inside of a Split Button) 2.2.44
The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled Specifies the enabled/state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies'a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callbacky The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage

229 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

callback) The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function'is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) The showImage and getShowImage attributes are mutually exclusive. If neither

attribute is specified, the control SHOULD display its icon.

230 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label.of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified.in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

231/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

232 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive{If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

TheinsertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

233/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be.inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

1o

-

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display

234 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

no screentip at all.
For example, consider a button with a screentip, as follows:
LR
ha”
Button

Custo %

This is the screentip

li,ujl Book3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST.String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a-button that does not display an icon, as follows:

Button with no icon

Custam Graup

This-is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

235/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:
LR

ha”

Button

Custam Group

G_U} Book3.xlsx
Press F1 for mare help.,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT SplitButtonRegular">
<xsd:complexContent>

236 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

<xsd:extension base="CT_SplitButtonRestricted">

<xsd:sequence minOccurs="0">

<xsd:choice minOccurs="0">

<xsd:element name="button" type="CT VisibleButton"/>
<xsd:element name="toggleButton" type="CT VisibleToggleButton"/>

</xsd:choice>

<xsd:element name="menu" type="CT MenuRegular"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

2.2.37 splitButton (Split Button with Title)

This element specifies a split button control that, because of its location, can optionally include a title
string via the title or getTitle attributes. It otherwise behaves identically to'the regular splitButton
element, as specified in section 2.2.38.

The following table summarizes the elements that are parents of this‘element.

Parent Elements

menu (section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the child elements of this element.

Child Elements Section
button (Button Inside of a Split Button) 2.2.4
menu (Menu with Title) 2.2.27
toggleButton (Toggle Button Inside of a Split Button) 2.2.44

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback)

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

237/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the /ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function:to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributés.are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs.to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

238 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<pbutton id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the‘icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to'be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the . name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs

239 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab 1dQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

240 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined<and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button.that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For-example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">

</tab>

241 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</£ab>
In this example, a new custom tab with an identifier‘of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the/ST_ID simple type, as specified in
section 2.3.5.
insertBeforeQ Specifies the qualified identifier of a control that this control SHOULD be inserted before. If

(qualified identifier
of control to insert
before)

the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set.of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in‘section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

i

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

242 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
-.;'I
.__:{-/.
Button

Custa dldll_il_lm____‘_hh

This is the screentip

li_:_;j Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

243 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

N
3 ":”_"lj

Button

Custam Group

Q]_[} Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.
visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

244 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes Description

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT SplitButtonWithTitle">
<xsd:complexContent>
<xsd:extension base="CT_SplitButtonRestricted">
<xsd:sequence minOccurs="0">
<xsd:choice minOccurs="0">
<xsd:element name="button" type="CT VisibleButton"/>
<xsd:element name="toggleButton" type="CT VisibleToggleButton"/>
</xsd:choice>
<xsd:element name="menu" type="CT MenuWithTitle"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

2.2.38 splitButton (Split Button)

This element specifies a split button control. A split button control is composed of either a button or a
toggle button, and a drop-down menu. The icon and label shown on the split button come from the
button or toggleButton child element.

For example, consider a split button control, as follows:

fow
)

g ™|
Button =

L Button 1

Button 2

Figure 23: A split button control

This is specified using the following XML fragment:

<splitButton id="splitButton" size="large" >
<button id="button" imageMso="HappyFace" label="Split Button" />
<menu id="menu">
<pbutton id="buttonl" label="Button 1" />
<button id="button2" label="Button 2" />
</menu>
</splitButton>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

245 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Child Elements Section
button (Button Inside of a Split Button) 2.2.4
menu (Unsized Menu) 2.2.26
toggleButton (Toggle Button Inside of a Split Button) 2.2.44

The following table summarizes the attributes of this element.

Attributes

Description

enabled (enabled

Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application

needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

246 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<pbutton id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the /ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowlLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

247 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for thistcontrol SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control«
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

248 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier.of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

249 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive{If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

TheinsertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

250 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be.inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

1o

-

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display

251/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

no screentip at all.
For example, consider a button with a screentip, as follows:
LR
ha”
Button

Custo %

This is the screentip

li,,_ul Book3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST.String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

252 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Bl

Custam Group

This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip)

Specifies a string to be shown as the supertip of the control:

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

N
9 _\:{I/.

Button

Custam Group

Q]_;} Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

253 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

ButtonClicked callback function.

specified in section 2.3.11.

This example is a button with a tag value of "123456", which is passed to the

The possible values for this attribute are defined by the ST_String simple type, as

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are

omitted, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT SplitButton">
<xsd:complexContent>
<xsd:extension base="CT SplitButtonRegular">
<xsd:attributeGroup ref="AG SizeAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.39tab (Tab)
This element specifies a ribbon tab control.

For example, consider the following XML fragment:
<tab id="MyTab" label="My Custom Tab">

</tab>

This XML fragment specifies a custom tab with the label "My Custom Tab".

The following table summarizes the elements that are parents of this element.

Parent Elements

tabs (section 2.2.40); tabSet (section 2.2.41)

The following table summarizes the child elements of this element.

Child Elements Section

group (Group) 2.2.23

The following table summarizes the attributes of this element.

Attributes Description

getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

254 / 554

Attributes Description
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to.determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

255 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an' XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertAfterMso
(identifier of built-in
control to insert

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

after) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</£ab>
In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertAfterQ Specifies the qualified identifier of a control that this control SHOULD be inserted after. If

(qualified identifier
of control to insert
after)

the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

256 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</£ab>
In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertBeforeQ Specifies the qualified identifier of a control that this control SHOULD be inserted before. If

(qualified identifier
of control to insert
before)

the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

o

-

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as

257/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Tab">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="100">
<xsd:element name="group" type="CT Group"/>
</xsd:choice>
</xsd:sequence>
<xsd:attributeGroup ref="AG IDAttributes"/>
<xsd:attributeGroup ref="AG Label"/>
<xsd:attributeGroup ref="AG PositionAttributes"/>
<xsd:attributeGroup ref="AG Visible"/>
<xsd:attributeGroup ref="AG Keytip"/>
</xsd:complexType>

258 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

2.2.40 tabs (List of Tabs)

This element specifies a list of ribbon tab controls. This element SHOULD NOT be specified if the
containing Custom UI XML document is a Quick Access Toolbar Customizations part.

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

Child Elements Section

tab (Tab) 2.2.39

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Tabs">
<xsd:sequence>
<xsd:element name="tab" type="CT Tab" minOccurs="1" maxOccurs="100"/>
</xsd:sequence>

</xsd:complexType>

2.2.41 tabSet (Contextual Tab Set)

This element specifies a contextual tab set control. As the id and idQ attributes are not present, this
element can only be used to refer to existing built-in tab sets. This element cannot be used to create
new contextual tab sets.

For example, consider the following-XML fragment:

<tabSet idMso="TabSetPictureTools">
<tab id="tab" label="Custom Tab">

</tab>

</tabSet>

This XML fragment is used toadd a new custom tab to the tab set with an identifier of
"TabSetPictureTools".

The following table summarizes the elements that are parents of this element.

Parent Elements

contextualTabs (section 2.2.10)

The following table summarizes the child elements of this element.

Child Elements Subclause

tab (Tab) section 2.2.39

The following table summarizes the attributes of this element.

259 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes Description

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<pbutton id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

idMso (built-in Specifies the identifier of a built-in control.
control identifier) The contents of this attribute are application-defined.
For example, consider the following XML fragment:

<control idMso="Bold" />

This is used to create a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_ TabSet">
<xsd:sequence>
<xsd:element name="tab" type="CT Tab" minOccurs="0" maxOccurs="50"/>
</xsd:sequence>
<xsd:attribute name="idMso" type="ST ID" use="required"/>
<xsd:attributeGroup ref="AG Visible"/>

</xsd:complexType>

2.2.42 toggleButton (Unsized Toggle Button)

This element specifies a toggle button control that, because of its location, cannot have its size
changed. The size attribute is not present. It otherwise behaves identically to the regular
toggleButton element, as specified in section 2.2.43.

The following table summarizes the elements that are parents of this element.

260 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the attributes of this element.

Attributes Description
description Specifies a detailed description of the control, which SHOULD be displayed in detailed
(description) views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» o Button

*-:/ /' This is averbose description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and'enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription Specifies the name of a callback function to be called to determine the detailed description
(getDescription of this control.
callback) The getDescription and description attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:

<button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

261 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually €xclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider. the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the control SHOULD default to the off state.
For example, consider the following XML fragment:

<toggleButton id="toggle" getPressed="IsButtonToggled" />

262 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

In this example, the IsButtonToggled callback function is called when the application
needs to determine the toggle state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by ‘the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to.be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) This attribute SHOULD have no_eéffect if the size or getSize attributes specify that the
control is "large".
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD . display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD.display the label of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

263 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function iscalled when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined. by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

Theid, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”

264 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon'SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

265 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are'defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not. understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5:

insertBeforeQ
(qualified identifier
oficontrol to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

266 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

ay

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string that SHOULD be used as the label for this control.
The label and getLabel attributes are mutually exclusive: If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<putton id="button" label="Custom Button" />
This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.
onAction Specifies the name of a callback function to be called when this control is invoked by the

(onAction callback)

user.
For example, consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

In this example, the button calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified. in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
__;il
b
Button

Custa dl_ll_il_lm____‘_hh

This is the screentip

li_,_ul Bookl3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"

267/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

268 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

(ma}
1 __:‘:-/.

Button

Custam Group)

G_]_:jl Book3.xlsx
Press F1 for mare help.,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST..String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_ ToggleButtonRegular">
<xsd:complexContent>
<xsd:extension base="CT ButtonRegular">
<xsd:attribute name="getPressed" type="ST Delegate" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

269 / 554

2.2.43 toggleButton (Toggle Button)

This element specifies a toggle button control that can be toggled between the pressed and un-
pressed states by the end-user.

For example, consider a toggle button control, as follows:

Tagle Buttan |

Custom Group

Figure 24: A toggle button control

This is specified with the following XML fragment:

<toggleButton id="toggleButton" label="Toggle Button" />

The following table summarizes the elements that are parents-of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a'detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» o Button

) | -y — -
*-:/ This is a verbase description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

270/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription"™ />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the-enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in‘section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this.example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<pbutton id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

271/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the@pplication needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the control SHOULD default to.the "off" state.
For example, consider the following XML fragment:

<toggleButton id="toggle" getPressed="IsButtonToggled" />

In this example, the IsButtonToggled callback function is called when the application
needs to determine the toggle state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage displays the icon of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application

272 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

(getShowLabel
callback)

displays the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possiblevalues for this attribute are defined by the ST_Delegate simple type, as
specified-in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

273/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of ""MyButton"".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab 1dQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

274 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be.ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in ‘control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In thiscexample, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in

Specifies the identifier of a built-in control that this control is to be inserted before. If the

275/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

control to insert
before)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD .be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For-example, consider a button with KeyTip 'K', as follows:

10

-

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as

276 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, asfollows:
A
."':”:l./.
Buttan

Custa dldlldJ_I_IM'____‘H

This is the screentip

li,,_ul Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:
<button id="button" imageMso="HappyFace" label="Button"

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

277/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML.schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Bl

Custam Group

This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

N
9 _\:{I/.

Button

Custam Group

Q]_[} Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

278/ 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ToggleButton">
<xsd:complexContent>
<xsd:extension base="CT ToggleButtonRegular">
<xsd:attributeGroup ref="AG SizeAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.44 toggleButton (Toggle Button Inside of a Split Button)

Thiselement specifies a toggle button control that is part of a split button control. The visible and
getVisible attributes are not present because the visibility is controlled by the split button. This
element otherwise behaves in the same way as the regular toggleButton element, as specified in
section 2.2.43.

The following table summarizes the elements that are parents of this element.

Parent Elements

splitButton (section 2.2.38); splitButton (section 2.2.36); splitButton (section 2.2.37)

The following table summarizes the attributes of this element.

