
1 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

[MS-CUSTOMUI]:

Custom UI XML Markup Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

1/15/2009 1.0 Major Initial Availability

7/13/2009 1.01 Major Revised and edited the technical content

8/28/2009 1.02 Editorial Revised and edited the technical content

11/6/2009 1.03 Editorial Revised and edited the technical content

2/19/2010 2.0 Editorial Revised and edited the technical content

3/31/2010 2.01 Editorial Revised and edited the technical content

4/30/2010 2.02 Editorial Revised and edited the technical content

6/7/2010 2.03 Editorial Revised and edited the technical content

6/29/2010 2.04 Editorial Changed language and formatting in the technical content.

7/23/2010 2.04 None
No changes to the meaning, language, or formatting of the
technical content.

9/27/2010 2.04 None
No changes to the meaning, language, or formatting of the
technical content.

11/15/2010 2.04 None
No changes to the meaning, language, or formatting of the
technical content.

12/17/2010 2.04 None
No changes to the meaning, language, or formatting of the
technical content.

3/18/2011 2.04 None
No changes to the meaning, language, or formatting of the
technical content.

6/10/2011 2.04 None
No changes to the meaning, language, or formatting of the
technical content.

1/20/2012 2.5 Minor Clarified the meaning of the technical content.

4/11/2012 2.5 None
No changes to the meaning, language, or formatting of the
technical content.

7/16/2012 2.5 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2012 2.5 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2013 2.5 None
No changes to the meaning, language, or formatting of the
technical content.

7/30/2013 2.5 None
No changes to the meaning, language, or formatting of the
technical content.

11/18/2013 2.5 None
No changes to the meaning, language, or formatting of the
technical content.

2/10/2014 2.5 None
No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 2.5 None No changes to the meaning, language, or formatting of the

3 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Date
Revision
History

Revision
Class Comments

technical content.

7/31/2014 2.6 Minor Clarified the meaning of the technical content.

10/30/2014 3.0 Major Significantly changed the technical content.

3/16/2015 4.0 Major Significantly changed the technical content.

9/4/2015 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/15/2016 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/14/2016 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/17/2016 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 6

1.2.1 Normative References ... 7
1.2.2 Informative References ... 7

2 Custom UI ... 8
2.1 Parts .. 8

2.1.1 Quick Access Toolbar Customizations Part .. 8
2.1.2 Ribbon Extensibility Part .. 9

2.2 Elements ... 10
2.2.1 box (Box Grouping Container) .. 10
2.2.2 button (Button) .. 14
2.2.3 button (Unsized Button) .. 24
2.2.4 button (Button Inside of a Split Button) ... 33
2.2.5 buttonGroup (Button Grouping Container) ... 42
2.2.6 checkBox (Check Box) ... 45
2.2.7 comboBox (Combo Box) .. 55
2.2.8 command (Repurposed Command) ... 66
2.2.9 commands (List of Repurposed Commands) ... 68
2.2.10 contextualTabs (List of Contextual Tab Sets) .. 68
2.2.11 control (Unsized Control Clone) .. 69
2.2.12 control (Control Clone) .. 77
2.2.13 control (Quick Access Toolbar Control Clone) ... 86
2.2.14 customUI (Custom UI Document Root) .. 95
2.2.15 dialogBoxLauncher (Dialog Box Launcher) ... 96
2.2.16 documentControls (List of Document-Specific Quick Access Toolbar Controls) 97
2.2.17 dropDown (Drop-down Control) .. 98
2.2.18 dynamicMenu (Unsized Dynamic Menu) .. 110
2.2.19 dynamicMenu (Dynamic Menu) .. 119
2.2.20 editBox (Edit Box) ... 130
2.2.21 gallery (Gallery) .. 139
2.2.22 gallery (Unsized Gallery) .. 155
2.2.23 group (Group) ... 169
2.2.24 item (Selection Item) ... 177
2.2.25 labelControl (Text Label) .. 180
2.2.26 menu (Unsized Menu) .. 188
2.2.27 menu (Menu with Title) .. 197
2.2.28 menu (Menu) .. 207
2.2.29 menu (Dynamic Menu Root XML Element) .. 218
2.2.30 menuSeparator (Menu Separator) .. 220
2.2.31 officeMenu (Office Menu) .. 223
2.2.32 qat (Quick Access Toolbar) ... 224
2.2.33 ribbon (Ribbon) ... 225
2.2.34 separator (Separator) .. 226
2.2.35 sharedControls (List of Shared Quick Access Toolbar Controls) 229
2.2.36 splitButton (Unsized Split Button) .. 230
2.2.37 splitButton (Split Button with Title) .. 238
2.2.38 splitButton (Split Button) .. 247
2.2.39 tab (Tab) .. 256
2.2.40 tabs (List of Tabs) ... 260
2.2.41 tabSet (Contextual Tab Set).. 261
2.2.42 toggleButton (Unsized Toggle Button) .. 262
2.2.43 toggleButton (Toggle Button) .. 272
2.2.44 toggleButton (Toggle Button Inside of a Split Button) 282

5 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

2.3 Simple Types .. 291
2.3.1 ST_BoxStyle (Box Style)... 291
2.3.2 ST_Delegate (Callback Function Name) .. 291
2.3.3 ST_GalleryItemWidthHeight (Gallery Item Width or Height) 294
2.3.4 ST_GalleryRowColumnCount (Gallery Row or Column Count) 294
2.3.5 ST_ID (Control ID) .. 295
2.3.6 ST_ItemSize (Menu Item Size) .. 296
2.3.7 ST_Keytip (Keytip) .. 296
2.3.8 ST_LongString (Long String) ... 297
2.3.9 ST_QID (Qualified Control ID) ... 297
2.3.10 ST_Size (Control Size) ... 299
2.3.11 ST_String (Short String) ... 300
2.3.12 ST_StringLength (String Length) ... 301
2.3.13 ST_UniqueID (Custom Control ID) ... 301
2.3.14 ST_Uri (Image Relationship ID) ... 302

3 Appendix A: Custom UI Control ID Tables ... 303
3.1 idMso Tables .. 303

3.1.1 Word 2007 .. 303
3.1.2 Excel 2007 .. 357
3.1.3 PowerPoint 2007 ... 392
3.1.4 Word 2010, Excel 2010, PowerPoint 2010 ... 418
3.1.5 Word 2013, Excel 2013, PowerPoint 2013 ... 418

3.2 imageMso Table .. 419

4 Appendix B: Product Behavior ... 521

5 Change Tracking .. 522

6 Index ... 523

6 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

1 Introduction

In creating an interoperable implementation, it is helpful to understand specific implementation
choices made by other products implementing the same standard. For example, portions of the
standard may provide only general guidance, leaving specific implementation choices up to the
application implementer; in some circumstances it may be helpful for other implementers to
understand those choices.

The information contained in this document provides information about how to implement UI
customization in the context of ECMA-376 Office Open XML File Formats, as described in [ECMA-376].

1.1 Glossary

This document uses the following terms:

add-in: Supplemental functionality that is provided by an external application or macro to extend
the capabilities of an application.

KeyTip: A small, pop-up window that appears over commands on the ribbon when users press the
ALT key. By pressing the key that is displayed in a KeyTip, users can execute the command that
is associated with the KeyTip.

macro: A set of instructions that are recorded or written, and then typically saved to a file. When a

macro is run, all of the instructions are performed automatically.

XML fragment: Lines of text that adhere to XML tag rules, as described in [XML], but do not have
a Document Type Definition (DTD) or schema, processing instructions, or any other header
information.

XML namespace: A collection of names that is used to identify elements, types, and attributes in
XML documents identified in a URI reference [RFC3986]. A combination of XML namespace and
local name allows XML documents to use elements, types, and attributes that have the same

names but come from different sources. For more information, see [XMLNS-2ED].

XML namespace prefix: An abbreviated form of an XML namespace, as described in [XML].

XML schema: A description of a type of XML document that is typically expressed in terms of
constraints on the structure and content of documents of that type, in addition to the basic
syntax constraints that are imposed by XML itself. An XML schema provides a view of a
document type at a relatively high level of abstraction.

XML schema definition (XSD): The World Wide Web Consortium (W3C) standard language that
is used in defining XML schemas. Schemas are useful for enforcing structure and constraining
the types of data that can be used validly within other XML documents. XML schema definition
refers to the fully specified and currently recommended standard for use in authoring XML
schemas.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90602
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx

7 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[ECMA-376] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA-376, December
2006, http://www.ecma-international.org/publications/standards/Ecma-376.htm

[MS-CUSTOMUI2] Microsoft Corporation, "Custom UI XML Markup Version 2 Specification".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[XMLNS] Bray, T., Hollander, D., Layman, A., et al., Eds., "Namespaces in XML 1.0 (Third Edition)",

W3C Recommendation, December 2009, http://www.w3.org/TR/2009/REC-xml-names-20091208/

[XMLSCHEMA1] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML Schema Part

1: Structures", W3C Recommendation, May 2001, http://www.w3.org/TR/2001/REC-xmlschema-1-
20010502/

[XMLSCHEMA2] Biron, P.V., Ed. and Malhotra, A., Ed., "XML Schema Part 2: Datatypes", W3C
Recommendation, May 2001, http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

1.2.2 Informative References

None.

mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-CUSTOMUI2%5d.pdf#Section_bad56c217b1541bcaf328b5afe6e922e
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=191840
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90610

8 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

2 Custom UI

The subordinate clauses specify the semantics for the Custom UI XML markup contained within the
ECMA-376 Office Open XML File Formats, as specified in [ECMA-376]. These semantics describe
customization of the UI interface. Examples in the following clauses highlight customizations in the
context of the Microsoft Office Fluent interface (UI) but the concepts extend naturally to any user
interface.

Customization of the UI is accomplished via the addition of parts containing Custom UI XML markup to
the containing document package.

2.1 Parts

The parts described in the subordinate sections detail the additional part types utilized by CustomUI in
an ECMA-376 Office Open XML File Formats [ECMA-376] file.

2.1.1 Quick Access Toolbar Customizations Part

Content
Type:

application/xml

Root

Namespace:

http://schemas.microsoft.com/office/2006/01/customui

Source
Relationship:

http://schemas.microsoft.com/office/2006/relationships/ui/userCustomization

The syntax of the structures contained in this part uses XML schema definition (XSD), as specified
in [XMLSCHEMA1] and [XMLSCHEMA2].

This specification defines and references various XML namespaces by using the mechanisms
specified in [XMLNS].

An instance of this part type contains information about the quick access toolbar customizations

specific to the containing package.

For example, a user can customize the quick access toolbar for his WordProcessingML document to
contain the UI controls that they commonly use.

A package is permitted to contain at most one Quick Access Toolbar Customizations part, and that
part is the target of a relationship in the package-relationship item for the document.

For example, the following package part-relationship item contains a relationship to a Quick Access

Toolbar Customizations part, which is stored in the ZIP item /userCustomization/customUI.xml:

 <Relationships xmlns="…">
 <Relationship Id="rId2"
 Type="http://…/2006/relationships/ui/userCustomization"
 Target="/userCustomization/customUI.xml" />
 </Relationships>

The root element for a part of this content type is customUI.

For example, the following Quick Access Toolbar Customizations content markup specifies that the

control with identifier "SpellingAndGrammar" is to be added to the quick access toolbar for the
package:

 <mso:customUI xmlns:mso="http://schemas.microsoft.com/office/2006/01/customui">
 <mso:ribbon>

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90610
http://go.microsoft.com/fwlink/?LinkId=191840

9 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <mso:qat>
 <mso:documentControls>
 <mso:control idQ="mso:SpellingAndGrammar" visible="true" />
 </mso:documentControls>
 </mso:qat>
 </mso:ribbon>
 </mso:customUI>

A Quick Access Toolbar Customizations part is located within the package containing the source
relationship. Expressed syntactically, the TargetMode attribute of the Relationship element is
"Internal".

A Quick Access Toolbar Customizations part does not have implicit or explicit relationships to any
other part defined by ECMA-376 Office Open XML File Formats, as specified in [ECMA-376].

2.1.2 Ribbon Extensibility Part

Content
Type:

application/xml

Root
Namespace:

http://schemas.microsoft.com/office/2006/01/customui

Source
Relationship:

http://schemas.microsoft.com/office/2006/relationships/ui/extensibility

The syntax of the structures contained in this part uses XML schema definition (XSD), as specified in
[XMLSCHEMA1] and [XMLSCHEMA2].

This specification defines and references various XML namespaces by using the mechanisms specified
in [XMLNS].

An instance of this part type contains information about the ribbon customizations specific to the

containing package.

For example, a SpreadsheetML document that represents a timecard could contain custom UI controls

to guide the user in filling out the timecard.

A package is permitted to contain at most one Ribbon Extensibility part, and that part is the target of
a relationship in the package-relationship item for the document.

For example, the following package part-relationship item contains a relationship to a Ribbon
Extensibility part, which is stored in the ZIP item /customUI/customUI.xml:

 <Relationships xmlns="…">
 <Relationship Id="rId5"
 Type="http://…/2006/relationships/ui/extensibility"
 Target="/customUI/customUI.xml" />
 </Relationships>

The root element for a part of this content type is customUI.

For example, the following Ribbon Extensibility content markup specifies that the ribbon tab with

identifier "TabHome" is to be hidden for the containing package:

 <customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
 <ribbon>
 <tabs>
 <tab idMso="TabHome" visible="false" />
 </tabs>
 </ribbon>

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90610
http://go.microsoft.com/fwlink/?LinkId=191840

10 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 </customUI>

A Ribbon Extensibility part is located within the package containing the source relationship. Expressed
syntactically, the TargetMode attribute of the Relationship element is "Internal".

A Ribbon Extensibility part is permitted to have explicit relationships to the following parts defined by
ECMA-376 Office Open XML File Formats, as specified in [ECMA-376]:

 Image Part, as specified in [ECMA-376] Part 1 section15.2.13.

2.2 Elements

A Custom UI document contains customizations of an application's UI. Customizations are mainly of
two types:

 Modifications of the application's built-in UI, such as hiding or disabling built-in UI controls or

repurposing command actions.

 Creation of custom UI controls, such as a custom ribbon tab, menu item, or quick access

toolbar button.

For example, consider the following Custom UI document:

 <customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
 <commands>
 <command idMso="Bold" enabled="false" />
 </commands>
 <ribbon>
 <tabs>
 <tab idMso="TabHome" visible="false" />
 <tab id="CustomTab" label="Custom Tab">
 <group id="CustomGroup" label="Custom Group">
 <button id="CustomButton" label="Custom Button"
 size="large" imageMso="HappyFace" onAction="OnButtonClick" />
 </group>
 </tab>
 </tabs >
 </ribbon>
 </customUI>

This example disables the command with an identifier of "Bold", hides the ribbon tab with an identifier
of "TabHome", and creates a new custom ribbon tab with a custom button in it.

The full XML Schema Definition of the XML Schema fragments listed in this section is defined in
Appendix A of [MS-CUSTOMUI2].

2.2.1 box (Box Grouping Container)

This element specifies a grouping container control that can be used to align controls vertically or

horizontally. Box elements can be nested to create complex UI layouts.

For example, consider a group of controls that are laid out horizontally, as follows:

http://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-CUSTOMUI2%5d.pdf#Section_bad56c217b1541bcaf328b5afe6e922e

11 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Figure 1: Controls grouped horizontally

This layout is specified using the following XML fragment:

 <box id="box" boxStyle="horizontal">
 <button id="button1" label="Button 1" imageMso="HappyFace" />
 <button id="button2" label="Button 2" imageMso="HappyFace" />
 </box>

This is contrasted to the default vertical layout that is used if the box element is not specified.

The following table summarizes the elements that are parents of this element.

Parent Elements Section

box 2.2.1

group 2.2.23

The following table summarizes the child elements of this element.

Child Elements Section

box (Box Grouping Container) 2.2.1

button (Button) 2.2.2

buttonGroup (Button Grouping Container) 2.2.5

checkBox (Check Box) 2.2.6

comboBox (Combo Box) 2.2.7

control (Control Clone) 2.2.12

dropDown (Drop-down Control) 2.2.17

dynamicMenu (Dynamic Menu) 2.2.19

editBox (Edit Box) 2.2.20

gallery (Gallery) 2.2.21

labelControl (Text Label) 2.2.25

menu (Menu) 2.2.28

splitButton (Split Button) 2.2.38

toggleButton (Toggle Button) 2.2.43

The following table summarizes the attributes of this element.

12 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

boxStyle (box
style)

Specifies the layout direction for the child controls inside of the box element.

If this attribute is omitted, the child controls SHOULD be laid out horizontally.

For example, consider a group of controls to be laid out vertically. This is specified using the
following XML:

 <box id="box" boxStyle="vertical">
 …
 </box>

The possible values for this attribute are defined by the ST_BoxStyle simple type, as
specified in section 2.3.1.

getVisible
(getVisible
callback)

Specifies the name of a callback function that is called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id and idQ attributes are mutually exclusive. At least one of these attributes is to be
specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes is to be
specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>

13 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If that
tab cannot be found, it is created. A new group belonging to this file is added to the tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.

insertAfterMso
(identifier of built-
in control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an id of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.

insertBeforeMso
(identifier of built-

in control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple, as specified in
section 2.3.5.

14 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is to be hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Box">
 <xsd:group ref="EG_Controls" minOccurs="0" maxOccurs="1000"/>
 <xsd:attributeGroup ref="AG_IDCustom"/>
 <xsd:attributeGroup ref="AG_Visible"/>
 <xsd:attributeGroup ref="AG_PositionAttributes"/>
 <xsd:attribute name="boxStyle" type="ST_BoxStyle" use="optional"/>
 </xsd:complexType>

2.2.2 button (Button)

This element specifies a standard push-button control that performs an action when clicked.

For example, consider a button control, as follows:

Figure 2: A button control

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace" />

15 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following table summarizes the elements that are parents of this element.

Parent Elements Section

box 2.2.1

group 2.2.23

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function that is called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled

Specifies the name of a callback function that is called to determine the enabled state of
this control.

16 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is to be called when the
application needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is to be called when the
application needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function that is called to determine the suggested KeyTip
of this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is to be called when the
application needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is to be called when the application
needs to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

17 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is to be called when the
application needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is to be called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is to be called when the
application needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

 <button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is to be called when the application
needs to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

18 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is to be called when the
application needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is to be called when the application
needs to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control is passed to callback functions to identify which control
corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

19 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image that is to be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by

the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image that is to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …

20 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert

before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

21 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string that is to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

22 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

This is specified using the following XML fragment:

 <toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified

23 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

in section 2.3.10.

supertip (supertip) Specifies a string that is to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the ButtonClicked
callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an id of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

24 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <xsd:complexType name="CT_Button">
 <xsd:complexContent>
 <xsd:extension base="CT_ButtonRegular">
 <xsd:attributeGroup ref="AG_SizeAttributes"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.3 button (Unsized Button)

This element specifies a push-button that, because of its location, cannot have its size changed. The
size attribute is not present. This element otherwise behaves like the regular button element, as

specified in section 2.2.2.

The following table summarizes the elements that are parents of this element.

Parent Elements Section

buttonGroup 2.2.5

dialogBoxLauncher 2.2.15

documentControls 2.2.16

dropDown 2.2.17

gallery 2.2.21

gallery 2.2.22

menu 2.2.28

menu 2.2.26

menu 2.2.29

menu 2.2.27

officeMenu 2.2.31

sharedControls 2.2.35

The following table summarizes the attributes of this element.

Attributes Description

description Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes

25 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is to be called when the
application needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is to be called when the
application needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

26 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function that is called to determine the suggested KeyTip
of this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is to be called when the
application needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is to be called when the application
needs to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is to be called when the
application needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is to be called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

27 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is to be called when the
application needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is to be called when the
application needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is to be called when the application
needs to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in Specifies the identifier of a built-in control.

28 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

control identifier) The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, "ex" is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these

29 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is inserted after the custom tab
with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is inserted before the built-in tab

with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

30 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is inserted before the custom tab
with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (Keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (Label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip Specifies a string to be shown as the screentip for this control.

31 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

(screentip) The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or
display no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (Show
Label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

32 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

supertip (Supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (Tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ButtonRegular">
 <xsd:complexContent>

33 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <xsd:extension base="CT_Control">
 <xsd:attributeGroup ref="AG_Action"/>
 <xsd:attributeGroup ref="AG_Enabled"/>
 <xsd:attributeGroup ref="AG_Description"/>
 <xsd:attributeGroup ref="AG_Image"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.4 button (Button Inside of a Split Button)

This element specifies a push-button that is a child of a split button control. The visible and
getVisible attributes are not present because the visibility is controlled by the split button. This
element otherwise behaves in the same way as the unsized button element, as specified in section
2.2.3.

The following table summarizes the elements that are parents of this element.

Parent Elements Section

splitButton 2.2.38

splitButton 2.2.36

splitButton 2.2.37

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not

34 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

35 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function that is called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function that is called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function that is called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.

36 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

getSupertip
(getSupertip
callback)

Specifies the name of a callback function that is called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function that is called to determine the visibility state of
this control. This attribute is prohibited.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

37 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the

tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image that is used as the icon for this control.
This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image that is used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an id of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

38 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of x:OtherTab.

39 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction

(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the

user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip

(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

40 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

41 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control. This attribute is prohibited.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_VisibleButton">
 <xsd:complexContent>

42 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <xsd:restriction base="CT_ButtonRegular">
 <xsd:attribute name="visible" use="prohibited"/>
 <xsd:attribute name="getVisible" use="prohibited"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

2.2.5 buttonGroup (Button Grouping Container)

This element specifies a grouping container that groups controls together visually. The child controls
are laid out horizontally.

For example, consider a group of buttons, as follows:

Figure 3: A group of buttons

This is specified using the following XML fragment:

 <buttonGroup id="buttonGroup">
 <button id="button1" imageMso="Bold" />
 <button id="button2" imageMso="Italic" />
 <button id="button3" imageMso="Underline" />
 </buttonGroup>

The following table summarizes the elements that are parents of this element.

Parent Elements Section

box 2.2.1

group 2.2.23

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

control (Unsized Control Clone) 2.2.11

dynamicMenu (Unsized Dynamic Menu) 2.2.18

gallery (Unsized Gallery) 2.2.22

menu (Unsized Menu) 2.2.26

splitButton (Unsized Split Button) 2.2.36

toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

43 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertAfterMso
(identifier of built-in
control to insert

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

44 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

after) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an id of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

45 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ButtonGroup">
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="1000">
 <xsd:element name="control" type="CT_ControlCloneRegular"/>
 <xsd:element name="button" type="CT_ButtonRegular"/>
 <xsd:element name="toggleButton" type="CT_ToggleButtonRegular"/>
 <xsd:element name="gallery" type="CT_GalleryRegular"/>
 <xsd:element name="menu" type="CT_MenuRegular"/>
 <xsd:element name="dynamicMenu" type="CT_DynamicMenuRegular"/>
 <xsd:element name="splitButton" type="CT_SplitButtonRegular"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attributeGroup ref="AG_IDCustom"/>
 <xsd:attributeGroup ref="AG_Visible"/>
 <xsd:attributeGroup ref="AG_PositionAttributes"/>
 </xsd:complexType>

2.2.6 checkBox (Check Box)

This element specifies a standard checkbox control.

For example, consider a checkbox control, as follows:

Figure 4: A checkbox control

This is specified using the following XML fragment:

 <checkBox id="checkBox" label="CheckBox" />

The following table summarizes the elements that are parents of this element.

46 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Parent Elements Section

box 2.2.1

group 2.2.23

menu 2.2.28

menu 2.2.26

menu 2.2.29

menu 2.2.27

officeMenu 2.2.31

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not

very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

47 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs

48 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the control SHOULD default to the off state.

For example, consider the following XML fragment:

 <toggleButton id="toggle" getPressed="IsButtonToggled" />

In this example, the IsButtonToggled callback function is called when the application
needs to determine the toggle state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
displays the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application

49 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

50 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button to use the built-in image with an id of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

51 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

control to insert
after)

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-

in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …

52 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

53 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

54 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an id of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_CheckBox">
 <xsd:complexContent>

55 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <xsd:restriction base="CT_ToggleButtonRegular">
 <xsd:attribute name="image" use="prohibited"/>
 <xsd:attribute name="imageMso" use="prohibited"/>
 <xsd:attribute name="getImage" use="prohibited"/>
 <xsd:attribute name="showImage" use="prohibited"/>
 <xsd:attribute name="getShowImage" use="prohibited"/>
 <xsd:attribute name="showLabel" use="prohibited"/>
 <xsd:attribute name="getShowLabel" use="prohibited"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

2.2.7 comboBox (Combo Box)

This element specifies a standard combo box control that allows a user to input a text string or select
one from a list.

For example, consider a combo box control, as follows:

Figure 5: A combo box control

This is specified using the following XML fragment:

 <comboBox id="comboBox" label="Combo Box">
 <item id="item1" label="Item 1" />
 <item id="item2" label="Item 2" />
 <item id="item3" label="Item 3" />
 </comboBox>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

56 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemCount
(getItemCount
callback)

Specifies the name of a callback function to be called to determine the number of selection
items in this control.

If this attribute is omitted, the control SHOULD display any selection items that are
specified as child elements. If no such items are specified, the control SHOULD be empty.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount" />

In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemID
(getItemID
callback)

Specifies the name of a callback function to be called to determine the identifier of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD have empty
identifiers.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"

57 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 getItemID="GetGalleryItemID" />

In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemImage
(getItemImage
callback)

Specifies the name of a callback function to be called to determine the icon of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display icons.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemImage="GetGalleryItemImage" />

In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemLabel
(getItemLabel
callback)

Specifies the name of a callback function to be called to determine the label of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display labels.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemLabel="GetGalleryItemLabel" />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"

58 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application needs to determine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

59 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getText (getText
callback)

Specifies the name of a callback function to be called to determine the text that is displayed
in the control.

For example, consider the following XML fragment:

 <editBox id="editBox" getText="GetEditBoxText" />

In this example, the GetEditBoxText callback function is called when the application needs
to determine the text to display in the control.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

60 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

61 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom

62 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control invalidates its contents and re-queries for them when the
user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to "false".

For example, consider the following XML fragment:

 <comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
 getItemLabel="GetComboBoxItemLabel"
 invalidateContentOnDrop="true" />

In this example, this combo box clears out its items and re-calls the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

63 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

maxLength
(maximum input
string length)

Specifies an integer to be used as the maximum length of a string that can be entered
into the control.

If the maxLength attribute is omitted, the length of the input string SHOULD NOT be
limited, except by application-specific constraints.

For example, consider the following XML fragment:

 <editBox id="editBox" maxLength="10" />

This specifies an edit box control that can only accept strings up to 10 characters in
length.

The possible values for this attribute are defined by the ST_StringLength simple type, as
specified in section 2.3.12.

onChange
(onChange
callback)

Specifies the name of a callback function to be called when the text in the control has been
changed by the user.

For example, consider the following XML fragment:

 <editBox id="editBox" onChange="EditBoxTextChanged" />

This specifies an edit box control that calls the EditBoxTextChanged callback function
when the user inputs a text string.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

64 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemImage
(show item image)

Specifies whether this control displays icons on its selection items.

If this attribute is omitted, the items' icons SHOULD be shown by default.

For example, consider the following XML fragment:

 <gallery id="gallery" label="Gallery" showItemImage="false" >
 <item id="item1" label="Item 1" />
 <item id="item2" label="Item 1" />
 <item id="item3" label="Item 2" />
 <item id="item4" label="Item 3" />
 </gallery>

This specifies a gallery control that does not show any icons on its selection items.

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

65 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

 <editBox id="editBox" sizeString="WWWWWWWWWWWWW" />

This specifies an edit box control that SHOULD be wide enough to display the string
"WWWWWWWWWWWWW".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

66 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ComboBox">
 <xsd:complexContent>
 <xsd:extension base="CT_EditBox">
 <xsd:sequence>
 <xsd:element name="item" type="CT_Item" minOccurs="0" maxOccurs="1000"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="AG_DropDownAttributes"/>
 <xsd:attributeGroup ref="AG_DynamicContentAttributes"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.8 command (Repurposed Command)

This element specifies that a particular built-in command in the application is to be repurposed.

The enabled and getEnabled attributes can be specified to disable a command.

The onAction attribute allows the functionality of a command to be repurposed to run a callback
function. Only commands that execute simple actions (for example, commands represented as button
controls) can be repurposed using onAction.

For example, consider the following XML fragment:

 <commands>
 <command idMso="Bold" enabled="false" />
 <command idMso="Paste" onAction="MyPasteFunction" />
 </commands>

In this example, the Bold command is permanently disabled and that the callback function

MyPasteFunction is called when the Paste command is invoked.

The following table summarizes the elements that are parents of this element.

67 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Parent Elements

commands (section 2.2.9)

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

68 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Command" mixed="false">
 <xsd:attributeGroup ref="AG_Action"/>
 <xsd:attributeGroup ref="AG_Enabled"/>
 <xsd:attributeGroup ref="AG_IDMso"/>
 </xsd:complexType>

2.2.9 commands (List of Repurposed Commands)

This element specifies a list of repurposed commands. This element SHOULD NOT be specified if the

containing Custom UI XML document is a Quick Access Toolbar Customizations part.

The following table summarizes the elements that are parents of this element.

Parent Elements

customUI (section 2.2.14)

The following table summarizes the child elements of this element.

Child Elements Subclause

command (Repurposed Command) section 2.2.8

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Commands">
 <xsd:sequence>
 <xsd:element name="command" type="CT_Command" minOccurs="1" maxOccurs="5000"/>
 </xsd:sequence>
 </xsd:complexType>

2.2.10 contextualTabs (List of Contextual Tab Sets)

This element specifies a list of contextual tab sets. This element SHOULD NOT be specified if the
containing Custom UI XML document is a Quick Access Toolbar Customizations part.

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

Child Elements Subclause

tabSet (Contextual Tab Set) section 2.2.41

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ContextualTabs">
 <xsd:sequence>
 <xsd:element name="tabSet" type="CT_TabSet" minOccurs="1" maxOccurs="100"/>
 </xsd:sequence>

69 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 </xsd:complexType>

2.2.11 control (Unsized Control Clone)

This element specifies a clone of a control that, because of its location, cannot have its size changed.
The size attribute is not present. The element otherwise behaves like the regular control element, as
specified in section 2.2.12.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage

(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

70 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

71 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in Specifies the identifier of a built-in control.

72 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

control identifier) The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these

73 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the

built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

74 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

75 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

76 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ControlCloneRegular">
 <xsd:complexContent>

77 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <xsd:restriction base="CT_Control">
 <xsd:attribute name="id" use="prohibited"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

2.2.12 control (Control Clone)

This element specifies a clone of an existing control. Built-in controls can be cloned using the idMso
attribute. Custom controls can be cloned using the idQ attribute. Custom controls cannot be created

using the control element.

When an existing control is cloned, its non-location-specific properties, such as the icon and label, are
copied to the clone. Location-specific properties, such as the size and visibility of the control, are not
copied. These properties can be set by specifying additional attributes on the control element.

For example, consider the following XML fragment:

 <control idMso="Paste" size="large" />

This results in a large copy of the Paste control, as follows:

Figure 6: A Paste control

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as

78 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip

Specifies the name of a callback function to be called to determine the suggested KeyTip of

79 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

callback) this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel

Specifies the name of a callback function to be called to determine whether the application

80 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

callback) displays the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

 <button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify

81 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

82 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in

Specifies the identifier of a built-in control that this control is to be inserted before. If the

83 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

control to insert
before)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as

84 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show

image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

85 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

This is specified using the following XML fragment:

 <toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"

86 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ControlClone">
 <xsd:complexContent>
 <xsd:restriction base="CT_Button">
 <xsd:attribute name="id" use="prohibited"/>
 <xsd:attribute name="onAction" use="prohibited"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

2.2.13 control (Quick Access Toolbar Control Clone)

This element specifies a clone of an existing control. It is specific to control clones on the quick access
toolbar, but otherwise behaves the same way as the regular control element, as specified in section

2.2.12.

The following table summarizes the elements that are parents of this element.

Parent Elements

documentControls (section 2.2.16); sharedControls (section 2.2.35)

The following table summarizes the attributes of this element.

87 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

88 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage Specifies the name of a callback function to be called to determine whether the application

89 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

(getShowImage
callback)

SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

 <button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.

90 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (custom control
identifier)

Specifies the identifier for a custom control. All new custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control. The identifier is qualified with an XML
namespace prefix that specifies the owner of the control. If the namespace is equal to the
Custom UI namespace, the idQ attribute behaves in the same manner as the idMso
attribute. If the namespace is equal to the name of the current file, the idQ attribute
behaves like the id attribute. If the namespace is equal to the name of a different file, the
attribute references a control from that file.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive.

For example, consider the following XML fragment:

 <tab idQ="x:OtherTab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>

In this case x is an XML namespace equal to the name of another file that has a Custom UI

91 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

document with a tab with an identifier of "OtherTab". This example adds a custom group
to that tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

92 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood. it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

93 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

94 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

This is specified using the following XML fragment:

 <toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"

95 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ControlCloneQat">
 <xsd:complexContent>
 <xsd:extension base="CT_ControlBase">
 <xsd:attribute name="id" type="ST_ID" use="optional"/>
 <xsd:attribute name="idQ" type="ST_QID" use="optional"/>
 <xsd:attributeGroup ref="AG_IDMso"/>
 <xsd:attributeGroup ref="AG_Description"/>
 <xsd:attributeGroup ref="AG_SizeAttributes"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.14 customUI (Custom UI Document Root)

This element specifies the root tag in a Custom UI XML document.

The following table summarizes the child elements of this element.

Child Elements Section

commands (List of Repurposed Commands) 2.2.9

ribbon (Ribbon) 2.2.33

The following table summarizes the attributes of this element.

Attributes Description

loadImage
(loadImage
callback)

Specifies the name of a callback function to be called when the application needs to load an
image for a control's icon.

For example, consider the following XML fragment:

 <customUI xmlns="…" loadImage="LoadImageFunction" />

In this example, the LoadImageFunction callback is called to load icon images.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

96 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

onLoad (onLoad
callback)

Specifies the name of a callback function to be called when the Custom UI file is loaded by
the application.

For example, consider the following XML fragment:

 <customUI xmlns="…" onLoad="OnCustomUILoaded" />

In this example, the OnCustomUILoaded callback function is called when the containing
Custom UI file is loaded.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_CustomUI">
 <xsd:sequence>
 <xsd:element name="commands" type="CT_Commands" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="ribbon" type="CT_Ribbon" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="onLoad" type="ST_Delegate" use="optional"/>
 <xsd:attribute name="loadImage" type="ST_Delegate" use="optional"/>
 </xsd:complexType>

2.2.15 dialogBoxLauncher (Dialog Box Launcher)

This element specifies a button that is the dialog box launcher control for a ribbon group.

For example, consider a dialog box launcher control, as follows:

Figure 7: A dialog box launcher control

This is specified using the following XML fragment:

 <group id="customGroup" label="Custom Group">
 <dialogBoxLauncher>
 <button id="button" screentip="Dialog Box Launcher" />
 </dialogBoxLauncher>
 </group>

The following table summarizes the elements that are parents of this element.

97 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Parent Elements

group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_DialogLauncher">
 <xsd:sequence>
 <xsd:element name="button" type="CT_ButtonRegular" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

2.2.16 documentControls (List of Document-Specific Quick Access Toolbar Controls)

This element specifies the list of controls on the quick access toolbar which are specific to the
containing file.

For example, consider a set of controls on the document-specific quick access toolbar, as follows:

Figure 8: A set of controls on the document-specific quick access toolbar

This is specified using the following XML fragment:

 <documentControls>
 <control idMso="CalculateNow" />
 <control idMso="HyperlinkInsert" />
 </documentControls>

The following table summarizes the elements that are parents of this element.

Parent Elements

qat (section 2.2.32)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

control (Quick Access Toolbar Control Clone) 2.2.13

separator (Separator) 2.2.34

The following XML schema fragment defines the contents of this element:

98 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <xsd:complexType name="CT_QatItems">
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="1000">
 <xsd:element name="control" type="CT_ControlCloneQat"/>
 <xsd:element name="button" type="CT_ButtonRegular"/>
 <xsd:element name="separator" type="CT_Separator"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

2.2.17 dropDown (Drop-down Control)

This element specifies a drop-down control that allows users to make a selection from a list of options.
A drop-down control can optionally have buttons after its selection items.

For example, consider a drop-down control, as follows:

Figure 9: A drop-down control

This is specified using the following XML fragment:

 <dropDown id="dropDown" label="DropDown">
 <item id="item1" label="Item 1" />
 <item id="item2" label="Item 2" />
 <item id="item3" label="Item 3" />
 <button id="button" label="Button..." />
 </dropDown>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

99 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemCount
(getItemCount
callback)

Specifies the name of a callback function to be called to determine the number of selection
items in this control.

If this attribute is omitted, the control SHOULD display any selection items that are
specified as child elements. If no such items are specified, the control SHOULD be empty.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount" />

In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemID
(getItemID
callback)

Specifies the name of a callback function to be called to determine the identifier of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD have empty
identifiers.

For example, consider the following XML fragment:

100 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemID="GetGalleryItemID" />

In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemImage
(getItemImage
callback)

Specifies the name of a callback function to be called to determine the icon of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display icons.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemImage="GetGalleryItemImage" />

In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemLabel
(getItemLabel
callback)

Specifies the name of a callback function to be called to determine the label of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display labels.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemLabel="GetGalleryItemLabel" />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"

101 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application needs to determine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedItemI
D
(getSelectedItemI
D callback)

Specifies the name of a callback function to be called to determine the identifier of the item
to be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemID="GetItemID"

102 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 getSelectedItemID="GetGallerySelectedItemID" />

In this example, the GetGallerySelectedItemID callback function is called when the
application needs to determine the selected item in the gallery. In this example the callback
function returns one of the identifiers returned by the GetItemID callback function.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedItemI
ndex
(getSelectedItemI
ndex callback)

Specifies the name of a callback function to be called to determine the index of the item to
be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getSelectedItemIndex="GetGallerySelectedItemIndex" />

In this example, the GetGallerySelectedItemIndex callback function is called when the
application needs to determine the selected item in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
displays the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
displays the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

103 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

104 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the

relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …

105 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert

before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

106 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

107 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemImage
(show item image)

Specifies whether this control displays icons on its selection items.

If this attribute is omitted, the items' icons SHOULD be shown by default.

For example, consider the following XML fragment:

 <gallery id="gallery" label="Gallery" showItemImage="false" >
 <item id="item1" label="Item 1" />
 <item id="item2" label="Item 1" />
 <item id="item3" label="Item 2" />
 <item id="item4" label="Item 3" />
 </gallery>

This specifies a gallery control that does not show any icons on its selection items.

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemLabel
(show item label)

Specifies whether this control displays labels on its selection items.

If this attribute is omitted, the item's labels SHOULD be shown by default.

For example, consider the following XML fragment:

 <gallery id="gallery" label="Gallery" showItemLabel="false" >
 <item id="item1" image="Forest" />
 <item id="item2" image="Desert" />
 <item id="item3" image="Mountain" />
 <item id="item4" image="Ocean" />
 </gallery>

This specifies a gallery control that does not show any labels on its selection items.

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

108 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

 <editBox id="editBox" sizeString="WWWWWWWWWWWWW" />

This specifies an edit box control that is wide enough to display the string
"WWWWWWWWWWWWW".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"

109 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_DropDownRegular">
 <xsd:complexContent>
 <xsd:extension base="CT_Control">
 <xsd:sequence>
 <xsd:element name="item" type="CT_Item" minOccurs="0" maxOccurs="1000"/>
 <xsd:element name="button" type="CT_ButtonRegular" minOccurs="0" maxOccurs="16"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="AG_Action"/>
 <xsd:attributeGroup ref="AG_Enabled"/>

 <xsd:attributeGroup ref="AG_Image"/>
 <xsd:attributeGroup ref="AG_DropDownAttributes"/>
 <xsd:attribute name="getSelectedItemID" type="ST_Delegate" use="optional"/>
 <xsd:attribute name="getSelectedItemIndex" type="ST_Delegate" use="optional"/>
 <xsd:attribute name="showItemLabel" type="xsd:boolean" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.18 dynamicMenu (Unsized Dynamic Menu)

This element specifies a dynamic menu control that, because of its location, cannot have its anchor
size changed. The size attribute is not present. It otherwise behaves identically to the regular
dynamicMenu element, as specified in section 2.2.19.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the attributes of this element.

Attributes Description

description Specifies a detailed description of the control, which SHOULD be displayed in detailed

110 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

(description) views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getContent
(getContent
callback)

Specifies the name of a callback function to be called when the application needs to
determine the contents of the control.

For example, consider a dynamic menu control, as follows:

This is specified using the following XML fragment:

 <dynamicMenu id="dynamic" label="Dynamic Menu"
 getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this
case would return a string with the following XML:

 <menu
 xmlns="http://schemas.microsoft.com/office/2006/01/customui">
 <button id="button1" label="Button 1" />
 <button id="button2" label="Button 2" />
 <button id="button3" label="Button 3" />

111 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 </menu>

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

112 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

113 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified Specifies a qualified identifier for a control.

114 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

control identifier) The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.

This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image that is used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

115 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

after) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

116 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re-query for them when
the user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to false.

For example, consider the following XML fragment:

 <comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
 getItemLabel="GetComboBoxItemLabel"
 invalidateContentOnDrop="true" />

In this example, this combo box clears out its items and re-calls the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

117 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

118 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_DynamicMenuRegular">
 <xsd:complexContent>

119 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <xsd:extension base="CT_ControlBase">
 <xsd:attributeGroup ref="AG_Description"/>
 <xsd:attributeGroup ref="AG_IDAttributes"/>
 <xsd:attributeGroup ref="AG_GetContentAttributes"/>
 <xsd:attributeGroup ref="AG_DynamicContentAttributes"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.19 dynamicMenu (Dynamic Menu)

This element specifies a dynamic menu control that populates its contents dynamically.

For example, consider a dynamic menu control, as follows:

Figure 10: A dynamic menu control

This is specified using the following XML fragment:

 <dynamicMenu id="dynamic" label="Dynamic Menu" getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this case would
return a string with the following XML:

 <menu xmlns="http://schemas.microsoft.com/office/2006/01/customui">
 <button id="button1" label="Button 1" />
 <button id="button2" label="Button 2" />
 <button id="button3" label="Button 3" />
 </menu>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

120 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getContent
(getContent
callback)

Specifies the name of a callback function to be called when the application needs to
determine the contents of the control.

For example, consider a dynamic menu control, as follows:

This is specified using the following XML fragment:

 <dynamicMenu id="dynamic" label="Dynamic Menu"
 getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this
case would return a string with the following XML:

 <menu
 xmlns="http://schemas.microsoft.com/office/2006/01/customui">
 <button id="button1" label="Button 1" />
 <button id="button2" label="Button 2" />
 <button id="button3" label="Button 3" />
 </menu>

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

121 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

122 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the

123 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

 <button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

124 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

125 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

126 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re-query for them when
the user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to false.

For example, consider the following XML fragment:

 <comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
 getItemLabel="GetComboBoxItemLabel"
 invalidateContentOnDrop="true" />

In this example, this combo box clears out its items and re-calls the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

127 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"

128 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

This is specified using the following XML fragment:

 <toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The

contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

129 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_DynamicMenu">
 <xsd:complexContent>
 <xsd:extension base="CT_DynamicMenuRegular">
 <xsd:attributeGroup ref="AG_SizeAttributes"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.20 editBox (Edit Box)

This element specifies an edit box control that allows a user to enter a string of text.

For example, consider an edit box control, as follows:

Figure 11: An edit box control

This is specified using the following XML fragment:

 <editBox id="editBox" label="Edit Box" />

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

130 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following table summarizes the attributes of this element.

Attributes Description

enabled (Enabled
State)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel Specifies the name of a callback function to be called to determine the label of this control.

131 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

callback) The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this

132 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

callback) control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getText (getText
callback)

Specifies the name of a callback function to be called to determine the text that SHOULD be
displayed in the control.

For example, consider the following XML fragment:

 <editBox id="editBox" getText="GetEditBoxText" />

In this example, the GetEditBoxText callback function is called when the application needs
to determine the text to display in the control.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

133 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

134 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

135 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

maxLength
(maximum input
string length)

Specifies an integer to be used as the maximum length of a string that can be entered
into the control.

If the maxLength attribute is omitted, the length of the input string SHOULD NOT be
limited except by application-specific constraints.

For example, consider the following XML fragment:

 <editBox id="editBox" maxLength="10" />

This specifies an edit box control that can only accept strings up to 10 characters in
length.

The possible values for this attribute are defined by the ST_StringLength simple type, as
specified in section 2.3.12.

136 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

onChange
(onChange
callback)

Specifies the name of a callback function to be called when the text in the control has been
changed by the user.

For example, consider the following XML fragment:

 <editBox id="editBox" onChange="EditBoxTextChanged" />

This specifies an edit box control that calls the EditBoxTextChanged callback function
when the user inputs a text string.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

137 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

showLabel (Show
Label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

 <editBox id="editBox" sizeString="WWWWWWWWWWWWW" />

This specifies an edit box control that is wide enough to display the string
"WWWWWWWWWWWWW".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this

138 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_EditBox">
 <xsd:complexContent>
 <xsd:extension base="CT_Control">
 <xsd:attributeGroup ref="AG_Enabled"/>
 <xsd:attributeGroup ref="AG_Image"/>
 <xsd:attribute name="maxLength" type="ST_StringLength" use="optional"/>
 <xsd:attribute name="getText" type="ST_Delegate" use="optional"/>
 <xsd:attribute name="onChange" type="ST_Delegate" use="optional"/>
 <xsd:attribute name="sizeString" type="ST_String" use="optional"/>

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.21 gallery (Gallery)

This element specifies a gallery control, which displays a drop-down grid of items that the user can

select from. A gallery can optionally have buttons following its selection items.

For example, consider a gallery control that shows a selection of pictures, as follows:

139 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Figure 12: A gallery control

This is specified using the following XML fragment:

 <gallery id="gallery" label="Gallery" itemWidth="88" itemHeight="68"
 size="large" imageMso="HappyFace" >
 <item id="item1" image="Desert" />
 <item id="item2" image="Forest" />
 <item id="item3" image="Toucan" />
 <item id="item4" image="Tree" />
 </gallery>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

Attributes Description

columns (column
count)

Specifies the number of columns that the gallery's items SHOULD be arranged into.

If the columns attribute is omitted, the application SHOULD choose the number of columns
automatically based on the number of items.

For example, consider a gallery control with six items arranged into two columns, as
follows:

140 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <gallery id="gallery" label="Gallery" columns="2"
 size="large" imageMso="HappyFace" >
 <item id="item1" image="Desert" />
 <item id="item2" image="Forest" />
 <item id="item3" image="Toucan" />
 <item id="item4" image="Tree" />
 <item id="item5" image="Flowers" />
 <item id="item6" image="Whale" />
 </gallery>

The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple type, as specified in section 2.3.4.

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

141 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemCount
(getItemCount
callback)

Specifies the name of a callback function to be called to determine the number of selection
items in this control.

If this attribute is omitted, the control SHOULD display any selection items that are
specified as child elements. If no such items are specified, the control SHOULD be empty.

For example, consider the following XML fragment:

142 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <gallery id="gallery" getItemCount="GetGalleryItemCount" />

In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemHeight
(getItemHeight
callback)

Specifies the name of a callback function to be called to determine the height of the
selection items in this control.

The itemHeight and getItemHeight attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The getItemHeight and getItemWidth attributes are mutually required. If only one of
the attributes is specified, its value is ignored.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemHeight="GetGalleryItemHeight"
 getItemWidth="GetGalleryItemWidth" />

In this example, the GetGalleryItemHeight callback function is called when the
application needs to determine the height of the items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemID
(getItemID
callback)

Specifies the name of a callback function to be called to determine the identifier of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD have empty
identifiers.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemID="GetGalleryItemID" />

In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemImage
(getItemImage
callback)

Specifies the name of a callback function to be called to determine the icon of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display icons.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemImage="GetGalleryItemImage" />

In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemLabel
(getItemLabel
callback)

Specifies the name of a callback function to be called to determine the label of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display labels.

143 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemLabel="GetGalleryItemLabel" />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application needs to determine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemWidth
(getItemWidth
callback)

Specifies the name of a callback function to be called to determine the width of the
selection items in this control.

