[MS-CUSTOMUI]:
Custom UI XML Markup Specification

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

1/523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

Revision Summary

Revision Revision

Date History Class Comments

1/15/2009 1.0 Major Initial Availability

7/13/2009 1.01 Major Revised and edited the technical content

8/28/2009 1.02 Editorial Revised and edited the technical content

11/6/2009 1.03 Editorial Revised and edited the technical content

2/19/2010 2.0 Editorial Revised and edited the technical content

3/31/2010 2.01 Editorial Revised and edited the technical content

4/30/2010 2.02 Editorial Revised and edited the technical content

6/7/2010 2.03 Editorial Revised and edited the technical content

6/29/2010 2.04 Editorial Changed language and formatting in the technical content.

7/23/2010 2.04 None No ch_anges to the meaning, language, or formatting of the
technical content.

9/27/2010 2.04 None No ch_anges to the meaning, language, or formatting of the
technical content.

11/15/2010 | 2.04 None No ch_anges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

12/17/2010 | 2.04 None technical content.

3/18/2011 2.04 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/10/2011 2.04 None No chgnges to the meaning, language, or formatting of the
technical content.

1/20/2012 2.5 Minor Clarified the meaning of the technical content.

4/11/2012 2.5 None No chgnges to the meaning, language, or formatting of the
technical content.

7/16/2012 25 None No chgnges to the meaning, language, or formatting of the
technical content.

10/8/2012 25 None No ch_anges to the meaning, language, or formatting of the
technical content.

2/11/2013 25 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/30/2013 2.5 None No ch_anges to the meaning, language, or formatting of the
technical content.

11/18/2013 | 2.5 None No chfanges to the meaning, language, or formatting of the
technical content.

2/10/2014 25 None No chfanges to the meaning, language, or formatting of the
technical content.

4/30/2014 | 2.5 None No changes to the meaning, language, or formatting of the

2/523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Revision Revision

Date History Class Comments
technical content.

7/31/2014 2.6 Minor Clarified the meaning of the technical content.

10/30/2014 | 3.0 Major Significantly changed the technical content.

3/16/2015 4.0 Major Significantly changed the technical content.

9/4/2015 4.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/15/2016 4.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

9/14/2016 4.0 None No ch_anges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

10/17/2016 | 4.0 None technical content.

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

3/523

Table of Contents

B N 112 1o T [T T ot f ' Y 4 6
1.1 [0 T1== 1 PP 6
1.2 3] =T =T g Lol PP 6

1.2.1 NOrMative RefEIENCES . ovii ittt e e e e e e e anans 7
1.2.2 INfOrmMative REFEIENCES .. vttt e aa e e 7

7 0 1T o o 3 T 8

2.1 = 8
2.1.1 Quick Access Toolbar Customizations Part.........c.ccviiiiiiiiiiii e raeas 8
2.1.2 Ribbon EXtensibility Part......ccoiiiiiiiiii e 9

2.2 L] 1= =T PP 10
2.2.1 box (Box Grouping CONTAINEI) .uiuiiiii i e e e a e aneanens 10
2.2.2 BULEON (BULEON) ceneiii s 14
2.2.3 button (Unsized BULEON) ..uieiiii i e 24
2.2.4 button (Button Inside of a Split BULEON) ..o 33
2.2.5 buttonGroup (Button Grouping Container)cccovviiiiiiiiiii s 42
2.2.6 CheCKBOX (ChECK BOX) ittt ittt e e e e eaes 45
2.2.7 (ol an]Te] =) q (©e] 4] 0o TN = To)t 1P 55
2.2.8 command (Repurposed Command)ciieiieiiieiiiii i 66
2.2.9 commands (List of Repurposed COmMmMaNndsS)cvuvuiieiiieieiereinreeieneneaeneaeeaeenes 68
2.2.10 contextualTabs (List of Contextual Tab SetS)......ccoviriiieieieieiiiiiiiiierereeeeen 68
2.2.11 control (Unsized Control CIONE)iiiiiiiiiiii i i 69
2.2.12 control (Control ClONE) .uu it e e e e 77
2.2.13 control (Quick Access Toolbar Control CIONE)icviiiiiiiiiiiiiiiii e 86
2.2.14 customUI (Custom UI Document ROOL)cciviiiniiiiiiiiiiii e ee s 95
2.2.15 dialogBoxLauncher (Dialog Box Launcher)ccooiiiiiiiiiiiiiiiiciiic e 96
2.2.16 documentControls (List of Document-Specific Quick Access Toolbar Controls) 97
2.2.17 dropDown (Drop-down CONtrol)ccieeieiiiiiii e 98
2.2.18 dynamicMenu (Unsized DynamiC MENU)iuiiiiiiiiiiiiiii i ee e ea e 110
2.2.19 dynamicMenu (DYynamiC MENU)ciuiiiiiiiiiin e erae s 119
2.2.20 editBoX (Edit BOX) tiiviiiiiiiiiiii i e aa 130
2.2.21 gallery (Gallery)« 139
2.2.22 gallery (Unsized Gallery) ...uouieieiiiiii i et e s e e e e e e aaens 155
2 T | {0 18] o (€] e TV o) L PP 169
2.2.24 item (Selection TEeM) .. 177
2.2.25 labelControl (Text Label) ..c.ciiiiiiiiii e e e e 180
2.2.26 menuU (UNSIiZed MENU) ..ouviuiiiiie it e e e e s e e e e reaaens 188
2.2.27 menu (Menu With Title) ..o e 197
X B 0 1= o 6T (= 1) PP 207
2.2.29 menu (Dynamic Menu Root XML Element)ccoooviiiiiiiiiiiiiii e 218
2.2.30 menuSeparator (MenU Separator)....cuuiv i i e 220
2.2.31 officeMenu (OffiCe MENU) ...iuuieiiiiiii i e e e 223
2.2.32 gat (Quick AcCeSsS TOOIDAI) ittt e 224
2.2.33 ribboN (RIDDON) .iitiiiitii i e 225
2.2.34 SEPArator (SEPaAratOr) tuiiuiiiiii i e aa 226
2.2.35 sharedControls (List of Shared Quick Access Toolbar Controls)ccccvievnnnens 229
2.2.36 splitButton (Unsized Split BULEON) ...c.cueeieiiiiii e e 230
2.2.37 splitButton (Split Button with Title) ...cccoeieiniii e 238
2.2.38 splitButton (SPlit BULLON) ...iueiiie it 247
2.2.39 @D (Tab) tueiiii i e 256
2.2.40 tabs (List Of TabS) 1.iuuiuiieiiiiiii i e 260
2.2.41 tabSet (Contextual Tab Set)......ccoiiiiiiiiiii e 261
2.2.42 toggleButton (Unsized Toggle BUtton)cveieiiiiiiiiii e 262
2.2.43 toggleButton (Toggle BULtON) ..o e 272
2.2.44 toggleButton (Toggle Button Inside of a Split Button).........cooooiiiiiiiiiiinnnnnns 282

4 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

2.3 1] T a1 LT Y 0 1= PP 291
2.3.1 ST_BOXStyle (BOX STYI) ...t e 291
2.3.2 ST_Delegate (Callback Function Name)ccooviiiiiiiiiiiiii e 291
2.3.3 ST_GalleryltemWidthHeight (Gallery Item Width or Height)ccocoviiiiiiinnn. 294
2.3.4 ST_GalleryRowColumnCount (Gallery Row or Column Count)cccvvvviiinnnnnnnn. 294
2.3.5 ST_ID (CONEIOI ID) tiriuiitiiieiiits ettt e e e e e e e e e e e e e e e e reees 295
2.3.6 ST_ItemSize (MenU IteM SiZE) ittt e 296
2.3.7 ST_Keytip (KeYEIP) «viuiiiiiiiiii i e 296
2.3.8 ST_LongString (LONG SErNG) .iviiiiii i e e e aea e 297
2.3.9 ST_QID (Qualified Control ID) .uiuiieiiitii i e e e e 297
2.3.10 ST_Size (CoNrol SIZE) viiviiriiiiii i e e et ea e 299
2.3.11 ST_String (Short StrNG) ..ccveiiiiii e e e 300
2.3.12 ST_StringLength (String Length) ..o 301
2.3.13 ST_UniquelD (Custom Control ID) ..cciiriiiiiiiiiiici i ea e 301
2.3.14 ST_Uri (Image Relationship ID)ciuiiieiiiiii it nae e 302

3 Appendix A: Custom UI Control ID Tablesc.ccicivmimmimimimi i sms s sssssssssassassannas 303

3.1 (Lo 1N E=To T =1] =P 303
3.1.1 WO 2007 ettt 303
3.1.2 (o= A 010 PP 357
3.1.3 POWEIPOINE 2007 .viieiiiii it e e 392
3.1.4 Word 2010, Excel 2010, PowerPoint 2010ccoiiiiiiiiiiiiiiie e 418
3.1.5 Word 2013, Excel 2013, PowerPoint 2013ciiriiriiiii i e ne e e 418

3.2 IMAGEMSO Tabl . et 419

4 Appendix B: Product Behaviorc.ciccicrieierimrrimssssssasssssnssssssssnssssssnsnn s snmsnsnnsasnns 521

5 Change TracKing...cicueiresimsmmrassmsussasansesassasassnsassnsansssassnsansssassnsansnsassnsansnsassnsansnss 522

S 13 e = 523
5/523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

1 Introduction

In creating an interoperable implementation, it is helpful to understand specific implementation
choices made by other products implementing the same standard. For example, portions of the
standard may provide only general guidance, leaving specific implementation choices up to the
application implementer; in some circumstances it may be helpful for other implementers to
understand those choices.

The information contained in this document provides information about how to implement UI
customization in the context of ECMA-376 Office Open XML File Formats, as described in [ECMA-376].

1.1 Glossary
This document uses the following terms:

add-in: Supplemental functionality that is provided by an external application or macro to extend
the capabilities of an application.

KeyTip: A small, pop-up window that appears over commands on the ribbon when users press the
ALT key. By pressing the key that is displayed in a KeyTip, users can execute the command that
is associated with the KeyTip.

macro: A set of instructions that are recorded or written, and then typically saved to a file. When a
macro is run, all of the instructions are performed automatically.

XML fragment: Lines of text that adhere to XML tag rules, as described in [XML], but do not have
a Document Type Definition (DTD) or schema, processing instructions, or any other header
information.

XML namespace: A collection of names that is used to identify elements, types, and attributes in
XML documents identified in a URI reference [RFC3986]. A combination of XML namespace and
local name allows XML documents to use elements, types, and attributes that have the same
names but come from different sources. For more information, see [XMLNS-2ED].

XML namespace prefix: An abbreviated form of an XML namespace, as described in [XML].

XML schema: A description of a type of XML document that is typically expressed in terms of
constraints on the structure and content of documents of that type, in addition to the basic
syntax constraints that are imposed by XML itself. An XML schema provides a view of a
document type at a relatively high level of abstraction.

XML schema definition (XSD): The World Wide Web Consortium (W3C) standard language that
is used in defining XML schemas. Schemas are useful for enforcing structure and constraining
the types of data that can be used validly within other XML documents. XML schema definition
refers to the fully specified and currently recommended standard for use in authoring XML
schemas.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [REC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

6/523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90602
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[ECMA-376] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA-376, December
2006, http://www.ecma-international.org/publications/standards/Ecma-376.htm

[MS-CUSTOMUI2] Microsoft Corporation, "Custom UI XML Markup Version 2 Specification".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[XMLNS] Bray, T., Hollander, D., Layman, A., et al., Eds., "Namespaces in XML 1.0 (Third Edition)",
W3C Recommendation, December 2009, http://www.w3.0org/TR/2009/REC-xml-names-20091208/

[XMLSCHEMA1] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML Schema Part
1: Structures", W3C Recommendation, May 2001, http://www.w3.0rg/TR/2001/REC-xmlschema-1-
20010502/

[XMLSCHEMAZ2] Biron, P.V., Ed. and Malhotra, A., Ed., "XML Schema Part 2: Datatypes", W3C
Recommendation, May 2001, http://www.w3.0rg/TR/2001/REC-xmlIschema-2-20010502/

1.2.2 Informative References

None.

7/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-CUSTOMUI2%5d.pdf#Section_bad56c217b1541bcaf328b5afe6e922e
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=191840
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90610

2 Custom UI

The subordinate clauses specify the semantics for the Custom UI XML markup contained within the
ECMA-376 Office Open XML File Formats, as specified in [ECMA-376]. These semantics describe
customization of the Ul interface. Examples in the following clauses highlight customizations in the
context of the Microsoft Office Fluent interface (UI) but the concepts extend naturally to any user
interface.

Customization of the UI is accomplished via the addition of parts containing Custom UI XML markup to
the containing document package.

2.1 Parts

The parts described in the subordinate sections detail the additional part types utilized by CustomUI in
an ECMA-376 Office Open XML File Formats [ECMA-376] file.

2.1.1 Quick Access Toolbar Customizations Part

Content application/xml

Type:

Root http://schemas.microsoft.com/office/2006/01/customui

Namespace:

Source http://schemas.microsoft.com/office/2006/relationships/ui/userCustomization
Relationship:

The syntax of the structures contained in this part uses XML schema definition (XSD), as specified
in [XMLSCHEMA1] and [XMLSCHEMAZ2].

This specification defines and references various XML namespaces by using the mechanisms
specified in [XMLNS].

An instance of this part type contains information about the quick access toolbar customizations
specific to the containing package.

For example, a user can customize the quick access toolbar for his WordProcessingML document to
contain the UI controls that they commonly use.

A package is permitted to contain at most one Quick Access Toolbar Customizations part, and that
part is the target of a relationship in the package-relationship item for the document.

For example, the following package part-relationship item contains a relationship to a Quick Access
Toolbar Customizations part, which is stored in the ZIP item /userCustomization/customUI.xml:

<Relationships xmlns="..">

<Relationship Id="rId2"
Type="http://../2006/relationships/ui/userCustomization"
Target="/userCustomization/customUI.xml" />
</Relationships>

The root element for a part of this content type is customUI.

For example, the following Quick Access Toolbar Customizations content markup specifies that the
control with identifier "SpellingAndGrammar" is to be added to the quick access toolbar for the
package:

<mso:customUI xmlns:mso="http://schemas.microsoft.com/office/2006/01/customui">
<mso:ribbon>

8/523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90610
http://go.microsoft.com/fwlink/?LinkId=191840

<mso:gat>

<mso:documentControls>

<mso:control idQ="mso:SpellingAndGrammar" visible="true" />
</mso:documentControls>

</mso:gat>

</mso:ribbon>

</mso:customUI>

A Quick Access Toolbar Customizations part is located within the package containing the source
relationship. Expressed syntactically, the TargetMode attribute of the Relationship element is
"Internal.

A Quick Access Toolbar Customizations part does not have implicit or explicit relationships to any
other part defined by ECMA-376 Office Open XML File Formats, as specified in [ECMA-376].

2.1.2 Ribbon Extensibility Part

Content application/xml

Type:

Root http://schemas.microsoft.com/office/2006/01/customui

Namespace:

Source http://schemas.microsoft.com/office/2006/relationships/ui/extensibility
Relationship:

The syntax of the structures contained in this part uses XML schema definition (XSD), as specified in
[XMLSCHEMA1] and [XMLSCHEMAZ2].

This specification defines and references various XML namespaces by using the mechanisms specified

in [XMLNS].

An instance of this part type contains information about the ribbon customizations specific to the
containing package.

For example, a SpreadsheetML document that represents a timecard could contain custom UI controls
to guide the user in filling out the timecard.

A package is permitted to contain at most one Ribbon Extensibility part, and that part is the target of
a relationship in the package-relationship item for the document.

For example, the following package part-relationship item contains a relationship to a Ribbon
Extensibility part, which is stored in the ZIP item /customUI/customUI.xml:

<Relationships xmlns="..">

<Relationship Id="rId5"
Type="http://../2006/relationships/ui/extensibility"
Target="/customUI/customUI.xml" />

</Relationships>

The root element for a part of this content type is customUI.

For example, the following Ribbon Extensibility content markup specifies that the ribbon tab with
identifier "TabHome" is to be hidden for the containing package:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon>

<tabs>

<tab idMso="TabHome" visible="false" />

</tabs>

</ribbon>

9/523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90610
http://go.microsoft.com/fwlink/?LinkId=191840

</customUI>

A Ribbon Extensibility part is located within the package containing the source relationship. Expressed
syntactically, the TargetMode attribute of the Relationship element is "Internal”.

A Ribbon Extensibility part is permitted to have explicit relationships to the following parts defined by
ECMA-376 Office Open XML File Formats, as specified in [ECMA-376]:

= Image Part, as specified in [ECMA-376] Part 1 section15.2.13.

2.2 Elements

A Custom UI document contains customizations of an application's UI. Customizations are mainly of
two types:

*= Modifications of the application's built-in UI, such as hiding or disabling built-in UI controls or
repurposing command actions.

= Creation of custom UI controls, such as a custom ribbon tab, menu item, or quick access
toolbar button.

For example, consider the following Custom UI document:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<commands>
<command idMso="Bold" enabled="false" />
</commands>
<ribbon>
<tabs>
<tab idMso="TabHome" visible="false" />
<tab id="CustomTab" label="Custom Tab">
<group id="CustomGroup" label="Custom Group">
<button id="CustomButton" label="Custom Button"
size="large" imageMso="HappyFace" onAction="OnButtonClick" />
</group>
</tab>
</tabs >
</ribbon>
</customUI>

This example disables the command with an identifier of "Bold", hides the ribbon tab with an identifier
of "TabHome", and creates a new custom ribbon tab with a custom button in it.

The full XML Schema Definition of the XML Schema fragments listed in this section is defined in
Appendix A of [MS-CUSTOMUI2].

2.2.1 box (Box Grouping Container)

This element specifies a grouping container control that can be used to align controls vertically or
horizontally. Box elements can be nested to create complex UI layouts.

For example, consider a group of controls that are laid out horizontally, as follows:

10/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

http://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-CUSTOMUI2%5d.pdf#Section_bad56c217b1541bcaf328b5afe6e922e

) Button 1 23 Buttan 2

Custam Group
Figure 1: Controls grouped horizontally

This layout is specified using the following XML fragment:

<box id="box" boxStyle="horizontal">
<button id="buttonl" label="Button 1" imageMso="HappyFace" />
<button id="button2" label="Button 2" imageMso="HappyFace" />
</box>

This is contrasted to the default vertical layout that is used if the box element is not specified.

The following table summarizes the elements that are parents of this element.

Parent Elements Section
box 2.2.1
group 2.2.23

The following table summarizes the child elements of this element.

Child Elements Section
box (Box Grouping Container) 2.2.1
button (Button) 2.2.2
buttonGroup (Button Grouping Container) 2.2.5
checkBox (Check Box) 2.2.6
comboBox (Combo Box) 2.2.7
control (Control Clone) 2.2.12
dropDown (Drop-down Control) 2.2.17
dynamicMenu (Dynamic Menu) 2.2.19
editBox (Edit Box) 2.2.20
gallery (Gallery) 2.2.21
labelControl (Text Label) 2.2.25
menu (Menu) 2.2.28
splitButton (Split Button) 2.2.38
toggleButton (Toggle Button) 2.2.43
The following table summarizes the attributes of this element.
11 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

boxStyle (box
style)

Specifies the layout direction for the child controls inside of the box element.
If this attribute is omitted, the child controls SHOULD be laid out horizontally.

For example, consider a group of controls to be laid out vertically. This is specified using the
following XML:

<box id="box" boxStyle="vertical">

</box>

The possible values for this attribute are defined by the ST_BoxStyle simple type, as
specified in section 2.3.1.

getVisible
(getVisible
callback)

Specifies the name of a callback function that is called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id and idQ attributes are mutually exclusive. At least one of these attributes is to be
specified.

For example, consider the following XML fragment:

<pbutton id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes is to be
specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab i1dQ="ex:0therTab" label="Shared Tab">
<group i1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>

12 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If that
tab cannot be found, it is created. A new group belonging to this file is added to the tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.

insertAfterMso
(identifier of built-
in control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an id of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.

insertBeforeMso
(identifier of built-
in control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple, as specified in
section 2.3.5.

13 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is to be hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Box">
<xsd:group ref="EG Controls" minOccurs="0" maxOccurs="1000"/>
<xsd:attributeGroup ref="AG IDCustom"/>
<xsd:attributeGroup ref="AG Visible"/>
<xsd:attributeGroup ref="AG PositionAttributes"/>
<xsd:attribute name="boxStyle" type="ST BoxStyle" use="optional"/>
</xsd:complexType>

2.2.2 button (Button)

This element specifies a standard push-button control that performs an action when clicked.

For example, consider a button control, as follows:

) Button

Custom Group

Figure 2: A button control

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace" />

14 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following table summarizes the elements that are parents of this element.

Parent Elements Section
box 2.2.1
group 2.2.23

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» o Button

) | o s -
*~:/ This is a verbase description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function that is called to determine the detailed description
of this control.

(getEnabled

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:

<button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled Specifies the name of a callback function that is called to determine the enabled state of

this control.

15/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is to be called when the
application needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is to be called when the
application needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function that is called to determine the suggested KeyTip
(getKeytip of this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is to be called when the
application needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is to be called when the application
needs to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

16 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is to be called when the
application needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<pbutton id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is to be called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is to be called when the
application needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is to be called when the application
needs to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

17/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is to be called when the
application needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is to be called when the application
needs to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control is passed to callback functions to identify which control
corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

18/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image that is to be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image that is to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

19/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

20/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

aar
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string that is to be used as the label for this control.
The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<putton id="button" label="Custom Button" />
This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.
onAction Specifies the name of a callback function to be called when this control is invoked by the

(onAction callback)

user.
For example, consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
__;il
ot
Button

C mw___ﬁh

This i5s the screentip

IZEI Bool3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"

21 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Boaldl

Custom Group
This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified

22 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

in section 2.3.10.

supertip (supertip)

Specifies a string that is to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

[wn)
=7

Button

Custom Group

G:_,,}'l Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the ButtonClicked
callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an id of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

23/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<xsd:complexType name="CT_ Button">
<xsd:complexContent>

<xsd:extension base="CT_ButtonRegular">

<xsd:attributeGroup ref="AG SizeAttributes"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

2.2.3 button (Unsized Button)

This element specifies a push-button that, because of its location, cannot have its size changed. The
size attribute is not present. This element otherwise behaves like the regular button element, as

specified in section 2.2.2.

The following table summarizes the elements that are parents of this element.

Parent Elements Section
buttonGroup 2.2.5
dialogBoxLauncher 2.2.15
documentControls 2.2.16
dropDown 2.2.17
gallery 2.2.21
gallery 2.2.22
menu 2.2.28
menu 2.2.26
menu 2.2.29
menu 2.2.27
officeMenu 2.2.31
sharedControls 2.2.35

The following table summarizes the attributes of this element.

Attributes

Description

description

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» o Button
M:fl This is a verbase description that describes

the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes

24 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

the function of this control in detail.™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is to be called when the
application needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is to be called when the
application needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

25 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function that is called to determine the suggested KeyTip
of this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is to be called when the
application needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is to be called when the application
needs to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is to be called when the
application needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage is to display the icon of this control.
callback)

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is to be called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

26 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is to be called when the
application needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is to be called when the
application needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is to be called when the application
needs to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.

idMso (built-in

Specifies the identifier of a built-in control.

27/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab 1dQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, "ex" is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these

28 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is inserted after the custom tab
with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is inserted before the built-in tab
with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

29/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is inserted before the custom tab
with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (Keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (Label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip

Specifies a string to be shown as the screentip for this control.

30/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

(screentip)

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or
display no screentip at all.

For example, consider a button with a screentip, as follows:
-.;'I

bt

Button

L 't%

This is the screentip

GEI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (Show
Label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

31/523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

supertip (Supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:
LR

=

Button

Custam Group

G_L,jl Book3.xlsx
Press F1 far mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (Tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ButtonRegular">
<xsd:complexContent>

32 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<xsd:extension base="CT_ Control">
<xsd:attributeGroup ref="AG Action"/>
<xsd:attributeGroup ref="AG Enabled"/>
<xsd:attributeGroup ref="AG Description"/>
<xsd:attributeGroup ref="AG Image"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.4 button (Button Inside of a Split Button)

This element specifies a push-button that is a child of a split button control. The visible and
getVisible attributes are not present because the visibility is controlled by the split button. This
element otherwise behaves in the same way as the unsized button element, as specified in section

2.2.3.

The following table summarizes the elements that are parents of this element.

Parent Elements Section
splitButton 2.2.38
splitButton 2.2.36
splitButton 2.2.37

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.
The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:
e | Button
.,:,z ! This is a verbose description that describes
the function of this contral in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail.™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not

33/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

very useful, thus the enabled attribute is not commonly used.
The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

<button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

34 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function that is called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function that is called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function that is called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

35/523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getSupertip
(getSupertip

Specifies the name of a callback function that is called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function that is called to determine the visibility state of
(getVisible this control. This attribute is prohibited.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

36 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image that is used as the icon for this control.
This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image that is used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an id of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

37/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of x:OtherTab.

38/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

39/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

LA
1 __:‘::).

Button

Custam Group

This is the screentip

GEI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

40/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

[wn}y
1 __::,-/.

Button

Custam Group

QE}I Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control. This attribute is prohibited.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT VisibleButton">
<xsd:complexContent>

41 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<xsd:restriction base="CT ButtonRegular">

<xsd:attribute name="visible" use="prohibited"/>

<xsd:attribute name="getVisible" use="prohibited"/>

</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

2.2.5 buttonGroup (Button Grouping Contai

ner)

This element specifies a grouping container that groups controls together visually. The child controls

are laid out horizontally.

For example, consider a group of buttons, as follows:

B I O

Custom Group
Figure 3: A group of buttons

This is specified using the following XML fragment:

<buttonGroup id="buttonGroup">
<button id="buttonl" imageMso="Bold" />
<button id="button2" imageMso="Italic" />
<button id="button3" imageMso="Underline" />
</buttonGroup>

The following table summarizes the elements that are parents of this element.

Parent Elements Section
box 2.2.1
group 2.2.23

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynamic Menu) 2.2.18
gallery (Unsized Gallery) 2.2.22
menu (Unsized Menu) 2.2.26
splitButton (Unsized Split Button) 2.2.36
toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

42 /523

Attributes

Description

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<pbutton id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.
For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertAfterMso
(identifier of built-in
control to insert

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

43/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

after)

mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an id of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

</tab>

44 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

custom tab with a qualified identifier of "x:OtherTab".

in section 2.3.9.

In this example, a new custom tab with an id of "MyTab" is to be inserted before the

The possible values for this attribute are defined by the ST_QID simple type, as specified

visible (control Specifies the visibility state of the control.

omitted, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ButtonGroup">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:element name="control" type="CT ControlCloneRegular"/>
<xsd:element name="button" type="CT ButtonRegular"/>
<xsd:element name="toggleButton" type="CT ToggleButtonRegular"/>
<xsd:element name="gallery" type="CT GalleryRegular"/>
<xsd:element name="menu" type="CT MenuRegular"/>
<xsd:element name="dynamicMenu" type="CT DynamicMenuRegular"/>
<xsd:element name="splitButton" type="CT SplitButtonRegular"/>
</xsd:choice>
</xsd:sequence>
<xsd:attributeGroup ref="AG IDCustom"/>
<xsd:attributeGroup ref="AG Visible"/>
<xsd:attributeGroup ref="AG PositionAttributes"/>
</xsd:complexType>

2.2.6 checkBox (Check Box)
This element specifies a standard checkbox control.

For example, consider a checkbox control, as follows:

CheckBox

Custom Group
Figure 4: A checkbox control

This is specified using the following XML fragment:

<checkBox id="checkBox" label="CheckBox" />

The following table summarizes the elements that are parents of this element.

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

45/ 523

Parent Elements Section
box 2.2.1
group 2.2.23
menu 2.2.28
menu 2.2.26
menu 2.2.29
menu 2.2.27
officeMenu 2.2.31

The following table summarizes the attributes of this element.

Attributes Description
description Specifies a detailed description of the control, which is displayed in detailed views.
(description) The description and getDescription attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:
» o Button
M:fl This is a verbase description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription Specifies the name of a callback function to be called to determine the detailed description
(getDescription of this control.
callback) The getDescription and description attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:

46 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs

47/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the control SHOULD default to the off state.
For example, consider the following XML fragment:

<toggleButton id="toggle" getPressed="IsButtonToggled" />

In this example, the IsButtonToggled callback function is called when the application
needs to determine the toggle state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel displays the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application

48 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

49 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" imageMso="Bold" />

This specifies a custom button to use the built-in image with an id of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

50/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

control to insert
after)

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

51/523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

52 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

LA
1 __:‘::).

Button

Custam Group

This is the screentip

GEI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

53 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

[wn}y
1 __::,-/.

Button

Custam Group

QE}I Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an id of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT CheckBox">
<xsd:complexContent>

54 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<xsd:restriction base="CT ToggleButtonRegular">
<xsd:attribute name="image" use="prohibited"/>
<xsd:attribute name="imageMso" use="prohibited"/>
<xsd:attribute name="getImage" use="prohibited"/>
<xsd:attribute name="showImage" use="prohibited"/>
<xsd:attribute name="getShowImage" use="prohibited"/>
<xsd:attribute name="showLabel" use="prohibited"/>
<xsd:attribute name="getShowLabel" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.2.7 comboBox (Combo Box)

This element specifies a standard combo box control that allows a user to input a text string or select
one from a list.

For example, consider a combo box control, as follows:

Combo Box t-erd A
| Ttem 1 |

Item 2

Item 3
.'.|5 wn—%n—r:rp—

Figure 5: A combo box control

This is specified using the following XML fragment:

<comboBox id="comboBox" label="Combo Box">
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 2" />
<item id="item3" label="Item 3" />
</comboBox>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

Attributes Description
enabled (enabled Specifies the enabled state of the control.
state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

55/523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemCount Specifies the name of a callback function to be called to determine the number of selection
(getItemCount items in this control.
callback) If this attribute is omitted, the control SHOULD display any selection items that are
specified as child elements. If no such items are specified, the control SHOULD be empty.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount" />
In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemID Specifies the name of a callback function to be called to determine the identifier of a
(getItemID specific dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD have empty

identifiers.
For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"

56 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getItemID="GetGalleryItemID" />

In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemImage Specifies the name of a callback function to be called to determine the icon of a specific
(getItemImage dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD NOT display icons.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemImage="GetGalleryItemImage" />
In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemLabel Specifies the name of a callback function to be called to determine the label of a specific
(getItemLabel dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD NOT display labels.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemLabel="GetGalleryItemLabel" />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"

57/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application needs to determine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

58/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowlLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getText (getText
callback)

Specifies the name of a callback function to be called to determine the text that is displayed
in the control.

For example, consider the following XML fragment:

<editBox id="editBox" getText="GetEditBoxText" />

In this example, the GetEditBoxText callback function is called when the application needs
to determine the text to display in the control.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

59/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

60/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom

61 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control invalidates its contents and re-queries for them when the
user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to "false".
For example, consider the following XML fragment:

<comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
getItemLabel="GetComboBoxItemLabel"
invalidateContentOnDrop="true" />

In this example, this combo box clears out its items and re-calls the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

62 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

0

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

maxLength
(maximum input
string length)

Specifies an integer to be used as the maximum length of a string that can be entered
into the control.

If the maxLength attribute is omitted, the length of the input string SHOULD NOT be
limited, except by application-specific constraints.

For example, consider the following XML fragment:

<editBox id="editBox" maxLength="10" />

This specifies an edit box control that can only accept strings up to 10 characters in
length.

The possible values for this attribute are defined by the ST_StringLength simple type, as
specified in section 2.3.12.

onChange
(onChange
callback)

Specifies the name of a callback function to be called when the text in the control has been
changed by the user.

For example, consider the following XML fragment:

<editBox id="editBox" onChange="EditBoxTextChanged" />

This specifies an edit box control that calls the EditBoxTextChanged callback function
when the user inputs a text string.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

63/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

LA
1 __:‘::).

Button

Custam Group

This is the screentip

GEI Book3.xlsx

Press F1 far more help.

This is specified using the following XML fragment:

<button id="button"

imageMso="HappyFace" label="Button"

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as

specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button"

showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemImage
(show item image)

Specifies whether this control displays icons on its selection items.
If this attribute is omitted, the items' icons SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemImage="false" >

<item id="iteml" label="Item 1"
<item id="item2" label="Item 1"
<item id="item3" label="Item 2"
<item id="item4" label="Item 3"

</gallery>

/>
/>
/>
/>

This specifies a gallery control that does not show any icons on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

64 /523

Attributes

Description

is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

<editBox id="editBox" sizeString="WWWWWAWWWWWWW" />

This specifies an edit box control that SHOULD be wide enough to display the string
"WWWWWWWWWWWWW",

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

N
1 "':‘_"lj

Button

Custam Group

QL,}'I Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

65/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ComboBox">
<xsd:complexContent>
<xsd:extension base="CT EditBox">
<xsd:sequence>
<xsd:element name="item" type="CT Item" minOccurs="0" maxOccurs="1000"/>
</xsd:sequence>
<xsd:attributeGroup ref="AG DropDownAttributes"/>
<xsd:attributeGroup ref="AG DynamicContentAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.8 command (Repurposed Command)
This element specifies that a particular built-in command in the application is to be repurposed.
The enabled and getEnabled attributes can be specified to disable a command.

The onAction attribute allows the functionality of a command to be repurposed to run a callback
function. Only commands that execute simple actions (for example, commands represented as button
controls) can be repurposed using onAction.

For example, consider the following XML fragment:

<commands>

<command idMso="Bold" enabled="false" />

<command idMso="Paste" onAction="MyPasteFunction" />
</commands>

In this example, the Bold command is permanently disabled and that the callback function
MyPasteFunction is called when the Paste command is invoked.

The following table summarizes the elements that are parents of this element.