279 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Attributes

Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.
The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:
» o Button
H:/ / This is averbose description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are.mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

280 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel andabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified.in‘section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the control SHOULD default to the off state.
For example, consider the following XML fragment:

<toggleButton id="toggle" getPressed="IsButtonToggled" />

In this example, the IsButtonToggled callback function is called when the application
needs to determine the toggle state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display

281 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

no screentip at all.
For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage displays the icon of this control.
callback) The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function‘is called when the
application needs to determine whether to/display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowlLabel SHOULD display the label of this control.
callback) The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

is specified, the control- SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control. This attribute is prohibited and the visibility is controlled by the split button.
callback) For example, consider the following XML fragment:

282 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a‘clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies. a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be. specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab 1dQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If

283 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive.If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

284 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored:

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</£ab>
In this example, a new custom tab with‘an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertBeforeQ Specifies the qualified identifier of a control that this control SHOULD be inserted before. If

(qualified identifier
of control to insert
before)

the value of this attribute.is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive: If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

o

-

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

285 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

In this example, the button calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST..Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
[maly
.__:{-/.
Buttan

Custa dl_lld:_l_nm___h__h

This is the screentip

G,,_UI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

286 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes

Description

Button with no icon

Custom Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

[wn}
=7

Button

Custam Group

i Book3.xklsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

287 / 554

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

Attributes Description

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control. This attribute is prohibited and the visibility is
visibility) controlled by the split button.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT VisibleToggleButton">
<xsd:complexContent>
<xsd:restriction base="CT ToggleButtonRegular">
<xsd:attribute name="visible" use="prohibited"/>
<xsd:attribute name="getVisible" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.3 Simple Types

This is the complete list.of simple types in the http://schemas.microsoft.com/office/2006/01/customui
namespace.

2.3.1 ST_BoxStyle (Box Style)
Specifies the layout style of a box control.
This simple type's contents are a restriction of the XML schema string datatype.

The following are possible enumeration values for this type:

Enumeration Value Description
horizontal (Horizontal) Specifies that the child controls are laid out horizontally.
vertical (Vertical) Specifies that the child controls are laid out vertically.

288 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Referenced By

box@boxStyle (section 2.2.1)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST BoxStyle">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="horizontal"/>
<xsd:enumeration value="vertical"/>

</xsd:restriction>
</xsd:simpleType>

2.3.2 ST_Delegate (Callback Function Name)

Specifies the name of a callback function. The format of this string is application-defined and SHOULD
be ignored if not understood.

Examples of this simple type are macro scripts and add-in callback functions.
This simple type's contents are a restriction of the XML schema string datatype.
This simple type also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 characters.
*= This simple type's contents have a maximum length of 1024 characters.

Referenced By

box@getVisible (section 2.2.1); button@getDescription (section 2.2.2); button@getDescription (section 2.2.3);
button@getDescription (section 2.2.4); button@getEnabled (section 2.2.2); button@getEnabled (section 2.2.3);
button@getEnabled (section 2.2.4); button@getImage (section 2.2.2); button@getImage (section 2.2.3);
button@getIlmage (section 2.2.4); button@getKeytip (section 2.2.2); button@getKeytip (section 2.2.3);
button@getKeytip (section 2.2.4); button@getLabel (section 2.2.2); button@getLabel (section 2.2.3);
button@getLabel (section 2.2.4); button@getScreentip (section 2.2.2); button@getScreentip (section 2.2.3);
button@getScreentip (section 2.2.4); button@getShowImage (section 2.2.2); button@getShowImage (section
2.2.3); button@getShowlImage (section 2.2.4); button@getShowLabel (section 2.2.2); button@getShowLabel
(section 2.2.3); button@getShowLabel (section 2.2.4); button@getSize (section 2.2.2); button@getSupertip
(section 2.2.2); button@getSupertip (section 2.2.3); button@getSupertip (section 2.2.4); button@getVisible
(section 2.2.2); button@getVisible (section 2.2.3); button@getVisible (section 2.2.4); button@onAction (section
2.2.2); button@onAction (section2.2.3); button@onAction (section 2.2.4); buttonGroup@getVisible (section
2.2.5); checkBox@getDescription (section 2.2.6); checkBox@getEnabled (section 2.2.6); checkBox@getImage
(section 2.2.6); checkBox@getKeytip (section 2.2.6); checkBox@getlLabel (section 2.2.6); checkBox@getPressed
(section 2.2.6); checkBox@getScreentip (section 2.2.6); checkBox@getShowImage (section 2.2.6);
checkBox@getShowLabel (section 2.2.6); checkBox@getSupertip (section 2.2.6); checkBox@getVisible (section
2.2.6); checkBox@onAction (section 2.2.6); comboBox@getEnabled (section 2.2.7); comboBox@getlmage
(section 2.2.7); comboBox@getItemCount (section 2.2.7); comboBox@getItemID (section 2.2.7);
comboBox@getltemImage (section 2.2.7); comboBox@ getltemLabel (section 2.2.7);
comboBox@getltemScreentip (section 2.2.7); comboBox@getItemSupertip (section 2.2.7); comboBox@getKeytip
(section 2.2.7); comboBox@getLabel (section 2.2.7); comboBox@getScreentip (section 2.2.7);
comboBox@getShowImage (section 2.2.7); comboBox@getShowLabel (section 2.2.7); comboBox@getSupertip
(section 2.2.7); comboBox@getText (section 2.2.7); comboBox@getVisible (section 2.2.7); comboBox@onChange
(section 2.2.7); command@getEnabled (section 2.2.8); command@onAction (section 2.2.8);
control@getDescription (section 2.2.12); control@getDescription (section 2.2.13); control@getEnabled (section
2.2.12); control@getEnabled (section 2.2.13); control@getEnabled (section 2.2.11); control@getImage (section
2.2.12); control@getIlmage (section 2.2.13); control@getlmage (section 2.2.11); control@getKeytip (section
2.2.12); control@getKeytip (section 2.2.13); control@getKeytip (section 2.2.11); control@getLabel (section
2.2.12); control@getLabel (section 2.2.13); control@getLabel (section 2.2.11); control@getScreentip (section
2.2.12); control@getScreentip (section 2.2.13); control@getScreentip (section 2.2.11); control@getShowImage
(section 2.2.12); control@getShowImage (section 2.2.13); control@getShowImage (section 2.2.11);

289 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Referenced By

control@getShowLabel (section 2.2.12); control@getShowLabel (section 2.2.13); control@getShowLabel (section
2.2.11); control@getSize (section 2.2.12); control@getSize (section 2.2.13); control@getSupertip (section
2.2.12); control@getSupertip (section 2.2.13); control@getSupertip (section 2.2.11); control@getVisible (section
2.2.12); control@getVisible (section 2.2.13); control@getVisible (section 2.2.11); control@onAction (section
2.2.12); customUI@loadImage (section 2.2.14); customUI@onLoad (section 2.2.14); dropDown@getEnabled
(section 2.2.17); dropDown@getImage (section 2.2.17); dropDown@getItemCount (section 2.2.17);
dropDown@getItemID (section 2.2.17); dropDown@getIitemImage (section 2.2.17); dropDown@getItemLabel
(section 2.2.17); dropDown@getltemScreentip (section 2.2.17); dropDown@getltemSupertip (section 2.2.17);
dropDown@getKeytip (section 2.2.17); dropDown@getLabel (section 2.2.17); dropDown@getScreentip (section
2.2.17); dropDown@getSelectedItemID (section 2.2.17); dropDown@getSelectedItemIndex (section 2.2.17);
dropDown@getShowImage (section 2.2.17); dropDown@getShowLabel (section 2.2.17); dropDown@getSupertip
(section 2.2.17); dropDown@getVisible (section 2.2.17); dropDown@onAction (section 2.2.17);
dynamicMenu@getContent (section 2.2.19); dynamicMenu@getContent (section 2.2.18);
dynamicMenu@getDescription (section 2.2.19); dynamicMenu@getDescription (section 2.2.18);
dynamicMenu@getEnabled (section 2.2.19); dynamicMenu@getEnabled (section 2.2.18); dynamicMenu@getImage
(section 2.2.19); dynamicMenu@getImage (section 2.2.18); dynamicMenu@getKeytip (section 2.2.19);
dynamicMenu@getKeytip (section 2.2.18); dynamicMenu@getLabel (section 2.2.19); dynamicMenu@getLabel
(section 2.2.18); dynamicMenu@getScreentip (section 2.2.19); dynamicMenu@getScreentip (section 2.2.18);
dynamicMenu@getShowImage (section 2.2.19); dynamicMenu@getShowImage (section 2.2.18);
dynamicMenu@getShowLabel (section 2.2.19); dynamicMenu@getShowLabel (section 2.2.18);
dynamicMenu@getSize (section 2.2.19); dynamicMenu@getSupertip (section 2:2.19); dynamicMenu@getSupertip
(section 2.2.18); dynamicMenu@getVisible (section 2.2.19); dynamicMenu@getVisible (section 2.2.18);
editBox@getEnabled (section 2.2.20); editBox@getImage (section 2.2.20); editBox@getKeytip (section 2.2.20);
editBox@getLabel (section 2.2.20); editBox@getScreentip (section 2.2.20); editBox@getShowImage (section
2.2.20); editBox@getShowLabel (section 2.2.20); editBox@getSupertip (section 2.2.20); editBox@getText
(section 2.2.20); editBox@getVisible (section 2.2.20); editBox@onChange (section 2.2.20);
gallery@getDescription (section 2.2.21); gallery@getDescription (section 2.2.22); gallery@getEnabled (section
2.2.21); gallery@getEnabled (section 2.2.22); gallery@getImage (section 2.2.21); gallery@getImage (section
2.2.22); gallery@getIitemCount (section 2.2.21); gallery@getltemCount (section 2.2.22); gallery@getItemHeight
(section 2.2.21); gallery@getltemHeight (section 2.2.22); gallery@getIitemID (section 2.2.21); gallery@getltemID
(section 2.2.22); gallery@getltemImage (section 2.2.21); gallery@getlitemImage (section 2.2.22);
gallery@getltemlLabel (section 2.2.21); gallery@getltemLabel (section 2.2.22); gallery@getIitemScreentip (section
2.2.21); gallery@getitemScreentip-(section 2.2.22); gallery@getltemSupertip (section 2.2.21);
gallery@getltemSupertip (section 2.2.22); gallery@getItemWidth (section 2.2.21); gallery@getItemWidth (section
2.2.22); gallery@getKeytip (section 2:2.21); gallery@getKeytip (section 2.2.22); gallery@getLabel (section
2.2.21); gallery@getLabel (section 2.2.22); gallery@getScreentip (section 2.2.21); gallery@getScreentip (section
2.2.22); gallery@getSelectedItemlID (section 2.2.21); gallery@getSelectedItemID (section 2.2.22);
gallery@getSelectedIitemIndex (section 2.2.21); gallery@getSelectedIitemIndex (section 2.2.22);
gallery@getShowImage (section 2.2.21); gallery@getShowImage (section 2.2.22); gallery@getShowlLabel (section
2.2.21); gallery@getShowlLabel (section 2.2.22); gallery@getSize (section 2.2.21); gallery@getSupertip (section
2.2.21); gallery@getSupertip (section 2.2.22); gallery@getVisible (section 2.2.21); gallery@getVisible (section
2.2.22); gallery@onAction (section 2.2.21); gallery@onAction (section 2.2.22); group@getImage (section 2.2.23);
group@getKeytip (section 2.2.23); group@getlLabel (section 2.2.23); group@getScreentip (section 2.2.23);
group@getSupertip (section 2.2:23); group@getVisible (section 2.2.23); labelControl@getEnabled (section
2.2.25); labelControl@getImage (section 2.2.25); labelControl@getKeytip (section 2.2.25); labelControl@getLabel
(section 2.2.25); labelControl@getScreentip (section 2.2.25); labelControl@getShowImage (section 2.2.25);
labelControl@getShowLabel (section 2.2.25); labelControl@getSupertip (section 2.2.25); labelControl@getVisible
(section 2.2.25); menu@getDescription (section 2.2.28); menu@getDescription (section 2.2.26);
menu@getEnabled (section 2.2.28); menu@getEnabled (section 2.2.26); menu@getEnabled (section 2.2.27);
menu@getImage (section 2.2.28); menu@getImage (section 2.2.26); menu@getimage (section 2.2.27);
menu@getKeytip (section 2.2.28); menu@getKeytip (section 2.2.26); menu@getKeytip (section 2.2.27);
menu@getLabel (section 2.2.28); menu@getlLabel (section 2.2.26); menu@getLabel (section 2.2.27);
menu@getScreentip (section 2.2.28); menu@getScreentip (section 2.2.26); menu@getScreentip (section 2.2.27);
menu@getShowImage (section 2.2.28); menu@getShowImage (section 2.2.26); menu@getShowImage (section
2.2.27); menu@getShowlLabel (section 2.2.28); menu@getShowlLabel (section 2.2.26); menu@getShowLabel
(section 2.2.27); menu@getSize (section 2.2.28); menu@getSupertip (section 2.2.28); menu@getSupertip
(section 2.2.26); menu@getSupertip (section 2.2.27); menu@getTitle (section 2.2.29); menu@getTitle (section
2.2.27); menu@getVisible (section 2.2.28); menu@getVisible (section 2.2.26); menu@getVisible (section 2.2.27);
menuSeparator@getTitle (section 2.2.30); separator@getVisible (section 2.2.34); splitButton@getEnabled (section
2.2.38); splitButton@getEnabled (section 2.2.36); splitButton@getEnabled (section 2.2.37);
splitButton@getImage (section 2.2.38); splitButton@getImage (section 2.2.36); splitButton@getImage (section
2.2.37); splitButton@getKeytip (section 2.2.38); splitButton@getKeytip (section 2.2.36); splitButton@getKeytip
(section 2.2.37); splitButton@getLabel (section 2.2.38); splitButton@getLabel (section 2.2.36);