The itemWidth and getItemWidth attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The getItemHeight and getItemWidth attributes are mutually required. If only one of
the attributes is specified, its value is ignored.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemHeight="GetGalleryItemHeight"
 getItemWidth="GetGalleryItemWidth" />

In this example, the GetGalleryItemWidth callback function is called when the application
needs to determine the width of the items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of

144 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

(getKeytip
callback)

this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedItemI
D
(getSelectedItemI
D callback)

Specifies the name of a callback function to be called to determine the identifier of the item
that is selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemID="GetItemID"
 getSelectedItemID="GetGallerySelectedItemID" />

In this example, the GetGallerySelectedItemID callback function is called when the
application needs to determine the selected item in the gallery. In this example the callback
function returns one of the identifiers returned by the GetItemID callback function.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.

getSelectedItemI Specifies the name of a callback function to be called to determine the index of the item to

145 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

ndex
(getSelectedItemI
ndex callback)

be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getSelectedItemIndex="GetGallerySelectedItemIndex" />

In this example, the GetGallerySelectedItemIndex callback function is called when the
application needs to determine the selected item in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

 <button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

146 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

147 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the

tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be

148 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the

149 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re-query for them when
the user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to false.

For example, consider the following XML fragment:

 <comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
 getItemLabel="GetComboBoxItemLabel"
 invalidateContentOnDrop="true" />

In this example, this combo box SHOULD clear out its items and re-call the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

itemHeight
(selection item
height)

Specifies the height of the selection items in this control.

The itemHeight and getItemHeight attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The itemHeight and itemWidth attributes are mutually required. If only one of the
attributes is specified, its value is ignored.

For example, consider a gallery control with 68 pixel tall items. This is specified using the
following XML fragment:

 <gallery id="gallery" label="Gallery" itemWidth="88"
 itemHeight="68" size="large" imageMso="HappyFace" >
 <item id="item1" image="Desert" />
 <item id="item2" image="Forest" />
 <item id="item3" image="Toucan" />
 <item id="item4" image="Tree" />
 </gallery>

The possible values for this attribute are defined by the ST_GalleryItemWidthHeight
simple type, as specified in section 2.3.3.

itemWidth
(selection item
width)

Specifies the width of the selection items in this control.

The itemWidth and getItemWidth attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The itemHeight and itemWidth attributes are mutually required. If only one of the
attributes is specified, its value is ignored.

For example, consider a gallery control with 88 pixel wide items. This is specified using the
following XML fragment:

 <gallery id="gallery" label="Gallery" itemWidth="88"
 itemHeight="68" size="large" imageMso="HappyFace" >
 <item id="item1" image="Desert" />
 <item id="item2" image="Forest" />
 <item id="item3" image="Toucan" />
 <item id="item4" image="Tree" />
 </gallery>

The possible values for this attribute are defined by the ST_GalleryItemWidthHeight
simple type, as specified in section 2.3.3.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

150 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

In this example, the button calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

rows (row count) Specifies the number of rows that the gallery's items are arranged into.

If the rows attribute is omitted, the application SHOULD choose the number of rows
automatically based on the number of items.

For example, consider a gallery control with six items arranged into two rows, as follows:

151 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <gallery id="gallery" label="Gallery" rows="2"
 size="large" imageMso="HappyFace" >
 <item id="item1" image="Desert" />
 <item id="item2" image="Forest" />
 <item id="item3" image="Toucan" />
 <item id="item4" image="Tree" />
 <item id="item5" image="Flowers" />
 <item id="item6" image="Whale" />
 </gallery>

The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple type, as specified in section 2.3.4.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"

152 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemImage
(show item image)

Specifies whether this control displays icons on its selection items.

If this attribute is omitted, the items' icons SHOULD be shown by default.

For example, consider the following XML fragment:

 <gallery id="gallery" label="Gallery" showItemImage="false" >
 <item id="item1" label="Item 1" />
 <item id="item2" label="Item 1" />
 <item id="item3" label="Item 2" />
 <item id="item4" label="Item 3" />
 </gallery>

This specifies a gallery control that does not show any icons on its selection items.

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemLabel
(show item label)

Specifies whether this control displays labels on its selection items.

If this attribute is omitted, the item's labels SHOULD be shown by default.

For example, consider the following XML fragment:

 <gallery id="gallery" label="Gallery" showItemLabel="false" >
 <item id="item1" image="Forest" />
 <item id="item2" image="Desert" />
 <item id="item3" image="Mountain " />
 <item id="item4" image="Ocean" />
 </gallery>

In this example, the gallery control does not show any labels on its selection items.

The possible values for this attribute are defined by the XML schema boolean datatype.

showInRibbon
(show in ribbon)

This attribute has no meaning and MUST not be used.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"

153 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

This is specified using the following XML fragment:

 <toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

 <editBox id="editBox" sizeString="WWWWWWWWWWWWW" />

This specifies an edit box control that is wide enough to display the string
"WWWWWWWWWWWWW".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

154 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Gallery">
 <xsd:complexContent>
 <xsd:extension base="CT_GalleryRegular">
 <xsd:attributeGroup ref="AG_SizeAttributes"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.22 gallery (Unsized Gallery)

This element specifies a gallery which, because of its location, cannot have its size changed. The size

attribute is not present. It otherwise behaves identically to the regular gallery element, as specified in
section 2.2.21.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

155 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

Attributes Description

columns (column
count)

Specifies the number of columns that the gallery's items are arranged into.

If the columns attribute is omitted, the application SHOULD choose the number of columns
automatically based on the number of items.

For example, consider a gallery control with six items arranged into two columns, as
follows:

This is specified using the following XML fragment:

 <gallery id="gallery" label="Gallery" columns="2"
 size="large" imageMso="HappyFace" >
 <item id="item1" image="Desert" />
 <item id="item2" image="Forest" />
 <item id="item3" image="Toucan" />
 <item id="item4" image="Tree" />
 <item id="item5" image="Flowers" />
 <item id="item6" image="Whale" />
 </gallery>

The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple type, as specified in section 2.3.4.

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

156 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these

157 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemCount
(getItemCount
callback)

Specifies the name of a callback function to be called to determine the number of selection
items in this control.

If this attribute is omitted, the control SHOULD display any selection items that are
specified as child elements. If no such items are specified, the control SHOULD be empty.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount" />

In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemHeight
(getItemHeight
callback)

Specifies the name of a callback function to be called to determine the height of the
selection items in this control.

The itemHeight and getItemHeight attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The getItemHeight and getItemWidth attributes are mutually required. If only one of
the attributes is specified, its value is ignored.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemHeight="GetGalleryItemHeight"
 getItemWidth="GetGalleryItemWidth" />

In this example, the GetGalleryItemHeight callback function is called when the
application needs to determine the height of the items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemID
(getItemID
callback)

Specifies the name of a callback function to be called to determine the identifier of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD have empty
identifiers.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemID="GetGalleryItemID" />

In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemImage Specifies the name of a callback function to be called to determine the icon of a specific

158 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

(getItemImage
callback)

dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display icons.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemImage="GetGalleryItemImage" />

In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemLabel
(getItemLabel
callback)

Specifies the name of a callback function to be called to determine the label of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display labels.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemLabel="GetGalleryItemLabel" />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application needs to determine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemWidth
(getItemWidth

Specifies the name of a callback function to be called to determine the width of the
selection items in this control.

159 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

callback) The itemWidth and getItemWidth attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The getItemHeight and getItemWidth attributes are mutually required. If only one of
the attributes is specified, its value is ignored.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemHeight="GetGalleryItemHeight"
 getItemWidth="GetGalleryItemWidth" />

In this example, the GetGalleryItemWidth callback function is called when the application
needs to determine the width of the items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.

getSelectedItemI Specifies the name of a callback function to be called to determine the identifier of the item

160 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

D
(getSelectedItemI
D callback)

to be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getItemID="GetItemID"
 getSelectedItemID="GetGallerySelectedItemID" />

In this example, the GetGallerySelectedItemID callback function is called when the
application needs to determine the selected item in the gallery. The callback function
returns one of the identifiers returned by the GetItemID callback function.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedItemI
ndex
(getSelectedItemI
ndex callback)

Specifies the name of a callback function to be called to determine the index of the item to
be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"
 getSelectedItemIndex="GetGallerySelectedItemIndex" />

In this example, the GetGallerySelectedItemIndex callback function is called when the
application needs to determine the selected item in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

161 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified Specifies a qualified identifier for a control.

162 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

control identifier) The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.

This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

163 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

control to insert
after)

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the

built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …

164 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re-query for them when
the user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to false.

For example, consider the following XML fragment:

 <comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
 getItemLabel="GetComboBoxItemLabel"
 invalidateContentOnDrop="true" />

In this example, this combo box SHOULD clear out its items and re-call the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

itemHeight
(selection item
height)

Specifies the height of the selection items in this control.

The itemHeight and getItemHeight attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The itemHeight and itemWidth attributes are mutually required. If only one of the
attributes is specified, its value is ignored.

For example, consider a gallery control with 68 pixel tall items. This is specified using the
following XML fragment:

 <gallery id="gallery" label="Gallery" itemWidth="88"
 itemHeight="68" size="large" imageMso="HappyFace" >
 <item id="item1" image="Desert" />
 <item id="item2" image="Forest" />
 <item id="item3" image="Toucan" />
 <item id="item4" image="Tree" />
 </gallery>

The possible values for this attribute are defined by the ST_GalleryItemWidthHeight
simple type, as specified in section 2.3.3.

itemWidth
(selection item

width)

Specifies the width of the selection items in this control.

The itemWidth and getItemWidth attributes are mutually exclusive. If neither attribute

is specified, the items SHOULD all take the size of the first item, based on its contents.

The itemHeight and itemWidth attributes are mutually required. If only one of the
attributes is specified, its value is ignored.

For example, consider a gallery control with 88 pixel wide items. This is specified using the
following XML fragment:

 <gallery id="gallery" label="Gallery" itemWidth="88"
 itemHeight="68" size="large" imageMso="HappyFace" >
 <item id="item1" image="Desert" />
 <item id="item2" image="Forest" />
 <item id="item3" image="Toucan" />
 <item id="item4" image="Tree" />
 </gallery>

The possible values for this attribute are defined by the ST_GalleryItemWidthHeight

165 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

simple type, as specified in section 2.3.3.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,

no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

In this example, the button calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

rows (row count) Specifies the number of rows that the gallery's items are arranged into.

If the rows attribute is omitted, the application SHOULD choose the number of rows

automatically based on the number of items.

For example, consider a gallery control with six items arranged into two rows, as follows:

166 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <gallery id="gallery" label="Gallery" rows="2"
 size="large" imageMso="HappyFace" >
 <item id="item1" image="Desert" />
 <item id="item2" image="Forest" />
 <item id="item3" image="Toucan" />
 <item id="item4" image="Tree" />
 <item id="item5" image="Flowers" />
 <item id="item6" image="Whale" />
 </gallery>

The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple type, as specified in section 2.3.4.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show Specifies whether this control displays an icon.

167 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

image)

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemImage
(show item image)

Specifies whether this control displays icons on its selection items.

If this attribute is omitted, the items' icons SHOULD be shown by default.

For example, consider the following XML fragment:

 <gallery id="gallery" label="Gallery" showItemImage="false" >
 <item id="item1" label="Item 1" />
 <item id="item2" label="Item 1" />
 <item id="item3" label="Item 2" />
 <item id="item4" label="Item 3" />
 </gallery>

This specifies a gallery control that does not show any icons on its selection items.

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemLabel
(show item label)

Specifies whether this control displays labels on its selection items.

For example, consider the following XML fragment:

 <gallery id="gallery" label="Gallery" showItemLabel="false" >
 <item id="item1" image="Forest" />
 <item id="item2" image="Desert" />
 <item id="item3" image="Mountain" />
 <item id="item4" image="Ocean" />
 </gallery>

In this example, the gallery control does not show any labels on its selection items.

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is

168 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

 <editBox id="editBox" sizeString="WWWWWWWWWWWWW" />

This specifies an edit box control that is wide enough to display the string
"WWWWWWWWWWWWW".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

169 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_GalleryRegular">
 <xsd:complexContent>
 <xsd:extension base="CT_DropDownRegular">
 <xsd:attributeGroup ref="AG_Description"/>
 <xsd:attributeGroup ref="AG_DynamicContentAttributes"/>
 <xsd:attribute name="columns" type="ST_GalleryRowColumnCount" use="optional"/>
 <xsd:attribute name="rows" type="ST_GalleryRowColumnCount" use="optional"/>
 <xsd:attribute name="itemWidth" type="ST_GalleryItemWidthHeight" use="optional"/>
 <xsd:attribute name="itemHeight" type="ST_GalleryItemWidthHeight" use="optional"/>
 <xsd:attribute name="getItemWidth" type="ST_Delegate" use="optional"/>
 <xsd:attribute name="getItemHeight" type="ST_Delegate" use="optional"/>
 <xsd:attribute name="showItemLabel" type="xsd:boolean" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.23 group (Group)

This element specifies a grouping of controls on a ribbon tab. All controls displayed in a ribbon tab

MUST be contained within a group.

For example, consider a group with a single button, as follows:

Figure 13: A group with a single button

This is specified using the following XML fragment:

 <group id="group" label="Custom Group">
 <button id="button" label="Button" imageMso="HappyFace" />
 </group>

The following table summarizes the elements that are parents of this element.

Parent Elements

tab (section 2.2.39)

170 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following table summarizes the child elements of this element.

Child Elements Section

box (Box Grouping Container) 2.2.1

button (Button) 2.2.2

buttonGroup (Button Grouping Container) 2.2.5

checkBox (Check Box) 2.2.6

comboBox (Combo Box) 2.2.7

control (Control Clone) 2.2.12

dialogBoxLauncher (Dialog Box Launcher) 2.2.15

dropDown (Drop-down Control) 2.2.17

dynamicMenu (Dynamic Menu) 2.2.19

editBox (Edit Box) 2.2.20

gallery (Gallery) 2.2.21

labelControl (Text Label) 2.2.25

menu (Menu) 2.2.28

separator (Separator) 2.2.34

splitButton (Split Button) 2.2.38

toggleButton (Toggle Button) 2.2.43

The following table summarizes the attributes of this element.

Attributes Description

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

171 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

172 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the

173 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

174 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

175 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

176 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Group">
 <xsd:sequence>
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="1000">
 <xsd:group ref="EG_Controls"/>

 <xsd:element name="separator" type="CT_Separator"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:element name="dialogBoxLauncher" type="CT_DialogLauncher" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="AG_IDAttributes"/>
 <xsd:attributeGroup ref="AG_Label"/>
 <xsd:attributeGroup ref="AG_Image"/>
 <xsd:attributeGroup ref="AG_PositionAttributes"/>
 <xsd:attributeGroup ref="AG_Screentip"/>
 <xsd:attributeGroup ref="AG_Visible"/>
 <xsd:attributeGroup ref="AG_Keytip"/>
 </xsd:complexType>

2.2.24 item (Selection Item)

This element specifies an item in a selection-type control.

For example, consider a drop-down control with three selection items, as follows:

177 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Figure 14: A drop-down control with selection items

This is specified using the following XML fragment:

 <dropDown id="dropDown" label="DropDown">
 <item id="item1" label="Item 1" />
 <item id="item2" label="Item 2" />
 <item id="item3" label="Item 3" />
 <button id="button" label="Button..." />
 </dropDown>

The following table summarizes the elements that are parents of this element.

Parent Elements

comboBox (section 2.2.7); dropDown (section 2.2.17); gallery (section 2.2.21); gallery (section 2.2.22)

The following table summarizes the attributes of this element.

Attributes Description

id (custom control
identifier)

Specifies the identifier for a custom control. All new custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

image (custom
image identifier)

Specifies the identification information for an image to be used as the icon for this control.
This attribute is used to specify an embedded picture that resides locally within the
containing file.

The image, and imageMso attributes are mutually exclusive.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

In this example, the custom button has an icon that is the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not

178 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

understood.

The image, and imageMso attributes are mutually exclusive.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

In this example, the custom button uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

label (label) Specifies a string to be used as the label for this control.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

For example, consider a control with a supertip, as follows:

179 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Item">
 <xsd:attribute name="id" type="ST_UniqueID" use="optional"/>
 <xsd:attribute name="label" type="ST_String" use="optional"/>
 <xsd:attribute name="image" type="ST_Uri" use="optional"/>
 <xsd:attribute name="imageMso" type="ST_ID" use="optional"/>
 <xsd:attribute name="screentip" type="ST_String" use="optional"/>
 <xsd:attribute name="supertip" type="ST_String" use="optional"/>
 </xsd:complexType>

2.2.25 labelControl (Text Label)

This element specifies a control that displays a simple string of text.

For example, consider a label control, as follows:

Figure 15: A label control

This is specified using the following XML fragment:

 <labelControl id="label" label="Label Control" />

The following table summarizes the elements that are parents of this element.

180 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application

181 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application

182 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

183 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the

184 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

(identifier of built-in
control to insert
after)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …

185 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

186 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

187 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_LabelControl">
 <xsd:complexContent>
 <xsd:restriction base="CT_Control">
 <xsd:attribute name="image" use="prohibited"/>
 <xsd:attribute name="imageMso" use="prohibited"/>
 <xsd:attribute name="getImage" use="prohibited"/>
 <xsd:attribute name="keytip" use="prohibited"/>
 <xsd:attribute name="getKeytip" use="prohibited"/>
 <xsd:attribute name="showImage" use="prohibited"/>
 <xsd:attribute name="getShowImage" use="prohibited"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

2.2.26 menu (Unsized Menu)

This element specifies a menu control that, because of its location, cannot have its size changed. The
size attribute is not present. It otherwise behaves identically to the regular menu element, as
specified in section 2.2.28.

The following table summarizes the elements that are parents of this element.

188 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29);
splitButton (section 2.2.38); splitButton (section 2.2.36)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

checkBox (Check Box) 2.2.6

control (Unsized Control Clone) 2.2.11

dynamicMenu (Unsized Dynamic Menu) 2.2.18

gallery (Unsized Gallery) 2.2.22

menu (Unsized Menu) 2.2.26

menuSeparator (Menu Separator) 2.2.30

splitButton (Unsized Split Button) 2.2.36

toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

189 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

190 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.

191 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

192 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the

tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be

193 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the

194 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

itemSize (item
size)

Specifies the size of the child controls in this menu.

If this attribute is omitted, the menu's child controls SHOULD default to the normal size.

For example, consider a menu control with large menu items, as follows:

This is specified using the following XML fragment:

 <menu id="menu" label="Menu with large items" itemSize="large">
 <button id="button1" label="Button 1" imageMso="HappyFace" />
 <button id="button2" label="Button 2" imageMso="Paste" />
 <button id="button3" label="Button 3" imageMso="Copy" />
 </menu>

The possible values for this attribute are defined by the ST_ItemSize simple type, as
specified in section 2.3.6.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

195 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

196 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

197 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_MenuRegular">
 <xsd:complexContent>
 <xsd:extension base="CT_ControlBase">
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="1000">
 <xsd:group ref="EG_MenuControlsBase"/>
 <xsd:group ref="EG_MenuOrSplitButtonRegular"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="itemSize" type="ST_ItemSize" use="optional"/>
 <xsd:attributeGroup ref="AG_Description"/>
 <xsd:attributeGroup ref="AG_IDAttributes"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.27 menu (Menu with Title)

This element specifies a menu control that, because of its location, can optionally include a title string
via the title or getTitle attributes. It otherwise behaves identically to the regular menu element, as
specified in section 2.2.28.

For example, consider a menu control with a title, as follows:

Figure 16: A menu control with title

This is specified with the following XML fragment:

 <menu id="menu" label="Menu With Title" title="Title String">
 <button id="button" label="Button" />
 </menu>

The following table summarizes the elements that are parents of this element.

Parent Elements

menu (section 2.2.27); officeMenu (section 2.2.31); splitButton (section 2.2.37)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

checkBox (Check Box) 2.2.6

control (Unsized Control Clone) 2.2.11

dynamicMenu (Unsized Dynamic Menu) 2.2.18

gallery (Unsized Gallery) 2.2.22

198 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Child Elements Section

menu (Menu with Title) 2.2.27

menuSeparator (Menu Separator) 2.2.30

splitButton (Split Button with Title) 2.2.37

toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

199 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

200 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getTitle (getTitle
callback)

Specifies the name of a callback function to be called to determine the title of this control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified no
title SHOULD be shown.

For example, consider the following XML fragment:

 <menu id="menu" label="Menu" getTitle="GetMenuTitle">
 …
 </menu>

In this example, the GetMenuTitle callback function is called when the application needs
to determine the title of the menu.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

201 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If

that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

202 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

203 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

itemSize (item
size)

Specifies the size of the child controls in this menu.

If this attribute is omitted, the menu's child controls SHOULD default to the normal size.

For example, consider a menu control with large menu items, as follows:

This is specified using the following XML fragment:

 <menu id="menu" label="Menu with large items" itemSize="large">
 <button id="button1" label="Button 1" imageMso="HappyFace" />
 <button id="button2" label="Button 2" imageMso="Paste" />
 <button id="button3" label="Button 3" imageMso="Copy" />
 </menu>

The possible values for this attribute are defined by the ST_ItemSize simple type, as
specified in section 2.3.6.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

204 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

205 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

206 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

title (title) Specifies a string to be displayed as the title of the control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified, no
title SHOULD be shown.

For example, consider a menu control with a title, as follows:

This is specified with the following XML fragment:

 <menu id="menu" label="Menu With Title" title="Title String">
 <button id="button" label="Button" />
 </menu>

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are

omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_MenuWithTitle">
 <xsd:complexContent>
 <xsd:extension base="CT_ControlBase">
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="1000">
 <xsd:group ref="EG_MenuControlsBase"/>
 <xsd:group ref="EG_MenuOrSplitButtonWithTitle"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attributeGroup ref="AG_IDAttributes"/>
 <xsd:attribute name="itemSize" type="ST_ItemSize" use="optional"/>
 <xsd:attributeGroup ref="AG_Title"/>

207 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.28 menu (Menu)

This element specifies a drop-menu control.

For example, consider a menu control, as follows:

Figure 17: A menu control

This is specified using the following XML fragment:

 <menu id="menu" label="Menu" imageMso="HappyFace" >
 <button id="button1" label="Button 1" imageMso="FileSave" />
 <button id="button2" label="Button 2" imageMso="Bold" />
 <button id="button3" label="Button 3" imageMso="Undo" />
 </menu>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

checkBox (Check Box) 2.2.6

control (Unsized Control Clone) 2.2.11

dynamicMenu (Unsized Dynamic Menu) 2.2.18

gallery (Unsized Gallery) 2.2.22

menu (Unsized Menu) 2.2.26

menuSeparator (Menu Separator) 2.2.30

splitButton (Unsized Split Button) 2.2.36

toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

208 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

209 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

210 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

 <button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

211 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>

212 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If

213 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

of control to insert
after)

the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

itemSize (item
size)

Specifies the size of the child controls in this menu.

If this attribute is omitted, the menu's child controls SHOULD default to the normal size.

For example, consider a menu control with large menu items, as follows:

214 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <menu id="menu" label="Menu with large items" itemSize="large">
 <button id="button1" label="Button 1" imageMso="HappyFace" />
 <button id="button2" label="Button 2" imageMso="Paste" />
 <button id="button3" label="Button 3" imageMso="Copy" />
 </menu>

The possible values for this attribute are defined by the ST_ItemSize simple type, as
specified in section 2.3.6.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

215 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

216 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

This is specified using the following XML fragment:

 <toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as

217 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Menu">
 <xsd:complexContent>
 <xsd:extension base="CT_MenuRegular">
 <xsd:attributeGroup ref="AG_SizeAttributes"/>
 <xsd:attribute name="itemSize" type="ST_ItemSize" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.29 menu (Dynamic Menu Root XML Element)

This element specifies the root tag of the XML string returned by a dynamic menu control.

For example, consider a dynamic menu control, as follows:

Figure 18: A dynamic menu control

This is specified using the following XML fragment:

 <dynamicMenu id="dynamic" label="Dynamic Menu" getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this case returns

a string with the following XML:

 <menu xmlns="http://schemas.microsoft.com/office/2006/01/customui">
 <button id="button1" label="Button 1" />
 <button id="button2" label="Button 2" />
 <button id="button3" label="Button 3" />
 </menu>

The following table summarizes the child elements of this element.

218 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Child Elements Section

button (Unsized Button) 2.2.3

checkBox (Check Box) 2.2.6

control (Unsized Control Clone) 2.2.11

dynamicMenu (Unsized Dynamic Menu) 2.2.18

gallery (Unsized Gallery) 2.2.22

menu (Unsized Menu) 2.2.26

menuSeparator (Menu Separator) 2.2.30

splitButton (Unsized Split Button) 2.2.36

toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

Attributes Description

getTitle (getTitle
callback)

Specifies the name of a callback function to be called to determine the title of this control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified no

title SHOULD be shown.

For example, consider the following XML fragment:

 <menu id="menu" label="Menu" getTitle="GetMenuTitle">
 …
 </menu>

In this example, the GetMenuTitle callback function is to be called when the application
needs to determine the title of the menu.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

itemSize (item
size)

Specifies the size of the child controls in this menu.

If this attribute is not specified, the menu's child controls SHOULD default to the normal
size.

For example, consider a menu control with large menu items, as follows:

This is specified using the following XML fragment:

 <menu id="menu" label="Menu with large items" itemSize="large">
 <button id="button1" label="Button 1" imageMso="HappyFace" />
 <button id="button2" label="Button 2" imageMso="Paste" />
 <button id="button3" label="Button 3" imageMso="Copy" />

219 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 </menu>

The possible values for this attribute are defined by the ST_ItemSize simple type, as
specified in section 2.3.6.

title (title) Specifies a string to be displayed as the title of the control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified, no
title SHOULD be shown.

For example, consider a menu control with a title, as follows:

This is specified with the following XML fragment:

 <menu id="menu" label="Menu With Title" title="Title String">
 <button id="button" label="Button" />
 </menu>

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_MenuRoot">
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="1000">
 <xsd:group ref="EG_MenuControlsBase"/>
 <xsd:group ref="EG_MenuOrSplitButtonRegular"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attributeGroup ref="AG_Title"/>
 <xsd:attribute name="itemSize" type="ST_ItemSize" use="optional"/>
 </xsd:complexType>

2.2.30 menuSeparator (Menu Separator)

This element specifies a horizontal separator line in a menu control. Menu separators can optionally

have title strings, which SHOULD display as headers in the menu.

For example, consider a menu with a separator in between two of its items, as follows:

Figure 19: Menu control with separator

This is specified using the following XML fragment:

 <menu id="menu" label="Menu" imageMso="HappyFace" >
 <button id="button1" label="Button 1" imageMso="FileSave" />

220 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <menuSeparator id="separator" />
 <button id="button2" label="Button 2" imageMso="Bold" />
 </menu>

The following table summarizes the elements that are parents of this element.

Parent Elements

menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu (section 2.2.27); officeMenu
(section 2.2.31)

The following table summarizes the attributes of this element.

Attributes Description

getTitle (getTitle
callback)

Specifies the name of a callback function to be called to determine the title of this control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified no
title SHOULD be shown.

For example, consider the following XML fragment:

 <menu id="menu" label="Menu" getTitle="GetMenuTitle">
 …
 </menu>

In this example, the GetMenuTitle callback function is called when the application needs
to determine the title of the menu.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idQ (qualified

control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>

221 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the

222 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

title (title) Specifies a string to be displayed as the title of the control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified, no
title SHOULD be shown.

For example, consider a menu control with a title, as follows:

This is specified with the following XML fragment:

 <menu id="menu" label="Menu With Title" title="Title String">
 <button id="button" label="Button" />
 </menu>

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_MenuSeparator">
 <xsd:attributeGroup ref="AG_IDCustom"/>
 <xsd:attributeGroup ref="AG_PositionAttributes"/>
 <xsd:attributeGroup ref="AG_Title"/>
 </xsd:complexType>

2.2.31 officeMenu (Office Menu)

This element specifies the Office Menu of the application. It is used to reference the built-in Office
Menu. This element SHOULD NOT be specified if the containing Custom UI XML document is a Quick
Access Toolbar Customizations part.

For example, consider the following XML fragment:

 <officeMenu>

223 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <control idMso="FileSave" visible="false" />
 </officeMenu>

This XML fragment specifies that the command with an identifier of "FileSave" on the Office Menu is
hidden.

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

checkBox (Check Box) 2.2.6

control (Unsized Control Clone) 2.2.11

dynamicMenu (Unsized Dynamic Menu) 2.2.18

gallery (Unsized Gallery) 2.2.22

menu (Menu with Title) 2.2.27

menuSeparator (Menu Separator) 2.2.30

splitButton (Split Button with Title) 2.2.37

toggleButton (Unsized Toggle Button) 2.2.42

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_OfficeMenu">
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="1000">
 <xsd:group ref="EG_MenuControlsBase"/>
 <xsd:group ref="EG_MenuOrSplitButtonWithTitle"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

2.2.32 qat (Quick Access Toolbar)

This element specifies the quick access toolbar. If the containing Custom UI file is a Ribbon
Extensibility part the qat element cannot be used unless the startFromScratch attribute on the

ribbon element is set to "true". In this case only the sharedControls child element SHOULD be used.

If the containing Custom UI file is a Quick Access Toolbar Customizations part, the
documentControls child element SHOULD be used.

For example, consider the following controls on the document-specific quick access toolbar:

224 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Figure 20: Controls on the quick access toolbar

This is specified using the following XML fragment:

 <qat>
 <documentControls>
 <control idMso="CalculateNow" />
 <control idMso="HyperlinkInsert" />
 </documentControls>
 </qat>

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

Child Elements Section

documentControls (List of Document-Specific Quick Access Toolbar Controls) 2.2.16

sharedControls (List of Shared Quick Access Toolbar Controls) 2.2.35

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Qat">
 <xsd:sequence>
 <xsd:element name="sharedControls" type="CT_QatItems" minOccurs="0"/>
 <xsd:element name="documentControls" type="CT_QatItems" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

2.2.33 ribbon (Ribbon)

This element is used to reference the Ribbon of the application and its contents.

The following table summarizes the elements that are parents of this element.

Parent Elements

customUI (section 2.2.14)

The following table summarizes the child elements of this element.

Child Elements Section

contextualTabs (List of Contextual Tab Sets) 2.2.10

officeMenu (Office Menu) 2.2.31

225 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Child Elements Section

qat (Quick Access Toolbar) 2.2.32

tabs (List of Tabs) 2.2.40

The following table summarizes the attributes of this element.

Attributes Description

startFromScratch
(start from scratch)

Specifies that the application's built-in ribbon UI is reduced to a minimal set of features,
providing a clean slate on which to build custom UI.

If this attribute is omitted, its value SHOULD default to "false".

For example, consider the following XML fragment:

 <ribbon startFromScratch="true">
 …
 </ribbon>

In this example, the application's ribbon is put into start from scratch mode.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Ribbon">
 <xsd:all>
 <xsd:element name="officeMenu" type="CT_OfficeMenu" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="qat" type="CT_Qat" minOccurs="0" maxOccurs="1">
 <xsd:unique name="qatControls">
 <xsd:selector xpath="*/*"/>
 <xsd:field xpath="@id"/>
 </xsd:unique>
 </xsd:element>
 <xsd:element name="tabs" type="CT_Tabs" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="contextualTabs" type="CT_ContextualTabs" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
 <xsd:attribute name="startFromScratch" type="xsd:boolean" use="optional"/>
 </xsd:complexType>

2.2.34 separator (Separator)

This element specifies a vertical separator line between two sets of controls, either in the Quick Access
Toolbar or within group elements.

For example, consider a vertical separator control between two buttons, as follows:

Figure 21: A vertical separator control

This is specified using the following XML fragment:

226 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <button id="button1" label="Button 1" imageMso="HappyFace" size="large" />
 <separator id="separator" />
 <button id="button2" label="Button 2" imageMso="HappyFace" size="large" />

The following table summarizes the elements that are parents of this element.

Parent Elements

documentControls (section 2.2.16); group (section 2.2.23); sharedControls (section 2.2.35)

The following table summarizes the attributes of this element.

Attributes Description

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>

227 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

228 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Separator">
 <xsd:attributeGroup ref="AG_IDCustom"/>
 <xsd:attributeGroup ref="AG_Visible"/>
 <xsd:attributeGroup ref="AG_PositionAttributes"/>
 </xsd:complexType>

2.2.35 sharedControls (List of Shared Quick Access Toolbar Controls)

This element specifies the section of the quick access toolbar that is shared among all documents. This
element SHOULD NOT be specified if the containing Custom UI XML document is a Quick Access

Toolbar Customizations part. If the containing Custom UI XML document is a Ribbon Extensibility part,
this element can be used if the startFromScratch attribute is set to "true" on the ribbon element.

For example, consider a Ribbon Extensibility XML document that adds the two buttons to the shared
section of the quick access toolbar:

Figure 22: Shared controls on the quick access toolbar

This is specified using the following XML fragment:

229 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <qat>
 <sharedControls>
 <button id="button1" imageMso="HappyFace" />
 <button idMso="Cut" />
 </sharedControls>
 </qat>

The following table summarizes the elements that are parents of this element.

Parent Elements

qat (section 2.2.32)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

control (Quick Access Toolbar Control Clone) 2.2.13

separator (Separator) 2.2.34

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_QatItems">
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="1000">
 <xsd:element name="control" type="CT_ControlCloneQat"/>
 <xsd:element name="button" type="CT_ButtonRegular"/>
 <xsd:element name="separator" type="CT_Separator"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

2.2.36 splitButton (Unsized Split Button)

This element specifies a split button control that, because of its location, cannot have its size changed.
The size attribute is not present. It otherwise behaves identically to the regular splitButton element,

as specified in section 2.2.38.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29)

The following table summarizes the child elements of this element.

Child Elements Section

button (Button Inside of a Split Button) 2.2.4

menu (Unsized Menu) 2.2.26

toggleButton (Toggle Button Inside of a Split Button) 2.2.44

The following table summarizes the attributes of this element.

230 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

231 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is

232 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

233 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced

by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

234 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

235 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

236 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

237 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_SplitButtonRegular">
 <xsd:complexContent>
 <xsd:extension base="CT_SplitButtonRestricted">
 <xsd:sequence minOccurs="0">
 <xsd:choice minOccurs="0">
 <xsd:element name="button" type="CT_VisibleButton"/>
 <xsd:element name="toggleButton" type="CT_VisibleToggleButton"/>
 </xsd:choice>
 <xsd:element name="menu" type="CT_MenuRegular"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.37 splitButton (Split Button with Title)

This element specifies a split button control that, because of its location, can optionally include a title
string via the title or getTitle attributes. It otherwise behaves identically to the regular splitButton
element, as specified in section 2.2.38.

The following table summarizes the elements that are parents of this element.

Parent Elements

menu (section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the child elements of this element.

238 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Child Elements Section

button (Button Inside of a Split Button) 2.2.4

menu (Menu with Title) 2.2.27

toggleButton (Toggle Button Inside of a Split Button) 2.2.44

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip

callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

239 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

240 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

241 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

242 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

243 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

244 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is

245 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_SplitButtonWithTitle">
 <xsd:complexContent>
 <xsd:extension base="CT_SplitButtonRestricted">
 <xsd:sequence minOccurs="0">

246 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <xsd:choice minOccurs="0">
 <xsd:element name="button" type="CT_VisibleButton"/>
 <xsd:element name="toggleButton" type="CT_VisibleToggleButton"/>
 </xsd:choice>
 <xsd:element name="menu" type="CT_MenuWithTitle"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.38 splitButton (Split Button)

This element specifies a split button control. A split button control is composed of either a button or a
toggle button, and a drop-down menu. The icon and label shown on the split button come from the

button or toggleButton child element.

For example, consider a split button control, as follows:

Figure 23: A split button control

This is specified using the following XML fragment:

 <splitButton id="splitButton" size="large" >
 <button id="button" imageMso="HappyFace" label="Split Button" />
 <menu id="menu">
 <button id="button1" label="Button 1" />
 <button id="button2" label="Button 2" />
 </menu>
 </splitButton>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

button (Button Inside of a Split Button) 2.2.4

menu (Unsized Menu) 2.2.26

toggleButton (Toggle Button Inside of a Split Button) 2.2.44

The following table summarizes the attributes of this element.

247 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

248 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the

249 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

 <button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

250 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

251 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

252 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

253 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

254 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

This is specified using the following XML fragment:

 <toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This example is a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as

255 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_SplitButton">
 <xsd:complexContent>
 <xsd:extension base="CT_SplitButtonRegular">
 <xsd:attributeGroup ref="AG_SizeAttributes"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.39 tab (Tab)

This element specifies a ribbon tab control.

For example, consider the following XML fragment:

 <tab id="MyTab" label="My Custom Tab">
 …
 </tab>

This XML fragment specifies a custom tab with the label "My Custom Tab".

The following table summarizes the elements that are parents of this element.

Parent Elements

tabs (section 2.2.40); tabSet (section 2.2.41)

The following table summarizes the child elements of this element.

Child Elements Section

group (Group) 2.2.23

The following table summarizes the attributes of this element.

Attributes Description

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

256 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

257 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

258 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

259 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Tab">
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="100">
 <xsd:element name="group" type="CT_Group"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attributeGroup ref="AG_IDAttributes"/>
 <xsd:attributeGroup ref="AG_Label"/>
 <xsd:attributeGroup ref="AG_PositionAttributes"/>
 <xsd:attributeGroup ref="AG_Visible"/>
 <xsd:attributeGroup ref="AG_Keytip"/>
 </xsd:complexType>

2.2.40 tabs (List of Tabs)

This element specifies a list of ribbon tab controls. This element SHOULD NOT be specified if the
containing Custom UI XML document is a Quick Access Toolbar Customizations part.

260 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

Child Elements Section

tab (Tab) 2.2.39

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Tabs">
 <xsd:sequence>
 <xsd:element name="tab" type="CT_Tab" minOccurs="1" maxOccurs="100"/>
 </xsd:sequence>
 </xsd:complexType>

2.2.41 tabSet (Contextual Tab Set)

This element specifies a contextual tab set control. As the id and idQ attributes are not present, this

element can only be used to refer to existing built-in tab sets. This element cannot be used to create
new contextual tab sets.

For example, consider the following XML fragment:

 <tabSet idMso="TabSetPictureTools">
 <tab id="tab" label="Custom Tab">
 …
 </tab>
 </tabSet>

This XML fragment is used to add a new custom tab to the tab set with an identifier of
"TabSetPictureTools".

The following table summarizes the elements that are parents of this element.

Parent Elements

contextualTabs (section 2.2.10)

The following table summarizes the child elements of this element.

Child Elements Subclause

tab (Tab) section 2.2.39

The following table summarizes the attributes of this element.

Attributes Description

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is

261 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This is used to create a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_TabSet">
 <xsd:sequence>
 <xsd:element name="tab" type="CT_Tab" minOccurs="0" maxOccurs="50"/>
 </xsd:sequence>
 <xsd:attribute name="idMso" type="ST_ID" use="required"/>
 <xsd:attributeGroup ref="AG_Visible"/>
 </xsd:complexType>

2.2.42 toggleButton (Unsized Toggle Button)

This element specifies a toggle button control that, because of its location, cannot have its size

changed. The size attribute is not present. It otherwise behaves identically to the regular
toggleButton element, as specified in section 2.2.43.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

262 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

263 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the control SHOULD default to the off state.

For example, consider the following XML fragment:

 <toggleButton id="toggle" getPressed="IsButtonToggled" />

In this example, the IsButtonToggled callback function is called when the application
needs to determine the toggle state of the button.

264 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

265 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">

266 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not

understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

267 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

268 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string that SHOULD be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

In this example, the button calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

269 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

270 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ToggleButtonRegular">
 <xsd:complexContent>
 <xsd:extension base="CT_ButtonRegular">

 <xsd:attribute name="getPressed" type="ST_Delegate" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.43 toggleButton (Toggle Button)

This element specifies a toggle button control that can be toggled between the pressed and un-
pressed states by the end-user.

For example, consider a toggle button control, as follows:

271 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Figure 24: A toggle button control

This is specified with the following XML fragment:

 <toggleButton id="toggleButton" label="Toggle Button" />

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute

272 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

273 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the control SHOULD default to the "off" state.

For example, consider the following XML fragment:

 <toggleButton id="toggle" getPressed="IsButtonToggled" />

In this example, the IsButtonToggled callback function is called when the application
needs to determine the toggle state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
displays the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
displays the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

274 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

 <button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

275 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of ""MyButton"".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If

that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

276 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

277 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

278 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

279 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

This is specified using the following XML fragment:

 <toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The

280 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ToggleButton">
 <xsd:complexContent>
 <xsd:extension base="CT_ToggleButtonRegular">
 <xsd:attributeGroup ref="AG_SizeAttributes"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

2.2.44 toggleButton (Toggle Button Inside of a Split Button)

This element specifies a toggle button control that is part of a split button control. The visible and

getVisible attributes are not present because the visibility is controlled by the split button. This
element otherwise behaves in the same way as the regular toggleButton element, as specified in
section 2.2.43.

The following table summarizes the elements that are parents of this element.

Parent Elements

splitButton (section 2.2.38); splitButton (section 2.2.36); splitButton (section 2.2.37)

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

281 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"
 description="This is a verbose description that describes
 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

282 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the control SHOULD default to the off state.

For example, consider the following XML fragment:

 <toggleButton id="toggle" getPressed="IsButtonToggled" />

In this example, the IsButtonToggled callback function is called when the application
needs to determine the toggle state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

283 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
displays the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control. This attribute is prohibited and the visibility is controlled by the split button.

For example, consider the following XML fragment:

284 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If

285 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

286 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
 …
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

287 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

In this example, the button calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

288 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

 <button id="button" showImage="false"
 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"
 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"
 size="large" screentip="Screentip"
 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this

289 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"
 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control. This attribute is prohibited and the visibility is
controlled by the split button.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_VisibleToggleButton">
 <xsd:complexContent>
 <xsd:restriction base="CT_ToggleButtonRegular">

 <xsd:attribute name="visible" use="prohibited"/>
 <xsd:attribute name="getVisible" use="prohibited"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

2.3 Simple Types

This is the complete list of simple types in the http://schemas.microsoft.com/office/2006/01/customui
namespace.

2.3.1 ST_BoxStyle (Box Style)

Specifies the layout style of a box control.

This simple type's contents are a restriction of the XML schema string datatype.

The following are possible enumeration values for this type:

Enumeration Value Description

horizontal (Horizontal) Specifies that the child controls are laid out horizontally.

vertical (Vertical) Specifies that the child controls are laid out vertically.

290 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

box@boxStyle (section 2.2.1)

The following XML schema fragment defines the contents of this simple type:

 <xsd:simpleType name="ST_BoxStyle">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="horizontal"/>
 <xsd:enumeration value="vertical"/>
 </xsd:restriction>
 </xsd:simpleType>

2.3.2 ST_Delegate (Callback Function Name)

Specifies the name of a callback function. The format of this string is application-defined and SHOULD
be ignored if not understood.

Examples of this simple type are macro scripts and add-in callback functions.

This simple type's contents are a restriction of the XML schema string datatype.

This simple type also specifies the following restrictions:

 This simple type's contents have a minimum length of 1 characters.

 This simple type's contents have a maximum length of 1024 characters.