66 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Parent Elements

commands (section 2.2.9)

The following table summarizes the attributes of this element.

control identifier)

Attributes Description

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
idMso (built-in Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

67/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Command" mixed="false">
<xsd:attributeGroup ref="AG Action"/>
<xsd:attributeGroup ref="AG Enabled"/>
<xsd:attributeGroup ref="AG IDMso"/>
</xsd:complexType>

2.2.9 commands (List of Repurposed Commands)

This element specifies a list of repurposed commands. This element SHOULD NOT be specified if the
containing Custom UI XML document is a Quick Access Toolbar Customizations part.

The following table summarizes the elements that are parents of this element.

Parent Elements

customUI (section 2.2.14)

The following table summarizes the child elements of this element.

Child Elements Subclause

command (Repurposed Command) section 2.2.8

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Commands">

<xsd:sequence>
<xsd:element name="command" type="CT Command" minOccurs="1" maxOccurs="5000"/>

</xsd:sequence>
</xsd:complexType>

2.2.10 contextualTabs (List of Contextual Tab Sets)

This element specifies a list of contextual tab sets. This element SHOULD NOT be specified if the
containing Custom UI XML document is a Quick Access Toolbar Customizations part.

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

Child Elements Subclause

tabSet (Contextual Tab Set) section 2.2.41

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ContextualTabs">

<xsd:sequence>
<xsd:element name="tabSet" type="CT TabSet" minOccurs="1" maxOccurs="100"/>

</xsd:sequence>

68/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

</xsd:complexType>

2.2.11 control (Unsized Control Clone)

This element specifies a clone of a control that, because of its location, cannot have its size changed.
The size attribute is not present. The element otherwise behaves like the regular control element, as
specified in section 2.2.12.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the attributes of this element.

Attributes

Description

enabled (enabled

Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

69 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

70/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.

idMso (built-in

Specifies the identifier of a built-in control.

71/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab 1dQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these

72 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

73/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

74 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

LA
1 __:‘::).

Button

Custam Group

This is the screentip

GEI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

75/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

[wn}y
1 __::,-/.

Button

Custam Group

QE}I Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ControlCloneRegular">
<xsd:complexContent>

76 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<xsd:restriction base="CT_ Control">
<xsd:attribute name="id" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.2.12 control (Control Clone)

This element specifies a clone of an existing control. Built-in controls can be cloned using the idMso
attribute. Custom controls can be cloned using the idQ attribute. Custom controls cannot be created
using the control element.

When an existing control is cloned, its non-location-specific properties, such as the icon and label, are
copied to the clone. Location-specific properties, such as the size and visibility of the control, are not
copied. These properties can be set by specifying additional attributes on the control element.

For example, consider the following XML fragment:

<control idMso="Paste" size="large" />

This results in a large copy of the Paste control, as follows:

i
[etc]

Paste
Custam Group
Figure 6: A Paste control

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes Description
description Specifies a detailed description of the control, which is displayed in detailed views.
(description) The description and getDescription attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.
For example, consider a button with a detailed description, as follows:

s o Button

*~:/ 4 This is a verbose description that describes
the function of this contral in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as

77/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified in section 2.3.8.

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription Specifies the name of a callback function to be called to determine the detailed description
(getDescription of this control.
callback) The getDescription and description attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:

<button id="button" getDescription="GetButtonDescription™ />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip

78/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

callback)

this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowlLabel

79/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

callback)

displays the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

80/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab 1dQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

81 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in

Specifies the identifier of a built-in control that this control is to be inserted before. If the

82 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

control to insert
before)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

1

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as

83 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
LA
.":":l./.
Buttan

Cl |,tﬂ%

This is the screentip

GEI Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

84 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:
Balel

Custam Group

This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.
For example, consider a control with a supertip, as follows:
LR
"":‘:._;"
Buttan

Custam Group

QL,}'I Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"

85 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ControlClone">
<xsd:complexContent>
<xsd:restriction base="CT Button">
<xsd:attribute name="id" use="prohibited"/>
<xsd:attribute name="onAction" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.2.13 control (Quick Access Toolbar Control Clone)

This element specifies a clone of an existing control. It is specific to control clones on the quick access
toolbar, but otherwise behaves the same way as the regular control element, as specified in section
2.2.12.

The following table summarizes the elements that are parents of this element.

Parent Elements

documentControls (section 2.2.16); sharedControls (section 2.2.35)

The following table summarizes the attributes of this element.

86 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.
The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:
» o Button
H:/ / This is a verbose description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

87/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage Specifies the name of a callback function to be called to determine whether the application

88/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

(getShowImage
callback)

SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowlLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

89 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<pbutton id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (custom control
identifier)

Specifies the identifier for a custom control. All new custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive.
For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control. The identifier is qualified with an XML
namespace prefix that specifies the owner of the control. If the namespace is equal to the
Custom UI namespace, the idQ attribute behaves in the same manner as the idMso
attribute. If the namespace is equal to the name of the current file, the idQ attribute
behaves like the id attribute. If the namespace is equal to the name of a different file, the
attribute references a control from that file.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive.
For example, consider the following XML fragment:

<tab 1dQ="x:0therTab">
<group id="MyGroup" label="My Group">

</group>
</tab>

In this case x is an XML namespace equal to the name of another file that has a Custom UI

90/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

document with a tab with an identifier of "OtherTab". This example adds a custom group
to that tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">

91/523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood. it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

92 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
-.;'I

bt

Button

L 't%

This is the screentip

GEI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

93/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:
Balel

Custam Group

This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider a control with a supertip, as follows:
LR
"":‘:._;"
Buttan

Custam Group

QL,}'I Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"

94 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ControlCloneQat">
<xsd:complexContent>
<xsd:extension base="CT ControlBase">
<xsd:attribute name="id" type="ST ID" use="optional"/>
<xsd:attribute name="idQ" type="ST QID" use="optional"/>
<xsd:attributeGroup ref="AG IDMso"/>
<xsd:attributeGroup ref="AG Description"/>
<xsd:attributeGroup ref="AG_SizeAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.14 customUI (Custom UI Document Root)

This element specifies the root tag in a Custom UI XML document.

The following table summarizes the child elements of this element.

Child Elements Section
commands (List of Repurposed Commands) 2.2.9
ribbon (Ribbon) 2.2.33

The following table summarizes the attributes of this element.

Attributes Description

loadImage Specifies the name of a callback function to be called when the application needs to load an
(loadImage image for a control's icon.

callback) For example, consider the following XML fragment:

<customUI xmlns=".." loadImage="LoadImageFunction" />

In this example, the LoadImageFunction callback is called to load icon images.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

95/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

onlLoad (onLoad Specifies the name of a callback function to be called when the Custom Ul file is loaded by
callback) the application.

For example, consider the following XML fragment:

<customUI xmlns=".." onLoad="OnCustomUILoaded" />

In this example, the OnCustomUILoaded callback function is called when the containing
Custom UI file is loaded.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT CustomUI">
<xsd:sequence>
<xsd:element name="commands" type="CT Commands" minOccurs="0" maxOccurs="1"/>
<xsd:element name="ribbon" type="CT Ribbon" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="onLoad" type="ST Delegate" use="optional"/>
<xsd:attribute name="loadImage" type="ST Delegate" use="optional"/>
</xsd:complexType>

2.2.15 dialogBoxLauncher (Dialog Box Launcher)
This element specifies a button that is the dialog box launcher control for a ribbon group.

For example, consider a dialog box launcher control, as follows:

Custom Group M=

Al | Dialog Box Launcher

i s E
i Bookl.xlsx
1 Press F1 far mare help.

2

Figure 7: A dialog box launcher control

This is specified using the following XML fragment:

<group id="customGroup" label="Custom Group">
<dialogBoxLauncher>
<button id="button" screentip="Dialog Box Launcher" />
</dialogBoxLauncher>
</group>

The following table summarizes the elements that are parents of this element.

96 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Parent Elements

group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT DialogLauncher">
<xsd:sequence>
<xsd:element name="button" type="CT ButtonRegular" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>

</xsd:complexType>

2.2.16 documentControls (List of Document-Specific Quick Access Toolbar Controls)

This element specifies the list of controls on the quick access toolbar which are specific to the
containing file.

For example, consider a set of controls on the document-specific quick access toolbar, as follows:

e = =
[l ﬁi Eﬂ EL =
—r® Home Insert FPage Layout
Figure 8: A set of controls on the document-specific quick access toolbar

This is specified using the following XML fragment:

<documentControls>
<control idMso="CalculateNow" />
<control idMso="HyperlinkInsert" />
</documentControls>

The following table summarizes the elements that are parents of this element.

Parent Elements

qat (section 2.2.32)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
control (Quick Access Toolbar Control Clone) 2.2.13
separator (Separator) 2.2.34

The following XML schema fragment defines the contents of this element:

97/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<xsd:complexType name="CT QatItems">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:element name="control" type="CT ControlCloneQat"/>
<xsd:element name="button" type="CT ButtonRegular"/>
<xsd:element name="separator" type="CT Separator"/>
</xsd:choice>
</xsd:sequence>

</xsd:complexType>

2.2.17 dropDown (Drop-down Control)

This element specifies a drop-down control that allows users to make a selection from a list of options.
A drop-down control can optionally have buttons after its selection items.

For example, consider a drop-down control, as follows:

DrapDown | Item 2 =

Item 1
Item 2
Item 3 |
. i
1 Buttan... F

Cr -

Figure 9: A drop-down control

This is specified using the following XML fragment:

<dropDown id="dropDown" label="DropDown">
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 2" />
<item id="item3" label="Item 3" />
<button id="button" label="Button..." />
</dropDown>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
item (Selection Item) 2.2.24
The following table summarizes the attributes of this element.
Attributes Description
enabled (enabled Specifies the enabled state of the control.
state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

98 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemCount Specifies the name of a callback function to be called to determine the number of selection
(getItemCount items in this control.
callback) If this attribute is omitted, the control SHOULD display any selection items that are
specified as child elements. If no such items are specified, the control SHOULD be empty.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount" />
In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getIitemID Specifies the name of a callback function to be called to determine the identifier of a
(getltemID specific dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD have empty

identifiers.
For example, consider the following XML fragment:

99/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemID="GetGalleryItemID" />

In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemImage Specifies the name of a callback function to be called to determine the icon of a specific
(getItemImage dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD NOT display icons.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemImage="GetGalleryItemImage" />
In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemLabel Specifies the name of a callback function to be called to determine the label of a specific
(getItemLabel dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD NOT display labels.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemLabel="GetGalleryItemLabel"™ />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"

100/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application needs to determine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedItemlI
D
(getSelectedItemI
D callback)

Specifies the name of a callback function to be called to determine the identifier of the item
to be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemID="GetItemID"

101/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getSelectedItemID="GetGallerySelectedItemID" />

In this example, the GetGallerySelectedItemID callback function is called when the
application needs to determine the selected item in the gallery. In this example the callback
function returns one of the identifiers returned by the GetItemID callback function.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedIteml
ndex
(getSelectedItemI
ndex callback)

Specifies the name of a callback function to be called to determine the index of the item to
be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getSelectedItemIndex="GetGallerySelectedItemIndex" />

In this example, the GetGallerySelectedItemIndex callback function is called when the
application needs to determine the selected item in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage displays the icon of this control.
callback)
The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel displays the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

102 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

103/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

104 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

105/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

aar
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
__;il
ot
Button

C mw___ﬁh

This i5s the screentip

IZEI Bool3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"

106 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemImage
(show item image)

Specifies whether this control displays icons on its selection items.
If this attribute is omitted, the items' icons SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemImage="false" >
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 1" />
<item id="item3" label="Item 2" />
<item id="item4" label="Item 3" />
</gallery>

This specifies a gallery control that does not show any icons on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showlItemLabel
(show item label)

Specifies whether this control displays labels on its selection items.
If this attribute is omitted, the item's labels SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemLabel="false" >
<item id="iteml" image="Forest" />
<item id="item2" image="Desert" />
<item id="item3" image="Mountain" />
<item id="item4" image="Ocean" />
</gallery>

This specifies a gallery control that does not show any labels on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

107/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

<editBox id="editBox" sizeString="WWWWWAWNWWWWWW" />

This specifies an edit box control that is wide enough to display the string
"WWWWWWWWWWWWW",

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

N
1 "':‘_"lj

Button

Custam Group

QLJ'I Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"

108 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.
visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT DropDownRegular">
<xsd:complexContent>
<xsd:extension base="CT Control">
<xsd:sequence>
<xsd:element name="item" type="CT Item" minOccurs="0" maxOccurs="1000"/>
<xsd:element name="button" type="CT ButtonRegular" minOccurs="0" maxOccurs="16"/>
</xsd:sequence>
<xsd:attributeGroup ref="AG Action"/>
<xsd:attributeGroup ref="AG Enabled"/>

<xsd:attributeGroup ref="AG Image"/>
<xsd:attributeGroup ref="AG DropDownAttributes"/>
<xsd:attribute name="getSelectedItemID" type="ST Delegate" use="optional"/>
<xsd:attribute name="getSelectedItemIndex" type="ST Delegate" use="optional"/>
<xsd:attribute name="showItemLabel" type="xsd:boolean" use="optional"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.18 dynamicMenu (Unsized Dynamic Menu)

This element specifies a dynamic menu control that, because of its location, cannot have its anchor
size changed. The size attribute is not present. It otherwise behaves identically to the regular
dynamicMenu element, as specified in section 2.2.19.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the attributes of this element.

Attributes Description

description Specifies a detailed description of the control, which SHOULD be displayed in detailed

109/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

(description)

views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:
» o Button
\:-"I This is a verbose description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail.™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getContent
(getContent
callback)

Specifies the name of a callback function to be called when the application needs to
determine the contents of the control.

For example, consider a dynamic menu control, as follows:

Dynamic Menu = |

Button 1
Button 2
|
=

Buttaon 3
L |

This is specified using the following XML fragment:

<dynamicMenu id="dynamic" label="Dynamic Menu"
getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this
case would return a string with the following XML:

<menu
xmlns="http://schemas.microsoft.com/office/2006/01/customui™>
<button id="buttonl" label="Button 1" />
<button id="button2" label="Button 2" />
<button id="button3" label="Button 3" />

110/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

</menu>

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<pbutton id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

111/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

112 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified

Specifies a qualified identifier for a control.

113/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

control identifier)

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image that is used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

114 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

after) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</£ab>
In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertAfterQ Specifies the qualified identifier of a control that this control SHOULD be inserted after. If

(qualified identifier
of control to insert
after)

the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

</tab>

115/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re-query for them when
the user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to false.
For example, consider the following XML fragment:

<comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
getItemLabel="GetComboBoxItemLabel"
invalidateContentOnDrop="true" />

In this example, this combo box clears out its items and re-calls the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

116 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

LA
1 __:‘::).

Button

Custam Group

This is the screentip

GEI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

117/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

[wn}y
1 __::,-/.

Button

Custam Group

QE}I Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT DynamicMenuRegular">
<xsd:complexContent>

118/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<xsd:extension base="CT_ControlBase">
<xsd:attributeGroup ref="AG Description"/>
<xsd:attributeGroup ref="AG IDAttributes"/>
<xsd:attributeGroup ref="AG GetContentAttributes"/>
<xsd:attributeGroup ref="AG DynamicContentAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.19 dynamicMenu (Dynamic Menu)
This element specifies a dynamic menu control that populates its contents dynamically.

For example, consider a dynamic menu control, as follows:

Dynamic Menu =

Button 1
Button 2
{
=

Button 3

A

Figure 10: A dynamic menu control

This is specified using the following XML fragment:

<dynamicMenu id="dynamic" label="Dynamic Menu" getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this case would
return a string with the following XML:

<menu xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<pbutton id="buttonl" label="Button 1" />
<button id="button2" label="Button 2" />
<button id="button3" label="Button 3" />

</menu>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes Description
description Specifies a detailed description of the control, which SHOULD be displayed in detailed
(description) views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

119/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

» o Button

p | - e .
‘:f This is a verbase description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail."™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled

Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getContent Specifies the name of a callback function to be called when the application needs to
(getContent determine the contents of the control.
callback)

For example, consider a dynamic menu control, as follows:

Dynamic Menu x|

Button 2
Button 3

Lt |

This is specified using the following XML fragment:

‘ Button 1
{
=

<dynamicMenu id="dynamic" label="Dynamic Menu"
getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this
case would return a string with the following XML:

<menu
xmlns="http://schemas.microsoft.com/office/2006/01/customui™>
<button id="buttonl" label="Button 1" />
<pbutton id="button2" label="Button 2" />
<pbutton id="button3" label="Button 3" />
</menu>

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

120/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getDescription Specifies the name of a callback function to be called to determine the detailed description
(getDescription of this control.
callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

callback)

getLabel (getLabel

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

121/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".
The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.
The getSize and size attributes are mutually exclusive. If neither attribute is specified, the

122 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

control's size SHOULD default to the normal size.
For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

123/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

124 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

125/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re-query for them when
the user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to false.
For example, consider the following XML fragment:

<comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
getItemLabel="GetComboBoxItemLabel"
invalidateContentOnDrop="true" />

In this example, this combo box clears out its items and re-calls the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

1

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

126 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
LA
.__:‘:-/.
Button

Cl m-:%

This is the screentip

GIGI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"

127 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Balel

Custam Group
This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:
LR

b

Button

Custam Group

G_L,jl Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

128 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT DynamicMenu">
<xsd:complexContent>
<xsd:extension base="CT DynamicMenuRegular">
<xsd:attributeGroup ref="AG SizeAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.20 editBox (Edit Box)
This element specifies an edit box control that allows a user to enter a string of text.

For example, consider an edit box control, as follows:

Eclit Bay tex

Custom Graup
Figure 11: An edit box control

This is specified using the following XML fragment:

<editBox id="editBox" label="Edit Box" />

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

129 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following table summarizes the attributes of this element.

Attributes

Description

enabled (Enabled

Specifies the enabled state of the control.

State) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application

needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel

Specifies the name of a callback function to be called to determine the label of this control.

130/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

callback)

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)
The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this

131/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

callback)

control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getText (getText
callback)

Specifies the name of a callback function to be called to determine the text that SHOULD be
displayed in the control.

For example, consider the following XML fragment:

<editBox id="editBox" getText="GetEditBoxText" />

In this example, the GetEditBoxText callback function is called when the application needs
to determine the text to display in the control.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

132 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

133/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

134 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

1

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

(maximum input
string length)

label (label) Specifies a string to be used as the label for this control.
The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" label="Custom Button" />
This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.
maxLength Specifies an integer to be used as the maximum length of a string that can be entered

into the control.

If the maxLength attribute is omitted, the length of the input string SHOULD NOT be
limited except by application-specific constraints.

For example, consider the following XML fragment:

<editBox id="editBox" maxLength="10" />

This specifies an edit box control that can only accept strings up to 10 characters in
length.

The possible values for this attribute are defined by the ST_StringLength simple type, as
specified in section 2.3.12.

135/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

onChange
(onChange
callback)

Specifies the name of a callback function to be called when the text in the control has been
changed by the user.

For example, consider the following XML fragment:

<editBox id="editBox" onChange="EditBoxTextChanged" />

This specifies an edit box control that calls the EditBoxTextChanged callback function
when the user inputs a text string.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

LA
1 __:‘::).

Button

L 't%

This is the screentip

lii:ﬂ Book3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

136 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

showLabel (Show
Label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

<editBox id="editBox" sizeString="WWWWWAWWWWWWW" />

This specifies an edit box control that is wide enough to display the string
"WWWWWWWWWWWWW",

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:
faw
=)

Button

Custam Group

QL,}'I Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this

137/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

control.
If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT EditBox">
<xsd:complexContent>
<xsd:extension base="CT Control">
<xsd:attributeGroup ref="AG Enabled"/>
<xsd:attributeGroup ref="AG Image"/>
<xsd:attribute name="maxLength" type="ST StringLength" use="optional"/>
<xsd:attribute name="getText" type="ST Delegate" use="optional"/>
<xsd:attribute name="onChange" type="ST Delegate" use="optional"/>
<xsd:attribute name="sizeString" type="ST String" use="optional"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

2.2.21 gallery (Gallery)

This element specifies a gallery control, which displays a drop-down grid of items that the user can
select from. A gallery can optionally have buttons following its selection items.

For example, consider a gallery control that shows a selection of pictures, as follows:

138/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

L5, [S R L S

Figure 12: A gallery control

This is specified using the following XML fragment:

<gallery id="gallery" label="Gallery" itemWidth="88" itemHeight="68"
size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />

</gallery>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

Attributes

Description

columns (column
count)

Specifies the number of columns that the gallery's items SHOULD be arranged into.

If the columns attribute is omitted, the application SHOULD choose the number of columns
automatically based on the number of items.

For example, consider a gallery control with six items arranged into two columns, as
follows:

139 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

TR

bl k|

80 | =l e | L] s

{]
This is specified using the following XML fragment:

<gallery id="gallery" label="Gallery" columns="2"
size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />
<item id="item5" image="Flowers" />
<item id="item6" image="Whale" />
</gallery>

The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple type, as specified in section 2.3.4.

description Specifies a detailed description of the control, which SHOULD be displayed in detailed
(description) views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» o Button

Ve S This s a verbose description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled Specifies the enabled state of the control.
state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

140/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription™ />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemCount Specifies the name of a callback function to be called to determine the number of selection
(getItemCount items in this control.
callback) If this attribute is omitted, the control SHOULD display any selection items that are

specified as child elements. If no such items are specified, the control SHOULD be empty.
For example, consider the following XML fragment:

141/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<gallery id="gallery" getItemCount="GetGalleryItemCount" />

In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemHeight
(getItemHeight
callback)

Specifies the name of a callback function to be called to determine the height of the
selection items in this control.

The itemHeight and getItemHeight attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The getItemHeight and getItemWidth attributes are mutually required. If only one of
the attributes is specified, its value is ignored.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemHeight="GetGalleryItemHeight"
getItemWidth="GetGalleryItemWidth" />

In this example, the GetGalleryItemHeight callback function is called when the
application needs to determine the height of the items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getitemID
(getItemID
callback)

Specifies the name of a callback function to be called to determine the identifier of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD have empty
identifiers.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemID="GetGalleryItemID" />

In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemImage
(getItemImage
callback)

Specifies the name of a callback function to be called to determine the icon of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display icons.
For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemImage="GetGalleryItemImage" />

In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemLabel
(getItemLabel
callback)

Specifies the name of a callback function to be called to determine the label of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display labels.

142 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemLabel="GetGalleryItemLabel™ />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application needs to determine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemWidth
(getItemWidth

Specifies the name of a callback function to be called to determine the width of the
selection items in this control.

callback) The itemWidth and getItemWidth attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.
The getItemHeight and getItemWidth attributes are mutually required. If only one of
the attributes is specified, its value is ignored.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemHeight="GetGalleryItemHeight"
getItemWidth="GetGalleryItemWidth" />
In this example, the GetGalleryItemWidth callback function is called when the application
needs to determine the width of the items in the gallery.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of

143 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedItemlI
D
(getSelectedIteml
D callback)

Specifies the name of a callback function to be called to determine the identifier of the item
that is selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemID="GetItemID"
getSelectedItemID="GetGallerySelectedItemID" />

In this example, the GetGallerySelectedItemlID callback function is called when the
application needs to determine the selected item in the gallery. In this example the callback
function returns one of the identifiers returned by the GetItemID callback function.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedIteml

Specifies the name of a callback function to be called to determine the index of the item to

144 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

ndex
(getSelectedItemI
ndex callback)

be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getSelectedItemIndex="GetGallerySelectedItemIndex" />

In this example, the GetGallerySelectedItemIndex callback function is called when the
application needs to determine the selected item in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

145/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

146 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be

147 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the

148 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re-query for them when
the user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to false.
For example, consider the following XML fragment:

<comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
getItemLabel="GetComboBoxItemLabel"
invalidateContentOnDrop="true" />

In this example, this combo box SHOULD clear out its items and re-call the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

itemHeight
(selection item
height)

Specifies the height of the selection items in this control.

The itemHeight and getItemHeight attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The itemHeight and itemWidth attributes are mutually required. If only one of the
attributes is specified, its value is ignored.

For example, consider a gallery control with 68 pixel tall items. This is specified using the
following XML fragment:

<gallery id="gallery" label="Gallery" itemWidth="88"
itemHeight="68" size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />

</gallery>

The possible values for this attribute are defined by the ST_GalleryItemWidthHeight
simple type, as specified in section 2.3.3.

itemWidth
(selection item
width)

Specifies the width of the selection items in this control.

The itemWidth and getItemWidth attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The itemHeight and itemWidth attributes are mutually required. If only one of the
attributes is specified, its value is ignored.

For example, consider a gallery control with 88 pixel wide items. This is specified using the
following XML fragment:

<gallery id="gallery" label="Gallery" itemWidth="88"
itemHeight="68" size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />

</gallery>

The possible values for this attribute are defined by the ST_GalleryItemWidthHeight
simple type, as specified in section 2.3.3.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

149 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction Specifies the name of a callback function to be called when this control is invoked by the
(onAction callback) | user.

For example, consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

In this example, the button calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

rows (row count) Specifies the number of rows that the gallery's items are arranged into.

If the rows attribute is omitted, the application SHOULD choose the number of rows
automatically based on the number of items.

For example, consider a gallery control with six items arranged into two rows, as follows:

Ll k=

L, B <

150/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

This is specified using the following XML fragment:

<gallery id="gallery" label="Gallery" rows="2"
size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />
<item id="item5" image="Flowers" />
<item id="item6" image="Whale" />
</gallery>

The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple type, as specified in section 2.3.4.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
(ma}
.__:‘:-/.
Buttan

Custa dl_lld:_l_-m___h__h

This is the screentip

GIGI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"

151 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemImage Specifies whether this control displays icons on its selection items.
(show item image) If this attribute is omitted, the items' icons SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemImage="false" >
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 1" />
<item id="item3" label="Item 2" />
<item id="item4" label="Item 3" />
</gallery>

This specifies a gallery control that does not show any icons on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showlItemLabel Specifies whether this control displays labels on its selection items.
(show item label) If this attribute is omitted, the item's labels SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemLabel="false" >

<item id="iteml" image="Forest" />
<item id="item2" image="Desert" />

<item id="item3" image="Mountain " />
<item id="item4" image="Ocean" />
</gallery>

In this example, the gallery control does not show any labels on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showInRibbon
(show in ribbon)

This attribute has no meaning and MUST not be used.

showLabel (show Specifies whether this control SHOULD display its label.

label) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"

152 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Balel

Custam Group
This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

<editBox id="editBox" sizeString="WWWWWAWWAWWWW" />

This specifies an edit box control that is wide enough to display the string
"WWWWWWWWWWWWW".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

[wn)
=7

Button

Custom Group

G:_,,}'l Book3.xlsx
Press F1 for mare help,

153/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.
visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Gallery">
<xsd:complexContent>
<xsd:extension base="CT_ GalleryRegular">
<xsd:attributeGroup ref="AG SizeAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.22 gallery (Unsized Gallery)

This element specifies a gallery which, because of its location, cannot have its size changed. The size
attribute is not present. It otherwise behaves identically to the regular gallery element, as specified in
section 2.2.21.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

154 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.
Attributes Description
columns (column Specifies the number of columns that the gallery's items are arranged into.
count)

If the columns attribute is omitted, the application SHOULD choose the number of columns
automatically based on the number of items.

For example, consider a gallery control with six items arranged into two columns, as
follows:

P |

L=, B <N

o | = | &

q
This is specified using the following XML fragment:

<gallery id="gallery" label="Gallery" columns="2"
size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />
<item id="item5" image="Flowers" />
<item id="item6" image="Whale" />
</gallery>

The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple type, as specified in section 2.3.4.

description Specifies a detailed description of the control, which SHOULD be displayed in detailed
(description) views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

155/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

» o Button

p | - e .
H:/ This is a verbase description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail."™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

<button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage

Specifies the name of a callback function to be called to determine the icon of this control.
The getImage, image, and imageMso attributes are mutually exclusive. If none of these

156 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemCount Specifies the name of a callback function to be called to determine the number of selection
(getItemCount items in this control.
callback) If this attribute is omitted, the control SHOULD display any selection items that are

specified as child elements. If no such items are specified, the control SHOULD be empty.
For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount" />

In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemHeight
(getItemHeight
callback)

Specifies the name of a callback function to be called to determine the height of the
selection items in this control.

The itemHeight and getItemHeight attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The getItemHeight and getItemWidth attributes are mutually required. If only one of
the attributes is specified, its value is ignored.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemHeight="GetGalleryItemHeight"
getItemWidth="GetGalleryItemWidth" />

In this example, the GetGalleryItemHeight callback function is called when the
application needs to determine the height of the items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemID
(getItemID
callback)

Specifies the name of a callback function to be called to determine the identifier of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD have empty
identifiers.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemID="GetGalleryItemID" />

In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemImage

Specifies the name of a callback function to be called to determine the icon of a specific

157/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

(getItemImage
callback)

dynamically-created selection item, identified by index.
If this attribute is omitted, dynamically-created selection items SHOULD NOT display icons.
For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemImage="GetGalleryItemImage" />

In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemLabel
(getItemLabel
callback)

Specifies the name of a callback function to be called to determine the label of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display labels.
For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemLabel="GetGalleryItemLabel" />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application needs to determine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemWidth
(getltemWidth

Specifies the name of a callback function to be called to determine the width of the
selection items in this control.

158 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

callback) The itemWidth and getItemWidth attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.
The getItemHeight and getItemWidth attributes are mutually required. If only one of
the attributes is specified, its value is ignored.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemHeight="GetGalleryItemHeight"
getItemWidth="GetGalleryItemWidth" />
In this example, the GetGalleryItemWidth callback function is called when the application
needs to determine the width of the items in the gallery.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<pbutton id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedIteml

Specifies the name of a callback function to be called to determine the identifier of the item

159 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

D
(getSelectedItemI
D callback)

to be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemID="GetItemID"
getSelectedItemID="GetGallerySelectedItemID" />

In this example, the GetGallerySelectedItemID callback function is called when the
application needs to determine the selected item in the gallery. The callback function
returns one of the identifiers returned by the GetItemID callback function.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedItemlI
ndex
(getSelectedIteml
ndex callback)

Specifies the name of a callback function to be called to determine the index of the item to
be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getSelectedItemIndex="GetGallerySelectedItemIndex" />

In this example, the GetGallerySelectedItemIndex callback function is called when the
application needs to determine the selected item in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowlLabel SHOULD display the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

160/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified

Specifies a qualified identifier for a control.

161/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

control identifier)

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

162 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

control to insert
after)

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

163/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re-query for them when
the user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to false.
For example, consider the following XML fragment:

<comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
getItemLabel="GetComboBoxItemLabel"
invalidateContentOnDrop="true" />

In this example, this combo box SHOULD clear out its items and re-call the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

itemHeight
(selection item
height)

Specifies the height of the selection items in this control.

The itemHeight and getItemHeight attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.

The itemHeight and itemWidth attributes are mutually required. If only one of the
attributes is specified, its value is ignored.

For example, consider a gallery control with 68 pixel tall items. This is specified using the
following XML fragment:

<gallery id="gallery" label="Gallery" itemWidth="88"
itemHeight="68" size="large" imageMso="HappyFace" >
<item id="iteml" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />

</gallery>

The possible values for this attribute are defined by the ST_GalleryItemWidthHeight
simple type, as specified in section 2.3.3.

itemWidth
(selection item
width)

Specifies the width of the selection items in this control.

The itemWidth and getItemWidth attributes are mutually exclusive. If neither attribute
is specified, the items SHOULD all take the size of the first item, based on its contents.
The itemHeight and itemWidth attributes are mutually required. If only one of the
attributes is specified, its value is ignored.

For example, consider a gallery control with 88 pixel wide items. This is specified using the
following XML fragment:

<gallery id="gallery" label="Gallery" itemWidth="88"
itemHeight="68" size="large" imageMso="HappyFace" >

<item id="iteml"
<item id="item2"
<item id="item3"
<item id="item4"
</gallery>

image="Desert" />
image="Forest" />
image="Toucan" />
image="Tree" />

The possible values for this attribute are defined by the ST_GalleryItemWidthHeight

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

164 / 523

Attributes Description

simple type, as specified in section 2.3.3.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction Specifies the name of a callback function to be called when this control is invoked by the
(onAction callback) | user.

For example, consider the following XML fragment:

<putton id="button" label="Button" onAction="ButtonClicked" />

In this example, the button calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

rows (row count) Specifies the number of rows that the gallery's items are arranged into.

If the rows attribute is omitted, the application SHOULD choose the number of rows
automatically based on the number of items.

For example, consider a gallery control with six items arranged into two rows, as follows:

165/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

This is specified using the following XML fragment:

<gallery id="gallery" label="Gallery" rows="2"

size="large" imageMso="HappyFace" >

<item id="iteml" image="Desert" />

<item id="item2" image="Forest" />

<item id="item3" image="Toucan" />

<item id="item4" image="Tree" />

<item id="item5" image="Flowers" />

<item id="item6" image="Whale" />
</gallery>

The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple type, as specified in section 2.3.4.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

|Buttan

| Custam Graup|

This is the screentip

Gﬁ}l Book3.xlsx L
Press F1 for more help.

=
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show

Specifies whether this control displays an icon.

166 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

image)
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider a button that does not display an icon, as follows:
Button with no icon
Custam Group
This is specified using the following XML fragment:
<button id="button" showImage="false"
label="Button with no icon" />
The possible values for this attribute are defined by the XML schema boolean datatype.
showItemImage Specifies whether this control displays icons on its selection items.