290 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Referenced By

splitButton@getLabel (section 2.2.37); splitButton@getScreentip (section 2.2.38); splitButton@getScreentip
(section 2.2.36); splitButton@getScreentip (section 2.2.37); splitButton@getShowImage (section 2.2.38);
splitButton@getShowImage (section 2.2.36); splitButton@getShowImage (section 2.2.37);
splitButton@getShowLabel (section 2.2.38); splitButton@getShowLabel (section 2.2.36);
splitButton@getShowLabel (section 2.2.37); splitButton@getSize (section 2.2.38); splitButton@getSupertip
(section 2.2.38); splitButton@getSupertip (section 2.2.36); splitButton@getSupertip (section 2.2.37);
splitButton@getVisible (section 2.2.38); splitButton@getVisible (section 2.2.36); splitButton@getVisible (section
2.2.37); tab@getKeytip (section 2.2.39); tab@getlLabel (section 2.2.39); tab@getVisible (section 2.2.39);
tabSet@getVisible (section 2.2.41); toggleButton@getDescription (section 2.2.43); toggleButton@getDescription
(section 2.2.42); toggleButton@getDescription (section 2.2.44); toggleButton@getEnabled (section 2.2.43);
toggleButton@getEnabled (section 2.2.42); toggleButton@getEnabled (section 2.2.44); toggleButton@getImage
(section 2.2.43); toggleButton@getIimage (section 2.2.42); toggleButton@getImage (section 2.2.44);
toggleButton@getKeytip (section 2.2.43); toggleButton@getKeytip (section 2.2.42); toggleButton@getKeytip
(section 2.2.44); toggleButton@getLabel (section 2.2.43); toggleButton@getLabel (section 2.2.42);
toggleButton@getLabel (section 2.2.44); toggleButton@getPressed (section 2.2.43); toggleButton@getPressed
(section 2.2.42); toggleButton@getPressed (section 2.2.44); toggleButton@getScreentip (section 2.2.43);
toggleButton@getScreentip (section 2.2.42); toggleButton@getScreentip (section 2.2.44);
toggleButton@getShowImage (section 2.2.43); toggleButton@getShowImage (section 2.2.42);
toggleButton@getShowImage (section 2.2.44); toggleButton@getShowlLabel (section 2.2.43);
toggleButton@getShowLabel (section 2.2.42); toggleButton@getShowLabel (section 2.2.44);
toggleButton@getSize (section 2.2.43); toggleButton@getSupertip (section 2.2:43); toggleButton@getSupertip
(section 2.2.42); toggleButton@getSupertip (section 2.2.44); toggleButton@getVisible (section 2.2.43);
toggleButton@getVisible (section 2.2.42); toggleButton@getVisible (section 2.2.44); toggleButton@onAction
(section 2.2.43); toggleButton@onAction (section 2.2.42); toggleButton@onAction (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST Delegate">
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="1024"/>
</xsd:restriction>
</xsd:simpleType>

2.3.3 ST_GalleryItemWidthHeight (Gallery Item Width or Height)

Specifies the width or height of gallery items, in pixels.

This simple type's contents are a restriction of the XML schema positivelnteger datatype.
This simple type also specifies the following restrictions:

= This simple type has a minimum value of greater than or equal to 1.
*= This simple type has a maximum value of less than or equal to 4096.

Referenced By

gallery@itemHeight (section 2.2.21); gallery@itemHeight (section 2.2.22); gallery@itemWidth (section 2.2.21);
gallery@itemWidth (section 2.2.22)

The following XML schema fragment defines the contents of this simple type:

291 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

<xsd:simpleType name="ST GalleryItemWidthHeight">
<xsd:restriction base="xsd:positiveInteger">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="4096"/>
</xsd:restriction>

</xsd:simpleType>

2.3.4 ST_GalleryRowColumnCount (Gallery Row or Column Count)
Specifies the count of rows or columns in a gallery control.

This simple type's contents are a restriction of the XML schema positivelnteger datatype.
This simple type also specifies the following restrictions:

= This simple type has a minimum value of greater than or equal to 1.
= This simple type has a maximum value of less than or equal to 1024.

Referenced By

gallery@columns (section 2.2.21); gallery@columns (section 2.2.22); gallery@rows (section 2.2.21); gallery@rows
(section 2.2.22)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST GalleryRowColumnCount">
<xsd:restriction base="xsd:positivelInteger">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="1024"/>
</xsd:restriction>

</xsd:simpleType>

2.3.5 ST_ID (Control ID)

Specifies the identifier of a built-in control. The format of this string is defined by per application by
the Custom UI Control identifier Tables, as specified in section 3.

This simple type's contents-are a restriction of the XML schema NCName datatype.
This simple type also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 character.
= This simple type's contents have a maximum length of 1024 characters.

Referenced By

box@insertAfterMso (section 2.2.1); box@insertBeforeMso (section 2.2.1); button@idMso (section 2.2.2);
button@idMso (section 2.2.3); button@idMso (section 2.2.4); button@imageMso (section 2.2.2);
button@imageMso (section 2.2.3); button@imageMso (section 2.2.4); button@insertAfterMso (section 2.2.2);
button@insertAfterMso (section 2.2.3); button@insertAfterMso (section 2.2.4); button@insertBeforeMso (section
2.2.2); button@insertBeforeMso (section 2.2.3); button@insertBeforeMso (section 2.2.4);
buttonGroup@insertAfterMso (section 2.2.5); buttonGroup@insertBeforeMso (section 2.2.5); checkBox@idMso
(section 2.2.6); checkBox@imageMso (section 2.2.6); checkBox@insertAfterMso (section 2.2.6);
checkBox@insertBeforeMso (section 2.2.6); comboBox@idMso (section 2.2.7); comboBox@imageMso (section
2.2.7); comboBox@insertAfterMso (section 2.2.7); comboBox@insertBeforeMso (section 2.2.7); command@idMso
(section 2.2.8); control@id (section 2.2.13); control@idMso (section 2.2.12); control@idMso (section 2.2.13);
control@idMso (section 2.2.11); control@imageMso (section 2.2.12); control@imageMso (section 2.2.13);
control@imageMso (section 2.2.11); control@insertAfterMso (section 2.2.12); control@insertAfterMso (section

292 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Referenced By

2.2.13); control@insertAfterMso (section 2.2.11); control@insertBeforeMso (section 2.2.12);
control@insertBeforeMso (section 2.2.13); control@insertBeforeMso (section 2.2.11); dropDown@idMso (section
2.2.17); dropDown@imageMso (section 2.2.17); dropDown@insertAfterMso (section 2.2.17);
dropDown@insertBeforeMso (section 2.2.17); dynamicMenu@idMso (section 2.2.19); dynamicMenu@idMso
(section 2.2.18); dynamicMenu@imageMso (section 2.2.19); dynamicMenu@imageMso (section 2.2.18);
dynamicMenu@insertAfterMso (section 2.2.19); dynamicMenu@insertAfterMso (section 2.2.18);
dynamicMenu@insertBeforeMso (section 2.2.19); dynamicMenu@insertBeforeMso (section 2.2.18); editBox@idMso
(section 2.2.20); editBox@imageMso (section 2.2.20); editBox@insertAfterMso (section 2.2.20);
editBox@insertBeforeMso (section 2.2.20); gallery@idMso (section 2.2.21); gallery@idMso (section 2.2.22);
gallery@imageMso (section 2.2.21); gallery@imageMso (section 2.2.22); gallery@insertAfterMso (section 2.2.21);
gallery@insertAfterMso (section 2.2.22); gallery@insertBeforeMso (section 2.2.21); gallery@insertBeforeMso
(section 2.2.22); group@idMso (section 2.2.23); group@imageMso (section 2.2.23); group@insertAfterMso
(section 2.2.23); group@insertBeforeMso (section 2.2.23); item@imageMso (section 2.2.24); labelControl@idMso
(section 2.2.25); labelControl@imageMso (section 2.2.25); labelControl@insertAfterMso/(section 2.2.25);
labelControl@insertBeforeMso (section 2.2.25); menu@idMso (section 2.2.28); menu@idMso (section 2.2.26);
menu@idMso (section 2.2.27); menu@imageMso (section 2.2.28); menu@imageMso (section 2.2.26);
menu@imageMso (section 2.2.27); menu@insertAfterMso (section 2.2.28); menu@insertAfterMso (section 2.2.26);
menu@insertAfterMso (section 2.2.27); menu@insertBeforeMso (section 2.2.28); menu@insertBeforeMso (section
2.2.26); menu@insertBeforeMso (section 2.2.27); menuSeparator@insertAfterMso (section 2.2.30);
menuSeparator@insertBeforeMso (section 2.2.30); separator@insertAfterMso (section 2.2.34);
separator@insertBeforeMso (section 2.2.34); splitButton@idMso (section 2.2.38); splitButton@idMso (section
2.2.36); splitButton@idMso (section 2.2.37); splitButton@imageMso (section 2.2.38); splitButton@imageMso
(section 2.2.36); splitButton@imageMso (section 2.2.37); splitButton@insertAfterMso (section 2.2.38);
splitButton@insertAfterMso (section 2.2.36); splitButton@insertAfterMso (section 2.2.37);
splitButton@insertBeforeMso (section 2.2.38); splitButton@insertBeforeMso (section 2.2.36);
splitButton@insertBeforeMso (section 2.2.37); tab@idMso (section 2.2.39); tab@insertAfterMso (section 2.2.39);
tab@insertBeforeMso (section 2.2.39); tabSet@idMso (section 2.2.41); toggleButton@idMso (section 2.2.43);
toggleButton@idMso (section 2.2.42); toggleButton@idMso (section 2.2.44); toggleButton@imageMso (section
2.2.43); toggleButton@imageMso (section 2.2.42);/toggleButton@imageMso (section 2.2.44);
toggleButton@insertAfterMso (section 2.2.43); toggleButton@insertAfterMso (section 2.2.42);
toggleButton@insertAfterMso (section 2.2.44); toggleButton@insertBeforeMso (section 2.2.43);
toggleButton@insertBeforeMso (section 2.2.42); toggleButton@insertBeforeMso (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST_ID">
<xsd:restriction base="xsd:NCName">
<xsd:minLength value="1"/>
<xsd:maxLength value="1024"/>
</xsd:restriction>
</xsd:simpleType>

2.3.6° ST_ItemSize (Menu Item Size)
Specifies the size of the child controls in a menu control.
This simple type's contents are a restriction of the XML schema string datatype.

The following are possible enumeration values for this type:

Enumeration Value Description
large (Large) Specifies that the child controls have large sizes.
normal (Normal) Specifies that the child controls have normal sizes.

293 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Referenced By

menu@itemSize (section 2.2.28); menu@itemSize (section 2.2.26); menu@itemSize (section 2.2.29);
menu@itemSize (section 2.2.27)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST ItemSize">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="normal"/>
<xsd:enumeration value="large"/>
</xsd:restriction>
</xsd:simpleType>

2.3.7 ST_Keytip (Keytip)

Specifies a KeyTip string.