Referenced By

box@getVisible (section 2.2.1); button@getDescription (section 2.2.2); button@getDescription (section 2.2.3);
button@getDescription (section 2.2.4); button@getEnabled (section 2.2.2); button@getEnabled (section 2.2.3);
button@getEnabled (section 2.2.4); button@getImage (section 2.2.2); button@getImage (section 2.2.3);
button@getImage (section 2.2.4); button@getKeytip (section 2.2.2); button@getKeytip (section 2.2.3);
button@getKeytip (section 2.2.4); button@getLabel (section 2.2.2); button@getLabel (section 2.2.3);
button@getLabel (section 2.2.4); button@getScreentip (section 2.2.2); button@getScreentip (section 2.2.3);
button@getScreentip (section 2.2.4); button@getShowImage (section 2.2.2); button@getShowImage (section
2.2.3); button@getShowImage (section 2.2.4); button@getShowLabel (section 2.2.2); button@getShowLabel
(section 2.2.3); button@getShowLabel (section 2.2.4); button@getSize (section 2.2.2); button@getSupertip
(section 2.2.2); button@getSupertip (section 2.2.3); button@getSupertip (section 2.2.4); button@getVisible
(section 2.2.2); button@getVisible (section 2.2.3); button@getVisible (section 2.2.4); button@onAction (section
2.2.2); button@onAction (section 2.2.3); button@onAction (section 2.2.4); buttonGroup@getVisible (section
2.2.5); checkBox@getDescription (section 2.2.6); checkBox@getEnabled (section 2.2.6); checkBox@getImage
(section 2.2.6); checkBox@getKeytip (section 2.2.6); checkBox@getLabel (section 2.2.6); checkBox@getPressed
(section 2.2.6); checkBox@getScreentip (section 2.2.6); checkBox@getShowImage (section 2.2.6);
checkBox@getShowLabel (section 2.2.6); checkBox@getSupertip (section 2.2.6); checkBox@getVisible (section
2.2.6); checkBox@onAction (section 2.2.6); comboBox@getEnabled (section 2.2.7); comboBox@getImage
(section 2.2.7); comboBox@getItemCount (section 2.2.7); comboBox@getItemID (section 2.2.7);
comboBox@getItemImage (section 2.2.7); comboBox@ getItemLabel (section 2.2.7);

comboBox@getItemScreentip (section 2.2.7); comboBox@getItemSupertip (section 2.2.7); comboBox@getKeytip
(section 2.2.7); comboBox@getLabel (section 2.2.7); comboBox@getScreentip (section 2.2.7);
comboBox@getShowImage (section 2.2.7); comboBox@getShowLabel (section 2.2.7); comboBox@getSupertip
(section 2.2.7); comboBox@getText (section 2.2.7); comboBox@getVisible (section 2.2.7); comboBox@onChange
(section 2.2.7); command@getEnabled (section 2.2.8); command@onAction (section 2.2.8);
control@getDescription (section 2.2.12); control@getDescription (section 2.2.13); control@getEnabled (section
2.2.12); control@getEnabled (section 2.2.13); control@getEnabled (section 2.2.11); control@getImage (section
2.2.12); control@getImage (section 2.2.13); control@getImage (section 2.2.11); control@getKeytip (section
2.2.12); control@getKeytip (section 2.2.13); control@getKeytip (section 2.2.11); control@getLabel (section
2.2.12); control@getLabel (section 2.2.13); control@getLabel (section 2.2.11); control@getScreentip (section
2.2.12); control@getScreentip (section 2.2.13); control@getScreentip (section 2.2.11); control@getShowImage
(section 2.2.12); control@getShowImage (section 2.2.13); control@getShowImage (section 2.2.11);

291 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

control@getShowLabel (section 2.2.12); control@getShowLabel (section 2.2.13); control@getShowLabel (section
2.2.11); control@getSize (section 2.2.12); control@getSize (section 2.2.13); control@getSupertip (section
2.2.12); control@getSupertip (section 2.2.13); control@getSupertip (section 2.2.11); control@getVisible (section
2.2.12); control@getVisible (section 2.2.13); control@getVisible (section 2.2.11); control@onAction (section
2.2.12); customUI@loadImage (section 2.2.14); customUI@onLoad (section 2.2.14); dropDown@getEnabled
(section 2.2.17); dropDown@getImage (section 2.2.17); dropDown@getItemCount (section 2.2.17);
dropDown@getItemID (section 2.2.17); dropDown@getItemImage (section 2.2.17); dropDown@getItemLabel
(section 2.2.17); dropDown@getItemScreentip (section 2.2.17); dropDown@getItemSupertip (section 2.2.17);
dropDown@getKeytip (section 2.2.17); dropDown@getLabel (section 2.2.17); dropDown@getScreentip (section
2.2.17); dropDown@getSelectedItemID (section 2.2.17); dropDown@getSelectedItemIndex (section 2.2.17);
dropDown@getShowImage (section 2.2.17); dropDown@getShowLabel (section 2.2.17); dropDown@getSupertip
(section 2.2.17); dropDown@getVisible (section 2.2.17); dropDown@onAction (section 2.2.17);
dynamicMenu@getContent (section 2.2.19); dynamicMenu@getContent (section 2.2.18);
dynamicMenu@getDescription (section 2.2.19); dynamicMenu@getDescription (section 2.2.18);
dynamicMenu@getEnabled (section 2.2.19); dynamicMenu@getEnabled (section 2.2.18); dynamicMenu@getImage
(section 2.2.19); dynamicMenu@getImage (section 2.2.18); dynamicMenu@getKeytip (section 2.2.19);
dynamicMenu@getKeytip (section 2.2.18); dynamicMenu@getLabel (section 2.2.19); dynamicMenu@getLabel
(section 2.2.18); dynamicMenu@getScreentip (section 2.2.19); dynamicMenu@getScreentip (section 2.2.18);
dynamicMenu@getShowImage (section 2.2.19); dynamicMenu@getShowImage (section 2.2.18);
dynamicMenu@getShowLabel (section 2.2.19); dynamicMenu@getShowLabel (section 2.2.18);
dynamicMenu@getSize (section 2.2.19); dynamicMenu@getSupertip (section 2.2.19); dynamicMenu@getSupertip
(section 2.2.18); dynamicMenu@getVisible (section 2.2.19); dynamicMenu@getVisible (section 2.2.18);
editBox@getEnabled (section 2.2.20); editBox@getImage (section 2.2.20); editBox@getKeytip (section 2.2.20);
editBox@getLabel (section 2.2.20); editBox@getScreentip (section 2.2.20); editBox@getShowImage (section
2.2.20); editBox@getShowLabel (section 2.2.20); editBox@getSupertip (section 2.2.20); editBox@getText
(section 2.2.20); editBox@getVisible (section 2.2.20); editBox@onChange (section 2.2.20);
gallery@getDescription (section 2.2.21); gallery@getDescription (section 2.2.22); gallery@getEnabled (section
2.2.21); gallery@getEnabled (section 2.2.22); gallery@getImage (section 2.2.21); gallery@getImage (section
2.2.22); gallery@getItemCount (section 2.2.21); gallery@getItemCount (section 2.2.22); gallery@getItemHeight
(section 2.2.21); gallery@getItemHeight (section 2.2.22); gallery@getItemID (section 2.2.21); gallery@getItemID
(section 2.2.22); gallery@getItemImage (section 2.2.21); gallery@getItemImage (section 2.2.22);
gallery@getItemLabel (section 2.2.21); gallery@getItemLabel (section 2.2.22); gallery@getItemScreentip (section
2.2.21); gallery@getItemScreentip (section 2.2.22); gallery@getItemSupertip (section 2.2.21);
gallery@getItemSupertip (section 2.2.22); gallery@getItemWidth (section 2.2.21); gallery@getItemWidth (section
2.2.22); gallery@getKeytip (section 2.2.21); gallery@getKeytip (section 2.2.22); gallery@getLabel (section
2.2.21); gallery@getLabel (section 2.2.22); gallery@getScreentip (section 2.2.21); gallery@getScreentip (section
2.2.22); gallery@getSelectedItemID (section 2.2.21); gallery@getSelectedItemID (section 2.2.22);
gallery@getSelectedItemIndex (section 2.2.21); gallery@getSelectedItemIndex (section 2.2.22);
gallery@getShowImage (section 2.2.21); gallery@getShowImage (section 2.2.22); gallery@getShowLabel (section
2.2.21); gallery@getShowLabel (section 2.2.22); gallery@getSize (section 2.2.21); gallery@getSupertip (section
2.2.21); gallery@getSupertip (section 2.2.22); gallery@getVisible (section 2.2.21); gallery@getVisible (section

2.2.22); gallery@onAction (section 2.2.21); gallery@onAction (section 2.2.22); group@getImage (section 2.2.23);
group@getKeytip (section 2.2.23); group@getLabel (section 2.2.23); group@getScreentip (section 2.2.23);
group@getSupertip (section 2.2.23); group@getVisible (section 2.2.23); labelControl@getEnabled (section
2.2.25); labelControl@getImage (section 2.2.25); labelControl@getKeytip (section 2.2.25); labelControl@getLabel
(section 2.2.25); labelControl@getScreentip (section 2.2.25); labelControl@getShowImage (section 2.2.25);
labelControl@getShowLabel (section 2.2.25); labelControl@getSupertip (section 2.2.25); labelControl@getVisible
(section 2.2.25); menu@getDescription (section 2.2.28); menu@getDescription (section 2.2.26);
menu@getEnabled (section 2.2.28); menu@getEnabled (section 2.2.26); menu@getEnabled (section 2.2.27);
menu@getImage (section 2.2.28); menu@getImage (section 2.2.26); menu@getImage (section 2.2.27);
menu@getKeytip (section 2.2.28); menu@getKeytip (section 2.2.26); menu@getKeytip (section 2.2.27);
menu@getLabel (section 2.2.28); menu@getLabel (section 2.2.26); menu@getLabel (section 2.2.27);
menu@getScreentip (section 2.2.28); menu@getScreentip (section 2.2.26); menu@getScreentip (section 2.2.27);
menu@getShowImage (section 2.2.28); menu@getShowImage (section 2.2.26); menu@getShowImage (section
2.2.27); menu@getShowLabel (section 2.2.28); menu@getShowLabel (section 2.2.26); menu@getShowLabel
(section 2.2.27); menu@getSize (section 2.2.28); menu@getSupertip (section 2.2.28); menu@getSupertip
(section 2.2.26); menu@getSupertip (section 2.2.27); menu@getTitle (section 2.2.29); menu@getTitle (section
2.2.27); menu@getVisible (section 2.2.28); menu@getVisible (section 2.2.26); menu@getVisible (section 2.2.27);
menuSeparator@getTitle (section 2.2.30); separator@getVisible (section 2.2.34); splitButton@getEnabled (section
2.2.38); splitButton@getEnabled (section 2.2.36); splitButton@getEnabled (section 2.2.37);
splitButton@getImage (section 2.2.38); splitButton@getImage (section 2.2.36); splitButton@getImage (section
2.2.37); splitButton@getKeytip (section 2.2.38); splitButton@getKeytip (section 2.2.36); splitButton@getKeytip
(section 2.2.37); splitButton@getLabel (section 2.2.38); splitButton@getLabel (section 2.2.36);

292 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

splitButton@getLabel (section 2.2.37); splitButton@getScreentip (section 2.2.38); splitButton@getScreentip
(section 2.2.36); splitButton@getScreentip (section 2.2.37); splitButton@getShowImage (section 2.2.38);
splitButton@getShowImage (section 2.2.36); splitButton@getShowImage (section 2.2.37);
splitButton@getShowLabel (section 2.2.38); splitButton@getShowLabel (section 2.2.36);
splitButton@getShowLabel (section 2.2.37); splitButton@getSize (section 2.2.38); splitButton@getSupertip
(section 2.2.38); splitButton@getSupertip (section 2.2.36); splitButton@getSupertip (section 2.2.37);
splitButton@getVisible (section 2.2.38); splitButton@getVisible (section 2.2.36); splitButton@getVisible (section
2.2.37); tab@getKeytip (section 2.2.39); tab@getLabel (section 2.2.39); tab@getVisible (section 2.2.39);
tabSet@getVisible (section 2.2.41); toggleButton@getDescription (section 2.2.43); toggleButton@getDescription
(section 2.2.42); toggleButton@getDescription (section 2.2.44); toggleButton@getEnabled (section 2.2.43);
toggleButton@getEnabled (section 2.2.42); toggleButton@getEnabled (section 2.2.44); toggleButton@getImage
(section 2.2.43); toggleButton@getImage (section 2.2.42); toggleButton@getImage (section 2.2.44);
toggleButton@getKeytip (section 2.2.43); toggleButton@getKeytip (section 2.2.42); toggleButton@getKeytip
(section 2.2.44); toggleButton@getLabel (section 2.2.43); toggleButton@getLabel (section 2.2.42);
toggleButton@getLabel (section 2.2.44); toggleButton@getPressed (section 2.2.43); toggleButton@getPressed
(section 2.2.42); toggleButton@getPressed (section 2.2.44); toggleButton@getScreentip (section 2.2.43);
toggleButton@getScreentip (section 2.2.42); toggleButton@getScreentip (section 2.2.44);
toggleButton@getShowImage (section 2.2.43); toggleButton@getShowImage (section 2.2.42);
toggleButton@getShowImage (section 2.2.44); toggleButton@getShowLabel (section 2.2.43);
toggleButton@getShowLabel (section 2.2.42); toggleButton@getShowLabel (section 2.2.44);
toggleButton@getSize (section 2.2.43); toggleButton@getSupertip (section 2.2.43); toggleButton@getSupertip
(section 2.2.42); toggleButton@getSupertip (section 2.2.44); toggleButton@getVisible (section 2.2.43);
toggleButton@getVisible (section 2.2.42); toggleButton@getVisible (section 2.2.44); toggleButton@onAction
(section 2.2.43); toggleButton@onAction (section 2.2.42); toggleButton@onAction (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

 <xsd:simpleType name="ST_Delegate">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="1024"/>

 </xsd:restriction>
 </xsd:simpleType>

2.3.3 ST_GalleryItemWidthHeight (Gallery Item Width or Height)

Specifies the width or height of gallery items, in pixels.

This simple type's contents are a restriction of the XML schema positiveInteger datatype.

This simple type also specifies the following restrictions:

 This simple type has a minimum value of greater than or equal to 1.

 This simple type has a maximum value of less than or equal to 4096.

Referenced By

gallery@itemHeight (section 2.2.21); gallery@itemHeight (section 2.2.22); gallery@itemWidth (section 2.2.21);
gallery@itemWidth (section 2.2.22)

The following XML schema fragment defines the contents of this simple type:

293 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <xsd:simpleType name="ST_GalleryItemWidthHeight">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="4096"/>
 </xsd:restriction>
 </xsd:simpleType>

2.3.4 ST_GalleryRowColumnCount (Gallery Row or Column Count)

Specifies the count of rows or columns in a gallery control.

This simple type's contents are a restriction of the XML schema positiveInteger datatype.

This simple type also specifies the following restrictions:

 This simple type has a minimum value of greater than or equal to 1.

 This simple type has a maximum value of less than or equal to 1024.

Referenced By

gallery@columns (section 2.2.21); gallery@columns (section 2.2.22); gallery@rows (section 2.2.21); gallery@rows
(section 2.2.22)

The following XML schema fragment defines the contents of this simple type:

 <xsd:simpleType name="ST_GalleryRowColumnCount">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="1024"/>
 </xsd:restriction>
 </xsd:simpleType>

2.3.5 ST_ID (Control ID)

Specifies the identifier of a built-in control. The format of this string is defined by per application by
the Custom UI Control identifier Tables, as specified in section 3.

This simple type's contents are a restriction of the XML schema NCName datatype.

This simple type also specifies the following restrictions:

 This simple type's contents have a minimum length of 1 character.

 This simple type's contents have a maximum length of 1024 characters.

Referenced By

box@insertAfterMso (section 2.2.1); box@insertBeforeMso (section 2.2.1); button@idMso (section 2.2.2);
button@idMso (section 2.2.3); button@idMso (section 2.2.4); button@imageMso (section 2.2.2);
button@imageMso (section 2.2.3); button@imageMso (section 2.2.4); button@insertAfterMso (section 2.2.2);
button@insertAfterMso (section 2.2.3); button@insertAfterMso (section 2.2.4); button@insertBeforeMso (section
2.2.2); button@insertBeforeMso (section 2.2.3); button@insertBeforeMso (section 2.2.4);
buttonGroup@insertAfterMso (section 2.2.5); buttonGroup@insertBeforeMso (section 2.2.5); checkBox@idMso
(section 2.2.6); checkBox@imageMso (section 2.2.6); checkBox@insertAfterMso (section 2.2.6);
checkBox@insertBeforeMso (section 2.2.6); comboBox@idMso (section 2.2.7); comboBox@imageMso (section
2.2.7); comboBox@insertAfterMso (section 2.2.7); comboBox@insertBeforeMso (section 2.2.7); command@idMso
(section 2.2.8); control@id (section 2.2.13); control@idMso (section 2.2.12); control@idMso (section 2.2.13);
control@idMso (section 2.2.11); control@imageMso (section 2.2.12); control@imageMso (section 2.2.13);
control@imageMso (section 2.2.11); control@insertAfterMso (section 2.2.12); control@insertAfterMso (section

294 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

2.2.13); control@insertAfterMso (section 2.2.11); control@insertBeforeMso (section 2.2.12);
control@insertBeforeMso (section 2.2.13); control@insertBeforeMso (section 2.2.11); dropDown@idMso (section
2.2.17); dropDown@imageMso (section 2.2.17); dropDown@insertAfterMso (section 2.2.17);
dropDown@insertBeforeMso (section 2.2.17); dynamicMenu@idMso (section 2.2.19); dynamicMenu@idMso
(section 2.2.18); dynamicMenu@imageMso (section 2.2.19); dynamicMenu@imageMso (section 2.2.18);
dynamicMenu@insertAfterMso (section 2.2.19); dynamicMenu@insertAfterMso (section 2.2.18);
dynamicMenu@insertBeforeMso (section 2.2.19); dynamicMenu@insertBeforeMso (section 2.2.18); editBox@idMso
(section 2.2.20); editBox@imageMso (section 2.2.20); editBox@insertAfterMso (section 2.2.20);
editBox@insertBeforeMso (section 2.2.20); gallery@idMso (section 2.2.21); gallery@idMso (section 2.2.22);
gallery@imageMso (section 2.2.21); gallery@imageMso (section 2.2.22); gallery@insertAfterMso (section 2.2.21);
gallery@insertAfterMso (section 2.2.22); gallery@insertBeforeMso (section 2.2.21); gallery@insertBeforeMso
(section 2.2.22); group@idMso (section 2.2.23); group@imageMso (section 2.2.23); group@insertAfterMso
(section 2.2.23); group@insertBeforeMso (section 2.2.23); item@imageMso (section 2.2.24); labelControl@idMso
(section 2.2.25); labelControl@imageMso (section 2.2.25); labelControl@insertAfterMso (section 2.2.25);
labelControl@insertBeforeMso (section 2.2.25); menu@idMso (section 2.2.28); menu@idMso (section 2.2.26);
menu@idMso (section 2.2.27); menu@imageMso (section 2.2.28); menu@imageMso (section 2.2.26);
menu@imageMso (section 2.2.27); menu@insertAfterMso (section 2.2.28); menu@insertAfterMso (section 2.2.26);
menu@insertAfterMso (section 2.2.27); menu@insertBeforeMso (section 2.2.28); menu@insertBeforeMso (section
2.2.26); menu@insertBeforeMso (section 2.2.27); menuSeparator@insertAfterMso (section 2.2.30);
menuSeparator@insertBeforeMso (section 2.2.30); separator@insertAfterMso (section 2.2.34);
separator@insertBeforeMso (section 2.2.34); splitButton@idMso (section 2.2.38); splitButton@idMso (section
2.2.36); splitButton@idMso (section 2.2.37); splitButton@imageMso (section 2.2.38); splitButton@imageMso
(section 2.2.36); splitButton@imageMso (section 2.2.37); splitButton@insertAfterMso (section 2.2.38);
splitButton@insertAfterMso (section 2.2.36); splitButton@insertAfterMso (section 2.2.37);
splitButton@insertBeforeMso (section 2.2.38); splitButton@insertBeforeMso (section 2.2.36);
splitButton@insertBeforeMso (section 2.2.37); tab@idMso (section 2.2.39); tab@insertAfterMso (section 2.2.39);
tab@insertBeforeMso (section 2.2.39); tabSet@idMso (section 2.2.41); toggleButton@idMso (section 2.2.43);
toggleButton@idMso (section 2.2.42); toggleButton@idMso (section 2.2.44); toggleButton@imageMso (section
2.2.43); toggleButton@imageMso (section 2.2.42); toggleButton@imageMso (section 2.2.44);
toggleButton@insertAfterMso (section 2.2.43); toggleButton@insertAfterMso (section 2.2.42);
toggleButton@insertAfterMso (section 2.2.44); toggleButton@insertBeforeMso (section 2.2.43);
toggleButton@insertBeforeMso (section 2.2.42); toggleButton@insertBeforeMso (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

 <xsd:simpleType name="ST_ID">
 <xsd:restriction base="xsd:NCName">

 <xsd:minLength value="1"/>
 <xsd:maxLength value="1024"/>
 </xsd:restriction>
 </xsd:simpleType>

2.3.6 ST_ItemSize (Menu Item Size)

Specifies the size of the child controls in a menu control.

This simple type's contents are a restriction of the XML schema string datatype.

The following are possible enumeration values for this type:

Enumeration Value Description

large (Large) Specifies that the child controls have large sizes.

normal (Normal) Specifies that the child controls have normal sizes.

295 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

menu@itemSize (section 2.2.28); menu@itemSize (section 2.2.26); menu@itemSize (section 2.2.29);
menu@itemSize (section 2.2.27)

The following XML schema fragment defines the contents of this simple type:

 <xsd:simpleType name="ST_ItemSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="normal"/>
 <xsd:enumeration value="large"/>
 </xsd:restriction>
 </xsd:simpleType>

2.3.7 ST_Keytip (Keytip)

Specifies a KeyTip string.

This simple type's contents are a restriction of the XML schema token datatype.

This simple type also specifies the following restrictions:

 This simple type's contents have a minimum length of 1 character.

 This simple type's contents have a maximum length of 3 characters.

Referenced By

button@keytip (section 2.2.2); button@keytip (section 2.2.3); button@keytip (section 2.2.4); checkBox@keytip
(section 2.2.6); comboBox@keytip (section 2.2.7); control@keytip (section 2.2.12); control@keytip (section
2.2.13); control@keytip (section 2.2.11); dropDown@keytip (section 2.2.17); dynamicMenu@keytip (section
2.2.19); dynamicMenu@keytip (section 2.2.18); editBox@keytip (section 2.2.20); gallery@keytip (section 2.2.21);
gallery@keytip (section 2.2.22); group@keytip (section 2.2.23); labelControl@keytip (section 2.2.25);
menu@keytip (section 2.2.28); menu@keytip (section 2.2.26); menu@keytip (section 2.2.27); splitButton@keytip
(section 2.2.38); splitButton@keytip (section 2.2.36); splitButton@keytip (section 2.2.37); tab@keytip (section
2.2.39); toggleButton@keytip (section 2.2.43); toggleButton@keytip (section 2.2.42); toggleButton@keytip
(section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

 <xsd:simpleType name="ST_Keytip">
 <xsd:restriction base="xsd:token">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="3"/>
 <xsd:whiteSpace value="collapse"/>
 </xsd:restriction>
 </xsd:simpleType>

2.3.8 ST_LongString (Long String)

Specifies a string that can have an extended length.

This simple type's contents are a restriction of the XML schema string datatype.

This simple type also specifies the following restrictions:

 This simple type's contents have a minimum length of 1 character.

 This simple type's contents have a maximum length of 4096 characters.

296 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

button@description (section 2.2.2); button@description (section 2.2.3); button@description (section 2.2.4);
checkBox@description (section 2.2.6); control@description (section 2.2.12); control@description (section 2.2.13);
dynamicMenu@description (section 2.2.19); dynamicMenu@description (section 2.2.18); gallery@description
(section 2.2.21); gallery@description (section 2.2.22); menu@description (section 2.2.28); menu@description
(section 2.2.26); toggleButton@description (section 2.2.43); toggleButton@description (section 2.2.42);
toggleButton@description (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

 <xsd:simpleType name="ST_LongString">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="4096"/>
 </xsd:restriction>
 </xsd:simpleType>

2.3.9 ST_QID (Qualified Control ID)

Specifies a control identifier that is qualified by an XML namespace prefix. The prefix determines which
namespace to which the control belongs.

If the namespace is equal to the Custom UI namespace, the qualified identifier references the
application's built-in control set.

For example, consider the following XML fragment:

In this example the mso namespace prefix is set to the Custom UI namespace, so names qualified
with mso refer to built-in controls. Thus, the use of the idQ attribute on the tab element is equivalent

to using the idMso attribute, as follows:

 <tab idMso="TabHome" visible="false" />

If the prefix is set to any other value, qualified identifiers reference controls in a unique custom
namespace. If multiple Custom UI documents refer to controls in the same namespace, they can share
common containers.

For example, consider the following XML fragment:

 <customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:mso="http://schemas.microsoft.com/office/2006/01/customui">
 <ribbon>
 <tabs>
 <tab idQ="mso:TabHome" visible="false" />
 </tabs>
 </ribbon>
 </customUI>

297 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

In this case, ex is an XML namespace prefix for the namespace http://www.example.com. This XML
fragment refers to a tab in that namespace with an identifier of "OtherTab". If that tab cannot be
found, it is created. A new group belonging to this file is added to the tab.

This simple type's contents are a restriction of the XML schema QName datatype.

This simple type also specifies the following restrictions:

 This simple type's contents have a minimum length of 1 character.

 This simple type's contents have a maximum length of 1024 characters.

Referenced By

box@idQ (section 2.2.1); box@insertAfterQ (section 2.2.1); box@insertBeforeQ (section 2.2.1); button@idQ
(section 2.2.2); button@idQ (section 2.2.3); button@idQ (section 2.2.4); button@insertAfterQ (section 2.2.2);
button@insertAfterQ (section 2.2.3); button@insertAfterQ (section 2.2.4); button@insertBeforeQ (section 2.2.2);
button@insertBeforeQ (section 2.2.3); button@insertBeforeQ (section 2.2.4); buttonGroup@idQ (section 2.2.5);
buttonGroup@insertAfterQ (section 2.2.5); buttonGroup@insertBeforeQ (section 2.2.5); checkBox@idQ (section
2.2.6); checkBox@insertAfterQ (section 2.2.6); checkBox@insertBeforeQ (section 2.2.6); comboBox@idQ (section
2.2.7); comboBox@insertAfterQ (section 2.2.7); comboBox@insertBeforeQ (section 2.2.7); control@idQ (section
2.2.12); control@idQ (section 2.2.13); control@idQ (section 2.2.11); control@insertAfterQ (section 2.2.12);
control@insertAfterQ (section 2.2.13); control@insertAfterQ (section 2.2.11); control@insertBeforeQ (section
2.2.12); control@insertBeforeQ (section 2.2.13); control@insertBeforeQ (section 2.2.11); dropDown@idQ (section
2.2.17); dropDown@insertAfterQ (section 2.2.17); dropDown@insertBeforeQ (section 2.2.17); dynamicMenu@idQ
(section 2.2.19); dynamicMenu@idQ (section 2.2.18); dynamicMenu@insertAfterQ (section 2.2.19);
dynamicMenu@insertAfterQ (section 2.2.18); dynamicMenu@insertBeforeQ (section 2.2.19);
dynamicMenu@insertBeforeQ (section 2.2.18); editBox@idQ (section 2.2.20); editBox@insertAfterQ (section
2.2.20); editBox@insertBeforeQ (section 2.2.20); gallery@idQ (section 2.2.21); gallery@idQ (section 2.2.22);
gallery@insertAfterQ (section 2.2.21); gallery@insertAfterQ (section 2.2.22); gallery@insertBeforeQ (section
2.2.21); gallery@insertBeforeQ (section 2.2.22); group@idQ (section 2.2.23); group@insertAfterQ (section
2.2.23); group@insertBeforeQ (section 2.2.23); labelControl@idQ (section 2.2.25); labelControl@insertAfterQ
(section 2.2.25); labelControl@insertBeforeQ (section 2.2.25); menu@idQ (section 2.2.28); menu@idQ (section
2.2.26); menu@idQ (section 2.2.27); menu@insertAfterQ (section 2.2.28); menu@insertAfterQ (section 2.2.26);
menu@insertAfterQ (section 2.2.27); menu@insertBeforeQ (section 2.2.28); menu@insertBeforeQ (section
2.2.26); menu@insertBeforeQ (section 2.2.27); menuSeparator@idQ (section 2.2.30);
menuSeparator@insertAfterQ (section 2.2.30); menuSeparator@insertBeforeQ (section 2.2.30); separator@idQ
(section 2.2.34); separator@insertAfterQ (section 2.2.34); separator@insertBeforeQ (section 2.2.34);
splitButton@idQ (section 2.2.38); splitButton@idQ (section 2.2.36); splitButton@idQ (section 2.2.37);
splitButton@insertAfterQ (section 2.2.38); splitButton@insertAfterQ (section 2.2.36); splitButton@insertAfterQ
(section 2.2.37); splitButton@insertBeforeQ (section 2.2.38); splitButton@insertBeforeQ (section 2.2.36);
splitButton@insertBeforeQ (section 2.2.37); tab@idQ (section 2.2.39); tab@insertAfterQ (section 2.2.39);
tab@insertBeforeQ (section 2.2.39); toggleButton@idQ (section 2.2.43); toggleButton@idQ (section 2.2.42);
toggleButton@idQ (section 2.2.44); toggleButton@insertAfterQ (section 2.2.43); toggleButton@insertAfterQ
(section 2.2.42); toggleButton@insertAfterQ (section 2.2.44); toggleButton@insertBeforeQ (section 2.2.43);
toggleButton@insertBeforeQ (section 2.2.42); toggleButton@insertBeforeQ (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

 <customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 xmlns:ex="http://www.example.com">
 <ribbon>
 <tabs>
 <tab idQ="ex:OtherTab" label="Shared Tab">
 <group id="MyGroup" label="My Group">
 …
 </group>
 </tab>
 </tabs>
 </ribbon>
 </customUI>

298 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <xsd:simpleType name="ST_QID">
 <xsd:restriction base="xsd:QName">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="1024"/>
 </xsd:restriction>
 </xsd:simpleType>

2.3.10 ST_Size (Control Size)

Specifies the size of a control.

This simple type's contents are a restriction of the XML schema string datatype.

The following are possible enumeration values for this type:

Enumeration Value Description

large (Large Control Size) Specifies the large control size.

normal (Normal Control Size) Specifies the normal control size.

Referenced By

button@size (section 2.2.2); control@size (section 2.2.12); control@size (section 2.2.13); dynamicMenu@size
(section 2.2.19); gallery@size (section 2.2.21); menu@size (section 2.2.28); splitButton@size (section 2.2.38);
toggleButton@size (section 2.2.43)

The following XML schema fragment defines the contents of this simple type:

 <xsd:simpleType name="ST_Size">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="normal"/>
 <xsd:enumeration value="large"/>

 </xsd:restriction>
 </xsd:simpleType>

2.3.11 ST_String (Short String)

Specifies a string with a limited length.

This simple type's contents are a restriction of the XML schema string datatype.

This simple type also specifies the following restrictions:

 This simple type's contents have a minimum length of 1 character.

 This simple type's contents have a maximum length of 1024 characters.

Referenced By

button@label (section 2.2.2); button@label (section 2.2.3); button@label (section 2.2.4); button@screentip
(section 2.2.2); button@screentip (section 2.2.3); button@screentip (section 2.2.4); button@supertip (section
2.2.2); button@supertip (section 2.2.3); button@supertip (section 2.2.4); button@tag (section 2.2.2); button@tag
(section 2.2.3); button@tag (section 2.2.4); checkBox@label (section 2.2.6); checkBox@screentip (section 2.2.6);
checkBox@supertip (section 2.2.6); checkBox@tag (section 2.2.6); comboBox@label (section 2.2.7);
comboBox@screentip (section 2.2.7); comboBox@sizeString (section 2.2.7); comboBox@supertip (section 2.2.7);

299 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

comboBox@tag (section 2.2.7); control@label (section 2.2.12); control@label (section 2.2.13); control@label
(section 2.2.11); control@screentip (section 2.2.12); control@screentip (section 2.2.13); control@screentip
(section 2.2.11); control@supertip (section 2.2.12); control@supertip (section 2.2.13); control@supertip (section
2.2.11); control@tag (section 2.2.12); control@tag (section 2.2.11); dropDown@label (section 2.2.17);
dropDown@screentip (section 2.2.17); dropDown@sizeString (section 2.2.17); dropDown@supertip (section
2.2.17); dropDown@tag (section 2.2.17); dynamicMenu@label (section 2.2.19); dynamicMenu@label (section
2.2.18); dynamicMenu@screentip (section 2.2.19); dynamicMenu@screentip (section 2.2.18);
dynamicMenu@supertip (section 2.2.19); dynamicMenu@supertip (section 2.2.18); dynamicMenu@tag (section
2.2.19); dynamicMenu@tag (section 2.2.18); editBox@label (section 2.2.20); editBox@screentip (section 2.2.20);
editBox@sizeString (section 2.2.20); editBox@supertip (section 2.2.20); editBox@tag (section 2.2.20);
gallery@label (section 2.2.21); gallery@label (section 2.2.22); gallery@screentip (section 2.2.21);
gallery@screentip (section 2.2.22); gallery@sizeString (section 2.2.21); gallery@sizeString (section 2.2.22);
gallery@supertip (section 2.2.21); gallery@supertip (section 2.2.22); gallery@tag (section 2.2.21); gallery@tag
(section 2.2.22); group@label (section 2.2.23); group@screentip (section 2.2.23); group@supertip (section
2.2.23); group@tag (section 2.2.23); item@label (section 2.2.24); item@screentip (section 2.2.24);
item@supertip (section 2.2.24); labelControl@label (section 2.2.25); labelControl@screentip (section 2.2.25);
labelControl@supertip (section 2.2.25); labelControl@tag (section 2.2.25); menu@label (section 2.2.28);
menu@label (section 2.2.26); menu@label (section 2.2.27); menu@screentip (section 2.2.28); menu@screentip
(section 2.2.26); menu@screentip (section 2.2.27); menu@supertip (section 2.2.28); menu@supertip (section
2.2.26); menu@supertip (section 2.2.27); menu@tag (section 2.2.28); menu@tag (section 2.2.26); menu@tag
(section 2.2.27); menu@title (section 2.2.29); menu@title (section 2.2.27); menuSeparator@title (section 2.2.30);
splitButton@label (section 2.2.38); splitButton@label (section 2.2.36); splitButton@label (section 2.2.37);
splitButton@screentip (section 2.2.38); splitButton@screentip (section 2.2.36); splitButton@screentip (section
2.2.37); splitButton@supertip (section 2.2.38); splitButton@supertip (section 2.2.36); splitButton@supertip
(section 2.2.37); splitButton@tag (section 2.2.38); splitButton@tag (section 2.2.36); splitButton@tag (section
2.2.37); tab@label (section 2.2.39); tab@tag (section 2.2.39); toggleButton@label (section 2.2.43);
toggleButton@label (section 2.2.42); toggleButton@label (section 2.2.44); toggleButton@screentip (section
2.2.43); toggleButton@screentip (section 2.2.42); toggleButton@screentip (section 2.2.44);
toggleButton@supertip (section 2.2.43); toggleButton@supertip (section 2.2.42); toggleButton@supertip (section
2.2.44); toggleButton@tag (section 2.2.43); toggleButton@tag (section 2.2.42); toggleButton@tag (section
2.2.44)

The following XML schema fragment defines the contents of this simple type:

 <xsd:simpleType name="ST_String">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="1024"/>
 </xsd:restriction>

 </xsd:simpleType>

2.3.12 ST_StringLength (String Length)

Specifies the length of a string, in characters.

This simple type's contents are a restriction of the XML schema positiveInteger datatype.

This simple type also specifies the following restrictions:

 This simple type has a minimum value of greater than or equal to 1.

 This simple type has a maximum value of less than or equal to 1024.

Referenced By

comboBox@maxLength (section 2.2.7); editBox@maxLength (section 2.2.20)

The following XML schema fragment defines the contents of this simple type:

300 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

 <xsd:simpleType name="ST_StringLength">
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="1024"/>
 </xsd:restriction>
 </xsd:simpleType>

2.3.13 ST_UniqueID (Custom Control ID)

Specifies a custom control identifier.

This simple type's contents are a restriction of the XML schema identifier datatype.

This simple type also specifies the following restrictions:

 This simple type's contents have a minimum length of 1 character.

 This simple type's contents have a maximum length of 1024 characters.

Referenced By

box@id (section 2.2.1); button@id (section 2.2.2); button@id (section 2.2.3); button@id (section 2.2.4);
buttonGroup@id (section 2.2.5); checkBox@id (section 2.2.6); comboBox@id (section 2.2.7); control@id (section
2.2.12); control@id (section 2.2.11); dropDown@id (section 2.2.17); dynamicMenu@id (section 2.2.19);
dynamicMenu@id (section 2.2.18); editBox@id (section 2.2.20); gallery@id (section 2.2.21); gallery@id (section
2.2.22); group@id (section 2.2.23); item@id (section 2.2.24); labelControl@id (section 2.2.25); menu@id (section
2.2.28); menu@id (section 2.2.26); menu@id (section 2.2.27); menuSeparator@id (section 2.2.30); separator@id
(section 2.2.34); splitButton@id (section 2.2.38); splitButton@id (section 2.2.36); splitButton@id (section 2.2.37);
tab@id (section 2.2.39); toggleButton@id (section 2.2.43); toggleButton@id (section 2.2.42); toggleButton@id
(section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

 <xsd:simpleType name="ST_UniqueID">
 <xsd:restriction base="xsd:identifier">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="1024"/>
 </xsd:restriction>
 </xsd:simpleType>

2.3.14 ST_Uri (Image Relationship ID)

Specifies the relationship identifier of a part that is the target of a relationship from the containing

Custom UI document.

The target part is an image part type, as specified in [ECMA-376] Part 1 section 15.2.13.

This simple type's contents are a restriction of the XML schema string datatype.

This simple type also specifies the following restrictions:

 This simple type's contents have a minimum length of 1 characters.

 This simple type's contents have a maximum length of 1024 characters.

Referenced By

button@image (section 2.2.2); button@image (section 2.2.3); button@image (section 2.2.4); checkBox@image
(section 2.2.6); comboBox@image (section 2.2.7); control@image (section 2.2.12); control@image (section

http://go.microsoft.com/fwlink/?LinkId=200054

301 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

2.2.13); control@image (section 2.2.11); dropDown@image (section 2.2.17); dynamicMenu@image (section
2.2.19); dynamicMenu@image (section 2.2.18); editBox@image (section 2.2.20); gallery@image (section 2.2.21);
gallery@image (section 2.2.22); group@image (section 2.2.23); item@image (section 2.2.24);
labelControl@image (section 2.2.25); menu@image (section 2.2.28); menu@image (section 2.2.26); menu@image
(section 2.2.27); splitButton@image (section 2.2.38); splitButton@image (section 2.2.36); splitButton@image
(section 2.2.37); toggleButton@image (section 2.2.43); toggleButton@image (section 2.2.42);
toggleButton@image (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

 <xsd:simpleType name="ST_Uri">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="1024"/>
 </xsd:restriction>
 </xsd:simpleType>

302 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

3 Appendix A: Custom UI Control ID Tables

3.1 idMso Tables

3.1.1 Word 2007

idMso
Control
Type Label

Spelling button Spelling...

FileSave button Save

FilePrint button Print

ZoomOnePage button One Page

ZoomPageWidth button Page Width

Zoom100 button Zoom 100%

ColumnsDialog button More Columns...

Numbering toggleButton Numbering

Bullets toggleButton Bullets

PageOrientationPortraitLandscape button Portrait/Landscape

OutdentClassic button Decrease Indent

IndentClassic button Increase Indent

DrawingInsert button Insert Drawing

ChartInsert button Chart...

FileNew button New

Copy button Copy

Cut button Cut

Paste button Paste

FileOpen button Open

EnvelopesAndLabelsDialog button Envelopes...

Superscript toggleButton Superscript

Subscript toggleButton Subscript

UnderlineDouble toggleButton Double Underline

UnderlineWords button Word Underline

FontSizeIncreaseWord button Grow Font

FontSizeDecreaseWord button Shrink Font

FileClose button Close

303 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

TableAutoFormat button Table AutoFormat...

FormatPainter toggleButton Format Painter

FilePrintPreview toggleButton Print Preview

PasteApplyStyle button Apply Style

Bold toggleButton Bold

Italic toggleButton Italic

Underline toggleButton Underline

ParagraphMarks toggleButton Show All

AlignLeft toggleButton Align Left

AlignRight toggleButton Align Right

AlignCenter toggleButton Center

AlignJustify toggleButton Justify

HeaderFooterPageNumberInsert menu Page Number

Undo gallery Undo

Redo gallery Redo

OutlinePromote button Promote

OutlineDemote button Demote

OutlineMoveUp button Move Up

OutlineMoveDown button Move Down

OutlineDemoteToBodyText button Demote to Body Text

OutlineExpand button Expand

OutlineCollapse button Collapse

TextBoxInsert button Text Box

FileFind button Find File...

FindDialog button Find...

TableExcelSpreadsheetInsert button Excel Spreadsheet

AutoFormat button AutoFormat...

BorderInside toggleButton Inside Borders

BorderOutside toggleButton Outside Borders

BorderNone toggleButton No Border

MailMergeGoToFirstRecord button First

304 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

MailMergeGoToPreviousRecord button Previous

MailMergeGoToNextRecord button Next

MailMergeGotToLastRecord button Last

MailMergeMergeToDocument button Edit Individual Documents...

MailMergeMergeToPrinter button Print Documents...

MailMergeAutoCheckForErrors button Auto Check for Errors...

DataFormSource button Data Form

MailMergeResultsPreview toggleButton Preview Results

ObjectsGroup button Group

ObjectsUngroup button Ungroup

ObjectBringToFront button Bring to Front

ObjectSendToBack button Send to Back

ObjectBringForward button Bring Forward

ObjectSendBackward button Send Backward

Magnifier checkBox Magnifier

PrintPreviewShrinkOnePage button Shrink One Page

ViewFullScreenView button Full Screen

VoiceInsert button Voice Comment

ObjectsSelect toggleButton Select Objects

TableFind button Find

MacroRecord button Record Macro...

MacroRecorderPause button Pause Recording

MacroPlay button Macros

ShapeFreeform toggleButton Freeform

ObjectEditPoints toggleButton Edit Points

CalloutOptions button Callout Options

DataFormAddRecord button Add

DataFormDeleteRecord button Delete

FieldsUpdate button Update

DatabaseInsert button Insert Database

GridSettings button Grid Settings...

305 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

WordPicture button Word Picture

FormControlEditBox button Edit Box

FormControlCheckBox button Check Box

FormControlComboBox button Combo Box

PropertySheet button Property Sheet

FieldShading toggleButton Show Field Shading

ViewDraftView toggleButton Draft

Lock toggleButton Lock

AutoSum button Sum

MasterDocumentShow toggleButton Show Document

MasterDocumentCreateSubdocument button Create

MasterDocumentUnlinkSubdocument button Unlink

MasterDocumentInsertSubdocument button Insert...

MasterDocumentSplitSubdocuments button Split

MasterDocumentMergeSubdocuments button Merge

MasterDocumentLockSubdocument toggleButton Lock Document

HeaderOrFooterShow button Show Header/Footer

HeaderFooterPreviousSection button Previous Section

HeaderFooterNextSection button Next Section

AlignDialog button Align

MailMergeDocument button Mail Merge Document

MergeOptions button Merge...

MailMergeHelper button Mail Merge...

PageSetupDialog button Page Setup...

BodyTextHide button Hide Body Text

HeaderFooterLinkToPrevious toggleButton Link to Previous

OutlineShowFirstLineOnly checkBox Show First Line Only

OutlineShowTextFormatting checkBox Show Text Formatting

FontDialog button Font...

StylesDialogClassic button Edit Cell Styles

FootnoteInsert button Insert Footnote

306 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

MicrosoftExcel button Microsoft Excel

MicrosoftAccess button Microsoft Access

MicrosoftPowerPoint button Microsoft Office PowerPoint

MicrosoftPublisher button Microsoft Publisher

MicrosoftProject button Microsoft Project

ViewPrintLayoutView toggleButton Print Layout

FieldCodes toggleButton View Field Codes

DropCapOptionsDialog button Drop Cap Options...

Strikethrough toggleButton Strikethrough

TextSmallCaps toggleButton Small Caps

CellsDelete button Delete Cells...

TableRowsDelete button Delete Rows

TableColumnsDelete button Delete Columns

CellsInsertDialog button Insert Cells...

TableRowsInsertWord button Insert Rows

WindowsArrangeAll button Arrange All

MarginsAdjust button Adjust Margins

ViewGridlinesWord checkBox View Gridlines

SubdocumentOpen button Open Subdocument

WindowSplit button Split

WindowNew button New Window

ReviewAcceptOrRejectChangeDialog button Accept/Reject Changes

TextAllCaps toggleButton All Caps

PictureDisassemble button Disassemble Picture

ChangeCaseDialogClassic button Change Case...

FontSizeDecrease1Point button Shrink Font 1 Pt

FontSizeIncrease1Point button Grow Font 1 Pt

Repaginate button Repaginate

ReplaceDialog button Replace...

StartOfLine button Start of Line

EndOfLine button End of Line

307 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

PagePrevious button Previous Page

PageNext button Next Page

StartOfDocument button Start of Document

EndOfDocument button End of Document

Grammar button Grammar...

FileCloseOrCloseAll button Close

TextToOrFromTable button Text to/from Table

TableRowsOrColumnsOrCellsInsert button Insert Table

TableRowsOrColumnsOrCellsDelete button Delete Rows/Columns/Cells

RedoOrRepeat button Redo

ProtectOrUnprotectDocument button Protect Document

FrameInsertOrFormat button Insert Frame

ObjectsRegroup button Regroup

AutoFormatChange button Tip Wizard 6

AddressBook button Address Book...

Reply button Reply

ReplyAll button Reply to All

Forward button Forward

MailMove button Move Mail

MailDelete button Delete Mail

MessagePrevious button Previous Item

MessageNext button Next Item

MailSelectNames button Select Names...

AsianLayoutCharacterScaling menu Character Scaling

ShapeScribble toggleButton Scribble

PrintSetupDialog button Print Setup...

RowHeight button Row Height...

ColumnWidth button Column Width...

OleObjectctInsert button Object...

Cancel button Cancel

FindNext button Find Next

308 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

PasteDuplicate button Duplicate

ClipArtInsert toggleButton Clip Art...

ParagraphSpacingIncrease button Increase Paragraph Spacing

ParagraphSpacingDecrease button Decrease Paragraph Spacing

OrganizationChartInsert button Organization Chart

CombineCharacters toggleButton Yoko-Gumi

DoubleStrikethrough toggleButton Double Strikethrough

PictureCrop toggleButton Crop

ViewOutlineView toggleButton Outline

FileCloseAll button Close All

FileSaveAs button Save As

SaveAll button Save All

AdvancedFileProperties button View Document Properties...

DocumentTemplate button Document Template

CopyAsPicture button Copy as Picture...

PasteSpecialDialog button Paste Special...

SelectAll button Select All

GoTo button Go To...

BookmarkInsert button Bookmark...

FileLinksToFiles button Edit Links to Files

ViewOnlineLayoutViewClassic button Online Layout

FootnotesEndnotesShow button Show Notes

BreakInsertDialog button Break

DateAndTimeInsert button Date & Time...

NumberInsert button Number...

FieldInsert button Field...

FormField button Form Field...

CaptionInsert button Insert Caption...

CrossReferenceInsert button Cross-reference...

IndexAndTables button Index and Tables

TextFromFileInsert button Text from File...

309 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ParagraphDialog button Paragraph...

TabsDialog button Tabs...

BordersShadingDialog button Borders and Shading...

TextDirectionOptionsDialog button Text Direction Options...

BulletsAndNumberingBulletsDialog button Bullets and Numbering...

StyleGalleryDialog button Style Gallery...

FrameDialog button Frame...

SetLanguage button Set Language...

WordCount button Word Count...

AutoCorrect button AutoCorrect Options...

EnvelopesAndLabels button Envelope & Label Wizard

LabelsDialog button Labels...

MergeCells button Merge Cells

SplitCells button Split Cells...

TableRowSelect button Select Row

TableColumnSelect button Select Column

TableSelect button Select Table

TableCellHeightWidth button Cell Height and Width...

TableRepeatHeaderRows toggleButton Repeat Header Rows

ConvertTextToTable button Convert Text to Table...

TableFormulaDialog button Formula...

TableSplitTable button Split Table

ShowClipboard button Office Clipboard...

NumberingSkip button Skip Numbering

KeyboardCustomization button Customize Keyboard...

ShowAllHeadings button All

ImeDictionaryUpdate button Update IME Dictionary...

OutlookTaskCreate button Create Microsoft Office Outlook
Task

WindowMinimize button Minimize

WindowRestore button Restore

WindowClose button Close

310 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

WindowMove button Move

WindowSize button Size

WindowNext button Next Window

ClearFormats button Clear Formats

OK button OK

ClosePane button Close

PrintPreviewClose button Close Print Preview

HeaderFooterClose button Close Header and Footer

ZoomDialog button Zoom...

About button About

SortDialogClassic button Sort...

ConvertTableToText button Convert to Text...

ExchangeFolder button Exchange Folder...

ChartEditDataSource button Select Data...

WindowMoreWindowsDialog toggleButton More Windows...

ObjectEditDialog button Object...

ObjectFormatDialog button Object...

AutoTextCreate button Create AutoText...

ContentsAndIndex button Contents and Index

Help button Help

FontColorMoreColorsDialog button More Colors...

WebGoBack button Back

WebGoForward button Forward

AddToFavorites button Add to Favorites...

BrowsePrevious button Previous

BrowseNext button Next

SmartArtInsert button SmartArt...

ShapeRerouteConnectors toggleButton Reroute Connectors

ObjectNudgeUp button Up

ObjectNudgeDown button Down

ObjectNudgeLeft button Left

311 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ObjectNudgeRight button Right

ShapeCurve toggleButton Curve

ShapeStraightConnector toggleButton Straight Connector

ShapeElbowConnector toggleButton Elbow Connector

ObjectFillMoreColorsDialog button More Fill Colors...

ObjectBorderOutlineColorMoreColorsDialog button More Outline Colors...

OutlineLinePatternFill button Pattern...

LineStylesDialog button More Lines...

ArrowsMore button More Arrows...

WordArtVerticalText toggleButton Vertical Text

WordArtEvenTextHeightClassic toggleButton Even Height

ContrastMore button More Contrast

ContrastLess button Less Contrast

BrightnessMore button More Brightness

BrightnessLess button Less Brightness

ShadowNudgeUpClassic button Nudge Shadow Up

ShadowNudgeDownClassic button Nudge Shadow Down

ShadowNudgeLeftClassic button Nudge Shadow Left

ShadowNudgeRightClassic button Nudge Shadow Right

ObjectShadowColorMoreColorsDialog button More Shadow Colors...

_3DEffectColorPickerMoreClassic button More 3-D Colors...

TextAlignLeft toggleButton Left Align

TextAlignCenter toggleButton Center

ShapeRectangle toggleButton Rectangle

ShapeRoundedRectangle toggleButton Rounded Rectangle

ShapeIsoscelesTriangle toggleButton Isosceles Triangle

ShapeOval toggleButton Oval

ShapeLeftBrace toggleButton Left Brace

ShapeRightBrace toggleButton Right Brace

ShapeArc toggleButton Arc

ShapeRightArrow toggleButton Right Arrow

312 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ShapeDownArrow toggleButton Down Arrow

ShapeRoundedRectangularCallout toggleButton Rounded Rectangular Callout

ShapeStar toggleButton 5-Point Star

TextAlignRight toggleButton Right Align

TextAlignLetterJustify toggleButton Letter Justify

TextAlignWordJustify toggleButton Word Justify

TextAlignStretchJustify toggleButton Stretch Justify

WordArtSpacingVeryTight toggleButton Very Tight

WordArtSpacingTight toggleButton Tight

WordArtSpacingNormal toggleButton Normal

WordArtSpacingLoose toggleButton Loose

WordArtSpacingVeryLoose toggleButton Very Loose

WordArtSpacingKernCharacterPairs toggleButton Kern Character Pairs

PictureReset button Reset Picture

TextWrappingSquare toggleButton Square

TextWrappingTight toggleButton Tight

TextWrappingNoneClassic toggleButton None

TextWrappingEditWrapPoints toggleButton Edit Wrap Points

_3DEffectsOnOffClassic toggleButton 3-D On/Off

_3DTiltDownClassic button Tilt Down

_3DTiltUpClassic button Tilt Up

_3DTiltLeftClassic button Tilt Left

_3DTiltRightClassic button Tilt Right

_3DExtrusionPerspectiveClassic toggleButton Perspective

_3DExtrusionParallelClassic toggleButton Parallel

_3DLightingFlatClassic toggleButton Bright

_3DLightingNormalClassic toggleButton Normal

_3DLightingDimClassic toggleButton Dim

ObjectEditText button Edit Text

PictureFormatDialog button Picture...

ViewVisualBasicCode button View Code

313 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

DrawingNewClassic button New Drawing

WebOpenInNewWindow button Open in New Window

HyperlinkCopy button Copy Hyperlink

HyperlinkInsert button Hyperlink...

HyperlinkEdit button Edit Hyperlink...

HyperlinkSelect button Select Hyperlink

ReviewNewComment button New Comment

ReviewPreviousComment button Previous

ReviewNextComment button Next

ReviewDeleteComment button Delete

ReviewShowAllComments button Show All Comments

DesignMode toggleButton Design Mode

WordArtInsertDialogClassic button WordArt Gallery

FormFieldProperties button Properties

FullScreenViewClassic button Full Screen

AutoScroll button Auto Scroll

MasterDocumentExpandOrCollapseSubdocuments toggleButton Expand/Collapse Subdocuments

VisualBasic button Visual Basic

BordersAll toggleButton All Borders

AutoSummarize button Auto Summarize

ViewDocumentMap checkBox Document Map

ReviewAcceptChange button Accept Change

ReviewRejectChange button Reject Change

TableDrawBorderPenStyle dropDown Pen Style

AutoSummaryExitView button Close

Font comboBox Font:

WhoIs button Who Is...