(show item image) If this attribute is omitted, the items' icons SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemImage="false" >
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 1" />
<item id="item3" label="Item 2" />
<item id="item4" label="Item 3" />
</gallery>

This specifies a gallery control that does not show any icons on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showItemLabel Specifies whether this control displays labels on its selection items.
(show item label) For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemLabel="false" >
<item id="iteml" image="Forest" />
<item id="item2" image="Desert" />
<item id="item3" image="Mountain" />
<item id="item4" image="Ocean" />
</gallery>

In this example, the gallery control does not show any labels on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show Specifies whether this control SHOULD display its label.
label)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is

167/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

hidden, it is provided to accessibility tools.
The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size Specifies a string whose size is used to determine the width of the text input area of this
string) control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

<editBox id="editBox" sizeString="WWWWWNWNWNWWWW" />

This specifies an edit box control that is wide enough to display the string
"WWWWWWWWWWWWW".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

[wn)
=7

Button

Custom Group

i Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

168/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT GalleryRegular">
<xsd:complexContent>
<xsd:extension base="CT DropDownRegular">
<xsd:attributeGroup ref="AG Description"/>
<xsd:attributeGroup ref="AG DynamicContentAttributes"/>
<xsd:attribute name="columns" type="ST GalleryRowColumnCount" use="optional"/>
<xsd:attribute name="rows" type="ST GalleryRowColumnCount" use="optional"/>
<xsd:attribute name="itemWidth" type="ST GalleryItemWidthHeight" use="optional"/>
<xsd:attribute name="itemHeight" type="ST GalleryItemWidthHeight" use="optional"/>
<xsd:attribute name="getItemWidth" type="ST Delegate" use="optional"/>
<xsd:attribute name="getItemHeight" type="ST Delegate" use="optional"/>
<xsd:attribute name="showItemLabel" type="xsd:boolean" use="optional"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.23 group (Group)

This element specifies a grouping of controls on a ribbon tab. All controls displayed in a ribbon tab
MUST be contained within a group.

For example, consider a group with a single button, as follows:

2 Button

Custam Group
Figure 13: A group with a single button

This is specified using the following XML fragment:

<group id="group" label="Custom Group">
<button id="button" label="Button" imageMso="HappyFace" />
</group>

The following table summarizes the elements that are parents of this element.

Parent Elements

tab (section 2.2.39)

169/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following table summarizes the child elements of this element.

callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

needs to determine the icon of the button.

specified in section 2.3.2.

Child Elements Section
box (Box Grouping Container) 2.2.1
button (Button) 2.2.2
buttonGroup (Button Grouping Container) 2.2.5
checkBox (Check Box) 2.2.6
comboBox (Combo Box) 2.2.7
control (Control Clone) 2.2.12
dialogBoxLauncher (Dialog Box Launcher) 2.2.15
dropDown (Drop-down Control) 2.2.17
dynamicMenu (Dynamic Menu) 2.2.19
editBox (Edit Box) 2.2.20
gallery (Gallery) 2.2.21
labelControl (Text Label) 2.2.25
menu (Menu) 2.2.28
separator (Separator) 2.2.34
splitButton (Split Button) 2.2.38
toggleButton (Toggle Button) 2.2.43
The following table summarizes the attributes of this element.
Attributes Description
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage

The getImage, image, and imageMso attributes are mutually exclusive. If none of these

In this example, the GetButtonImage callback function is called when the application

The possible values for this attribute are defined by the ST_Delegate simple type, as

(getKeytip this control.
callback)

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

171/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

specified in section 2.3.2.

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the

172 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

173/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

174 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
{ _--- .I
.__::,-/.
Button

Custam Graup

This is the screentip

@ Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

._..|
“:"'lj

Button

Custam Group

QL,}I Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

175/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Group">
<xsd:sequence>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:group ref="EG Controls"/>

<xsd:element name="separator" type="CT Separator"/>

</xsd:choice>

</xsd:sequence>

<xsd:element name="dialogBoxLauncher" type="CT DialogLauncher" minOccurs="0"

maxOccurs="1"/>

</xsd:sequence>

<xsd:attributeGroup ref="AG IDAttributes"/>

<xsd:attributeGroup ref="AG Label"/>

<xsd:attributeGroup ref="AG Image"/>

<xsd:attributeGroup ref="AG PositionAttributes"/>

<xsd:attributeGroup ref="AG Screentip"/>

<xsd:attributeGroup ref="AG Visible"/>

<xsd:attributeGroup ref="AG Keytip"/>
</xsd:complexType>

2.2.24 item (Selection Item)
This element specifies an item in a selection-type control.

For example, consider a drop-down control with three selection items, as follows:

176 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

DropDaown | kem 2

A

Item 1
Item 2
Item 3

1 Buttan... I'—

o

Figure 14: A drop-down control with selection items

This is specified using the following XML fragment:

<dropDown id="dropDown" label="DropDown">
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 2" />
<item id="item3" label="Item 3" />
<pbutton id="button" label="Button..." />

</dropDown>

The following table summarizes the elements that are parents of this element.

Parent Elements

comboBox (section 2.2.7); dropDown (section 2.2.17); gallery (section 2.2.21); gallery (section 2.2.22)

The following table summarizes the attributes of this element.

Attributes

Description

id (custom control
identifier)

Specifies the identifier for a custom control. All new custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

image (custom
image identifier)

Specifies the identification information for an image to be used as the icon for this control.
This attribute is used to specify an embedded picture that resides locally within the
containing file.

The image, and imageMso attributes are mutually exclusive.
For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

In this example, the custom button has an icon that is the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.
The contents of this attribute are application-defined and SHOULD be ignored if not

177/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

understood.
The image, and imageMso attributes are mutually exclusive.
For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

In this example, the custom button uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

label (label)

Specifies a string to be used as the label for this control.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

For example, consider a button with a screentip, as follows:

LA
1 __:‘::).

Button

Custam Group

This is the screentip

GEI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:
<button id="button" imageMso="HappyFace" label="Button"

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

For example, consider a control with a supertip, as follows:

178 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

Button

Custam Group

G_le Book3.xlsx
Press F1 far mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Item">
<xsd:attribute name="id" type="ST UniqueID" use="optional"/>
<xsd:attribute name="label" type="ST String" use="optional"/>
<xsd:attribute name="image" type="ST Uri" use="optional"/>
<xsd:attribute name="imageMso" type="ST ID" use="optional"/>
<xsd:attribute name="screentip" type="ST String" use="optional"/>
<xsd:attribute name="supertip" type="ST String" use="optional"/>

</xsd:complexType>

2.2.25 labelControl (Text Label)
This element specifies a control that displays a simple string of text.

For example, consider a label control, as follows:

Label Cantrol

Custom Group
Figure 15: A label control

This is specified using the following XML fragment:

<labelControl id="label" label="Label Control" />

The following table summarizes the elements that are parents of this element.

179/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application

needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application

180/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application

181/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

182 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the

183/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

(identifier of built-in
control to insert
after)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

184 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

=
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<putton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
-.;'I

b

Button

C Itillj—l—m———h-___

This is the screentip

li;_:ﬂl Book3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button
size="large" screentip="This is the screentip" />

185/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:
LR

bt

Button

Custam Group

G_L,jl Book3.xlsx
Press F1 far mare help,

This is specified using the following XML fragment:

186/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

size="large" screentip="Screentip"
supertip="This is the supertip string" />

specified in section 2.3.11.

<button id="button" imageMso="HappyFace" label="Button"

The possible values for this attribute are defined by the ST_String simple type, as

control.

For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

ButtonClicked callback function.

specified in section 2.3.11.

This specifies a button with a tag value of "123456", which is passed to the

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this

If this attribute is omitted, the control's tag value SHOULD default to an empty string.

The possible values for this attribute are defined by the ST_String simple type, as

visible (control Specifies the visibility state of the control.

omitted, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT LabelControl">
<xsd:complexContent>
<xsd:restriction base="CT Control">
<xsd:attribute name="image" use="prohibited"/>
<xsd:attribute name="imageMso" use="prohibited"/>
<xsd:attribute name="getImage" use="prohibited"/>
<xsd:attribute name="keytip" use="prohibited"/>
<xsd:attribute name="getKeytip" use="prohibited"/>
<xsd:attribute name="showImage" use="prohibited"/>
<xsd:attribute name="getShowImage" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.2.26 menu (Unsized Menu)

This element specifies a menu control that, because of its location, cannot have its size changed. The
size attribute is not present. It otherwise behaves identically to the regular menu element, as

specified in section 2.2.28.

The following table summarizes the elements that are parents of this element.

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

187/ 523

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29);
splitButton (section 2.2.38); splitButton (section 2.2.36)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
checkBox (Check Box) 2.2.6
control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynamic Menu) 2.2.18
gallery (Unsized Gallery) 2.2.22
menu (Unsized Menu) 2.2.26
menuSeparator (Menu Separator) 2.2.30
splitButton (Unsized Split Button) 2.2.36
toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:
» o Button
H:-" ! This is a verbose description that describes
the function of this contral in detail,

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail.™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

188/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

useful, thus the enabled attribute is not commonly used.
The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

189 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

190/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

191 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be

192 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:0OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the

193/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

itemSize (item
size)

Specifies the size of the child controls in this menu.
If this attribute is omitted, the menu's child controls SHOULD default to the normal size.
For example, consider a menu control with large menu items, as follows:

Menu with large items = i

| :_; | Button 1

e

g J Button 2

E j Button 3

7
This is specified using the following XML fragment:

<menu id="menu" label="Menu with large items" itemSize="large">
<button id="buttonl" label="Button 1" imageMso="HappyFace" />
<button id="button2" label="Button 2" imageMso="Paste" />
<button id="button3" label="Button 3" imageMso="Copy" />
</menu>

The possible values for this attribute are defined by the ST_ItemSize simple type, as
specified in section 2.3.6.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

=y
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

194 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
LA
.__:‘:-/.
Button

Cl m-:%

This is the screentip

GIGI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

195/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

N
1 "':‘_"lj

Button

Custam Group

Q,_U'l Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

196 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT MenuRegular">
<xsd:complexContent>
<xsd:extension base="CT ControlBase">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:group ref="EG MenuControlsBase"/>
<xsd:group ref="EG MenuOrSplitButtonRegular"/>
</xsd:choice>
</xsd:sequence>
<xsd:attribute name="itemSize" type="ST ItemSize" use="optional"/>
<xsd:attributeGroup ref="AG Description"/>
<xsd:attributeGroup ref="AG IDAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.27 menu (Menu with Title)

This element specifies a menu control that, because of its location, can optionally include a title string
via the title or getTitle attributes. It otherwise behaves identically to the regular menu element, as

specified in section 2.2.28.

For example, consider a menu control with a title, as follows:

Title Stri
Menu With Title » | oo

Button

Figure 16: A menu control with title

This is specified with the following XML fragment:

<menu id="menu" label="Menu With Title" title="Title String">
<button id="button" label="Button" />
</menu>

The following table summarizes the elements that are parents of this element.

Parent Elements

menu (section 2.2.27); officeMenu (section 2.2.31); splitButton (section 2.2.37)

The following table summarizes the child elements of this element.

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Child Elements Section
button (Unsized Button) 2.2.3
checkBox (Check Box) 2.2.6
control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynamic Menu) 2.2.18
gallery (Unsized Gallery) 2.2.22
197/ 523

Child Elements Section
menu (Menu with Title) 2.2.27
menuSeparator (Menu Separator) 2.2.30
splitButton (Split Button with Title) 2.2.37
toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application

needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

198 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<pbutton id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

199 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getTitle (getTitle
callback)

Specifies the name of a callback function to be called to determine the title of this control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified no
title SHOULD be shown.

For example, consider the following XML fragment:
<menu id="menu" label="Menu" getTitle="GetMenuTitle">

</menu>

In this example, the GetMenuTitle callback function is called when the application needs
to determine the title of the menu.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

200/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

201 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

202 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

itemSize (item
size)

Specifies the size of the child controls in this menu.
If this attribute is omitted, the menu's child controls SHOULD default to the normal size.
For example, consider a menu control with large menu items, as follows:

Menu with large items = |

(2%] Button 1

e

A J Button 2

E J Button 3
3=

This is specified using the following XML fragment:

<menu id="menu" label="Menu with large items" itemSize="large">
<button id="buttonl" label="Button 1" imageMso="HappyFace" />
<button id="button2" label="Button 2" imageMso="Paste" />
<pbutton id="button3" label="Button 3" imageMso="Copy" />
</menu>

The possible values for this attribute are defined by the ST_ItemSize simple type, as
specified in section 2.3.6.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

203/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider a button with KeyTip 'K', as follows:

0

=y
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
LA
.":":l./.
Buttan

Cl |,tﬂ%

This is the screentip

GEI Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

204 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

Button with no icon

Custom Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

__;i]
. -:-f'/'
Button

Custom Group

G:_,jl Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

205/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.
If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

title (title) Specifies a string to be displayed as the title of the control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified, no
title SHOULD be shown.

For example, consider a menu control with a title, as follows:

Title Stri
Menu With Title » | 0 oong

Button

This is specified with the following XML fragment:

<menu id="menu" label="Menu With Title" title="Title String">
<button id="button" label="Button" />
</menu>

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT MenuWithTitle">
<xsd:complexContent>

<xsd:extension
<xsd:sequence>

base="CT ControlBase">

<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:group ref="EG MenuControlsBase"/>
<xsd:group ref="EG MenuOrSplitButtonWithTitle"/>

</xsd:choice>

</xsd:sequence>
<xsd:attributeGroup ref="AG IDAttributes"/>

<xsd:attribute

name="itemSize" type="ST ItemSize" use="optional"/>

<xsd:attributeGroup ref="AG Title"/>

206 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

2.2.28 menu (Menu)
This element specifies a drop-menu control.

For example, consider a menu control, as follows:

|L_.-FJ Meny -
ﬂ Buttan 1
B Button 2
§) putton 3
A

Figure 17: A menu control

This is specified using the following XML fragment:

<menu id="menu" label="Menu" imageMso="HappyFace" >
<button id="buttonl" label="Button 1" imageMso="FileSave" />
<button id="button2" label="Button 2" imageMso="Bold" />
<button id="button3" label="Button 3" imageMso="Undo" />
</menu>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
checkBox (Check Box) 2.2.6
control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynamic Menu) 2.2.18
gallery (Unsized Gallery) 2.2.22
menu (Unsized Menu) 2.2.26
menuSeparator (Menu Separator) 2.2.30
splitButton (Unsized Split Button) 2.2.36
toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

207/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:
» o Button
M:fl This is a verbose description that describes
the function of this contral in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail."™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

<pbutton id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

208 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<pbutton id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

209 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowlLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

210/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>

211 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If

212 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

of control to insert
after)

the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

itemSize (item
size)

Specifies the size of the child controls in this menu.
If this attribute is omitted, the menu's child controls SHOULD default to the normal size.
For example, consider a menu control with large menu items, as follows:

213/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

Menu with large items = i

| ::, | Button 1

i

5 J Button 2

E j Button 3

.
This is specified using the following XML fragment:

<menu id="menu" label="Menu with large items" itemSize="large">
<button id="buttonl" label="Button 1" imageMso="HappyFace" />
<button id="button2" label="Button 2" imageMso="Paste" />
<button id="button3" label="Button 3" imageMso="Copy" />
</menu>

The possible values for this attribute are defined by the ST_ItemSize simple type, as
specified in section 2.3.6.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

=
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

214 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

LA
1 __:‘::).

Button

L 't%

This is the screentip

GEI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:
<button id="button" imageMso="HappyFace" label="Button"

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

215/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Bl

Custam Group
This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.
For example, consider a control with a supertip, as follows:
LA
"":‘:._;"
Buttan

Custam Group

QL,}I Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as

216 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Menu">
<xsd:complexContent>
<xsd:extension base="CT_MenuRegular">
<xsd:attributeGroup ref="AG SizeAttributes"/>
<xsd:attribute name="itemSize" type="ST ItemSize" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

2.2.29 menu (Dynamic Menu Root XML Element)
This element specifies the root tag of the XML string returned by a dynamic menu control.

For example, consider a dynamic menu control, as follows:

Dynamic Menu =

Button 1
Button 2
{
=]

Button 3

A

Figure 18: A dynamic menu control

This is specified using the following XML fragment:

<dynamicMenu id="dynamic" label="Dynamic Menu" getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this case returns
a string with the following XML:

<menu xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<pbutton id="buttonl" label="Button 1" />
<pbutton id="button2" label="Button 2" />
<button id="button3" label="Button 3" />

</menu>

The following table summarizes the child elements of this element.

217/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Child Elements Section
button (Unsized Button) 2.2.3
checkBox (Check Box) 2.2.6
control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynamic Menu) 2.2.18
gallery (Unsized Gallery) 2.2.22
menu (Unsized Menu) 2.2.26
menuSeparator (Menu Separator) 2.2.30
splitButton (Unsized Split Button) 2.2.36
toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

Attributes

Description

getTitle (getTitle
callback)

Specifies the name of a callback function to be called to determine the title of this control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified no
title SHOULD be shown.

For example, consider the following XML fragment:
<menu id="menu" label="Menu" getTitle="GetMenuTitle">

</menu>

In this example, the GetMenuTitle callback function is to be called when the application
needs to determine the title of the menu.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

itemSize (item
size)

Specifies the size of the child controls in this menu.

If this attribute is not specified, the menu's child controls SHOULD default to the normal
size.

For example, consider a menu control with large menu items, as follows:

Menu with large items G

| :_:, | Button 1

e

A J Button 2

E J Button 3

7
This is specified using the following XML fragment:

<menu id="menu" label="Menu with large items" itemSize="large">
<button id="buttonl" label="Button 1" imageMso="HappyFace" />
<button id="button2" label="Button 2" imageMso="Paste" />
<pbutton id="button3" label="Button 3" imageMso="Copy" />

218 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

</menu>

The possible values for this attribute are defined by the ST_ItemSize simple type, as
specified in section 2.3.6.

title (title)

Specifies a string to be displayed as the title of the control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified, no
title SHOULD be shown.

For example, consider a menu control with a title, as follows:

Title Stri
Menu With Title » | 0 oong

Button

This is specified with the following XML fragment:

<menu id="menu" label="Menu With Title" title="Title String">
<button id="button" label="Button" />
</menu>

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT MenuRoot">

<xsd:sequence>

<xsd:choice minOccurs="0" maxOccurs="1000">

<xsd:group ref
<xsd:group ref
</xsd:choice>
</xsd:sequence
<xsd:attribute
<xsd:attribute
</xsd:complexType

="EG_MenuControlsBase"/>
="EG MenuOrSplitButtonRegular"/>

>
Group ref="AG Title"/>

name="itemSize" type="ST ItemSize" use="optional"/>
>

2.2.30 menuSeparator (Menu Separator)

This element specifies

a horizontal separator line in a menu control. Menu separators can optionally

have title strings, which SHOULD display as headers in the menu.

For example, consider a menu with a separator in between two of its items, as follows:

| L) Menu *i

H Button 1

B Button 2
L i) -

Figure 19: Menu control with separator

This is specified using

<menu id="menu" 1

the following XML fragment:

abel="Menu" imageMso="HappyFace" >

<button id="buttonl" label="Button 1" imageMso="FileSave" />

219 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<menuSeparator id="separator" />
<pbutton id="button2" label="Button 2" imageMso="Bold" />

</menu>

The following table summarizes the elements that are parents of this element.

Parent Elements

(section 2.2.31)

menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu (section 2.2.27); officeMenu

The following table summarizes the attributes of this element.

Attributes

Description

getTitle (getTitle
callback)

Specifies the name of a callback function to be called to determine the title of this control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified no
title SHOULD be shown.

For example, consider the following XML fragment:
<menu id="menu" label="Menu" getTitle="GetMenuTitle">

</menu>

In this example, the GetMenuTitle callback function is called when the application needs
to determine the title of the menu.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

control identifier)

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idQ (qualified Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab 1dQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>

220/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the

221 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

title (title)

Specifies a string to be displayed as the title of the control.

The title and getTitle attributes are mutually exclusive. If neither attribute is specified, no
title SHOULD be shown.

For example, consider a menu control with a title, as follows:

Title Stri
Menu With Title » | 0 oong

Button

This is specified with the following XML fragment:

<menu id="menu" label="Menu With Title" title="Title String">
<button id="button" label="Button" />
</menu>

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT MenuSeparator">
<xsd:attributeGroup ref="AG IDCustom"/>
<xsd:attributeGroup ref="AG PositionAttributes"/>
<xsd:attributeGroup ref="AG Title"/>
</xsd:complexType>

2.2.31 officeMenu (Office Menu)

This element specifies the Office Menu of the application. It is used to reference the built-in Office
Menu. This element SHOULD NOT be specified if the containing Custom UI XML document is a Quick
Access Toolbar Customizations part.

For example, consider the following XML fragment:

<officeMenu>

222 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<control idMso="FileSave" visible="false" />
</officeMenu>

This XML fragment specifies that the command with an identifier of "FileSave" on the Office Menu is
hidden.

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
checkBox (Check Box) 2.2.6
control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynamic Menu) 2.2.18
gallery (Unsized Gallery) 2.2.22
menu (Menu with Title) 2.2.27
menuSeparator (Menu Separator) 2.2.30
splitButton (Split Button with Title) 2.2.37
toggleButton (Unsized Toggle Button) 2.2.42

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT OfficeMenu">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:group ref="EG MenuControlsBase"/>
<xsd:group ref="EG MenuOrSplitButtonWithTitle"/>
</xsd:choice>
</xsd:sequence>

</xsd:complexType>

2.2.32 qat (Quick Access Toolbar)

This element specifies the quick access toolbar. If the containing Custom Ul file is a Ribbon
Extensibility part the gat element cannot be used unless the startFromScratch attribute on the
ribbon element is set to "true". In this case only the sharedControls child element SHOULD be used.
If the containing Custom UI file is a Quick Access Toolbar Customizations part, the
documentControls child element SHOULD be used.

For example, consider the following controls on the document-specific quick access toolbar:

223 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

— =
/ ol = -
(On i .

Home Insert Page Layout

Figure 20: Controls on the quick access toolbar

This is specified using the following XML fragment:

<gat>
<documentControls>
<control idMso="CalculateNow" />
<control idMso="HyperlinkInsert" />
</documentControls>
</gat>

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

Child Elements Section
documentControls (List of Document-Specific Quick Access Toolbar Controls) 2.2.16
sharedControls (List of Shared Quick Access Toolbar Controls) 2.2.35
The following XML schema fragment defines the contents of this element:
<xsd:complexType name="CT Qat">
<xsd:sequence>
<xsd:element name="sharedControls" type="CT QatItems" minOccurs="0"/>
<xsd:element name="documentControls" type="CT QatItems" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
2.2.33 ribbon (Ribbon)
This element is used to reference the Ribbon of the application and its contents.
The following table summarizes the elements that are parents of this element.
Parent Elements
customUI (section 2.2.14)
The following table summarizes the child elements of this element.
Child Elements Section
contextualTabs (List of Contextual Tab Sets) 2.2.10
officeMenu (Office Menu) 2.2.31
224 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Child Elements

Section

qat (Quick Access Toolbar)

N
N
[
N

tabs (List of Tabs)

N
g
D
o

The following table summarizes the attributes of this element.

Attributes Description

(start from scratch) providing a clean slate on which to build custom UI.
If this attribute is omitted, its value SHOULD default to "false".
For example, consider the following XML fragment:

<ribbon startFromScratch="true">

</ribbon>

startFromScratch Specifies that the application's built-in ribbon UI is reduced to a minimal set of features,

In this example, the application's ribbon is put into start from scratch mode.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Ribbon">
<xsd:all>

<xsd:element name="officeMenu" type="CT OfficeMenu" minOccurs="0" maxOccurs="1"/>

<xsd:element name="qgat" type="CT Qat" minOccurs="0" maxOccurs="1">
<xsd:unique name="gatControls">

<xsd:selector xpath="*/*"/>

<xsd:field xpath="@id"/>

</xsd:unique>

</xsd:element>

<xsd:element name="tabs" type="CT Tabs" minOccurs="0" maxOccurs="1"/>

<xsd:element name="contextualTabs" type="CT ContextualTabs" minOccurs="0" maxOccurs="1"/>

</xsd:all>
<xsd:attribute name="startFromScratch" type="xsd:boolean" use="optional"/>
</xsd:complexType>

2.2.34 separator (Separator)

This element specifies a vertical separator line between two sets of controls, either in the Quick Access

Toolbar or within group elements.

For example, consider a vertical separator control between two buttons, as follows:

.l ‘-l
7)

Button | Button
1 2
Custom Graup

Figure 21: A vertical separator control

This is specified using the following XML fragment:

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

225 /523

<pbutton id="buttonl" label="Button 1" imageMso="HappyFace" size="large" />
<separator id="separator" />
<button id="button2" label="Button 2" imageMso="HappyFace" size="large" />

The following table summarizes the elements that are parents of this element.

Parent Elements

documentControls (section 2.2.16); group (section 2.2.23); sharedControls (section 2.2.35)

The following table summarizes the attributes of this element.

control identifier)

Attributes Description
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.
idQ (qualified Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>

226 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

227/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

section 2.3.5.

insertBeforeQ Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
(qualified identifier the value of this attribute is not understood, it SHOULD be ignored.

of control to insert The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

visible (control Specifies the visibility state of the control.
visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Separator">
<xsd:attributeGroup ref="AG IDCustom"/>
<xsd:attributeGroup ref="AG Visible"/>
<xsd:attributeGroup ref="AG PositionAttributes"/>
</xsd:complexType>

2.2.35 sharedControls (List of Shared Quick Access Toolbar Controls)

This element specifies the section of the quick access toolbar that is shared among all documents. This
element SHOULD NOT be specified if the containing Custom UI XML document is a Quick Access
Toolbar Customizations part. If the containing Custom UI XML document is a Ribbon Extensibility part,
this element can be used if the startFromScratch attribute is set to "true" on the ribbon element.

For example, consider a Ribbon Extensibility XML document that adds the two buttons to the shared
section of the quick access toolbar:

Figure 22: Shared controls on the quick access toolbar

This is specified using the following XML fragment:

228 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<gat>

<sharedControls>
<button id="buttonl" imageMso="HappyFace" />
<button idMso="Cut" />

</sharedControls>

</gat>

The following table summarizes the elements that are parents of this element.

Parent Elements

qat (section 2.2.32)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
control (Quick Access Toolbar Control Clone) 2.2.13
separator (Separator) 2.2.34

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT QatItems">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:element name="control" type="CT ControlCloneQat"/>
<xsd:element name="button" type="CT ButtonRegular"/>
<xsd:element name="separator" type="CT Separator"/>
</xsd:choice>
</xsd:sequence>

</xsd:complexType>

2.2.36 splitButton (Unsized Split Button)

This element specifies a split button control that, because of its location, cannot have its size changed.
The size attribute is not present. It otherwise behaves identically to the regular splitButton element,
as specified in section 2.2.38.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29)

The following table summarizes the child elements of this element.

Child Elements Section
button (Button Inside of a Split Button) 2.2.4
menu (Unsized Menu) 2.2.26
toggleButton (Toggle Button Inside of a Split Button) 2.2.44

The following table summarizes the attributes of this element.

229 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

enabled (enabled

Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application

needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

230/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip Specifies the name of a callback function to be called to determine the screentip of this
(getScreentip control.
callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip Specifies the name of a callback function to be called to determine the supertip of this

(getSupertip control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
231/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

232 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

233 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

234 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
LA
.":":l./.
Buttan

Cl |,tﬂ%

This is the screentip

lii:ﬂ Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

235 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custom Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

[wn)
=7

Button

Custom Group

G:_,jl Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

236 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT SplitButtonRegular">
<xsd:complexContent>
<xsd:extension base="CT SplitButtonRestricted">
<xsd:sequence minOccurs="0">
<xsd:choice minOccurs="0">
<xsd:element name="button" type="CT VisibleButton"/>
<xsd:element name="toggleButton" type="CT VisibleToggleButton"/>
</xsd:choice>
<xsd:element name="menu" type="CT MenuRegular"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.37 splitButton (Split Button with Title)

This element specifies a split button control that, because of its location, can optionally include a title
string via the title or getTitle attributes. It otherwise behaves identically to the regular splitButton
element, as specified in section 2.2.38.

The following table summarizes the elements that are parents of this element.

Parent Elements

menu (section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the child elements of this element.

237/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Child Elements Section
button (Button Inside of a Split Button) 2.2.4
menu (Menu with Title) 2.2.27
toggleButton (Toggle Button Inside of a Split Button) 2.2.44

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application

needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

[MS-CUSTOMUIJ - v2016

238 /523
1017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<pbutton id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

239 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

240/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

241 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

242 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

1

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

243/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

LA
1 __:‘::).

Button

L 't%

This is the screentip

GEI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:
<button id="button" imageMso="HappyFace" label="Button"

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.
The supertip and getSupertip attributes are mutually exclusive. If neither attribute is

244 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

specified no supertip for this control SHOULD be shown.
For example, consider a control with a supertip, as follows:

LA
1 __:‘::).

Button

Custam Group

G_le Book3.xlsx
Press F1 far mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT SplitButtonWithTitle">
<xsd:complexContent>
<xsd:extension base="CT_SplitButtonRestricted">
<xsd:sequence minOccurs="0">

245/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<xsd:choice minOccurs="0">
<xsd:element name="button" type="CT VisibleButton"/>
<xsd:element name="toggleButton" type="CT VisibleToggleButton"/>
</xsd:choice>
<xsd:element name="menu" type="CT MenuWithTitle"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.38 splitButton (Split Button)

This element specifies a split button control. A split button control is composed of either a button or a
toggle button, and a drop-down menu. The icon and label shown on the split button come from the
button or toggleButton child element.

For example, consider a split button control, as follows:

(o)

[P e
Button™) |
& Buttan 1 L_
Button 2 |_

Figure 23: A split button control

This is specified using the following XML fragment:

<splitButton id="splitButton" size="large" >
<button id="button" imageMso="HappyFace" label="Split Button" />
<menu id="menu">
<pbutton id="buttonl" label="Button 1" />
<pbutton id="button2" label="Button 2" />
</menu>
</splitButton>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section
button (Button Inside of a Split Button) 2.2.4
menu (Unsized Menu) 2.2.26
toggleButton (Toggle Button Inside of a Split Button) 2.2.44
The following table summarizes the attributes of this element.
246 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

enabled (enabled

Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application

needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

247/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".
The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.
The getSize and size attributes are mutually exclusive. If neither attribute is specified, the

248 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

control's size SHOULD default to the normal size.
For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

249 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

250/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

251 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

1

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

252 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

LA
1 __:‘::).

Button

L 't%

This is the screentip

GEI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:
<button id="button" imageMso="HappyFace" label="Button"

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

253 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Bl

Custam Group
This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.
For example, consider a control with a supertip, as follows:
LA
"":‘:._;"
Buttan

Custam Group

QL,}I Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This example is a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as

254 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT SplitButton">
<xsd:complexContent>
<xsd:extension base="CT SplitButtonRegular">
<xsd:attributeGroup ref="AG SizeAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.39tab (Tab)

This element specifies a ribbon tab control.

For example, consider the following XML fragment:

<tab id="MyTab" label="My Custom Tab">

</tab>

This XML fragment specifies a custom tab with the label "My Custom Tab".

The following table summarizes the elements that are parents of this element.

Parent Elements

tabs (section 2.2.40); tabSet (section 2.2.41)

The following table summarizes the child elements of this element.

Child Elements

Section

group (Group)

2.2.23

The following table summarizes the attributes of this element.

Attributes Description

getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.

callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.

255 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

256 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

257/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

1

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

258 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_Tab">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="100">
<xsd:element name="group" type="CT Group"/>
</xsd:choice>
</xsd:sequence>
<xsd:attributeGroup ref="AG IDAttributes"/>
<xsd:attributeGroup ref="AG Label"/>
<xsd:attributeGroup ref="AG PositionAttributes"/>
<xsd:attributeGroup ref="AG Visible"/>
<xsd:attributeGroup ref="AG Keytip"/>
</xsd:complexType>

2.2.40 tabs (List of Tabs)

This element specifies a list of ribbon tab controls. This element SHOULD NOT be specified if the
containing Custom UI XML document is a Quick Access Toolbar Customizations part.

259 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

Child Elements Section

tab (Tab) 2.2.39

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Tabs">
<xsd:sequence>
<xsd:element name="tab" type="CT Tab" minOccurs="1" maxOccurs="100"/>
</xsd:sequence>

</xsd:complexType>

2.2.41 tabSet (Contextual Tab Set)

This element specifies a contextual tab set control. As the id and idQ attributes are not present, this
element can only be used to refer to existing built-in tab sets. This element cannot be used to create
new contextual tab sets.

For example, consider the following XML fragment:

<tabSet idMso="TabSetPictureTools">
<tab id="tab" label="Custom Tab">

</tab>

</tabSet>

This XML fragment is used to add a new custom tab to the tab set with an identifier of
"TabSetPictureTools".

The following table summarizes the elements that are parents of this element.

Parent Elements

contextualTabs (section 2.2.10)

The following table summarizes the child elements of this element.

Child Elements Subclause

tab (Tab) section 2.2.39

The following table summarizes the attributes of this element.

Attributes Description

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.

callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

260/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.
For example, consider the following XML fragment:

<control idMso="Bold" />

This is used to create a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT TabSet">

<xsd:sequence>

<xsd:element name="tab" type="CT Tab" minOccurs="0" maxOccurs="50"/>
</xsd:sequence>
<xsd:attribute name="idMso" type="ST ID" use="required"/>
<xsd:attributeGroup ref="AG Visible"/>

</xsd:complexType>

2.2.42 toggleButton (Unsized Toggle Button)

This element specifies a toggle button control that, because of its location, cannot have its size
changed. The size attribute is not present. It otherwise behaves identically to the regular
toggleButton element, as specified in section 2.2.43.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

261 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:
» o Button
.,:,z ! This is a verbose description that describes
the function of this contral in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail.™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription” />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback)

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

262 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the control SHOULD default to the off state.
For example, consider the following XML fragment:

<toggleButton id="toggle" getPressed="IsButtonToggled" />

In this example, the IsButtonToggled callback function is called when the application
needs to determine the toggle state of the button.

263/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".
The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

264 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">

265/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

266 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

267/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

0

=y
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string that SHOULD be used as the label for this control.
The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" label="Custom Button" />
This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.
onAction Specifies the name of a callback function to be called when this control is invoked by the

(onAction callback)

user.
For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

In this example, the button calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
LA
.":":l./.
Buttan

Cl |,tﬂ%

This is the screentip

GEI Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

268 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:
LR

bt

Button

Custam Group

G_L,jl Book3.xlsx
Press F1 for mare help.