This simple type's contents are a restriction of the XML schema token datatype.
This simple type also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 character.
= This simple type's contents have a maximum length of 3 characters.

Referenced By

button@keytip (section 2.2.2); button@keytip (section 2.2.3); button@keytip (section 2.2.4); checkBox@keytip
(section 2.2.6); comboBox@keytip (section 2.2.7); control@keytip (section 2.2.12); control@keytip (section
2.2.13); control@keytip (section 2.2.11); dropDown@Kkeytip (section 2.2.17); dynamicMenu@keytip (section
2.2.19); dynamicMenu@keytip (section 2.2.18); editBox@keytip (section 2.2.20); gallery@keytip (section 2.2.21);
gallery@keytip (section 2.2.22); group@keytip (section 2.2.23); labelControl@keytip (section 2.2.25);
menu@keytip (section 2.2.28); menu@keytip (section 2.2.26); menu@keytip (section 2.2.27); splitButton@keytip
(section 2.2.38); splitButton@keytip (section 2.2.36); splitButton@keytip (section 2.2.37); tab@keytip (section
2.2.39); toggleButton@keytip (section 2.2.43); toggleButton@keytip (section 2.2.42); toggleButton@keytip
(section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST Keytip">
<xsd:restriction base="xsd:token">
<xsd:minLength value="1"/>
<xsd:maxLength value="3"/>
<xsd:whiteSpace value="collapse"/>
</xsd:restriction>
</xsd:simpleType>

2.3.8 ST_LongString (Long String)

Specifies a string that can have an extended length.

This simple type's contents are a restriction of the XML schema string datatype.
This simple type also specifies the following restrictions:

*= This simple type's contents have a minimum length of 1 character.
* This simple type's contents have a maximum length of 4096 characters.

294 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Referenced By

button@description (section 2.2.2); button@description (section 2.2.3); button@description (section 2.2.4);
checkBox@description (section 2.2.6); control@description (section 2.2.12); control@description (section 2.2.13);
dynamicMenu@description (section 2.2.19); dynamicMenu@description (section 2.2.18); gallery@description
(section 2.2.21); gallery@description (section 2.2.22); menu@description (section 2.2.28); menu@description
(section 2.2.26); toggleButton@description (section 2.2.43); toggleButton@description (section 2.2.42);
toggleButton@description (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST LongString">
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="4096"/>
</xsd:restriction>
</xsd:simpleType>

2.3.9 ST_QID (Qualified Control ID)

Specifies a control identifier that is qualified by an XML namespace prefix. The prefix determines which
namespace to which the control belongs.

If the namespace is equal to the Custom UI namespace, the qualified identifier references the
application's built-in control set.

For example, consider the following XML fragment:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:mso="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon>
<tabs>
<tab 1dQ="mso:TabHome" visible="false" />
</tabs>
</ribbon>
</customUI>

In this example the mso namespace prefix is set to the Custom UI namespace, so hames qualified
with mso refer to built-in controls. Thus, the use of the idQ attribute on the tab element is equivalent
to using the idMso attribute, as follows:

<tab idMso="TabHome" visible="false" />

If the prefix.is set to any other value, qualified identifiers reference controls in a unique custom
namespace. If multiple Custom UI documents refer to controls in the same namespace, they can share
common containers.

For example, consider the following XML fragment:

295 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com. This XML
fragment refers to a tab in that namespace with an identifier of "OtherTab". If that tab cannot be
found, it is created. A new group belonging to this file is added to the tab.

This simple type's contents are a restriction of the XML schema QName datatype.
This simple type also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 character.
= This simple type's contents have a maximum length'of 1024 characters.

Referenced By

box@idQ (section 2.2.1); box@insertAfterQ (section 2:2.1); box@insertBeforeQ (section 2.2.1); button@idQ
(section 2.2.2); button@idQ (section 2.2.3); button@idQ (section 2.2.4); button@insertAfterQ (section 2.2.2);
button@insertAfterQ (section 2.2.3); button@insertAfterQ (section 2.2.4); button@insertBeforeQ (section 2.2.2);
button@insertBeforeQ (section 2.2.3); button@insertBeforeQ (section 2.2.4); buttonGroup@idQ (section 2.2.5);
buttonGroup@insertAfterQ (section 2.2.5); buttonGroup@insertBeforeQ (section 2.2.5); checkBox@idQ (section
2.2.6); checkBox@insertAfterQ (section 2:2.6); checkBox@insertBeforeQ (section 2.2.6); comboBox@idQ (section
2.2.7); comboBox@insertAfterQ (section 2.2.7); comboBox@insertBeforeQ (section 2.2.7); control@idQ (section
2.2.12); control@idQ (section 2.2.13); control@idQ (section 2.2.11); control@insertAfterQ (section 2.2.12);
control@insertAfterQ (section 2.2.13); control@insertAfterQ (section 2.2.11); control@insertBeforeQ (section
2.2.12); control@insertBeforeQ (section 2.2.13); control@insertBeforeQ (section 2.2.11); dropDown@idQ (section
2.2.17); dropDown@insertAfterQ (section 2.2.17); dropDown@insertBeforeQ (section 2.2.17); dynamicMenu@idQ
(section 2.2.19); dynamicMenu@idQ (section 2.2.18); dynamicMenu@insertAfterQ (section 2.2.19);
dynamicMenu@insertAfterQ (section 2.2.18); dynamicMenu@insertBeforeQ (section 2.2.19);
dynamicMenu@insertBeforeQ (section 2.2.18); editBox@idQ (section 2.2.20); editBox@insertAfterQ (section
2.2.20); editBox@insertBeforeQ (section 2.2.20); gallery@idQ (section 2.2.21); gallery@idQ (section 2.2.22);
gallery@insertAfterQ (section 2.2.21); gallery@insertAfterQ (section 2.2.22); gallery@insertBeforeQ (section
2.2.21); gallery@insertBeforeQ (section 2.2.22); group@idQ (section 2.2.23); group@insertAfterQ (section
2.2.23); group@insertBeforeQ (section 2.2.23); labelControl@idQ (section 2.2.25); labelControl@insertAfterQ
(section 2.2.25); labelControl@insertBeforeQ (section 2.2.25); menu@idQ (section 2.2.28); menu@idQ (section
2.2.26); menu@idQ (section 2.2.27); menu@insertAfterQ (section 2.2.28); menu@insertAfterQ (section 2.2.26);
menu@insertAfterQ (section 2.2.27); menu@insertBeforeQ (section 2.2.28); menu@insertBeforeQ (section
2.2.26); menu@insertBeforeQ (section 2.2.27); menuSeparator@idQ (section 2.2.30);
menuSeparator@insertAfterQ (section 2.2.30); menuSeparator@insertBeforeQ (section 2.2.30); separator@idQ
(section 2.2.34); separator@insertAfterQ (section 2.2.34); separator@insertBeforeQ (section 2.2.34);
splitButton@idQ (section 2.2.38); splitButton@idQ (section 2.2.36); splitButton@idQ (section 2.2.37);
splitButton@insertAfterQ (section 2.2.38); splitButton@insertAfterQ (section 2.2.36); splitButton@insertAfterQ
(section 2.2.37); splitButton@insertBeforeQ (section 2.2.38); splitButton@insertBeforeQ (section 2.2.36);
splitButton@insertBeforeQ (section 2.2.37); tab@idQ (section 2.2.39); tab@insertAfterQ (section 2.2.39);
tab@insertBeforeQ (section 2.2.39); toggleButton@idQ (section 2.2.43); toggleButton@idQ (section 2.2.42);
toggleButton@idQ (section 2.2.44); toggleButton@insertAfterQ (section 2.2.43); toggleButton@insertAfterQ
(section 2.2.42); toggleButton@insertAfterQ (section 2.2.44); toggleButton@insertBeforeQ (section 2.2.43);
toggleButton@insertBeforeQ (section 2.2.42); toggleButton@insertBeforeQ (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

296 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

<xsd:simpleType name="ST QID">
<xsd:restriction base="xsd:QName">
<xsd:minLength value="1"/>
<xsd:maxLength value="1024"/>
</xsd:restriction>
</xsd:simpleType>

2.3.10 ST_Size (Control Size)
Specifies the size of a control.
This simple type's contents are a restriction of the XML schema string datatype.

The following are possible enumeration values for this type:

Enumeration Value Description
large (Large Control Size) Specifies the large control size.
normal (Normal Control Size) Specifies the normal control size.

Referenced By

button@size (section 2.2.2); control@size (section 2.2.12); control@size (section 2.2.13); dynamicMenu@size
(section 2.2.19); gallery@size (section 2.2.21); menu@size (section 2.2.28); splitButton@size (section 2.2.38);
toggleButton@size (section 2.2.43)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST Size">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="normal"/>
<xsd:enumeration value="large"/>
</xsd:restriction>
</xsd:simpleType>

2.3.11 ST_String (Short String)

Specifies astring with a limited length.

This simple type's contents are a restriction of the XML schema string datatype.
This simpletype also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 character.
* This simple type's contents have a maximum length of 1024 characters.

Referenced By

button@Iabel (section 2.2.2); button@Ilabel (section 2.2.3); button@label (section 2.2.4); button@screentip
(section 2.2.2); button@screentip (section 2.2.3); button@screentip (section 2.2.4); button@supertip (section

2.2.2); button@supertip (section 2.2.3); button@supertip (section 2.2.4); button@tag (section 2.2.2); button@tag
(section 2.2.3); button@tag (section 2.2.4); checkBox@label (section 2.2.6); checkBox@screentip (section 2.2.6);
checkBox@supertip (section 2.2.6); checkBox@tag (section 2.2.6); comboBox@label (section 2.2.7);
comboBox@screentip (section 2.2.7); comboBox@sizeString (section 2.2.7); comboBox@supertip (section 2.2.7);
comboBox@tag (section 2.2.7); control@label (section 2.2.12); control@label (section 2.2.13); control@Ilabel

297 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Referenced By

(section 2.2.11); control@screentip (section 2.2.12); control@screentip (section 2.2.13); control@screentip
(section 2.2.11); control@supertip (section 2.2.12); control@supertip (section 2.2.13); control@supertip (section
2.2.11); control@tag (section 2.2.12); control@tag (section 2.2.11); dropDown@label (section 2.2.17);
dropDown@screentip (section 2.2.17); dropDown@sizeString (section 2.2.17); dropDown@supertip (section
2.2.17); dropDown@tag (section 2.2.17); dynamicMenu@Iabel (section 2.2.19); dynamicMenu@label (section
2.2.18); dynamicMenu@screentip (section 2.2.19); dynamicMenu@screentip (section 2.2.18);
dynamicMenu@supertip (section 2.2.19); dynamicMenu@supertip (section 2.2.18); dynamicMenu@tag (section
2.2.19); dynamicMenu@tag (section 2.2.18); editBox@label (section 2.2.20); editBox@screentip (section 2.2.20);
editBox@sizeString (section 2.2.20); editBox@supertip (section 2.2.20); editBox@tag (section 2.2.20);
gallery@label (section 2.2.21); gallery@label (section 2.2.22); gallery@screentip (section 2.2.21);
gallery@screentip (section 2.2.22); gallery@sizeString (section 2.2.21); gallery@sizeString (section 2.2.22);
gallery@supertip (section 2.2.21); gallery@supertip (section 2.2.22); gallery@tag (section 2.2.21); gallery@tag
(section 2.2.22); group@Iabel (section 2.2.23); group@screentip (section 2.2.23); group@supertip (section
2.2.23); group@tag (section 2.2.23); item@Iabel (section 2.2.24); item@screentip (section 2.2.24);
item@supertip (section 2.2.24); labelControl@label (section 2.2.25); labelControl@screentip (section 2.2.25);
labelControl@supertip (section 2.2.25); labelControl@tag (section 2.2.25); menu@Iabel (section 2.2.28);
menu@label (section 2.2.26); menu@label (section 2.2.27); menu@screentip (section 2.2.28); menu@screentip
(section 2.2.26); menu@screentip (section 2.2.27); menu@supertip (section 2.2.28); menu@supertip (section
2.2.26); menu@supertip (section 2.2.27); menu@tag (section 2.2.28); menu@tag (section 2.2.26); menu@tag
(section 2.2.27); menu@title (section 2.2.29); menu@title (section 2.2.27); menuSeparator@title (section 2.2.30);
splitButton@label (section 2.2.38); splitButton@label (section 2.2.36); splitButton@label (section 2.2.37);
splitButton@screentip (section 2.2.38); splitButton@screentip (section 2.2.36); splitButton@screentip (section
2.2.37); splitButton@supertip (section 2.2.38); splitButton@supertip (section 2.2.36); splitButton@supertip
(section 2.2.37); splitButton@tag (section 2.2.38); splitButton@tag (section 2.2.36); splitButton@tag (section
2.2.37); tab@label (section 2.2.39); tab@tag (section 2.2.39); toggleButton@label (section 2.2.43);
toggleButton@label (section 2.2.42); toggleButton@label (section 2.2.44); toggleButton@screentip (section
2.2.43); toggleButton@screentip (section 2.2.42); toggleButton@screentip (section 2.2.44);
toggleButton@supertip (section 2.2.43); toggleButton@supertip (section 2.2.42); toggleButton@supertip (section
2.2.44); toggleButton@tag (section 2.2.43); toggleButton@tag (section 2.2.42); toggleButton@tag (section
2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST_ String">
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="1024"/>
</xsd:restriction>
</xsd:simpleType>

2.3.12 ST_StringLength (String Length)

Specifies the length of a string, in characters.