FontSize comboBox Font Size:

StyleGalleryClassic comboBox Style:

ZoomClassic button Zoom:

DocumentLocation comboBox Address:

314 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

MessageHeaderToggle button Message Header

BorderInsideHorizontal toggleButton Inside Horizontal Border

BorderInsideVertical toggleButton Inside Vertical Border

BorderDiagonalDown toggleButton Diagonal Down Border

BorderDiagonalUp toggleButton Diagonal Up Border

TextDirectionLeftToRight toggleButton Left-to-Right

TextDirectionRightToLeft toggleButton Right-to-Left

ActiveXCheckBox button Check Box

ActiveXTextBox button Text Box

ActiveXButton button Command Button

ActiveXRadioButton button Option Button

ActiveXListBox button List Box

ActiveXComboBox button Combo Box

ActiveXToggleButton button Toggle Button

ActiveXSpinButton button Spin Button

ActiveXScrollBar button Scroll Bar

ActiveXLabel button Label

ShadowSemitransparentClassic toggleButton Semitransparent Shadow

OleConvert button Convert...

ReviewTrackChanges toggleButton Track Changes

ReviewHighlightChanges button Highlight Changes...

ReviewEditComment button Edit Comment

TableDrawTable toggleButton Draw Table

TableEraser toggleButton Eraser

TableCellAlignTop toggleButton Align Top

TableCellAlignCenterVertically toggleButton Center Vertically

TableCellAlignBottom toggleButton Align Bottom

TableColumnsDistribute button Distribute Columns

TableRowsDistribute button Distribute Rows

ActiveXFrame button Frame

ActiveXImage button Image

315 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

WordArtEditTextClassic button Edit Text...

TableInsertCellsDialog button Insert Cells...

Organizer button Organizer

ShadowOnOrOffClassic toggleButton Shadow On/Off

ObjectSetShapeDefaults button Set AutoShape Defaults

ThesaurusClassic button Thesaurus...

MacroRecorderStop button Stop Recording

FileSendAsAttachment button E-mail

AutoSummaryViewByHighlight toggleButton Highlight/Show Only Summary

MasterDocument button Master Document

SystemInformation button Microsoft System Info

Overtype button Overtype

ExtendSelection button Extend Selection

Spike button Spike

SpikeInsert button Insert Spike

ChangeCase button Change Case

MoveText button Move Text

CopyText button Copy Text

AutoTextInsert button Insert AutoText

WindowOtherPane button Other Pane

WindowPrevious button Previous Window

FieldNext button Next Field

FieldPrevious button Previous Field

TableColumnSelectWord button Column Select

FieldCharactersInsert button Insert Field Chars

ListNumFieldInsert button Insert ListNum Field

FieldsUnlink button Unlink Fields

FieldsLock button Lock Fields

FieldsUnlock button Unlock Fields

UpdateSource button Update Source

HangingIndent button Hanging Indent

316 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

UnHang button Un Hang

HideText button Hidden

FontSpacingNormal button Normal Font Spacing

FontPositionNormal button Normal Font Position

ParagraphWidowOrphanControl button Para Widow Orphan Control

ParagraphKeepLinesTogether button Para Keep Lines Together

ParagraphKeepWithNext toggleButton Para Keep With Next

BreakParagraphPageBreakBefore button Para Page Break Before

ParagraphSpaceBeforeNone button No Space Before

ParagraphSpaceBefore button Space Before

ParagraphSpaceAddOrRemoveBefore button Add/Remove Space Before

ParagraphReset button Reset Para

PreviousEdit button Previous Edit

NextEdit button Next Edit

SaveTemplate button Save Template

PagePreviousWord button Previous Page

PageNextWord button Next Page

ObjectNext button Next Object

ObjectPrevious button Previous Object

FileConfirmConversions button File Confirm Conversions

MailMergeRecepientsUseExistingList button Use Existing List...

MailMergeOpenHeaderSource button Mail Merge Open Header Source

MailMergeQueryOptions button Query Options

MailMergeRuleIfThenElse button Mail Merge Insert If

MailMergeRuleMergeRecordNumber button Mail Merge Insert Merge Rec

MailMergeRuleMergeSequenceNumber button Mail Merge Insert Merge Seq

MailMergeRuleNextRecord button Mail Merge Insert Next

MailMergeRuleNextRecordIf button Mail Merge Insert Next If

MailMergeRuleSkipRecordIf button Mail Merge Insert Skip If

MailMergeRuleFillIn button Mail Merge Insert Fill In

MailMergeRuleAsk button Mail Merge Insert Ask

317 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

MailMergeRuleSetBookmark button Mail Merge Insert Set

MailMergeReset button Mail Merge Reset

MailMergeCreateDataSource button Mail Merge Create Data Source

MailMergeCreateHeaderSource button Mail Merge Create Header Source

GoToPreviousSection button Go To Previous Section

GoToNextSection button Go To Next Section

GoToPreviousPage button Go To Previous Page

GoToNextPage button Go To Next Page

FootnotePreviousWord button Previous Footnote

FootnoteNextWord button Next Footnote

EndnotePreviousWord button Previous Endnote

EndnoteNextWord button Next Endnote

ObjectActivate button Activate Object

TableAutoFormatUpdate button Table Update AutoFormat

DraftViewClassic button View Draft

NormalViewHeaderArea button Normal View Header Area

SectionBreakInsert button Insert Section Break

EndnoteInsertWord button Insert Endnote

FootnotesConvertAll button Edit Convert All Footnotes

EndnotesConvertAll button Edit Convert All Endnotes

SwapAllNotes button Edit Swap All Notes

InsertEnSpace button Insert En Space

InsertEmSpace button Insert Em Space

IndexMarkEntry button Mark Entry...

AutoMarkIndexEntries button Auto Mark Index Entries

CitationMark button Mark Citation...

TableOfAuthoritiesEditCategory button Edit TOA Category

IndexInsert button Insert Index...

TableOfContentsDialog button Insert Table of Contents...

TableOfContentsMarkEntry button Mark Entry

TableOfFiguresInsert button Insert Table of Figures...

318 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

TableOfAuthoritiesInsert button Insert Table of Authorities...

DrawingUnselect button Draw Unselect

DrawingSelectNext button Draw Select Next

DrawingSelectPrevious button Draw Select Previous

TextBoxLinkCreate button Create Link

TextBoxLinkBreak button Break Link

TextBoxNextLinked button Next Text Box

TextBoxPreviousLinked button Previous Text Box

FormatSectionLayout button Format Section Layout

StylesRedefineStyle button Redefine Style

Heading1Apply button Apply Heading 1

Heading2Apply button Apply Heading 2

Heading3Apply button Apply Heading 3

ListBulletApply button Apply List Bullet

TextBoxConvertToFrame button Convert Text Box To Frame

ListPromote button Promote List

ListDemote button Demote List

NextMisspeling button Next Misspelling

HyphenationManual button Manual

BulletsAndNumberingClassic button Tools Bullets Numbers

CompareAndCombine button Compare & Combine

Calculate button Tools Calculate

KeyboardCustomizationWord button Tools Customize Keyboard
Shortcut

ListCommands button List Commands

PrintOptionsMenuWord button Options

SpellingRecheckDocument button Tools Spelling Recheck Document

ReviewChangeUserName button Change User Name...

AutoFormatOptions button Tools Options AutoFormat

AutoFormatAsYouType button Tools Options AutoFormat As You
Type

MailMergeConvertChevrons button Mail Merge Convert Chevrons

319 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

MailMergeAskToConvertChevrons button Mail Merge Ask To Convert
Chevrons

ControlRun button Control Run

ShrinkSelection button Shrink Selection

StyleNormal button Normal Style

TableCellNext button Next Cell

TableCellPrevious button Previous Cell

StartOfRow button Start Of Row

EndOfRow button End Of Row

StartOfColumn button Start Of Column

EndOfColumn button End Of Column

WindowMinimizeAll button Minimize All

WindowMaximizeAll button Maximize All

WindowRestoreAll button Restore All

FieldClick button Do Field Click

SelectCurrentFont button Select Cur Font

SelectCurrentAlignment button Select Cur Alignment

SelectCurrentSpacing button Select Cur Spacing

SelectCurrentIndent button Select Cur Indent

SelectCurrentTabs button Select Cur Tabs

SelectCurrentColor button Select Cur Color

FramesRemove button Remove Frames

MenuMode button Menu Mode

PageNumberFormat button Format Page Numbers...

Zoom200 button View Zoom200

Zoom75 button View Zoom75

AddressFontsFormat button Format Addr Fonts

ReturnAddressFormatFontDialog button Format Ret Addr Fonts

FileLocations button Tools Options File Locations

CreateDirectoryClassic button Tools Create Directory

TableOfContentsUpdateClassic button Update Table of Contents...

FootnoteSeparatorWord button View Footnote Separator

320 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

FootnoteContinuationSeparator button View Footnote Cont Separator

FootnoteContinuationNotice button View Footnote Cont Notice

EndnoteSeparator button View Endnote Separator

EndnoteContinuationSeparator button View Endnote Cont Separator

EndnoteContinuationNotice button View Endnote Cont Notice

AutoCaptionInsert button Insert Auto Caption

CaptionInsertWord button Insert Add Caption

InsertCaptionNumbering button Insert Caption Numbering

AutoCorrectReplaceText button Tools AutoCorrect Replace Text

AutoCorrectInitialCaps button Tools AutoCorrect Initial Caps

AutoCorrectSentenceCaps button Tools AutoCorrect Sentence Caps

AutoCorrectDays button Tools AutoCorrect Days

AutoCorrectSmartQuotes button Tools AutoCorrect Smart Quotes

AutoCorrectCapsLockOff button Tools AutoCorrect Caps Lock Off

AutoCorrectExceptions button Tools AutoCorrect Exceptions

WindowSizeAll button Size All

WindowMoveAll button Move All

ConnectToNetworkDrive button Connect

GoToAnnotationScope button Goto Annotation Scope

FontSubstitution button Font Substitution

ScreenRefresh button Screen Refresh

CharacterLeft button Char Left

CharacterRight button Char Right

WordLeft button Word Left

WordRight button Word Right

ExtendSelectionLeft button Sent Left

ExtendSelectionRight button Sent Right

ParagraphUp button Para Up

ParagraphDown button Para Down

LineUp button Line Up

LineDown button Line Down

321 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

CharacterLeftExtend button Char Left Extend

CharacterRightExtend button Char Right Extend

WordLeftExtend button Word Left Extend

WordRightExtend button Word Right Extend

ExtendSelectionLeftSentence button Sent Left Extend

ExtendSelectionRightSentence button Sent Right Extend

ParagraphUpExtend button Para Up Extend

ParagraphDownExtend button Para Down Extend

LineUpExtend button Line Up Extend

LineDownExtend button Line Down Extend

PageUpExtend button Page Up Extend

PageDownExtend button Page Down Extend

StartOfLineExtend button Start Of Line Extend

EndOfLineExtend button End Of Line Extend

StartOfWindowExtend button Start Of Window Extend

EndOfWindowExtend button End Of Window Extend

StartOfDocumentExtend button Start Of Doc Extend

EndOfDocumentExtend button End Of Doc Extend

SymbolFont button Symbol Font

GrammarSettingsDialog button Tools Gram Settings

FileNewDefault button New

FilePrintQuick button Quick Print

SpellingAndGrammar button Spelling & Grammar

ReviewPreviousChangeClassic button Previous Change

ReviewNextChangeClassic button Next Change

MessageProperties button Properties

PictureInsertFromFile button Picture...

TableDrawBorderPenWeight dropDown Pen Weight

TableShowGridlines toggleButton View Gridlines

ShapeStraightConnectorArrow toggleButton Straight Arrow Connector

ShapeElbowConnectorArrow toggleButton Elbow Arrow Connector

322 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

HyperlinkOpen button Open Hyperlink

TextWrappingTopAndBottom toggleButton Top and Bottom

TextWrappingThrough toggleButton Through

MacroRecordOrStop button Record Macro / Stop Recorder

AutoManager button AutoManager...

EndnoteOrFootnoteConvert button Convert Endnote/Footnote

FootnoteSeparatorReset button Reset

PasteAsHyperlink button Paste as Hyperlink

ProofingOptions button Options...

ParagraphDistributed toggleButton Distributed

HyphenationOptions button Hyphenation Options...

TableRowsOrColumnsDistribute button Distribute Rows/Columns

MergeOrSplitCells button Merge/Split Cells

ReviewJapaneseConsistencyChecker button Japanese Consistency Checker...

AutoSummaryResummarize button Resummarize

AutoSummaryUpdateProperties button Update Properties

DeleteWord button Delete Word

DeleteWordBack button Delete Back Word

CharacterFormattingReset button Reset Character Formatting

HeadingNumbers button Heading Numbers

PictureSetTransparentColor toggleButton Set Transparent Color

PageColorMoreColorsDialog button More Colors...

PageColorFillEffects button Fill Effects...

BorderTopWord toggleButton Top Border

BorderBottomWord toggleButton Bottom Border

BorderLeftWord toggleButton Left Border

BorderRightWord toggleButton Right Border

TextDirection button Text Direction

FieldsManage button Manage

FileSaveAsHtml button Save as HTML...

SortAscendingWord button Sort Ascending

323 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

SortDescendingWord button Sort Descending

FrameInsertHorizontal button Horizontal Frame

FieldCodesToggle button Toggle Field Codes

GoToFootnote button Go to Footnote

GoToEndnote button Go to Endnote

SpellingHideErrors toggleButton Hide Spelling Errors

GrammarHideErrors toggleButton Hide Grammar Errors

Dictionary button Dictionary

SummaryInformation button Summary Information...

FootnoteEndnoteOptions button Footnote/Endnote Options

UnderlineDotted toggleButton Dotted Underline

NumberingRemove button Remove Numbering

PictureEditClassic button Picture

GoToStartOfWindow button Start of Window

GoToEndOfWindow button End of Window

AutoCorrectHECorrect button HECorrect

FileSendToPowerPoint button Send to Microsoft Office
PowerPoint

FormatObjectDialogClassic button AutoShape...

AutoFormatNow button AutoFormat...

DataFormWord button Data Form

BulletListDefault button Tools Bullet List Default

NumberListDefault button Tools Number List Default

OutlineNumberDefault button Format Outline Number Default

FormatNumberDefault button Format Number Default

TableOfContentsRebuild button Rebuild Table of Contents

FootnoteEndnoteDialog button Footnote and Endnote Dialog...

TableInsertDialogWord button Insert Table...

FormFieldClear button Clear Form Field

ObjectBringInFrontOfText button Bring in Front of Text

ObjectSendBehindText button Send Behind Text

PageBreakInsertWord button Page Break

324 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

BordersShadingDialogWord button Borders and Shading...

TextBoxWordClassic button Text Box

IndentIncreaseWord button Increase Indent

IndentDecreaseWord button Decrease Indent

SelectObjects button Select Objects

Callout button Callout

ReplaceWithAutoText button Replace with AutoText

LinkToPreviousClassic button Link to Previous

HangulHanjaConversion button Hangul Hanja Conversion...

HeaderSourceEdit button Edit Header Source

IndentIncrease button Increase Indent

IndentDecrease button Decrease Indent

AsianLayoutFitText button Fit Text...

AsianLayoutPhoneticGuide button Phonetic Guide...

AsianLayoutCombineCharacters button Combine Characters...

JapanesePostcardDialog button Japanese Postcard...

CharacterBorder toggleButton Character Border

CharacterShading toggleButton Character Shading

ViewWebLayoutView toggleButton Web Layout

PasteAlternative button Paste Table

PasteAsNestedTable button Paste as Nested Table

HyperlinkRemove button Remove Hyperlink

MacroSecurity button Macro Security

HorizontalLineInsert button Horizontal Line

WebPagePreview button Web Page Preview

RightToLeftRun button Rtl Run

LeftToRightRun button Ltr Run

BoldRun button Bold Run

ItalicRun button Italic Run

TableSelectCell button Select Cell

TableDelete button Delete Table

325 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

TableRowsInsertAboveWord button Insert Above

TableRowsInsertBelowWord button Insert Below

TableColumnsInsertLeft button Insert Left

TableColumnsInsertRight button Insert Right

TablePropertiesDialog button Properties...

TableOptionsDialog button Cell Margins...

TableCellOptions button Cell Options...

SendCopySendNow button Send Now

SendCopySelectNames button Select Names

SendCopyCheckNames button Check Names

SendCopyAddressBookTo button To: Focus

SendCopyAddressBookCc button CC: Focus

SendCopyAddressBookBcc button Bcc: Focus

SendCopyFocusSubject button Subject Focus

SendCopyOptions button Mail Options

SendCopyFlag button Mail Flag

SendCopySaveAttachment button Save Mail Attachments

FileCloseOrExit button Close or Exit

ImeReconvert button Reconvert

SendCopySendToMailRecipient toggleButton Mail Recipient

TableOfContentsInFrame button Table of Contents in Frame

SetLanguageMenu comboBox Language

TableWrapping button Table Wrapping

EmailOptions button E-mail Options...

ComAddInsDialog button COM Add-Ins...

SignaturesStationeryDialog button Signatures...

FramePropertiesDialog button Frame Properties...

OfficeOnTheWeb button Microsoft Office Online

PictureBulletsInsert button Picture Bullets...

FileNewWebPage button New Web Page

FileNewBlankDocument button New Blank Document

326 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

FileNewDialogClassic button New Document or Template...

FileSaveAsWebPage button Save as Web Page...

HorizontalLineInsertClassic button Horizontal Line...

WebOptionsDialog button Web Options...

FramesNewFramesPageWizard button New Frames Page

FrameCreateAbove button New Frame Above

FrameCreateBelow button New Frame Below

FrameCreateLeft button New Frame Left

FrameCreateRight button New Frame Right

FrameDelete button Delete Frame

EastAsianEditingMarks toggleButton Show/Hide Editing Marks

TableAutoFitContents button AutoFit Contents

TableAutoFitWindow button AutoFit Window

TableAutoFitFixedColumnWidth button Fixed Column Width

TableCellAlignTopLeft toggleButton Align Top Left

TableCellAlignTopCenter toggleButton Align Top Center

TableCellAlignTopRight toggleButton Align Top Right

TableCellAlignMiddleLeft toggleButton Align Center Left

TableCellAlignMiddleCenter toggleButton Align Center

TableCellAlignMiddleRight toggleButton Align Center Right

TableCellAlignBottomLeft toggleButton Align Bottom Left

TableCellAlignBottomCenter toggleButton Align Bottom Center

TableCellAlignBottomRight toggleButton Align Bottom Right

WebControlCheckBox button Checkbox

WebControlOptionButton button Option Button

WebControlDropDownBox button Drop-Down Box

WebControlListBox button List Box

WebControlTextBox button Textbox

WebControlTextArea button Text Area

WebControlSubmit button Submit

WebControlSubmitWithImage button Submit with Image

327 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

WebControlReset button Reset

WebControlHidden button Hidden

WebControlPassword button Password

UnderlineColorMoreColorsDialog button More Colors...

ChineseTranslationDialog button Translate with Options...

TableInsertMultidiagonalCell button Insert Multidiagonal Cell...

AsianLayoutHorizontalInVertical button Horizontal in Vertical...

AsianLayoutTwoLinesInOne button Two Lines in One...

AsianLayoutCharactersEnclose button Enclose Characters...

EnvelopeChineseDialog button Chinese Envelope...

ObjectsMultiSelect button Select Multiple Objects

TranslateToTraditionalChinese button Traditional

TextWrappingBehindText toggleButton Behind Text

TextWrappingInFrontOfText toggleButton In Front of Text

WatermarkCustomDialog button Custom Watermark...

FrameSaveCurrentAs button Save Current Frame As...

TranslateToSimplifiedChinese button Simplified

WebDesignMode toggleButton Web Design Mode

ViewMasterDocumentViewClassic button Master Document Tools

WhiteSpaceBetweenPagesShowHide button White Space Between Pages

EditField button Edit Field...

WordCountRecount button Recount

StylesModifyStyle button Modify Style

StyleByExample button Style by Example

CssLinksEdit button Edit CSS Links

StylesPane button Styles...

DeleteStyle button Delete Style

StylesRenameStyle button Rename Style

SelectNumber button Select Number

NumberingRestart button Restart Numbering

DrawingCanvasInsert button New Drawing Canvas

328 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

DiagramRadialInsertClassic button Radial Diagram

DiagramCycleInsertClassic button Cycle Diagram

DiagramPyramidInsertClassic button Pyramid Diagram

DiagramTargetInsertClassic button Target Diagram

DiagramVennDiagramInsertClassic button Venn Diagram

DiagramChangeToRadialClassic button Radial

DiagramChangeToCycleClassic button Cycle

DiagramChangeToTargetClassic button Target

DiagramChangeToVennDiagramClassic button Venn

CopyPasteSettings button Copy & paste settings...

PasteByAppendingTable button Paste by Appending Table

OrganizationChartInsertAssistant button Assistant

OrganizationChartInsertCoworker button Coworker

OrganizationChartInsertSubordinate button Subordinate

OrganizationChartDeleteNode button Delete

DrawingCanvasFit button Fit

DrawingCanvasResize button Resize

LabelOptions button Label Options...

SendCopySetup button Envelope Setup...

MailMergeMergeToEMail button Send E-mail Messages...

MailMergeMergeToFax button Merge to Fax

MailMergeCreateList button Type New List...

MailMergeEditList button Edit Mail Merge List

DrawingCanvasExpand button Expand

ActivateProduct button Activate Product...

TextWrappingInLineWithText toggleButton In Line with Text

ConsistencyCheck button Consistency Check...

SelectTextWithSimilarFormatting button Select Text with Similar
Formatting

ReviewSendForReview button Send for Review...

WebComponent button Web Component...

DiagramChangeToPyramidClassic button Pyramid

329 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

DiagramShapeMoveBackwardClassic button Move Shape Backward

DiagramShapeMoveForwardClassic button Move Shape Forward

CharacterCodeToggle button Toggle Character Code

SmartTagOptions button Tools Options Smart Tag

SendCopyFocusIntroduction button Introduction Focus

StylesStyleVisibility button Style Visibility

DiagramStylesClassic button Diagram Styles...

MailMergeHighlightMergeFields toggleButton Highlight Merge Fields

MailMergeWizard toggleButton Step by Step Mail Merge Wizard...

OrganizationChartAutoLayout toggleButton AutoLayout

OrganizationChartSelectLevel button Level

OrganizationChartSelectBranch button Branch

OrganizationChartSelectAllAssistants button All Assistants

OrganizationChartSelectAllConnectors button All Connectors

MailMergeJapaneseGreetingInsert button Greeting...

MailMergeJapaneseGreetingJapaneseOpeningSentenceInsert button Opening...

MailMergeJapaneseGreetingClosingSentenceInsert button Closing...

RevealFormatting button Reveal Formatting...

DiagramReverseClassic button Reverse

DiagramAutoLayoutClassic toggleButton AutoLayout

TextBoxAutosize button Autosize textbox

TranslationPane button Translate...

GoToTableOfContents button Go to TOC

TableOfContentsUpdate button Update Table...

OutlineLevelGallery dropDown Outline Level

OutlineShowLevel dropDown Show Level:

NumberingContinue button Continue Numbering

FileCheckOut button Check Out

FileCheckIn button Check In

OrganizationChartLayoutStandard toggleButton Standard

OrganizationChartLayoutBothHanging toggleButton Both Hanging

330 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

OrganizationChartLayoutLeftHanging toggleButton Left Hanging

OrganizationChartLayoutRightHanging toggleButton Right Hanging

ReviewShowReviewersMenu menu Reviewers

ReviewReplyWithChanges button Reply with Changes...

ReviewEndReview button End Review...

NormalizeText button Normalize text

StylesStyleSeparator button Style Separator

SpeakLearnFromDocument button Learn from Document...

PictureEditWord button Edit Picture

OutlinePromoteToHeading button Promote to Heading 1

MicrosoftOutlook button Microsoft Outlook

ReviewShowComments toggleButton Comments

ReviewShowInsertionsAndDeletions toggleButton Insertions and Deletions

ReviewShowFormatting toggleButton Formatting

ReviewPreviousChange button Previous

ReviewNextChange button Next

ReviewReviewingPane toggleButton Reviewing Pane

ReviewAcceptAllChangesShown button Accept All Changes Shown

ReviewAcceptAllChangesInDocument button Accept All Changes in Document

ReviewRejectAllChangesShown button Reject All Changes Shown

ReviewRejectAllChangesInDocument button Reject All Changes in Document

ReviewDeleteAllCommentsShown button Delete All Comments Shown

ReviewDeleteAllCommentsInDocument button Delete All Comments in Document

ShowRepairs button Show Repairs

MailMergeMatchFields button Match Fields...

MailMergeAddressBlockInsert button Address Block...

MailMergeGreetingLineInsert button Greeting Line...

MailMergeMergeFieldInsert button Insert Merge Field

MailMergeRecipientsEditList button Edit Recipient List...

MailMergeEmailOptions button Mail Merge E-Mail Options

MailMergePrintOptions button Mail Merge Print Options

331 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

MailMergeFaxOptions button Mail Merge Fax Options

MailMergeMergeToNewDocumentOptions button Mail Merge to New Document
Options

PicturesCompress button Compress Pictures...

Security button Security

TableAutoFormatStyle button Table AutoFormat...

MailMergeEditAddressBlock button Edit Address Block...

MailMergeEditGreetingLine button Edit Greeting Line...

MailMergeFindRecipient button Find Recipient...

FormFieldReset button Reset Form Fields

MailMergeUpdateLabels button Update Labels

DiagramFitToContentsClassic button Fit to Contents

DiagramResizeClassic toggleButton Resize

DiagramExpandClassic button Expand

OrganizationChartResize button Resize Organization Chart

AccountSettings button Account Settings...

MailMergeSetDocumentType button Main document setup

DiagramShapeInsertClassic button Insert Shape

OrganizationChartStyle button Style...

ReviewDisplayForReview dropDown Display for Review

DiagramAutoFormatClassic button Use AutoFormat

Translate button Translate...

ClearContentsWord button Contents

DrawingCanvasScale button Scale Drawing

ProtectDocument toggleButton Protect Document...

XmlViewStructure button View XML Structure

ReadingViewClose button Edit

ResearchPane toggleButton Research...

DocumentMapReadingView button Document Map

ReadingViewResearchPane button Research...

ReadingViewFontSizeIncrease button Increase Text Size

ReadingViewFontSizeDecrease button Decrease Text Size

332 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ReadingViewShowPrintedPage button Show Printed Page

ViewRulerWord checkBox Ruler

FileInternetFax button Internet Fax

DocumentUpdatePane button Show Document Update Pane

ViewDocumentActionsPane toggleButton Document Actions

XmlToggleTagView button Toggle XML Tag View

InkDeleteAllInk button Delete All Ink

LookUp button Look Up

WindowSideBySide toggleButton View Side by Side

PrivacyOptionsDialog button Privacy Options...

FileVersionHistoryWord button View Version History

WindowSideBySideSynchronousScrolling toggleButton Synchronous Scrolling

WindowResetPosition button Reset Window Position

InkColorMoreColorsDialog button More Ink Colors...

XmlOptionsDialog button XML Options...

XmlTransformation toggleButton Transformation

StyleEnforcementSettings button Style Enforcement Settings

ContactUs button Contact Us...

FilePermissionUnrestricted toggleButton Unrestricted Access

FilePermissionDoNotDistribute toggleButton Restricted Access

FilePermissionView button View Permission

FilePermission button Permission

ReadingViewAllowMultiplePages button Allow Multiple Pages

ReadingViewStartInking button Ink

ReadingViewUnlockDocumentLayout button Unlock Document Layout

VoiceInsertInComment button Insert Voice

ViewThumbnails checkBox Thumbnails

Thesaurus button Thesaurus...

InkingStart button Start Inking

ReviewShowRevisionsInBalloons toggleButton Show Revisions in Balloons

ReviewShowRevisionsInline toggleButton Show All Revisions Inline

333 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ReviewShowOnlyCommentsAndFormattingInBaloons toggleButton Show Only Comments and
Formatting in Balloons

ReviewShowInkMarkup toggleButton Ink

CheckForUpdates button Check for Updates

ViewFullScreenReadingView toggleButton Full Screen Reading

InkCopyAsText button Copy Ink As Text

InkDrawingAndWriting button Ink Drawing and Writing

ReviewInkCommentPen toggleButton Pen

ReviewInkCommentEraser toggleButton Eraser

InkEraser toggleButton Eraser

SendCopyAttachmentOptions button Attachment Options

FilePermissionRestrictAs button Manage Credentials

ListSetNumberingValue button Set Numbering Value...

FileViewDigitalSignatures toggleButton View Signatures

FileWorkflowTasks button View Workflow Tasks

FileStartWorkflow button Workflows

SignatureLineInsert button Signature Line

BibliographyInsert button Insert Bibliography

BibliographyStyle comboBox Style:

CitationInsert gallery Insert Citation

BibliographyManageSources button Manage Sources...

BibliographyAddNewSource button Add New Source...

LabelInsert button Label

BarcodeInsert button Barcode

ReviewShowMarkupAreaHighlight toggleButton Markup Area Highlight

ChartStylesGallery gallery Quick Styles

ChartLayoutGallery gallery Quick Layout

ChartSaveTemplates button Save As Template

ChartAxisTitles menu Axis Titles

ChartAxes menu Axes

ChartGridlines menu Gridlines

ChartFormatSelection button Format Selection

334 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ChartElementSelector comboBox Chart Elements

PageMarginsGallery gallery Margins

DropCapInsertGallery gallery Drop Cap

TabPictureToolsFormat tab Format

ShapesInsertGallery gallery Shapes

ShapeChangeShapeGallery gallery Change Shape

ShapeFillTextureGallery gallery Texture

ShapeStylesGallery gallery Quick Styles

PageOrientationGallery gallery Orientation

FileServerTasksMenu menu Server

FileSendMenu menu Send

TabInsert tab Insert

TabReferences tab References

TabMailings tab Mailings

TabReviewWord tab Review

TabView tab View

GroupFont group Font

GroupParagraph group Paragraph

GroupStyles group Styles

GroupProofing group Proofing

GroupInsertPages group Pages

GroupInsertIllustrations group Illustrations

GroupWordArtText group Text

GroupParagraphLayout group Paragraph

GroupCitationsAndBibliography group Citations & Bibliography

GroupFootnotes group Footnotes

GroupTableOfContents group Table of Contents

GroupMailMergeWriteInsertFields group Write & Insert Fields

GroupMailMergePreviewResults group Preview Results

GroupMailMergeFinish group Finish

GroupChangesTracking group Tracking

335 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

GroupComments group Comments

GroupChanges group Changes

GroupCompare group Compare

GroupPictureSize group Size

GroupTableAlignment group Alignment

GroupTextBoxText group Text

GroupArrange group Arrange

GroupShapeStyles group Shape Styles

GroupChartLayouts group Chart Layouts

GroupChartStyles group Chart Styles

GroupChartAxes group Axes

GroupChartShapes group Insert

GroupOrganizationChartShapeInsert group Insert

StylesManageStyles button Manage Styles

StylesStyleInspector toggleButton Style Inspector

ObjectEffectPresetGallery gallery Preset

PictureEffectsPresetGallery gallery Preset

_3DRotationGallery gallery 3-D Rotation

TabSmartArtToolsDesign tab Design

TabSmartArtToolsFormat tab Format

TabChartToolsDesign tab Design

TabChartToolsLayout tab Layout

TabChartToolsFormat tab Format

ShapeFillColorPicker gallery Shape Fill

OutlineColorPicker gallery Picture Border

FileDocumentInspect button Inspect Document

QuickStylesGallery gallery Quick Styles

QuickStylesSets gallery Style Set

ClearFormatting button Clear Formatting

PanningHand toggleButton Panning Hand

BulletsGalleryWord gallery Bullets

336 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

NumberingGalleryWord gallery Numbering

GroupControls group Controls

GroupZoom group Zoom

ArrowStyleGallery gallery Arrows

OutlineDashesGallery gallery Dashes

OutlineWeightGallery gallery Weight

TabTableToolsLayout tab Layout

GroupPictureTools group Adjust

GroupSize group Size

ReviewTrackChangesMenu splitButton Track Changes

ReviewAcceptChangeMenu splitButton Accept

ReviewRejectChangeMenu splitButton Reject

ReviewBalloonsMenu menu Balloons

GroupTableRowsAndColumns group Rows & Columns

GroupTableData group Data

ObjectAlignMenu menu Align

ObjectRotateGallery gallery Rotate

SelectMenu menu Select

FontColorPicker gallery Font Color

TableColumnsGallery gallery Columns

TabHome tab Home

ChartTitle gallery Chart Title

ChartPrimaryHorizontalAxisTitle gallery Primary Horizontal Axis Title

ChartPrimaryVerticalAxisTitle gallery Primary Vertical Axis Title

ChartDepthAxisTitle gallery Depth Axis Title

ChartLegend gallery Legend

ChartDataLabel gallery Data Labels

ChartPrimaryHorizontalGridlines gallery Primary Horizontal Gridlines

ChartPrimaryVerticalGridlines gallery Primary Vertical Gridlines

ChartDepthGridlines gallery Depth Gridlines

ChartPrimaryHorizontalAxis gallery Primary Horizontal Axis

337 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ChartPrimaryVerticalAxis gallery Primary Vertical Axis

ChartDepthAxis gallery Depth Axis

ChartDataTable gallery Data Table

ChartTrendline gallery Trendline

ChartErrorBars gallery Error Bars

ChartLines gallery Lines

ChartUpDownBars gallery Up/Down Bars

ChartPlotArea gallery Plot Area

ChartWall gallery Chart Wall

ChartFloor gallery Chart Floor

TabPageLayoutWord tab Page Layout

SmartArtAddShape button Add Shape

SmartArtLargerShape button Larger

SmartArtSmallerShape button Smaller

SmartArtResetGraphic button Reset Graphic

SmartArtTextPane toggleButton Text Pane

SmartArtEditIn2D toggleButton Edit in 2-D

SmartArtLayoutGallery gallery Change Layout

SmartArtMoreLayoutsDialog button More Layouts...

SmartArtStylesGallery gallery Quick Styles

SmartArtChangeColorsGallery gallery Change Colors

ObjectEffectSoftEdgesGallery gallery Soft Edges

ObjectEffectGlowGallery gallery Glow

GradientGallery gallery Gradient

ObjectEffectShadowGallery gallery Shadow

TextEffectTransformGallery gallery Transform

TabHeaderAndFooterToolsDesign tab Design

GroupHeaderFooterOptions group Options

ReviewPreviousCommentWord button Previous

ReviewNextCommentWord button Next

BulletDefineNew button Define New Bullet...

338 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

DefineNewNumberFormat button Define New Number Format...

ThemeColorsGallery gallery Colors

HeaderInsertGallery gallery Header

FooterInsertGallery gallery Footer

CoverPageInsertGallery gallery Cover Page

PageNumberFieldInsertGallery gallery Current Position

WatermarkGallery gallery Watermark

EquationInsertGallery gallery Equation

QuickTablesInsertGallery gallery Quick Tables

QuickPartsInsertGallery gallery Quick Parts

GroupSmartArtLayouts group Layouts

GroupSmartArtQuickStyles group SmartArt Styles

GroupSmartArtCreateGraphic group Create Graphic

GroupSmartArtReset group Reset

GroupSmartArtSize group Size

SaveSelectionToQuickPartGallery button Save Selection to Quick Part
Gallery...

SaveSelectionToCoverPageGallery button Save Selection to Cover Page
Gallery...

SaveSelectionToEquationGallery button Save Selection to Equation
Gallery...

SaveSelectionToFooterGallery button Save Selection to Footer Gallery...

SaveSelectionToHeaderGallery button Save Selection to Header
Gallery...

SaveSelectionToPageNumberGallery button Save Selection to Page Number
Gallery...

SaveSelectionToQuickTablesGallery button Save Selection to Quick Tables
Gallery...

SaveSelectionToWaterMarkGallery button Save Selection to Watermark
Gallery...

ThemeSearchOfficeOnline button More Themes on Microsoft Office
Online...

TabAddIns tab Add-Ins

ReviewShowMarkupMenu menu Show Markup

ObjectEditShapeMenu menu Edit Shape

339 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

SymbolInsertGallery gallery Symbol

TableStyleClear button Clear

FileSaveAsPdfOrXps button Publish as PDF or XPS

FileSaveAsWordOpenDocumentText button OpenDocument Text

SearchLibraries button Search Libraries...

MoreControlsDialog button More Controls...

GroupCode group Code

TabDeveloper tab Developer

GroupXml group XML

XmlStructure toggleButton Structure

XmlSchema button Schema

XmlExpansionPacksWord button Expansion Packs

GroupCaptions group Captions

GroupIndex group Index

GroupTableOfAuthorities group Table of Authorities

GroupEditing group Editing

SelectMenuExcel splitButton Find & Select

GroupClipboard group Clipboard

GroupInsertTables group Tables

GroupInsertLinks group Links

GroupInsertSymbols group Symbols

GroupInsertBarcode group Barcode

PageSizeGallery gallery Size

ObjectPictureFill button Picture...

TextWrappingMenu menu Text Wrapping

WindowSwitchWindowsMenuWord menu Switch Windows

ThemeColorsCreateNew button Create New Theme Colors...

ThemeFontsCreateNew button Create New Theme Fonts...

ShapeFillMoreGradientsDialog button More Gradients...

ShadowOptionsDialog button Shadow Options...

BuildingBlocksOrganizer button Building Blocks Organizer...

340 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ReviewCompareMenu menu Compare

ReviewCompareTwoVersions button Compare...

ReviewCombineRevisions button Combine...

ReviewCompareMajorVersion button Major Version

ReviewCompareLastVersion button Last Version

ReviewCompareSpecificVersion button Specific Version...

PropertyInsert gallery Document Property

ObjectsAlignSelectedSmart toggleButton Align Selected Objects

ObjectsAlignRelativeToContainerSmart toggleButton Align to Slide

ObjectsAlignLeftSmart button Align Left

ObjectsAlignRightSmart button Align Right

ObjectsAlignTopSmart button Align Top

ObjectsAlignBottomSmart button Align Bottom

ObjectsAlignCenterHorizontalSmart button Align Center

ObjectsAlignMiddleVerticalSmart button Align Middle

AlignDistributeHorizontally button Distribute Horizontally

AlignDistributeVertically button Distribute Vertically

GroupProtect group Protect

IndexUpdate button Update Index

MarginsCustomMargins button Custom Margins...

MailMergeFinishAndMergeMenu menu Finish & Merge

HyphenationMenu menu Hyphenation

HyphenationAutomatic toggleButton Automatic

HyphenationNone toggleButton None

MailMergeRules menu Rules

TabWordArtToolsFormat tab Format

MailMergeStartMailMergeMenu menu Start Mail Merge

MailMergeStartLetters toggleButton Letters

MailMergeStartEmail toggleButton E-Mail Messages

MailMergeStartEnvelopes toggleButton Envelopes...

MailMergeStartLabels toggleButton Labels...

341 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

MailMergeStartDirectory toggleButton Directory

MailMergeClearMergeType toggleButton Normal Word Document

MailMergeSelectRecipients menu Select Recipients

TableOfContentsAddTextGallery gallery Add Text

BorderColorPicker gallery Pen Color

TranslationToolTip gallery Translation ScreenTip

ThemeFontsGallery gallery Fonts

ThemeEffectsGallery gallery Effects

FileProperties toggleButton Properties

TabPrintPreview tab Print Preview

GroupPrintPreviewPrint group Print

GroupPrintPreviewPreview group Preview

BreaksGallery gallery Breaks

LineNumbersMenu menu Line Numbers

LineNumbersOff toggleButton None

LineNumbersContinuous toggleButton Continuous

LineNumbersResetPage toggleButton Restart Each Page

LineNumbersResetSection toggleButton Restart Each Section

LineNumbersSuppress toggleButton Suppress for Current Paragraph

TabOutlining tab Outlining

GroupOutliningClose group Close

GroupOutliningTools group Outline Tools

GroupMasterDocument group Master Document

TableSelectMenu menu Select

TableDeleteRowsAndColumnsMenuWord menu Delete

GroupTableMerge group Merge

TableAutoFitMenu menu AutoFit

GroupTableDrawBorders group Draw Borders

TableBordersMenu splitButton Borders

FileCreateDocumentWorkspace toggleButton Create Document Workspace

FileSaveToDocumentManagementServer button Document Management Server

342 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

FileDocumentManagementInformation toggleButton Document Management
Information

QuickAccessToolbarCustomization button Customize Quick Access Toolbar...

FilePrepareMenu menu Prepare

FileMarkAsFinal toggleButton Mark as Final

FileAddDigitalSignature button Add a Digital Signature

SignatureServicesAdd button Add Signature Services...

QuickStylesSaveSelectionAsNew button Save Selection as a New Quick
Style...

StylesPaneNewStyle button New Style...

QuickStylesSaveQuickStyleSet button Save as Quick Style Set...

ChangeCaseGallery gallery Change Case

AlignJustifyMenu menu Justify

ControlProperties button Properties

GroupHeaderFooterInsert group Insert

GroupHeaderFooterNavigation group Navigation

GroupHeaderFooterPosition group Position

HeaderFooterDifferentFirstPageWord checkBox Different First Page

HeaderFooterDifferentOddEvenPageWord checkBox Different Odd & Even Pages

HeaderFooterShowDocumentText checkBox Show Document Text

BlankPageInsert button Blank Page

ShadowStyleGalleryClassic gallery Shadow Effects

TabOrganizationChartToolsFormat tab Format

TabDiagramToolsFormatClassic tab Format

GroupInkSelect group Select

WordArtSpacingMenu menu Spacing

TextAlignMenu menu Alignment

DiagramChangeToMenuClassic menu Change To

PictureBrightnessGallery gallery Brightness

PictureContrastGallery gallery Contrast

PicturePositionGallery gallery Position

TabPictureToolsFormatClassic tab Format

343 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

PictureBrightnessAndContrastDialog button Picture Correction Options...

GroupMailMergeStart group Start Mail Merge

OleObjectInsertMenu splitButton Object

ShadingColorPicker gallery Shading

ShadingColorsMoreColorsDialog button More Colors...

SmartArtAddShapeAfter button Add Shape After

SmartArtAddShapeBefore button Add Shape Before

SmartArtAddShapeAbove button Add Shape Above

SmartArtAddShapeBelow button Add Shape Below

SmartArtAddAssistant button Add Assistant

ChartSwitchRowColumn button Switch Row/Column

ChartShowData button Edit Data...

ChartRefresh button Refresh Data

ChartChangeType button Change Chart Type...

GroupChartData group Data

GroupChartType group Type

_3DRotationOptionsDialog button 3-D Rotation Options...

_3DBevelOptionsDialog button 3-D Options...

SmartArtOrganizationChartLeftHanging button Left Hanging

SmartArtOrganizationChartRightHanging button Right Hanging

SmartArtOrganizationChartBoth button Both

SmartArtOrganizationChartStandard button Standard

SmartArtRightToLeft toggleButton Right to Left

ListLevelGallery gallery Change List Level

MultilevelListGallery gallery Multilevel List

ListDefineNew button Define New Multilevel List...

ListDefineNewStyle button Define New List Style...

ViewMessageBar checkBox Message Bar

ApplyStylesPane toggleButton Apply Styles...

InsertAlignmentTab button Insert Alignment Tab

ShapeStylesOtherThemeFillsGallery gallery Other Theme Fills

344 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

SmartArtOrganizationChartMenu menu Layout

ReviewChangeTrackingOptions button Change Tracking Options...

SymbolsDialog button More Symbols...

ReviewReviewingPaneHorizontal toggleButton Reviewing Pane Horizontal...

ReviewReviewingPaneVertical toggleButton Reviewing Pane Vertical...

_3DEffectsGalleryClassic gallery 3-D Effects

_3DDirectionGalleryClassic gallery Direction

_3DLightingGalleryClassic gallery Lighting

TabDrawingToolsFormatClassic tab Format

GroupShadowEffects group Shadow Effects

Group3DEffects group 3-D Effects

WordArtStylesGalleryClassic gallery WordArt

WordArtInsertGalleryClassic gallery WordArt

TableInsertGallery gallery Table

ShapeStylesGalleryClassic gallery Shape Styles

WordArtChangeShapeGallery gallery Change Shape

ShadowColorPickerClassic gallery Shadow Color

_3DEffectColorPickerClassic gallery 3-D Color

ShapeFillGradientGalleryClassic gallery Gradient

AsianLayoutMenu menu Asian Layout

JapaneseGreetingsInsertMenu menu Japanese Greetings

AlignJustifyWithMixedLanguages toggleButton Justify

AlignJustifyLow toggleButton Justify Low

AlignJustifyMedium toggleButton Justify Medium

AlignJustifyHigh toggleButton Justify High

AlignJustifyThai toggleButton Distribute

TextHighlightColorPicker gallery Text Highlight Color

PageColorPicker gallery Page Color

GoToHeader button Go to Header

GoToFooter button Go to Footer

HighlightingStop button Stop Highlighting

345 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

UnderlineGallery gallery Underline

UnderlineColorPicker gallery Underline Color

UnderlineMoreUnderlinesDialog button More Underlines...

TextDirectionGalleryWord gallery Text Direction

GroupAddInsMenuCommands group Menu Commands

GroupAddInsToolbarCommands group Toolbar Commands

GroupInk group Ink

TabInkToolsPens tab Pens

GroupInkPens group Pens

GroupInkClose group Close

InkBallpointPen toggleButton Ballpoint Pen

InkFeltTipPen toggleButton Felt Tip Pen

InkHighlighter toggleButton Highlighter

GroupBorder group Border

PictureRecolorGalleryWord gallery Recolor

_3DSurfaceMaterialGalleryClassic gallery Surface

_3DExtrusionDepthGalleryClassic gallery Depth

GroupHeaderFooter group Header & Footer

GroupPageLayoutSetup group Page Setup

GroupPageBackground group Page Background

ThemeSaveCurrent button Save Current Theme...

ThemesGallery gallery Themes

ChartResetToMatchStyle button Reset to Match Style

Chart3DView button 3-D Rotation...

ObjectSizeDialog button Size...

AutoTextGallery gallery AutoText

TextBoxInsertGallery gallery Text Box

PageNumbersInHeaderInsertGallery gallery Top of Page

PageNambersInFooterInsertGallery gallery Bottom of Page

PageNambersInMarginsInsertGallery gallery Page Margins

SaveSelectionToAutoTextGallery button Save Selection to AutoText Gallery

346 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

SaveSelectionToTextBoxGallery button Save Selection to Text Box Gallery

SaveSelectionToPageNumberTop button Save Selection as Page Number
(Top)

SaveSelectionToPageNumberBottom button Save Selection as Page Number
(Bottom)

SaveSelectionToPageNumberMargin button Save Selection as Page Number
(Margin)

HeaderFooterEditHeader button Edit Header

TableStyleHeaderRowWord checkBox Header Row

TableStyleTotalRowWord checkBox Total Row

TableStylesFirstColumnWord checkBox First Column

TableStyleLastColumnWord checkBox Last Column

TableStyleBandedRowsWord checkBox Banded Rows

TableStyleBandedColumnsWord checkBox Banded Columns

TableStyleModify button Modify Table Style...

TabTableToolsDesign tab Design

TableStylesGalleryWord gallery Table Styles

ReviewViewChangesInTheSourceDocument button View changes in the source
document

GroupThemesWord group Themes

LayoutOptionsDialog button More Layout Options...

DrawingObjectFormatDialog button Advanced Tools...

ReflectionGallery gallery Reflection

PictureRecolorGallery gallery Recolor

SmartArtPromote button Promote

SmartArtDemote button Demote

ChartTitleOptionsDialog button More Title Options...

ChartLegendOptionsDialogDialog button More Legend Options...

ChartDataLabelDialog button More Data Label Options...

ChartPrimaryHorizontalAxisTitleOptionsDialog button More Primary Horizontal Axis Title
Options...

ChartPrimaryVerticalAxisTitleOptionsDialog button More Primary Vertical Axis Title
Options...

ChartSecondaryHorizontalAxisTitleOptionsDialog button More Secondary Horizontal Axis
Title Options...

347 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ChartSecondaryVerticalAxisTitleOptionsDialog button More Secondary Vertical Axis Title
Options...

ChartDepthAxisTitleOptionsDialog button More Depth Axis Title Options...

ChartPrimaryHorizontalGridlinesOptionsDialog button More Primary Horizontal Gridlines
Options...

ChartPrimaryVerticalGridlinesOptionsDialog button More Primary Vertical Gridlines
Options...

ChartSecondaryHorizontalGridlinesOptionsDialog button More Secondary Horizontal
Gridlines Options...

ChartSecondaryVerticalGridlinesOptionsDialog button More Secondary Vertical Gridlines

Options...

ChartDepthGridlinesOptionsDialog button More Depth Gridlines Options...

ChartPrimaryHorizontalAxisOptionsDialog button More Primary Horizontal Axis
Options...

ChartPrimaryVerticalAxisOptionsDialog button More Primary Vertical Axis
Options...

ChartSecondaryHorizontalAxisOption button More Secondary Horizontal Axis
Options...

ChartSecondaryVerticalAxisOptionsDialog button More Secondary Vertical Axis
Options...

ChartDepthAxisOptionsDialog button More Depth Axis Options...

ChartDataTableOptionsDialog button More Data Table Options...

ChartTrendlineOptionsDialog button More Trendline Options...

ChartErrorBarsOptionsDialog button More Error Bars Options...