269 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ToggleButtonRegular">
<xsd:complexContent>
<xsd:extension base="CT_ ButtonRegular">

<xsd:attribute name="getPressed" type="ST Delegate" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

2.2.43 toggleButton (Toggle Button)

This element specifies a toggle button control that can be toggled between the pressed and un-
pressed states by the end-user.

For example, consider a toggle button control, as follows:

270/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Toggle Buttan |

Custom Group

Figure 24: A toggle button control

This is specified with the following XML fragment:

<toggleButton id="toggleButton" label="Toggle Button" />

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.
The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:
» o Button
-,:.-f / This is a verbase description that describeas
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail.™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute

271 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:

<button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

272 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the control SHOULD default to the "off" state.
For example, consider the following XML fragment:

<toggleButton id="toggle" getPressed="IsButtonToggled" />

In this example, the IsButtonToggled callback function is called when the application
needs to determine the toggle state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage displays the icon of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowlLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel displays the label of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

273/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

274 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of ""MyButton"".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.
The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

275/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

276 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

1

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

277/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
[ma}y
.__::,-/.
Button

Cl ht-:%

This is the screentip

GLFJI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

278/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Baldl

Custam Group
This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

LA
1 "':fl./'.

Button

Custam Group

G_le Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The

279/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes Description

contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ToggleButton">
<xsd:complexContent>
<xsd:extension base="CT ToggleButtonRegular">
<xsd:attributeGroup ref="AG SizeAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.44 toggleButton (Toggle Button Inside of a Split Button)

This element specifies a toggle button control that is part of a split button control. The visible and
getVisible attributes are not present because the visibility is controlled by the split button. This
element otherwise behaves in the same way as the regular toggleButton element, as specified in
section 2.2.43.

The following table summarizes the elements that are parents of this element.

Parent Elements

splitButton (section 2.2.38); splitButton (section 2.2.36); splitButton (section 2.2.37)

The following table summarizes the attributes of this element.

Attributes Description
description Specifies a detailed description of the control, which is displayed in detailed views.
(description) The description and getDescription attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.
For example, consider a button with a detailed description, as follows:

280/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

» o Button
p | - e .
H:/ This is a verbase description that describes

the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail."™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

281 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the control SHOULD default to the off state.
For example, consider the following XML fragment:

<toggleButton id="toggle" getPressed="IsButtonToggled" />

In this example, the IsButtonToggled callback function is called when the application
needs to determine the toggle state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

282 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage displays the icon of this control.
callback)
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowlLabel SHOULD display the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control. This attribute is prohibited and the visibility is controlled by the split button.
callback)

For example, consider the following XML fragment:

283 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab 1dQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If

284 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image which SHOULD be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built-in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

285 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built-in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:0OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

1

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

286 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

In this example, the button calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
[ma}y
.__::,-/.
Buttan

Cl m-:%

This is the screentip

GI[;I Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

287/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

Button with no icon

Custom Group

This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

(maly
bzt

Button

Custom Group

G:_,,}'l Book3.xlsx
Press F1 for mare help,

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this

288 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Attributes

Description

control.
If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control. This attribute is prohibited and the visibility is
controlled by the split button.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT VisibleToggleButton">
<xsd:complexContent>
<xsd:restriction base="CT ToggleButtonRegular">

<xsd:attribute name="visible" use="prohibited"/>
<xsd:attribute name="getVisible" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.3 Simple Types

This is the complete list of simple types in the http://schemas.microsoft.com/office/2006/01/customui

namespace.

2.3.1 ST_BoxStyle (Box Style)

Specifies the layout style of a box control.

This simple type's contents are a restriction of the XML schema string datatype.

The following are possible enumeration values for this type:

Enumeration Value

Description

horizontal (Horizontal) Specifies that the child controls are laid out horizontally.

vertical (Vertical)

Specifies that the child controls are laid out vertically.

289 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

box@boxStyle (section 2.2.1)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST BoxStyle">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="horizontal"/>
<xsd:enumeration value="vertical"/>
</xsd:restriction>

</xsd:simpleType>

2.3.2 ST_Delegate (Callback Function Name)

Specifies the name of a callback function. The format of this string is application-defined and SHOULD
be ignored if not understood.

Examples of this simple type are macro scripts and add-in callback functions.
This simple type's contents are a restriction of the XML schema string datatype.
This simple type also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 characters.
= This simple type's contents have a maximum length of 1024 characters.

Referenced By

box@getVisible (section 2.2.1); button@getDescription (section 2.2.2); button@getDescription (section 2.2.3);
button@getDescription (section 2.2.4); button@getEnabled (section 2.2.2); button@getEnabled (section 2.2.3);
button@getEnabled (section 2.2.4); button@getImage (section 2.2.2); button@getImage (section 2.2.3);
button@getIimage (section 2.2.4); button@getKeytip (section 2.2.2); button@getKeytip (section 2.2.3);
button@getKeytip (section 2.2.4); button@getlLabel (section 2.2.2); button@getlLabel (section 2.2.3);
button@getLabel (section 2.2.4); button@getScreentip (section 2.2.2); button@getScreentip (section 2.2.3);
button@getScreentip (section 2.2.4); button@getShowImage (section 2.2.2); button@getShowImage (section
2.2.3); button@getShowImage (section 2.2.4); button@getShowLabel (section 2.2.2); button@getShowLabel
(section 2.2.3); button@getShowLabel (section 2.2.4); button@getSize (section 2.2.2); button@getSupertip
(section 2.2.2); button@getSupertip (section 2.2.3); button@getSupertip (section 2.2.4); button@getVisible
(section 2.2.2); button@getVisible (section 2.2.3); button@getVisible (section 2.2.4); button@onAction (section
2.2.2); button@onAction (section 2.2.3); button@onAction (section 2.2.4); buttonGroup@getVisible (section
2.2.5); checkBox@getDescription (section 2.2.6); checkBox@getEnabled (section 2.2.6); checkBox@getImage
(section 2.2.6); checkBox@getKeytip (section 2.2.6); checkBox@getLabel (section 2.2.6); checkBox@getPressed
(section 2.2.6); checkBox@getScreentip (section 2.2.6); checkBox@getShowImage (section 2.2.6);
checkBox@getShowlLabel (section 2.2.6); checkBox@getSupertip (section 2.2.6); checkBox@getVisible (section
2.2.6); checkBox@onAction (section 2.2.6); comboBox@getEnabled (section 2.2.7); comboBox@getImage
(section 2.2.7); comboBox@getItemCount (section 2.2.7); comboBox@getltemID (section 2.2.7);
comboBox@getItemImage (section 2.2.7); comboBox@ getltemLabel (section 2.2.7);
comboBox@getItemScreentip (section 2.2.7); comboBox@getItemSupertip (section 2.2.7); comboBox@getKeytip
(section 2.2.7); comboBox@getLabel (section 2.2.7); comboBox@getScreentip (section 2.2.7);
comboBox@getShowImage (section 2.2.7); comboBox@getShowLabel (section 2.2.7); comboBox@getSupertip
(section 2.2.7); comboBox@getText (section 2.2.7); comboBox@getVisible (section 2.2.7); comboBox@onChange
(section 2.2.7); command@getEnabled (section 2.2.8); command@onAction (section 2.2.8);
control@getDescription (section 2.2.12); control@getDescription (section 2.2.13); control@getEnabled (section
2.2.12); control@getEnabled (section 2.2.13); control@getEnabled (section 2.2.11); control@getImage (section
2.2.12); control@getIlmage (section 2.2.13); control@getlmage (section 2.2.11); control@getKeytip (section
2.2.12); control@getKeytip (section 2.2.13); control@getKeytip (section 2.2.11); control@getlLabel (section
2.2.12); control@getLabel (section 2.2.13); control@getLabel (section 2.2.11); control@getScreentip (section
2.2.12); control@getScreentip (section 2.2.13); control@getScreentip (section 2.2.11); control@getShowImage
(section 2.2.12); control@getShowImage (section 2.2.13); control@getShowImage (section 2.2.11);

290 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

control@getShowLabel (section 2.2.12); control@getShowLabel (section 2.2.13); control@getShowLabel (section
2.2.11); control@getSize (section 2.2.12); control@getSize (section 2.2.13); control@getSupertip (section
2.2.12); control@getSupertip (section 2.2.13); control@getSupertip (section 2.2.11); control@getVisible (section
2.2.12); control@getVisible (section 2.2.13); control@getVisible (section 2.2.11); control@onAction (section
2.2.12); customUI@loadImage (section 2.2.14); customUI@onLoad (section 2.2.14); dropDown@getEnabled
(section 2.2.17); dropDown@getImage (section 2.2.17); dropDown@getItemCount (section 2.2.17);
dropDown@getItemID (section 2.2.17); dropDown@getIitemImage (section 2.2.17); dropDown@getItemLabel
(section 2.2.17); dropDown@getItemScreentip (section 2.2.17); dropDown@getltemSupertip (section 2.2.17);
dropDown@getKeytip (section 2.2.17); dropDown@getLabel (section 2.2.17); dropDown@getScreentip (section
2.2.17); dropDown@getSelectedItemID (section 2.2.17); dropDown@getSelectedItemIndex (section 2.2.17);
dropDown@getShowImage (section 2.2.17); dropDown@getShowLabel (section 2.2.17); dropDown@getSupertip
(section 2.2.17); dropDown@getVisible (section 2.2.17); dropDown@onAction (section 2.2.17);
dynamicMenu@getContent (section 2.2.19); dynamicMenu@getContent (section 2.2.18);
dynamicMenu@getDescription (section 2.2.19); dynamicMenu@getDescription (section 2.2.18);
dynamicMenu@getEnabled (section 2.2.19); dynamicMenu@getEnabled (section 2.2.18); dynamicMenu@getImage
(section 2.2.19); dynamicMenu@getImage (section 2.2.18); dynamicMenu@getKeytip (section 2.2.19);
dynamicMenu@getKeytip (section 2.2.18); dynamicMenu@getLabel (section 2.2.19); dynamicMenu@getLabel
(section 2.2.18); dynamicMenu@getScreentip (section 2.2.19); dynamicMenu@getScreentip (section 2.2.18);
dynamicMenu@getShowImage (section 2.2.19); dynamicMenu@getShowImage (section 2.2.18);
dynamicMenu@getShowLabel (section 2.2.19); dynamicMenu@getShowLabel (section 2.2.18);
dynamicMenu@getSize (section 2.2.19); dynamicMenu@getSupertip (section 2.2.19); dynamicMenu@getSupertip
(section 2.2.18); dynamicMenu@getVisible (section 2.2.19); dynamicMenu@getVisible (section 2.2.18);
editBox@getEnabled (section 2.2.20); editBox@getImage (section 2.2.20); editBox@getKeytip (section 2.2.20);
editBox@getLabel (section 2.2.20); editBox@getScreentip (section 2.2.20); editBox@getShowImage (section
2.2.20); editBox@getShowLabel (section 2.2.20); editBox@getSupertip (section 2.2.20); editBox@getText
(section 2.2.20); editBox@getVisible (section 2.2.20); editBox@onChange (section 2.2.20);
gallery@getDescription (section 2.2.21); gallery@getDescription (section 2.2.22); gallery@getEnabled (section
2.2.21); gallery@getEnabled (section 2.2.22); gallery@getImage (section 2.2.21); gallery@getImage (section
2.2.22); gallery@getIitemCount (section 2.2.21); gallery@getltemCount (section 2.2.22); gallery@getItemHeight
(section 2.2.21); gallery@getltemHeight (section 2.2.22); gallery@getltemID (section 2.2.21); gallery@getItemID
(section 2.2.22); gallery@getltemImage (section 2.2.21); gallery@getltemImage (section 2.2.22);
gallery@getltemlLabel (section 2.2.21); gallery@getItemLabel (section 2.2.22); gallery@getItemScreentip (section
2.2.21); gallery@getItemScreentip (section 2.2.22); gallery@getltemSupertip (section 2.2.21);
gallery@getltemSupertip (section 2.2.22); gallery@getltemWidth (section 2.2.21); gallery@getIitemWidth (section
2.2.22); gallery@getKeytip (section 2.2.21); gallery@getKeytip (section 2.2.22); gallery@getLabel (section
2.2.21); gallery@getLabel (section 2.2.22); gallery@getScreentip (section 2.2.21); gallery@getScreentip (section
2.2.22); gallery@getSelectedItemID (section 2.2.21); gallery@getSelectedItemID (section 2.2.22);
gallery@getSelectedItemIndex (section 2.2.21); gallery@getSelectedItemIndex (section 2.2.22);
gallery@getShowImage (section 2.2.21); gallery@getShowImage (section 2.2.22); gallery@getShowLabel (section
2.2.21); gallery@getShowLabel (section 2.2.22); gallery@getSize (section 2.2.21); gallery@getSupertip (section
2.2.21); gallery@getSupertip (section 2.2.22); gallery@getVisible (section 2.2.21); gallery@getVisible (section
2.2.22); gallery@onAction (section 2.2.21); gallery@onAction (section 2.2.22); group@getIlmage (section 2.2.23);
group@getKeytip (section 2.2.23); group@getlLabel (section 2.2.23); group@getScreentip (section 2.2.23);
group@getSupertip (section 2.2.23); group@getVisible (section 2.2.23); labelControl@getEnabled (section
2.2.25); labelControl@getImage (section 2.2.25); labelControl@getKeytip (section 2.2.25); labelControl@getLabel
(section 2.2.25); labelControl@getScreentip (section 2.2.25); labelControl@getShowImage (section 2.2.25);
labelControl@getShowLabel (section 2.2.25); labelControl@getSupertip (section 2.2.25); labelControl@getVisible
(section 2.2.25); menu@getDescription (section 2.2.28); menu@getDescription (section 2.2.26);
menu@getEnabled (section 2.2.28); menu@getEnabled (section 2.2.26); menu@getEnabled (section 2.2.27);
menu@getImage (section 2.2.28); menu@getImage (section 2.2.26); menu@getlmage (section 2.2.27);
menu@getKeytip (section 2.2.28); menu@getKeytip (section 2.2.26); menu@getKeytip (section 2.2.27);
menu@getLabel (section 2.2.28); menu@getlLabel (section 2.2.26); menu@getLabel (section 2.2.27);
menu@getScreentip (section 2.2.28); menu@getScreentip (section 2.2.26); menu@getScreentip (section 2.2.27);
menu@getShowImage (section 2.2.28); menu@getShowImage (section 2.2.26); menu@getShowImage (section
2.2.27); menu@getShowlLabel (section 2.2.28); menu@getShowLabel (section 2.2.26); menu@getShowLabel
(section 2.2.27); menu@getSize (section 2.2.28); menu@getSupertip (section 2.2.28); menu@getSupertip
(section 2.2.26); menu@getSupertip (section 2.2.27); menu@getTitle (section 2.2.29); menu@getTitle (section
2.2.27); menu@getVisible (section 2.2.28); menu@getVisible (section 2.2.26); menu@getVisible (section 2.2.27);
menuSeparator@getTitle (section 2.2.30); separator@getVisible (section 2.2.34); splitButton@getEnabled (section
2.2.38); splitButton@getEnabled (section 2.2.36); splitButton@getEnabled (section 2.2.37);
splitButton@getImage (section 2.2.38); splitButton@getImage (section 2.2.36); splitButton@getImage (section
2.2.37); splitButton@getKeytip (section 2.2.38); splitButton@getKeytip (section 2.2.36); splitButton@getKeytip
(section 2.2.37); splitButton@getLabel (section 2.2.38); splitButton@getLabel (section 2.2.36);

291 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

splitButton@getLabel (section 2.2.37); splitButton@getScreentip (section 2.2.38); splitButton@getScreentip
(section 2.2.36); splitButton@getScreentip (section 2.2.37); splitButton@getShowImage (section 2.2.38);
splitButton@getShowImage (section 2.2.36); splitButton@getShowImage (section 2.2.37);
splitButton@getShowLabel (section 2.2.38); splitButton@getShowLabel (section 2.2.36);
splitButton@getShowLabel (section 2.2.37); splitButton@getSize (section 2.2.38); splitButton@getSupertip
(section 2.2.38); splitButton@getSupertip (section 2.2.36); splitButton@getSupertip (section 2.2.37);
splitButton@getVisible (section 2.2.38); splitButton@getVisible (section 2.2.36); splitButton@getVisible (section
2.2.37); tab@getKeytip (section 2.2.39); tab@getlLabel (section 2.2.39); tab@getVisible (section 2.2.39);
tabSet@getVisible (section 2.2.41); toggleButton@getDescription (section 2.2.43); toggleButton@getDescription
(section 2.2.42); toggleButton@getDescription (section 2.2.44); toggleButton@getEnabled (section 2.2.43);
toggleButton@getEnabled (section 2.2.42); toggleButton@getEnabled (section 2.2.44); toggleButton@getImage
(section 2.2.43); toggleButton@getImage (section 2.2.42); toggleButton@getImage (section 2.2.44);
toggleButton@getKeytip (section 2.2.43); toggleButton@getKeytip (section 2.2.42); toggleButton@getKeytip
(section 2.2.44); toggleButton@getLabel (section 2.2.43); toggleButton@getLabel (section 2.2.42);
toggleButton@getLabel (section 2.2.44); toggleButton@getPressed (section 2.2.43); toggleButton@getPressed
(section 2.2.42); toggleButton@getPressed (section 2.2.44); toggleButton@getScreentip (section 2.2.43);
toggleButton@getScreentip (section 2.2.42); toggleButton@getScreentip (section 2.2.44);
toggleButton@getShowlImage (section 2.2.43); toggleButton@getShowImage (section 2.2.42);
toggleButton@getShowImage (section 2.2.44); toggleButton@getShowlLabel (section 2.2.43);
toggleButton@getShowLabel (section 2.2.42); toggleButton@getShowLabel (section 2.2.44);
toggleButton@getSize (section 2.2.43); toggleButton@getSupertip (section 2.2.43); toggleButton@getSupertip
(section 2.2.42); toggleButton@getSupertip (section 2.2.44); toggleButton@getVisible (section 2.2.43);
toggleButton@getVisible (section 2.2.42); toggleButton@getVisible (section 2.2.44); toggleButton@onAction
(section 2.2.43); toggleButton@onAction (section 2.2.42); toggleButton@onAction (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST Delegate">
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="1024"/>

</xsd:restriction>
</xsd:simpleType>

2.3.3 ST_GalleryItemWidthHeight (Gallery Item Width or Height)

Specifies the width or height of gallery items, in pixels.

This simple type's contents are a restriction of the XML schema positivelnteger datatype.
This simple type also specifies the following restrictions:

= This simple type has a minimum value of greater than or equal to 1.
= This simple type has a maximum value of less than or equal to 4096.

Referenced By

gallery@itemHeight (section 2.2.21); gallery@itemHeight (section 2.2.22); gallery@itemWidth (section 2.2.21);
gallery@itemWidth (section 2.2.22)

The following XML schema fragment defines the contents of this simple type:

292 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<xsd:simpleType name="ST GalleryItemWidthHeight">
<xsd:restriction base="xsd:positiveInteger">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="4096"/>
</xsd:restriction>

</xsd:simpleType>

2.3.4 ST_GalleryRowColumnCount (Gallery Row or Column Count)
Specifies the count of rows or columns in a gallery control.

This simple type's contents are a restriction of the XML schema positivelnteger datatype.
This simple type also specifies the following restrictions:

= This simple type has a minimum value of greater than or equal to 1.
= This simple type has a maximum value of less than or equal to 1024.

Referenced By

gallery@columns (section 2.2.21); gallery@columns (section 2.2.22); gallery@rows (section 2.2.21); gallery@rows
(section 2.2.22)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST GalleryRowColumnCount">
<xsd:restriction base="xsd:positivelInteger">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="1024"/>
</xsd:restriction>

</xsd:simpleType>

2.3.5 ST_ID (Control ID)

Specifies the identifier of a built-in control. The format of this string is defined by per application by
the Custom UI Control identifier Tables, as specified in section 3.

This simple type's contents are a restriction of the XML schema NCName datatype.
This simple type also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 character.
» This simple type's contents have a maximum length of 1024 characters.

Referenced By

box@insertAfterMso (section 2.2.1); box@insertBeforeMso (section 2.2.1); button@idMso (section 2.2.2);
button@idMso (section 2.2.3); button@idMso (section 2.2.4); button@imageMso (section 2.2.2);
button@imageMso (section 2.2.3); button@imageMso (section 2.2.4); button@insertAfterMso (section 2.2.2);
button@insertAfterMso (section 2.2.3); button@insertAfterMso (section 2.2.4); button@insertBeforeMso (section
2.2.2); button@insertBeforeMso (section 2.2.3); button@insertBeforeMso (section 2.2.4);
buttonGroup@insertAfterMso (section 2.2.5); buttonGroup@insertBeforeMso (section 2.2.5); checkBox@idMso
(section 2.2.6); checkBox@imageMso (section 2.2.6); checkBox@insertAfterMso (section 2.2.6);
checkBox@insertBeforeMso (section 2.2.6); comboBox@idMso (section 2.2.7); comboBox@imageMso (section
2.2.7); comboBox@insertAfterMso (section 2.2.7); comboBox@insertBeforeMso (section 2.2.7); command@idMso
(section 2.2.8); control@id (section 2.2.13); control@idMso (section 2.2.12); control@idMso (section 2.2.13);
control@idMso (section 2.2.11); control@imageMso (section 2.2.12); control@imageMso (section 2.2.13);
control@imageMso (section 2.2.11); control@insertAfterMso (section 2.2.12); control@insertAfterMso (section

293 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

2.2.13); control@insertAfterMso (section 2.2.11); control@insertBeforeMso (section 2.2.12);
control@insertBeforeMso (section 2.2.13); control@insertBeforeMso (section 2.2.11); dropDown@idMso (section
2.2.17); dropDown@imageMso (section 2.2.17); dropDown@insertAfterMso (section 2.2.17);
dropDown@insertBeforeMso (section 2.2.17); dynamicMenu@idMso (section 2.2.19); dynamicMenu@idMso
(section 2.2.18); dynamicMenu@imageMso (section 2.2.19); dynamicMenu@imageMso (section 2.2.18);
dynamicMenu@insertAfterMso (section 2.2.19); dynamicMenu@insertAfterMso (section 2.2.18);
dynamicMenu@insertBeforeMso (section 2.2.19); dynamicMenu@insertBeforeMso (section 2.2.18); editBox@idMso
(section 2.2.20); editBox@imageMso (section 2.2.20); editBox@insertAfterMso (section 2.2.20);
editBox@insertBeforeMso (section 2.2.20); gallery@idMso (section 2.2.21); gallery@idMso (section 2.2.22);
gallery@imageMso (section 2.2.21); gallery@imageMso (section 2.2.22); gallery@insertAfterMso (section 2.2.21);
gallery@insertAfterMso (section 2.2.22); gallery@insertBeforeMso (section 2.2.21); gallery@insertBeforeMso
(section 2.2.22); group@idMso (section 2.2.23); group@imageMso (section 2.2.23); group@insertAfterMso
(section 2.2.23); group@insertBeforeMso (section 2.2.23); item@imageMso (section 2.2.24); labelControl@idMso
(section 2.2.25); labelControl@imageMso (section 2.2.25); labelControl@insertAfterMso (section 2.2.25);
labelControl@insertBeforeMso (section 2.2.25); menu@idMso (section 2.2.28); menu@idMso (section 2.2.26);
menu@idMso (section 2.2.27); menu@imageMso (section 2.2.28); menu@imageMso (section 2.2.26);
menu@imageMso (section 2.2.27); menu@insertAfterMso (section 2.2.28); menu@insertAfterMso (section 2.2.26);
menu@insertAfterMso (section 2.2.27); menu@insertBeforeMso (section 2.2.28); menu@insertBeforeMso (section
2.2.26); menu@insertBeforeMso (section 2.2.27); menuSeparator@insertAfterMso (section 2.2.30);
menuSeparator@insertBeforeMso (section 2.2.30); separator@insertAfterMso (section 2.2.34);
separator@insertBeforeMso (section 2.2.34); splitButton@idMso (section 2.2.38); splitButton@idMso (section
2.2.36); splitButton@idMso (section 2.2.37); splitButton@imageMso (section 2.2.38); splitButton@imageMso
(section 2.2.36); splitButton@imageMso (section 2.2.37); splitButton@insertAfterMso (section 2.2.38);
splitButton@insertAfterMso (section 2.2.36); splitButton@insertAfterMso (section 2.2.37);
splitButton@insertBeforeMso (section 2.2.38); splitButton@insertBeforeMso (section 2.2.36);
splitButton@insertBeforeMso (section 2.2.37); tab@idMso (section 2.2.39); tab@insertAfterMso (section 2.2.39);
tab@insertBeforeMso (section 2.2.39); tabSet@idMso (section 2.2.41); toggleButton@idMso (section 2.2.43);
toggleButton@idMso (section 2.2.42); toggleButton@idMso (section 2.2.44); toggleButton@imageMso (section
2.2.43); toggleButton@imageMso (section 2.2.42); toggleButton@imageMso (section 2.2.44);
toggleButton@insertAfterMso (section 2.2.43); toggleButton@insertAfterMso (section 2.2.42);
toggleButton@insertAfterMso (section 2.2.44); toggleButton@insertBeforeMso (section 2.2.43);
toggleButton@insertBeforeMso (section 2.2.42); toggleButton@insertBeforeMso (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST_ID">
<xsd:restriction base="xsd:NCName">

<xsd:minLength value="1"/>

<xsd:maxLength value="1024"/>

</xsd:restriction>
</xsd:simpleType>

2.3.6 ST_ItemSize (Menu Item Size)
Specifies the size of the child controls in a menu control.
This simple type's contents are a restriction of the XML schema string datatype.

The following are possible enumeration values for this type:

Enumeration Value Description
large (Large) Specifies that the child controls have large sizes.
normal (Normal) Specifies that the child controls have normal sizes.

294 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

menu@itemSize (section 2.2.28); menu@itemSize (section 2.2.26); menu@itemSize (section 2.2.29);
menu@itemSize (section 2.2.27)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST ItemSize">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="normal"/>
<xsd:enumeration value="large"/>
</xsd:restriction>
</xsd:simpleType>

2.3.7 ST_Keytip (Keytip)

Specifies a KeyTip string.

This simple type's contents are a restriction of the XML schema token datatype.
This simple type also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 character.
= This simple type's contents have a maximum length of 3 characters.

Referenced By

button@keytip (section 2.2.2); button@keytip (section 2.2.3); button@keytip (section 2.2.4); checkBox@keytip
(section 2.2.6); comboBox@keytip (section 2.2.7); control@keytip (section 2.2.12); control@keytip (section
2.2.13); control@keytip (section 2.2.11); dropDown@keytip (section 2.2.17); dynamicMenu@keytip (section
2.2.19); dynamicMenu@keytip (section 2.2.18); editBox@keytip (section 2.2.20); gallery@keytip (section 2.2.21);
gallery@keytip (section 2.2.22); group@keytip (section 2.2.23); labelControl@keytip (section 2.2.25);
menu@keytip (section 2.2.28); menu@keytip (section 2.2.26); menu@keytip (section 2.2.27); splitButton@keytip
(section 2.2.38); splitButton@keytip (section 2.2.36); splitButton@keytip (section 2.2.37); tab@keytip (section
2.2.39); toggleButton@keytip (section 2.2.43); toggleButton@keytip (section 2.2.42); toggleButton@keytip
(section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST Keytip">
<xsd:restriction base="xsd:token">
<xsd:minLength value="1"/>
<xsd:maxLength value="3"/>
<xsd:whiteSpace value="collapse"/>
</xsd:restriction>
</xsd:simpleType>

2.3.8 ST_LongString (Long String)

Specifies a string that can have an extended length.

This simple type's contents are a restriction of the XML schema string datatype.
This simple type also specifies the following restrictions:

*= This simple type's contents have a minimum length of 1 character.
»= This simple type's contents have a maximum length of 4096 characters.

295 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

button@description (section 2.2.2); button@description (section 2.2.3); button@description (section 2.2.4);
checkBox@description (section 2.2.6); control@description (section 2.2.12); control@description (section 2.2.13);
dynamicMenu@description (section 2.2.19); dynamicMenu@description (section 2.2.18); gallery@description
(section 2.2.21); gallery@description (section 2.2.22); menu@description (section 2.2.28); menu@description
(section 2.2.26); toggleButton@description (section 2.2.43); toggleButton@description (section 2.2.42);
toggleButton@description (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST LongString">
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="4096"/>
</xsd:restriction>
</xsd:simpleType>

2.3.9 ST_QID (Qualified Control ID)

Specifies a control identifier that is qualified by an XML namespace prefix. The prefix determines which
namespace to which the control belongs.

If the namespace is equal to the Custom UI namespace, the qualified identifier references the
application's built-in control set.

For example, consider the following XML fragment:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:mso="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon>
<tabs>
<tab 1dQ="mso:TabHome" visible="false" />
</tabs>
</ribbon>
</customUI>

In this example the mso namespace prefix is set to the Custom UI namespace, so names qualified
with mso refer to built-in controls. Thus, the use of the idQ attribute on the tab element is equivalent
to using the idMso attribute, as follows:

<tab idMso="TabHome" visible="false" />

If the prefix is set to any other value, qualified identifiers reference controls in a unique custom
namespace. If multiple Custom UI documents refer to controls in the same namespace, they can share
common containers.

For example, consider the following XML fragment:

296 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com. This XML
fragment refers to a tab in that namespace with an identifier of "OtherTab". If that tab cannot be
found, it is created. A new group belonging to this file is added to the tab.

This simple type's contents are a restriction of the XML schema QName datatype.
This simple type also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 character.
= This simple type's contents have a maximum length of 1024 characters.

Referenced By

box@idQ (section 2.2.1); box@insertAfterQ (section 2.2.1); box@insertBeforeQ (section 2.2.1); button@idQ
(section 2.2.2); button@idQ (section 2.2.3); button@idQ (section 2.2.4); button@insertAfterQ (section 2.2.2);
button@insertAfterQ (section 2.2.3); button@insertAfterQ (section 2.2.4); button@insertBeforeQ (section 2.2.2);
button@insertBeforeQ (section 2.2.3); button@insertBeforeQ (section 2.2.4); buttonGroup@idQ (section 2.2.5);
buttonGroup@insertAfterQ (section 2.2.5); buttonGroup@insertBeforeQ (section 2.2.5); checkBox@idQ (section
2.2.6); checkBox@insertAfterQ (section 2.2.6); checkBox@insertBeforeQ (section 2.2.6); comboBox@idQ (section
2.2.7); comboBox@insertAfterQ (section 2.2.7); comboBox@insertBeforeQ (section 2.2.7); control@idQ (section
2.2.12); control@idQ (section 2.2.13); control@idQ (section 2.2.11); control@insertAfterQ (section 2.2.12);
control@insertAfterQ (section 2.2.13); control@insertAfterQ (section 2.2.11); control@insertBeforeQ (section
2.2.12); control@insertBeforeQ (section 2.2.13); control@insertBeforeQ (section 2.2.11); dropDown@idQ (section
2.2.17); dropDown@insertAfterQ (section 2.2.17); dropDown@insertBeforeQ (section 2.2.17); dynamicMenu@idQ
(section 2.2.19); dynamicMenu@idQ (section 2.2.18); dynamicMenu@insertAfterQ (section 2.2.19);
dynamicMenu@insertAfterQ (section 2.2.18); dynamicMenu@insertBeforeQ (section 2.2.19);
dynamicMenu@insertBeforeQ (section 2.2.18); editBox@idQ (section 2.2.20); editBox@insertAfterQ (section
2.2.20); editBox@insertBeforeQ (section 2.2.20); gallery@idQ (section 2.2.21); gallery@idQ (section 2.2.22);
gallery@insertAfterQ (section 2.2.21); gallery@insertAfterQ (section 2.2.22); gallery@insertBeforeQ (section
2.2.21); gallery@insertBeforeQ (section 2.2.22); group@idQ (section 2.2.23); group@insertAfterQ (section
2.2.23); group@insertBeforeQ (section 2.2.23); labelControl@idQ (section 2.2.25); labelControl@insertAfterQ
(section 2.2.25); labelControl@insertBeforeQ (section 2.2.25); menu@idQ (section 2.2.28); menu@idQ (section
2.2.26); menu@idQ (section 2.2.27); menu@insertAfterQ (section 2.2.28); menu@insertAfterQ (section 2.2.26);
menu@insertAfterQ (section 2.2.27); menu@insertBeforeQ (section 2.2.28); menu@insertBeforeQ (section
2.2.26); menu@insertBeforeQ (section 2.2.27); menuSeparator@idQ (section 2.2.30);
menuSeparator@insertAfterQ (section 2.2.30); menuSeparator@insertBeforeQ (section 2.2.30); separator@idQ
(section 2.2.34); separator@insertAfterQ (section 2.2.34); separator@insertBeforeQ (section 2.2.34);
splitButton@idQ (section 2.2.38); splitButton@idQ (section 2.2.36); splitButton@idQ (section 2.2.37);
splitButton@insertAfterQ (section 2.2.38); splitButton@insertAfterQ (section 2.2.36); splitButton@insertAfterQ
(section 2.2.37); splitButton@insertBeforeQ (section 2.2.38); splitButton@insertBeforeQ (section 2.2.36);
splitButton@insertBeforeQ (section 2.2.37); tab@idQ (section 2.2.39); tab@insertAfterQ (section 2.2.39);
tab@insertBeforeQ (section 2.2.39); toggleButton@idQ (section 2.2.43); toggleButton@idQ (section 2.2.42);
toggleButton@idQ (section 2.2.44); toggleButton@insertAfterQ (section 2.2.43); toggleButton@insertAfterQ
(section 2.2.42); toggleButton@insertAfterQ (section 2.2.44); toggleButton@insertBeforeQ (section 2.2.43);
toggleButton@insertBeforeQ (section 2.2.42); toggleButton@insertBeforeQ (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

297/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<xsd:simpleType name="ST QID">
<xsd:restriction base="xsd:QName">
<xsd:minLength value="1"/>
<xsd:maxLength value="1024"/>
</xsd:restriction>
</xsd:simpleType>

2.3.10 ST_Size (Control Size)
Specifies the size of a control.
This simple type's contents are a restriction of the XML schema string datatype.