This simple type's contents are a restriction of the XML schema positiveInteger datatype.
This simple type also specifies the following restrictions:

= This simple type has a minimum value of greater than or equal to 1.
= This simple type has a maximum value of less than or equal to 1024.

Referenced By

comboBox@maxLength (section 2.2.7); editBox@maxLength (section 2.2.20)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST StringLength">

298 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

<xsd:restriction base="xsd:positiveInteger">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="1024"/>
</xsd:restriction>

</xsd:simpleType>

2.3.13 ST_UniquelD (Custom Control ID)

Specifies a custom control identifier.

This simple type's contents are a restriction of the XML schema identifier datatype.
This simple type also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 character.
= This simple type's contents have a maximum length of 1024 characters.

Referenced By

box@id (section 2.2.1); button@id (section 2.2.2); button@id (section 2.2.3); button@id (section 2.2.4);
buttonGroup@id (section 2.2.5); checkBox@id (section 2.2.6); comboBox@id (section/2.2.7); control@id (section
2.2.12); control@id (section 2.2.11); dropDown@id (section 2.2.17); dynamicMenu@id (section 2.2.19);
dynamicMenu@id (section 2.2.18); editBox@id (section 2.2.20); gallery@id (section 2.2.21); gallery@id (section
2.2.22); group@id (section 2.2.23); item@id (section 2.2.24); labelControl@id (section 2.2.25); menu@id (section
2.2.28); menu@id (section 2.2.26); menu@id (section 2.2:27); menuSeparator@id (section 2.2.30); separator@id
(section 2.2.34); splitButton@id (section 2.2.38); splitButton@id (section 2.2.36); splitButton@id (section 2.2.37);
tab@id (section 2.2.39); toggleButton@id (section 2.2.43); toggleButton@id (section 2.2.42); toggleButton@id
(section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST UniqueID">
<xsd:restriction base="xsd:identifier">
<xsd:minLength value="1"/>
<xsd:maxLength value="1024"/>
</xsd:restriction>

</xsd:simpleType>

2.3.14 ST_Uri (Image Relationship ID)

Specifies-the relationship identifier of a part that is the target of a relationship from the containing
Custom UI document.

The target part is an image part type, as specified in [ECMA-376] Part 1 section 15.2.13.
This simple type's contents are a restriction of the XML schema string datatype.
This simple type also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 characters.
= This simple type's contents have a maximum length of 1024 characters.

Referenced By

button@image (section 2.2.2); button@image (section 2.2.3); button@image (section 2.2.4); checkBox@image
(section 2.2.6); comboBox@image (section 2.2.7); control@image (section 2.2.12); control@image (section
2.2.13); control@image (section 2.2.11); dropDown@image (section 2.2.17); dynamicMenu@image (section
2.2.19); dynamicMenu@image (section 2.2.18); editBox@image (section 2.2.20); gallery@image (section 2.2.21);

299 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

https://go.microsoft.com/fwlink/?LinkId=200054

Referenced By

gallery@image (section 2.2.22); group@image (section 2.2.23); item@image (section 2.2.24);
labelControl@image (section 2.2.25); menu@image (section 2.2.28); menu@image (section 2.2.26); menu@image
(section 2.2.27); splitButton@image (section 2.2.38); splitButton@image (section 2.2.36); splitButton@image
(section 2.2.37); toggleButton@image (section 2.2.43); toggleButton@image (section 2.2.42);
toggleButton@image (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST Uri">
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="1024"/>
</xsd:restriction>
</xsd:simpleType>

300 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

3 Appendix A: Custom UI Control ID Tables

3.1 idMso Tables

3.1.1 Word 2007

Control
idMso Type Label
Spelling button Spelling...
FileSave button Save
FilePrint button Print
ZoomOnePage button One Page
ZoomPageWidth button Page Width
Zoom100 button Zoom 100%
ColumnsDialog button More Columns...
Numbering toggleButton | Numbering
Bullets toggleButton | Bullets
PageOrientationPortraitLandscape button Portrait/Landscape
OutdentClassic button Decrease Indent
IndentClassic button Increase Indent
DrawingInsert button Insert Drawing
Chartlnsert button Chart...
FileNew button New
Copy button Copy
Cut button Cut
Paste button Paste
FileOpen button Open
EnvelopesAndLabelsDialog button Envelopes...

Superscript

toggleButton

Superscript

Subscript

toggleButton

Subscript

UnderlineDouble

toggleButton

Double Underline

UnderlineWords button Word Underline
FontSizelncreaseWord button Grow Font
FontSizeDecreaseWord button Shrink Font
FileClose button Close

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

301 / 554

idMso

Control
Type

Label

TableAutoFormat

button

Table AutoFormat...

FormatPainter

toggleButton

Format Painter

FilePrintPreview

toggleButton

Print Preview

PasteApplyStyle button Apply Style
Bold toggleButton | Bold

Italic toggleButton Italic
Underline toggleButton | Underline
ParagraphMarks toggleButton | Show All
AlignLeft toggleButton | Align Left
AlignRight toggleButton | Align Right
AlignCenter toggleButton | Center
AlignJustify toggleButton | Justify
HeaderFooterPageNumberInsert menu Page Number
Undo gallery Undo

Redo gallery Redo
OutlinePromote button Promote
OutlineDemote button Demote
OutlineMoveUp button Move Up
OutlineMoveDown button Move Down
OutlineDemoteToBodyText button Demote to Body Text
OutlineExpand button Expand
OutlineCollapse button Collapse
TextBoxInsert button Text Box
FileFind button Find File...
FindDialog button Find...
TableExcelSpreadsheetInsert button Excel Spreadsheet
AutoFormat button AutoFormat...

BorderInside

toggleButton

Inside Borders

BorderOutside

toggleButton

Outside Borders

BorderNone

toggleButton

No Border

MailMergeGoToFirstRecord

button

First

[MS-CUSTOMUIJ - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

302 / 554

Control
idMso Type Label
MailMergeGoToPreviousRecord button Previous
MailMergeGoToNextRecord button Next
MailMergeGotToLastRecord button Last
MailMergeMergeToDocument button Edit Individual Documents...
MailMergeMergeToPrinter button Print Documents..!
MailMergeAutoCheckForErrors button Auto Check for Errors...
DataFormSource button Data Form
MailMergeResultsPreview toggleButton | Preview Results
ObjectsGroup button Group
ObjectsUngroup button Ungroup
ObjectBringToFront button Bring to Front
ObjectSendToBack button Send to Back
ObjectBringForward button Bring Forward
ObjectSendBackward button Send Backward
Magnifier checkBox Magnifier
PrintPreviewShrinkOnePage button Shrink One Page
ViewFullScreenView button Full Screen
Voicelnsert button Voice Comment
ObjectsSelect toggleButton | Select Objects
TableFind button Find
MacroRecord button Record Macro...
MacroRecorderPause button Pause Recording
MacroPlay button Macros
ShapeFreeform toggleButton | Freeform
ObjectEditPoints toggleButton | Edit Points
CalloutOptions button Callout Options
DataFormAddRecord button Add
DataFormDeleteRecord button Delete
FieldsUpdate button Update
Databaselnsert button Insert Database
GridSettings button Grid Settings...

303 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Control

idMso Type Label
WordPicture button Word Picture
FormControlEditBox button Edit Box
FormControlCheckBox button Check Box
FormControlComboBox button Combo Box
PropertySheet button Property Sheet
FieldShading toggleButton Show Field Shading
ViewDraftView toggleButton Draft

Lock toggleButton | Lock

AutoSum button Sum
MasterDocumentShow toggleButton | Show Document
MasterDocumentCreateSubdocument button Create
MasterDocumentUnlinkSubdocument button Unlink
MasterDocumentInsertSubdocument button Insert...
MasterDocumentSplitSubdocuments button Split
MasterDocumentMergeSubdocuments button Merge

MasterDocumentLockSubdocument

toggleButton

Lock Document

HeaderOrFooterShow button Show Header/Footer
HeaderFooterPreviousSection button Previous Section
HeaderFooterNextSection button Next Section
AlignDialog button Align
MailMergeDocument button Mail Merge Document
MergeOptions button Merge...
MailMergeHelper button Mail Merge...
PageSetupDialog button Page Setup...
BodyTextHide button Hide Body Text

HeaderFooterLinkToPrevious

toggleButton

Link to Previous

OutlineShowFirstLineOnly checkBox Show First Line Only
OutlineShowTextFormatting checkBox Show Text Formatting
FontDialog button Font...
StylesDialogClassic button Edit Cell Styles
Footnotelnsert button Insert Footnote

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification

Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

304 / 554

Control

idMso Type Label

MicrosoftExcel button Microsoft Excel
MicrosoftAccess button Microsoft Access
MicrosoftPowerPoint button Microsoft Office PowerPoint
MicrosoftPublisher button Microsoft Publisher
MicrosoftProject button Microsoft Project

ViewPrintLayoutView

toggleButton

Print Layout

FieldCodes

toggleButton

View Field Codes

DropCapOptionsDialog button Drop Cap Options...
Strikethrough toggleButton | Strikethrough
TextSmallCaps toggleButton | Small Caps
CellsDelete button Delete Cells...
TableRowsDelete button Delete Rows
TableColumnsDelete button Delete Columns
CellsInsertDialog button Insert Cells...
TableRowsInsertWord button Insert Rows
WindowsArrangeAll button Arrange All
MarginsAdjust button Adjust Margins
ViewGridlinesWord checkBox View Gridlines
SubdocumentOpen button Open Subdocument
WindowSplit button Split

WindowNew button New Window
ReviewAcceptOrRejectChangeDialog button Accept/Reject Changes
TextAllCaps toggleButton | All Caps
PictureDisassemble button Disassemble Picture
ChangeCaseDialogClassic button Change Case...
FontSizeDecreasel1Point button Shrink Font 1 Pt
FontSizelncreaselPoint button Grow Font 1 Pt
Repaginate button Repaginate
ReplaceDialog button Replace...
StartOfLine button Start of Line
EndOfLine button End of Line

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

305 / 554

Control
idMso Type Label
PagePrevious button Previous Page
PageNext button Next Page
StartOfDocument button Start of Document
EndOfDocument button End of Document
Grammar button Grammar...
FileCloseOrCloseAll button Close
TextToOrFromTable button Text to/from Table
TableRowsOrColumnsOrCellsInsert button Insert Table
TableRowsOrColumnsOrCellsDelete button Delete Rows/Columns/Cells
RedoOrRepeat button Redo
ProtectOrUnprotectDocument button Protect'Document
FramelnsertOrFormat button Insert Frame
ObjectsRegroup button Regroup
AutoFormatChange button Tip Wizard 6
AddressBook button Address Book...
Reply button Reply
ReplyAll button Reply to All
Forward button Forward
MailMove button Move Mail
MailDelete button Delete Mail
MessagePrevious button Previous Item
MessageNext button Next Item
MailSelectNames button Select Names...
AsianLayoutCharacterScaling menu Character Scaling
ShapeScribble toggleButton | Scribble
PrintSetupDialog button Print Setup...
RowHeight button Row Height...
ColumnWidth button Column Width...
OleObjectctinsert button Object...
Cancel button Cancel
FindNext button Find Next

306 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Control

idMso Type Label
PasteDuplicate button Duplicate
ClipArtInsert toggleButton | Clip Art...