ChartUpDownBarsOptionsDialog button More Up/Down Bars Options...

ChartPlotAreaOptionsDialog button More Plot Area Options...

ChartWallOptionsDialog button More Walls Options...

ChartFloorOptionsDialog button More Floor Options...

ChartSecondaryHorizontalAxisTitle gallery Secondary Horizontal Axis Title

ChartSecondaryVerticalAxisTitle gallery Secondary Vertical Axis Title

ChartSecondaryHorizontalGridlines gallery Secondary Horizontal Gridlines

ChartSecondaryVerticalGridlines gallery Secondary Vertical Gridlines

ChartSecondaryHorizontalAxis gallery Secondary Horizontal Axis

ChartSecondaryVerticalAxis gallery Secondary Vertical Axis

GroupAddInsCustomToolbars group Custom Toolbars

ReviewDeleteCommentsMenu splitButton Delete

348 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ObjectBringToFrontMenu splitButton Bring to Front

ObjectSendToBackMenu splitButton Send to Back

ObjectsGroupMenu menu Group

SignatureLineInsertMenu splitButton Signature Line

FileSaveAsWord97_2003 button Word 97-2003 Document

EnglishWritingAssistant button English Assistant

TableOfContentsGallery gallery Table of Contents

SaveSelectionToTableOfContentsGallery button Save Selection to Table of
Contents Gallery...

ObjectsAlignRelativeToMargin toggleButton Align to Margin

TabTextBoxToolsFormat tab Format

TextBoxStyleGallery gallery Text Box Style

TextBoxPositionGallery gallery Position

FileSaveAsMenu splitButton Save As Other Format

FilePrintMenu splitButton Preview and Print

FilePermissionRestrictMenu menu Restrict Permission

GroupEnvelopeLabelCreate group Create

ReviewInkCommentNew button Ink Comment

DocumentPanelTemplate button Document Panel

ObjectSizeDialogClassic button Size...

TextBoxInsertVerticalWord button Draw Vertical Text Box

BevelShapeGallery gallery Bevel

_3DBevelPictureTopGallery gallery Bevel

BibliographyAddNewPlaceholder button Add New Placeholder...

GroupTable group Table

GroupTableCellSize group Cell Size

GlowColorPicker gallery More Glow Colors

RecolorColorPicker gallery More Variations

GlowColorMoreColorsDialog button More Colors...

PictureRecolorMoreColorsDialog button More Colors...

QuickStylesResetDocumentStyles button Reset Document Quick Styles

QuickStylesResetFromTemplate button Reset to Quick Styles from

349 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

Template

WatermarkRemove button Remove Watermark

CoverPageRemove button Remove Current Cover Page

HeaderFooterRemoveHeaderWord button Remove Header

HeaderFooterRemoveFooterWord button Remove Footer

PageNumbersRemove button Remove Page Numbers

TableOfContentsRemove button Remove Table of Contents

SmartArtAddBullet button Add Bullet

ThemeResetFromTemplate button Reset to Theme from Template

PictureChange button Change Picture...

GroupWordArtStyles group WordArt Styles

TextFillColorPicker gallery Text Fill

TextOutlineColorPicker gallery Text Outline

TextOutlineColorMoreColorsDialog button More Outline Colors...

TextEffectsMenu menu Text Effects

TextStylesGallery gallery Quick Styles

WordArtClear button Clear WordArt

TextPictureFill button Picture...

TextFillGradientGallery gallery Gradient

TextFillMoreGradientsDialog button More Gradients...

TextFillTextureGallery gallery Texture

TextOutlineDashesGallery gallery Dashes

TextOutlineMoreLinesDialog button More Lines...

TextOutlineWeightGallery gallery Weight

TextEffectShadowGallery gallery Shadow

TextEffectsMoreShadowsDialog button Shadow Options...

TextEffectsBevelMore3DOptionsDialog button 3-D Options...

TextEffects3DRotationGallery gallery 3-D Rotation

TextEffects3DRotationOptionsDialog button 3-D Rotation Options...

TextEffectGlowGallery gallery Glow

TextGlowColorPicker gallery More Glow Colors

350 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

TextGlowColorMoreColorsDialog button More Colors...

TextReflectionGallery gallery Reflection

ShapeEffectsMenu menu Shape Effects

UpgradeDocument button Convert

GroupHeaderFooterClose group Close

GroupChartCurrentSelection group Current Selection

GroupChartLabels group Labels

PageSizeMorePaperSizesDialog button More Paper Sizes...

LineNumbersOptionsDialog button Line Numbering Options...

TableOfAuthoritiesUpdate button Update Table

TableOfFiguresUpdate button Update Table

ContentControlsGroup button Group

BevelTextGallery gallery Bevel

PictureCorrectionsDialog button Picture Corrections Options...

GroupTextBoxStyles group Text Box Styles

GroupTableStylesWord group Table Styles

GroupWordArtStylesClassic group WordArt Styles

PageBorderAndShadingDialog button Page Borders...

OutlineViewClose button Close Outline View

SmartArtAddShapeSplitMenu splitButton Add Shape Options

ContentControlRichText button Rich Text

ContentControlText button Text

ContentControlPicture button Picture

ContentControlComboBox button Combo Box

ContentControlDropDownList button Drop-Down List

ContentControlBuildingBlockGallery button Building Block Gallery

ContentControlDate button Date

AutoSummaryToolsMenu menu AutoSummary Tools

GroupInkFormat group Format

InkColorPicker gallery Color

GroupDiagramLayoutClassic group Layout

351 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

GroupDiagramStylesClassic group Styles

GroupOrganizationChartLayoutClassic group Layout

GroupOrganizationChartStyleClassic group Styles

TextBoxDrawMenu menu Draw Text Box

TextBoxInsertWord button Text Box

GroupOrganizationChartSelect group Select

ShapeFillEffectMoreGradientsDialogClassic button More Gradients...

ShapeFillEffectMoreTexturesDialogClassic button More Textures...

ShapeFillEffectPatternClassic button Pattern...

BibliographyGallery gallery Bibliography

CustomHeaderGallery gallery Custom Header

CustomFooterGallery gallery Custom Footer

CustomCoverPageGallery gallery Custom Cover Page

CustomPageNumberGallery gallery Custom Page Number

CustomPageNumberTopGallery gallery Custom Top of Page

CustomPageNumberBottomGallery gallery Custom Bottom of Page

CustomPageMargins gallery Custom Page Margins

CustomWatermarkGallery gallery Custom Watermark

CustomEquationsGallery gallery Custom Equation

CustomTablesGallery gallery Custom Tables

CustomQuickPartsGallery gallery Custom Quick Parts

CustomAutoTextGallery gallery Custom AutoText

CustomTextBoxGallery gallery Custom Text Box

CustomTableOfContentsGallery gallery Custom Table of Contents

CustomBibliographyGallery gallery Custom Bibliography

CustomGallery1 gallery Custom Gallery 1

CustomGallery2 gallery Custom Gallery 2

CustomGallery3 gallery Custom Gallery 3

CustomGallery4 gallery Custom Gallery 4

CustomGallery5 gallery Custom Gallery 5

SaveSelectionToBibliographyGallery button Save Selection to Bibliography
Gallery...

352 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

MailMergeRecepientsUseOutlookContacts button Select from Outlook Contacts...

FootnoteNext splitButton Next Footnote

ReviewReviewingPaneMenu splitButton Reviewing Pane

GroupSizeClassic group Size

GroupPictureSizeClassic group Size

GroupPictureToolsClassic group Adjust

GalleryAllShapesAndCanvas gallery Shapes

GroupShapesClassic group Insert Shapes

GroupSmartArtShapes group Shapes

GroupShapeStylesClassic group Shape Styles

GroupInsertText group Text

Drawing1ColorPickerFill gallery Shape Fill

ShapeOutlineColorPicker gallery Picture Border

Drawing1ColorPickerLineStyles gallery Picture Border

Drawing1GalleryTextures gallery Texture

InsertBuildingBlocksEquationsGallery gallery Equation

Drawing1GalleryBrightness gallery Brightness

Drawing1GalleryContrast gallery Contrast

GroupDiagramArrangeClassic group Arrange

GroupTextBoxArrange group Arrange

ContentControlsGroupMenu menu Group

ContentControlsUngroup button Ungroup

ControlsGalleryClassic gallery Legacy Tools

ReviewShowSourceDocumentsMenu gallery Show Source Documents

HeaderFooterEditFooter button Edit Footer

QuickStylesSetAsDefault button Set as Default

EquationInsertNew button Insert New Equation

EquationProfessional button Professional

EquationLinearFormat button Linear

EquationNormalText toggleButton Normal Text

EquationSymbolsInsertGallery gallery Equation Symbols

353 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

EquationIntegralGallery gallery Integral

EquationFractionGallery gallery Fraction

EquationRadicalGallery gallery Radical

EquationLargeOperatorGallery gallery Large Operator

EquationDelimiterGallery gallery Bracket

EquationScriptGallery gallery Script

EquationFunctionGallery gallery Function

EquationAccentGallery gallery Accent

EquationLimitGallery gallery Limit and Log

EquationOperatorGallery gallery Operator

EquationMatrixGallery gallery Matrix

EquationOptions button Equation Options...

TabEquationToolsDesign tab Design

GroupEquationTools group Tools

GroupEquationSymbols group Symbols

GroupEquationStructures group Structures

MailMergeMergeFieldInsertMenu splitButton Insert Merge Field

PasteMenu splitButton Paste

GroupPictureStyles group Picture Styles

PictureStylesGallery gallery Quick Styles

ReviewAcceptChangeAndMoveToNext button Accept and Move to Next

ReviewRejectChangeAndMoveToNext button Reject and Move to Next

PictureEffectsShadowGallery gallery Shadow

PictureEffectsGlowGallery gallery Glow

PictureEffectsSoftEdgesGallery gallery Soft Edges

PictureReflectionGallery gallery Reflection

PictureRotationGallery gallery 3-D Rotation

InkToolsClose button Close Ink Tools

GroupChineseTranslation group Chinese Translation

LineSpacingMenu menu Line spacing

GroupDocumentViews group Document Views

354 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

GroupViewShowHide group Show/Hide

GroupWindow group Window

ViewGridlines checkBox View Gridlines

FileDocumentEncrypt toggleButton Encrypt Document

WordArtFormatDialog button Format Text Effects...

ObjectRotationOptionsDialog button More Rotation Options...

MoreTextureOptions button More Textures...

TextFillColorMoreColorsDialog button More Fill Colors...

ZoomTwoPages button Two Pages

QuickPartsInsertFromOnline button Get More on Office Online...

GroupPrintPreviewPageSetup group Page Setup

ShowRuler checkBox Ruler

FileEmailAsPdfEmailAttachment button E-mail as PDF Attachment

FileEmailAsXpsEmailAttachment button E-mail as XPS Attachment

GroupTemplates group Templates

SpellingMenu splitButton Spelling

PictureEffectsMenu menu Picture Effects

PictureShapeGallery gallery Change Shape

PictureBorderColorPickerClassic gallery Picture Border

GroupChartBackground group Background

GroupChartAnalysis group Analysis

FileNewBlogPost button Blog

TabBlogPost tab Blog Post

GroupBlogPublish group Blog

BlogPublishMenu splitButton Publish

BlogPublish button Publish

BlogPublishDraft button Publish as Draft

BlogManageAccounts button Manage Accounts

BlogCategoryInsert button Insert Category

BlogOpenExisting button Open Existing

GroupBlogBasicText group Basic Text

355 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

TabBlogInsert tab Insert

GroupBlogInsertText group Text

NewTableStyleWord button New Table Style...

MenuPublish menu Publish

ChangeStylesMenu menu Change Styles

GroupBlogInsertLinks group Links

FileCompatibilityCheckerWord button Run Compatibility Checker

FileSaveAsOtherFormats button Other Formats

FileSaveAsWordDocx button Word Document

FileSaveAsWordDotx button Word Template

ZoomCurrent100 button 100%

Drawing1ColorPickerLineStylesWordArt gallery Picture Border

Drawing1ColorPickerFillWordArt gallery Shape Fill

BlogInsertCategories button Insert Category

GroupTableLayout group Table Style Options

TextFillMoreTextures button More Textures...

GroupMacros group Macros

PlayMacro button Macros

MenuMacros splitButton Macros

AdvertisePublishAs button Find add-ins for other file formats

ReviewProtectDocumentMenu menu Protect Document

ReviewRestrictFormatting toggleButton Restrict Formatting and Editing

BlogHomePage button Home Page

GroupBlogProofing group Proofing

GroupBlogStyles group Styles

AlternativeText button Size...

ThemeBrowseForThemes button Browse for Themes...

FileCheckOutDiscard button Discard Check Out

GroupBlogSymbols group Symbols

ClearMenuWord menu Clear

MdiChildSystemMenu menu Document

356 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

NudgeMenu menu Nudge

RevisionsMenu menu Track Changes

TableCellVerticalAlignmentMenu menu Alignment

FramesetMenu menu Frames

3.1.2 Excel 2007

idMso
Control
Type Label

Spelling button Spelling...

FileSave button Save

FilePrint button Print

ChartInsert button Chart...

FileNew button New

Copy button Copy

Cut button Cut

Paste button Paste

FileOpen button Open

ZoomPrintPreviewExcel toggleButton Zoom

Repeat button Repeat

UnderlineDouble toggleButton Double Underline

FileClose button Close

FormatPainter toggleButton Format Painter

FilePrintPreview button Print Preview

Bold toggleButton Bold

Italic toggleButton Italic

Underline toggleButton Underline

DarkShading button Dark Shading

AlignLeft toggleButton Align Left

AlignRight toggleButton Align Right

AlignCenter toggleButton Center

AlignJustify toggleButton Justify

357 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

Undo gallery Undo

Redo gallery Redo

BorderTop toggleButton Top Border

BorderBottom toggleButton Bottom Border

BorderLeft toggleButton Left Border

BorderRight toggleButton Right Border

BorderInside button Inside Borders

BorderOutside button Outside Borders

BorderNone button No Border

ObjectsGroup button Group

ObjectsUngroup button Ungroup

ObjectBringToFront button Bring to Front

ObjectSendToBack button Send to Back

ObjectBringForward button Bring Forward

ObjectSendBackward button Send Backward

ViewFullScreenView toggleButton Full Screen

ObjectsSelect toggleButton Select Objects

MacroRecord button Record Macro...

MacroPlay button Macros

ObjectFlipHorizontal button Flip Horizontal

ObjectFlipVertical button Flip Vertical

ObjectRotateRight90 button Rotate Right 90°

ObjectRotateLeft90 button Rotate Left 90°

ShapeFreeform toggleButton Freeform

ObjectEditPoints toggleButton Edit Points

FormControlEditBox button Edit Box

FormControlCheckBox button Check Box

FormControlComboBox button Combo Box

PropertySheet button Property Sheet

Lock toggleButton Lock

AutoSum button Sum

358 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

StylesDialogClassic button Edit Cell Styles

Camera button Camera

FormControlButton button Button

Calculator button Calculator

Strikethrough toggleButton Strikethrough

CellsDelete button Delete Cells...

CellsInsertDialog button Insert Cells...

WindowsArrangeAll button Arrange All

WindowNew button New Window

ReviewAcceptOrRejectChangeDialog button Accept/Reject Changes

SymbolInsert button Symbol...

ReplaceDialog button Replace...

PagePrevious button Previous Page

PageNext button Next Page

TextBoxInsertVertical toggleButton Vertical Text Box

ObjectsRegroup button Regroup

PrintAreaSetPrintArea button Set Print Area

PasteFormatting button Paste Formatting

PasteValues button Paste Values

FillRight button Right

FillDown button Down

EqualSign button Equal Sign

PlusSign button Plus Sign

MinusSign button Minus Sign

MultiplicationSign button Multiplication Sign

DivisionSign button Division Sign

ExponentiationSign button Exponentiation Sign

ParenthesisLeft button Left Parenthesis

ParenthesisRight button Right Parenthesis

ColonSign button Colon

CommaSign button Comma

359 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

PercentSign button Percent Sign

DollarSign button Dollar Sign

FunctionWizard button Insert Function...

ConstrainNumeric button Constrain Numeric

LightShading button Light Shading

AccountingFormat button Accounting Number Format

PercentStyle button Percent Style

CommaStyle button Comma Style

DecimalsIncrease button Increase Decimal

DecimalsDecrease button Decrease Decimal

MergeCenter toggleButton Merge & Center

FontSizeIncrease button Increase Font Size

FontSizeDecrease button Decrease Font Size

TextOrientationVertical toggleButton Vertical Text

TextOrientationRotateUp toggleButton Rotate Text Up

TextOrientationRotateDown toggleButton Rotate Text Down

AlignDistributeHorizontallyClassic button Distribute Horizontally

ShapeScribble toggleButton Scribble

OutlineSymbolsShowHide button Show Outline Symbols

TableSelectVisibleCells button Select Visible Cells

SelectCurrentRegion button Select Current Region

FreezePanes button Freeze Panes

ZoomIn button Zoom In

ZoomOut button Zoom Out

FormControlRadioButton button Option Button

FormControlScrollBar button Scroll Bar

FormControlListBox button List Box

TraceDependentRemoveArrows button Remove Dependent Arrows

TraceDependents button Trace Dependents

TracePrecedentsRemoveArrows button Remove Precedent Arrows

TraceRemoveAllArrows button Remove Arrows

360 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

FileUpdate button Update File

ReadOnly button Toggle Read Only

AutoFilterClassic button AutoFilter

Refresh button Refresh

PivotTableFieldSettings button Field Settings

PivotTableShowPages button Show Report Filter Pages...

OutlineShowDetail button Show Detail

TraceError button Trace Error

OutlineHideDetail button Hide Detail

AlignDistributeVerticallyClassic button Distribute Vertically

FormControlGroupBox button Group Box

FormControlSpinner button Spinner

TabOrder button Tab Order...

RunDialog button Run Dialog

FormControlCombinationListEdit button Combination List-Edit

FormControlCombinationDropDownEdit button Combination Drop-Down Edit

FormControlLabel button Label

TracePrecedents button Trace Precedents

CodeEdit button Code

PageBreakInsertOrRemove button Insert Page Break

QueryParameters button Parameters

RowHeight button Row Height...

ColumnWidth button Column Width...

OleObjectctInsert button Object...

SnapToGrid toggleButton Snap to Grid

ObjectsAlignLeft button Align Left

ObjectsAlignRight button Align Right

ObjectsAlignTop button Align Top

ObjectsAlignBottom button Align Bottom

ObjectsAlignCenterHorizontal button Align Center

ObjectsAlignMiddleVertical button Align Middle

361 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ClipArtInsert toggleButton Clip Art...

ObjectRotateFree button Free Rotate

CombineCharacters toggleButton Yoko-Gumi

ViewNormalViewExcel toggleButton Normal

ViewPageBreakPreviewView toggleButton Page Break Preview

PictureCrop toggleButton Crop

FileCloseAll button Close All

FileSaveAs button Save As

AdvancedFileProperties button View Document Properties...

CopyAsPicture button Copy as Picture...

PasteSpecialDialog button Paste Special...

SelectAll button Select All

GoTo button Go To...

FileLinksToFiles button Edit Links to Files

HeaderFooterInsert button Header & Footer...

BulletsAndNumberingBulletsDialog button Bullets and Numbering...

AutoFormatDialog button AutoFormat...

MergeCells button Merge Cells

SplitCells button Split Cells...

ConvertTextToTable button Convert Text to Table...

ShowClipboard button Office Clipboard...

OutlookTaskCreate button Create Microsoft Office Outlook Task

WindowMinimize button Minimize

WindowRestore button Restore

WindowClose button Close

WindowSaveWorkspace button Save Workspace...

SheetDelete button Delete Sheet

SheetMoveOrCopy button Move or Copy Sheet...

ViewFormulaBar checkBox Formula Bar

SheetInsert button Insert Sheet

FormatCellsDialog button Format Cells...

362 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

GoalSeek button Goal Seek...

ScenarioManager button Scenario Manager...

DataFormExcel button Form...

OutlineSubtotals button Subtotal

DataTable button Data Table...

Consolidate button Consolidate...

WindowHide button Hide

WindowUnhide button Unhide...

FillUp button Up

FillLeft button Left

FillAcrossWorksheets button Across Worksheets...

FillSeries button Series...

FillJustify button Justify

ClearFormats button Clear Formats

ClearContents button Clear Contents

ClearComments button Clear Comments

NamePasteName button Paste Names...

NameCreateFromSelection button Create from Selection...

NamesApply button Apply Names...

RowHeightAutoFit button AutoFit Row Height

RowsHide button Hide Rows

RowsUnhide button Unhide Rows

ColumnWidthAutoFit button AutoFit Column Width

ColumnsHide button Hide Columns

ColumnsUnhide button Unhide Columns

ColumnWidthDefault button Default Width...

SheetRename button Rename Sheet

SheetHide button Hide Sheet

SheetUnhide button Unhide Sheet...

SheetProtect button Protect Sheet...

ReviewProtectWorkbook toggleButton Protect Workbook...

363 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

MacroRelativeReferences toggleButton Use Relative References

Filter toggleButton Filter

SortClear button Clear

AdvancedFilterDialog button Advanced...

OutlineAuto button Auto Outline

OutlineClear button Clear Outline

OutlineSettings button Group and Outline Settings

PrintPreviewClose button Close Print Preview

ZoomDialog button Zoom...

SortDialogClassic button Sort...

ExchangeFolder button Exchange Folder...

AddInManager button Add-Ins...

ViewCustomViews button Custom Views...

SheetBackground button Background...

ChartEditDataSource button Select Data...

ChartPlacement button Move Chart...

CalculateNow button Calculate Now

ObjectFormatDialog button Object...

Help button Help

PivotTableEnableSelection toggleButton Enable Selection

PivotTableListFormulas button List Formulas

PivotTableSelectData button Values

PivotTableSelectLabelAndData button Labels and Values

PivotTableSelectLabel button Labels

PasteAsPicture button Paste as Picture

PastePictureLink button Paste Picture Link

CalculateSheet button Calculate Sheet

TextOrientationAngleCounterclockwise toggleButton Angle Counterclockwise

TextOrientationAngleClockwise toggleButton Angle Clockwise

WebGoBack button Back

WebGoForward button Forward

364 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

SmartArtInsert button SmartArt...

ShapeRerouteConnectors toggleButton Reroute Connectors

ObjectNudgeUp button Up

ObjectNudgeDown button Down

ObjectNudgeLeft button Left

ObjectNudgeRight button Right

ShapeCurve toggleButton Curve

ShapeStraightConnector toggleButton Straight Connector

ShapeElbowConnector toggleButton Elbow Connector

ObjectFillMoreColorsDialog button More Fill Colors...

ObjectBorderOutlineColorMoreColorsDialog button More Outline Colors...

LineStylesDialog button More Lines...

ArrowsMore button More Arrows...

WordArtVerticalText button Vertical Text

ContrastMore button More Contrast

ContrastLess button Less Contrast

BrightnessMore button More Brightness

BrightnessLess button Less Brightness

ShadowNudgeUpClassic button Nudge Shadow Up

ShadowNudgeDownClassic button Nudge Shadow Down

ShadowNudgeLeftClassic button Nudge Shadow Left

ShadowNudgeRightClassic button Nudge Shadow Right

ObjectShadowColorMoreColorsDialog button More Shadow Colors...

_3DEffectColorPickerMoreClassic button More 3-D Colors...

ShapeRectangle toggleButton Rectangle

ShapeRoundedRectangle toggleButton Rounded Rectangle

ShapeIsoscelesTriangle toggleButton Isosceles Triangle

ShapeOval toggleButton Oval

ShapeLeftBrace toggleButton Left Brace

ShapeRightBrace toggleButton Right Brace

ShapeArc toggleButton Arc

365 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ShapeRightArrow toggleButton Right Arrow

ShapeDownArrow toggleButton Down Arrow

ShapeRoundedRectangularCallout toggleButton Rounded Rectangular Callout

ShapeStar toggleButton 5-Point Star

PictureReset button Reset Picture

_3DEffectsOnOffClassic toggleButton 3-D On/Off

_3DTiltDownClassic button Tilt Down

_3DTiltUpClassic button Tilt Up

_3DTiltLeftClassic button Tilt Left

_3DTiltRightClassic button Tilt Right

_3DSurfaceMaterialClassic menu Surface

_3DExtrusionPerspectiveClassic toggleButton Perspective

_3DExtrusionParallelClassic toggleButton Parallel

_3DLightingFlatClassic toggleButton Bright

_3DLightingNormalClassic toggleButton Normal

_3DLightingDimClassic toggleButton Dim

_3DSurfaceMatteClassic toggleButton Matte

_3DSurfacePlasticClassic toggleButton Plastic

_3DSurfaceMetalClassic toggleButton Metal

_3DSurfaceWireFrameClassic toggleButton Wire Frame

SnapToShapes toggleButton Snap to Shape

HyperlinkInsert button Hyperlink...

PrintAreaAddToPrintArea button Add to Print Area

PrintAreaClearPrintArea button Clear Print Area

PageBreaksResetAll button Reset All Page Breaks

ReviewNewComment button New Comment

ReviewPreviousComment button Previous

ReviewNextComment button Next

ReviewDeleteComment button Delete

ReviewShowOrHideComment button Show/Hide Comment

ReviewShowAllComments toggleButton Show All Comments

366 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

PivotTableFieldInsert button Calculated Field...

PivotTableCalculatedItem button Calculated Item...

PivotTableSelectEntireTable button Entire PivotTable

PivotTableOptions button Options

DesignMode toggleButton Design Mode

PhoneticGuideEdit button Edit Phonetic

PhoneticGuideSettings button Phonetic Settings...

PhoneticGuideFieldShow toggleButton Show Phonetic Field

CircularReferences gallery Circular References

VisualBasic button Visual Basic

BorderThickBottom button Thick Bottom Border

BorderTopAndBottom button Top and Bottom Border

BorderTopAndDoubleBottom button Top and Double Bottom Border

BorderTopAndThickBottom button Top and Thick Bottom Border

BordersAll button All Borders

BorderThickOutside button Thick Box Border

Font comboBox Font:

FontSize comboBox Font Size:

StyleGalleryClassic gallery Style:

ZoomClassic gallery Zoom:

ScenarioGallery gallery Scenario:

DocumentLocation comboBox Address:

MergeCellsAcross button Merge Across

BorderInsideHorizontal button Inside Horizontal Border

BorderInsideVertical button Inside Vertical Border

BorderDiagonalDown button Diagonal Down Border

BorderDiagonalUp button Diagonal Up Border

TextDirectionLeftToRight toggleButton Left-to-Right

TextDirectionRightToLeft toggleButton Right-to-Left

ActiveXCheckBox button Check Box

FindDialogExcel button Find...

367 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ActiveXTextBox button Text Box

ActiveXButton button Command Button

ActiveXRadioButton button Option Button

ActiveXListBox button List Box

ActiveXComboBox button Combo Box

ActiveXToggleButton button Toggle Button

ActiveXSpinButton button Spin Button

ActiveXScrollBar button Scroll Bar

ActiveXLabel button Label

ShadowSemitransparentClassic toggleButton Semitransparent Shadow

RightToLeftDocument toggleButton Right-to-Left Document

EditQuery button Edit Query...

DataRangeProperties button Properties

RefreshAll button Refresh All

RefreshCancel button Cancel Refresh

RefreshStatus button Refresh Status

PasteLink button Paste Link...

ClearAll button Clear All

DataValidation button Data Validation...

DataValidationCircleInvalid button Circle Invalid Data

ReviewShareWorkbook button Share Workbook...

ReviewHighlightChanges button Highlight Changes...

CompareAndMergeWorkbooks button Compare and Merge Workbooks...

DatabaseQueryNew button New Database Query...

DataValidationClearValidationCircles button Clear Validation Circles

ActiveXImage button Image

ShadowOnOrOffClassic toggleButton Shadow On/Off

ObjectSetShapeDefaults button Set AutoShape Defaults

FileSendAsAttachment button E-mail

FileNewDefault button New

FilePrintQuick button Quick Print

368 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

PictureInsertFromFile button Picture...

ShapeStraightConnectorArrow toggleButton Straight Arrow Connector

ShapeElbowConnectorArrow toggleButton Elbow Arrow Connector

PasteAsHyperlink button Paste as Hyperlink

ParagraphDistributed toggleButton Distributed

PictureSetTransparentColor toggleButton Set Transparent Color

PivotTableSolveOrder button Solve Order...

PivotTableReport button PivotTable and PivotChart Wizard

ReviewProtectAndShareWorkbook button Protect Sharing

OutlineGroup button Group...

OutlineUngroup button Ungroup...

IndentIncreaseExcel button Increase Indent

IndentDecreaseExcel button Decrease Indent

HangulHanjaConversion button Hangul Hanja Conversion...

MacroSecurity button Macro Security

WebPagePreview button Web Page Preview

SendCopySendNow button Send Now

SendCopySelectNames button Select Names

SendCopySendToMailRecipient toggleButton Mail Recipient

ComAddInsDialog button COM Add-Ins...

PivotChartInsertClassic button PivotChart

PivotFieldListShowHide toggleButton Field List

FileSaveAsWebPage button Save as Web Page...

GetExternalDataFromWeb button From Web

WebOptionsDialog button Web Options...

GetExternalDataFromText button From Text

FilePublishAsWebPage button Publish as Web Page...

PivotTableOlapOffline button Offline OLAP...

ObjectsMultiSelect button Select Multiple Objects

TextDirectionContext toggleButton Context

CalculateFull button TBA

369 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

WatchWindow toggleButton Watch Window

FormulaEvaluate button Evaluate Formula

AutoSumAverage button Average

AutoSumCount button Count Numbers

AutoSumMax button Max

AutoSumMin button Min

AutoSumMoreFunctions button More Functions...

PasteFormulas button Formulas

PasteNoBorders button No Borders

PasteTranspose button Transpose

DrawingCanvasFit button Fit

DrawingCanvasResize button Resize

DrawingCanvasExpand button Expand

ReviewSendForReview button Send for Review...

BorderDrawMenu splitButton Draw Border

BorderErase toggleButton Erase Border

BorderStyle dropDown Line Style

ShowFormulas toggleButton Show Formulas

PivotTableOlapPropertyFields button Property Fields...

TranslationPane button Translate...

ErrorChecking button Error Checking...

FileCheckOut button Check Out

FileCheckIn button Check In

PivotTableGenerateGetPivotData checkBox Generate GetPivotData

ReviewReplyWithChanges button Reply with Changes...

ReviewEndReview button End Review...

BorderDrawLine toggleButton Draw Border

BorderDrawGrid toggleButton Draw Border Grid

GetExternalDataImportClassic button Import External Data

PicturesCompress button Compress Pictures...

VerticallyDistributed button Vertically Distributed

370 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ReviewAllowUsersToEditRanges button Allow Users to Edit Ranges...

SpeakCells button Speak Cells

SpeakStop button Stop Speaking

SpeakByRows toggleButton By Rows

SpeakByColumns toggleButton By Columns

SpeakOnEnter toggleButton On Enter

TableInsertExcel button Table

ResearchPane toggleButton Research...

TableStyleTotalsRow checkBox Total Row

TableRowsInsertAboveExcel button Insert Table Rows Above

TableRowsDeleteExcel button Delete Table Rows

TableConvertToRange button Convert to Range

PrintListRange button Print List

FileInternetFax button Internet Fax

XmlExport button Export

XmlImport button Import

ViewDocumentActionsPane toggleButton Document Actions

ReviewShowInk toggleButton Show Ink

TableColumnsInsertLeftExcel button Insert Table Columns to the Left

TableColumnsDeleteExcel button Delete Table Columns

InkDeleteAllInk button Delete All Ink

TableUnlinkExternalData button Unlink

TableExportTableToSharePointList button Export Table to SharePoint List...

PrivacyOptionsDialog button Privacy Options...

ListSynchronize button Synchronize List

ChangesDiscardAndRefresh button Discard Changes and Refresh

TableOpenInBrowser button Open in Browser

TableResize button Resize Table

XmlExpansionPacksExcel button Expansion Packs

FileVersionHistory button View Version History

XmlDataRefresh button Refresh Data

371 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

XmlMapProperties button Map Properties

WindowSideBySideSynchronousScrolling toggleButton Synchronous Scrolling

WindowResetPosition button Reset Window Position

InkColorMoreColorsDialog button More Ink Colors...

ContactUs button Contact Us...

FilePermissionUnrestricted toggleButton Unrestricted Access

FilePermissionDoNotDistribute toggleButton Restricted Access

FilePermissionView button View Permission

FilePermission button Permission

Thesaurus button Thesaurus...

InkingStart button Start Inking

CheckForUpdates button Check for Updates

InkCopyAsText button Copy Ink As Text

InkEraser toggleButton Eraser

FilePermissionRestrictAs button Manage Credentials

Connections button Connections

FileViewDigitalSignatures toggleButton View Signatures

FileWorkflowTasks button View Workflow Tasks

FileStartWorkflow button Workflows

SignatureLineInsert button Signature Line

LabelInsert button Label

BarcodeInsert button Barcode

ViewPageLayoutView toggleButton Page Layout

PivotClearAll button Clear All

ChartStylesGallery gallery Quick Styles

ChartLayoutGallery gallery Quick Layout

ChartSaveTemplates button Save As Template

ChartAxisTitles menu Axis Titles

ChartAxes menu Axes

ChartGridlines menu Gridlines

ChartFormatSelection button Format Selection

372 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ChartElementSelector comboBox Chart Elements

PageMarginsGallery gallery Margins

TabPictureToolsFormat tab Format

TabDrawingToolsFormat tab Format

ShapesInsertGallery gallery Shapes

ShapeChangeShapeGallery gallery Change Shape

ShapeFillTextureGallery gallery Texture

ShapeStylesGallery gallery Quick Styles

PageOrientationGallery gallery Orientation

FileServerTasksMenu menu Server

FileSendMenu menu Send

TabInsert tab Insert

TabPageLayoutExcel tab Page Layout

TabView tab View

GroupFont group Font

GroupStyles group Styles

GroupProofing group Proofing

GroupInsertIllustrations group Illustrations

GroupShapes group Insert Shapes

GroupPageSetup group Page Setup

GroupComments group Comments

GroupPictureSize group Size

GroupDrawBorders group Draw Borders

GroupTableProperties group Properties

GroupTableTools group Tools

GroupArrange group Arrange

GroupShapeStyles group Shape Styles

TabFormulas tab Formulas

TabData tab Data

TabReview tab Review

GroupChartLayouts group Chart Layouts

373 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

GroupChartStyles group Chart Styles

GroupChartAxes group Axes

GroupChartShapes group Insert

GroupNumber group Number

GroupAlignmentExcel group Alignment

GroupCells group Cells

GroupSortFilter group Sort & Filter

GroupInsertTablesExcel group Tables

GroupPageLayoutScaleToFit group Scale to Fit

GroupPageLayoutSheetOptions group Sheet Options

GroupFunctionLibrary group Function Library

GroupNamedCells group Defined Names

GroupFormulaAuditing group Formula Auditing

GroupGetExternalData group Get External Data

GroupConnections group Connections

GroupOutline group Outline

GroupDataTools group Data Tools

GroupChangesExcel group Changes

ObjectEffectPresetGallery gallery Preset

PictureEffectsPresetGallery gallery Preset

_3DRotationGallery gallery 3-D Rotation

TabSmartArtToolsDesign tab Design

TabSmartArtToolsFormat tab Format

TabChartToolsDesign tab Design

TabChartToolsLayout tab Layout

TabChartToolsFormat tab Format

ShapeFillColorPicker gallery Shape Fill

OutlineColorPicker gallery Picture Border

FileDocumentInspect button Inspect Document

AlignLeftToRightMenu splitButton Left-to-Right

GroupControls group Controls

374 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

GroupZoom group Zoom

ArrowStyleGallery gallery Arrows

OutlineDashesGallery gallery Dashes

OutlineWeightGallery gallery Weight

GroupPictureTools group Adjust

GroupSize group Size

FormatCellsNumberDialog button Format Cell Number

FormatCellsFontDialog button Format Cell Font

CellAlignmentOptions button Format Cell Alignment

PageSetupPageDialog button Page Setup

PageSetupSheetDialog button Sheet Options

TabPivotTableToolsOptions tab Options

PivotTableLayoutGrandTotals menu Grand Totals

TabPivotTableToolsDesign tab Design

GroupPivotTableActiveField group Active Field

GroupPivotTableLayout group Layout

GroupPivotTableSort group Sort

GroupPivotTableShowHide group Show/Hide

PivotTableLayoutSubtotals menu Subtotals

GroupPivotTableGroup group Group

GroupPivotTableTools group Tools

GroupPivotTableData group Data

GroupPivotTableOptions group PivotTable

GroupPivotTableStyles group PivotTable Styles

GroupPivotTableStyleOptions group PivotTable Style Options

WrapText toggleButton Wrap Text

ClearMenu menu Clear

ReviewTrackChangesMenu menu Track Changes

ObjectAlignMenu menu Align

ObjectRotateGallery gallery Rotate

FillMenu menu Fill

375 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

OrientationMenu menu Orientation

MergeCenterMenu splitButton Merge

AutoSumMenu splitButton AutoSum

PrintAreaMenu menu Print Area

PageBreakMenu menu Breaks

NameDefineMenu splitButton Define Name

RefreshMenu splitButton Refresh

WhatIfAnalysisMenu menu What-If Analysis

PivotTableFormulasMenu menu Formulas

PivotTableOlapTools menu OLAP tools

PivotTableOptionsMenu splitButton Table Options

ErrorCheckingMenu splitButton Error Checking

TraceRemoveArrowsMenu splitButton Remove Arrows

SortFilterMenu menu Sort & Filter

FontColorPicker gallery Font Color

CellFillColorPicker gallery Shading

BorderDoubleBottom button Bottom Double Border

TabHome tab Home

ChartTitle gallery Chart Title

ChartPrimaryHorizontalAxisTitle gallery Primary Horizontal Axis Title

ChartPrimaryVerticalAxisTitle gallery Primary Vertical Axis Title

ChartDepthAxisTitle gallery Depth Axis Title

ChartLegend gallery Legend

ChartDataLabel gallery Data Labels

ChartPrimaryHorizontalGridlines gallery Primary Horizontal Gridlines

ChartPrimaryVerticalGridlines gallery Primary Vertical Gridlines

ChartDepthGridlines gallery Depth Gridlines

ChartPrimaryHorizontalAxis gallery Primary Horizontal Axis

ChartPrimaryVerticalAxis gallery Primary Vertical Axis

ChartDepthAxis gallery Depth Axis

ChartDataTable gallery Data Table

376 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ChartTrendline gallery Trendline

ChartErrorBars gallery Error Bars

ChartLines gallery Lines

ChartUpDownBars gallery Up/Down Bars

ChartPlotArea gallery Plot Area

ChartWall gallery Chart Wall

ChartFloor gallery Chart Floor

SmartArtAddShape button Add Shape

SmartArtLargerShape button Larger

SmartArtSmallerShape button Smaller

SmartArtResetGraphic button Reset Graphic

SmartArtTextPane toggleButton Text Pane

SmartArtEditIn2D toggleButton Edit in 2-D

SmartArtLayoutGallery gallery Change Layout

SmartArtMoreLayoutsDialog button More Layouts...

SmartArtStylesGallery gallery Quick Styles

SmartArtChangeColorsGallery gallery Change Colors

ObjectEffectSoftEdgesGallery gallery Soft Edges

ObjectEffectGlowGallery gallery Glow

GradientGallery gallery Gradient

ObjectEffectShadowGallery gallery Shadow

WordArtInsertGallery gallery WordArt

TextEffectTransformGallery gallery Transform

TabHeaderAndFooterToolsDesign tab Design

HeaderFooterHeaderGallery gallery Header

HeaderFooterFooterGallery gallery Footer

GroupHeaderFooterElements group Header & Footer Elements

HeaderFooterPageNumberInsertExcel button Page Number

HeaderFooterNumberOfPagesInsert button Number of Pages

HeaderFooterCurrentDate button Current Date

HeaderFooterCurrentTimeInsert button Current Time

377 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

HeaderFooterFilePathInsert button File Path

HeaderFooterFileNameInsert button File Name

HeaderFooterSheetNameInsert button Sheet Name

HeaderFooterAlignMargins checkBox Align with Page Margins

HeaderFooterPictureInsert button Picture

HeaderFooterFormatPicture button Format Picture

GroupHeaderFooterOptions group Options

HeaderFooterDifferentOddEvenPageExcel checkBox Different Odd & Even Pages

HeaderFooterDifferentFirstPageExcel checkBox Different First Page

HeaderFooterScaleWithDocument checkBox Scale with Document

SheetTabColorGallery gallery Tab Color

FontShadingColorMoreColorsDialog button More Colors...

FontColorMoreColorsDialogExcel button More Colors...

BorderMoreColorsDialog button More Colors...

SheetTabColorMoreColorsDialog button More Colors...

PivotTableNewStyle button New PivotTable Style...

PivotPlusMinusFieldHeadersShowHide toggleButton Field Headers

PivotTableExpandField button Expand Entire Field

PivotCollapseField button Collapse Entire Field

ConditionalFormattingDataBarsGallery gallery Data Bars

ConditionalFormattingColorScalesGallery gallery Color Scales

ConditionalFormattingIconSetsGallery gallery Icon Sets

ConditionalFormattingDataBarsMoreOptions button More Rules...

ConditionalFormattingColorScalesMore button More Rules...

ConditionalFormattingIconSetsMore button More Rules...

TableColumnsInsertRightExcel button Insert Table Column to the Right

TableRowsInsertBelowExcel button Insert Table Row Below

ConditionalFormattingHighlightBetween button Between...

ConditionalFormattingClearSelectedCells button Clear Rules from Selected Cells

ConditionalFormattingClearSheet button Clear Rules from Entire Sheet

ConditionalFormattingClearTable button Clear Rules from This Table

378 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ConditionalFormattingClearPivotTable button Clear Rules from This PivotTable

PivotTableStylesGallery gallery Quick Styles

FormatAsTableGallery gallery Format as Table

TableStylesGalleryExcel gallery Quick Styles

ConditionalFormattingsManage button Manage Rules...

ConditionalFormattingHighlightGreaterThan button Greater Than...

ConditionalFormattingHighlightLessThan button Less Than...

ConditionalFormattingHighlightEqualTo button Equal To...

ConditionalFormattingHighlightTextContaining button Text that Contains...

ConditionalFormattingHighlightDateOccuring button A Date Occurring...

ConditionalFormattingHighlightDuplicateValues button Duplicate Values...

ConditionalFormattingTopNItems button Top 10 Items...

ConditionalFormattingTopNPercent button Top 10 %...

ConditionalFormattingBottomNItems button Bottom 10 Items...

ConditionalFormattingBottomNPercent button Bottom 10 %...

ConditionalFormattingAboveAverage button Above Average...

ConditionalFormattingBelowAverage button Below Average...

RemoveDuplicates button Remove Duplicates

FilterReapply button Reapply

ThemeColorsGallery gallery Colors

PivotTableInsert button PivotTable

PivotChartInsert button PivotChart

PivotTableMove button Move PivotTable

PivotTableChangeDataSource button Change Data Source...

GroupSmartArtLayouts group Layouts

GroupSmartArtQuickStyles group SmartArt Styles

GroupSmartArtCreateGraphic group Create Graphic

GroupSmartArtReset group Reset

GroupSmartArtSize group Size

ConditionalFormattingHighlightCellsMenu menu Highlight Cells Rules

ConditionalFormattingTopBottomMenu menu Top/Bottom Rules

379 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

FormatCellsMenu menu Format

ConditionalFormattingClearMenu menu Clear Rules

ThemeSearchOfficeOnline button More Themes on Microsoft Office Online...

FontColorCycle button Color

TabAddIns tab Add-Ins

CellsInsertSmart button Insert Cells

CellsDeleteSmart button Delete Cells...

ObjectEditShapeMenu menu Edit Shape

PivotTableLayoutReportLayout menu Report Layout

PivotTableLayoutShowInCompactForm button Show in Compact Form

PivotTableLayoutShowInOutlineForm button Show in Outline Form

PivotTableLayoutShowInTabularForm button Show in Tabular Form

PivotTableClearMenu menu Clear

ConditionalFormattingTopBottomMore button More Rules...

ConditionalFormattingHighlightRulesMore button More Rules...

CellStylesGallery gallery Cell Styles

CellStyleNew button New Cell Style...

CellStylesMerge button Merge Styles...

TableStyleNew button New Table Style...

TableStyleClear button Clear

TableStyleHeaderRow checkBox Header Row

FilePublishExcelServices button Excel Services

PivotTableOlapConvertToFormulas button Convert to Formulas

PivotTableLayoutBlankRows menu Blank Rows

TableStyleFirstColumn checkBox First Column

TableStyleLastColumn checkBox Last Column

TableStyleBandedRows checkBox Banded Rows

TableStyleBandedColumns checkBox Banded Columns

TableStyleRowHeaders checkBox Row Headers

TableStyleColumnHeaders checkBox Column Headers

TableSummarizeWithPivot button Summarize with PivotTable

380 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ConnectionProperties button Connection Properties...

PivotClearFilters button Clear Filters

GetExternalDataFromAccess button From Access

GetExternalDataFromOtherSources gallery From Other Sources

GetExternalDataExistingConnections button Existing Connections

GroupThemesExcel group Themes

PivotPlusMinusButtonsShowHide toggleButton +/- Buttons

FileSaveAsPdfOrXps button Publish as PDF or XPS

FileSaveAsExcelOpenDocumentSpreadsheet button OpenDocument Spreadsheet

MoreControlsDialog button More Controls...

GroupCode group Code

TabDeveloper tab Developer

GroupXml group XML

PageScaleToFitWidth comboBox Width:

PageScaleToFitHeight comboBox Height:

SelectMenuExcel menu Find & Select

GoToSpecial button Go To Special...

GoToFormulas button Formulas

GoToComments button Comments

GoToConditionalFormatting button Conditional Formatting

GoToConstants button Constants

GoToDataValidation button Data Validation

PrintTitles button Print Titles

NameUseInFormula gallery Use in Formula

CalculationOptionsMenu menu Calculation Options

CalculationOptionsManuallly toggleButton Manual

CalculationOptionsAutomatically toggleButton Automatic

CalculationOptionsAutomaticallyExceptDataTables toggleButton Automatic Except for Data Tables

XmlSource toggleButton Source...

GroupClipboard group Clipboard

GroupInsertLinks group Links

381 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

GroupInsertBarcode group Barcode

GroupCalculation group Calculation

BordersGallery splitButton Borders

BordersMoreDialog button More Borders...

PageScaleToFitOptionsDialog button More Pages...

PageBreakInsertExcel button Insert Page Break

PageBreakRemove button Remove Page Break

PageSizeGallery gallery Size

ObjectPictureFill button Picture...

PivotTableGroupSelection button Group Selection

PivotTableGroupField button Group Field

WindowSwitchWindowsMenuExcel menu Switch Windows

ThemeColorsCreateNew button Create New Theme Colors...

ThemeFontsCreateNew button Create New Theme Fonts...

ShapeFillMoreGradientsDialog button More Gradients...

ShadowOptionsDialog button Shadow Options...

MarginsCustomMargins button Custom Margins...

FunctionsRecentlyUsedtInsertGallery gallery Recently Used

FunctionsFinancialInsertGallery gallery Financial

FunctionsDateTimeInsertGallery gallery Date & Time

FunctionsMathTrigInsertGallery gallery Math & Trig

FunctionsTextInsertGallery gallery Text

FunctionsLogicalInsertGallery gallery Logical

FunctionsStatisticalInsertGallery gallery Statistical

FunctionsLookupReferenceInsertGallery gallery Lookup & Reference

FunctionsInformationInsertGallery gallery Information

TabTableToolsDesignExcel tab Design

GroupTableStyleOptions group Table Style Options

GroupTableExternalData group External Table Data

GroupEditingExcel group Editing

FileCompatibilityChecker button Run Compatibility Checker

382 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ThemeFontsGallery gallery Fonts

ThemeEffectsGallery gallery Effects

FileProperties toggleButton Properties

TabPrintPreview tab Print Preview

GroupPrintPreviewPrint group Print

GroupPrintPreviewPreview group Preview

SortDialog button Sort...

SortAscendingExcel button Sort Ascending

SortDescendingExcel button Sort Descending

SortCustomExcel button Custom Sort...

FileCreateDocumentWorkspace toggleButton Create Document Workspace

FileSaveToDocumentManagementServer button Document Management Server

FileDocumentManagementInformation toggleButton Document Management Information

QuickAccessToolbarCustomization button Customize Quick Access Toolbar...

FilePrepareMenu menu Prepare

FileMarkAsFinal toggleButton Mark as Final

FileAddDigitalSignature button Add a Digital Signature

SignatureServicesAdd button Add Signature Services...