The following are possible enumeration values for this type:

Enumeration Value Description
large (Large Control Size) Specifies the large control size.
normal (Normal Control Size) Specifies the normal control size.

Referenced By

button@size (section 2.2.2); control@size (section 2.2.12); control@size (section 2.2.13); dynamicMenu@size
(section 2.2.19); gallery@size (section 2.2.21); menu@size (section 2.2.28); splitButton@size (section 2.2.38);
toggleButton@size (section 2.2.43)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST Size">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="normal"/>
<xsd:enumeration value="large"/>

</xsd:restriction>
</xsd:simpleType>

2.3.11 ST_String (Short String)

Specifies a string with a limited length.

This simple type's contents are a restriction of the XML schema string datatype.
This simple type also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 character.
*= This simple type's contents have a maximum length of 1024 characters.

Referenced By

button@Iabel (section 2.2.2); button@label (section 2.2.3); button@label (section 2.2.4); button@screentip
(section 2.2.2); button@screentip (section 2.2.3); button@screentip (section 2.2.4); button@supertip (section

2.2.2); button@supertip (section 2.2.3); button@supertip (section 2.2.4); button@tag (section 2.2.2); button@tag
(section 2.2.3); button@tag (section 2.2.4); checkBox@label (section 2.2.6); checkBox@screentip (section 2.2.6);
checkBox@supertip (section 2.2.6); checkBox@tag (section 2.2.6); comboBox@label (section 2.2.7);

comboBox@screentip (section 2.2.7); comboBox@sizeString (section 2.2.7); comboBox@supertip (section 2.2.7);

298 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Referenced By

comboBox@tag (section 2.2.7); control@label (section 2.2.12); control@label (section 2.2.13); control@Ilabel
(section 2.2.11); control@screentip (section 2.2.12); control@screentip (section 2.2.13); control@screentip
(section 2.2.11); control@supertip (section 2.2.12); control@supertip (section 2.2.13); control@supertip (section
2.2.11); control@tag (section 2.2.12); control@tag (section 2.2.11); dropDown@label (section 2.2.17);
dropDown@screentip (section 2.2.17); dropDown@sizeString (section 2.2.17); dropDown@supertip (section
2.2.17); dropDown@tag (section 2.2.17); dynamicMenu@Iabel (section 2.2.19); dynamicMenu@label (section
2.2.18); dynamicMenu@screentip (section 2.2.19); dynamicMenu@screentip (section 2.2.18);
dynamicMenu@supertip (section 2.2.19); dynamicMenu@supertip (section 2.2.18); dynamicMenu@tag (section
2.2.19); dynamicMenu@tag (section 2.2.18); editBox@label (section 2.2.20); editBox@screentip (section 2.2.20);
editBox@sizeString (section 2.2.20); editBox@supertip (section 2.2.20); editBox@tag (section 2.2.20);
gallery@label (section 2.2.21); gallery@label (section 2.2.22); gallery@screentip (section 2.2.21);
gallery@screentip (section 2.2.22); gallery@sizeString (section 2.2.21); gallery@sizeString (section 2.2.22);
gallery@supertip (section 2.2.21); gallery@supertip (section 2.2.22); gallery@tag (section 2.2.21); gallery@tag
(section 2.2.22); group@Iabel (section 2.2.23); group@screentip (section 2.2.23); group@supertip (section
2.2.23); group@tag (section 2.2.23); item@Iabel (section 2.2.24); item@screentip (section 2.2.24);
item@supertip (section 2.2.24); labelControl@Ilabel (section 2.2.25); labelControl@screentip (section 2.2.25);
labelControl@supertip (section 2.2.25); labelControl@tag (section 2.2.25); menu@label (section 2.2.28);
menu@label (section 2.2.26); menu@label (section 2.2.27); menu@screentip (section 2.2.28); menu@screentip
(section 2.2.26); menu@screentip (section 2.2.27); menu@supertip (section 2.2.28); menu@supertip (section
2.2.26); menu@supertip (section 2.2.27); menu@tag (section 2.2.28); menu@tag (section 2.2.26); menu@tag
(section 2.2.27); menu@title (section 2.2.29); menu@title (section 2.2.27); menuSeparator@title (section 2.2.30);
splitButton@label (section 2.2.38); splitButton@label (section 2.2.36); splitButton@Ilabel (section 2.2.37);
splitButton@screentip (section 2.2.38); splitButton@screentip (section 2.2.36); splitButton@screentip (section
2.2.37); splitButton@supertip (section 2.2.38); splitButton@supertip (section 2.2.36); splitButton@supertip
(section 2.2.37); splitButton@tag (section 2.2.38); splitButton@tag (section 2.2.36); splitButton@tag (section
2.2.37); tab@Ilabel (section 2.2.39); tab@tag (section 2.2.39); toggleButton@label (section 2.2.43);
toggleButton@label (section 2.2.42); toggleButton@label (section 2.2.44); toggleButton@screentip (section
2.2.43); toggleButton@screentip (section 2.2.42); toggleButton@screentip (section 2.2.44);
toggleButton@supertip (section 2.2.43); toggleButton@supertip (section 2.2.42); toggleButton@supertip (section
2.2.44); toggleButton@tag (section 2.2.43); toggleButton@tag (section 2.2.42); toggleButton@tag (section
2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST String">
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="1024"/>
</xsd:restriction>

</xsd:simpleType>

2.3.12 ST_StringLength (String Length)

Specifies the length of a string, in characters.

This simple type's contents are a restriction of the XML schema positiveInteger datatype.
This simple type also specifies the following restrictions:

» This simple type has a minimum value of greater than or equal to 1.
*= This simple type has a maximum value of less than or equal to 1024.

Referenced By

comboBox@maxLength (section 2.2.7); editBox@maxLength (section 2.2.20)

The following XML schema fragment defines the contents of this simple type:

299 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

<xsd:simpleType name="ST StringLength">
<xsd:restriction base="xsd:positiveInteger">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="1024"/>
</xsd:restriction>

</xsd:simpleType>

2.3.13 ST_UniquelD (Custom Control ID)

Specifies a custom control identifier.

This simple type's contents are a restriction of the XML schema identifier datatype.
This simple type also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 character.
= This simple type's contents have a maximum length of 1024 characters.

Referenced By

box@id (section 2.2.1); button@id (section 2.2.2); button@id (section 2.2.3); button@id (section 2.2.4);
buttonGroup@id (section 2.2.5); checkBox@id (section 2.2.6); comboBox@id (section 2.2.7); control@id (section
2.2.12); control@id (section 2.2.11); dropDown@id (section 2.2.17); dynamicMenu@id (section 2.2.19);
dynamicMenu@id (section 2.2.18); editBox@id (section 2.2.20); gallery@id (section 2.2.21); gallery@id (section
2.2.22); group@id (section 2.2.23); item@id (section 2.2.24); labelControl@id (section 2.2.25); menu@id (section
2.2.28); menu@id (section 2.2.26); menu@id (section 2.2.27); menuSeparator@id (section 2.2.30); separator@id
(section 2.2.34); splitButton@id (section 2.2.38); splitButton@id (section 2.2.36); splitButton@id (section 2.2.37);
tab@id (section 2.2.39); toggleButton@id (section 2.2.43); toggleButton@id (section 2.2.42); toggleButton@id
(section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST UniqueID">
<xsd:restriction base="xsd:identifier">
<xsd:minLength value="1"/>
<xsd:maxLength value="1024"/>
</xsd:restriction>

</xsd:simpleType>

2.3.14 ST_Uri (Image Relationship ID)

Specifies the relationship identifier of a part that is the target of a relationship from the containing
Custom UI document.

The target part is an image part type, as specified in [ECMA-376] Part 1 section 15.2.13.
This simple type's contents are a restriction of the XML schema string datatype.
This simple type also specifies the following restrictions:

= This simple type's contents have a minimum length of 1 characters.
= This simple type's contents have a maximum length of 1024 characters.

Referenced By

button@image (section 2.2.2); button@image (section 2.2.3); button@image (section 2.2.4); checkBox@image
(section 2.2.6); comboBox@image (section 2.2.7); control@image (section 2.2.12); control@image (section

300/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

http://go.microsoft.com/fwlink/?LinkId=200054

Referenced By

2.2.13); control@image (section 2.2.11); dropDown@image (section 2.2.17); dynamicMenu@image (section
2.2.19); dynamicMenu@image (section 2.2.18); editBox@image (section 2.2.20); gallery@image (section 2.2.21);
gallery@image (section 2.2.22); group@image (section 2.2.23); item@image (section 2.2.24);
labelControl@image (section 2.2.25); menu@image (section 2.2.28); menu@image (section 2.2.26); menu@image
(section 2.2.27); splitButton@image (section 2.2.38); splitButton@image (section 2.2.36); splitButton@image
(section 2.2.37); toggleButton@image (section 2.2.43); toggleButton@image (section 2.2.42);
toggleButton@image (section 2.2.44)

The following XML schema fragment defines the contents of this simple type:

<xsd:simpleType name="ST Uri">
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="1024"/>
</xsd:restriction>
</xsd:simpleType>

301/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

3 Appendix A: Custom UI Control ID Tables

3.1 idMso Tables

3.1.1 Word 2007

Control
idMso Type Label
Spelling button Spelling...
FileSave button Save
FilePrint button Print
ZoomOnePage button One Page
ZoomPageWidth button Page Width
Zoom100 button Zoom 100%
ColumnsDialog button More Columns...
Numbering toggleButton | Numbering
Bullets toggleButton Bullets
PageOrientationPortraitLandscape button Portrait/Landscape
OutdentClassic button Decrease Indent
IndentClassic button Increase Indent
DrawingInsert button Insert Drawing
Chartlnsert button Chart...
FileNew button New
Copy button Copy
Cut button Cut
Paste button Paste
FileOpen button Open
EnvelopesAndLabelsDialog button Envelopes...

Superscript

toggleButton

Superscript

Subscript

toggleButton

Subscript

UnderlineDouble

toggleButton

Double Underline

UnderlineWords button Word Underline
FontSizelncreaseWord button Grow Font
FontSizeDecreaseWord button Shrink Font
FileClose button Close

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

302 / 523

idMso

Control
Type

Label

TableAutoFormat

button

Table AutoFormat...

FormatPainter

toggleButton

Format Painter

FilePrintPreview

toggleButton

Print Preview

PasteApplyStyle button Apply Style
Bold toggleButton | Bold

Italic toggleButton Italic
Underline toggleButton | Underline
ParagraphMarks toggleButton | Show All
AlignLeft toggleButton | Align Left
AlignRight toggleButton | Align Right
AlignCenter toggleButton | Center
AlignJustify toggleButton | Justify
HeaderFooterPageNumberInsert menu Page Number
Undo gallery Undo

Redo gallery Redo
OutlinePromote button Promote
OutlineDemote button Demote
OutlineMoveUp button Move Up
OutlineMoveDown button Move Down
OutlineDemoteToBodyText button Demote to Body Text
OutlineExpand button Expand
OutlineCollapse button Collapse
TextBoxInsert button Text Box
FileFind button Find File...
FindDialog button Find...
TableExcelSpreadsheetInsert button Excel Spreadsheet
AutoFormat button AutoFormat...

BorderInside

toggleButton

Inside Borders

BorderOutside

toggleButton

Outside Borders

BorderNone

toggleButton

No Border

MailMergeGoToFirstRecord

button

First

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

303/ 523

Control
idMso Type Label
MailMergeGoToPreviousRecord button Previous
MailMergeGoToNextRecord button Next
MailMergeGotToLastRecord button Last
MailMergeMergeToDocument button Edit Individual Documents...
MailMergeMergeToPrinter button Print Documents...
MailMergeAutoCheckForErrors button Auto Check for Errors...
DataFormSource button Data Form
MailMergeResultsPreview toggleButton | Preview Results
ObjectsGroup button Group
ObjectsUngroup button Ungroup
ObjectBringToFront button Bring to Front
ObjectSendToBack button Send to Back
ObjectBringForward button Bring Forward
ObjectSendBackward button Send Backward
Magnifier checkBox Magnifier
PrintPreviewShrinkOnePage button Shrink One Page
ViewFullScreenView button Full Screen
Voicelnsert button Voice Comment
ObjectsSelect toggleButton | Select Objects
TableFind button Find
MacroRecord button Record Macro...
MacroRecorderPause button Pause Recording
MacroPlay button Macros
ShapeFreeform toggleButton | Freeform
ObjectEditPoints toggleButton | Edit Points
CalloutOptions button Callout Options
DataFormAddRecord button Add
DataFormDeleteRecord button Delete
FieldsUpdate button Update
Databaselnsert button Insert Database
GridSettings button Grid Settings...

304 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
WordPicture button Word Picture
FormControlEditBox button Edit Box
FormControlCheckBox button Check Box
FormControlComboBox button Combo Box
PropertySheet button Property Sheet
FieldShading toggleButton Show Field Shading
ViewDraftView toggleButton Draft

Lock toggleButton | Lock

AutoSum button Sum
MasterDocumentShow toggleButton | Show Document
MasterDocumentCreateSubdocument button Create
MasterDocumentUnlinkSubdocument button Unlink
MasterDocumentInsertSubdocument button Insert...
MasterDocumentSplitSubdocuments button Split
MasterDocumentMergeSubdocuments button Merge

MasterDocumentLockSubdocument

toggleButton

Lock Document

HeaderOrFooterShow button Show Header/Footer
HeaderFooterPreviousSection button Previous Section
HeaderFooterNextSection button Next Section
AlignDialog button Align
MailMergeDocument button Mail Merge Document
MergeOptions button Merge...
MailMergeHelper button Mail Merge...
PageSetupDialog button Page Setup...
BodyTextHide button Hide Body Text

HeaderFooterLinkToPrevious

toggleButton

Link to Previous

OutlineShowFirstLineOnly checkBox Show First Line Only
OutlineShowTextFormatting checkBox Show Text Formatting
FontDialog button Font...
StylesDialogClassic button Edit Cell Styles
Footnotelnsert button Insert Footnote

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

305/ 523

Control

idMso Type Label

MicrosoftExcel button Microsoft Excel
MicrosoftAccess button Microsoft Access
MicrosoftPowerPoint button Microsoft Office PowerPoint
MicrosoftPublisher button Microsoft Publisher
MicrosoftProject button Microsoft Project

ViewPrintLayoutView

toggleButton

Print Layout

FieldCodes

toggleButton

View Field Codes

DropCapOptionsDialog button Drop Cap Options...
Strikethrough toggleButton | Strikethrough
TextSmallCaps toggleButton | Small Caps
CellsDelete button Delete Cells...
TableRowsDelete button Delete Rows
TableColumnsDelete button Delete Columns
CellsInsertDialog button Insert Cells...
TableRowsInsertWord button Insert Rows
WindowsArrangeAll button Arrange All
MarginsAdjust button Adjust Margins
ViewGridlinesWord checkBox View Gridlines
SubdocumentOpen button Open Subdocument
WindowSplit button Split

WindowNew button New Window
ReviewAcceptOrRejectChangeDialog button Accept/Reject Changes
TextAllCaps toggleButton | All Caps
PictureDisassemble button Disassemble Picture
ChangeCaseDialogClassic button Change Case...
FontSizeDecreaselPoint button Shrink Font 1 Pt
FontSizelncreaselPoint button Grow Font 1 Pt
Repaginate button Repaginate
ReplaceDialog button Replace...
StartOfLine button Start of Line
EndOfLine button End of Line

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

306 / 523

Control
idMso Type Label
PagePrevious button Previous Page
PageNext button Next Page
StartOfDocument button Start of Document
EndOfDocument button End of Document
Grammar button Grammar...
FileCloseOrCloseAll button Close
TextToOrFromTable button Text to/from Table
TableRowsOrColumnsOrCellsInsert button Insert Table
TableRowsOrColumnsOrCellsDelete button Delete Rows/Columns/Cells
RedoOrRepeat button Redo
ProtectOrUnprotectDocument button Protect Document
FramelnsertOrFormat button Insert Frame
ObjectsRegroup button Regroup
AutoFormatChange button Tip Wizard 6
AddressBook button Address Book...
Reply button Reply
ReplyAll button Reply to All
Forward button Forward
MailMove button Move Mail
MailDelete button Delete Mail
MessagePrevious button Previous Item
MessageNext button Next Item
MailSelectNames button Select Names...
AsianLayoutCharacterScaling menu Character Scaling
ShapeScribble toggleButton | Scribble
PrintSetupDialog button Print Setup...
RowHeight button Row Height...
ColumnWidth button Column Width...
OleObjectctinsert button Object...
Cancel button Cancel
FindNext button Find Next

307 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
PasteDuplicate button Duplicate
ClipArtInsert toggleButton | Clip Art...

ParagraphSpacingIncrease button Increase Paragraph Spacing
ParagraphSpacingDecrease button Decrease Paragraph Spacing
OrganizationChartInsert button Organization Chart

CombineCharacters

toggleButton

Yoko-Gumi

DoubleStrikethrough toggleButton Double Strikethrough
PictureCrop toggleButton | Crop
ViewOutlineView toggleButton Outline

FileCloseAll button Close All

FileSaveAs button Save As

SaveAll button Save All
AdvancedFileProperties button View Document Properties...
DocumentTemplate button Document Template
CopyAsPicture button Copy as Picture...
PasteSpecialDialog button Paste Special...
SelectAll button Select All

GoTo button Go To...
BookmarkInsert button Bookmark...
FileLinksToFiles button Edit Links to Files
ViewOnlineLayoutViewClassic button Online Layout
FootnotesEndnotesShow button Show Notes
BreakInsertDialog button Break
DateAndTimelnsert button Date & Time...
NumberlInsert button Number...
FieldInsert button Field...

FormField button Form Field...
CaptionInsert button Insert Caption...
CrossReferencelnsert button Cross-reference...
IndexAndTables button Index and Tables
TextFromFilelnsert button Text from File...

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

308 /523

Control

idMso Type Label

ParagraphDialog button Paragraph...

TabsDialog button Tabs...
BordersShadingDialog button Borders and Shading...
TextDirectionOptionsDialog button Text Direction Options...
BulletsAndNumberingBulletsDialog button Bullets and Numbering...
StyleGalleryDialog button Style Gallery...
FrameDialog button Frame...

SetLanguage button Set Language...
WordCount button Word Count...
AutoCorrect button AutoCorrect Options...
EnvelopesAndLabels button Envelope & Label Wizard
LabelsDialog button Labels...

MergeCells button Merge Cells

SplitCells button Split Cells...
TableRowSelect button Select Row
TableColumnSelect button Select Column
TableSelect button Select Table
TableCellHeightWidth button Cell Height and Width...

TableRepeatHeaderRows

toggleButton

Repeat Header Rows

ConvertTextToTable button Convert Text to Table...

TableFormulaDialog button Formula...

TableSplitTable button Split Table

ShowClipboard button Office Clipboard...

NumberingSkip button Skip Numbering

KeyboardCustomization button Customize Keyboard...

ShowAllHeadings button All

ImeDictionaryUpdate button Update IME Dictionary...

OutlookTaskCreate button Create Microsoft Office Outlook
Task

WindowMinimize button Minimize

WindowRestore button Restore

WindowClose button Close

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

309 / 523

Control

idMso Type Label
WindowMove button Move

WindowSize button Size

WindowNext button Next Window
ClearFormats button Clear Formats

OK button OK

ClosePane button Close
PrintPreviewClose button Close Print Preview
HeaderFooterClose button Close Header and Footer
ZoombDialog button Zoom...

About button About
SortDialogClassic button Sort...
ConvertTableToText button Convert to Text...
ExchangeFolder button Exchange Folder...
ChartEditDataSource button Select Data...

WindowMoreWindowsDialog

toggleButton

More Windows...

ObjectEditDialog button Object...
ObjectFormatDialog button Object...
AutoTextCreate button Create AutoText...
ContentsAndIndex button Contents and Index
Help button Help
FontColorMoreColorsDialog button More Colors...
WebGoBack button Back
WebGoForward button Forward
AddToFavorites button Add to Favorites...
BrowsePrevious button Previous
BrowseNext button Next
SmartArtinsert button SmartArt...

ShapeRerouteConnectors

toggleButton

Reroute Connectors

ObjectNudgeUp button Up
ObjectNudgeDown button Down
ObjectNudgeleft button Left

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

310/ 523

Control

idMso Type Label
ObjectNudgeRight button Right
ShapeCurve toggleButton | Curve

ShapeStraightConnector

toggleButton

Straight Connector

ShapeElbowConnector

toggleButton

Elbow Connector

ObjectFillMoreColorsDialog button More Fill Colors...
ObjectBorderOutlineColorMoreColorsDialog button More Outline Colors...
OutlineLinePatternFill button Pattern...
LineStylesDialog button More Lines...
ArrowsMore button More Arrows...

WordArtVerticalText

toggleButton

Vertical Text

WordArtEvenTextHeightClassic

toggleButton

Even Height

ContrastMore button More Contrast
ContrastLess button Less Contrast
BrightnessMore button More Brightness
BrightnessLess button Less Brightness
ShadowNudgeUpClassic button Nudge Shadow Up
ShadowNudgeDownClassic button Nudge Shadow Down
ShadowNudgelLeftClassic button Nudge Shadow Left
ShadowNudgeRightClassic button Nudge Shadow Right
ObjectShadowColorMoreColorsDialog button More Shadow Colors...
_ 3DEffectColorPickerMoreClassic button More 3-D Colors...
TextAlignLeft toggleButton Left Align
TextAlignCenter toggleButton | Center
ShapeRectangle toggleButton | Rectangle

ShapeRoundedRectangle

toggleButton

Rounded Rectangle

ShapelsoscelesTriangle

toggleButton

Isosceles Triangle

ShapeOval toggleButton | Oval
ShapelLeftBrace toggleButton Left Brace
ShapeRightBrace toggleButton Right Brace
ShapeArc toggleButton | Arc
ShapeRightArrow toggleButton Right Arrow

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

311/ 523

idMso

Control
Type

Label

ShapeDownArrow

toggleButton

Down Arrow

ShapeRoundedRectangularCallout

toggleButton

Rounded Rectangular Callout

ShapeStar

toggleButton

5-Point Star

TextAlignRight

toggleButton

Right Align

TextAlignLetterJustify

toggleButton

Letter Justify

TextAlignWordJustify

toggleButton

Word Justify

TextAlignStretchJustify

toggleButton

Stretch Justify

WordArtSpacingVeryTight toggleButton | Very Tight
WordArtSpacingTight toggleButton | Tight
WordArtSpacingNormal toggleButton | Normal
WordArtSpacinglLoose toggleButton | Loose
WordArtSpacingVerylLoose toggleButton | Very Loose

WordArtSpacingKernCharacterPairs

toggleButton

Kern Character Pairs

PictureReset button Reset Picture
TextWrappingSquare toggleButton | Square
TextWrappingTight toggleButton | Tight
TextWrappingNoneClassic toggleButton | None

TextWrappingEditWrapPoints

toggleButton

Edit Wrap Points

_ 3DEffectsOnOffClassic toggleButton | 3-D On/Off
_3DTiltDownClassic button Tilt Down
_3DTiltUpClassic button Tilt Up
_3DTiltLeftClassic button Tilt Left
_3DTiltRightClassic button Tilt Right

_ 3DExtrusionPerspectiveClassic

toggleButton

Perspective

_3DExtrusionParallelClassic toggleButton | Parallel
_3DLightingFlatClassic toggleButton | Bright
_3DLightingNormalClassic toggleButton | Normal
_3DLightingDimClassic toggleButton | Dim
ObjectEditText button Edit Text
PictureFormatDialog button Picture...
ViewVisualBasicCode button View Code

312 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
DrawingNewClassic button New Drawing
WebOpenInNewWindow button Open in New Window
HyperlinkCopy button Copy Hyperlink
HyperlinkInsert button Hyperlink...
HyperlinkEdit button Edit Hyperlink...
HyperlinkSelect button Select Hyperlink
ReviewNewComment button New Comment
ReviewPreviousComment button Previous
ReviewNextComment button Next
ReviewDeleteComment button Delete
ReviewShowAllComments button Show All Comments
DesignMode toggleButton | Design Mode
WordArtInsertDialogClassic button WordArt Gallery
FormFieldProperties button Properties
FullScreenViewClassic button Full Screen
AutoScroll button Auto Scroll

MasterDocumentExpandOrCollapseSubdocuments

toggleButton

Expand/Collapse Subdocuments

VisualBasic button Visual Basic
BordersAll toggleButton | All Borders
AutoSummarize button Auto Summarize
ViewDocumentMap checkBox Document Map
ReviewAcceptChange button Accept Change
ReviewRejectChange button Reject Change
TableDrawBorderPenStyle dropDown Pen Style
AutoSummaryExitView button Close

Font comboBox Font:

Whols button Who Is...
FontSize comboBox Font Size:
StyleGalleryClassic comboBox Style:
ZoomClassic button Zoom:
DocumentLocation comboBox Address:

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

313/ 523

idMso

Control
Type

Label

MessageHeaderToggle

button

Message Header

BorderInsideHorizontal

toggleButton

Inside Horizontal Border

BorderInsideVertical

toggleButton

Inside Vertical Border

BorderDiagonalDown

toggleButton

Diagonal Down Border

BorderDiagonalUp

toggleButton

Diagonal Up Border

TextDirectionLeftToRight

toggleButton

Left-to-Right

TextDirectionRightToLeft

toggleButton

Right-to-Left

ActiveXCheckBox button Check Box
ActiveXTextBox button Text Box
ActiveXButton button Command Button
ActiveXRadioButton button Option Button
ActiveXListBox button List Box
ActiveXComboBox button Combo Box
ActiveXToggleButton button Toggle Button
ActiveXSpinButton button Spin Button
ActiveXScrollBar button Scroll Bar
ActiveXLabel button Label

ShadowSemitransparentClassic

toggleButton

Semitransparent Shadow

OleConvert

button

Convert...

ReviewTrackChanges

toggleButton

Track Changes

ReviewHighlightChanges button Highlight Changes...
ReviewEditComment button Edit Comment
TableDrawTable toggleButton | Draw Table
TableEraser toggleButton | Eraser
TableCellAlignTop toggleButton | Align Top

TableCellAlignCenterVertically

toggleButton

Center Vertically

TableCellAlignBottom

toggleButton

Align Bottom

TableColumnsDistribute button Distribute Columns
TableRowsDistribute button Distribute Rows
ActiveXFrame button Frame
ActiveXImage button Image

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

314 / 523

Control

idMso Type Label
WordArtEditTextClassic button Edit Text...
TableInsertCellsDialog button Insert Cells...
Organizer button Organizer
ShadowOnOrOffClassic toggleButton | Shadow On/Off
ObjectSetShapeDefaults button Set AutoShape Defaults
ThesaurusClassic button Thesaurus...
MacroRecorderStop button Stop Recording
FileSendAsAttachment button E-mail

AutoSummaryViewByHighlight

toggleButton

Highlight/Show Only Summary

MasterDocument button Master Document
SystemInformation button Microsoft System Info
Overtype button Overtype
ExtendSelection button Extend Selection
Spike button Spike
Spikelnsert button Insert Spike
ChangeCase button Change Case
MoveText button Move Text
CopyText button Copy Text
AutoTextInsert button Insert AutoText
WindowOtherPane button Other Pane
WindowPrevious button Previous Window
FieldNext button Next Field
FieldPrevious button Previous Field
TableColumnSelectWord button Column Select
FieldCharactersInsert button Insert Field Chars
ListNumFieldInsert button Insert ListNum Field
FieldsUnlink button Unlink Fields
FieldsLock button Lock Fields
FieldsUnlock button Unlock Fields
UpdateSource button Update Source
HangingIndent button Hanging Indent

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

315/ 523

Control

idMso Type Label

UnHang button Un Hang

HideText button Hidden

FontSpacingNormal button Normal Font Spacing
FontPositionNormal button Normal Font Position
ParagraphWidowOrphanControl button Para Widow Orphan Control
ParagraphKeepLinesTogether button Para Keep Lines Together

ParagraphKeepWithNext toggleButton Para Keep With Next
BreakParagraphPageBreakBefore button Para Page Break Before
ParagraphSpaceBeforeNone button No Space Before
ParagraphSpaceBefore button Space Before
ParagraphSpaceAddOrRemoveBefore button Add/Remove Space Before
ParagraphReset button Reset Para

PreviousEdit button Previous Edit

NextEdit button Next Edit

SaveTemplate button Save Template
PagePreviousWord button Previous Page
PageNextWord button Next Page

ObjectNext button Next Object

ObjectPrevious button Previous Object
FileConfirmConversions button File Confirm Conversions
MailMergeRecepientsUseExistingList button Use Existing List...
MailMergeOpenHeaderSource button Mail Merge Open Header Source
MailMergeQueryOptions button Query Options
MailMergeRulelfThenElse button Mail Merge Insert If
MailMergeRuleMergeRecordNumber button Mail Merge Insert Merge Rec
MailMergeRuleMergeSequenceNumber button Mail Merge Insert Merge Seq
MailMergeRuleNextRecord button Mail Merge Insert Next
MailMergeRuleNextRecordIf button Mail Merge Insert Next If
MailMergeRuleSkipRecordIf button Mail Merge Insert Skip If
MailMergeRuleFillIn button Mail Merge Insert Fill In
MailMergeRuleAsk button Mail Merge Insert Ask

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

316 / 523

Control

idMso Type Label
MailMergeRuleSetBookmark button Mail Merge Insert Set
MailMergeReset button Mail Merge Reset
MailMergeCreateDataSource button Mail Merge Create Data Source
MailMergeCreateHeaderSource button Mail Merge Create Header Source
GoToPreviousSection button Go To Previous Section
GoToNextSection button Go To Next Section
GoToPreviousPage button Go To Previous Page
GoToNextPage button Go To Next Page
FootnotePreviousWord button Previous Footnote
FootnoteNextWord button Next Footnote
EndnotePreviousWord button Previous Endnote
EndnoteNextWord button Next Endnote
ObjectActivate button Activate Object
TableAutoFormatUpdate button Table Update AutoFormat
DraftViewClassic button View Draft
NormalViewHeaderArea button Normal View Header Area
SectionBreaklInsert button Insert Section Break
EndnotelnsertWord button Insert Endnote
FootnotesConvertAll button Edit Convert All Footnotes
EndnotesConvertAll button Edit Convert All Endnotes
SwapAllNotes button Edit Swap All Notes
InsertEnSpace button Insert En Space
InsertEmSpace button Insert Em Space
IndexMarkEntry button Mark Entry...
AutoMarkIndexEntries button Auto Mark Index Entries
CitationMark button Mark Citation...
TableOfAuthoritiesEditCategory button Edit TOA Category
IndexInsert button Insert Index...
TableOfContentsDialog button Insert Table of Contents...
TableOfContentsMarkEntry button Mark Entry
TableOfFiguresInsert button Insert Table of Figures...