ParagraphSpacingIncrease button Increase Paragraph Spacing
ParagraphSpacingDecrease button Decrease Paragraph Spacing
OrganizationChartInsert button Organization Chart

CombineCharacters

toggleButton

Yoko-Gumi

DoubleStrikethrough

toggleButton

Double Strikethrough

PictureCrop toggleButton | Crop
ViewOutlineView toggleButton | Outline
FileCloseAll button Close All
FileSaveAs button Save As

SaveAll button Save All
AdvancedFileProperties button View Document Properties...
DocumentTemplate button Document Template
CopyAsPicture button Copy as Picture...
PasteSpecialDialog button Paste Special...
SelectAll button Select All

GoTo button Go To...
BookmarkInsert button Bookmark...
FileLinksToFiles button Edit Links to Files
ViewOnlineLayoutViewClassic button Online Layout
FootnotesEndnotesShow button Show Notes
BreakInsertDialog button Break
DateAndTimelnsert button Date & Time...
NumberlInsert button Number...
FieldInsert button Field...

FormField button Form Field...
CaptionInsert button Insert Caption...
CrossReferencelnsert button Cross-reference...
IndexAndTables button Index and Tables
TextFromFilelnsert button Text from File...

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification

Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

307 / 554

Control

idMso Type Label

ParagraphDialog button Paragraph...

TabsDialog button Tabs...
BordersShadingDialog button Borders and Shading...
TextDirectionOptionsDialog button Text Direction Options...
BulletsAndNumberingBulletsDialog button Bullets and Numbering...
StyleGalleryDialog button Style Gallery...
FrameDialog button Frame...

SetLanguage button Set Language...
WordCount button Word Count...
AutoCorrect button AutoCorrect Options...
EnvelopesAndLabels button Envelope & Label Wizard
LabelsDialog button Labels...

MergeCells button Merge Cells

SplitCells button Split Cells...
TableRowSelect button Select Row
TableColumnSelect button Select Column
TableSelect button Select Table
TableCellHeightWidth button Cell Height and Width...

TableRepeatHeaderRows

toggleButton

Repeat Header Rows

ConvertTextToTable button Convert Text to Table...

TableFormulaDialog button Formula...

TableSplitTable button Split Table

ShowClipboard button Office Clipboard...

NumberingSkip button Skip Numbering

KeyboardCustomization button Customize Keyboard...

ShowAllHeadings button All

ImeDictionaryUpdate button Update IME Dictionary...

OutlookTaskCreate button Create Microsoft Office Outlook
Task

WindowMinimize button Minimize

WindowRestore button Restore

WindowClose button Close

[MS-CUSTOMUIJ - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

308 / 554

Control

idMso Type Label
WindowMove button Move

WindowSize button Size

WindowNext button Next Window
ClearFormats button Clear Formats

OK button OK

ClosePane button Close
PrintPreviewClose button Close Print Preview
HeaderFooterClose button Close Header and Footer
ZoombDialog button Zoom...

About button About
SortDialogClassic button Sort...
ConvertTableToText button Convert to Text...
ExchangeFolder button Exchange Folder...
ChartEditDataSource button Select Data...

WindowMoreWindowsDialog

toggleButton

More Windows...

ObjectEditDialog button Object...
ObjectFormatDialog button Object...
AutoTextCreate button Create AutoText...
ContentsAndIndex button Contents and Index
Help button Help
FontColorMoreColorsDialog button More Colors...
WebGoBack button Back
WebGoForward button Forward
AddToFavorites button Add to Favorites...
BrowsePrevious button Previous
BrowseNext button Next
SmartArtinsert button SmartArt...

ShapeRerouteConnectors

toggleButton

Reroute Connectors

ObjectNudgeUp button Up
ObjectNudgeDown button Down
ObjectNudgeleft button Left

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification

Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

309 / 554

Control

idMso Type Label
ObjectNudgeRight button Right
ShapeCurve toggleButton | Curve

ShapeStraightConnector

toggleButton

Straight Connector

ShapeElbowConnector

toggleButton

Elbow Connector

ObjectFillMoreColorsDialog button More Fill Colors...
ObjectBorderOutlineColorMoreColorsDialog button More Outline Colors...
OutlineLinePatternFill button Pattern. ..
LineStylesDialog button More Lines...
ArrowsMore button More Arrows...

WordArtVerticalText

toggleButton

Vertical Text

WordArtEvenTextHeightClassic

toggleButton

Even Height

ContrastMore button More Contrast
ContrastLess button Less Contrast
BrightnessMore button More Brightness
BrightnessLess button Less Brightness
ShadowNudgeUpClassic button Nudge Shadow Up
ShadowNudgeDownClassic button Nudge Shadow Down
ShadowNudgelLeftClassic button Nudge Shadow Left
ShadowNudgeRightClassic button Nudge Shadow Right
ObjectShadowColorMoreColorsDialog button More Shadow Colors...
_3DEffectColorPickerMoreClassic button More 3-D Colors...
TextAlignLeft toggleButton Left Align
TextAlignCenter toggleButton | Center
ShapeRectangle toggleButton | Rectangle

ShapeRoundedRectangle

toggleButton

Rounded Rectangle

ShapelsoscelesTriangle

toggleButton

Isosceles Triangle

ShapeOval toggleButton | Oval
ShapelLeftBrace toggleButton Left Brace
ShapeRightBrace toggleButton Right Brace
ShapeArc toggleButton | Arc
ShapeRightArrow toggleButton Right Arrow

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification

Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

310/ 554

idMso

Control
Type

Label

ShapeDownArrow

toggleButton

Down Arrow

ShapeRoundedRectangularCallout

toggleButton

Rounded Rectangular Callout

ShapeStar

toggleButton

5-Point Star

TextAlignRight

toggleButton

Right Align

TextAlignLetterJustify

toggleButton

Letter Justify

TextAlignWordJustify

toggleButton

Word Justify

TextAlignStretchJustify

toggleButton

Stretch Justify

WordArtSpacingVeryTight toggleButton | Very Tight
WordArtSpacingTight toggleButton | Tight
WordArtSpacingNormal toggleButton | Normal
WordArtSpacinglLoose toggleButton | Loose
WordArtSpacingVerylLoose toggleButton | Very Loose

WordArtSpacingKernCharacterPairs

toggleButton

Kern Character Pairs

PictureReset button Reset Picture
TextWrappingSquare toggleButton | Square
TextWrappingTight toggleButton | Tight
TextWrappingNoneClassic toggleButton | None

TextWrappingEditWrapPoints

toggleButton

Edit Wrap Points

_ 3DEffectsOnOffClassic toggleButton | 3-D On/Off
_3DTiltDownClassic button Tilt Down
_3DTiltUpClassic button Tilt Up
_3DTiltLeftClassic button Tilt Left
_3DTiltRightClassic button Tilt Right

_3DExtrusionPerspectiveClassic

toggleButton

Perspective

_3DExtrusionParallelClassic toggleButton | Parallel
_3DLightingFlatClassic toggleButton | Bright
_3DLightingNormalClassic toggleButton | Normal
_3DLightingDimClassic toggleButton | Dim
ObjectEditText button Edit Text
PictureFormatDialog button Picture...
ViewVisualBasicCode button View Code

311/ 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Control
idMso Type Label
DrawingNewClassic button New Drawing
WebOpenInNewWindow button Open in New Window
HyperlinkCopy button Copy Hyperlink
HyperlinkInsert button Hyperlink...
HyperlinkEdit button Edit Hyperlink...
HyperlinkSelect button Select Hyperlink
ReviewNewComment button New Comment
ReviewPreviousComment button Previous
ReviewNextComment button Next
ReviewDeleteComment button Delete
ReviewShowAllComments button Show All Comments
DesignMode toggleButton | Design Mode
WordArtInsertDialogClassic button WordArt Gallery
FormFieldProperties button Properties
FullScreenViewClassic button Full Screen
AutoScroll button Auto Scroll
MasterDocumentExpandOrCollapseSubdocuments toggleButton | Expand/Collapse Subdocuments
VisualBasic button Visual Basic
BordersAll toggleButton | All Borders
AutoSummarize button Auto Summarize
ViewDocumentMap checkBox Document Map
ReviewAcceptChange button Accept Change
ReviewRejectChange button Reject Change
TableDrawBorderPenStyle dropDown Pen Style
AutoSummaryExitView button Close
Font comboBox Font:
Whols button Who Is...
FontSize comboBox Font Size:
StyleGalleryClassic comboBox Style:
ZoomClassic button Zoom:
DocumentLocation comboBox Address:

312 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

idMso

Control
Type

Label

MessageHeaderToggle

button

Message Header

BorderInsideHorizontal

toggleButton

Inside Horizontal Border

BorderInsideVertical

toggleButton

Inside Vertical Border

BorderDiagonalDown

toggleButton

Diagonal Down Border

BorderDiagonalUp

toggleButton

Diagonal Up Border

TextDirectionLeftToRight

toggleButton

Left-to-Right

TextDirectionRightToLeft

toggleButton

Right-to-Left

ActiveXCheckBox button Check Box
ActiveXTextBox button Text Box
ActiveXButton button Command Button
ActiveXRadioButton button Option Button
ActiveXListBox button List Box
ActiveXComboBox button Combo Box
ActiveXToggleButton button Toggle Button
ActiveXSpinButton button Spin Button
ActiveXScrollBar button Scroll Bar
ActiveXLabel button Label

ShadowSemitransparentClassic

toggleButton

Semitransparent Shadow

OleConvert

button

Convert...

ReviewTrackChanges

toggleButton

Track Changes

ReviewHighlightChanges button Highlight Changes...
ReviewEditComment button Edit Comment
TableDrawTable toggleButton | Draw Table
TableEraser toggleButton | Eraser
TableCellAlignTop toggleButton | Align Top

TableCellAlignCenterVertically

toggleButton

Center Vertically

TableCellAlignBottom

toggleButton

Align Bottom

TableColumnsDistribute button Distribute Columns
TableRowsDistribute button Distribute Rows
ActiveXFrame button Frame
ActiveXImage button Image

[MS-CUSTOMUIJ - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

313/ 554

Control

idMso Type Label
WordArtEditTextClassic button Edit Text...
TableInsertCellsDialog button Insert Cells...
Organizer button Organizer
ShadowOnOrOffClassic toggleButton | Shadow On/Off
ObjectSetShapeDefaults button Set AutoShape Defaults
ThesaurusClassic button Thesaurus...
MacroRecorderStop button Stop Recording
FileSendAsAttachment button E-mail

AutoSummaryViewByHighlight

toggleButton

Highlight/Show Only Summary

MasterDocument button Master Document
SystemInformation button Microsoft System Info
Overtype button Overtype
ExtendSelection button Extend Selection
Spike button Spike
Spikelnsert button Insert Spike
ChangeCase button Change Case
MoveText button Move Text
CopyText button Copy Text
AutoTextInsert button Insert AutoText
WindowOtherPane button Other Pane
WindowPrevious button Previous Window
FieldNext button Next Field
FieldPrevious button Previous Field
TableColumnSelectWord button Column Select
FieldCharactersInsert button Insert Field Chars
ListNumFieldInsert button Insert ListNum Field
FieldsUnlink button Unlink Fields
FieldsLock button Lock Fields
FieldsUnlock button Unlock Fields
UpdateSource button Update Source
HangingIndent button Hanging Indent

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification

Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

314 / 554

Control

idMso Type Label

UnHang button Un Hang

HideText button Hidden

FontSpacingNormal button Normal Font Spacing
FontPositionNormal button Normal Font Position
ParagraphWidowOrphanControl button Para Widow Orphan Control
ParagraphKeepLinesTogether button Para Keep Lines Together

ParagraphKeepWithNext toggleButton Para Keep With Next
BreakParagraphPageBreakBefore button Para Page Break Before
ParagraphSpaceBeforeNone button No Space Before
ParagraphSpaceBefore button Space Before
ParagraphSpaceAddOrRemoveBefore button Add/Remove Space Before
ParagraphReset button Reset Para

PreviousEdit button Previous Edit

NextEdit button Next Edit

SaveTemplate button Save Template
PagePreviousWord button Previous Page
PageNextWord button Next Page