TextBoxInsertMenu splitButton Text Box

TextBoxInsertHorizontal toggleButton Horizontal Text Box

ControlProperties button Properties

ViewCode button View Code

GroupHeaderFooterNavigation group Navigation

ShadowStyleGalleryClassic gallery Shadow Effects

GroupInkSelect group Select

NumberFormatGallery comboBox Number Format

NumberFormatsDialog button More Number Formats...

PageSizeMorePaperSizesDialogExcel button More Paper Sizes...

PictureBrightnessGallery gallery Brightness

PictureContrastGallery gallery Contrast

SmartArtAddShapeAfter button Add Shape After

383 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

SmartArtAddShapeBefore button Add Shape Before

SmartArtAddShapeAbove button Add Shape Above

SmartArtAddShapeBelow button Add Shape Below

SmartArtAddAssistant button Add Assistant

ChartSwitchRowColumn button Switch Row/Column

ChartChangeType button Change Chart Type...

GroupChartData group Data

GroupChartLocation group Location

GroupChartType group Type

_3DRotationOptionsDialog button 3-D Rotation Options...

_3DBevelOptionsDialog button 3-D Options...

SelectionPane toggleButton Selection Pane...

SmartArtOrganizationChartLeftHanging button Left Hanging

SmartArtOrganizationChartRightHanging button Right Hanging

SmartArtOrganizationChartBoth button Both

SmartArtOrganizationChartStandard button Standard

SmartArtRightToLeft toggleButton Right to Left

ViewMessageBar checkBox Message Bar

NameManager button Name Manager

NameDefine button Define Name...

AccountingFormatExcel button

AccountingFormatMoreExcel button More Accounting Formats...

ShapeStylesOtherThemeFillsGallery gallery Other Theme Fills

SmartArtOrganizationChartMenu menu Layout

_3DEffectsGalleryClassic gallery 3-D Effects

_3DDirectionGalleryClassic gallery Direction

_3DLightingGalleryClassic gallery Lighting

GroupShadowEffects group Shadow Effects

Group3DEffects group 3-D Effects

ShadowColorPickerClassic gallery Shadow Color

_3DEffectColorPickerClassic gallery 3-D Color

384 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ControlsGallery gallery Insert

GoToHeader button Go to Header

GoToFooter button Go to Footer

UnderlineGallery splitButton Underline

GroupAddInsMenuCommands group Menu Commands

GroupAddInsToolbarCommands group Toolbar Commands

ViewFreezePanesGallery gallery Freeze Panes

GroupInk group Ink

TabInkToolsPens tab Pens

GroupInkPens group Pens

GroupInkClose group Close

InkBallpointPen toggleButton Ballpoint Pen

InkFeltTipPen toggleButton Felt Tip Pen

InkHighlighter toggleButton Highlighter

PhoneticGuideMenu splitButton Phonetic Guide

MarginsShowHide checkBox Show Margins

_3DSurfaceMaterialGalleryClassic gallery Surface

_3DExtrusionDepthGalleryClassic gallery Depth

GroupHeaderFooter group Header & Footer

FunctionsCubeInsertGallery gallery Cube

FunctionsEngineeringInsertGallery gallery Engineering

ThemeSaveCurrent button Save Current Theme...

ThemesGallery gallery Themes

ChartResetToMatchStyle button Reset to Match Style

Chart3DView button 3-D Rotation...

ObjectSizeAndPropertiesDialog button Size and Properties...

ShapeConvertToFreeform button Convert to Freeform

ReflectionGallery gallery Reflection

PictureRecolorGallery gallery Recolor

SmartArtPromote button Promote

SmartArtDemote button Demote

385 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

TabPivotChartToolsAnalyze tab Analyze

GroupPivotChartShowOrHide group Show/Hide

GroupPivotChartData group Data

GroupPivotChartActiveField group Active Field

PivotChartFilterShow toggleButton PivotChart Filter

ChartTitleOptionsDialog button More Title Options...

ChartLegendOptionsDialogDialog button More Legend Options...

ChartDataLabelDialog button More Data Label Options...

ChartPrimaryHorizontalAxisTitleOptionsDialog button More Primary Horizontal Axis Title Options...

ChartPrimaryVerticalAxisTitleOptionsDialog button More Primary Vertical Axis Title Options...

ChartSecondaryHorizontalAxisTitleOptionsDialog button More Secondary Horizontal Axis Title
Options...

ChartSecondaryVerticalAxisTitleOptionsDialog button More Secondary Vertical Axis Title Options...

ChartDepthAxisTitleOptionsDialog button More Depth Axis Title Options...

ChartPrimaryHorizontalGridlinesOptionsDialog button More Primary Horizontal Gridlines Options...

ChartPrimaryVerticalGridlinesOptionsDialog button More Primary Vertical Gridlines Options...

ChartSecondaryHorizontalGridlinesOptionsDialog button More Secondary Horizontal Gridlines
Options...

ChartSecondaryVerticalGridlinesOptionsDialog button More Secondary Vertical Gridlines Options...

ChartDepthGridlinesOptionsDialog button More Depth Gridlines Options...

ChartPrimaryHorizontalAxisOptionsDialog button More Primary Horizontal Axis Options...

ChartPrimaryVerticalAxisOptionsDialog button More Primary Vertical Axis Options...

ChartSecondaryHorizontalAxisOption button More Secondary Horizontal Axis Options...

ChartSecondaryVerticalAxisOptionsDialog button More Secondary Vertical Axis Options...

ChartDepthAxisOptionsDialog button More Depth Axis Options...

ChartDataTableOptionsDialog button More Data Table Options...

ChartTrendlineOptionsDialog button More Trendline Options...

ChartErrorBarsOptionsDialog button More Error Bars Options...

ChartUpDownBarsOptionsDialog button More Up/Down Bars Options...

ChartPlotAreaOptionsDialog button More Plot Area Options...

ChartWallOptionsDialog button More Walls Options...

ChartFloorOptionsDialog button More Floor Options...

386 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ChartSecondaryHorizontalAxisTitle gallery Secondary Horizontal Axis Title

ChartSecondaryVerticalAxisTitle gallery Secondary Vertical Axis Title

ChartSecondaryHorizontalGridlines gallery Secondary Horizontal Gridlines

ChartSecondaryVerticalGridlines gallery Secondary Vertical Gridlines

ChartSecondaryHorizontalAxis gallery Secondary Horizontal Axis

ChartSecondaryVerticalAxis gallery Secondary Vertical Axis

GroupAddInsCustomToolbars group Custom Toolbars

ConditionalFormattingMenu menu Conditional Formatting

TabPivotChartToolsDesign tab Design

TabPivotChartToolsLayout tab Layout

TabPivotChartToolsFormat tab Format

ObjectBringToFrontMenu splitButton Bring to Front

ObjectSendToBackMenu splitButton Send to Back

ObjectsGroupMenu menu Group

SignatureLineInsertMenu splitButton Signature Line

FileSaveAsExcel97_2003 button Excel 97-2003 Workbook

TextBoxInsertExcel toggleButton Text Box

FileSaveAsMenu splitButton Save As Other Format

FilePrintMenu splitButton Preview and Print

FilePermissionRestrictMenu menu Restrict Permission

InsertCellstMenu splitButton Insert

PivotTableInsertMenu splitButton PivotTable

OutlineGroupMenu splitButton Group

OutlineUngroupMenu splitButton Ungroup

FormulaMoreFunctionsMenu menu More Functions

DocumentPanelTemplate button Document Panel

GroupModify group Modify

ViewGridlinesToggleExcel toggleButton View Gridlines

BevelShapeGallery gallery Bevel

_3DBevelPictureTopGallery gallery Bevel

EditLinks button Edit Links

387 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

GlowColorPicker gallery More Glow Colors

RecolorColorPicker gallery More Variations

GlowColorMoreColorsDialog button More Colors...

PictureRecolorMoreColorsDialog button More Colors...

SmartArtAddBullet button Add Bullet

PictureChange button Change Picture...

GroupWordArtStyles group WordArt Styles

TextFillColorPicker gallery Text Fill

TextOutlineColorPicker gallery Text Outline

TextOutlineColorMoreColorsDialog button More Outline Colors...

TextEffectsMenu menu Text Effects

TextStylesGallery gallery Quick Styles

WordArtClear button Clear WordArt

TextPictureFill button Picture...

TextFillGradientGallery gallery Gradient

TextFillMoreGradientsDialog button More Gradients...

TextFillTextureGallery gallery Texture

TextOutlineDashesGallery gallery Dashes

TextOutlineMoreLinesDialog button More Lines...

TextOutlineWeightGallery gallery Weight

TextEffectShadowGallery gallery Shadow

TextEffectsMoreShadowsDialog button Shadow Options...

TextEffectsBevelMore3DOptionsDialog button 3-D Options...

TextEffects3DRotationGallery gallery 3-D Rotation

TextEffects3DRotationOptionsDialog button 3-D Rotation Options...

TextEffectGlowGallery gallery Glow

TextGlowColorPicker gallery More Glow Colors

TextGlowColorMoreColorsDialog button More Colors...

TextReflectionGallery gallery Reflection

ShapeEffectsMenu menu Shape Effects

PivotTableSubtotalsDoNotShow button Do Not Show Subtotals

388 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

PivotTableSubtotalsOnBottom button Show all Subtotals at Bottom of Group

PivotTableSubtotalsOnTop button Show all Subtotals at Top of Group

PivotTableGrandTotalsOffForRowsAndColumns button Off for Rows and Columns

PivotTableGrandTotalsOnForRowsAndColumns button On for Rows and Columns

PivotTableGrandTotalsOnForRowsOnly button On for Rows Only

PivotTableGrandTotalsOnForColumnsOnly button On for Columns Only

PivotTableBlankRowsInsert button Insert Blank Line after Each Item

PivotTableBlankRowsRemove button Remove Blank Line after Each Item

GroupChartCurrentSelection group Current Selection

GroupChartLabels group Labels

AlignTopExcel toggleButton Top Align

AlignMiddleExcel toggleButton Middle Align

AlignBottomExcel toggleButton Bottom Align

BevelTextGallery gallery Bevel

PictureCorrectionsDialog button Picture Corrections Options...

GroupTableStylesExcel group Table Styles

ConditionalFormattingNewRule button New Rule...

SmartArtAddShapeSplitMenu splitButton Add Shape Options

ViewRulerExcel checkBox Ruler

GroupInkFormat group Format

InkColorPicker gallery Color

BorderColorPickerExcel gallery Line Color

GroupSmartArtShapes group Shapes

GroupInsertText group Text

ShapeOutlineColorPicker gallery Picture Border

TableDeleteRowsAndColumnsMenu splitButton Delete

AccountingFormatMenu splitButton

GroupChartProperties group Properties

PivotTableEditDataSource splitButton Edit Data Source

FileExcelServicesOptions button Excel Services Options

TableExportMenu menu Export

389 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

TableExportTableToVisioPivotDiagram button Export Table to Visio PivotDiagram...

PasteMenu splitButton Paste

GroupPictureStyles group Picture Styles

PictureStylesGallery gallery Quick Styles

GroupInsertChartsExcel group Charts

ChartTypeColumnInsertGallery gallery Column

ChartTypeLineInsertGallery gallery Line

ChartTypePieInsertGallery gallery Pie

ChartTypeBarInsertGallery gallery Bar

ChartTypeAreaInsertGallery gallery Area

ChartTypeXYScatterInsertGallery gallery Scatter

ChartTypeOtherInsertGallery gallery Other Charts

ChartTypeAllInsertDialog button All Chart Types...

PivotChartClearMenu menu Clear

PictureEffectsShadowGallery gallery Shadow

PictureEffectsGlowGallery gallery Glow

PictureEffectsSoftEdgesGallery gallery Soft Edges

PictureReflectionGallery gallery Reflection

PictureRotationGallery gallery 3-D Rotation

InkToolsClose button Close Ink Tools

SheetRowsInsert button Insert Sheet Rows

SheetColumnsInsert button Insert Sheet Columns

SheetRowsDelete button Delete Sheet Rows

SheetColumnsDelete button Delete Sheet Columns

GroupViewShowHide group Show/Hide

GroupWindow group Window

GroupWorkbookViews group Workbook Views

ViewHeadings checkBox View

RefreshAllMenu splitButton Refresh

HideAndUnhideMenu menu Hide & Unhide

DataValidationMenu splitButton Data Validation

390 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

FileDocumentEncrypt toggleButton Encrypt Document

WordArtFormatDialog button Format Text Effects...

ObjectRotationOptionsDialog button More Rotation Options...

MoreTextureOptions button More Textures...

TextFillColorMoreColorsDialog button More Fill Colors...

BorderTopNoToggle button Top Border

BorderBottomNoToggle button Bottom Border

BorderLeftNoToggle button Left Border

BorderRightNoToggle button Right Border

WindowSplitToggle toggleButton Split

FileEmailAsPdfEmailAttachment button E-mail as PDF Attachment

FileEmailAsXpsEmailAttachment button E-mail as XPS Attachment

GroupPrintPreviewZoom group Zoom

PictureEffectsMenu menu Picture Effects

PictureShapeGallery gallery Change Shape

GroupChartBackground group Background

GroupChartAnalysis group Analysis

ZoomToSelection button Zoom to Selection

GridlinesExcel checkBox View

UnmergeCells button Split Cells...

MenuPublish menu Publish

ViewSideBySide toggleButton View Side by Side

FileSaveAsOtherFormats button Save As

FileSaveAsExcelXlsx button Excel Workbook

FileSaveAsExcelXlsxMacro button Excel Macro-Enabled Workbook

FileSaveAsExcelXlsb button Excel Binary Workbook

PasteAsPictureMenu menu As Picture

GroupPivotActions group Actions

PivotTableSelectFlyout menu Select

ZoomCurrent100 button 100%

TextFillMoreTextures button More Textures...

391 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

GroupMacros group Macros

PlayMacro button Macros

MenuMacros splitButton Macros

AdvertisePublishAs button Find add-ins for other file formats

UpgradeWorkbook button Convert

ReviewProtectWorkbookMenu menu Protect Workbook

ReviewRestrictEditing toggleButton Protect Structure and Windows

AlternativeText button Size and Properties...

ThemeBrowseForThemes button Browse for Themes...

FileCheckOutDiscard button Discard Check Out

MdiChildSystemMenu menu Document

3.1.3 PowerPoint 2007

idMso
Control
Type Label

Spelling button Spelling...

FileSave button Save

FilePrint button Print

TableInsert button Insert Table...

ChartInsert button Chart...

FileNew button New

Copy button Copy

Cut button Cut

Paste button Paste

FileOpen button Open

Clear button Clear

Superscript toggleButton Superscript

Subscript toggleButton Subscript

FileClose button Close

FormatPainter toggleButton Format Painter

FilePrintPreview toggleButton Print Preview

392 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

PickUpStyle button Pick Up Style

PasteApplyStyle button Apply Style

Bold toggleButton Bold

Italic toggleButton Italic

Underline toggleButton Underline

AlignLeft toggleButton Align Left

AlignRight toggleButton Align Right

AlignCenter toggleButton Center

AlignJustify toggleButton Justify

Undo gallery Undo

Redo gallery Redo

OutlinePromote button Promote

OutlineDemote button Demote

OutlineMoveUp button Move Up

OutlineMoveDown button Move Down

OutlineExpand button Expand

OutlineCollapse button Collapse

TextBoxInsert toggleButton Text Box

FindDialog button Find...

BorderTop toggleButton Top Border

BorderBottom toggleButton Bottom Border

BorderLeft toggleButton Left Border

BorderRight toggleButton Right Border

BorderInside toggleButton Inside Borders

BorderOutside toggleButton Outside Borders

BorderNone toggleButton No Border

ObjectsGroup button Group

ObjectsUngroup button Ungroup

ObjectBringToFront button Bring to Front

ObjectSendToBack button Send to Back

ObjectBringForward button Bring Forward

393 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ObjectSendBackward button Send Backward

ViewFullScreenView button Full Screen

ViewRulerPowerPoint checkBox Ruler

ObjectsSelect toggleButton Select Objects

MacroPlay button Macros

ObjectFlipHorizontal button Flip Horizontal

ObjectFlipVertical button Flip Vertical

ObjectRotateRight90 button Rotate Right 90°

ObjectRotateLeft90 button Rotate Left 90°

GroupDrawing group Drawing

ObjectEditPoints toggleButton Edit Points

GridSettings button Grid Settings...

PropertySheet button Property Sheet

OutlineShowTextFormatting toggleButton Show Text Formatting

Strikethrough toggleButton Strikethrough

WindowsArrangeAll button Arrange All

WindowNew button New Window

SymbolInsert button Symbol...

ReplaceDialog button Replace...

PagePrevious button Previous Page

PageNext button Next Page

TextBoxInsertVertical toggleButton Vertical Text Box

RedoOrRepeat button Redo

ObjectsRegroup button Regroup

FontSizeIncrease button Increase Font Size

FontSizeDecrease button Decrease Font Size

OleObjectctInsert button Object...

SnapToGrid toggleButton Snap to Grid

FindNext button Find Next

PasteDuplicate button Duplicate

SlideNew button New Slide

394 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ClipArtInsert toggleButton Clip Art...

CreateHandoutsInWord button Create Handouts in Microsoft Office Word

Shadow toggleButton Shadow

ObjectRotateFree button Free Rotate

ShapesMoreShapes button More AutoShapes

SlideMasterMasterLayout button Slide Layout...

CollapseAll button Collapse All

OutlineExpandAll button Expand All

CombineCharacters toggleButton Yoko-Gumi

SlideHide toggleButton Hide Slide

AnimationCustom toggleButton Custom Animation...

PictureCrop toggleButton Crop

SlideShowRehearseTimings button Rehearse Timings

ViewSlideView toggleButton Slide

ViewOutlineView toggleButton Outline

ViewSlideSorterView toggleButton Slide Sorter

ViewNotesPageView toggleButton Notes Page

ViewSlideShowView button Slide Show

ViewSlideMasterView toggleButton Slide Master

FileSaveAs button Save As

AdvancedFileProperties button View Document Properties...

PasteSpecialDialog button Paste Special...

SelectAll button Select All

FileLinksToFiles button Edit Links to Files

HeaderFooterInsert button Header & Footer...

DateAndTimeInsert button Date & Time...

NumberInsert button Number...

BordersShadingDialog button Borders and Shading...

BulletsAndNumberingBulletsDialog button Bullets and Numbering...

SetLanguage button Set Language...

AutoCorrect button AutoCorrect Options...

395 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

MergeCells button Merge Cells

SplitCells button Split Cells...

TableRowSelect button Select Row

TableColumnSelect button Select Column

TableSelect button Select Table

ShowClipboard button Office Clipboard...

OutlookTaskCreate button Create Microsoft Office Outlook Task

WindowMinimize button Minimize

WindowRestore button Restore

WindowClose button Close

PrintPreviewClose button Close Print Preview

ZoomDialog button Zoom...

About button About

PictureInsertFromFilePowerPoint button Picture...

ExchangeFolder button Exchange Folder...

AddInManager button Add-Ins...

ChartEditDataSource button Select Data...

WindowMoreWindowsDialog toggleButton More Windows...

ObjectEditDialog button Object...

ObjectFormatDialog button Object...

Help button Help

WebGoBack button Back

WebGoForward button Forward

SmartArtInsert button SmartArt...

ShapeRerouteConnectors toggleButton Reroute Connectors

ObjectNudgeUp button Up

ObjectNudgeDown button Down

ObjectNudgeLeft button Left

ObjectNudgeRight button Right

ShapeStraightConnector toggleButton Straight Connector

ShapeElbowConnector toggleButton Elbow Connector

396 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ObjectFillMoreColorsDialog button More Fill Colors...

ObjectBorderOutlineColorMoreColorsDialog button More Outline Colors...

LineStylesDialog button More Lines...

ArrowsMore button More Arrows...

WordArtVerticalText button Vertical Text

ContrastMore button More Contrast

ContrastLess button Less Contrast

BrightnessMore button More Brightness

BrightnessLess button Less Brightness

ShadowNudgeUpClassic button Nudge Shadow Up

ShadowNudgeDownClassic button Nudge Shadow Down

ShadowNudgeLeftClassic button Nudge Shadow Left

ShadowNudgeRightClassic button Nudge Shadow Right

ShapeRectangle toggleButton Rectangle

ShapeRoundedRectangle toggleButton Rounded Rectangle

ShapeIsoscelesTriangle toggleButton Isosceles Triangle

ShapeOval toggleButton Oval

ShapeLeftBrace toggleButton Left Brace

ShapeRightBrace toggleButton Right Brace

ShapeArc toggleButton Arc

ShapeRightArrow toggleButton Right Arrow

ShapeDownArrow toggleButton Down Arrow

ShapeRoundedRectangularCallout toggleButton Rounded Rectangular Callout

ShapeStar toggleButton 5-Point Star

PictureReset button Reset Picture

SnapToShapes toggleButton Snap to Shape

ViewVisualBasicCode button View Code

MasterViewClose button Close

HyperlinkInsert button Hyperlink...

ReviewNewComment button New Comment

VisualBasic button Visual Basic

397 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

BordersAll toggleButton All Borders

SlideBackgroundFormatDialog button Format Background...

TableDrawBorderPenStyle dropDown Pen Style

Font comboBox Font:

FontSize comboBox Font Size:

ZoomClassic gallery Zoom:

DocumentLocation comboBox Address:

InsertTab button Tab

WindowsCascade button Cascade

BorderInsideHorizontal toggleButton Inside Horizontal Border

BorderInsideVertical toggleButton Inside Vertical Border

BorderDiagonalDown toggleButton Diagonal Down Border

BorderDiagonalUp toggleButton Diagonal Up Border

TextDirectionLeftToRight toggleButton Left-to-Right

TextDirectionRightToLeft toggleButton Right-to-Left

ActiveXCheckBox button Check Box

ActiveXTextBox button Text Box

ActiveXButton button Command Button

ActiveXRadioButton button Option Button

ActiveXListBox button List Box

ActiveXComboBox button Combo Box

ActiveXToggleButton button Toggle Button

ActiveXSpinButton button Spin Button

ActiveXScrollBar button Scroll Bar

ActiveXLabel button Label

OleConvert button Convert...

ReviewEditComment button Edit Comment

TableDrawTable toggleButton Draw Table

TableEraser toggleButton Eraser

TableCellAlignTop toggleButton Align Top

TableCellAlignCenterVertically toggleButton Center Vertically

398 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

TableCellAlignBottom toggleButton Align Bottom

TableColumnsDistribute button Distribute Columns

TableRowsDistribute button Distribute Rows

ActiveXImage button Image

TableDeleteRows button Delete Rows

TableDeleteColumns button Delete Columns

ShadowOnOrOffClassic button Shadow On/Off

ObjectSetShapeDefaults button Set AutoShape Defaults

FileSendAsAttachment button E-mail

FileNewDefault button New

FilePrintQuick button Quick Print

PictureInsertFromFile button Picture...

TableDrawBorderPenWeight dropDown Pen Weight

TableShowGridlines toggleButton View Gridlines

TableBorderPenColorPicker gallery Pen Color

ShapeStraightConnectorArrow toggleButton Straight Arrow Connector

ShapeElbowConnectorArrow toggleButton Elbow Arrow Connector

SlideDelete button Delete

ViewHandoutMasterView toggleButton Handout Master

ViewNotesMasterView toggleButton Notes Master

SlidesReuseSlides toggleButton Reuse Slides...

SlidesFromOutline button Slides from Outline...

MovieFromClipOrganizerInsert button Movie from Organizer...

MovieFromFileInsert button Movie from File...

SoundInsertFromClipOrganizer button Sound from Clip Organizer...

SoundInsertFromFile button Sound from File...

CDAudioPlayTrack button Play CD Audio Track...

FontsReplaceFonts button Replace Fonts...

ChangeCaseToggle button Toggle Case

BlackAndWhiteAutomatic toggleButton B & W Automatic

BlackAndWhiteBlack toggleButton B & W

399 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

BlackAndWhiteBlackWithGrayscaleFill toggleButton B & W Black with Grayscale Fill

BlackAndWhiteBlackWithWhiteFill toggleButton B & W Black with White Fill

BlackAndWhiteDontShow toggleButton B & W Don't Show

BlackAndWhiteGrayWithWhiteFill toggleButton B & W Gray with White Fill

BlackAndWhiteGrayscale toggleButton B & W Grayscale

BlackAndWhiteInverseGrayscale toggleButton B & W Inverse Grayscale

BlackAndWhiteWhite toggleButton B & W White

BlackAndWhiteLightGrayscale toggleButton B & W Light Grayscale

RecordNarration button Record Narration

SlideShowSetUpDialog button Set Up Slide Show...

PasteAsHyperlink button Paste as Hyperlink

ParagraphDistributed toggleButton Distributed

CharacterFormattingReset button Reset Character Formatting

PictureSetTransparentColor toggleButton Set Transparent Color

SlideShowCustom button Custom Slide Show

WindowFitToPage button Fit to Page

SoundRecord button Record Sound...

DuplicateSelectedSlides button Duplicate Selected Slides

ActionInsert button Action

SlideShowPreviousSlide button Previous

SlideShowNextSlide button Next

LinkBreak button Break Link

LinkChange button Change Link

LinksUpdate button Update Links

BaselineLower button Lower Baseline

BaselineRaise button Raise Baseline

SlideShowInAWindow button Slide Show in a Window

HangulHanjaConversionPowerPoint button Hangul Hanja Conversion

SlidesPerPage2Slides toggleButton 2 Slides

SlidesPerPage3Slides toggleButton 3 Slides

SlidesPerPage6Slides toggleButton 6 Slides

400 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

SlidesPerPageSlideOutline toggleButton Slide Outline

GoToProperty button Go To...

IndentIncrease button Increase Indent

IndentDecrease button Decrease Indent

MoviePlay button Preview

SlidesPerPage4Slides toggleButton 4 Slides

SlidesPerPage9Slides toggleButton 9 Slides

MacroSecurity button Macro Security

WebPagePreview button Web Page Preview

TableInsertDialog button Table...

TableInsertRowsAbove button Insert Above

TableInsertRowsBelow button Insert Below

TableInsertColumnsLeft button Insert Left

TableInsertColumnsRight button Insert Right

ComAddInsDialog button COM Add-Ins...

ViewNormalViewPowerPoint toggleButton Normal

WebOptionsDialog button Web Options...

ViewDirectionLeftToRight toggleButton Left-to-Right

ViewDirectionRightToLeft toggleButton Right-to-Left

NextPane button Next Pane

WindowMoveSplit button Move Split

TableSetLeftToRight toggleButton Set Left-to-Right Table

TableSetRightToLeft toggleButton Set Right-to-Left Table

SlideShowResumeShow button Resume Slide Show

ObjectsMultiSelect button Select Multiple Objects

FontColorMoreColorsDialogPowerPoint button More Colors...

DrawingCanvasFit button Fit

DrawingCanvasResize button Resize

ViewBackToColorView toggleButton Back To Color View

ViewDisplayInGrayscale toggleButton Grayscale

ViewDisplayInHighContrast toggleButton High Contrast

401 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ViewDisplayInPureBlackAndWhite toggleButton Pure Black and White

PrintWhat dropDown Print What

DrawingCanvasExpand button Expand

SlidesPerPage1Slide toggleButton 1 Slide

SlideMasterPreserveMaster toggleButton Preserve

SlideMasterRenameMaster button Rename

OutlineThumbnailsShowHide button Show Outline

BulletsAndNumberingNumberingDialog button Bullets and Numbering...

FileCheckOut button Check Out

FileCheckIn button Check In

PageOrientationLandscape toggleButton Landscape

PageOrientationPortrait toggleButton Portrait

SlideReset button Reset

PicturesCompress button Compress Pictures...

ReviewDeleteCommentPowerPoint button Delete

ReviewNextCommentPowerPoint button Next

ReviewPreviousCommentPowerPoint button Previous

ReviewShowOrHideMarkup toggleButton Show Markup

ReviewDeleteAllMarkupOnSlide button Delete All Markup on the Current Slide

Translate button Translate...

ViewGridlinesPowerPoint checkBox View Gridlines

PhotoAlbumInsert button New Photo Album...

PhotoAlbumEdit button Edit Photo Album...

DrawingCanvasScale button Scale Drawing

ResearchPane toggleButton Research...

FileInternetFax button Internet Fax

FilePackageForCD button Package for CD

FileVersionHistory button View Version History

InkColorMoreColorsDialog button More Ink Colors...

ContactUs button Contact Us...

FilePermissionUnrestricted toggleButton Unrestricted Access

402 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

FilePermissionDoNotDistribute toggleButton Restricted Access

FilePermissionView button View Permission

Thesaurus button Thesaurus...

InkingStart button Start Inking

CheckForUpdates button Check for Updates

InkEraser toggleButton Eraser

FilePermissionRestrictAs button Manage Credentials

ThemeBrowseForThemesPowerPoint button Browse for Themes...

SlideMasterInsertLayout button Insert Layout

FileViewDigitalSignatures toggleButton View Signatures

FileWorkflowTasks button View Workflow Tasks

FileStartWorkflow button Workflows

SlideThemesGallery gallery Themes

LabelInsert button Label

BarcodeInsert button Barcode

ChartStylesGallery gallery Quick Styles

ChartLayoutGallery gallery Quick Layout

ChartSaveTemplates button Save As Template

ChartAxisTitles menu Axis Titles

ChartAxes menu Axes

ChartGridlines menu Gridlines

ChartFormatSelection button Format Selection

ChartElementSelector comboBox Chart Elements

SlideShowFromCurrent button From Current Slide

BulletsGallery gallery Bullets

NumberingGallery gallery Numbering

LineSpacingGalleryPowerPoint gallery Line Spacing

SlideNewGallery gallery New Slide

SlideLayoutGallery gallery Layout

TabPictureToolsFormat tab Format

TabDrawingToolsFormat tab Format

403 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ShapesInsertGallery gallery Shapes

ShapeChangeShapeGallery gallery Change Shape

ShapeFillTextureGallery gallery Texture

ShapeStylesGallery gallery Quick Styles

PageOrientationGallery menu Orientation

FileServerTasksMenu menu Server

FileSendMenu menu Send

TabInsert tab Insert

TabView tab View

GroupFont group Font

GroupParagraph group Paragraph

GroupProofing group Proofing

GroupInsertIllustrations group Illustrations

GroupShapes group Insert Shapes

GroupPageSetup group Page Setup

GroupComments group Comments

GroupPictureSize group Size

GroupDrawBorders group Draw Borders

TabDesign tab Design

TabAnimations tab Animations

TabSlideShow tab Slide Show

GroupSlides group Slides

GroupArrange group Arrange

GroupInsertMediaClips group Media Clips

GroupSlideThemes group Themes

GroupBackground group Background

GroupPreview group Preview

GroupAnimations group Animations

GroupTransitionToThisSlide group Transition to This Slide

GroupSlideShowStart group Start Slide Show

GroupSlideShowSetup group Set Up

404 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

GroupShapeStyles group Shape Styles

TabReview tab Review

GroupChartLayouts group Chart Layouts

GroupChartStyles group Chart Styles

GroupChartAxes group Axes

GroupChartShapes group Insert

ObjectEffectPresetGallery gallery Preset

PictureEffectsPresetGallery gallery Preset

_3DRotationGallery gallery 3-D Rotation

TabSmartArtToolsDesign tab Design

TabSmartArtToolsFormat tab Format

TabChartToolsDesign tab Design

TabChartToolsLayout tab Layout

TabChartToolsFormat tab Format

ShapeFillColorPicker gallery Shape Fill

OutlineColorPicker gallery Picture Border

FileDocumentInspect button Inspect Document

ClearFormatting button Clear Formatting

GroupControls group Controls

GroupZoom group Zoom

FilePublishSlides button Publish Slides

SlideShowUsePresenterView checkBox Use Presenter View

ArrowStyleGallery gallery Arrows

OutlineDashesGallery gallery Dashes

OutlineWeightGallery gallery Weight

TabTableToolsLayout tab Layout

GroupAlignment group Alignment

GroupPictureTools group Adjust

GroupSize group Size

TabSlideMaster tab Slide Master

GroupTableStylesPowerPoint group Table Styles

405 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

GroupTableRowsAndColumns group Rows & Columns

ObjectAlignMenu menu Align

MovieInsert splitButton Movie

SoundInsertMenu splitButton Sound

ObjectRotateGallery gallery Rotate

SelectMenu menu Select

AnimationGallery dropDown Animate:

AnimationTransitionGallery gallery Transition Scheme

AnimationTransitionSpeedGallery dropDown Transition Speed:

FontColorPicker gallery Font Color

TableColumnsGallery gallery Columns

TabHome tab Home

ChartTitle gallery Chart Title

ChartPrimaryHorizontalAxisTitle gallery Primary Horizontal Axis Title

ChartPrimaryVerticalAxisTitle gallery Primary Vertical Axis Title

ChartDepthAxisTitle gallery Depth Axis Title

ChartLegend gallery Legend

ChartDataLabel gallery Data Labels

ChartPrimaryHorizontalGridlines gallery Primary Horizontal Gridlines

ChartPrimaryVerticalGridlines gallery Primary Vertical Gridlines

ChartDepthGridlines gallery Depth Gridlines

ChartPrimaryHorizontalAxis gallery Primary Horizontal Axis

ChartPrimaryVerticalAxis gallery Primary Vertical Axis

ChartDepthAxis gallery Depth Axis

ChartDataTable gallery Data Table

ChartTrendline gallery Trendline

ChartErrorBars gallery Error Bars

ChartLines gallery Lines

ChartUpDownBars gallery Up/Down Bars

ChartPlotArea gallery Plot Area

ChartWall gallery Chart Wall

406 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ChartFloor gallery Chart Floor

SmartArtAddShape button Add Shape

SmartArtLargerShape button Larger

SmartArtSmallerShape button Smaller

SmartArtResetGraphic button Reset Graphic

SmartArtTextPane toggleButton Text Pane

SmartArtEditIn2D toggleButton Edit in 2-D

SmartArtLayoutGallery gallery Change Layout

SmartArtMoreLayoutsDialog button More Layouts...

SmartArtStylesGallery gallery Quick Styles

SmartArtChangeColorsGallery gallery Change Colors

ObjectEffectSoftEdgesGallery gallery Soft Edges

ObjectEffectGlowGallery gallery Glow

GradientGallery gallery Gradient

ObjectEffectShadowGallery gallery Shadow

WordArtInsertGallery gallery WordArt

TextEffectTransformGallery gallery Transform

ThemeColorsGallery gallery Colors

GroupSmartArtLayouts group Layouts

GroupSmartArtQuickStyles group SmartArt Styles

GroupSmartArtCreateGraphic group Create Graphic

GroupSmartArtReset group Reset

GroupSmartArtSize group Size

ThemeSearchOfficeOnlinePowerPoint button More Themes on Microsoft Office Online...

TabAddIns tab Add-Ins

ObjectEditShapeMenu menu Edit Shape

SlideMasterContentPlaceholderInsert button Content

SlideMasterTextPlaceholderInsert button Text

SlideMasterChartPlaceholderInsert button Chart

SlideMasterTablePlaceholderInsert button Table

SlideMasterDiagramPlaceholderInsert button SmartArt

407 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

SlideMasterMediaPlaceholderInsert button Media

SlideMasterClipArtPlaceholderInsert button Clip Art

SlideMasterVerticalTextPlaceholderInsert button Text

SlideMasterShowTitle checkBox Title

SlideMasterShowFooters checkBox Footers

TableStylesGallery gallery Table Styles

FileSaveAsPdfOrXps button Publish as PDF or XPS

FileSaveAsPowerPointOpenDocumentPresentation button OpenDocument Presentation

MoreControlsDialog button More Controls...

GroupCode group Code

TabDeveloper tab Developer

SlideTransitionApplyToAll button Apply To All

SlideTransitionOnMouseClick checkBox On Mouse Click

AnimationPreview button Preview

GroupEditing group Editing

GroupClipboard group Clipboard

GroupInsertTables group Tables

GroupInsertLinks group Links

GroupInsertBarcode group Barcode

AnimationTransitionSoundGallery dropDown Transition Sound:

ObjectPictureFill button Picture...

SlideShowFromBeginning button From Beginning

WindowSwitchWindowsMenuPowerPoint menu Switch Windows

ThemeColorsCreateNew button Create New Theme Colors...

ThemeFontsCreateNew button Create New Theme Fonts...

ShapeFillMoreGradientsDialog button More Gradients...

ShadowOptionsDialog button Shadow Options...

ObjectsAlignSelectedSmart toggleButton Align Selected Objects

ObjectsAlignRelativeToContainerSmart toggleButton Align to Slide

ObjectsAlignLeftSmart button Align Left

ObjectsAlignRightSmart button Align Right

408 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ObjectsAlignTopSmart button Align Top

ObjectsAlignBottomSmart button Align Bottom

ObjectsAlignCenterHorizontalSmart button Align Center

ObjectsAlignMiddleVerticalSmart button Align Middle

AlignDistributeHorizontally button Distribute Horizontally

AlignDistributeVertically button Distribute Vertically

SlideShowCustomMenu menu Custom Slide Show

SlideShowResolutionGallery dropDown Resolution:

SlideShowUseRehearsedTimings checkBox Use Rehearsed Timings

SlideShowShowPresentationOnGallery dropDown Show Presentation On:

GroupMonitors group Monitors

ThemeFontsGallery gallery Fonts

ThemeEffectsGallery gallery Effects

FileProperties toggleButton Properties

TabPrintPreview tab Print Preview

GroupPrintPreviewPrint group Print

GroupPrintPreviewPreview group Preview

TabSoundToolsOptions tab Options

TabMovieToolsOptions tab Options

GroupPlay group Play

GroupMovieOptions group Movie Options

GroupSoundOptions group Sound Options

MediaClipToolsHideDuringShow checkBox Hide During Show

MediaClipLoopUntilStopped checkBox Loop Until Stopped

SoundPlaySoundGallery dropDown Play Sound:

SlideShowVolume gallery Slide Show Volume

MoviePlayFullScreen checkBox Play Full Screen

MovieRewindAfterPlaying checkBox Rewind Movie After Playing

TableBordersMenu splitButton Borders

FileCreateDocumentWorkspace toggleButton Create Document Workspace

FileSaveToDocumentManagementServer button Document Management Server

409 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

FileDocumentManagementInformation toggleButton Document Management Information

QuickAccessToolbarCustomization button Customize Quick Access Toolbar...

FilePrepareMenu menu Prepare

FileMarkAsFinal toggleButton Mark as Final

FileAddDigitalSignature button Add a Digital Signature

SlideBackgroundHideGraphics checkBox Hide Background Graphics

ChangeCaseGallery gallery Change Case

ReviewDeleteCommentsMenuPowerPoint splitButton Delete

GroupMerge group Merge

AlignJustifyMenu menu Justify

TextBoxInsertMenu splitButton Text Box

TextBoxInsertHorizontal toggleButton Horizontal Text Box

ControlProperties button Properties

HandoutOrientation gallery Handout Orientation

SlidesPerPageGallery menu Slides Per Page

MasterShowSlideImage checkBox Slide Image

MasterShowBody checkBox Body

MasterShowDate checkBox Date

MasterShowPageNumber checkBox Page Number

MasterShowHeader checkBox Header

MasterShowFooter checkBox Footer

TabHandoutMaster tab Handout Master

TabNotesMaster tab Notes Master

GroupPlaceholdersHandoutMaster group Placeholders

GroupMasterEditTheme group Edit Theme

GroupMasterClose group Close

GroupMasterEdit group Edit Master

GroupMasterLayout group Master Layout

TabGrayscale tab Grayscale

TabBlackAndWhite tab Black And White

GroupColorModeSetting group Change Selected Object

410 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

GroupInkSelect group Select

PictureBrightnessGallery gallery Brightness

PictureContrastGallery gallery Contrast

ShadingColorPicker gallery Shading

SmartArtAddShapeAfter button Add Shape After

SmartArtAddShapeBefore button Add Shape Before

SmartArtAddShapeAbove button Add Shape Above

SmartArtAddShapeBelow button Add Shape Below

SmartArtAddAssistant button Add Assistant

ThemeColorsReset button Reset Slide Theme Colors

ChartSwitchRowColumn button Switch Row/Column

ChartShowData button Edit Data...

ChartRefresh button Refresh Data

ChartChangeType button Change Chart Type...

GroupChartData group Data

GroupChartType group Type

GroupTableSize group Table Size

TableCellMarginsGallery gallery Cell Margins

SlideMasterVerticalContentPlaceholderInsert button Content (Vertical)

_3DRotationOptionsDialog button 3-D Rotation Options...

_3DBevelOptionsDialog button 3-D Options...

SlideBackgroundStylesGallery gallery Background Styles

TextDirectionGallery gallery Text Direction

GroupTableStyleOptionsPowerPoint group Table Style Options

TableStyleFirstRowPowerPoint checkBox Header Row

TableStyleFirstColumnPowerPoint checkBox First Column

TableStyleTotalRowPowerPoint checkBox Total Row

TableStyleLastColumnPowerPoint checkBox Last Column

TableStyleBandedRowsPowerPoint checkBox Banded Rows

TableStyleBandedColumnsPowerPoint checkBox Banded Columns

SelectionPane toggleButton Selection Pane...

411 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

SmartArtOrganizationChartLeftHanging button Left Hanging

SmartArtOrganizationChartRightHanging button Right Hanging

SmartArtOrganizationChartBoth button Both

SmartArtOrganizationChartStandard button Standard

SmartArtRightToLeft toggleButton Right to Left

TableCellCustomMarginsDialog button Custom Margins...

ViewMessageBar checkBox Message Bar

ShapeStylesOtherThemeFillsGallery gallery Other Theme Fills

SmartArtOrganizationChartMenu menu Layout

TabSlideMasterHome tab Home

TableInsertGallery gallery Table

AlignJustifyWithMixedLanguages toggleButton Justify

AlignJustifyLow toggleButton Justify Low

AlignJustifyThai toggleButton Distribute

ExcelSpreadsheetInsert button Excel Spreadsheet

TabCDAudioToolsOptions tab Options

SlideTransitionAutomaticallyAfter checkBox Automatically After:

SlideOrientationGallery gallery Slide Orientation

GroupAddInsMenuCommands group Menu Commands

GroupAddInsToolbarCommands group Toolbar Commands

GroupInk group Ink

TabInkToolsPens tab Pens

GroupInkPens group Pens

GroupInkClose group Close

InkBallpointPen toggleButton Ballpoint Pen

InkFeltTipPen toggleButton Felt Tip Pen

InkHighlighter toggleButton Highlighter

ThemeSaveCurrentPowerPoint button Save Current Theme...

TextAlignGallery gallery Align Text

CharacterSpacingGallery gallery Character Spacing

ChartResetToMatchStyle button Reset to Match Style

412 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

Chart3DView button 3-D Rotation...

ObjectSizeAndPositionDialog button Size and Position...

ShapeConvertToFreeform button Convert to Freeform

TabTableToolsDesign tab Design

ConvertToSmartArt gallery Convert to SmartArt

ConvertToSmartArtMoreSmartArtGraphicsDialog button More SmartArt Graphics...

ReflectionGallery gallery Reflection

PictureRecolorGallery gallery Recolor

SmartArtPromote button Promote

SmartArtDemote button Demote

TableEffectsCellBevelGallery gallery Cell Bevel

TableBackgroundGallery gallery Table Background

ChartTitleOptionsDialog button More Title Options...

ChartLegendOptionsDialogDialog button More Legend Options...

ChartDataLabelDialog button More Data Label Options...

ChartPrimaryHorizontalAxisTitleOptionsDialog button More Primary Horizontal Axis Title Options...

ChartPrimaryVerticalAxisTitleOptionsDialog button More Primary Vertical Axis Title Options...

ChartSecondaryHorizontalAxisTitleOptionsDialog button More Secondary Horizontal Axis Title
Options...

ChartSecondaryVerticalAxisTitleOptionsDialog button More Secondary Vertical Axis Title Options...

ChartDepthAxisTitleOptionsDialog button More Depth Axis Title Options...

ChartPrimaryHorizontalGridlinesOptionsDialog button More Primary Horizontal Gridlines Options...

ChartPrimaryVerticalGridlinesOptionsDialog button More Primary Vertical Gridlines Options...

ChartSecondaryHorizontalGridlinesOptionsDialog button More Secondary Horizontal Gridlines
Options...

ChartSecondaryVerticalGridlinesOptionsDialog button More Secondary Vertical Gridlines Options...

ChartDepthGridlinesOptionsDialog button More Depth Gridlines Options...

ChartPrimaryHorizontalAxisOptionsDialog button More Primary Horizontal Axis Options...

ChartPrimaryVerticalAxisOptionsDialog button More Primary Vertical Axis Options...

ChartSecondaryHorizontalAxisOption button More Secondary Horizontal Axis Options...

ChartSecondaryVerticalAxisOptionsDialog button More Secondary Vertical Axis Options...

ChartDepthAxisOptionsDialog button More Depth Axis Options...

413 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

ChartDataTableOptionsDialog button More Data Table Options...

ChartTrendlineOptionsDialog button More Trendline Options...

ChartErrorBarsOptionsDialog button More Error Bars Options...

ChartUpDownBarsOptionsDialog button More Up/Down Bars Options...

ChartPlotAreaOptionsDialog button More Plot Area Options...

ChartWallOptionsDialog button More Walls Options...

ChartFloorOptionsDialog button More Floor Options...

ChartSecondaryHorizontalAxisTitle gallery Secondary Horizontal Axis Title

ChartSecondaryVerticalAxisTitle gallery Secondary Vertical Axis Title

ChartSecondaryHorizontalGridlines gallery Secondary Horizontal Gridlines

ChartSecondaryVerticalGridlines gallery Secondary Vertical Gridlines

ChartSecondaryHorizontalAxis gallery Secondary Horizontal Axis

ChartSecondaryVerticalAxis gallery Secondary Vertical Axis

GroupAddInsCustomToolbars group Custom Toolbars

MoviePlayAutomatically dropDown Play Movie:

ObjectBringToFrontMenu splitButton Bring to Front

ObjectSendToBackMenu splitButton Send to Back

ObjectsGroupMenu menu Group

ViewDisplayInColor toggleButton Color

FileSaveAsPowerPoint97_2003 button PowerPoint 97-2003 Presentation

FileSaveAsMenu splitButton Save As Other Format

FilePrintMenu splitButton Preview and Print

FilePermissionRestrictMenu menu Restrict Permission

DocumentPanelTemplate button Document Panel

GroupModify group Modify

BevelShapeGallery gallery Bevel

_3DBevelPictureTopGallery gallery Bevel

TableStyleClearTable button Clear Table

GroupTable group Table

GroupTableCellSize group Cell Size

TableEffectsMenu menu Effects

414 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

GlowColorPicker gallery More Glow Colors

RecolorColorPicker gallery More Variations

GlowColorMoreColorsDialog button More Colors...

PictureRecolorMoreColorsDialog button More Colors...

SmartArtAddBullet button Add Bullet

TableLockAspectRatio checkBox Lock Aspect Ratio

SlideMasterPicturePlaceholderInsert button Picture

SlideMasterInsertPlaceholderMenu splitButton Insert Placeholder

TableBorderColorMoreColorsDialog button More Border Colors...

TableFillColorMoreColorsDialog button More Fill Colors...

PictureChange button Change Picture...

GroupWordArtStyles group WordArt Styles

TextFillColorPicker gallery Text Fill

TextOutlineColorPicker gallery Text Outline

TextOutlineColorMoreColorsDialog button More Outline Colors...

TextEffectsMenu menu Text Effects

TextStylesGallery gallery Quick Styles

WordArtClear button Clear WordArt

TextPictureFill button Picture...

TextFillGradientGallery gallery Gradient

TextFillMoreGradientsDialog button More Gradients...

TextFillTextureGallery gallery Texture

TextOutlineDashesGallery gallery Dashes

TextOutlineMoreLinesDialog button More Lines...

TextOutlineWeightGallery gallery Weight

TextEffectShadowGallery gallery Shadow

TextEffectsMoreShadowsDialog button Shadow Options...

TextEffectsBevelMore3DOptionsDialog button 3-D Options...

TextEffects3DRotationGallery gallery 3-D Rotation

TextEffects3DRotationOptionsDialog button 3-D Rotation Options...

TextEffectGlowGallery gallery Glow

415 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

TextGlowColorPicker gallery More Glow Colors

TextGlowColorMoreColorsDialog button More Colors...

TextReflectionGallery gallery Reflection

ShapeEffectsMenu menu Shape Effects

TransitionSoundLoopUntilNextSound toggleButton Loop Until Next Sound

GroupChartCurrentSelection group Current Selection

GroupChartLabels group Labels

BevelTextGallery gallery Bevel

PictureCorrectionsDialog button Picture Corrections Options...

SmartArtAddShapeSplitMenu splitButton Add Shape Options

MasterNotesPageOrientation gallery Notes Page Orientation

GroupInkFormat group Format

InkColorPicker gallery Color

TextDirectionMoreOptionsDialog button More Options...

TextAlignMoreOptionsDialog button More Options...

ParagraphMoreColumnsDialog button More Columns...