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

317/ 523

Control

idMso Type Label
TableOfAuthoritiesInsert button Insert Table of Authorities...
DrawingUnselect button Draw Unselect
DrawingSelectNext button Draw Select Next
DrawingSelectPrevious button Draw Select Previous
TextBoxLinkCreate button Create Link
TextBoxLinkBreak button Break Link
TextBoxNextLinked button Next Text Box
TextBoxPreviousLinked button Previous Text Box
FormatSectionLayout button Format Section Layout
StylesRedefineStyle button Redefine Style
Heading1Apply button Apply Heading 1
Heading2Apply button Apply Heading 2
Heading3Apply button Apply Heading 3
ListBulletApply button Apply List Bullet
TextBoxConvertToFrame button Convert Text Box To Frame
ListPromote button Promote List
ListDemote button Demote List
NextMisspeling button Next Misspelling
HyphenationManual button Manual
BulletsAndNumberingClassic button Tools Bullets Numbers
CompareAndCombine button Compare & Combine
Calculate button Tools Calculate
KeyboardCustomizationWord button Tools Customize Keyboard
Shortcut
ListCommands button List Commands
PrintOptionsMenuWord button Options
SpellingRecheckDocument button Tools Spelling Recheck Document
ReviewChangeUserName button Change User Name...
AutoFormatOptions button Tools Options AutoFormat
AutoFormatAsYouType button Tools Options AutoFormat As You
Type
MailMergeConvertChevrons button Mail Merge Convert Chevrons

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

318/ 523

Control
idMso Type Label
MailMergeAskToConvertChevrons button Mail Merge Ask To Convert

Chevrons

ControlRun button Control Run
ShrinkSelection button Shrink Selection
StyleNormal button Normal Style
TableCellNext button Next Cell
TableCellPrevious button Previous Cell
StartOfRow button Start Of Row
EndOfRow button End Of Row
StartOfColumn button Start Of Column
EndOfColumn button End Of Column
WindowMinimizeAll button Minimize All
WindowMaximizeAll button Maximize All
WindowRestoreAll button Restore All
FieldClick button Do Field Click
SelectCurrentFont button Select Cur Font
SelectCurrentAlignment button Select Cur Alighment
SelectCurrentSpacing button Select Cur Spacing
SelectCurrentIndent button Select Cur Indent
SelectCurrentTabs button Select Cur Tabs
SelectCurrentColor button Select Cur Color
FramesRemove button Remove Frames
MenuMode button Menu Mode
PageNumberFormat button Format Page Numbers...
Zoom200 button View Zoom200
Zoom?75 button View Zoom75
AddressFontsFormat button Format Addr Fonts
ReturnAddressFormatFontDialog button Format Ret Addr Fonts
FileLocations button Tools Options File Locations
CreateDirectoryClassic button Tools Create Directory
TableOfContentsUpdateClassic button Update Table of Contents...
FootnoteSeparatorWord button View Footnote Separator

319/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control
idMso Type Label
FootnoteContinuationSeparator button View Footnote Cont Separator
FootnoteContinuationNotice button View Footnote Cont Notice
EndnoteSeparator button View Endnote Separator
EndnoteContinuationSeparator button View Endnote Cont Separator
EndnoteContinuationNotice button View Endnote Cont Notice
AutoCaptionInsert button Insert Auto Caption
CaptionInsertWord button Insert Add Caption
InsertCaptionNumbering button Insert Caption Numbering
AutoCorrectReplaceText button Tools AutoCorrect Replace Text
AutoCorrectlnitialCaps button Tools AutoCorrect Initial Caps
AutoCorrectSentenceCaps button Tools AutoCorrect Sentence Caps
AutoCorrectDays button Tools AutoCorrect Days
AutoCorrectSmartQuotes button Tools AutoCorrect Smart Quotes
AutoCorrectCapsLockOff button Tools AutoCorrect Caps Lock Off
AutoCorrectExceptions button Tools AutoCorrect Exceptions
WindowsSizeAll button Size All
WindowMoveAll button Move All
ConnectToNetworkDrive button Connect
GoToAnnotationScope button Goto Annotation Scope
FontSubstitution button Font Substitution
ScreenRefresh button Screen Refresh
CharacterLeft button Char Left
CharacterRight button Char Right
WordLeft button Word Left
WordRight button Word Right
ExtendSelectionLeft button Sent Left
ExtendSelectionRight button Sent Right
ParagraphUp button Para Up
ParagraphDown button Para Down
LineUp button Line Up
LineDown button Line Down

320/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
CharacterLeftExtend button Char Left Extend
CharacterRightExtend button Char Right Extend
WordLeftExtend button Word Left Extend
WordRightExtend button Word Right Extend
ExtendSelectionLeftSentence button Sent Left Extend
ExtendSelectionRightSentence button Sent Right Extend
ParagraphUpExtend button Para Up Extend
ParagraphDownExtend button Para Down Extend
LineUpExtend button Line Up Extend
LineDownExtend button Line Down Extend
PageUpExtend button Page Up Extend
PageDownExtend button Page Down Extend
StartOfLineExtend button Start Of Line Extend
EndOfLineExtend button End Of Line Extend
StartOfWindowExtend button Start Of Window Extend
EndOfWindowExtend button End Of Window Extend
StartOfDocumentExtend button Start Of Doc Extend
EndOfDocumentExtend button End Of Doc Extend
SymbolFont button Symbol Font
GrammarSettingsDialog button Tools Gram Settings
FileNewDefault button New

FilePrintQuick button Quick Print
SpellingAndGrammar button Spelling & Grammar
ReviewPreviousChangeClassic button Previous Change
ReviewNextChangeClassic button Next Change
MessageProperties button Properties
PictureInsertFromFile button Picture...
TableDrawBorderPenWeight dropDown Pen Weight

TableShowGridlines

toggleButton

View Gridlines

ShapeStraightConnectorArrow

toggleButton

Straight Arrow Connector

ShapeElbowConnectorArrow

toggleButton

Elbow Arrow Connector

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

321/ 523

idMso

Control
Type

Label

HyperlinkOpen

button

Open Hyperlink

TextWrappingTopAndBottom

toggleButton

Top and Bottom

TextWrappingThrough

toggleButton

Through

MacroRecordOrStop button Record Macro / Stop Recorder
AutoManager button AutoManager...
EndnoteOrFootnoteConvert button Convert Endnote/Footnote
FootnoteSeparatorReset button Reset

PasteAsHyperlink button Paste as Hyperlink
ProofingOptions button Options...
ParagraphDistributed toggleButton Distributed

HyphenationOptions button Hyphenation Options...
TableRowsOrColumnsDistribute button Distribute Rows/Columns
MergeOrSplitCells button Merge/Split Cells
ReviewJapaneseConsistencyChecker button Japanese Consistency Checker...
AutoSummaryResummarize button Resummarize
AutoSummaryUpdateProperties button Update Properties

DeleteWord button Delete Word

DeleteWordBack button Delete Back Word
CharacterFormattingReset button Reset Character Formatting
HeadingNumbers button Heading Numbers

PictureSetTransparentColor

toggleButton

Set Transparent Color

PageColorMoreColorsDialog button More Colors...
PageColorFillEffects button Fill Effects...
BorderTopWord toggleButton | Top Border
BorderBottomWord toggleButton Bottom Border
BorderLeftWord toggleButton | Left Border
BorderRightWord toggleButton | Right Border
TextDirection button Text Direction
FieldsManage button Manage
FileSaveAsHtml button Save as HTML...
SortAscendingWord button Sort Ascending

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

322 /523

Control

idMso Type Label
SortDescendingWord button Sort Descending
FramelnsertHorizontal button Horizontal Frame
FieldCodesToggle button Toggle Field Codes
GoToFootnote button Go to Footnote
GoToEndnote button Go to Endnote
SpellingHideErrors toggleButton Hide Spelling Errors
GrammarHideErrors toggleButton Hide Grammar Errors
Dictionary button Dictionary
SummaryInformation button Summary Information...
FootnoteEndnoteOptions button Footnote/Endnote Options
UnderlineDotted toggleButton | Dotted Underline
NumberingRemove button Remove Numbering
PictureEditClassic button Picture
GoToStartOfWindow button Start of Window
GoToEndOfWindow button End of Window
AutoCorrectHECorrect button HECorrect
FileSendToPowerPoint button Send to Microsoft Office

PowerPoint
FormatObjectDialogClassic button AutoShape...
AutoFormatNow button AutoFormat...
DataFormWord button Data Form
BulletListDefault button Tools Bullet List Default
NumberlListDefault button Tools Number List Default
OutlineNumberDefault button Format Outline Number Default
FormatNumberDefault button Format Number Default
TableOfContentsRebuild button Rebuild Table of Contents
FootnoteEndnoteDialog button Footnote and Endnote Dialog...
TablelnsertDialogWord button Insert Table...
FormFieldClear button Clear Form Field
ObjectBringInFrontOfText button Bring in Front of Text
ObjectSendBehindText button Send Behind Text
PageBreaklInsertWord button Page Break

323 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
BordersShadingDialogWord button Borders and Shading...
TextBoxWordClassic button Text Box
IndentIncreaseWord button Increase Indent
IndentDecreaseWord button Decrease Indent
SelectObjects button Select Objects

Callout button Callout
ReplaceWithAutoText button Replace with AutoText
LinkToPreviousClassic button Link to Previous
HangulHanjaConversion button Hangul Hanja Conversion...
HeaderSourceEdit button Edit Header Source
IndentIncrease button Increase Indent
IndentDecrease button Decrease Indent
AsianLayoutFitText button Fit Text...
AsianLayoutPhoneticGuide button Phonetic Guide...
AsianLayoutCombineCharacters button Combine Characters...
JapanesePostcardDialog button Japanese Postcard...

CharacterBorder

toggleButton

Character Border

CharacterShading

toggleButton

Character Shading

ViewWebLayoutView toggleButton | Web Layout
PasteAlternative button Paste Table
PasteAsNestedTable button Paste as Nested Table
HyperlinkRemove button Remove Hyperlink
MacroSecurity button Macro Security
HorizontalLinelnsert button Horizontal Line
WebPagePreview button Web Page Preview
RightToLeftRun button Rtl Run
LeftToRightRun button Ltr Run

BoldRun button Bold Run
ItalicRun button Italic Run
TableSelectCell button Select Cell
TableDelete button Delete Table

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

324 / 523

Control
idMso Type Label
TableRowsInsertAboveWord button Insert Above
TableRowsInsertBelowWord button Insert Below
TableColumnsInsertLeft button Insert Left
TableColumnsInsertRight button Insert Right
TablePropertiesDialog button Properties...
TableOptionsDialog button Cell Margins...
TableCellOptions button Cell Options...
SendCopySendNow button Send Now
SendCopySelectNames button Select Names
SendCopyCheckNames button Check Names
SendCopyAddressBookTo button To: Focus
SendCopyAddressBookCc button CC: Focus
SendCopyAddressBookBcc button Bcc: Focus
SendCopyFocusSubject button Subject Focus
SendCopyOptions button Mail Options
SendCopyFlag button Mail Flag
SendCopySaveAttachment button Save Mail Attachments
FileCloseOrExit button Close or Exit
ImeReconvert button Reconvert
SendCopySendToMailRecipient toggleButton | Mail Recipient
TableOfContentsInFrame button Table of Contents in Frame
SetLanguageMenu comboBox Language
TableWrapping button Table Wrapping
EmailOptions button E-mail Options...
ComAddInsDialog button COM Add-Ins...
SignaturesStationeryDialog button Signatures...
FramePropertiesDialog button Frame Properties...
OfficeOnTheWeb button Microsoft Office Online
PictureBulletsInsert button Picture Bullets...
FileNewWebPage button New Web Page
FileNewBlankDocument button New Blank Document

325 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
FileNewDialogClassic button New Document or Template...
FileSaveAsWebPage button Save as Web Page...
HorizontalLineInsertClassic button Horizontal Line...
WebOptionsDialog button Web Options...
FramesNewFramesPageWizard button New Frames Page
FrameCreateAbove button New Frame Above
FrameCreateBelow button New Frame Below
FrameCreateLeft button New Frame Left
FrameCreateRight button New Frame Right
FrameDelete button Delete Frame

EastAsianEditingMarks

toggleButton

Show/Hide Editing Marks

TableAutoFitContents button AutoFit Contents
TableAutoFitWindow button AutoFit Window
TableAutoFitFixedColumnWidth button Fixed Column Width

TableCellAlignTopLeft

toggleButton

Align Top Left

TableCellAlignTopCenter

toggleButton

Align Top Center

TableCellAlignTopRight

toggleButton

Align Top Right

TableCellAlignMiddlelLeft

toggleButton

Align Center Left

TableCellAlignMiddleCenter

toggleButton

Align Center

TableCellAlignMiddleRight

toggleButton

Align Center Right

TableCellAlignBottomLeft

toggleButton

Align Bottom Left

TableCellAlignBottomCenter

toggleButton

Align Bottom Center

TableCellAlignBottomRight

toggleButton

Align Bottom Right

WebControlCheckBox button Checkbox
WebControlOptionButton button Option Button
WebControlDropDownBox button Drop-Down Box
WebControlListBox button List Box
WebControlTextBox button Textbox
WebControlTextArea button Text Area
WebControlSubmit button Submit
WebControlSubmitWithImage button Submit with Image

326 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label

WebControlReset button Reset
WebControlHidden button Hidden
WebControlPassword button Password
UnderlineColorMoreColorsDialog button More Colors...
ChineseTranslationDialog button Translate with Options...
TableInsertMultidiagonalCell button Insert Multidiagonal Cell...
AsianLayoutHorizontalInVertical button Horizontal in Vertical...
AsianLayoutTwolLinesInOne button Two Lines in One...
AsianLayoutCharactersEnclose button Enclose Characters...
EnvelopeChineseDialog button Chinese Envelope...
ObjectsMultiSelect button Select Multiple Objects
TranslateToTraditionalChinese button Traditional
TextWrappingBehindText toggleButton Behind Text

TextWrappingInFrontOfText

toggleButton

In Front of Text

WatermarkCustomDialog button Custom Watermark...
FrameSaveCurrentAs button Save Current Frame As...
TranslateToSimplifiedChinese button Simplified

WebDesignMode toggleButton | Web Design Mode
ViewMasterDocumentViewClassic button Master Document Tools
WhiteSpaceBetweenPagesShowHide button White Space Between Pages
EditField button Edit Field...
WordCountRecount button Recount
StylesModifyStyle button Modify Style
StyleByExample button Style by Example
CssLinksEdit button Edit CSS Links
StylesPane button Styles...

DeleteStyle button Delete Style
StylesRenameStyle button Rename Style
SelectNumber button Select Number
NumberingRestart button Restart Numbering
DrawingCanvaslnsert button New Drawing Canvas

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

327 /523

Control

idMso Type Label
DiagramRadiallnsertClassic button Radial Diagram
DiagramCyclelnsertClassic button Cycle Diagram
DiagramPyramidInsertClassic button Pyramid Diagram
DiagramTargetInsertClassic button Target Diagram
DiagramVennDiagramInsertClassic button Venn Diagram
DiagramChangeToRadialClassic button Radial
DiagramChangeToCycleClassic button Cycle
DiagramChangeToTargetClassic button Target
DiagramChangeToVennDiagramClassic button Venn
CopyPasteSettings button Copy & paste settings...
PasteByAppendingTable button Paste by Appending Table
OrganizationChartInsertAssistant button Assistant
OrganizationChartInsertCoworker button Coworker
OrganizationChartInsertSubordinate button Subordinate
OrganizationChartDeleteNode button Delete
DrawingCanvasFit button Fit
DrawingCanvasResize button Resize

LabelOptions button Label Options...
SendCopySetup button Envelope Setup...
MailMergeMergeToEMail button Send E-mail Messages...
MailMergeMergeToFax button Merge to Fax
MailMergeCreateList button Type New List...
MailMergeEditList button Edit Mail Merge List
DrawingCanvasExpand button Expand

ActivateProduct button Activate Product...

TextWrappingInLineWithText

toggleButton

In Line with Text

ConsistencyCheck button Consistency Check...
SelectTextWithSimilarFormatting button Select Text with Similar
Formatting
ReviewSendForReview button Send for Review...
WebComponent button Web Component...
DiagramChangeToPyramidClassic button Pyramid

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

328 /523

Control

idMso Type Label
DiagramShapeMoveBackwardClassic button Move Shape Backward
DiagramShapeMoveForwardClassic button Move Shape Forward
CharacterCodeToggle button Toggle Character Code
SmartTagOptions button Tools Options Smart Tag
SendCopyFocusIntroduction button Introduction Focus
StylesStyleVisibility button Style Visibility
DiagramStylesClassic button Diagram Styles...

MailMergeHighlightMergeFields

toggleButton

Highlight Merge Fields

MailMergeWizard

toggleButton

Step by Step Mail Merge Wizard...

OrganizationChartAutoLayout toggleButton | AutolLayout
OrganizationChartSelectLevel button Level
OrganizationChartSelectBranch button Branch
OrganizationChartSelectAllAssistants button All Assistants
OrganizationChartSelectAllConnectors button All Connectors
MailMergelapaneseGreetingInsert button Greeting...
MailMergeJapaneseGreetingJapaneseOpeningSentencelnsert | button Opening...
MailMergelapaneseGreetingClosingSentencelnsert button Closing...
RevealFormatting button Reveal Formatting...
DiagramReverseClassic button Reverse
DiagramAutolLayoutClassic toggleButton | Autolayout

TextBoxAutosize button Autosize textbox
TranslationPane button Translate...
GoToTableOfContents button Go to TOC
TableOfContentsUpdate button Update Table...
OutlineLevelGallery dropDown Outline Level
OutlineShowLevel dropDown Show Level:
NumberingContinue button Continue Numbering
FileCheckOut button Check Out
FileCheckIn button Check In
OrganizationChartLayoutStandard toggleButton | Standard

OrganizationChartLayoutBothHanging

toggleButton

Both Hanging

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

329 /523

Control
idMso Type Label
OrganizationChartLayoutLeftHanging toggleButton Left Hanging
OrganizationChartLayoutRightHanging toggleButton | Right Hanging
ReviewShowReviewersMenu menu Reviewers
ReviewReplyWithChanges button Reply with Changes...
ReviewEndReview button End Review...
NormalizeText button Normalize text
StylesStyleSeparator button Style Separator
SpeaklLearnFromDocument button Learn from Document...
PictureEditWord button Edit Picture
OutlinePromoteToHeading button Promote to Heading 1
MicrosoftOutlook button Microsoft Outlook
ReviewShowComments toggleButton | Comments
ReviewShowlInsertionsAndDeletions toggleButton | Insertions and Deletions
ReviewShowFormatting toggleButton | Formatting
ReviewPreviousChange button Previous
ReviewNextChange button Next
ReviewReviewingPane toggleButton Reviewing Pane
ReviewAcceptAllChangesShown button Accept All Changes Shown
ReviewAcceptAllChangesInDocument button Accept All Changes in Document
ReviewRejectAllChangesShown button Reject All Changes Shown
ReviewRejectAllChangesInDocument button Reject All Changes in Document
ReviewDeleteAllCommentsShown button Delete All Comments Shown
ReviewDeleteAllCommentsInDocument button Delete All Comments in Document
ShowRepairs button Show Repairs
MailMergeMatchFields button Match Fields...
MailMergeAddressBlockInsert button Address Block...
MailMergeGreetingLinelnsert button Greeting Line...
MailMergeMergeFieldInsert button Insert Merge Field
MailMergeRecipientsEditList button Edit Recipient List...
MailMergeEmailOptions button Mail Merge E-Mail Options
MailMergePrintOptions button Mail Merge Print Options

330/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
MailMergeFaxOptions button Mail Merge Fax Options
MailMergeMergeToNewDocumentOptions button Mail Merge to New Document

Options
PicturesCompress button Compress Pictures...
Security button Security
TableAutoFormatStyle button Table AutoFormat...
MailMergeEditAddressBlock button Edit Address Block...
MailMergeEditGreetingLine button Edit Greeting Line...
MailMergeFindRecipient button Find Recipient...
FormFieldReset button Reset Form Fields
MailMergeUpdatelLabels button Update Labels
DiagramFitToContentsClassic button Fit to Contents
DiagramResizeClassic toggleButton Resize
DiagramExpandClassic button Expand
OrganizationChartResize button Resize Organization Chart
AccountSettings button Account Settings...
MailMergeSetDocumentType button Main document setup
DiagramShapelnsertClassic button Insert Shape
OrganizationChartStyle button Style...
ReviewDisplayForReview dropDown Display for Review
DiagramAutoFormatClassic button Use AutoFormat
Translate button Translate...
ClearContentsWord button Contents
DrawingCanvasScale button Scale Drawing
ProtectDocument toggleButton Protect Document...
XmlViewStructure button View XML Structure
ReadingViewClose button Edit
ResearchPane toggleButton | Research...
DocumentMapReadingView button Document Map
ReadingViewResearchPane button Research...
ReadingViewFontSizelncrease button Increase Text Size
ReadingViewFontSizeDecrease button Decrease Text Size

331/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
ReadingViewShowPrintedPage button Show Printed Page
ViewRulerWord checkBox Ruler

FileInternetFax button Internet Fax
DocumentUpdatePane button Show Document Update Pane

ViewDocumentActionsPane

toggleButton

Document Actions

XmlToggleTagView button Toggle XML Tag View
InkDeleteAllInk button Delete All Ink
LookUp button Look Up

WindowSideBySide

toggleButton

View Side by Side

PrivacyOptionsDialog

button

Privacy Options...

FileVersionHistoryWord

button

View Version History

WindowSideBySideSynchronousScrolling

toggleButton

Synchronous Scrolling

WindowResetPosition button Reset Window Position
InkColorMoreColorsDialog button More Ink Colors...
XmlOptionsDialog button XML Options...

XmlTransformation

toggleButton

Transformation

StyleEnforcementSettings

button

Style Enforcement Settings

ContactUs

button

Contact Us...

FilePermissionUnrestricted

toggleButton

Unrestricted Access

FilePermissionDoNotDistribute

toggleButton

Restricted Access

FilePermissionView button View Permission
FilePermission button Permission
ReadingViewAllowMultiplePages button Allow Multiple Pages
ReadingViewStartInking button Ink
ReadingViewUnlockDocumentLayout button Unlock Document Layout
VoicelnsertinComment button Insert Voice
ViewThumbnails checkBox Thumbnails

Thesaurus button Thesaurus...

InkingStart button Start Inking

ReviewShowRevisionsInBalloons

toggleButton

Show Revisions in Balloons

ReviewShowRevisionslInline

toggleButton

Show All Revisions Inline

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

332 /523

idMso

Control
Type

Label

ReviewShowOnlyCommentsAndFormattingInBaloons

toggleButton

Show Only Comments and
Formatting in Balloons

ReviewShowInkMarkup

toggleButton

Ink

CheckForUpdates

button

Check for Updates

ViewFullScreenReadingView

toggleButton

Full Screen Reading

InkCopyAsText button Copy Ink As Text
InkDrawingAndWriting button Ink Drawing and Writing
ReviewInkCommentPen toggleButton | Pen
ReviewInkCommentEraser toggleButton Eraser

InkEraser toggleButton | Eraser
SendCopyAttachmentOptions button Attachment Options
FilePermissionRestrictAs button Manage Credentials
ListSetNumberingValue button Set Numbering Value...

FileViewDigitalSignatures

toggleButton

View Signatures

FileWorkflowTasks button View Workflow Tasks
FileStartWorkflow button Workflows
SignatureLinelnsert button Signature Line
BibliographylInsert button Insert Bibliography
BibliographyStyle comboBox Style:

CitationInsert gallery Insert Citation
BibliographyManageSources button Manage Sources...
BibliographyAddNewSource button Add New Source...
Labellnsert button Label

Barcodelnsert button Barcode

ReviewShowMarkupAreaHighlight

toggleButton

Markup Area Highlight

ChartStylesGallery gallery Quick Styles
ChartLayoutGallery gallery Quick Layout
ChartSaveTemplates button Save As Template
ChartAxisTitles menu Axis Titles
ChartAxes menu Axes
ChartGridlines menu Gridlines
ChartFormatSelection button Format Selection

333 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
ChartElementSelector comboBox Chart Elements
PageMarginsGallery gallery Margins
DropCaplnsertGallery gallery Drop Cap
TabPictureToolsFormat tab Format
ShapeslnsertGallery gallery Shapes
ShapeChangeShapeGallery gallery Change Shape
ShapeFillTextureGallery gallery Texture
ShapeStylesGallery gallery Quick Styles
PageOrientationGallery gallery Orientation
FileServerTasksMenu menu Server
FileSendMenu menu Send

TablInsert tab Insert
TabReferences tab References
TabMailings tab Mailings
TabReviewWord tab Review
TabView tab View
GroupFont group Font
GroupParagraph group Paragraph
GroupStyles group Styles
GroupProofing group Proofing
GrouplnsertPages group Pages
Grouplnsertlllustrations group Illustrations
GroupWordArtText group Text
GroupParagraphlLayout group Paragraph
GroupCitationsAndBibliography group Citations & Bibliography
GroupFootnotes group Footnotes
GroupTableOfContents group Table of Contents
GroupMailMergeWriteInsertFields group Write & Insert Fields
GroupMailMergePreviewResults group Preview Results
GroupMailMergeFinish group Finish
GroupChangesTracking group Tracking

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

334 /523

Control

idMso Type Label
GroupComments group Comments
GroupChanges group Changes
GroupCompare group Compare
GroupPictureSize group Size
GroupTableAlignment group Alignment
GroupTextBoxText group Text
GroupArrange group Arrange
GroupShapeStyles group Shape Styles
GroupChartLayouts group Chart Layouts
GroupChartStyles group Chart Styles
GroupChartAxes group Axes
GroupChartShapes group Insert
GroupOrganizationChartShapelnsert group Insert
StylesManageStyles button Manage Styles

StylesStyleInspector

toggleButton

Style Inspector

ObjectEffectPresetGallery gallery Preset
PictureEffectsPresetGallery gallery Preset
_3DRotationGallery gallery 3-D Rotation
TabSmartArtToolsDesign tab Design
TabSmartArtToolsFormat tab Format
TabChartToolsDesign tab Design
TabChartToolsLayout tab Layout
TabChartToolsFormat tab Format
ShapeFillColorPicker gallery Shape Fill
OutlineColorPicker gallery Picture Border
FileDocumentInspect button Inspect Document
QuickStylesGallery gallery Quick Styles
QuickStylesSets gallery Style Set
ClearFormatting button Clear Formatting

PanningHand

toggleButton

Panning Hand

BulletsGalleryWord

gallery

Bullets

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

335/ 523

Control

idMso Type Label
NumberingGalleryWord gallery Numbering
GroupControls group Controls

GroupZoom group Zoom

ArrowStyleGallery gallery Arrows
OutlineDashesGallery gallery Dashes
OutlineWeightGallery gallery Weight
TabTableToolsLayout tab Layout
GroupPictureTools group Adjust

GroupSize group Size
ReviewTrackChangesMenu splitButton Track Changes
ReviewAcceptChangeMenu splitButton Accept
ReviewRejectChangeMenu splitButton Reject
ReviewBalloonsMenu menu Balloons
GroupTableRowsAndColumns group Rows & Columns
GroupTableData group Data

ObjectAlignMenu menu Align
ObjectRotateGallery gallery Rotate

SelectMenu menu Select

FontColorPicker gallery Font Color
TableColumnsGallery gallery Columns

TabHome tab Home

ChartTitle gallery Chart Title
ChartPrimaryHorizontalAxisTitle gallery Primary Horizontal Axis Title
ChartPrimaryVerticalAxisTitle gallery Primary Vertical Axis Title
ChartDepthAxisTitle gallery Depth Axis Title
ChartLegend gallery Legend

ChartDatalLabel gallery Data Labels
ChartPrimaryHorizontalGridlines gallery Primary Horizontal Gridlines
ChartPrimaryVerticalGridlines gallery Primary Vertical Gridlines
ChartDepthGridlines gallery Depth Gridlines
ChartPrimaryHorizontalAxis gallery Primary Horizontal Axis

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

336 /523

Control

idMso Type Label
ChartPrimaryVerticalAxis gallery Primary Vertical Axis
ChartDepthAxis gallery Depth Axis
ChartDataTable gallery Data Table
ChartTrendline gallery Trendline
ChartErrorBars gallery Error Bars
ChartLines gallery Lines
ChartUpDownBars gallery Up/Down Bars
ChartPlotArea gallery Plot Area
ChartWall gallery Chart Wall
ChartFloor gallery Chart Floor
TabPagelLayoutWord tab Page Layout
SmartArtAddShape button Add Shape
SmartArtLargerShape button Larger
SmartArtSmallerShape button Smaller
SmartArtResetGraphic button Reset Graphic
SmartArtTextPane toggleButton | Text Pane
SmartArtEditIn2D toggleButton | Editin 2-D

SmartArtLayoutGallery gallery Change Layout
SmartArtMorelLayoutsDialog button More Layouts...
SmartArtStylesGallery gallery Quick Styles
SmartArtChangeColorsGallery gallery Change Colors
ObjectEffectSoftEdgesGallery gallery Soft Edges
ObjectEffectGlowGallery gallery Glow
GradientGallery gallery Gradient
ObjectEffectShadowGallery gallery Shadow
TextEffectTransformGallery gallery Transform
TabHeaderAndFooterToolsDesign tab Design
GroupHeaderFooterOptions group Options
ReviewPreviousCommentWord button Previous
ReviewNextCommentWord button Next
BulletDefineNew button Define New Bullet...

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

337/ 523

Control

idMso Type Label
DefineNewNumberFormat button Define New Number Format...
ThemeColorsGallery gallery Colors
HeaderInsertGallery gallery Header
FooterInsertGallery gallery Footer
CoverPagelnsertGallery gallery Cover Page
PageNumberFieldInsertGallery gallery Current Position
WatermarkGallery gallery Watermark
EquationInsertGallery gallery Equation
QuickTablesInsertGallery gallery Quick Tables
QuickPartsInsertGallery gallery Quick Parts
GroupSmartArtLayouts group Layouts
GroupSmartArtQuickStyles group SmartArt Styles
GroupSmartArtCreateGraphic group Create Graphic
GroupSmartArtReset group Reset
GroupSmartArtSize group Size
SaveSelectionToQuickPartGallery button Save Selection to Quick Part
Gallery...
SaveSelectionToCoverPageGallery button Save Selection to Cover Page
Gallery...
SaveSelectionToEquationGallery button Save Selection to Equation
Gallery...
SaveSelectionToFooterGallery button Save Selection to Footer Gallery...
SaveSelectionToHeaderGallery button Save Selection to Header
Gallery...
SaveSelectionToPageNumberGallery button Save Selection to Page Number
Gallery...
SaveSelectionToQuickTablesGallery button Save Selection to Quick Tables
Gallery...
SaveSelectionToWaterMarkGallery button Save Selection to Watermark
Gallery...
ThemeSearchOfficeOnline button More Themes on Microsoft Office
Online...
TabAddIns tab Add-Ins
ReviewShowMarkupMenu menu Show Markup
ObjectEditShapeMenu menu Edit Shape

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

338/ 523

Control
idMso Type Label
SymbolInsertGallery gallery Symbol
TableStyleClear button Clear
FileSaveAsPdfOrXps button Publish as PDF or XPS
FileSaveAsWordOpenDocumentText button OpenDocument Text
SearchLibraries button Search Libraries...
MoreControlsDialog button More Controls...
GroupCode group Code
TabDeveloper tab Developer
GroupXml group XML
XmlStructure toggleButton | Structure
XmlISchema button Schema
XmlExpansionPacksWord button Expansion Packs
GroupCaptions group Captions
GroupIndex group Index
GroupTableOfAuthorities group Table of Authorities
GroupEditing group Editing
SelectMenuExcel splitButton Find & Select
GroupClipboard group Clipboard
GrouplnsertTables group Tables
GrouplnsertLinks group Links
GrouplInsertSymbols group Symbols
GrouplnsertBarcode group Barcode
PageSizeGallery gallery Size
ObjectPictureFill button Picture...
TextWrappingMenu menu Text Wrapping
WindowSwitchWindowsMenuWord menu Switch Windows
ThemeColorsCreateNew button Create New Theme Colors...
ThemeFontsCreateNew button Create New Theme Fonts...
ShapeFillMoreGradientsDialog button More Gradients...
ShadowOptionsDialog button Shadow Options...
BuildingBlocksOrganizer button Building Blocks Organizer...

339/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
ReviewCompareMenu menu Compare
ReviewCompareTwoVersions button Compare...
ReviewCombineRevisions button Combine...
ReviewCompareMajorVersion button Major Version
ReviewComparelLastVersion button Last Version
ReviewCompareSpecificVersion button Specific Version...
Propertylnsert gallery Document Property

ObjectsAlignSelectedSmart

toggleButton

Align Selected Objects

ObjectsAlignRelativeToContainerSmart toggleButton | Align to Slide
ObjectsAlignLeftSmart button Align Left
ObjectsAlignRightSmart button Align Right
ObjectsAlignTopSmart button Align Top
ObjectsAlignBottomSmart button Align Bottom
ObjectsAlignCenterHorizontalSmart button Align Center
ObjectsAlignMiddleVerticalSmart button Align Middle
AlignDistributeHorizontally button Distribute Horizontally
AlignDistributeVertically button Distribute Vertically
GroupProtect group Protect
IndexUpdate button Update Index
MarginsCustomMargins button Custom Margins...
MailMergeFinishAndMergeMenu menu Finish & Merge
HyphenationMenu menu Hyphenation
HyphenationAutomatic toggleButton | Automatic
HyphenationNone toggleButton | None
MailMergeRules menu Rules
TabWordArtToolsFormat tab Format
MailMergeStartMailMergeMenu menu Start Mail Merge

MailMergeStartLetters

toggleButton

Letters

MailMergeStartEmail

toggleButton

E-Mail Messages

MailMergeStartEnvelopes

toggleButton

Envelopes...

MailMergeStartLabels

toggleButton

Labels...

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

340/ 523

idMso

Control
Type

Label

MailMergeStartDirectory

toggleButton

Directory

MailMergeClearMergeType

toggleButton

Normal Word Document

MailMergeSelectRecipients menu Select Recipients
TableOfContentsAddTextGallery gallery Add Text
BorderColorPicker gallery Pen Color
TranslationToolTip gallery Translation ScreenTip
ThemeFontsGallery gallery Fonts
ThemekEffectsGallery gallery Effects

FileProperties toggleButton Properties

TabPrintPreview tab Print Preview
GroupPrintPreviewPrint group Print
GroupPrintPreviewPreview group Preview
BreaksGallery gallery Breaks
LineNumbersMenu menu Line Numbers
LineNumbersOff toggleButton | None
LineNumbersContinuous toggleButton | Continuous

LineNumbersResetPage

toggleButton

Restart Each Page

LineNumbersResetSection

toggleButton

Restart Each Section

LineNumbersSuppress

toggleButton

Suppress for Current Paragraph

TabOutlining tab Outlining
GroupOutliningClose group Close
GroupOutliningTools group Outline Tools
GroupMasterDocument group Master Document
TableSelectMenu menu Select
TableDeleteRowsAndColumnsMenuWord menu Delete
GroupTableMerge group Merge
TableAutoFitMenu menu AutoFit
GroupTableDrawBorders group Draw Borders
TableBordersMenu splitButton Borders

FileCreateDocumentWorkspace

toggleButton

Create Document Workspace

FileSaveToDocumentManagementServer

button

Document Management Server

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

341/ 523

idMso

Control
Type

Label

FileDocumentManagementInformation

toggleButton

Document Management
Information

QuickAccessToolbarCustomization

button

Customize Quick Access Toolbar...