ObjectNext button Next Object

ObjectPrevious button Previous Object
FileConfirmConversions button File Confirm Conversions
MailMergeRecepientsUseExistingList button Use Existing List...
MailMergeOpenHeaderSource button Mail Merge Open Header Source
MailMergeQueryOptions button Query Options
MailMergeRulelfThenElse button Mail Merge Insert If
MailMergeRuleMergeRecordNumber button Mail Merge Insert Merge Rec
MailMergeRuleMergeSequenceNumber button Mail Merge Insert Merge Seq
MailMergeRuleNextRecord button Mail Merge Insert Next
MailMergeRuleNextRecordIf button Mail Merge Insert Next If
MailMergeRuleSkipRecordIf button Mail Merge Insert Skip If
MailMergeRuleFillIn button Mail Merge Insert Fill In
MailMergeRuleAsk button Mail Merge Insert Ask

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

315/ 554

Control

idMso Type Label
MailMergeRuleSetBookmark button Mail Merge Insert Set
MailMergeReset button Mail Merge Reset
MailMergeCreateDataSource button Mail Merge Create Data Source
MailMergeCreateHeaderSource button Mail Merge Create Header Source
GoToPreviousSection button Go To Previous Section
GoToNextSection button Go To Next Section
GoToPreviousPage button Go To Previous Page
GoToNextPage button Go To Next Page
FootnotePreviousWord button Previous Footnote
FootnoteNextWord button Next Footnote
EndnotePreviousWord button Previous Endnote
EndnoteNextWord button Next Endnote
ObjectActivate button Activate Object
TableAutoFormatUpdate button Table Update AutoFormat
DraftViewClassic button View Draft
NormalViewHeaderArea button Normal View Header Area
SectionBreaklInsert button Insert Section Break
EndnotelnsertWord button Insert Endnote
FootnotesConvertAll button Edit Convert All Footnotes
EndnotesConvertAll button Edit Convert All Endnotes
SwapAllNotes button Edit Swap All Notes
InsertEnSpace button Insert En Space
InsertEmSpace button Insert Em Space
IndexMarkEntry button Mark Entry...
AutoMarkIndexEntries button Auto Mark Index Entries
CitationMark button Mark Citation...
TableOfAuthoritiesEditCategory button Edit TOA Category
IndexInsert button Insert Index...
TableOfContentsDialog button Insert Table of Contents...
TableOfContentsMarkEntry button Mark Entry
TableOfFiguresInsert button Insert Table of Figures...

[MS-CUSTOMUIJ - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

316 / 554

Control

idMso Type Label
TableOfAuthoritiesInsert button Insert Table of Authorities...
DrawingUnselect button Draw Unselect
DrawingSelectNext button Draw Select Next
DrawingSelectPrevious button Draw Select Previous
TextBoxLinkCreate button Create Link
TextBoxLinkBreak button Break Link
TextBoxNextLinked button Next Text Box
TextBoxPreviousLinked button Previous Text Box
FormatSectionLayout button Format Section Layout
StylesRedefineStyle button Redefine Style
Heading1Apply button Apply Heading 1
Heading2Apply button Apply Heading 2
Heading3Apply button Apply Heading 3
ListBulletApply button Apply List Bullet
TextBoxConvertToFrame button Convert Text Box To Frame
ListPromote button Promote List
ListDemote button Demote List
NextMisspeling button Next Misspelling
HyphenationManual button Manual
BulletsAndNumberingClassic button Tools Bullets Numbers
CompareAndCombine button Compare & Combine
Calculate button Tools Calculate
KeyboardCustomizationWord button Tools Customize Keyboard
Shortcut
ListCommands button List Commands
PrintOptionsMenuWord button Options
SpellingRecheckDocument button Tools Spelling Recheck Document
ReviewChangeUserName button Change User Name...
AutoFormatOptions button Tools Options AutoFormat
AutoFormatAsYouType button Tools Options AutoFormat As You
Type
MailMergeConvertChevrons button Mail Merge Convert Chevrons

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification

Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

317/ 554

Control
idMso Type Label
MailMergeAskToConvertChevrons button Mail Merge Ask To Convert

Chevrons

ControlRun button Control Run
ShrinkSelection button Shrink Selection
StyleNormal button Normal Style
TableCellNext button Next Cell
TableCellPrevious button Previous Cell
StartOfRow button Start Of Row
EndOfRow button End Of Row
StartOfColumn button Start Of Column
EndOfColumn button End Of Column
WindowMinimizeAll button Minimize All
WindowMaximizeAll button Maximize All
WindowRestoreAll button Restore All
FieldClick button Do Field Click
SelectCurrentFont button Select Cur Font
SelectCurrentAlignment button Select Cur Alighment
SelectCurrentSpacing button Select Cur Spacing
SelectCurrentIndent button Select Cur Indent
SelectCurrentTabs button Select Cur Tabs
SelectCurrentColor button Select Cur Color
FramesRemove button Remove Frames
MenuMode button Menu Mode
PageNumberFormat button Format Page Numbers...
Zoom200 button View Zoom200
Zoom?75 button View Zoom75
AddressFontsFormat button Format Addr Fonts
ReturnAddressFormatFontDialog button Format Ret Addr Fonts
FileLocations button Tools Options File Locations
CreateDirectoryClassic button Tools Create Directory
TableOfContentsUpdateClassic button Update Table of Contents...
FootnoteSeparatorWord button View Footnote Separator

318 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Control
idMso Type Label
FootnoteContinuationSeparator button View Footnote Cont Separator
FootnoteContinuationNotice button View Footnote Cont Notice
EndnoteSeparator button View Endnote Separator
EndnoteContinuationSeparator button View Endnote Cont Separator
EndnoteContinuationNotice button View Endnote Cont Notice
AutoCaptionInsert button Insert Auto Caption
CaptionInsertWord button Insert Add Caption
InsertCaptionNumbering button Insert Caption Numbering
AutoCorrectReplaceText button Tools AutoCorrect Replace Text
AutoCorrectlnitialCaps button Tools AutoCorrect Initial Caps
AutoCorrectSentenceCaps button Tools AutoCorrect Sentence Caps
AutoCorrectDays button Tools AutoCorrect Days
AutoCorrectSmartQuotes button Tools AutoCorrect Smart Quotes
AutoCorrectCapsLockOff button Tools AutoCorrect Caps Lock Off
AutoCorrectExceptions button Tools AutoCorrect Exceptions
WindowsSizeAll button Size All
WindowMoveAll button Move All
ConnectToNetworkDrive button Connect
GoToAnnotationScope button Goto Annotation Scope
FontSubstitution button Font Substitution
ScreenRefresh button Screen Refresh
CharacterLeft button Char Left
CharacterRight button Char Right
WordLeft button Word Left
WordRight button Word Right
ExtendSelectionLeft button Sent Left
ExtendSelectionRight button Sent Right
ParagraphUp button Para Up
ParagraphDown button Para Down
LineUp button Line Up
LineDown button Line Down

319 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Control

idMso Type Label
CharacterLeftExtend button Char Left Extend
CharacterRightExtend button Char Right Extend
WordLeftExtend button Word Left Extend
WordRightExtend button Word Right Extend
ExtendSelectionLeftSentence button Sent Left Extend
ExtendSelectionRightSentence button Sent Right Extend
ParagraphUpExtend button Para Up Extend
ParagraphDownExtend button Para Down Extend
LineUpExtend button Line Up Extend
LineDownExtend button Line Down Extend
PageUpExtend button Page Up Extend
PageDownExtend button Page Down Extend
StartOfLineExtend button Start Of Line Extend
EndOfLineExtend button End Of Line Extend
StartOfWindowExtend button Start Of Window Extend
EndOfWindowExtend button End Of Window Extend
StartOfDocumentExtend button Start Of Doc Extend
EndOfDocumentExtend button End Of Doc Extend
SymbolFont button Symbol Font
GrammarSettingsDialog button Tools Gram Settings
FileNewDefault button New

FilePrintQuick button Quick Print
SpellingAndGrammar button Spelling & Grammar
ReviewPreviousChangeClassic button Previous Change
ReviewNextChangeClassic button Next Change
MessageProperties button Properties
PictureInsertFromFile button Picture...
TableDrawBorderPenWeight dropDown Pen Weight

TableShowGridlines

toggleButton

View Gridlines

ShapeStraightConnectorArrow

toggleButton

Straight Arrow Connector

ShapeElbowConnectorArrow

toggleButton

Elbow Arrow Connector

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification

Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

320 / 554

idMso

Control
Type

Label

HyperlinkOpen

button

Open Hyperlink

TextWrappingTopAndBottom

toggleButton

Top and Bottom

TextWrappingThrough

toggleButton

Through

MacroRecordOrStop button Record Macro / Stop Recorder
AutoManager button AutoManager...
EndnoteOrFootnoteConvert button Convert Endnote/Footnote
FootnoteSeparatorReset button Reset

PasteAsHyperlink button Paste as Hyperlink
ProofingOptions button Options...
ParagraphDistributed toggleButton Distributed

HyphenationOptions button Hyphenation Options...
TableRowsOrColumnsDistribute button Distribute Rows/Columns
MergeOrSplitCells button Merge/Split Cells
ReviewJapaneseConsistencyChecker button Japanese Consistency Checker...
AutoSummaryResummarize button Resummarize
AutoSummaryUpdateProperties button Update Properties

DeleteWord button Delete Word

DeleteWordBack button Delete Back Word
CharacterFormattingReset button Reset Character Formatting
HeadingNumbers button Heading Numbers

PictureSetTransparentColor

toggleButton

Set Transparent Color

PageColorMoreColorsDialog button More Colors...
PageColorFillEffects button Fill Effects...
BorderTopWord toggleButton | Top Border
BorderBottomWord toggleButton Bottom Border
BorderLeftWord toggleButton | Left Border
BorderRightWord toggleButton | Right Border
TextDirection button Text Direction
FieldsManage button Manage
FileSaveAsHtml button Save as HTML...
SortAscendingWord button Sort Ascending

[MS-CUSTOMUI] - v20210422
Custom UI XML Markup Specification

Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

321/ 554

Control

idMso Type Label
SortDescendingWord button Sort Descending
FramelnsertHorizontal button Horizontal Frame
FieldCodesToggle button Toggle Field Codes
GoToFootnote button Go to Footnote
GoToEndnote button Go to Endnote

SpellingHideErrors

toggleButton

Hide Spelling Errors

GrammarHideErrors

toggleButton

Hide Grammar Errors

Dictionary button Dictionary
SummaryInformation button Summary Information...
FootnoteEndnoteOptions button Footnote/Endnote Options

UnderlineDotted

toggleButton

Dotted Underline

NumberingRemove button Remove Numbering
PictureEditClassic button Picture
GoToStartOfWindow button Start of Window
GoToEndOfWindow button End of Window
AutoCorrectHECorrect button HECorrect
FileSendToPowerPoint button Send to Microsoft Office
PowerPoint
FormatObjectDialogClassic button AutoShape...
AutoFormatNow button AutoFormat...
DataFormWord button Data Form
BulletListDefault button Tools Bullet List Default
NumberListDefault button Tools Number List Default
OutlineNumberDefault button Format Outline Number Default
FormatNumberDefault button Format Number Default
TableOfContentsRebuild button Rebuild Table of Contents
FootnoteEndnoteDialog button Footnote and Endnote Dialog...
TablelnsertDialogWord button Insert Table...
FormFieldClear button Clear Form Field
ObjectBringInFrontOfText button Bring in Front of Text
ObjectSendBehindText button Send Behind Text
PageBreaklInsertWord button Page Break

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

322 / 554

Control

idMso Type Label
BordersShadingDialogWord button Borders and Shading...
TextBoxWordClassic button Text Box
IndentIncreaseWord button Increase Indent
IndentDecreaseWord button Decrease Indent
SelectObjects button Select Objects

Callout button Callout
ReplaceWithAutoText button Replace with AutoText
LinkToPreviousClassic button Link to Previous
HangulHanjaConversion button Hangul Hanja Conversion...
HeaderSourceEdit button Edit Header Source
IndentIncrease button Increase Indent
IndentDecrease button Decrease Indent
AsianLayoutFitText button Fit Text...
AsianLayoutPhoneticGuide button Phonetic Guide...
AsianLayoutCombineCharacters button Combine Characters...
JapanesePostcardDialog button Japanese Postcard...