SlideBackgroundReset button Reset Slide Background

CDAudioPlayTrackAutomatically dropDown Play Track:

GroupSmartArtShapes group Shapes

GroupInsertText group Text

ShapeOutlineColorPicker gallery Picture Border

GroupColorModeClose group Close

GroupPageSetupNotesMaster group Page Setup

GroupPageSetupHandoutMaster group Page Setup

GroupPlaceholdersNotesMaster group Placeholders

ReplaceMenu splitButton Replace...

TableSelectMenuPowerPoint menu Select

TableDeleteRowsAndColumnsMenu menu Delete

GroupCDAudioSetup group Set Up

PrintOptionsMenu menu Options

ReviewDeleteAllMarkupInPresentation button Delete All Markup in the Presentation

416 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

PasteMenu splitButton Paste

GroupPictureStyles group Picture Styles

PictureStylesGallery gallery Quick Styles

PictureEffectsShadowGallery gallery Shadow

PictureEffectsGlowGallery gallery Glow

PictureEffectsSoftEdgesGallery gallery Soft Edges

PictureReflectionGallery gallery Reflection

PictureRotationGallery gallery 3-D Rotation

InkToolsClose button Close Ink Tools

GroupViewShowHide group Show/Hide

GroupWindow group Window

ViewGridlines checkBox View Gridlines

GroupPresentationViews group Presentation Views

GroupColorGrayscale group Color/Grayscale

FileDocumentEncrypt toggleButton Encrypt Document

WordArtFormatDialog button Format Text Effects...

ObjectRotationOptionsDialog button More Rotation Options...

MoreTextureOptions button More Textures...

TextFillColorMoreColorsDialog button More Fill Colors...

ZoomFitToWindow button Fit to Window

GroupPrintPreviewPageSetup group Page Setup

ViewDirectionMenu menu View Direction

FileEmailAsPdfEmailAttachment button E-mail as PDF Attachment

FileEmailAsXpsEmailAttachment button E-mail as XPS Attachment

PictureEffectsMenu menu Picture Effects

PictureShapeGallery gallery Change Shape

PhotoAlbumInsertMenu splitButton Photo Album...

GroupChartBackground group Background

GroupChartAnalysis group Analysis

MenuPublish menu Publish

FileCompatibilityCheckerPowerPoint button Run Compatibility Checker

417 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

idMso
Control
Type Label

TableBackgroundPictureFill button Picture...

UpgradePresentation button Convert

FileSaveAsOtherFormats button Save As

FileSaveAsPowerPointPptx button PowerPoint Presentation

FileSaveAsPowerPointPpsx button PowerPoint Show

FontDialogPowerPoint button Font...

PowerPointParagraphDialog button Paragraph...

PowerPointPageSetup button Page Setup...

ShapeQuickStylesHome gallery Quick Styles

GalleryAllShapesAndTextboxes gallery Shapes

TableTextStylesGallery gallery Quick Styles

GroupTextStylesTable group WordArt Styles

ObjectsArrangeMenu menu Arrange

TextFillMoreTextures button More Textures...

GroupMacros group Macros

AdvertisePublishAs button Find add-ins for other file formats

GroupPermission group Protect

ReviewProtectPresentationMenu menu Protect Presentation

AlternativeText button Size and Position...

FileCheckOutDiscard button Discard Check Out

MdiChildSystemMenu menu Document

3.1.4 Word 2010, Excel 2010, PowerPoint 2010

Control ID values for Word 2010, Excel 2010, and PowerPoint 2010 are available here:
http://www.microsoft.com/en-us/download/details.aspx?id=6627

3.1.5 Word 2013, Excel 2013, PowerPoint 2013

Control ID values for Word 2013, Excel 2013, and PowerPoint 2013 are available here:
http://www.microsoft.com/en-us/download/details.aspx?id=36798

http://www.microsoft.com/en-us/download/details.aspx?id=6627
http://www.microsoft.com/en-us/download/details.aspx?id=36798

418 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

3.2 imageMso Table

imageMso

Spelling

FileSave

FilePrint

ZoomOnePage

ZoomPageWidth

Zoom100

TableInsert

ColumnsDialog

Numbering

Bullets

PageOrientationPortraitLandscape

OutdentClassic

IndentClassic

DrawingInsert

ChartInsert

FileNew

Copy

Cut

Paste

FileOpen

EnvelopesAndLabelsDialog

ZoomPrintPreviewExcel

PenComment

Folder

Repeat

UpArrow2

RightArrow2

DownArrow2

LeftArrow2

Clear

Breakpoint

419 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

Piggy

Superscript

Subscript

HappyFace

UnderlineDouble

UnderlineWords

FontSizeIncreaseWord

FontSizeDecreaseWord

_0

_1

_2

_3

_4

_5

_6

_7

_8

_9

A

B

C

D

E

F

G

H

I

J

K

L

M

N

420 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

O

P

Q

R

S

T

U

V

W

X

Y

Z

FileClose

TableAutoFormat

FormatPainter

FilePrintPreview

PickUpStyle

PasteApplyStyle

Bold

Italic

Underline

DarkShading

ParagraphMarks

AlignLeft

AlignRight

AlignCenter

AlignJustify

ContextHelp

HeaderFooterPageNumberInsert

Undo

Redo

ControlLine

421 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ControlRectangle

OutlinePromote

OutlineDemote

OutlineMoveUp

OutlineMoveDown

OutlineDemoteToBodyText

OutlineExpand

OutlineCollapse

TextBoxInsert

FileFind

FindDialog

TableExcelSpreadsheetInsert

AutoFormat

BorderTop

BorderBottom

BorderLeft

BorderRight

BorderInside

BorderOutside

BorderNone

MailMergeGoToFirstRecord

MailMergeGoToPreviousRecord

MailMergeGoToNextRecord

MailMergeGotToLastRecord

MailMergeMergeToDocument

MailMergeMergeToPrinter

MailMergeAutoCheckForErrors

DataFormSource

MailMergeResultsPreview

ObjectsGroup

ObjectsUngroup

ObjectBringToFront

422 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ObjectSendToBack

AboveText

BehindText

ObjectBringForward

ObjectSendBackward

Magnifier

PrintPreviewShrinkOnePage

MultiplePages

ViewFullScreenView

ViewRulerPowerPoint

VoiceInsert

ObjectsSelect

TableFind

MacroRecord

MacroRecorderPause

MacroPlay

ObjectFlipHorizontal

ObjectFlipVertical

ObjectRotateRight90

ObjectRotateLeft90

ShapeFreeform

GroupDrawing

ObjectEditPoints

CalloutOptions

SortUp

SortDown

TableDesign

DataFormAddRecord

DataFormDeleteRecord

FieldsUpdate

DatabaseInsert

GridSettings

423 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

WordPicture

FormControlEditBox

FormControlCheckBox

FormControlComboBox

PropertySheet

FieldShading

ViewDraftView

Lock

AutoSum

MasterDocumentShow

MasterDocumentCreateSubdocument

MasterDocumentUnlinkSubdocument

MasterDocumentInsertSubdocument

MasterDocumentSplitSubdocuments

MasterDocumentMergeSubdocuments

MasterDocumentLockSubdocument

HeaderOrFooterShow

HeaderFooterPreviousSection

HeaderFooterNextSection

AlignDialog

MailMergeDocument

MergeOptions

MailMergeHelper

PageSetupDialog

BodyTextHide

HeaderFooterLinkToPrevious

OutlineShowFirstLineOnly

OutlineShowTextFormatting

FontDialog

StylesDialogClassic

RoutingSlip

FootnoteInsert

424 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

MicrosoftExcel

MicrosoftAccess

Schedule

MicrosoftVisualFoxPro

MicrosoftPowerPoint

MicrosoftPublisher

MicrosoftProject

SadFace

Pushpin

Camera

FormControlButton

Calculator

ViewPrintLayoutView

FieldCodes

DropCapOptionsDialog

Strikethrough

TextSmallCaps

CellsDelete

TableRowsDelete

TableColumnsDelete

CellsInsertDialog

TableRowsInsertWord

QueryInsertColumns

WindowsArrangeAll

MarginsAdjust

ViewGridlinesWord

SubdocumentOpen

WindowSplit

WindowNew

LegalBlackline

ReviewAcceptOrRejectChangeDialog

TextAllCaps

425 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

PictureDisassemble

SymbolInsert

ChangeCaseDialogClassic

FontSizeDecrease1Point

FontSizeIncrease1Point

Repaginate

ReplaceDialog

StartOfLine

EndOfLine

PagePrevious

PageNext

TextBoxInsertVertical

StartOfDocument

EndOfDocument

Grammar

FileCloseOrCloseAll

TextToOrFromTable

TableRowsOrColumnsOrCellsInsert

TableRowsOrColumnsOrCellsDelete

RedoOrRepeat

ObjectsRegroup

_3DStyle

TipWizardHelp

AutoFormatChange

AddressBook

Reply

ReplyAll

Forward

MailMove

MailDelete

MessagePrevious

MessageNext

426 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

CheckNames

MailSelectNames

PrintAreaSetPrintArea

PasteFormatting

FillRight

FillDown

EqualSign

PlusSign

MinusSign

MultiplicationSign

DivisionSign

ExponentiationSign

ParenthesisLeft

ParenthesisRight

ColonSign

CommaSign

PercentSign

DollarSign

FunctionWizard

AsianLayoutCharacterScaling

ConstrainNumeric

LightShading

AccountingFormat

PercentStyle

CommaStyle

DecimalsIncrease

DecimalsDecrease

MergeCenter

FontSizeIncrease

FontSizeDecrease

TextOrientationVertical

TextOrientationRotateUp

427 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

TextOrientationRotateDown

AlignDistributeHorizontallyClassic

ShapeScribble

ChartAreaChart

Chart3DBarChart

Chart3DColumnChart

Chart3DPieChart

ChartRadarChart

OutlineSymbolsShowHide

TableSelectVisibleCells

SelectCurrentRegion

FreezePanes

ZoomIn

ZoomOut

FormControlRadioButton

FormControlScrollBar

FormControlListBox

TraceDependentRemoveArrows

TraceDependents

TracePrecedentsRemoveArrows

TraceRemoveAllArrows

FileUpdate

ReadOnly

AutoFilterClassic

Refresh

PivotTableFieldSettings

PivotTableShowPages

OutlineShowDetail

TraceError

OutlineHideDetail

AlignDistributeVerticallyClassic

FormControlGroupBox

428 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

FormControlSpinner

TabOrder

RunDialog

FormControlCombinationListEdit

FormControlCombinationDropDownEdit

FormControlLabel

Delete

Fish

Coffee

Heart

Diamond

Spade

Club

ViewSheetGridlines

TracePrecedents

Info

CodeEdit

InsertDialog

ApplyFilter

DatasheetView

SortAndFilterAdvanced

ControlSubFormReport

FieldList

ViewsFormView

Grouping

AdpPrimaryKey

ControlBoundObjectFrame

ControlUnboundObjectFrame

PageBreakInsertOrRemove

PrintSetupDialog

CreateFormInDesignView

CreateQueryFromWizard

429 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

CreateReportInDesignView

MacroConditions

MacroNames

ControlToggleButton

DatabaseRelationships

TableIndexes

ViewsAdpDiagramSqlView

QueryTableNamesShowHide

QueryShowTable

QuerySelectQueryType

QueryCrosstab

QueryMakeTable

QueryUpdate

QueryAppend

QueryDelete

QueryParameters

RecordsSaveRecord

GoToNewRecord

RowHeight

ColumnWidth

RecordsFreezeColumns

GridlinesGallery

OleObjectctInsert

ControlToolboxOutlook

SnapToGrid

SizeToFit

PageHeaderOrFooterShowHide

FormHeaderOrFooterShowHide

First10RecordsPreview

ControlSpecialEffectRaised

ControlSpecialEffectSunken

AutoDial

430 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

FindNext

PasteDuplicate

DatabasePermissions

ControlAlignToGrid

ControlSpecialEffectFlat

CreateTableInDesignView

MacroDefault

ModuleInsert

FilterToggleFilter

FilterClearAllFilters

Head

ReminderSound

CreateModule

RelationshipsDirectRelationships

RelationshipDesignAllRelationships

ControlWizards

MergeToWord

FilterAdvancedByForm

CreateMacro

AutoFormatWizard

PrintPreviewZoomTwoPages

FilterBySelection

RecordsDeleteRecord

QueryBuilder

DatabaseDocumenter

DatabaseAnalyzePerformance

DatabaseAnalyzeTable

ObjectsAlignLeft

ObjectsAlignRight

ObjectsAlignTop

ObjectsAlignBottom

ObjectsAlignCenterHorizontal

431 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ObjectsAlignMiddleVertical

SlideNew

ClipArtInsert

CreateHandoutsInWord

Shadow

ObjectRotateFree

ShapesMoreShapes

CopyToPersonalContacts

ParagraphSpacingIncrease

ParagraphSpacingDecrease

SlideMasterMasterLayout

OrganizationChartInsert

CollapseAll

OutlineExpandAll

CombineCharacters

DoubleStrikethrough

QueryInsertColumn

EncryptMessage

DigitallySignMessage

CreateMailRule

ViewNormalViewExcel

ViewPageBreakPreviewView

SlideHide

AnimationCustom

PictureCrop

SlideShowRehearseTimings

ViewSlideView

ViewOutlineView

ViewSlideSorterView

ViewNotesPageView

ViewSlideShowView

ViewSlideMasterView

432 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

FileCloseAll

FileSaveAs

SaveAll

AdvancedFileProperties

DocumentTemplate

FileExit

PasteSpecialDialog

SelectAll

GoTo

BookmarkInsert

FileLinksToFiles

ViewOnlineLayoutViewClassic

HeaderFooterInsert

FootnotesEndnotesShow

BreakInsertDialog

DateAndTimeInsert

NumberInsert

FieldInsert

CaptionInsert

CrossReferenceInsert

TextFromFileInsert

ParagraphDialog

BordersShadingDialog

TextDirectionOptionsDialog

BulletsAndNumberingBulletsDialog

AutoFormatDialog

SetLanguage

WordCount

AutoCorrect

EnvelopesAndLabels

LabelsDialog

MergeCells

433 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

SplitCells

TableRowSelect

TableColumnSelect

TableSelect

TableRepeatHeaderRows

ConvertTextToTable

TableFormulaDialog

TableSplitTable

ShowClipboard

TechnicalSupport

ImeDictionaryUpdate

OutlookTaskCreate

WindowMinimize

WindowRestore

WindowClose

WindowSaveWorkspace

SheetDelete

ViewFormulaBar

SheetInsert

FormatCellsDialog

DataFormExcel

OutlineSubtotals

Consolidate

WindowHide

WindowUnhide

FillUp

FillLeft

ClearFormats

NameCreateFromSelection

SheetProtect

ReviewProtectWorkbook

MacroRelativeReferences

434 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

Filter

SortClear

AdvancedFilterDialog

OutlineSettings

PrintPreviewClose

HeaderFooterClose

ZoomDialog

SortDialogClassic

ConvertTableToText

PictureInsertFromFilePowerPoint

ExchangeFolder

VisualBasicReferences

ViewCustomViews

SheetBackground

ChartEditDataSource

ChartPlacement

CalculateNow

ObjectEditDialog

ObjectFormatDialog

QueryRunQuery

ControlImage

RulerShowHide

GridShowHide

ContentsAndIndex

Help

PivotTableEnableSelection

PivotTableListFormulas

PivotTableSelectData

PivotTableSelectLabelAndData

PivotTableSelectLabel

CalculateSheet

FontColorMoreColorsDialog

435 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

FillEffects

TextOrientationAngleCounterclockwise

TextOrientationAngleClockwise

HyperlinkOpenExcel

OpenStartPage

WebGoBack

WebGoForward

AddToFavorites

BrowsePrevious

BrowseNext

BrowseSelector

SmartArtInsert

ShapeRerouteConnectors

ObjectNudgeUp

ObjectNudgeDown

ObjectNudgeLeft

ObjectNudgeRight

ShapeCurve

ShapeStraightConnector

ShapeElbowConnector

ObjectFillMoreColorsDialog

ObjectBorderOutlineColorMoreColorsDialog

LineStylesDialog

ArrowsMore

TextEffectAlignment

TextEffectTracking

WordArtVerticalText

WordArtEvenTextHeightClassic

ContrastMore

ContrastLess

BrightnessMore

BrightnessLess

436 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ShadowNudgeUpClassic

ShadowNudgeDownClassic

ShadowNudgeLeftClassic

ShadowNudgeRightClassic

ObjectShadowColorMoreColorsDialog

HighImportance

LowImportance

AttachMenu

InviteAttendees

AcceptInvitation

DeclineInvitation

TentativeAcceptInvitation

NewContact

NewTask

NewAppointment

TextAlignLeft

TextAlignCenter

ShapeRectangle

ShapeRoundedRectangle

ShapeIsoscelesTriangle

ShapeOval

ShapeSmileyFace

ShapeDonut

ShapeLeftBrace

ShapeRightBrace

ShapeArc

ShapeLightningBolt

ShapeHeart

ShapeRightArrow

ShapeLeftArrow

ShapeUpArrow

ShapeDownArrow

437 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ShapeRoundedRectangularCallout