FilePrepareMenu

menu

Prepare

FileMarkAsFinal

toggleButton

Mark as Final

FileAddDigitalSignature button Add a Digital Signature
SignatureServicesAdd button Add Signature Services...
QuickStylesSaveSelectionAsNew button Save Selection as a New Quick
Style...
StylesPaneNewStyle button New Style...
QuickStylesSaveQuickStyleSet button Save as Quick Style Set...
ChangeCaseGallery gallery Change Case
AlignJustifyMenu menu Justify
ControlProperties button Properties
GroupHeaderFooterlnsert group Insert
GroupHeaderFooterNavigation group Navigation
GroupHeaderFooterPosition group Position
HeaderFooterDifferentFirstPageWord checkBox Different First Page
HeaderFooterDifferentOddEvenPageWord checkBox Different Odd & Even Pages
HeaderFooterShowDocumentText checkBox Show Document Text
BlankPagelnsert button Blank Page
ShadowStyleGalleryClassic gallery Shadow Effects
TabOrganizationChartToolsFormat tab Format
TabDiagramToolsFormatClassic tab Format
GrouplnkSelect group Select
WordArtSpacingMenu menu Spacing
TextAlignMenu menu Alignment
DiagramChangeToMenuClassic menu Change To
PictureBrightnessGallery gallery Brightness
PictureContrastGallery gallery Contrast
PicturePositionGallery gallery Position
TabPictureToolsFormatClassic tab Format

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

342 /523

Control

idMso Type Label
PictureBrightnessAndContrastDialog button Picture Correction Options...
GroupMailMergeStart group Start Mail Merge
OleObjectInsertMenu splitButton Object
ShadingColorPicker gallery Shading
ShadingColorsMoreColorsDialog button More Colors...
SmartArtAddShapeAfter button Add Shape After
SmartArtAddShapeBefore button Add Shape Before
SmartArtAddShapeAbove button Add Shape Above
SmartArtAddShapeBelow button Add Shape Below
SmartArtAddAssistant button Add Assistant
ChartSwitchRowColumn button Switch Row/Column
ChartShowData button Edit Data...
ChartRefresh button Refresh Data
ChartChangeType button Change Chart Type...
GroupChartData group Data
GroupChartType group Type
_3DRotationOptionsDialog button 3-D Rotation Options...
_3DBevelOptionsDialog button 3-D Options...
SmartArtOrganizationChartLeftHanging button Left Hanging
SmartArtOrganizationChartRightHanging button Right Hanging
SmartArtOrganizationChartBoth button Both
SmartArtOrganizationChartStandard button Standard

SmartArtRightTolLeft toggleButton | Right to Left
ListLevelGallery gallery Change List Level
MultilevelListGallery gallery Multilevel List
ListDefineNew button Define New Multilevel List...
ListDefineNewStyle button Define New List Style...
ViewMessageBar checkBox Message Bar
ApplyStylesPane toggleButton | Apply Styles...
InsertAlignmentTab button Insert Alignment Tab
ShapeStylesOtherThemeFillsGallery gallery Other Theme Fills

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

343/ 523

Control
idMso Type Label
SmartArtOrganizationChartMenu menu Layout
ReviewChangeTrackingOptions button Change Tracking Options...
SymbolsDialog button More Symbols...
ReviewReviewingPaneHorizontal toggleButton Reviewing Pane Horizontal...
ReviewReviewingPaneVertical toggleButton | Reviewing Pane Vertical...
_3DEffectsGalleryClassic gallery 3-D Effects
_3DDirectionGalleryClassic gallery Direction
_3DLightingGalleryClassic gallery Lighting
TabDrawingToolsFormatClassic tab Format
GroupShadowEffects group Shadow Effects
Group3DEffects group 3-D Effects
WordArtStylesGalleryClassic gallery WordArt
WordArtInsertGalleryClassic gallery WordArt
TableInsertGallery gallery Table
ShapeStylesGalleryClassic gallery Shape Styles
WordArtChangeShapeGallery gallery Change Shape
ShadowcColorPickerClassic gallery Shadow Color
_3DEffectColorPickerClassic gallery 3-D Color
ShapeFillGradientGalleryClassic gallery Gradient
AsianLayoutMenu menu Asian Layout
JapaneseGreetingsInsertMenu menu Japanese Greetings
AlignJustifyWithMixedLanguages toggleButton | Justify
AlignJustifyLow toggleButton | Justify Low
AlignJustifyMedium toggleButton | Justify Medium
AlignJustifyHigh toggleButton | Justify High
AlignJustifyThai toggleButton | Distribute
TextHighlightColorPicker gallery Text Highlight Color
PageColorPicker gallery Page Color
GoToHeader button Go to Header
GoToFooter button Go to Footer
HighlightingStop button Stop Highlighting

344 / 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
UnderlineGallery gallery Underline
UnderlineColorPicker gallery Underline Color
UnderlineMoreUnderlinesDialog button More Underlines...
TextDirectionGalleryWord gallery Text Direction
GroupAddInsMenuCommands group Menu Commands
GroupAddInsToolbarCommands group Toolbar Commands
GrouplInk group Ink
TabInkToolsPens tab Pens
GrouplInkPens group Pens
GroupInkClose group Close
InkBallpointPen toggleButton | Ballpoint Pen
InkFeltTipPen toggleButton | Felt Tip Pen
InkHighlighter toggleButton Highlighter
GroupBorder group Border
PictureRecolorGalleryWord gallery Recolor
_3DSurfaceMaterialGalleryClassic gallery Surface
_3DExtrusionDepthGalleryClassic gallery Depth
GroupHeaderFooter group Header & Footer
GroupPagelLayoutSetup group Page Setup
GroupPageBackground group Page Background
ThemeSaveCurrent button Save Current Theme...
ThemesGallery gallery Themes
ChartResetToMatchStyle button Reset to Match Style
Chart3DView button 3-D Rotation...
ObjectSizeDialog button Size...
AutoTextGallery gallery AutoText
TextBoxInsertGallery gallery Text Box
PageNumbersInHeaderlnsertGallery gallery Top of Page
PageNambersInFooterlnsertGallery gallery Bottom of Page
PageNambersInMarginsInsertGallery gallery Page Margins
SaveSelectionToAutoTextGallery button Save Selection to AutoText Gallery

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

345/ 523

Control

idMso Type Label
SaveSelectionToTextBoxGallery button Save Selection to Text Box Gallery
SaveSelectionToPageNumberTop button Save Selection as Page Number
(Top)
SaveSelectionToPageNumberBottom button Save Selection as Page Number
(Bottom)
SaveSelectionToPageNumberMargin button Save Selection as Page Number
(Margin)
HeaderFooterEditHeader button Edit Header
TableStyleHeaderRowWord checkBox Header Row
TableStyleTotalRowWord checkBox Total Row
TableStylesFirstColumnWord checkBox First Column
TableStyleLastColumnWord checkBox Last Column
TableStyleBandedRowsWord checkBox Banded Rows
TableStyleBandedColumnsWord checkBox Banded Columns
TableStyleModify button Modify Table Style...
TabTableToolsDesign tab Design
TableStylesGalleryWord gallery Table Styles
ReviewViewChangesInTheSourceDocument button View changes in the source
document
GroupThemesWord group Themes
LayoutOptionsDialog button More Layout Options...
DrawingObjectFormatDialog button Advanced Tools...
ReflectionGallery gallery Reflection
PictureRecolorGallery gallery Recolor
SmartArtPromote button Promote
SmartArtDemote button Demote
ChartTitleOptionsDialog button More Title Options...
ChartLegendOptionsDialogDialog button More Legend Options...
ChartDatalLabelDialog button More Data Label Options...
ChartPrimaryHorizontalAxisTitleOptionsDialog button More Primary Horizontal Axis Title
Options...
ChartPrimaryVerticalAxisTitleOptionsDialog button More Primary Vertical Axis Title
Options...
ChartSecondaryHorizontalAxisTitleOptionsDialog button More Secondary Horizontal Axis

Title Options...

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

346 / 523

Control

idMso Type Label
ChartSecondaryVerticalAxisTitleOptionsDialog button More Secondary Vertical Axis Title
Options...
ChartDepthAxisTitleOptionsDialog button More Depth Axis Title Options...
ChartPrimaryHorizontalGridlinesOptionsDialog button More Primary Horizontal Gridlines
Options...
ChartPrimaryVerticalGridlinesOptionsDialog button More Primary Vertical Gridlines
Options...
ChartSecondaryHorizontalGridlinesOptionsDialog button More Secondary Horizontal
Gridlines Options...
ChartSecondaryVerticalGridlinesOptionsDialog button More Secondary Vertical Gridlines
Options...
ChartDepthGridlinesOptionsDialog button More Depth Gridlines Options...
ChartPrimaryHorizontalAxisOptionsDialog button More Primary Horizontal Axis
Options...
ChartPrimaryVerticalAxisOptionsDialog button More Primary Vertical Axis
Options...
ChartSecondaryHorizontalAxisOption button More Secondary Horizontal Axis
Options...
ChartSecondaryVerticalAxisOptionsDialog button More Secondary Vertical Axis
Options...
ChartDepthAxisOptionsDialog button More Depth Axis Options...
ChartDataTableOptionsDialog button More Data Table Options...
ChartTrendlineOptionsDialog button More Trendline Options...
ChartErrorBarsOptionsDialog button More Error Bars Options...
ChartUpDownBarsOptionsDialog button More Up/Down Bars Options...
ChartPlotAreaOptionsDialog button More Plot Area Options...
ChartWallOptionsDialog button More Walls Options...
ChartFloorOptionsDialog button More Floor Options...
ChartSecondaryHorizontalAxisTitle gallery Secondary Horizontal Axis Title
ChartSecondaryVerticalAxisTitle gallery Secondary Vertical Axis Title
ChartSecondaryHorizontalGridlines gallery Secondary Horizontal Gridlines
ChartSecondaryVerticalGridlines gallery Secondary Vertical Gridlines
ChartSecondaryHorizontalAxis gallery Secondary Horizontal Axis
ChartSecondaryVerticalAxis gallery Secondary Vertical Axis
GroupAddInsCustomToolbars group Custom Toolbars
ReviewDeleteCommentsMenu splitButton Delete

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

347/ 523

Control

idMso Type Label
ObjectBringToFrontMenu splitButton Bring to Front
ObjectSendToBackMenu splitButton Send to Back
ObjectsGroupMenu menu Group
SignatureLinelnsertMenu splitButton Signature Line
FileSaveAsWord97_2003 button Word 97-2003 Document
EnglishWritingAssistant button English Assistant
TableOfContentsGallery gallery Table of Contents
SaveSelectionToTableOfContentsGallery button Save Selection to Table of

Contents Gallery...

ObjectsAlignRelativeToMargin

toggleButton

Align to Margin

TabTextBoxToolsFormat tab Format
TextBoxStyleGallery gallery Text Box Style
TextBoxPositionGallery gallery Position
FileSaveAsMenu splitButton Save As Other Format
FilePrintMenu splitButton Preview and Print
FilePermissionRestrictMenu menu Restrict Permission
GroupEnvelopelLabelCreate group Create
ReviewInkCommentNew button Ink Comment
DocumentPanelTemplate button Document Panel
ObjectSizeDialogClassic button Size...
TextBoxInsertVerticalWord button Draw Vertical Text Box
BevelShapeGallery gallery Bevel
_3DBevelPictureTopGallery gallery Bevel
BibliographyAddNewPlaceholder button Add New Placeholder...
GroupTable group Table
GroupTableCellSize group Cell Size
GlowColorPicker gallery More Glow Colors
RecolorColorPicker gallery More Variations
GlowColorMoreColorsDialog button More Colors...
PictureRecolorMoreColorsDialog button More Colors...
QuickStylesResetDocumentStyles button Reset Document Quick Styles
QuickStylesResetFromTemplate button Reset to Quick Styles from

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

348 / 523

Control

idMso Type Label

Template
WatermarkRemove button Remove Watermark
CoverPageRemove button Remove Current Cover Page
HeaderFooterRemoveHeaderWord button Remove Header
HeaderFooterRemoveFooterWord button Remove Footer
PageNumbersRemove button Remove Page Numbers
TableOfContentsRemove button Remove Table of Contents
SmartArtAddBullet button Add Bullet
ThemeResetFromTemplate button Reset to Theme from Template
PictureChange button Change Picture...
GroupWordArtStyles group WordArt Styles
TextFillColorPicker gallery Text Fill
TextOutlineColorPicker gallery Text Outline
TextOutlineColorMoreColorsDialog button More Outline Colors...
TextEffectsMenu menu Text Effects
TextStylesGallery gallery Quick Styles
WordArtClear button Clear WordArt
TextPictureFill button Picture...
TextFillGradientGallery gallery Gradient
TextFillMoreGradientsDialog button More Gradients...
TextFillTextureGallery gallery Texture
TextOutlineDashesGallery gallery Dashes
TextOutlineMoreLinesDialog button More Lines...
TextOutlineWeightGallery gallery Weight
TextEffectShadowGallery gallery Shadow
TextEffectsMoreShadowsDialog button Shadow Options...
TextEffectsBevelMore3DOptionsDialog button 3-D Options...
TextEffects3DRotationGallery gallery 3-D Rotation
TextEffects3DRotationOptionsDialog button 3-D Rotation Options...
TextEffectGlowGallery gallery Glow
TextGlowColorPicker gallery More Glow Colors

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

349 / 523

Control
idMso Type Label
TextGlowColorMoreColorsDialog button More Colors...
TextReflectionGallery gallery Reflection
ShapeEffectsMenu menu Shape Effects
UpgradeDocument button Convert
GroupHeaderFooterClose group Close
GroupChartCurrentSelection group Current Selection
GroupChartLabels group Labels
PageSizeMorePaperSizesDialog button More Paper Sizes...
LineNumbersOptionsDialog button Line Numbering Options...
TableOfAuthoritiesUpdate button Update Table
TableOfFiguresUpdate button Update Table
ContentControlsGroup button Group
BevelTextGallery gallery Bevel
PictureCorrectionsDialog button Picture Corrections Options...
GroupTextBoxStyles group Text Box Styles
GroupTableStylesWord group Table Styles
GroupWordArtStylesClassic group WordArt Styles
PageBorderAndShadingDialog button Page Borders...
OutlineViewClose button Close Outline View
SmartArtAddShapeSplitMenu splitButton Add Shape Options
ContentControlRichText button Rich Text
ContentControlText button Text
ContentControlPicture button Picture
ContentControlComboBox button Combo Box
ContentControlDropDownList button Drop-Down List
ContentControlBuildingBlockGallery button Building Block Gallery
ContentControlDate button Date
AutoSummaryToolsMenu menu AutoSummary Tools
GrouplInkFormat group Format
InkColorPicker gallery Color
GroupDiagramLayoutClassic group Layout

350/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
GroupDiagramStylesClassic group Styles
GroupOrganizationChartLayoutClassic group Layout
GroupOrganizationChartStyleClassic group Styles
TextBoxDrawMenu menu Draw Text Box
TextBoxInsertWord button Text Box
GroupOrganizationChartSelect group Select
ShapefFillEffectMoreGradientsDialogClassic button More Gradients...
ShapefFillEffectMoreTexturesDialogClassic button More Textures...
ShapeFillEffectPatternClassic button Pattern...
BibliographyGallery gallery Bibliography
CustomHeaderGallery gallery Custom Header
CustomFooterGallery gallery Custom Footer
CustomCoverPageGallery gallery Custom Cover Page
CustomPageNumberGallery gallery Custom Page Number
CustomPageNumberTopGallery gallery Custom Top of Page
CustomPageNumberBottomGallery gallery Custom Bottom of Page
CustomPageMargins gallery Custom Page Margins
CustomWatermarkGallery gallery Custom Watermark
CustomEquationsGallery gallery Custom Equation
CustomTablesGallery gallery Custom Tables
CustomQuickPartsGallery gallery Custom Quick Parts
CustomAutoTextGallery gallery Custom AutoText
CustomTextBoxGallery gallery Custom Text Box
CustomTableOfContentsGallery gallery Custom Table of Contents
CustomBibliographyGallery gallery Custom Bibliography
CustomGallery1 gallery Custom Gallery 1
CustomGallery2 gallery Custom Gallery 2
CustomGallery3 gallery Custom Gallery 3
CustomGallery4 gallery Custom Gallery 4
CustomGallery5 gallery Custom Gallery 5
SaveSelectionToBibliographyGallery button Save Selection to Bibliography

Gallery...

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

351 /523

Control

idMso Type Label
MailMergeRecepientsUseOutlookContacts button Select from Outlook Contacts...
FootnoteNext splitButton Next Footnote
ReviewReviewingPaneMenu splitButton Reviewing Pane
GroupSizeClassic group Size
GroupPictureSizeClassic group Size
GroupPictureToolsClassic group Adjust
GalleryAllShapesAndCanvas gallery Shapes
GroupShapesClassic group Insert Shapes
GroupSmartArtShapes group Shapes
GroupShapeStylesClassic group Shape Styles
GrouplnsertText group Text
Drawing1ColorPickerFill gallery Shape Fill
ShapeOutlineColorPicker gallery Picture Border
Drawing1ColorPickerLineStyles gallery Picture Border
DrawinglGalleryTextures gallery Texture
InsertBuildingBlocksEquationsGallery gallery Equation
Drawing1GalleryBrightness gallery Brightness
Drawing1GalleryContrast gallery Contrast
GroupDiagramArrangeClassic group Arrange
GroupTextBoxArrange group Arrange
ContentControlsGroupMenu menu Group
ContentControlsUngroup button Ungroup
ControlsGalleryClassic gallery Legacy Tools
ReviewShowSourceDocumentsMenu gallery Show Source Documents
HeaderFooterEditFooter button Edit Footer
QuickStylesSetAsDefault button Set as Default
EquationInsertNew button Insert New Equation
EquationProfessional button Professional
EquationLinearFormat button Linear

EquationNormalText

toggleButton

Normal Text

EquationSymbolsInsertGallery

gallery

Equation Symbols

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

352 /523

Control

idMso Type Label
EquationIntegralGallery gallery Integral
EquationFractionGallery gallery Fraction
EquationRadicalGallery gallery Radical
EquationLargeOperatorGallery gallery Large Operator
EquationDelimiterGallery gallery Bracket
EquationScriptGallery gallery Script
EquationFunctionGallery gallery Function
EquationAccentGallery gallery Accent
EquationLimitGallery gallery Limit and Log
EquationOperatorGallery gallery Operator
EquationMatrixGallery gallery Matrix
EquationOptions button Equation Options...
TabEquationToolsDesign tab Design
GroupEquationTools group Tools
GroupEquationSymbols group Symbols
GroupEquationStructures group Structures
MailMergeMergeFieldInsertMenu splitButton Insert Merge Field
PasteMenu splitButton Paste
GroupPictureStyles group Picture Styles
PictureStylesGallery gallery Quick Styles
ReviewAcceptChangeAndMoveToNext button Accept and Move to Next
ReviewRejectChangeAndMoveToNext button Reject and Move to Next
PictureEffectsShadowGallery gallery Shadow
PictureEffectsGlowGallery gallery Glow
PictureEffectsSoftEdgesGallery gallery Soft Edges
PictureReflectionGallery gallery Reflection
PictureRotationGallery gallery 3-D Rotation
InkToolsClose button Close Ink Tools
GroupChineseTranslation group Chinese Translation
LineSpacingMenu menu Line spacing
GroupDocumentViews group Document Views

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

353 /523

Control
idMso Type Label
GroupViewShowHide group Show/Hide
GroupWindow group Window
ViewGridlines checkBox View Gridlines
FileDocumentEncrypt toggleButton Encrypt Document
WordArtFormatDialog button Format Text Effects...
ObjectRotationOptionsDialog button More Rotation Options...
MoreTextureOptions button More Textures...
TextFillColorMoreColorsDialog button More Fill Colors...
ZoomTwoPages button Two Pages
QuickPartsInsertFromOnline button Get More on Office Online...
GroupPrintPreviewPageSetup group Page Setup
ShowRuler checkBox Ruler
FileEmailAsPdfEmailAttachment button E-mail as PDF Attachment
FileEmailAsXpsEmailAttachment button E-mail as XPS Attachment
GroupTemplates group Templates
SpellingMenu splitButton Spelling
PictureEffectsMenu menu Picture Effects
PictureShapeGallery gallery Change Shape
PictureBorderColorPickerClassic gallery Picture Border
GroupChartBackground group Background
GroupChartAnalysis group Analysis
FileNewBlogPost button Blog
TabBlogPost tab Blog Post
GroupBlogPublish group Blog
BlogPublishMenu splitButton Publish
BlogPublish button Publish
BlogPublishDraft button Publish as Draft
BlogManageAccounts button Manage Accounts
BlogCategorylInsert button Insert Category
BlogOpenExisting button Open Existing
GroupBlogBasicText group Basic Text

354 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
TabBlogInsert tab Insert
GroupBlogInsertText group Text
NewTableStyleWord button New Table Style...
MenuPublish menu Publish
ChangeStylesMenu menu Change Styles
GroupBlogInsertLinks group Links
FileCompatibilityCheckerWord button Run Compatibility Checker
FileSaveAsOtherFormats button Other Formats
FileSaveAsWordDocx button Word Document
FileSaveAsWordDotx button Word Template
ZoomCurrent100 button 100%
Drawing1ColorPickerLineStylesWordArt gallery Picture Border
Drawing1ColorPickerFillWordArt gallery Shape Fill
BlogInsertCategories button Insert Category
GroupTableLayout group Table Style Options
TextFillMoreTextures button More Textures...
GroupMacros group Macros

PlayMacro button Macros
MenuMacros splitButton Macros
AdvertisePublishAs button Find add-ins for other file formats
ReviewProtectDocumentMenu menu Protect Document

ReviewRestrictFormatting

toggleButton

Restrict Formatting and Editing

BlogHomePage button Home Page
GroupBlogProofing group Proofing
GroupBlogStyles group Styles
AlternativeText button Size...
ThemeBrowseForThemes button Browse for Themes...
FileCheckOutDiscard button Discard Check Out
GroupBlogSymbols group Symbols
ClearMenuWord menu Clear
MdiChildSystemMenu menu Document

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

355 /523

Control
idMso Type Label
NudgeMenu menu Nudge
RevisionsMenu menu Track Changes
TableCellVerticalAlignmentMenu menu Alignment
FramesetMenu menu Frames

3.1.2 Excel 2007

Control
idMso Type Label
Spelling button Spelling...
FileSave button Save
FilePrint button Print
ChartInsert button Chart...
FileNew button New
Copy button Copy
Cut button Cut
Paste button Paste
FileOpen button Open
ZoomPrintPreviewExcel toggleButton Zoom
Repeat button Repeat

UnderlineDouble

toggleButton

Double Underline

FileClose

button

Close

FormatPainter

toggleButton

Format Painter

FilePrintPreview button Print Preview
Bold toggleButton Bold

Italic toggleButton Italic
Underline toggleButton Underline
DarkShading button Dark Shading
AlignLeft toggleButton Align Left
AlignRight toggleButton Align Right
AlignCenter toggleButton Center
AlignJustify toggleButton Justify

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

356 / 523

Control

idMso Type Label

Undo gallery Undo

Redo gallery Redo
BorderTop toggleButton Top Border
BorderBottom toggleButton Bottom Border
BorderLeft toggleButton Left Border
BorderRight toggleButton Right Border
BorderInside button Inside Borders
BorderOutside button Outside Borders
BorderNone button No Border
ObjectsGroup button Group
ObjectsUngroup button Ungroup
ObjectBringToFront button Bring to Front
ObjectSendToBack button Send to Back
ObjectBringForward button Bring Forward
ObjectSendBackward button Send Backward

ViewFullScreenView

toggleButton

Full Screen

ObjectsSelect

toggleButton

Select Objects

MacroRecord button Record Macro...
MacroPlay button Macros
ObjectFlipHorizontal button Flip Horizontal
ObjectFlipVertical button Flip Vertical
ObjectRotateRight90 button Rotate Right 90°
ObjectRotatelLeft90 button Rotate Left 90°
ShapeFreeform toggleButton Freeform
ObjectEditPoints toggleButton Edit Points
FormControlEditBox button Edit Box
FormControlCheckBox button Check Box
FormControlComboBox button Combo Box
PropertySheet button Property Sheet
Lock toggleButton Lock

AutoSum button Sum

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

357 /523

Control

idMso Type Label
StylesDialogClassic button Edit Cell Styles
Camera button Camera
FormControlButton button Button
Calculator button Calculator
Strikethrough toggleButton Strikethrough
CellsDelete button Delete Cells...
CellsInsertDialog button Insert Cells...
WindowsArrangeAll button Arrange All
WindowNew button New Window
ReviewAcceptOrRejectChangeDialog button Accept/Reject Changes
Symbollnsert button Symbol...
ReplaceDialog button Replace...
PagePrevious button Previous Page
PageNext button Next Page

TextBoxInsertVertical

toggleButton

Vertical Text Box

ObjectsRegroup button Regroup
PrintAreaSetPrintArea button Set Print Area
PasteFormatting button Paste Formatting
PasteValues button Paste Values
FillRight button Right

FillDown button Down

EqualSign button Equal Sign
PlusSign button Plus Sign
MinusSign button Minus Sign
MultiplicationSign button Multiplication Sign
DivisionSign button Division Sign
ExponentiationSign button Exponentiation Sign
ParenthesisLeft button Left Parenthesis
ParenthesisRight button Right Parenthesis
ColonSign button Colon
Commasign button Comma

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

358 /523

Control

idMso Type Label

PercentSign button Percent Sign
DollarSign button Dollar Sign
FunctionWizard button Insert Function...
ConstrainNumeric button Constrain Numeric
LightShading button Light Shading
AccountingFormat button Accounting Number Format
PercentStyle button Percent Style
CommaStyle button Comma Style
DecimalsIncrease button Increase Decimal
DecimalsDecrease button Decrease Decimal

MergeCenter toggleButton Merge & Center
FontSizelncrease button Increase Font Size
FontSizeDecrease button Decrease Font Size

TextOrientationVertical

toggleButton

Vertical Text

TextOrientationRotateUp

toggleButton

Rotate Text Up

TextOrientationRotateDown

toggleButton

Rotate Text Down

AlignDistributeHorizontallyClassic

button

Distribute Horizontally

ShapeScribble

toggleButton

Scribble

OutlineSymbolsShowHide button Show Outline Symbols
TableSelectVisibleCells button Select Visible Cells
SelectCurrentRegion button Select Current Region
FreezePanes button Freeze Panes

ZoomlIn button Zoom In

ZoomOut button Zoom Out
FormControlRadioButton button Option Button
FormControlScrollBar button Scroll Bar
FormControlListBox button List Box
TraceDependentRemoveArrows button Remove Dependent Arrows
TraceDependents button Trace Dependents
TracePrecedentsRemoveArrows button Remove Precedent Arrows
TraceRemoveAllArrows button Remove Arrows

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

359 /523

Control

idMso Type Label

FileUpdate button Update File
ReadOnly button Toggle Read Only
AutoFilterClassic button AutoFilter

Refresh button Refresh
PivotTableFieldSettings button Field Settings
PivotTableShowPages button Show Report Filter Pages...
OutlineShowDetail button Show Detail
TraceError button Trace Error
OutlineHideDetail button Hide Detail
AlignDistributeVerticallyClassic button Distribute Vertically
FormControlGroupBox button Group Box
FormControlSpinner button Spinner

TabOrder button Tab Order...
RunDialog button Run Dialog
FormControlCombinationListEdit button Combination List-Edit
FormControlCombinationDropDownEdit button Combination Drop-Down Edit
FormControlLabel button Label
TracePrecedents button Trace Precedents
CodeEdit button Code
PageBreakInsertOrRemove button Insert Page Break
QueryParameters button Parameters
RowHeight button Row Height...
ColumnWidth button Column Width...
OleObjectctlnsert button Object...
SnapToGrid toggleButton Snap to Grid
ObjectsAlignLeft button Align Left
ObjectsAlignRight button Align Right
ObjectsAlignTop button Align Top
ObjectsAlignBottom button Align Bottom
ObjectsAlignCenterHorizontal button Align Center
ObjectsAlignMiddleVertical button Align Middle

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

360/ 523

idMso

Control
Type

Label

ClipArtInsert

toggleButton

Clip Art...

ObjectRotateFree button Free Rotate
CombineCharacters toggleButton Yoko-Gumi
ViewNormalViewExcel toggleButton Normal

ViewPageBreakPreviewView

toggleButton

Page Break Preview

PictureCrop toggleButton Crop

FileCloseAll button Close All

FileSaveAs button Save As
AdvancedFileProperties button View Document Properties...
CopyAsPicture button Copy as Picture...
PasteSpecialDialog button Paste Special...

SelectAll button Select All

GoTo button Go To...

FileLinksToFiles button Edit Links to Files
HeaderFooterInsert button Header & Footer...
BulletsAndNumberingBulletsDialog button Bullets and Numbering...
AutoFormatDialog button AutoFormat...
MergeCells button Merge Cells

SplitCells button Split Cells...
ConvertTextToTable button Convert Text to Table...
ShowClipboard button Office Clipboard...
OutlookTaskCreate button Create Microsoft Office Outlook Task
WindowMinimize button Minimize
WindowRestore button Restore

WindowClose button Close
WindowSaveWorkspace button Save Workspace...
SheetDelete button Delete Sheet
SheetMoveOrCopy button Move or Copy Sheet...
ViewFormulaBar checkBox Formula Bar
Sheetlnsert button Insert Sheet
FormatCellsDialog button Format Cells...

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

361 /523

Control

idMso Type Label

GoalSeek button Goal Seek...
ScenarioManager button Scenario Manager...
DataFormExcel button Form...
OutlineSubtotals button Subtotal

DataTable button Data Table...
Consolidate button Consolidate...
WindowHide button Hide
WindowUnhide button Unhide...

FillUp button Up

FillLeft button Left
FillAcrossWorksheets button Across Worksheets...
FillSeries button Series...

FillJustify button Justify
ClearFormats button Clear Formats
ClearContents button Clear Contents
ClearComments button Clear Comments
NamePasteName button Paste Names...
NameCreateFromSelection button Create from Selection...
NamesApply button Apply Names...
RowHeightAutoFit button AutoFit Row Height
RowsHide button Hide Rows
RowsUnhide button Unhide Rows
ColumnWidthAutoFit button AutoFit Column Width
ColumnsHide button Hide Columns
ColumnsUnhide button Unhide Columns
ColumnWidthDefault button Default Width...
SheetRename button Rename Sheet
SheetHide button Hide Sheet
SheetUnhide button Unhide Sheet...
SheetProtect button Protect Sheet...

ReviewProtectWorkbook

toggleButton

Protect Workbook...

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

362 /523

idMso

Control
Type

Label

MacroRelativeReferences

toggleButton

Use Relative References

Filter toggleButton Filter

SortClear button Clear
AdvancedFilterDialog button Advanced...
OutlineAuto button Auto Outline
OutlineClear button Clear Outline
OutlineSettings button Group and Outline Settings
PrintPreviewClose button Close Print Preview
ZoombDialog button Zoom...
SortDialogClassic button Sort...
ExchangeFolder button Exchange Folder...
AddInManager button Add-Ins...
ViewCustomViews button Custom Views...
SheetBackground button Background...
ChartEditDataSource button Select Data...
ChartPlacement button Move Chart...
CalculateNow button Calculate Now
ObjectFormatDialog button Object...

Help button Help

PivotTableEnableSelection

toggleButton

Enable Selection

PivotTableListFormulas button List Formulas
PivotTableSelectData button Values
PivotTableSelectLabelAndData button Labels and Values
PivotTableSelectLabel button Labels
PasteAsPicture button Paste as Picture
PastePictureLink button Paste Picture Link
CalculateSheet button Calculate Sheet

TextOrientationAngleCounterclockwise

toggleButton

Angle Counterclockwise

TextOrientationAngleClockwise

toggleButton

Angle Clockwise

WebGoBack

button

Back

WebGoForward

button

Forward

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

363/ 523

idMso

Control
Type

Label

SmartArtinsert

button

SmartArt...

ShapeRerouteConnectors

toggleButton

Reroute Connectors

ObjectNudgeUp button Up
ObjectNudgeDown button Down
ObjectNudgelLeft button Left
ObjectNudgeRight button Right
ShapeCurve toggleButton Curve

ShapeStraightConnector

toggleButton

Straight Connector

ShapeElbowConnector

toggleButton

Elbow Connector

ObjectFillMoreColorsDialog button More Fill Colors...
ObjectBorderOutlineColorMoreColorsDialog button More Outline Colors...
LineStylesDialog button More Lines...
ArrowsMore button More Arrows...
WordArtVerticalText button Vertical Text
ContrastMore button More Contrast
ContrastLess button Less Contrast
BrightnessMore button More Brightness
BrightnessLess button Less Brightness
ShadowNudgeUpClassic button Nudge Shadow Up
ShadowNudgeDownClassic button Nudge Shadow Down
ShadowNudgeLeftClassic button Nudge Shadow Left
ShadowNudgeRightClassic button Nudge Shadow Right
ObjectShadowColorMoreColorsDialog button More Shadow Colors...
_3DEffectColorPickerMoreClassic button More 3-D Colors...

ShapeRectangle

toggleButton

Rectangle

ShapeRoundedRectangle

toggleButton

Rounded Rectangle

ShapelsoscelesTriangle

toggleButton

Isosceles Triangle

ShapeOval toggleButton Oval
ShapelLeftBrace toggleButton Left Brace
ShapeRightBrace toggleButton Right Brace
ShapeArc toggleButton Arc

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

364 /523

Control

idMso Type Label
ShapeRightArrow toggleButton Right Arrow
ShapeDownArrow toggleButton Down Arrow

ShapeRoundedRectangularCallout

toggleButton

Rounded Rectangular Callout

ShapeStar toggleButton 5-Point Star
PictureReset button Reset Picture
_ 3DEffectsOnOffClassic toggleButton 3-D On/Off
_3DTiltDownClassic button Tilt Down
_3DTiltUpClassic button Tilt Up
_3DTiltLeftClassic button Tilt Left
_3DTiltRightClassic button Tilt Right
_3DSurfaceMaterialClassic menu Surface

_3DExtrusionPerspectiveClassic

toggleButton

Perspective

_3DExtrusionParallelClassic toggleButton Parallel
_3DLightingFlatClassic toggleButton Bright
_3DLightingNormalClassic toggleButton Normal
_3DLightingDimClassic toggleButton Dim
_3DSurfaceMatteClassic toggleButton Matte
_3DSurfacePlasticClassic toggleButton Plastic
_3DSurfaceMetalClassic toggleButton Metal
_3DSurfaceWireFrameClassic toggleButton Wire Frame

SnapToShapes toggleButton Snap to Shape
HyperlinkInsert button Hyperlink...
PrintAreaAddToPrintArea button Add to Print Area
PrintAreaClearPrintArea button Clear Print Area
PageBreaksResetAll button Reset All Page Breaks
ReviewNewComment button New Comment
ReviewPreviousComment button Previous
ReviewNextComment button Next
ReviewDeleteComment button Delete
ReviewShowOrHideComment button Show/Hide Comment

ReviewShowAllComments

toggleButton

Show All Comments

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

365/ 523

Control

idMso Type Label
PivotTableFieldInsert button Calculated Field...
PivotTableCalculatedItem button Calculated Item...
PivotTableSelectEntireTable button Entire PivotTable
PivotTableOptions button Options
DesignMode toggleButton Design Mode
PhoneticGuideEdit button Edit Phonetic
PhoneticGuideSettings button Phonetic Settings...