CharacterBorder

toggleButton

Character Border

CharacterShading

toggleButton

Character Shading

ViewWebLayoutView toggleButton | Web Layout
PasteAlternative button Paste Table
PasteAsNestedTable button Paste as Nested Table
HyperlinkRemove button Remove Hyperlink
MacroSecurity button Macro Security
HorizontalLinelnsert button Horizontal Line
WebPagePreview button Web Page Preview
RightToLeftRun button Rtl Run
LeftToRightRun button Ltr Run

BoldRun button Bold Run
ItalicRun button Italic Run
TableSelectCell button Select Cell
TableDelete button Delete Table

[MS-CUSTOMUIJ - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation

Release: April 22, 2021

323/ 554

Control
idMso Type Label
TableRowsInsertAboveWord button Insert Above
TableRowsInsertBelowWord button Insert Below
TableColumnsInsertLeft button Insert Left
TableColumnsInsertRight button Insert Right
TablePropertiesDialog button Properties...
TableOptionsDialog button Cell Margins...
TableCellOptions button Cell Options...
SendCopySendNow button Send Now
SendCopySelectNames button Select Names
SendCopyCheckNames button Check Names
SendCopyAddressBookTo button To: Focus
SendCopyAddressBookCc button CC: Focus
SendCopyAddressBookBcc button Bcc: Focus
SendCopyFocusSubject button Subject Focus
SendCopyOptions button Mail Options
SendCopyFlag button Mail Flag
SendCopySaveAttachment button Save Mail Attachments
FileCloseOrExit button Close or Exit
ImeReconvert button Reconvert
SendCopySendToMailRecipient toggleButton | Mail Recipient
TableOfContentsInFrame button Table of Contents in Frame
SetLanguageMenu comboBox Language
TableWrapping button Table Wrapping
EmailOptions button E-mail Options...
ComAddInsDialog button COM Add-Ins...
SignaturesStationeryDialog button Signatures...
FramePropertiesDialog button Frame Properties...
OfficeOnTheWeb button Microsoft Office Online
PictureBulletsInsert button Picture Bullets...
FileNewWebPage button New Web Page
FileNewBlankDocument button New Blank Document

324 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Control

idMso Type Label
FileNewDialogClassic button New Document or Template...
FileSaveAsWebPage button Save as Web Page...
HorizontalLineInsertClassic button Horizontal Line...
WebOptionsDialog button Web Options...
FramesNewFramesPageWizard button New Frames Page
FrameCreateAbove button New Frame Above
FrameCreateBelow button New Frame Below
FrameCreateLeft button New Frame Left
FrameCreateRight button New. Frame Right
FrameDelete button Delete Frame

EastAsianEditingMarks

toggleButton

Show/Hide Editing Marks

TableAutoFitContents button AutoFit Contents
TableAutoFitWindow button AutoFit Window
TableAutoFitFixedColumnWidth button Fixed Column Width

TableCellAlignTopLeft

toggleButton

Align Top Left

TableCellAlignTopCenter

toggleButton

Align Top Center

TableCellAlignTopRight

toggleButton

Align Top Right

TableCellAlignMiddlelLeft

toggleButton

Align Center Left

TableCellAlignMiddleCenter

toggleButton

Align Center

TableCellAlignMiddleRight

toggleButton

Align Center Right

TableCellAlignBottomLeft

toggleButton

Align Bottom Left

TableCellAlignBottomCenter:

toggleButton

Align Bottom Center

TableCellAlignBottomRight

toggleButton

Align Bottom Right

WebControlCheckBox button Checkbox
WebControlOptionButton button Option Button
WebControlDropDownBox button Drop-Down Box
WebControlListBox button List Box
WebControlTextBox button Textbox
WebControlTextArea button Text Area
WebControlSubmit button Submit
WebControlSubmitWithImage button Submit with Image

325 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Control

idMso Type Label

WebControlReset button Reset
WebControlHidden button Hidden
WebControlPassword button Password
UnderlineColorMoreColorsDialog button More Colors...
ChineseTranslationDialog button Translate with Options...
TableInsertMultidiagonalCell button Insert Multidiagonal Cell...
AsianLayoutHorizontalInVertical button Horizontal in Vertical...
AsianLayoutTwolLinesInOne button Two Lines in One...
AsianLayoutCharactersEnclose button Enclose Characters...
EnvelopeChineseDialog button Chinese Envelope...
ObjectsMultiSelect button Select Multiple Objects
TranslateToTraditionalChinese button Traditional
TextWrappingBehindText toggleButton | Behind Text

TextWrappingInFrontOfText

toggleButton

In Front of Text

WatermarkCustomDialog button Custom Watermark...
FrameSaveCurrentAs button Save Current Frame As...
TranslateToSimplifiedChinese button Simplified

WebDesignMode toggleButton | Web Design Mode
ViewMasterDocumentViewClassic button Master Document Tools
WhiteSpaceBetweenPagesShowHide button White Space Between Pages
EditField button Edit Field...
WordCountRecount button Recount
StylesModifyStyle button Modify Style
StyleByExample button Style by Example
CssLinksEdit button Edit CSS Links
StylesPane button Styles...

DeleteStyle button Delete Style
StylesRenameStyle button Rename Style
SelectNumber button Select Number
NumberingRestart button Restart Numbering
DrawingCanvaslnsert button New Drawing Canvas

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

326 / 554

Control

idMso Type Label
DiagramRadiallnsertClassic button Radial Diagram
DiagramCyclelnsertClassic button Cycle Diagram
DiagramPyramidInsertClassic button Pyramid Diagram
DiagramTargetInsertClassic button Target Diagram
DiagramVennDiagramInsertClassic button Venn Diagram
DiagramChangeToRadialClassic button Radial
DiagramChangeToCycleClassic button Cycle
DiagramChangeToTargetClassic button Target
DiagramChangeToVennDiagramClassic button Venn
CopyPasteSettings button Copy & paste settings...
PasteByAppendingTable button Paste by Appending Table
OrganizationChartInsertAssistant button Assistant
OrganizationChartInsertCoworker button Coworker
OrganizationChartInsertSubordinate button Subordinate
OrganizationChartDeleteNode button Delete
DrawingCanvasFit button Fit
DrawingCanvasResize button Resize

LabelOptions button Label Options...
SendCopySetup button Envelope Setup...
MailMergeMergeToEMail button Send E-mail Messages...
MailMergeMergeToFax button Merge to Fax
MailMergeCreateList button Type New List...
MailMergeEditList button Edit Mail Merge List
DrawingCanvasExpand button Expand

ActivateProduct button Activate Product...

TextWrappingInLineWithText

toggleButton

In Line with Text

ConsistencyCheck button Consistency Check...
SelectTextWithSimilarFormatting button Select Text with Similar
Formatting
ReviewSendForReview button Send for Review...
WebComponent button Web Component...
DiagramChangeToPyramidClassic button Pyramid

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

327/ 554

Control

idMso Type Label
DiagramShapeMoveBackwardClassic button Move Shape Backward
DiagramShapeMoveForwardClassic button Move Shape Forward
CharacterCodeToggle button Toggle Character Code
SmartTagOptions button Tools Options Smart Tag
SendCopyFocusIntroduction button Introduction Focus
StylesStyleVisibility button Style Visibility
DiagramStylesClassic button Diagram Styles...

MailMergeHighlightMergeFields

toggleButton

Highlight Merge Fields

MailMergeWizard

toggleButton

Step by Step Mail Merge Wizard...

OrganizationChartAutoLayout toggleButton | AutolLayout
OrganizationChartSelectLevel button Level
OrganizationChartSelectBranch button Branch
OrganizationChartSelectAllAssistants button All Assistants
OrganizationChartSelectAllConnectors button All Connectors
MailMergelapaneseGreetingInsert button Greeting...
MailMergeJapaneseGreetingJapaneseOpeningSentencelnsert | button Opening...
MailMergelapaneseGreetingClosingSentencelnsert button Closing...
RevealFormatting button Reveal Formatting...
DiagramReverseClassic button Reverse
DiagramAutoLayoutClassic toggleButton | Autolayout

TextBoxAutosize button Autosize textbox
TranslationPane button Translate...
GoToTableOfContents button Go to TOC
TableOfContentsUpdate button Update Table...
OutlineLevelGallery dropDown Outline Level
OutlineShowLevel dropDown Show Level:
NumberingContinue button Continue Numbering
FileCheckOut button Check Out
FileCheckIn button Check In
OrganizationChartLayoutStandard toggleButton | Standard

OrganizationChartLayoutBothHanging

toggleButton

Both Hanging

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

328 / 554

Control
idMso Type Label
OrganizationChartLayoutLeftHanging toggleButton Left Hanging
OrganizationChartLayoutRightHanging toggleButton | Right Hanging
ReviewShowReviewersMenu menu Reviewers
ReviewReplyWithChanges button Reply with Changes...
ReviewEndReview button End Review...
NormalizeText button Normalize text
StylesStyleSeparator button Style Separator
SpeaklLearnFromDocument button Learn from Document...
PictureEditWord button Edit Picture
OutlinePromoteToHeading button Promote to Heading 1
MicrosoftOutlook button Microsoft Outlook
ReviewShowComments toggleButton .| Comments
ReviewShowlInsertionsAndDeletions toggleButton | Insertions and Deletions
ReviewShowFormatting toggleButton | Formatting
ReviewPreviousChange button Previous
ReviewNextChange button Next
ReviewReviewingPane toggleButton Reviewing Pane
ReviewAcceptAllChangesShown button Accept All Changes Shown
ReviewAcceptAllChangesInDocument button Accept All Changes in Document
ReviewRejectAllChangesShown button Reject All Changes Shown
ReviewRejectAllChangesInDocument button Reject All Changes in Document
ReviewDeleteAllCommentsShown button Delete All Comments Shown
ReviewDeleteAllCommentsInDocument button Delete All Comments in Document
ShowRepairs button Show Repairs
MailMergeMatchFields button Match Fields...
MailMergeAddressBlockInsert button Address Block...
MailMergeGreetingLinelnsert button Greeting Line...
MailMergeMergeFieldInsert button Insert Merge Field
MailMergeRecipientsEditList button Edit Recipient List...
MailMergeEmailOptions button Mail Merge E-Mail Options
MailMergePrintOptions button Mail Merge Print Options

329 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Control

idMso Type Label
MailMergeFaxOptions button Mail Merge Fax Options
MailMergeMergeToNewDocumentOptions button Mail Merge to New Document

Options
PicturesCompress button Compress Pictures...
Security button Security
TableAutoFormatStyle button Table AutoFormat...
MailMergeEditAddressBlock button Edit Address Block...
MailMergeEditGreetingLine button Edit Greeting Line...
MailMergeFindRecipient button Find Recipient...
FormFieldReset button Reset Form Fields
MailMergeUpdatelLabels button Update Labels
DiagramFitToContentsClassic button Fit to Contents
DiagramResizeClassic toggleButton | Resize
DiagramExpandClassic button Expand
OrganizationChartResize button Resize Organization Chart
AccountSettings button Account Settings...
MailMergeSetDocumentType button Main document setup
DiagramShapelnsertClassic button Insert Shape
OrganizationChartStyle button Style...
ReviewDisplayForReview dropDown Display for Review
DiagramAutoFormatClassic button Use AutoFormat
Translate button Translate...
ClearContentsWord button Contents
DrawingCanvasScale button Scale Drawing
ProtectDocument toggleButton Protect Document...
XmlViewStructure button View XML Structure
ReadingViewClose button Edit
ResearchPane toggleButton | Research...
DocumentMapReadingView button Document Map
ReadingViewResearchPane button Research...
ReadingViewFontSizelncrease button Increase Text Size
ReadingViewFontSizeDecrease button Decrease Text Size

330 / 554

[MS-CUSTOMUI] - v20210422

Custom UI XML Markup Specification
Copyright © 2021 Microsoft Corporation
Release: April 22, 2021

Control

idMso Type Label
ReadingViewShowPrintedPage button Show Printed Page
ViewRulerWord checkBox Ruler

FileInternetFax button Internet Fax
DocumentUpdatePane button Show Document Update Pane

ViewDocumentActionsPane

toggleButton

Document Actions

XmlToggleTagView button Toggle XML Tag View
InkDeleteAllInk button Delete All Ink
LookUp button Look Up

WindowSideBySide

t