ShapeStar

ShapeSeal8

ShapeSeal16

ShapeSeal24

TextAlignRight

TextAlignLetterJustify

TextAlignWordJustify

TextAlignStretchJustify

PictureReset

PictureRecolorAutomatic

PictureRecolorGrayscale

PictureRecolorBlackAndWhite

PictureRecolorWashout

TextWrappingSquare

TextWrappingTight

TextWrappingNoneClassic

TextWrappingEditWrapPoints

_3DEffectsOnOffClassic

_3DTiltDownClassic

_3DTiltUpClassic

_3DTiltLeftClassic

_3DTiltRightClassic

_3DExtrusionDirectionClassic

_3DLightingClassic

_3DSurfaceMaterialClassic

_3DExtrusionDepthNoneClassic

_3DExtrusionDepth36Classic

_3DExtrusionDepth72Classic

_3DExtrusionDepth144Classic

_3DExtrusionDepth288Classic

_3DExtrusionDepthInfinityClassic

438 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

_3DExtrusionPerspectiveClassic

_3DExtrusionParallelClassic

_3DLightingFlatClassic

_3DLightingNormalClassic

_3DLightingDimClassic

_3DSurfaceMatteClassic

_3DSurfacePlasticClassic

_3DSurfaceMetalClassic

_3DSurfaceWireFrameClassic

ObjectEditText

SnapToShapes

TextWrappingMenuClassic

WindowsArrangeIcons

PictureFormatDialog

ViewVisualBasicCode

RemoveFromCalendar

MasterViewClose

CreateShortcutMenuFromMacro

DrawingNewClassic

HyperlinkInsert

HyperlinkEdit

ReviewNewComment

ReviewPreviousComment

ReviewNextComment

ReviewDeleteComment

ReviewShowOrHideComment

ReviewShowAllComments

PivotTableOptions

DesignMode

WordArtInsertDialogClassic

FormFieldProperties

PhoneticGuideEdit

439 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

FullScreenViewClassic

PhoneticGuideSettings

PhoneticGuideFieldShow

CircularReferences

MasterDocumentExpandOrCollapseSubdocuments

Chart3DConeChart

InternationalCurrency

ObjectsAlignCenterInFormHorixontally

ObjectsAlignCenterInFormVertically

SizeToControlWidth

SizeToControlHeight

SizeToControlHeightAndWidth

HorizontalSpacingDecrease

HorizontalSpacingIncrease

ObjectsAlignDistributeHorizontallyRemove

VerticalSpacingDecrease

VerticalSpacingIncrease

ObjectsAlignDistributeVerticallyRemove

ObjectsArrangeBottom

ObjectsArrangeRight

CancelMeeting

Private

AcceptTask

SaveAndNew

CopyFolder

EmptyTrash

RecordInJournal

MarkAsUnread

CopyToFolder

MoveToFolder

ShapeFillColorPickerClassic

ControlLineColorPicker

440 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

VisualBasic

DoubleBottomBorder

BorderThickBottom

BorderTopAndBottom

BorderTopAndDoubleBottom

BorderTopAndThickBottom

BordersAll

BorderThickOutside

SlideBackgroundFormatDialog

AutoSummarize

ViewDocumentMap

ReviewAcceptChange

ReviewRejectChange

TableDrawBorderPenStyle

Font

FontSize

ZoomClassic

CreateMap

MergeCellsAcross

FieldChooser

MessageHeaderToggle

MeetingRequest

NewNote

RecurrenceEdit

SendStatusReport

ImagerScan

QueryReturnGallery

SelectRecord

SelectAllRecords

TableTestValidationRules

RelationshipsClearLayout

SaveAsQuery

441 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

LoadFromQuery

DatasheetColumnRename

FileServerLinkTables

DatasheetColumnLookup

RecordsRefreshRecords

RelationshipsEditRelationships

RelationshipsHideTable

ReplicationRecoverDesignMaster

ReplicationResolveConflicts

ReplicationCreateReplica

ReplicationSynchronizeNow

SetDatabasePassword

DatabaseUserLevelSecurityWizard

DatabaseUserAndGroupAccounts

ControlSpecialEffectEtched

ControlSpecialEffectShadowed

ControlSpecialEffectChiseled

WindowsCascade

PositionFitToWindow

BorderInsideHorizontal

BorderInsideVertical

BorderDiagonalDown

BorderDiagonalUp

MagicEightBall

TextDirectionLeftToRight

TextDirectionRightToLeft

ActiveXCheckBox

FindDialogExcel

ActiveXTextBox

ActiveXButton

ActiveXRadioButton

ActiveXListBox

442 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ActiveXComboBox

ActiveXToggleButton

ActiveXSpinButton

ActiveXScrollBar

ActiveXLabel

ShowBcc

ShowFrom

DefinePrintStyles

TagMarkComplete

NewContactFromSameCompany

ChooseForm

RecoverInviteToMeeting

FormPublish

SkipOccurrence

RightToLeftDocument

EditQuery

DataRangeProperties

RefreshAll

RefreshCancel

RefreshStatus

ClearAll

NewPostInThisFolder

ReplyToAttendeesWithMessage

SaveAndClose

AssignTask

Recurrence

NewMessageToContact

NewTaskForContact

NewMeetingWithContact

NewMessageToAttendees

SendUpdate

ReplyToAllAttendeesWithMessage

443 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

PostReplyToFolder

ViewAppointmentInCalendar

NewJournalEntry

NewMailMessage

CancelAcceptTask

CancelTaskAssignment

CancelDeclineTask

NewTaskRequest2

RecurrenceEditSeries

DataValidation

DataValidationCircleInvalid

ReviewShareWorkbook

ReviewTrackChanges

ReviewHighlightChanges

DatabaseQueryNew

DataValidationClearValidationCircles

ReviewEditComment

TableDrawTable

TableEraser

TableCellAlignTop

TableCellAlignCenterVertically

TableCellAlignBottom

TableColumnsDistribute

TableRowsDistribute

FileCompactAndRepairDatabase

DatabaseMakeMdeFile

DatabaseEncodeDecode

SizeToTallest

SizeToShortest

SizeToWidest

SizeToNarrowest

QueryUnionQuery

444 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

QueryDataDefinition

QuerySqlPassThroughQuery

ClearGrid

ActiveXFrame

ActiveXImage

ShapeConnectorStyleStraight

ShapeConnectorStyleElbow

ShapeConnectorStyleCurved

WordArtEditTextClassic

FilterByResource

TableInsertCellsDialog

DeleteCells2

TableDeleteRows

TableDeleteColumns

Organizer

ShadowOnOrOffClassic

MacroRecorderStop

FileSendAsAttachment

AutoSummaryViewByHighlight

MasterDocument

ChangeCase

ListNumFieldInsert

ParagraphSpaceBeforeNone

ParagraphSpaceBefore

ParagraphSpaceAddOrRemoveBefore

PagePreviousWord

PageNextWord

MailMergeRecepientsUseExistingList

FootnoteNextWord

EndnoteInsertWord

IndexMarkEntry

CitationMark

445 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

IndexInsert

TableOfContentsDialog

TableOfFiguresInsert

TableOfAuthoritiesInsert

TextBoxLinkCreate

TextBoxLinkBreak

TextBoxNextLinked

TextBoxPreviousLinked

CompareAndCombine

PrintOptionsMenuWord

PageNumberFormat

CancelInvitation

ContactWebPage

AttachItem

SendAgain

EditComposePage

EditReadPage

DesignThisForm

FileNewDefault

FilePrintQuick

WindowsTileVertically

WindowsTileHorizontally

SpellingAndGrammar

CopyToPersonalCalendar

CopyToPersonalTaskList

Post

NewOfficeDocument

CreateClassModule

ControlTabControl

ControlPage

ReviewPreviousChangeClassic

ReviewNextChangeClassic

446 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

DialMenu

SendDefault

MessageProperties

PictureInsertFromFile

TableDrawBorderPenWeight

FormatObject2

TableShowGridlines

TableBorderPenColorPicker

ShowAutoShapesAndDrawingBars

ShapeStraightConnectorArrow

ShapeElbowConnectorArrow

SourceControlAddObjects

SourceControlGetLatestVersion

SourceControlCheckOut

SourceControlCheckIn

SourceControlUndoCheckOut

SourceControlShareObjects

SourceControlShowDifferences

SourceControlShowHistory

SourceControlRun

SourceControlProperties

SourceControlCreateDatabaseFromProject

SourceControlAddDatabase

SourceControlOptions

SourceControlRefreshStatus

DatabaseMoveToSharePoint

NewPostInThisFolder3

SlideDelete

ViewHandoutMasterView

ViewNotesMasterView

SlidesReuseSlides

SlidesFromOutline

447 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

MovieFromFileInsert

SoundInsertFromFile

FontsReplaceFonts

SpeakerNotes

BlackAndWhiteAutomatic

BlackAndWhiteBlack

BlackAndWhiteBlackWithGrayscaleFill

BlackAndWhiteBlackWithWhiteFill

BlackAndWhiteDontShow

BlackAndWhiteGrayWithWhiteFill

BlackAndWhiteGrayscale

BlackAndWhiteInverseGrayscale

BlackAndWhiteWhite

BlackAndWhiteLightGrayscale

RecordNarration

SlideShowSetUpDialog

SummarizeSlide

TextWrappingTopAndBottom

TextWrappingThrough

MoveToFolderMenu

MacroRecordOrStop

PasteAsHyperlink

ParagraphDistributed

HyphenationOptions

TableRowsOrColumnsDistribute

MergeOrSplitCells

ReviewJapaneseConsistencyChecker

ShowGridlines_HideGridlines

AutoSummaryResummarize

ViewFooter

PictureSetTransparentColor

DataRefreshAll

448 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

BorderTopWord

BorderBottomWord

BorderLeftWord

BorderRightWord

TextDirection

SlideShowCustom

DuplicateSelectedSlides

ActionInsert

SlideMiniature

PivotTableReport

ControlSetControlDefaults

ControlActiveX

FileNewDatabase

FileOpenDatabase

FileDatabaseProperties

DatasheetColumnDelete

SelectAllAccess

QueryTotalsShowHide

MacroConvertMacrosToVisualBasic

ViewsDesignView

SlideShowInAWindow

HangulHanjaConversionPowerPoint

ReturnToTaskList

MarkTaskComplete

NewMailMessage2

PostReply

ShowGridOutlook

SizeToGridOutlook

ControlSnapToGrid

MacroSingleStep

MicrosoftOnTheWeb01

MicrosoftOnTheWeb02

449 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

MicrosoftOnTheWeb03

MicrosoftOnTheWeb04

MicrosoftOnTheWeb05

MicrosoftOnTheWeb06

MicrosoftOnTheWeb07

MicrosoftOnTheWeb08

MicrosoftOnTheWeb09

MicrosoftOnTheWeb10

MicrosoftOnTheWeb11

MicrosoftOnTheWeb12

MicrosoftOnTheWeb13

MicrosoftOnTheWeb14

MicrosoftOnTheWeb15

MicrosoftOnTheWeb16

SendItem

SlidesPerPage2Slides

SlidesPerPage3Slides

SlidesPerPage6Slides

SlidesPerPageSlideOutline

FontConditionalFormatting

ReviewProtectAndShareWorkbook

ObjectsAlignLeftOutlook

ObjectsAlignRightOutlook

ObjectsAlignTopOutlook

ObjectsAlignBottomOutlook

ObjectsAlignCenterHorizontalOutlook

ObjectsAlignMiddleVerticalOutlook

MicrosoftOnTheWeb17

SizeToGridAccess

SizeToFitAccess

FieldsManage

HorizontalSpacingMakeEqual

450 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

VerticalSpacingMakeEqual

ObjectsAlignToGridOutlook

SortAscendingWord

SortDescendingWord

OutlineGroup

OutlineUngroup

IndentIncreaseExcel

IndentDecreaseExcel

ControlAdvancedProperties

SaveAttachments

ViewVisualBasicCodeAccess

FrameInsertHorizontal

FormatPictureOrShapeDialogClassic

FileSendToPowerPoint

DeclineTask

AutoFormatNow

DataFormWord

ReviseContents

BulletListDefault

NumberListDefault

OutlineNumberDefault

FormatNumberDefault

FootnoteEndnoteDialog

TableInsertDialogWord

FormFieldClear

ObjectBringInFrontOfText

ObjectSendBehindText

RotateRight2

RotateLeft2

PageBreakInsertWord

BordersShadingDialogWord

TextBoxWordClassic

451 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

WordIndent

WordOutdent

IndentIncreaseWord

IndentDecreaseWord

SelectObjects

Callout

ListMacros

ReplaceWithAutoText

FormatBackground

HangulHanjaConversion

HeaderSourceEdit

IndentIncrease

IndentDecrease

AsianLayoutFitText

AsianLayoutPhoneticGuide

AsianLayoutCombineCharacters

JapanesePostcardDialog

CharacterBorder

CharacterShading

MoviePlay

SlidesPerPage4Slides

SlidesPerPage9Slides

ViewWebLayoutView

PasteAlternative

PasteAsNestedTable

HyperlinkRemove

MacroSecurity

HorizontalLineInsert

WebPagePreview

TableSelectCell

TableDelete

TableInsertDialog

452 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

TableRowsInsertAboveWord

TableInsertRowsAbove

TableRowsInsertBelowWord

TableInsertRowsBelow

TableColumnsInsertLeft

TableInsertColumnsLeft

TableColumnsInsertRight

TableInsertColumnsRight

TablePropertiesDialog

TableOptionsDialog

SendCopySendNow

SendCopySelectNames

SendCopyCheckNames

SendCopyOptions

SendCopyFlag

ConferenceMeetNow

SendCopySendToMailRecipient

TableOfContentsInFrame

ComAddInsDialog

FramePropertiesDialog

PivotChartInsertClassic

PivotFieldListShowHide

PictureBulletsInsert

FileNewWebPage

FileNewEmail

ToolboxAudio

ToolboxVideo

ToolboxMarquee

CreateStoredProcedure

FileNewBlankDocument

FileNewDialogClassic

ViewNormalViewPowerPoint

453 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

SynchronizeHtml

IgnoreHtmlChanges

FileSaveAsWebPage

HorizontalLineInsertClassic

GetExternalDataFromWeb

FrameCreateAbove

FrameCreateBelow

FrameCreateLeft

FrameCreateRight

FrameDelete

RelationshipsReport

NewView

GetExternalDataFromText

ServerConnection

RecordsInsertSubdatasheet

AdpDiagramNewLabel

AdpDiagramAddRelatedTables

AdpDiagramShowRelationshipLabels

AdpDiagramViewPageBreaks

AdpDiagramRecalculatePageBreaks

AdpDiagramArrangeSelection

AdpDiagramArrangeTables

AdpDiagramNewTable

AdpDiagramColumnProperties

AdpDiagramColumnNames

AdpDiagramKeys

AdpDiagramNameOnly

AdpDiagramCustomView

AdpDiagramDeleteTable

AdpDiagramHideTable

AdpDiagramAutosizeSelectedTables

DiagramDeleteRelationship

454 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

WindowMoveSplit

EastAsianEditingMarks

FilePublishAsWebPage

TableAutoFitContents

TableAutoFitWindow

TableAutoFitFixedColumnWidth

TableCellAlignTopLeft

TableCellAlignTopCenter

TableCellAlignTopRight

TableCellAlignMiddleLeft

TableCellAlignMiddleCenter

TableCellAlignMiddleRight

TableCellAlignBottomLeft

TableCellAlignBottomCenter

TableCellAlignBottomRight

ServerFilterApply

WebControlCheckBox

WebControlOptionButton

WebControlDropDownBox

WebControlListBox

WebControlTextBox

WebControlTextArea

WebControlSubmit

WebControlSubmitWithImage

WebControlReset

WebControlHidden

WebControlPassword

TableSetLeftToRight

TableSetRightToLeft

ChineseTranslationDialog

TableInsertMultidiagonalCell

AsianLayoutCharactersEnclose

455 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ServerFilterByForm

EnvelopeChineseDialog

AdpVerifySqlSyntax

AdpDiagramTableModesMenu

CreateDiagram

RecordsExpandAllSubdatasheets

RecordsCollapseAllSubdatasheets

ObjectsMultiSelect

DatabaseLinedTableManager

TranslateToTraditionalChinese

TextWrappingBehindText

TextWrappingInFrontOfText

WatermarkCustomDialog

FrameSaveCurrentAs

AdpOutputOperationsTableRemove

AdpOutputOperationsGroupBy

AdpViewDiagramPane

AdpViewGridPane

AdpViewSqlPane

AdpOutputOperationsAddToOutput

AdpOutputOperationsSortAscending

AdpOutputOperationsSortDescending

DatabaseAccessBackEnd

DatabasePartialReplica

TextDirectionContext

TranslateToSimplifiedChinese

ChineseTranslationMenu

FileBackUpSqlDatabase

ServerRestoreSqlDatabase

FileDropSqlDatabase

DatabaseSetLogonSecurity

DatabaseSqlServer

456 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

DatabaseSwitchboardManager

WebServerDiscussions

FontColorMoreColorsDialogPowerPoint

HyperlinksVerify

BlackAndWhite

CancelRequest

ViewMasterDocumentViewClassic

HyperlinkInsertPowerPoint

AddOrRemoveAttendees

NewDistributionList

CalculateFull

SizeMenu

ScriptDebugger

RunThisForm

MessageFormatPlainText

MessageFormatHtml

MessageFormatRichText

ExportToVCardFile

MessageOptions

MapContactAddress

SignatureInsertMenu

DesignAFormOutlook

WatchWindow

FormulaEvaluate

LineSpacing

WordCountList

StylesModifyStyle

MacroRun

ServerProperties

SignatureShow

StylesPane

SpeechMicrophone

457 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

SubformInNewWindow

NumberingRestart

DrawingCanvasInsert

ViewsPivotTableView

ViewsPivotChartView

DiagramRadialInsertClassic

DiagramCycleInsertClassic

DiagramPyramidInsertClassic

DiagramTargetInsertClassic

DiagramVennDiagramInsertClassic

DiagramChangeToRadialClassic

DiagramChangeToCycleClassic

DiagramChangeToTargetClassic

DiagramChangeToVennDiagramClassic

PasteByAppendingTable

OrganizationChartInsertAssistant

OrganizationChartInsertCoworker

OrganizationChartInsertSubordinate

AdpStoredProcedureEditSql

DrawingCanvasFit

DrawingCanvasResize

ColorGrayscaleMenu

ViewBackToColorView

ViewDisplayInGrayscale

ViewDisplayInHighContrast

ViewDisplayInPureBlackAndWhite

PivotAutoFilter

PivotSubtotal

PivotRefresh

PivotMoveToFieldArea

PivotMoveToColumnArea

PivotMoveToFilterArea

458 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

PivotMoveToDetailArea

PivotExpandField

PivotExportToExcel

PivotExpandIndicators

PivotDropAreas

SearchUI

MailMergeMergeToEMail

MailMergeMergeToFax

MailMergeCreateList

DrawingCanvasExpand

TextWrappingInLineWithText

SlidesPerPage1Slide

ReviewSendForReview

WorkgroupAdmin

AdpDiagramAddTable

WebComponent

PasteSpecial

AttachFile

DiagramChangeToPyramidClassic

DiagramShapeMoveBackwardClassic

DiagramShapeMoveForwardClassic

SlideMasterPreserveMaster

SlideMasterRenameMaster

CharacterCodeToggle

LinkBarCustom

BorderDrawMenu

BorderErase

BorderStyle

StylesStyleVisibility

ShowFormulas

DatabaseCopyDatabaseFile

FileServerTransferDatabase

459 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

DiagramStylesClassic

MailMergeHighlightMergeFields

MailMergeWizard

OrganizationChartAutoLayout

OrganizationChartSelectLevel

OrganizationChartSelectBranch

OrganizationChartSelectAllAssistants

OrganizationChartSelectAllConnectors

PivotTableOlapPropertyFields

RevealFormatting

DiagramReverseClassic

DiagramAutoLayoutClassic

PasteTableFromExcel

TranslationPane

GoToTableOfContents

TableOfContentsUpdate

OutlineLevelGallery

OutlineShowLevel

ErrorChecking

BulletsAndNumberingNumberingDialog

NumberingContinue

FileCheckOut

FileCheckIn

OrganizationChartLayoutStandard

OrganizationChartLayoutBothHanging

OrganizationChartLayoutLeftHanging

OrganizationChartLayoutRightHanging

PivotTableGenerateGetPivotData

ReviewReplyWithChanges

StylesStyleSeparator

BorderDrawLine

BorderDrawGrid

460 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

OutlinePromoteToHeading

MicrosoftOutlook

ReviewPreviousChange

ReviewNextChange

ReviewReviewingPane

ReviewAcceptChangeClassic

ReviewRejectChangeOrDeleteComment

PageOrientationLandscape

PageOrientationPortrait

GetExternalDataImportClassic

SlideReset

AnimationOnClick

StartAfterPrevious

MailMergeMatchFields

MailMergeAddressBlockInsert

MailMergeGreetingLineInsert

MailMergeMergeFieldInsert

MailMergeRecipientsEditList

PicturesCompress

TableAutoFormatStyle

PivotAutoCalcMenu

PivotChartType

PivotChartMultiplePlots

PivotChartMultipleUnified

PivotSwitchRowColumn

DrillInto

MailMergeFindRecipient

VerticallyDistributed

ReviewDeleteCommentPowerPoint

ReviewNextCommentPowerPoint

ReviewPreviousCommentPowerPoint

ReviewShowOrHideMarkup

461 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

FontSchemes

FormFieldReset

MailMergeUpdateLabels

PivotCollapseFieldAccess

PivotShowDetails

PivotHideDetails

PivotChartLegendShowHide

AnimationAudio

DiagramFitToContentsClassic

DiagramResizeClassic

DiagramExpandClassic

PivotShowAsMenu

OrganizationChartResize

AcceptProposal

AppointmentColor0

AppointmentColor1

AppointmentColor2

AppointmentColor3

AppointmentColor4

AppointmentColor5

AppointmentColor6

AppointmentColor7

AppointmentColor8

AppointmentColor9

AppointmentColor10

AppointmentColorDialog

ProposeNewTime

ViewAllProposals

ReviewDeleteAllMarkupOnSlide

PasteOption

MailMergeSetDocumentType

DiagramShapeInsertClassic

462 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

OrganizationChartStyle

AdpStoredProcedureQuerySelect

AdpStoredProcedureQueryMakeTable

AdpStoredProcedureQueryUpdate

AdpStoredProcedureQueryAppend

AdpStoredProcedureQueryAppendValues

AdpStoredProcedureQueryDelete

ReviewDisplayForReview

ReviewNewCommentMenu

ReviewAllowUsersToEditRanges

SpeakCells

SpeakStop

SpeakByRows

SpeakByColumns

SpeakOnEnter

Translate

PivotClearCustomOrdering

PivotFilterBySelection

PivotRemoveField

PivotGroupItems

PivotUngroupItems

DrillOut

AdpManageIndexes

ViewGridlinesPowerPoint

AdpDiagramIndexesKeys

AdpDiagramRelationships

AdpConstraints

PhotoAlbumInsert

PhotoAlbumEdit

DrawingCanvasScale

OrgChartScale

DiagramScale

463 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ProtectDocument

BrightnessAndContrastEdit

TableInsertExcel

ReadingMode

ReadingViewClose

PersonaStatusOnline

PersonaStatusOffline

PersonaStatusAway

PersonaStatusBusy

GoToMail

ResearchPane

TableStyleTotalsRow

TableRowsInsertAboveExcel

TableRowsDeleteExcel

TableConvertToRange

PrintListRange

ReadingModeMini

DocumentMapReadingView

ReadingViewResearchPane

ReadingViewFontSizeIncrease

ReadingViewFontSizeDecrease

ReadingViewShowPrintedPage

ViewRulerWord

FileInternetFax

XmlExport

XmlImport

ViewDocumentActionsPane

DatabaseObjectDependencies

ReviewShowInk

InkEraseMode

TableColumnsInsertLeftExcel

TableColumnsDeleteExcel

464 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

NewAlert

InkDeleteAllInk

TableUnlinkExternalData

TableExportTableToSharePointList

LookUp

FilePackageForCD

DesignXml

WindowSideBySide

ViewGridlinesFrontPage

ChangeBinding

ListSynchronize

ChangesDiscardAndRefresh

TableOpenInBrowser

TableResize

XmlExpansionPacksExcel

FileVersionHistory

FileVersionHistoryWord

FrontPageToggleBookmark

XmlDataRefresh

XmlMapProperties

WindowSideBySideSynchronousScrolling

WindowResetPosition

InkColorMoreColorsDialog

XmlTransformation

XmlEditQuery

JotInkStyle1

InsertDrawingCanvas

FilePermissionView

FilePermission

ReadingViewAllowMultiplePages

VoiceInsertInComment

RmsInvokeBrowser

465 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

RmsImportanceCheck

RmsImportanceUncheck

ViewThumbnails

Thesaurus

InkingStart

VoteMenu

RmsNavigationBar

RmsSendBizcard

RmsSendBizcardDesign

FindText

AudioNoteDelete

ViewFullScreenReadingView

VisibilityVisible

VisibilityHidden

VisibilityInherit

InkDrawingAndWriting

ReviewInkCommentPen

ReviewInkCommentEraser

NewInternetFax

MeetingsWorkspace

InkEraser

InkStopInkingReadingView

StarUnratedEmpty

StarUnratedFull

StarRatedEmpty

StarRatedFull

StarRatedHalf

OutlookGlobe

OutlookGears

MsnLogo

GoLeftToRight

GoLtrHover

466 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

GoLtrFocus

GoLtrDown

GoRtl

GoRtlHover

GoRtlFocus

GoRtlDown

StopLeftToRight

StopLtrHover

StopLtrFocus

StopLtrDown

StopRtl

StopRtlHover

StopRtlFocus

StopRtlDown

ForwardToMobile

JunkEmailAddToBlockedSendersList

JunkEmailMarkAsNotJunk

JunkEmailOptions

CategoryCollapse

DataSourceCatalogServerScript

PermissionRestrict

Risks

SetPertWeights

PanAndZoomWindow

FileBackupDatabase

OrganizationOutlook

ThemeBrowseForThemesPowerPoint

AccessNavigationOptions

WorkflowComplete

WorkflowPending

Connections

ViewGoBack

467 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ViewGoForward

ListSetNumberingValue

SlideMasterInsertLayout

FileViewDigitalSignatures

SignaturesLoading

AppointmentAttachment

ViewsReportView

FileCloseDatabase

OpenInfopathForm

FileWorkflowTasks

FileStartWorkflow

SharingRequestAllow

SharingRequestDeny

SharingOpenCalendarFolder

SignatureLineInsert

SlideThemesGallery

ApplicationOptionsDialog

BibliographyInsert

BibliographyStyle

CitationInsert

BibliographyManageSources

BibliographyAddNewSource

LabelInsert

BarcodeInsert

CongratulatoryEvent

CondolatoryEvent

ViewPageLayoutView

PivotClearAll

ChartStylesGallery

ChartLayoutGallery

ChartSaveTemplates

ChartAxisTitles

468 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ChartAxes

ChartGridlines

ChartMoreElement

ChartFormatSelection

ChartElementSelector

PageMarginsGallery

LimeCatsAndDogsGallery

DropCapInsertGallery

TrustCenter

ReadingViewAllowTyping

ReadingViewMarginSettingsMenu

CalendarInsert

SlideShowFromCurrent

BulletsGallery

NumberingGallery

LineSpacingGalleryPowerPoint

SlideNewGallery

SlideLayoutGallery

ShapesInsertGallery

ShapeChangeShapeGallery

ShapeFillTextureGallery

ShapeStylesGallery

PageOrientationGallery

FileServerTasksMenu

FileSendMenu

GroupFont

GroupParagraph

GroupStyles

GroupProofing

GroupInsertPages

GroupInsertIllustrations

GroupShapes

469 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

GroupWordArtText

GroupPageSetup

GroupParagraphLayout

GroupCitationsAndBibliography

GroupFootnotes

GroupTableOfContents

GroupMailMergeWriteInsertFields

GroupMailMergePreviewResults

GroupMailMergeFinish

GroupChangesTracking

GroupComments

GroupChanges

GroupCompare

GroupPictureSize

GroupDrawBorders

GroupTableAlignment

GroupTableProperties

GroupTableTools

GroupSlides

GroupTextBoxText

GroupArrange

GroupInsertMediaClips

GroupSlideThemes

GroupThemes

GroupBackground

GroupPreview

GroupAnimations

GroupTransitionToThisSlide

GroupSlideShowStart

GroupSlideShowSetup

GroupShapeStyles

GroupFill

470 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

GroupLines

GroupEffects

GroupChartLayouts

GroupChartStyles

GroupChartAxes

GroupChartShapes

GroupNumber

GroupAlignmentExcel

GroupCells

GroupSortFilter

GroupInsertTablesExcel

GroupOrganizationChartShapeInsert

GroupPageLayoutScaleToFit

GroupPageLayoutSheetOptions

GroupFunctionLibrary

GroupNamedCells

GroupFormulaAuditing

GroupGetExternalData

GroupConnections

GroupOutline

GroupDataTools

GroupChangesExcel

FollowUpReadMenu

StylesManageStyles

StylesStyleInspector

ObjectEffectPresetGallery

PictureEffectsPresetGallery

_3DRotationGallery

ControlLayoutTabular

ControlLayoutStacked

ControlLayoutRemove

ShapeFillColorPicker

471 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

OutlineColorPicker

ResultsPaneStartFindAndReplace

FileDocumentInspect

ImportSavedImports

ImportAccess

ImportExcel

ImportTextFile

ImportSharePointList

ImportXmlFile

ImportOdbcDatabase

ImportHtmlDocument

ImportOutlook

ImportDBase

ImportParadox

ImportLotus

ExportSavedExports

ExportExcel

ExportSharePointList

ExportWord

ExportAccess

ExportTextFile

ExportXmlFile

ExportOdbcDatabase

ExportSnapshot

ExportHtmlDocument

ExportDBase

ExportParadox

ExportLotus

QuickStylesGallery

QuickStylesSets

ClearFormatting

FormRegionOpen

472 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

FormRegionSave

PanningHand

BulletsGalleryWord

NumberingGalleryWord

SharePointListsWorkOffline

SynchronizeData

SharePointListsDiscardAllChangesAndRefresh

FileManageMenu

ViewsModeMenu

GroupSortAndFilter

SortSelectionMenu

FiltersMenu

RecordsMoreRecordsMenu

FieldsMenu

RecordsSubdatasheetMenu

GroupAutoFormatAccess

GroupTextFormatting

GroupDataTypeAndFormatting

AlignLeftToRightMenu

GroupCreateTables

GroupCreateForms

GroupCreateReports

GroupCreateOther

GroupSharepointLists

GroupCollectData

GroupImport

ImportMoreMenu

GroupExport

ExportMoreMenu

GroupDatabaseTools

DatabasePermissionsMenu

GroupMacro

473 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

GroupDatabaseSourceControl

GroupSourceControlShow

GroupSourceControlManage

GroupRelationships

GroupMacroRows

GroupQuerySetup

GroupQueryType

SqlSpecificMenu2

GroupQueryTools

GroupControls

GroupPageLayoutAccess

GroupZoom

GroupToolsAccess

GroupRichText

GroupSizeAndPosition

PivotShowTopAndBottomItemsMenu

PivotFormulasMenu

FilePublishSlides

SlideShowUsePresenterView

ArrowStyleGallery

OutlineDashesGallery

OutlineWeightGallery

GroupAlignment

GroupPictureTools

GroupSize

FormatCellsNumberDialog

FormatCellsFontDialog

CellAlignmentOptions

PageSetupPageDialog

PageSetupSheetDialog

PivotTableLayoutGrandTotals

GroupPivotTableActiveField

474 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

GroupPivotTableLayout

GroupPivotTableSort

GroupPivotTableShowHide

PivotTableLayoutSubtotals

GroupPivotTableGroup

GroupPivotTableTools

GroupPivotTableData

GroupPivotTableOptions

GroupPivotTableStyles

GroupPivotTableStyleOptions

WrapText

ClearMenu

ProofingToolsFlyoutAnchor

PictureInsertMenu

ReviewTrackChangesMenu

ReviewAcceptChangeMenu

ReviewRejectChangeMenu

ReviewBalloonsMenu

GroupTableStylesPowerPoint

GroupTableRowsAndColumns

GroupTableData

ObjectAlignMenu

MovieInsert

ObjectRotateGallery

FillMenu

SelectMenu

OrientationMenu

MergeCenterMenu

AutoSumMenu

PrintAreaMenu

PageBreakMenu

NameDefineMenu

475 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

RefreshMenu

WhatIfAnalysisMenu

PivotTableFormulasMenu

PivotTableOlapTools

PivotTableOptionsMenu

AnimationGallery

AnimationTransitionGallery

AnimationTransitionSpeedGallery

ErrorCheckingMenu

TraceRemoveArrowsMenu

SortFilterMenu

FontColorPicker

TableColumnsGallery

CellFillColorPicker

BorderDoubleBottom

ChartTitle

ChartPrimaryHorizontalAxisTitle

ChartPrimaryVerticalAxisTitle

ChartDepthAxisTitle

ChartLegend

ChartDataLabel

ChartPrimaryHorizontalGridlines

ChartPrimaryVerticalGridlines

ChartDepthGridlines

ChartPrimaryHorizontalAxis

ChartPrimaryVerticalAxis

ChartDepthAxis

ChartDataTable

ChartTrendline

ChartErrorBars

ChartLines

ChartUpDownBars

476 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ChartPlotArea

ChartWall

ChartFloor

GroupMarginsAndPadding

ControlLineTypeGallery

ControlLineThicknessGallery

GroupMacroTools

ReplicationOptionsMenu

GroupRecords

LassoSelect

SmartArtAddShape

SmartArtIncreaseFontSize

SmartArtDecreaseFontSize

SmartArtLargerShape

SmartArtSmallerShape

SmartArtResetGraphic

SmartArtResetShape

SmartArtTextPane

SmartArtEditIn2D

SmartArtLayoutGallery

SmartArtMoreLayoutsDialog

SmartArtStylesGallery

SmartArtChangeColorsGallery

ObjectEffectSoftEdgesGallery

ObjectEffectGlowGallery

GradientGallery

ObjectEffectShadowGallery

WordArtInsertGallery

TextEffectTransformGallery

TextNoTransform

TextPathArchUp

TextPathArchDown

477 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

TextPathCircle

TextPathButton

TextPlain

TextStop

TextTriangle

TextTriangleInverted

TextChevron

TextChevronInverted

TextRingInside

TextRingOutside

TextArchUpPour

TextArchDownPour

TextCirclePour

TextButtonPour

TextCurveUp

TextCurveDown

TextCascadeUp

TextCascadeDown

TextWave1

TextWave2

TextWave3

TextWave4

TextInflate

TextDeflate

TextInflateBottom

TextDeflateBottom

TextInflateTop

TextDeflateTop

TextDeflateInflate

TextDeflateInflateDeflate

TextFadeRight

TextFadeLeft

478 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

TextFadeUp

TextFadeDown

TextSlantUp

TextSlantDown

TextCanUp

TextCanDown

GroupHeaderFooterExcel

HeaderFooterHeaderGallery

HeaderFooterFooterGallery

GroupHeaderFooterElements

HeaderFooterPageNumberInsertExcel

HeaderFooterNumberOfPagesInsert

HeaderFooterCurrentDate

HeaderFooterCurrentTimeInsert

HeaderFooterFilePathInsert

HeaderFooterFileNameInsert

HeaderFooterSheetNameInsert

HeaderFooterPictureInsert

HeaderFooterFormatPicture

GroupHeaderFooterOptions

FontShadingColorMoreColorsDialog

FontColorMoreColorsDialogExcel

BorderMoreColorsDialog

SheetTabColorMoreColorsDialog

PivotTableNewStyle

PivotPlusMinusFieldHeadersShowHide

PivotTableExpandField

PivotCollapseField

ConditionalFormattingDataBarsGallery

ConditionalFormattingColorScalesGallery

ConditionalFormattingIconSetsGallery

TableColumnsInsertRightExcel

479 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

TableRowsInsertBelowExcel

ConditionalFormattingHighlightBetween

ConditionalFormattingHighlightCompareColumns

PivotTableStylesGallery

FormatAsTableGallery

TableStylesGalleryExcel

ConditionalFormattingsManage

ConditionalFormattingHighlightGreaterThan

ConditionalFormattingHighlightLessThan

ConditionalFormattingHighlightEqualTo

ConditionalFormattingHighlightTextContaining

ConditionalFormattingHighlightDateOccuring

ConditionalFormattingHighlightDuplicateValues

ConditionalFormattingTopNItems

ConditionalFormattingTopNPercent

ConditionalFormattingBottomNItems

ConditionalFormattingBottomNPercent

ConditionalFormattingAboveAverage

ConditionalFormattingBelowAverage

RemoveDuplicates

FilterReapply

CreateEmail

ManageReplies

ReviewPreviousCommentWord

ReviewNextCommentWord

ThemeColorsGallery

PivotTableInsert

PivotChartInsert

PivotTableMove

PivotTableChangeDataSource

BuildingBlocksCreateNewFromSel

HeaderInsertGallery

480 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

FooterInsertGallery

CoverPageInsertGallery

PageNumberFieldInsertGallery

WatermarkGallery

EquationInsertGallery

QuickTablesInsertGallery

QuickPartsInsertGallery

SharePointListsDiscardAllChanges

SortRemoveAllSorts

GroupSmartArtLayouts

GroupSmartArtQuickStyles

GroupSmartArtChooseColor

GroupSmartArtCreateGraphic

GroupSmartArtReset

GroupSmartArtSize

ConditionalFormattingHighlightCellsMenu

ConditionalFormattingTopBottomMenu

SaveSelectionToQuickPartGallery

SaveSelectionToCoverPageGallery

SaveSelectionToEquationGallery

SaveSelectionToFooterGallery

SaveSelectionToHeaderGallery

SaveSelectionToPageNumberGallery

SaveSelectionToQuickTablesGallery

SaveSelectionToWaterMarkGallery

MenuView2

FormatCellsMenu

ConditionalFormattingClearMenu

FontColorCycle

CellsInsertSmart

CellsDeleteSmart

ReviewShowMarkupMenu

481 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ObjectEditShapeMenu

PivotTableLayoutReportLayout

PivotTableLayoutShowInCompactForm

PivotTableLayoutShowInOutlineForm

PivotTableLayoutShowInTabularForm

SymbolInsertGallery

ControlChart

SpellingAccess

ViewsDatasheetView

PivotTableClearMenu

MacroArguments

MacroShowAllActions

GroupControlsAccess

CreateTable

CreateTableTemplatesGallery

AccessTableContacts

AccessTableTasks

AccessTableIssues

AccessTableEvents

AccessTableAssets

CreateTableUsingSharePointListsGallery

AccessListContacts

AccessListTasks

AccessListIssues

AccessListEvents

AccessListAssets

AccessListCustom

AccessListCustomDatasheet

CreateForm

CreateFormSplitForm

CreateFormWithMultipleItems

CreateFormMoreFormsGallery

482 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

AccessFormWizard

CreateFormPivotChart

AccessFormPivotTable

AccessFormDatasheet

AccessFormModalDialog

CreateFormBlankForm

CreateReport

AccessReportMore

CreateReportFromWizard

CreateLabels

CreateReportBlankReport

CreateOtherObjectsMenu

ControlTitle

ControlLogo

ShowMargins

SlideMasterContentPlaceholderInsert

SlideMasterTextPlaceholderInsert

SlideMasterChartPlaceholderInsert

SlideMasterTablePlaceholderInsert

SlideMasterDiagramPlaceholderInsert

SlideMasterMediaPlaceholderInsert

SlideMasterClipArtPlaceholderInsert

SlideMasterVerticalTextPlaceholderInsert

SlideMasterShowFooters

CellStylesGallery

CellStyleNew

CellStylesMerge

TableStylesGallery

TableStyleNew

TableStyleClear

FilePublishExcelServices

PivotTableOlapConvertToFormulas

483 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

PivotTableLayoutBlankRows

TableStyleFirstColumn

TableStyleLastColumn

TableStyleBandedRows

TableStyleBandedColumns

TableStyleRowHeaders

TableStyleColumnHeaders

TableSummarizeWithPivot

DisplayRuler

GetExternalDataFromAccess

GetExternalDataFromOtherSources

GetExternalDataExistingConnections

GroupThemesExcel

PivotPlusMinusButtonsShowHide

FileSaveAsPdfOrXps

FormattingDataType

FormattingRequiredField

FormattingFormat

ApplyCurrencyFormat

ApplyPercentageFormat

ApplyCommaFormat

FormattingIncreaseDecimals

FormattingDecreaseDecimals

BusinessCardInsertMenu

RecentFileList

DataGraphicIconSet

SearchLibraries

MoreControlsDialog

GroupCode

GroupRestrictions

GroupXml

PageScaleToFitWidth

484 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

PageScaleToFitHeight

SlideTransitionApplyToAll

AnimationPreview

XmlStructure

XmlSchema

XmlExpansionPacksWord

GroupCaptions

GroupIndex

GroupTableOfAuthorities

GroupEditing

SelectMenuExcel

PrintTitles

NameUseInFormula

CalculationOptionsMenu

XmlSource

GroupClipboard

GroupInsertTables

GroupInsertLinks

GroupInsertSymbols

GroupInsertBarcode

GroupCalculation

BordersGallery

BordersMoreDialog

PageScaleToFitOptionsDialog

PageSizeGallery

AnimationTransitionSoundGallery

ObjectPictureFill

TextWrappingMenu

RecordsAddFromOutlook

RecordsSaveAsOutlookContact

DatasheetNewField

PivotTableGroupSelection

485 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

PivotTableGroupField

SlideShowFromBeginning

WindowSwitchWindowsMenuWord

WindowSwitchWindowsMenuPowerPoint

WindowSwitchWindowsMenuExcel

ShapeFillMoreGradientsDialog

ShadowOptionsDialog

BuildingBlocksOrganizer

TableSharePointListsModifyColumnsAndSettings

TableListAlertMe

TableSharePointListsModifyWorkflow

TableListPermissions

TableSharePointListsRefreshList

CreateQueryInDesignView

ControlAttachment

GroupFieldsAndColumns

DataOptionsMenu

FormattingUnique

RecordsRefreshMenu

GroupLayoutShowHide

GroupQueryShowHide

GroupMacroShowHide

GroupPosition

GroupAnalyze

GroupControlLayout

GroupRelationshipsTools

GroupTableDesignTools

GroupTableRows

GroupSharePointList

GroupPivotTableFilterAndSort

GroupPivotTableToolsAccess

GroupPivotTableShowHideAccess

486 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

GroupPivotTableSelections

GroupPivotTableDataAccess

GroupPivotTableActiveFieldAccess

GroupPivotChartFilterAndSort

GroupPivotChartTools

GroupPivotChartShowHide

GroupPivotChartDataAccess

GroupPivotChartActiveFieldAccess

GroupPivotChartType

ControlMarginsGallery

ControlPaddingGallery

AutoFormatGallery

PivotMoveField

PivotChartSortByTotalMenu

SharePointListsDiscardChangesMenu

ReviewCompareMenu

ReviewCompareTwoVersions

ReviewCombineRevisions

ReviewCompareMajorVersion

ReviewCompareLastVersion

ReviewCompareSpecificVersion

PropertyInsert

ObjectsAlignLeftSmart

ObjectsAlignRightSmart

ObjectsAlignTopSmart

ObjectsAlignBottomSmart

ObjectsAlignCenterHorizontalSmart

ObjectsAlignMiddleVerticalSmart

AlignDistributeHorizontally

AlignDistributeVertically

GroupProtect

IndexUpdate

487 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

MailMergeFinishAndMergeMenu

HyphenationMenu

MailMergeRules

SlideShowCustomMenu

SlideShowResolutionGallery

SlideShowUseRehearsedTimings

SlideShowShowPresentationOnGallery

GroupMonitors

MailMergeStartMailMergeMenu

MailMergeStartLetters

MailMergeStartEmail

MailMergeStartEnvelopes

MailMergeStartLabels

MailMergeStartDirectory

MailMergeClearMergeType

MailMergeSelectRecipients

TableOfContentsAddTextGallery

FunctionsRecentlyUsedtInsertGallery

FunctionsFinancialInsertGallery

FunctionsDateTimeInsertGallery

FunctionsMathTrigInsertGallery

FunctionsTextInsertGallery

FunctionsLogicalInsertGallery

FunctionsStatisticalInsertGallery

FunctionsLookupReferenceInsertGallery

FunctionsInformationInsertGallery

GroupTableStyleOptions

GroupTableExternalData

GroupEditingExcel

BorderColorPicker

TranslationToolTip

FileCompatibilityChecker

488 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

FollowUpComposeMenu

ThemeFontsGallery

ThemeEffectsGallery

PrintColumns

PrintDataOnly

GroupControlAlignment

RmsNavigationBarHome

FileProperties

ForwardAttach

BackAttach

ManageAttachments

GroupPrintPreviewPrint

GroupPrintPreviewPreview

GroupPlay

GroupMovieOptions

GroupSoundOptions

SoundPlaySoundGallery

SlideShowVolume

BreaksGallery

LineNumbersMenu

GroupOutliningClose

GroupOutliningTools

GroupMasterDocument

TableSelectMenu

TableDeleteRowsAndColumnsMenuWord

GroupTableMerge

TableAutoFitMenu

GroupTableDrawBorders

TableBordersMenu

SortDialog

SortAscendingExcel

SortDescendingExcel

489 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

SortCustomExcel

EditListItems

PublishToPdfOrEdoc

FileSaveAsCurrentFileFormat

FileSaveAsAccess2007

FileSaveAsAccess2002_2003

FileSaveAsAccess2000

AcceptAndAdvance

RejectAndAdvance

FileCreateDocumentWorkspace

FileSaveToDocumentManagementServer

FileDocumentManagementInformation

ScreenNavigatorBack

ScreenNavigatorForward

FilePrepareMenu

FileMarkAsFinal

FileAddDigitalSignature

ForwardAsBusinessCard

ChooseInfoPathForm

RecordsTotals

StylesPaneNewStyle

ChangeCaseGallery

ReviewDeleteCommentsMenuPowerPoint

GroupMerge

AlignJustifyMenu

TextBoxInsertMenu

TextBoxInsertHorizontal

ControlProperties

ViewCode

GroupHeaderFooterLayout

GroupHeaderFooterInsert

GroupHeaderFooterNavigation

490 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

GroupHeaderFooterPosition

BlankPageInsert

HandoutOrientation

SlidesPerPageGallery

GroupPlaceholdersHandoutMaster

GroupMasterEditTheme

GroupMasterClose

GroupMasterEdit

GroupMasterLayout

GroupColorModeSetting

ShadowStyleGalleryClassic

GroupInkSelect

WordArtSpacingMenu

TextAlignMenu

DiagramChangeToMenuClassic

NumberFormatGallery

PictureBrightnessGallery

PictureContrastGallery

PicturePositionGallery

GroupPictureReset

GroupPictureCompress

GroupMailMergeStart

OleObjectInsertMenu

ViewsLayoutView

ForwardAsAttachment

InkInsertSpace

ShadingColorPicker

ShadingColorsMoreColorsDialog

SmartArtAddShapeAfter

SmartArtAddShapeBefore

SmartArtAddShapeAbove

SmartArtAddShapeBelow

491 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

SmartArtAddAssistant

ChartSwitchRowColumn

ChartShowData

ChartRefresh

ChartChangeType

GroupChartData

GroupChartLocation

GroupChartType

GroupTableSize

TableCellMarginsGallery

SlideMasterVerticalContentPlaceholderInsert

_3DRotationOptionsDialog

_3DBevelOptionsDialog

SlideBackgroundStylesGallery

TextDirectionGallery

GroupTableStyleOptionsPowerPoint

TableStyleBandedRowsPowerPoint

TableStyleBandedColumnsPowerPoint

SelectionPane

SmartArtOrganizationChartLeftHanging

SmartArtOrganizationChartRightHanging

SmartArtOrganizationChartBoth

SmartArtOrganizationChartStandard

SmartArtRightToLeft

TableCellCustomMarginsDialog

ForwardContact

PositionAnchoringGallery

GroupMoveData

FilterAdvancedMenu

OmsSend

OmsFileSend

OmsSave

492 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

GroupOmsSend

GroupOmsInsert

GroupOmsView

GroupOmsMessageOptions

OmsViewAccountSetting

OmsInsertSymbolGallery

OmsEmoticonStringInsertGallery

OmsEmoticonInsertGallery

OmsPreviewPane

OmsChangeZoom

OmsAccountSetup

OmsOptions

OmsSlideInsert

OmsChangeSlideLayoutGallery

OmsDelete

OmsInsertPicture

OmsInsertAudio

OmsCustomizeLayout

OmsAudioFromFile

OmsImageFromFile

OmsImageFromClip

OmsScanImage

OmsNewTextMessage

OmsNewMultimediaMessage

OmsNewTextMessageToContact

OmsNewMultimediaMessageToContact

OmsForwardAsTextMessage

OmsForwardAsMultimediaMessage

OmsMaximumMessages

OmsGroupCreateSlides

ListLevelGallery

MultilevelListGallery

493 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

BuildingBlockProperties

ApplyStylesPane

NameManager

NameDefine

OpenAttachedCalendar

RssShareThisFeed

OpenInBrowserOutlook

InsertAlignmentTab

SharingOpenMailFolder

SharingOpenContactFolder

SharingOpenTaskFolder

SharingOpenNotesFolder

SharingOpenJournalFolder

SharingOpenDocumentFolder

ReplyWithInstantMessage

DefaultView

HideDetails

GridlinesWidthGallery

GridlinesColorPicker

GridlinesStyleGallery

SmartArtOrganizationChartMenu

SmartArtChangeLayout

ReadingViewToolsMenu

ReadingViewNextPage

ReadingViewPreviousPage

ReadingViewShowOnePage

ReadingViewShowTwoPages

ReadingViewViewOptionsMenu

EditWorkflowTask

SymbolsDialog

ReviewReviewingPaneHorizontal

ReviewReviewingPaneVertical

494 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

_3DEffectsGalleryClassic

_3DDirectionGalleryClassic

_3DLightingGalleryClassic

GroupShadowEffects

Group3DEffects

WordArtStylesGalleryClassic

WordArtInsertGalleryClassic

TableInsertGallery

ShapeStylesGalleryClassic

WordArtChangeShapeGallery

ShadowColorPickerClassic

_3DEffectColorPickerClassic

ShapeFillGradientGalleryClassic

AsianLayoutMenu

JapaneseGreetingsInsertMenu

AlignJustifyWithMixedLanguages

AlignJustifyLow

AlignJustifyMedium

AlignJustifyHigh

AlignJustifyThai

ExcelSpreadsheetInsert

ParagraphIndentLeft

ParagraphIndentRight

ParagraphSpacingBefore

ParagraphSpacingAfter

HeaderFooterPositionHeaderFromTop

HeaderFooterPositionFooterFromBottom

ControlsGallery

ShapeHeight

ShapeWidth

TransitionTimeAutomaticallyAfter

SoundMaximumFileSize

495 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

CDAudioStartTrack

CDAudioStopTrack

CDAudioStartTime

CDAudioStopTime

SlideOrientationGallery

TextHighlightColorPicker

PageColorPicker

GoToHeader

GoToFooter

UnderlineGallery

UnderlineColorPicker

TextDirectionGalleryWord

GroupAddInsMenuCommands

GroupAddInsToolbarCommands

ViewFreezePanesGallery

GroupInk

GroupInkPens

GroupInkClose

InkBallpointPen

InkFeltTipPen

InkHighlighter

PhoneticGuideMenu

PageScaleToFitScale

GroupBorder

PictureRecolorGalleryWord

_3DSurfaceMaterialGalleryClassic

_3DExtrusionDepthGalleryClassic

GroupHeaderFooter

GroupPageLayoutSetup

GroupPageBackground

FunctionsCubeInsertGallery

FunctionsEngineeringInsertGallery

496 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ThemeSaveCurrentPowerPoint

ThemeSaveCurrent

TextAlignGallery

ThemesGallery

CharacterSpacingGallery

ChartFormatDataSeries

ChartFormatDataLabels

ChartResetToMatchStyle

ChartSeriesTypeChange

Chart3DView

ChartFormatDataPoint

ChartFormatDataLabel

ChartFormatAxis

ChartFormatGridlines

ChartFormatDisplayUnit

ChartFormatLegendEntry

ChartFormatChartArea

ChartFormatLegend

ChartFormatErrorBars

ChartFormatUpBars

ChartFormatDownBars

ChartFormatHighLowLine

ChartFormatDropLines

ChartFormatTrendline

ChartFormatTrendlineLabel

ChartFormatSeriesLine

ChartFormatDataTable

ChartFormatAxisTitle

ChartFormatChartTitle

ChartFormatFloor

ChartFormatSideWall

ChartFormatBackWall

497 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ChartFormatWalls

ChartFormatPlotArea

ObjectSizeAndPositionDialog

ObjectSizeAndPropertiesDialog

ObjectSizeDialog

ShapeConvertToFreeform

AutoTextGallery

TextBoxInsertGallery

PageNumbersInHeaderInsertGallery

PageNambersInFooterInsertGallery

PageNambersInMarginsInsertGallery

SaveSelectionToAutoTextGallery

SaveSelectionToTextBoxGallery

BuildingBlocksCreateLayout

SaveSelectionToPageNumberTop

SaveSelectionToPageNumberBottom

SaveSelectionToPageNumberMargin

BuildingBlocksSaveCoverPage

BuildingBlocksSaveHeader

BuildingBlocksSaveFooter

BuildingBlocksSavePageNumTop

BuildingBlocksSavePageNumBottom

BuildingBlocksSavePageNum

HeaderFooterEditHeader

TableStyleBandedRowsWord

TableStyleBandedColumnsWord

MSWordApplyTableStyle

TableStyleModify

TableStylesGalleryWord

ReviewViewChangesInTheSourceDocument

GroupThemesWord

OfficeDiagnostics

498 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

WindowsSwitch

LayoutOptionsDialog

DrawingObjectFormatDialog

FontAlternateFillBackColorPicker

GroupGroupingAndTotals

GroupFindAccess

GroupSchemaTools

GroupAdpDiagramShowHide

GroupAdpDiagramLayout

GroupAdpQueryTools

GroupAdpOutputOperations

GroupAdpQueryType

GroupAdpSqlStatementDesignTools

ConvertToSmartArt

ConvertToSmartArtMoreSmartArtGraphicsDialog

ReflectionGallery

PictureRecolorGallery

SmartArtPromote

SmartArtDemote

TableEffectsCellBevelGallery

GroupPivotChartShowOrHide

GroupPivotChartData

GroupPivotChartActiveField

PivotChartRefresh

PivotChartFilterShow

TableBackgroundGallery

_3DPerspectiveIncrease

_3DPerspectiveDecrease

ChartSecondaryHorizontalAxisTitle

ChartSecondaryVerticalAxisTitle

ChartSecondaryHorizontalGridlines

ChartSecondaryVerticalGridlines

499 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ChartSecondaryHorizontalAxis

ChartSecondaryVerticalAxis

ReadingModeToPrintView

GroupAddInsCustomToolbars

MoviePlayAutomatically

ReviewDeleteCommentsMenu

ConditionalFormattingMenu

GroupPersonalInfo

GroupMessageOptions

GroupAttach

GroupNames

GroupRespond

GroupMembers

GroupContactOptions

GroupJunkEmail

ForwardMenu

JunkEmailSafeListsMenu

UseVotingButtonsMenu

RecentlyUsedFolder

ArrangeWindowsDialog

GroupForm

MakeSameSizeMenu

CategorizeMenu

ReplyAllWithInstantMessage

ObjectBringToFrontMenu

ObjectSendToBackMenu

ObjectsGroupMenu

SignatureLineInsertMenu

FileSaveAsWord97_2003

ViewDisplayInColor

HyperlinkFlyoutAnchor

FileSaveAsPowerPoint97_2003

500 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

SelectionPaneHidden

PivotFieldList

FilePackageAndSign

TotalsMenu

EnglishWritingAssistant

TableOfContentsGallery

SaveSelectionToTableOfContentsGallery

BuildingBlocksCreateTableOfFigures

BuildingBlocksCreateTableOfAuthorities

BuildingBlocksCreateIndex

BuildingBlocksSaveTableOfContents

BuildingBlocksSaveTableOfFigures

BuildingBlocksSaveTableOfAuthorities

BuildingBlocksSaveIndex

FileSaveAsExcel97_2003

TextBoxInsertExcel

TextBoxStyleGallery

TableColumnWidth

TableRowHeight

TextBoxPositionGallery

FilePermissionRestrictMenu

GroupEnvelopeLabelCreate

ReviewInkCommentNew

InsertCellstMenu

PivotTableInsertMenu

OutlineGroupMenu

OutlineUngroupMenu

FormulaMoreFunctionsMenu

WordInsertTableOfContents2

ReadingViewTrackChanges

ReadingViewShowCommentsAndChangesMenu

ReadingViewChangeInkPenMenu

501 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

DocumentPanelTemplate

GroupModify

ObjectSizeDialogClassic

ViewGridlinesToggleExcel

TextBoxInsertVerticalWord

BevelShapeGallery

_3DBevelPictureTopGallery

_3DMaterialMixed

_3DMaterialPlastic

_3DMaterialMetal

BibliographyAddNewPlaceholder

TableStyleClearTable

GroupTable

GroupTableCellSize

TableEffectsMenu

EditLinks

PositionAbsoluteMarks

QuerySplitMenu

FileSaveAsMenuAccess

FileServerMenu

GlowColorPicker

RecolorColorPicker

GlowColorMoreColorsDialog

PictureRecolorMoreColorsDialog

ShapesDuplicate

CloseDocument

WatermarkRemove

CoverPageRemove

HeaderFooterRemoveHeaderWord

HeaderFooterRemoveFooterWord

PageNumbersRemove

TableOfContentsRemove

502 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

SmartArtAddBullet

TableWidth

TableHeight

SlideMasterPicturePlaceholderInsert

SlideMasterInsertPlaceholderMenu

RemoveCitation

EditCitation

TableBorderColorMoreColorsDialog

TableFillColorMoreColorsDialog

PictureChange

GroupWordArtStyles

TextFillColorPicker

TextOutlineColorPicker

TextOutlineColorMoreColorsDialog

TextEffectsMenu

TextStylesGallery

WordArtClear

TextPictureFill

TextFillGradientGallery

TextFillMoreGradientsDialog

TextFillTextureGallery

TextOutlineDashesGallery

TextOutlineMoreLinesDialog

TextOutlineWeightGallery

TextEffectShadowGallery

TextEffectsMoreShadowsDialog

TextEffectsBevelMore3DOptionsDialog

TextEffects3DRotationGallery

TextEffects3DRotationOptionsDialog

TextEffectGlowGallery

TextGlowColorPicker

TextGlowColorMoreColorsDialog

503 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

TextReflectionGallery

ShapeEffectsMenu

NewTableStyle2

NewPivotTableStyle2

ShapeConnectorStyleMenu

PivotTableSubtotalsDoNotShow

PivotTableSubtotalsOnBottom

PivotTableSubtotalsOnTop

PivotTableGrandTotalsOffForRowsAndColumns

PivotTableGrandTotalsOnForRowsAndColumns

PivotTableGrandTotalsOnForRowsOnly

PivotTableGrandTotalsOnForColumnsOnly

PivotTableBlankRowsInsert

PivotTableBlankRowsRemove

ShowMessagePage

ShowCustomPage

ShowTrackingPage

ShowCustomPropertiesPage

ShowCustomActionsPage

ShowFormRegionPage

GroupShow

ShowAllFieldsPage

MessageToAttendeesMenu

ReminderGallery

ShowTimeAsGallery

ProposeNewTimeMenu

GroupAttendeesMeetingNotSent

GroupAppointmentOptions

ShowAppointmentPage

ShowSchedulingPage

ShowContactPage

ShowCertificatesPage

504 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ShowActivitesPage

ShowDetailsPage

ShowMembersPage

ShowNotesPage

GroupCopy

InterconnectOpen

InterconnectNextSide

DefinedPrintStyle

ItemProperties

PermissionRestrictMenu

MoveItem

ShowSharePage

EditBusinessCard

GroupInterconnect

ContactPictureMenu

ContactSendMenu

DistributionListSelectMembers

DistributionListAddNewMember

DistributionListRemoveMember

DistributionListUpdateMembers

ObjectsGroupOutlook

ObjectsUngroupOutlook

ObjectBringToFrontOutlook

ObjectSendToBackOutlook

ObjectBringForwardOutlook

ObjectSendBackwardOutlook

FormPublishMenu

GroupDesign

PageMenu

AppointmentBusy

AppointmentOutOfOffice

ShowTaskPage

505 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ShowTaskDetailsPage

GroupManageTask

GroupTaskOptions

ShowJournalPage

StartTimer

PauseTimer

FormRegionMenu

ObjectsAlignMenuOutlook

GroupSend

IMMenu

UpgradeDocument

GroupHeaderFooterClose

GroupChartCurrentSelection

GroupChartLabels

AlignTopExcel

AlignMiddleExcel

AlignBottomExcel

CustomActionsMenu

GroupActions

TableOfAuthoritiesUpdate

TableOfFiguresUpdate

PrintPreviewMultiplePagesMenu

ContentControlsGroup

FormsMenu

TablesMenu

ReportsMenu

BevelTextGallery

PictureCorrectionsDialog

PostcardWizard

BusinessFormWizard

GroupTextBoxStyles

GroupTableStylesWord

506 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

GroupWordArtStylesClassic

PageBorderAndShadingDialog

GroupTableStylesExcel

OutlineViewClose

ConditionalFormattingNewRule

SmartArtAddShapeSplitMenu

ContentControlRichText

ContentControlText

ContentControlPicture

ContentControlComboBox

ContentControlDropDownList

ContentControlBuildingBlockGallery

ContentControlDate

AccountMenu

MoveToFolderFileMenu

RssDownloadContent

InsertRow

InsertColumn3

MasterNotesPageOrientation

ViewRulerExcel

ReadingNextPageRtl

ReadingPrevPageRtl

AutoSummaryToolsMenu

GroupInkFormat

InkColorPicker

GroupDiagramLayoutClassic

GroupDiagramStylesClassic

GroupOrganizationChartLayoutClassic

GroupOrganizationChartStyleClassic

TextBoxDrawMenu

TextBoxInsertWord

GroupOrganizationChartSelect

507 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

BorderColorPickerExcel

TextDirectionMoreOptionsDialog

TextAlignMoreOptionsDialog

ParagraphMoreColumnsDialog

ObjectBringToFrontMenuOutlook

ObjectSendToBaseMenuOutlook

Call

BibliographyGallery

CustomHeaderGallery

CustomFooterGallery

CustomCoverPageGallery

CustomPageNumberGallery

CustomPageNumberTopGallery

CustomPageNumberBottomGallery

CustomPageMargins

CustomWatermarkGallery

CustomEquationsGallery

CustomTablesGallery

CustomQuickPartsGallery

CustomAutoTextGallery

CustomTextBoxGallery

CustomTableOfContentsGallery

CustomBibliographyGallery

CustomGallery1

CustomGallery2

CustomGallery3

CustomGallery4

CustomGallery5

SlideBackgroundReset

ShapeCloud

MailMergeRecepientsUseOutlookContacts

CDAudioPlayTrackAutomatically

508 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

FootnoteNext

ColorPickerCommentFill

GroupConvert

ReviewReviewingPaneMenu

GroupSizeClassic

GroupPictureSizeClassic

GroupPictureToolsClassic

GalleryAllShapesAndCanvas

GroupShapesClassic

GroupSmartArtShapes

GroupShapeStylesClassic

GroupInsertText

Drawing1ColorPickerFill

ShapeOutlineColorPicker

Drawing1ColorPickerLineStyles

Drawing1ColorPickerLineStyles2

Drawing1GalleryTextures

InsertBuildingBlocksHeaderGallery

InsertBuildingBlocksFooterGallery

InsertBuildingBlocksCommonPartsGallery

InsertBuildingBlocksEquationsGallery

Drawing1GalleryBrightness

Drawing1GalleryContrast

GroupDiagramArrangeClassic

GroupTextBoxArrange

GroupColorModeClose

GroupPageSetupNotesMaster

GroupPageSetupHandoutMaster

GroupPlaceholdersNotesMaster

GroupInsertSlides

InsertPicturePowerPointFlyoutAnchor

TableSelectMenuPowerPoint

509 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

TableDeleteRowsAndColumnsMenu

GroupCDAudioSetup

AccountingFormatMenu

GroupCommentShapes

GroupCommentPosition

TripaneViewMode

PrintOptionsMenu

FileMenuSendHeader

FileMenuServerTasksHeader

ScreenNavigatorBackMenu

ScreenNavigatorForwardMenu

OutlineCollapseMenu

OutlineExpandMenu

ContentControlsGroupMenu

ContentControlsUngroup

EditCitationButton

GroupChartProperties

ControlsGalleryClassic

PivotTableEditDataSource

FileExcelServicesOptions

ReviewShowSourceDocumentsMenu

BuildingBlocksSaveEquation

HeaderFooterEditFooter

WordContentControlEditPlaceholderToggle

TableExportMenu

TableExportTableToVisioPivotDiagram

EquationToggle

EquationInsertNew

EquationProfessional

EquationLinearFormat

EquationNormalText

EquationSymbolsInsertGallery

510 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

EquationIntegralGallery

EquationFractionGallery

EquationRadicalGallery

EquationLargeOperatorGallery

EquationDelimiterGallery

EquationScriptGallery

EquationFunctionGallery

EquationAccentGallery

EquationLimitGallery

EquationOperatorGallery

EquationMatrixGallery

EquationOptions

GroupEquationTools

GroupEquationSymbols

GroupEquationStructures

EquationOptionsMenu

GroupBasicText

GroupInclude

GroupFields

GroupMessageFormat

GroupTracking

GroupMoreOptions

GroupCommunicate

GroupTimer

SaveSentItemsMenu

DelayDeliveryOutlook

DirectRepliesTo

SaveSentItemRecentlyUsedFolder

SaveSentItemOtherFolder

FindRelatedMenu

OtherActionsMenu

EncodingMenu

511 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

Drawing1GalleryRotateObject

MailMergeMergeFieldInsertMenu

ReviewDeleteAllMarkupInPresentation

PasteMenu

GroupPictureStyles

PictureStylesGallery

GroupInsertChartsExcel

ChartTypeColumnInsertGallery

ChartTypeLineInsertGallery

ChartTypePieInsertGallery

ChartTypeBarInsertGallery

ChartTypeAreaInsertGallery

ChartTypeXYScatterInsertGallery

ChartTypeOtherInsertGallery

ChartTypeAllInsertDialog

PivotChartClearMenu

ReviewAcceptChangeAndMoveToNext

ReviewRejectChangeAndMoveToNext

PictureEffectsShadowGallery

PictureEffectsGlowGallery

PictureEffectsSoftEdgesGallery

PictureReflectionGallery

PictureReflectionGalleryItem

PictureRotationGallery

ReadingViewShowOriginalOrFinalDocument

InterconnectDeleteCard

InkToolsClose

GroupChineseTranslation

CloseMasterView

SheetRowsInsert

SheetColumnsInsert

SheetRowsDelete

512 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

SheetColumnsDelete

JustifyVerticalFlyoutAnchor

JustifyLowVertical

JustifyMediumVertical

JustifyHighVertical

LineSpacingMenu

WordOpenParaAbove

WordCloseParaAbove

WordOpenParaBelow

WordCloseParaBelow

AdpNewTable

ViewsSwitchToDefaultView

GroupDocumentViews

GroupViewShowHide

GroupWindow

GroupWorkbookViews

ViewGridlines

ViewHeadings

GroupPresentationViews

GroupColorGrayscale

RefreshAllMenu

DataValidationMenu

GroupViews

GroupViewsShowHide

GroupViewZoom

GroupWindowAccess

FPTableAutoFormat

FPTable

PageViewMenu

ShowTimeZones

ViewOnlineConnection

CLViewDialogHelpID

513 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

FileDocumentEncrypt

WordArtFormatDialog

MoreTextureOptions

TextFillColorMoreColorsDialog

ZoomFitToWindow

ZoomTwoPages

BorderTopNoToggle

BorderBottomNoToggle

BorderLeftNoToggle

BorderRightNoToggle

WindowSplitToggle

QuickPartsInsertFromOnline

JotShapeRectangle

JotShapeEllipse

JotShapeParallelogram

JotShapeDiamond

JotSendPdf

ProjectTaskDrivers

ProjectStatusReports

ProjectRecalcChangeHighlighting

ProjectAdvancedDesktopReporting

ProjectManageDeliverables

ProjectManageDependenciesOnDeliverables

JotLineColor

AddInsMenu

GroupPrintPreviewPageSetup

GroupPrintPageBackground

ShowRuler

ViewDirectionMenu

JustifyThaiVertical

FileEmailAsPdfEmailAttachment

FileEmailAsXpsEmailAttachment

514 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

FontFillBackColorPicker

GroupArrangeOutlook

GroupTemplates

SelectMenuAccess

GoToMenuAccess

GroupQueryResults

GroupAdminister

GroupTableDesignShowHide

GroupPrintPreviewData

GroupPrintPreviewClosePreview

GroupFormatting

GroupQueryClose

GroupMacroClose

ObjectsGroupMenuOutlook

RegionLayoutMenu

ResponsesMenu

GroupOpen

SpellingMenu

GroupPrintPreviewZoom

PictureEffectsMenu

PictureShapeGallery

PictureBorderColorPickerClassic

GroupInsertShapes

PhotoAlbumInsertMenu

GroupChartBackground

GroupChartAnalysis

ZoomToSelection

FileNewBlogPost

GroupBlogPublish

BlogPublishMenu

BlogPublish

BlogPublishDraft

515 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

BlogManageAccounts

GroupBlogProperties

BlogCategories

BlogCategoryInsert

BlogCategoriesRefresh

BlogOpenExisting

GroupBlogBasicText

GroupBlogInsertText

DeleteSlideContextual

AutoSigInsertPictureFromFile

AutoSigWebInsertHyperlink

GroupFind

ViewPreviousItemMenu

ViewNextItemMenu

ContactLinkMenu

NewTableStyleWord

CacheListData

AccessRefreshAllLists

AccessOfflineLists

AccessOnlineLists

GridlinesExcel

UnmergeCells

MenuPublish

FileMenuPublishHeader

ChangeStylesMenu

GroupBlogInsertLinks

SharePointSiteRecycleBin

SubformMenu

LabelFontDialog

PrintDialogAccess

ForwardInForwardMenu

FileCompatibilityCheckerPowerPoint

516 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

SharingNone

AccessRecycleBin

FileCompatibilityCheckerWord

AccessRelinkLists

StopAnimation

ViewSideBySide

TableBackgroundPictureFill

GroupAttendeesMeetingSent

ImexRunImport

ImexRunExport

GroupTools

GroupFormattingControls

GroupControlAlignmentLayout

GroupDesignGridlines

GroupFormattingGridlines

GroupFieldsTools

GroupFontAccess

GroupDatasheetRelationships

GroupPositionLayout

GroupControlPositionLayout

GroupControlSize

PrintPreviewZoomMenu

GroupMarginsAndPaddingControlLayout

RecordsDeleteColumn

ViewsAdpDiagramPrintPreview

UpgradePresentation

ChartShowDataContextualMenu

ChartSourceDataContextualMenu

FileSaveAsOtherFormats

FileSaveAsWordDocx

FileSaveAsWordDotx

FileSaveAsExcelXlsx

517 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

FileSaveAsExcelXlsxMacro

FileSaveAsExcelXlsb

FileSaveAsPowerPointPptx

FileSaveAsPowerPointPpsx

LockCell

PasteAsPictureMenu

GroupPivotActions

PivotTableSelectFlyout

ZoomCurrent100

Drawing1ColorPickerLineStylesWordArt

Drawing1ColorPickerFillWordArt

FontDialogPowerPoint

PowerPointParagraphDialog

PowerPointPageSetup

GroupDrawing2

ShapeQuickStylesHome

GalleryAllShapesAndTextboxes

TableTextStylesGallery

GroupTextStylesTable

UpdateBibliography

ExportToAccess

BizBarPublishToSharePoint

BlogInsertCategories

NewMailMessageNumbered

NewAppointmentNumbered

NewMeetingRequestNumbered

NewContactNumbered

NewDistributionListNumbered

NewTaskNumbered

NewNoteNumbered

FileMenuSaveAsHeaderOutlook

FileMenuPrintHeaderOutlook

518 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

GroupRecover

SmartArtInsertBulletRTL

NewContactMenu

GroupTableLayout

ObjectsArrangeMenu

TextFillMoreTextures

FileMenuPrintHeaderAccess

ConvertDatabaseFormat

PivotShowOnlyTheTopMenu

PivotShowOnlyTheBottomMenu

GroupMacros

PlayMacro

MenuMacros

SharingOpenWssDocumentList

SharingOpenWssDiscussionList

SharingOpenWssCalendar

SharingOpenWssContactList

SharingOpenWssTaskList

SharingOpenRssFeed

SharingOpenPublishedCalendar

SharingOpenWebCalendar

SharingOpenICalendar

SharingPreviewPublishedCalendar

SharingPreviewWssCalendar

SharingPreviewWssContactList

SharingPreviewWssTaskList

SharingPreviewWssDocumentList

SharingPreviewWssDiscussionList

SaveObjectAs

AdvertisePublishAs

UpgradeWorkbook

ReviewProtectDocumentMenu

519 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

imageMso

ReviewProtectWorkbookMenu

GroupPermission

ReviewProtectPresentationMenu

BlogHomePage

GroupBlogProofing

GroupBlogStyles

EquationEdit

AlternativeText

ChartFormatLeaderLines

ThemeBrowseForThemes

FilePublishToSharePoint

FileCheckOutDiscard

GroupBlogSymbols

520 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

4 Appendix B: Product Behavior

 The 2007 Microsoft Office system

 Microsoft Office 2010 suites

 Microsoft Office 2013

 Microsoft Office 2016

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears

with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

521 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

5 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

522 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

6 Index

C

Change tracking 522
Custom UI
 parts 8
Custom UI control id table
 imageMso table 419

E

Elements 10
 box (box grouping container) 10
 button (button inside of a split button) 33
 button (button) 14
 button (unsized button) 24
 buttonGroup (button grouping container) 42
 checkBox (check box) 45
 comboBox (combo box) 55

 command (repurposed command) 66
 commands (list of repurposed commands) 68
 contextualTabs (list of contextual tab sets) 68
 control (control clone) 77
 control (Quick Access Toolbar control clone) 86
 control (unsized control clone) 69
 customUI (custom UI document root) 95
 dialogBoxLauncher (dialog box launcher) 96
 documentControls (list of document-specific Quick

Access Toolbar controls) 97
 dropDown (drop-down control) 98
 dynamicMenu (dynamic menu) 119
 dynamicMenu (unsized dynamic menu) 110
 editBox (edit box) 130
 gallery (gallery) 139
 gallery (unsized gallery) 155
 group (group) 169
 item (selection item) 177
 labelControl (text label) 180
 menu (dynamic menu root XML element) 218
 menu (menu with title) 197
 menu (menu) 207
 menu (unsized menu) 188
 menuSeparator (menu separator) 220
 officeMenu (Office menu) 223
 qat (Quick Access Toolbar) 224
 ribbon (ribbon) 225
 separator (separator) 226
 sharedControls (list of shared Quick Access Toolbar

controls) 229
 splitButton (split button with title) 238
 splitButton (split button) 247
 splitButton (unsized split button) 230
 tab (tab) 256
 tabs (list of tabs) 260
 tabSet (contextual tab set) 261
 toggleButton (toggle button inside of a split

button) 282
 toggleButton (toggle button) 272
 toggleButton (unsized toggle button) 262

G

Glossary 6

I

idMso tables
 Excel 2007 357
 PowerPoint 2007 392
 Word 2007 303
 Word 2010, Excel 2010, PowerPoint 2010 418
 Word 2013, Excel 2013, PowerPoint 2013 418
Informative references 7
Introduction 6

N

Normative references 7

P

Parts
 additional part types 8
 quick access toolbar customizations part 8
 ribbon extensibility part 9
Product behavior 521

R

References
 informative 7
 normative 7

S

Simple types 291
 ST_BoxStyle (box style) 291
 ST_Delegate (callback function name) 291
 ST_GalleryItemWidthHeight (gallery item width or

height) 294
 ST_GalleryRowColumnCount (gallery row or

column count) 294
 ST_ID (control identifier) 295
 ST_ItemSize (menu item size) 296
 ST_Keytip (key tip) 296
 ST_LongString (long string) 297
 ST_QID (qualified control identifier) 297
 ST_Size (control size) 299

 ST_String (short string) 300
 ST_StringLength (string length) 301
 ST_UniqueID (custom control identifier) 301
 ST_Uri (image relationship identifier) 302

T

Tables
 idMso table – Excel 2007 357
 idMso table – PowerPoint 2007 392
 idMso table – Word 2007 303
 idMso table – Word 2010, Excel 2010, PowerPoint

2010 418
 idMso table – Word 2013, Excel 2013, PowerPoint

2013 418
 imageMso table 419
Tracking changes 522

523 / 523

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	2 Custom UI
	2.1 Parts
	2.1.1 Quick Access Toolbar Customizations Part
	2.1.2 Ribbon Extensibility Part

	2.2 Elements
	2.2.1 box (Box Grouping Container)
	2.2.2 button (Button)
	2.2.3 button (Unsized Button)
	2.2.4 button (Button Inside of a Split Button)
	2.2.5 buttonGroup (Button Grouping Container)
	2.2.6 checkBox (Check Box)
	2.2.7 comboBox (Combo Box)
	2.2.8 command (Repurposed Command)
	2.2.9 commands (List of Repurposed Commands)
	2.2.10 contextualTabs (List of Contextual Tab Sets)
	2.2.11 control (Unsized Control Clone)
	2.2.12 control (Control Clone)
	2.2.13 control (Quick Access Toolbar Control Clone)
	2.2.14 customUI (Custom UI Document Root)
	2.2.15 dialogBoxLauncher (Dialog Box Launcher)
	2.2.16 documentControls (List of Document-Specific Quick Access Toolbar Controls)
	2.2.17 dropDown (Drop-down Control)
	2.2.18 dynamicMenu (Unsized Dynamic Menu)
	2.2.19 dynamicMenu (Dynamic Menu)
	2.2.20 editBox (Edit Box)
	2.2.21 gallery (Gallery)
	2.2.22 gallery (Unsized Gallery)
	2.2.23 group (Group)
	2.2.24 item (Selection Item)
	2.2.25 labelControl (Text Label)
	2.2.26 menu (Unsized Menu)
	2.2.27 menu (Menu with Title)
	2.2.28 menu (Menu)
	2.2.29 menu (Dynamic Menu Root XML Element)
	2.2.30 menuSeparator (Menu Separator)
	2.2.31 officeMenu (Office Menu)
	2.2.32 qat (Quick Access Toolbar)
	2.2.33 ribbon (Ribbon)
	2.2.34 separator (Separator)
	2.2.35 sharedControls (List of Shared Quick Access Toolbar Controls)
	2.2.36 splitButton (Unsized Split Button)
	2.2.37 splitButton (Split Button with Title)
	2.2.38 splitButton (Split Button)
	2.2.39 tab (Tab)
	2.2.40 tabs (List of Tabs)
	2.2.41 tabSet (Contextual Tab Set)
	2.2.42 toggleButton (Unsized Toggle Button)
	2.2.43 toggleButton (Toggle Button)
	2.2.44 toggleButton (Toggle Button Inside of a Split Button)

	2.3 Simple Types
	2.3.1 ST_BoxStyle (Box Style)
	2.3.2 ST_Delegate (Callback Function Name)
	2.3.3 ST_GalleryItemWidthHeight (Gallery Item Width or Height)
	2.3.4 ST_GalleryRowColumnCount (Gallery Row or Column Count)
	2.3.5 ST_ID (Control ID)
	2.3.6 ST_ItemSize (Menu Item Size)
	2.3.7 ST_Keytip (Keytip)
	2.3.8 ST_LongString (Long String)
	2.3.9 ST_QID (Qualified Control ID)
	2.3.10 ST_Size (Control Size)
	2.3.11 ST_String (Short String)
	2.3.12 ST_StringLength (String Length)
	2.3.13 ST_UniqueID (Custom Control ID)
	2.3.14 ST_Uri (Image Relationship ID)

	3 Appendix A: Custom UI Control ID Tables
	3.1 idMso Tables
	3.1.1 Word 2007
	3.1.2 Excel 2007
	3.1.3 PowerPoint 2007
	3.1.4 Word 2010, Excel 2010, PowerPoint 2010
	3.1.5 Word 2013, Excel 2013, PowerPoint 2013

	3.2 imageMso Table

	4 Appendix B: Product Behavior
	5 Change Tracking
	6 Index