PhoneticGuideFieldShow

toggleButton

Show Phonetic Field

CircularReferences gallery Circular References
VisualBasic button Visual Basic
BorderThickBottom button Thick Bottom Border
BorderTopAndBottom button Top and Bottom Border
BorderTopAndDoubleBottom button Top and Double Bottom Border
BorderTopAndThickBottom button Top and Thick Bottom Border
BordersAll button All Borders
BorderThickOutside button Thick Box Border

Font comboBox Font:

FontSize comboBox Font Size:
StyleGalleryClassic gallery Style:

ZoomClassic gallery Zoom:

ScenarioGallery gallery Scenario:

DocumentLocation comboBox Address:

MergeCellsAcross button Merge Across
BorderInsideHorizontal button Inside Horizontal Border
BorderInsideVertical button Inside Vertical Border
BorderDiagonalDown button Diagonal Down Border
BorderDiagonalUp button Diagonal Up Border

TextDirectionLeftToRight

toggleButton

Left-to-Right

TextDirectionRightTolLeft

toggleButton

Right-to-Left

ActiveXCheckBox

button

Check Box

FindDialogExcel

button

Find...

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

366 / 523

Control

idMso Type Label
ActiveXTextBox button Text Box
ActiveXButton button Command Button
ActiveXRadioButton button Option Button
ActiveXListBox button List Box
ActiveXComboBox button Combo Box
ActiveXToggleButton button Toggle Button
ActiveXSpinButton button Spin Button
ActiveXScrollBar button Scroll Bar
ActiveXLabel button Label

ShadowSemitransparentClassic

toggleButton

Semitransparent Shadow

RightToLeftDocument toggleButton Right-to-Left Document
EditQuery button Edit Query...
DataRangeProperties button Properties

RefreshAll button Refresh All
RefreshCancel button Cancel Refresh
RefreshStatus button Refresh Status
PasteLink button Paste Link...

ClearAll button Clear All

DataValidation button Data Validation...
DataValidationCircleInvalid button Circle Invalid Data
ReviewShareWorkbook button Share Workbook...
ReviewHighlightChanges button Highlight Changes...
CompareAndMergeWorkbooks button Compare and Merge Workbooks...
DatabaseQueryNew button New Database Query...
DataValidationClearValidationCircles button Clear Validation Circles
ActiveXImage button Image

ShadowOnOrOffClassic toggleButton Shadow On/Off
ObjectSetShapeDefaults button Set AutoShape Defaults
FileSendAsAttachment button E-mail

FileNewDefault button New

FilePrintQuick button Quick Print

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

367/ 523

idMso

Control
Type

Label

PictureInsertFromfFile

button

Picture...

ShapeStraightConnectorArrow

toggleButton

Straight Arrow Connector

ShapeElbowConnectorArrow

toggleButton

Elbow Arrow Connector

PasteAsHyperlink

button

Paste as Hyperlink

ParagraphDistributed

toggleButton

Distributed

PictureSetTransparentColor

toggleButton

Set Transparent Color

PivotTableSolveOrder button Solve Order...
PivotTableReport button PivotTable and PivotChart Wizard
ReviewProtectAndShareWorkbook button Protect Sharing
OutlineGroup button Group...

OutlineUngroup button Ungroup...
IndentIncreaseExcel button Increase Indent
IndentDecreaseExcel button Decrease Indent
HangulHanjaConversion button Hangul Hanja Conversion...
MacroSecurity button Macro Security
WebPagePreview button Web Page Preview
SendCopySendNow button Send Now
SendCopySelectNames button Select Names
SendCopySendToMailRecipient toggleButton Mail Recipient
ComAddInsDialog button COM Add-Ins...
PivotChartInsertClassic button PivotChart
PivotFieldListShowHide toggleButton Field List

FileSaveAsWebPage button Save as Web Page...
GetExternalDataFromWeb button From Web
WebOptionsDialog button Web Options...
GetExternalDataFromText button From Text
FilePublishAsWebPage button Publish as Web Page...
PivotTableOlapOffline button Offline OLAP...
ObjectsMultiSelect button Select Multiple Objects
TextDirectionContext toggleButton Context

CalculateFull button TBA

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

368 /523

idMso

Control
Type

Label

WatchWindow

toggleButton

Watch Window

FormulaEvaluate button Evaluate Formula
AutoSumAverage button Average
AutoSumCount button Count Numbers
AutoSumMax button Max
AutoSumMin button Min
AutoSumMoreFunctions button More Functions...
PasteFormulas button Formulas
PasteNoBorders button No Borders
PasteTranspose button Transpose
DrawingCanvasFit button Fit
DrawingCanvasResize button Resize
DrawingCanvasExpand button Expand
ReviewSendForReview button Send for Review...
BorderDrawMenu splitButton Draw Border
BorderErase toggleButton Erase Border
BorderStyle dropDown Line Style

ShowFormulas

toggleButton

Show Formulas

PivotTableOlapPropertyFields button Property Fields...
TranslationPane button Translate...
ErrorChecking button Error Checking...
FileCheckOut button Check Out

FileChecklIn button Check In
PivotTableGenerateGetPivotData checkBox Generate GetPivotData
ReviewReplyWithChanges button Reply with Changes...
ReviewEndReview button End Review...

BorderDrawLine

toggleButton

Draw Border

BorderDrawGrid

toggleButton

Draw Border Grid

GetExternalDatalmportClassic button Import External Data
PicturesCompress button Compress Pictures...
VerticallyDistributed button Vertically Distributed

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

369 /523

Control

idMso Type Label
ReviewAllowUsersToEditRanges button Allow Users to Edit Ranges...
SpeakCells button Speak Cells

SpeakStop button Stop Speaking
SpeakByRows toggleButton By Rows
SpeakByColumns toggleButton By Columns
SpeakOnEnter toggleButton On Enter
TableInsertExcel button Table

ResearchPane toggleButton Research...
TableStyleTotalsRow checkBox Total Row
TableRowsInsertAboveExcel button Insert Table Rows Above
TableRowsDeleteExcel button Delete Table Rows
TableConvertToRange button Convert to Range
PrintListRange button Print List

FileInternetFax button Internet Fax

XmlExport button Export

XmlImport button Import

ViewDocumentActionsPane

toggleButton

Document Actions

ReviewShowInk

toggleButton

Show Ink

TableColumnslInsertLeftExcel button Insert Table Columns to the Left
TableColumnsDeleteExcel button Delete Table Columns
InkDeleteAllInk button Delete All Ink
TableUnlinkExternalData button Unlink
TableExportTableToSharePointList button Export Table to SharePoint List...
PrivacyOptionsDialog button Privacy Options...
ListSynchronize button Synchronize List
ChangesDiscardAndRefresh button Discard Changes and Refresh
TableOpenInBrowser button Open in Browser

TableResize button Resize Table
XmlExpansionPacksExcel button Expansion Packs
FileVersionHistory button View Version History
XmlDataRefresh button Refresh Data

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

370/ 523

idMso

Control
Type

Label

XmlIMapProperties

button

Map Properties

WindowSideBySideSynchronousScrolling

toggleButton

Synchronous Scrolling

WindowResetPosition button Reset Window Position
InkColorMoreColorsDialog button More Ink Colors...
ContactUs button Contact Us...

FilePermissionUnrestricted

toggleButton

Unrestricted Access

FilePermissionDoNotDistribute

toggleButton

Restricted Access

FilePermissionView button View Permission
FilePermission button Permission
Thesaurus button Thesaurus...
InkingStart button Start Inking
CheckForUpdates button Check for Updates
InkCopyAsText button Copy Ink As Text
InkEraser toggleButton Eraser

FilePermissionRestrictAs

button

Manage Credentials

Connections

button

Connections

FileViewDigitalSignatures

toggleButton

View Signatures

FileWorkflowTasks button View Workflow Tasks
FileStartWorkflow button Workflows
SignatureLinelnsert button Signature Line
Labellnsert button Label

Barcodelnsert button Barcode

ViewPageLayoutView

toggleButton

Page Layout

PivotClearAll button Clear All
ChartStylesGallery gallery Quick Styles
ChartLayoutGallery gallery Quick Layout
ChartSaveTemplates button Save As Template
ChartAxisTitles menu Axis Titles
ChartAxes menu Axes
ChartGridlines menu Gridlines
ChartFormatSelection button Format Selection

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

371 /523

Control

idMso Type Label
ChartElementSelector comboBox Chart Elements
PageMarginsGallery gallery Margins
TabPictureToolsFormat tab Format
TabDrawingToolsFormat tab Format
ShapeslnsertGallery gallery Shapes
ShapeChangeShapeGallery gallery Change Shape
ShapeFillTextureGallery gallery Texture
ShapeStylesGallery gallery Quick Styles
PageOrientationGallery gallery Orientation
FileServerTasksMenu menu Server
FileSendMenu menu Send
TablInsert tab Insert
TabPagelLayoutExcel tab Page Layout
TabView tab View
GroupFont group Font
GroupStyles group Styles
GroupProofing group Proofing
Grouplnsertlllustrations group Illustrations
GroupShapes group Insert Shapes
GroupPageSetup group Page Setup
GroupComments group Comments
GroupPictureSize group Size
GroupDrawBorders group Draw Borders
GroupTableProperties group Properties
GroupTableTools group Tools
GroupArrange group Arrange
GroupShapeStyles group Shape Styles
TabFormulas tab Formulas
TabData tab Data
TabReview tab Review
GroupChartLayouts group Chart Layouts

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

372 /523

Control

idMso Type Label
GroupChartStyles group Chart Styles
GroupChartAxes group Axes
GroupChartShapes group Insert
GroupNumber group Number
GroupAlignmentExcel group Alignment
GroupCells group Cells
GroupSortFilter group Sort & Filter
GrouplnsertTablesExcel group Tables
GroupPagelayoutScaleToFit group Scale to Fit
GroupPagelayoutSheetOptions group Sheet Options
GroupFunctionLibrary group Function Library
GroupNamedCells group Defined Names
GroupFormulaAuditing group Formula Auditing
GroupGetExternalData group Get External Data
GroupConnections group Connections
GroupOutline group Outline
GroupDataTools group Data Tools
GroupChangesExcel group Changes
ObjectEffectPresetGallery gallery Preset
PictureEffectsPresetGallery gallery Preset
_3DRotationGallery gallery 3-D Rotation
TabSmartArtToolsDesign tab Design
TabSmartArtToolsFormat tab Format
TabChartToolsDesign tab Design
TabChartToolsLayout tab Layout
TabChartToolsFormat tab Format
ShapeFillColorPicker gallery Shape Fill
OutlineColorPicker gallery Picture Border
FileDocumentInspect button Inspect Document
AlignLeftToRightMenu splitButton Left-to-Right
GroupControls group Controls

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

373/ 523

Control

idMso Type Label
GroupZoom group Zoom
ArrowStyleGallery gallery Arrows
OutlineDashesGallery gallery Dashes
OutlineWeightGallery gallery Weight
GroupPictureTools group Adjust
GroupSize group Size
FormatCellsNumberDialog button Format Cell Number
FormatCellsFontDialog button Format Cell Font
CellAlignmentOptions button Format Cell Alignment
PageSetupPageDialog button Page Setup
PageSetupSheetDialog button Sheet Options
TabPivotTableToolsOptions tab Options
PivotTableLayoutGrandTotals menu Grand Totals
TabPivotTableToolsDesign tab Design
GroupPivotTableActiveField group Active Field
GroupPivotTableLayout group Layout
GroupPivotTableSort group Sort
GroupPivotTableShowHide group Show/Hide
PivotTableLayoutSubtotals menu Subtotals
GroupPivotTableGroup group Group
GroupPivotTableTools group Tools
GroupPivotTableData group Data
GroupPivotTableOptions group PivotTable
GroupPivotTableStyles group PivotTable Styles
GroupPivotTableStyleOptions group PivotTable Style Options
WrapText toggleButton Wrap Text
ClearMenu menu Clear
ReviewTrackChangesMenu menu Track Changes
ObjectAlignMenu menu Align
ObjectRotateGallery gallery Rotate

FillMenu menu Fill

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

374 /523

Control

idMso Type Label

OrientationMenu menu Orientation
MergeCenterMenu splitButton Merge

AutoSumMenu splitButton AutoSum

PrintAreaMenu menu Print Area
PageBreakMenu menu Breaks

NameDefineMenu splitButton Define Name
RefreshMenu splitButton Refresh
WhatIfAnalysisMenu menu What-If Analysis
PivotTableFormulasMenu menu Formulas
PivotTableOlapTools menu OLAP tools
PivotTableOptionsMenu splitButton Table Options
ErrorCheckingMenu splitButton Error Checking
TraceRemoveArrowsMenu splitButton Remove Arrows
SortFilterMenu menu Sort & Filter
FontColorPicker gallery Font Color
CellFillColorPicker gallery Shading
BorderDoubleBottom button Bottom Double Border
TabHome tab Home

ChartTitle gallery Chart Title
ChartPrimaryHorizontalAxisTitle gallery Primary Horizontal Axis Title
ChartPrimaryVerticalAxisTitle gallery Primary Vertical Axis Title
ChartDepthAxisTitle gallery Depth Axis Title
ChartLegend gallery Legend

ChartDatalLabel gallery Data Labels
ChartPrimaryHorizontalGridlines gallery Primary Horizontal Gridlines
ChartPrimaryVerticalGridlines gallery Primary Vertical Gridlines
ChartDepthGridlines gallery Depth Gridlines
ChartPrimaryHorizontalAxis gallery Primary Horizontal Axis
ChartPrimaryVerticalAxis gallery Primary Vertical Axis
ChartDepthAxis gallery Depth Axis
ChartDataTable gallery Data Table

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

375/ 523

Control

idMso Type Label
ChartTrendline gallery Trendline
ChartErrorBars gallery Error Bars
ChartLines gallery Lines
ChartUpDownBars gallery Up/Down Bars
ChartPlotArea gallery Plot Area
ChartWall gallery Chart Wall
ChartFloor gallery Chart Floor
SmartArtAddShape button Add Shape
SmartArtLargerShape button Larger
SmartArtSmallerShape button Smaller
SmartArtResetGraphic button Reset Graphic
SmartArtTextPane toggleButton Text Pane
SmartArtEditIn2D toggleButton Edit in 2-D

SmartArtLayoutGallery gallery Change Layout
SmartArtMorelLayoutsDialog button More Layouts...
SmartArtStylesGallery gallery Quick Styles
SmartArtChangeColorsGallery gallery Change Colors
ObjectEffectSoftEdgesGallery gallery Soft Edges
ObjectEffectGlowGallery gallery Glow
GradientGallery gallery Gradient
ObjectEffectShadowGallery gallery Shadow
WordArtInsertGallery gallery WordArt
TextEffectTransformGallery gallery Transform
TabHeaderAndFooterToolsDesign tab Design
HeaderFooterHeaderGallery gallery Header
HeaderFooterFooterGallery gallery Footer
GroupHeaderFooterElements group Header & Footer Elements
HeaderFooterPageNumberInsertExcel button Page Number
HeaderFooterNumberOfPagesInsert button Number of Pages
HeaderFooterCurrentDate button Current Date
HeaderFooterCurrentTimelnsert button Current Time

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

376 / 523

Control

idMso Type Label
HeaderFooterFilePathInsert button File Path
HeaderFooterFileNamelnsert button File Name
HeaderFooterSheetNamelnsert button Sheet Name
HeaderFooterAlignMargins checkBox Align with Page Margins
HeaderFooterPicturelnsert button Picture
HeaderFooterFormatPicture button Format Picture
GroupHeaderFooterOptions group Options
HeaderFooterDifferentOddEvenPageExcel checkBox Different Odd & Even Pages
HeaderFooterDifferentFirstPageExcel checkBox Different First Page
HeaderFooterScaleWithDocument checkBox Scale with Document
SheetTabColorGallery gallery Tab Color
FontShadingColorMoreColorsDialog button More Colors...
FontColorMoreColorsDialogExcel button More Colors...
BorderMoreColorsDialog button More Colors...
SheetTabColorMoreColorsDialog button More Colors...
PivotTableNewStyle button New PivotTable Style...

PivotPlusMinusFieldHeadersShowHide

toggleButton

Field Headers

PivotTableExpandField button Expand Entire Field
PivotCollapseField button Collapse Entire Field
ConditionalFormattingDataBarsGallery gallery Data Bars
ConditionalFormattingColorScalesGallery gallery Color Scales
ConditionalFormattingIconSetsGallery gallery Icon Sets
ConditionalFormattingDataBarsMoreOptions button More Rules...
ConditionalFormattingColorScalesMore button More Rules...
ConditionalFormattingIconSetsMore button More Rules...
TableColumnsInsertRightExcel button Insert Table Column to the Right
TableRowsInsertBelowExcel button Insert Table Row Below
ConditionalFormattingHighlightBetween button Between...
ConditionalFormattingClearSelectedCells button Clear Rules from Selected Cells
ConditionalFormattingClearSheet button Clear Rules from Entire Sheet
ConditionalFormattingClearTable button Clear Rules from This Table

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

377/ 523

Control

idMso Type Label
ConditionalFormattingClearPivotTable button Clear Rules from This PivotTable
PivotTableStylesGallery gallery Quick Styles
FormatAsTableGallery gallery Format as Table
TableStylesGalleryExcel gallery Quick Styles
ConditionalFormattingsManage button Manage Rules...
ConditionalFormattingHighlightGreaterThan button Greater Than...
ConditionalFormattingHighlightLessThan button Less Than...
ConditionalFormattingHighlightEqualTo button Equal To...
ConditionalFormattingHighlightTextContaining button Text that Contains...
ConditionalFormattingHighlightDateOccuring button A Date Occurring...
ConditionalFormattingHighlightDuplicateValues button Duplicate Values...
ConditionalFormattingTopNItems button Top 10 Items...
ConditionalFormattingTopNPercent button Top 10 %...
ConditionalFormattingBottomNItems button Bottom 10 Items...
ConditionalFormattingBottomNPercent button Bottom 10 %...
ConditionalFormattingAboveAverage button Above Average...
ConditionalFormattingBelowAverage button Below Average...
RemoveDuplicates button Remove Duplicates
FilterReapply button Reapply
ThemeColorsGallery gallery Colors
PivotTablelnsert button PivotTable
PivotChartInsert button PivotChart
PivotTableMove button Move PivotTable
PivotTableChangeDataSource button Change Data Source...
GroupSmartArtLayouts group Layouts
GroupSmartArtQuickStyles group SmartArt Styles
GroupSmartArtCreateGraphic group Create Graphic
GroupSmartArtReset group Reset
GroupSmartArtSize group Size
ConditionalFormattingHighlightCellsMenu menu Highlight Cells Rules
ConditionalFormattingTopBottomMenu menu Top/Bottom Rules

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

378 /523

Control
idMso Type Label
FormatCellsMenu menu Format
ConditionalFormattingClearMenu menu Clear Rules
ThemeSearchOfficeOnline button More Themes on Microsoft Office Online...
FontColorCycle button Color
TabAddIns tab Add-Ins
CellsInsertSmart button Insert Cells
CellsDeleteSmart button Delete Cells...
ObjectEditShapeMenu menu Edit Shape
PivotTableLayoutReportLayout menu Report Layout
PivotTableLayoutShowInCompactForm button Show in Compact Form
PivotTableLayoutShowInOutlineForm button Show in Outline Form
PivotTableLayoutShowInTabularForm button Show in Tabular Form
PivotTableClearMenu menu Clear
ConditionalFormattingTopBottomMore button More Rules...
ConditionalFormattingHighlightRulesMore button More Rules...
CellStylesGallery gallery Cell Styles
CellStyleNew button New Cell Style...
CellStylesMerge button Merge Styles...
TableStyleNew button New Table Style...
TableStyleClear button Clear
TableStyleHeaderRow checkBox Header Row
FilePublishExcelServices button Excel Services
PivotTableOlapConvertToFormulas button Convert to Formulas
PivotTableLayoutBlankRows menu Blank Rows
TableStyleFirstColumn checkBox First Column
TableStyleLastColumn checkBox Last Column
TableStyleBandedRows checkBox Banded Rows
TableStyleBandedColumns checkBox Banded Columns
TableStyleRowHeaders checkBox Row Headers
TableStyleColumnHeaders checkBox Column Headers
TableSummarizeWithPivot button Summarize with PivotTable

379/ 523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
ConnectionProperties button Connection Properties...
PivotClearFilters button Clear Filters
GetExternalDataFromAccess button From Access
GetExternalDataFromOtherSources gallery From Other Sources
GetExternalDataExistingConnections button Existing Connections
GroupThemesExcel group Themes
PivotPlusMinusButtonsShowHide toggleButton +/- Buttons

FileSaveAsPdfOrXps button Publish as PDF or XPS
FileSaveAsExcelOpenDocumentSpreadsheet button OpenDocument Spreadsheet
MoreControlsDialog button More Controls...
GroupCode group Code

TabDeveloper tab Developer

GroupXml group XML
PageScaleToFitWidth comboBox Width:
PageScaleToFitHeight comboBox Height:
SelectMenuExcel menu Find & Select
GoToSpecial button Go To Special...
GoToFormulas button Formulas
GoToComments button Comments
GoToConditionalFormatting button Conditional Formatting
GoToConstants button Constants
GoToDataValidation button Data Validation
PrintTitles button Print Titles
NameUseInFormula gallery Use in Formula
CalculationOptionsMenu menu Calculation Options
CalculationOptionsManuallly toggleButton Manual
CalculationOptionsAutomatically toggleButton Automatic

CalculationOptionsAutomaticallyExceptDataTables

toggleButton

Automatic Except for Data Tables

XmlSource toggleButton Source...
GroupClipboard group Clipboard
GrouplnsertLinks group Links

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

380/ 523

Control

idMso Type Label
GrouplnsertBarcode group Barcode
GroupCalculation group Calculation
BordersGallery splitButton Borders
BordersMoreDialog button More Borders...
PageScaleToFitOptionsDialog button More Pages...
PageBreakInsertExcel button Insert Page Break
PageBreakRemove button Remove Page Break
PageSizeGallery gallery Size
ObjectPicturefFill button Picture...
PivotTableGroupSelection button Group Selection
PivotTableGroupField button Group Field
WindowSwitchWindowsMenuExcel menu Switch Windows
ThemeColorsCreateNew button Create New Theme Colors...
ThemeFontsCreateNew button Create New Theme Fonts...
ShapeFillMoreGradientsDialog button More Gradients...
ShadowOptionsDialog button Shadow Options...
MarginsCustomMargins button Custom Margins...
FunctionsRecentlyUsedtInsertGallery gallery Recently Used
FunctionsFinanciallnsertGallery gallery Financial
FunctionsDateTimelnsertGallery gallery Date & Time
FunctionsMathTrigInsertGallery gallery Math & Trig
FunctionsTextInsertGallery gallery Text
FunctionsLogicallnsertGallery gallery Logical
FunctionsStatisticallnsertGallery gallery Statistical
FunctionsLookupReferencelnsertGallery gallery Lookup & Reference
FunctionsInformationInsertGallery gallery Information
TabTableToolsDesignExcel tab Design
GroupTableStyleOptions group Table Style Options
GroupTableExternalData group External Table Data
GroupEditingExcel group Editing
FileCompatibilityChecker button Run Compatibility Checker

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

381 /523

Control
idMso Type Label
ThemeFontsGallery gallery Fonts
ThemekEffectsGallery gallery Effects
FileProperties toggleButton Properties
TabPrintPreview tab Print Preview
GroupPrintPreviewPrint group Print
GroupPrintPreviewPreview group Preview
SortDialog button Sort...
SortAscendingExcel button Sort Ascending
SortDescendingExcel button Sort Descending
SortCustomExcel button Custom Sort...
FileCreateDocumentWorkspace toggleButton Create Document Workspace
FileSaveToDocumentManagementServer button Document Management Server
FileDocumentManagementInformation toggleButton Document Management Information
QuickAccessToolbarCustomization button Customize Quick Access Toolbar...
FilePrepareMenu menu Prepare
FileMarkAsFinal toggleButton Mark as Final
FileAddDigitalSignature button Add a Digital Signature
SignatureServicesAdd button Add Signature Services...
TextBoxInsertMenu splitButton Text Box
TextBoxInsertHorizontal toggleButton Horizontal Text Box
ControlProperties button Properties
ViewCode button View Code
GroupHeaderFooterNavigation group Navigation
ShadowStyleGalleryClassic gallery Shadow Effects
GroupInkSelect group Select
NumberFormatGallery comboBox Number Format
NumberFormatsDialog button More Number Formats...
PageSizeMorePaperSizesDialogExcel button More Paper Sizes...
PictureBrightnessGallery gallery Brightness
PictureContrastGallery gallery Contrast
SmartArtAddShapeAfter button Add Shape After

382 /523

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

Control

idMso Type Label
SmartArtAddShapeBefore button Add Shape Before
SmartArtAddShapeAbove button Add Shape Above
SmartArtAddShapeBelow button Add Shape Below
SmartArtAddAssistant button Add Assistant
ChartSwitchRowColumn button Switch Row/Column
ChartChangeType button Change Chart Type...
GroupChartData group Data
GroupChartLocation group Location
GroupChartType group Type
_3DRotationOptionsDialog button 3-D Rotation Options...
_3DBevelOptionsDialog button 3-D Options...

SelectionPane

toggleButton

Selection Pane...

SmartArtOrganizationChartLeftHanging button Left Hanging
SmartArtOrganizationChartRightHanging button Right Hanging
SmartArtOrganizationChartBoth button Both
SmartArtOrganizationChartStandard button Standard

SmartArtRightTolLeft toggleButton Right to Left
ViewMessageBar checkBox Message Bar
NameManager button Name Manager
NameDefine button Define Name...
AccountingFormatExcel button
AccountingFormatMoreExcel button More Accounting Formats...
ShapeStylesOtherThemekFillsGallery gallery Other Theme Fills
SmartArtOrganizationChartMenu menu Layout

_ 3DEffectsGalleryClassic gallery 3-D Effects
_3DDirectionGalleryClassic gallery Direction
_3DLightingGalleryClassic gallery Lighting
GroupShadowEffects group Shadow Effects
Group3DEffects group 3-D Effects
ShadowcColorPickerClassic gallery Shadow Color

_ 3DEffectColorPickerClassic gallery 3-D Color

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

383 /523

Control

idMso Type Label
ControlsGallery gallery Insert
GoToHeader button Go to Header
GoToFooter button Go to Footer
UnderlineGallery splitButton Underline
GroupAddInsMenuCommands group Menu Commands
GroupAddInsToolbarCommands group Toolbar Commands
ViewFreezePanesGallery gallery Freeze Panes
GrouplInk group Ink
TabInkToolsPens tab Pens
GrouplInkPens group Pens
GrouplInkClose group Close
InkBallpointPen toggleButton Ballpoint Pen
InkFeltTipPen toggleButton Felt Tip Pen
InkHighlighter toggleButton Highlighter

PhoneticGuideMenu splitButton Phonetic Guide
MarginsShowHide checkBox Show Margins
_3DSurfaceMaterialGalleryClassic gallery Surface
_3DExtrusionDepthGalleryClassic gallery Depth
GroupHeaderFooter group Header & Footer
FunctionsCubelnsertGallery gallery Cube
FunctionsEngineeringInsertGallery gallery Engineering
ThemeSaveCurrent button Save Current Theme...
ThemesGallery gallery Themes
ChartResetToMatchStyle button Reset to Match Style
Chart3DView button 3-D Rotation...
ObjectSizeAndPropertiesDialog button Size and Properties...
ShapeConvertToFreeform button Convert to Freeform
ReflectionGallery gallery Reflection
PictureRecolorGallery gallery Recolor
SmartArtPromote button Promote
SmartArtDemote button Demote

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

384 /523

Control

idMso Type Label
TabPivotChartToolsAnalyze tab Analyze
GroupPivotChartShowOrHide group Show/Hide
GroupPivotChartData group Data
GroupPivotChartActiveField group Active Field

PivotChartFilterShow

toggleButton

PivotChart Filter

ChartTitleOptionsDialog button More Title Options...
ChartLegendOptionsDialogDialog button More Legend Options...
ChartDatalLabelDialog button More Data Label Options...
ChartPrimaryHorizontalAxisTitleOptionsDialog button More Primary Horizontal Axis Title Options...
ChartPrimaryVerticalAxisTitleOptionsDialog button More Primary Vertical Axis Title Options...
ChartSecondaryHorizontalAxisTitleOptionsDialog button More Secondary Horizontal Axis Title
Options...
ChartSecondaryVerticalAxisTitleOptionsDialog button More Secondary Vertical Axis Title Options...
ChartDepthAxisTitleOptionsDialog button More Depth Axis Title Options...
ChartPrimaryHorizontalGridlinesOptionsDialog button More Primary Horizontal Gridlines Options...
ChartPrimaryVerticalGridlinesOptionsDialog button More Primary Vertical Gridlines Options...
ChartSecondaryHorizontalGridlinesOptionsDialog button More Secondary Horizontal Gridlines
Options...
ChartSecondaryVerticalGridlinesOptionsDialog button More Secondary Vertical Gridlines Options...
ChartDepthGridlinesOptionsDialog button More Depth Gridlines Options...
ChartPrimaryHorizontalAxisOptionsDialog button More Primary Horizontal Axis Options...
ChartPrimaryVerticalAxisOptionsDialog button More Primary Vertical Axis Options...
ChartSecondaryHorizontalAxisOption button More Secondary Horizontal Axis Options...
ChartSecondaryVerticalAxisOptionsDialog button More Secondary Vertical Axis Options...
ChartDepthAxisOptionsDialog button More Depth Axis Options...
ChartDataTableOptionsDialog button More Data Table Options...
ChartTrendlineOptionsDialog button More Trendline Options...
ChartErrorBarsOptionsDialog button More Error Bars Options...
ChartUpDownBarsOptionsDialog button More Up/Down Bars Options...
ChartPlotAreaOptionsDialog button More Plot Area Options...
ChartWallOptionsDialog button More Walls Options...
ChartFloorOptionsDialog button More Floor Options...

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

385 /523

Control

idMso Type Label
ChartSecondaryHorizontalAxisTitle gallery Secondary Horizontal Axis Title
ChartSecondaryVerticalAxisTitle gallery Secondary Vertical Axis Title
ChartSecondaryHorizontalGridlines gallery Secondary Horizontal Gridlines
ChartSecondaryVerticalGridlines gallery Secondary Vertical Gridlines
ChartSecondaryHorizontalAxis gallery Secondary Horizontal Axis
ChartSecondaryVerticalAxis gallery Secondary Vertical Axis
GroupAddInsCustomToolbars group Custom Toolbars
ConditionalFormattingMenu menu Conditional Formatting
TabPivotChartToolsDesign tab Design
TabPivotChartToolsLayout tab Layout
TabPivotChartToolsFormat tab Format
ObjectBringToFrontMenu splitButton Bring to Front
ObjectSendToBackMenu splitButton Send to Back
ObjectsGroupMenu menu Group
SignatureLineInsertMenu splitButton Signature Line
FileSaveAsExcel97_2003 button Excel 97-2003 Workbook
TextBoxInsertExcel toggleButton Text Box

FileSaveAsMenu splitButton Save As Other Format
FilePrintMenu splitButton Preview and Print
FilePermissionRestrictMenu menu Restrict Permission
InsertCellstMenu splitButton Insert

PivotTablelnsertMenu splitButton PivotTable
OutlineGroupMenu splitButton Group

OutlineUngroupMenu splitButton Ungroup
FormulaMoreFunctionsMenu menu More Functions
DocumentPanelTemplate button Document Panel
GroupModify group Modify

ViewGridlinesToggleExcel

toggleButton

View Gridlines

BevelShapeGallery gallery Bevel
_3DBevelPictureTopGallery gallery Bevel
EditLinks button Edit Links

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

386 /523

Control

idMso Type Label
GlowColorPicker gallery More Glow Colors
RecolorColorPicker gallery More Variations
GlowColorMoreColorsDialog button More Colors...
PictureRecolorMoreColorsDialog button More Colors...
SmartArtAddBullet button Add Bullet
PictureChange button Change Picture...
GroupWordArtStyles group WordArt Styles
TextFillColorPicker gallery Text Fill
TextOutlineColorPicker gallery Text Outline
TextOutlineColorMoreColorsDialog button More Outline Colors...
TextEffectsMenu menu Text Effects
TextStylesGallery gallery Quick Styles
WordArtClear button Clear WordArt
TextPictureFill button Picture...
TextFillGradientGallery gallery Gradient
TextFillMoreGradientsDialog button More Gradients...
TextFillTextureGallery gallery Texture
TextOutlineDashesGallery gallery Dashes
TextOutlineMoreLinesDialog button More Lines...
TextOutlineWeightGallery gallery Weight
TextEffectShadowGallery gallery Shadow
TextEffectsMoreShadowsDialog button Shadow Options...
TextEffectsBevelMore3DOptionsDialog button 3-D Options...
TextEffects3DRotationGallery gallery 3-D Rotation
TextEffects3DRotationOptionsDialog button 3-D Rotation Options...
TextEffectGlowGallery gallery Glow
TextGlowColorPicker gallery More Glow Colors
TextGlowColorMoreColorsDialog button More Colors...
TextReflectionGallery gallery Reflection
ShapekEffectsMenu menu Shape Effects
PivotTableSubtotalsDoNotShow button Do Not Show Subtotals

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

387 /523

Control

idMso Type Label
PivotTableSubtotalsOnBottom button Show all Subtotals at Bottom of Group
PivotTableSubtotalsOnTop button Show all Subtotals at Top of Group
PivotTableGrandTotalsOffForRowsAndColumns button Off for Rows and Columns
PivotTableGrandTotalsOnForRowsAndColumns button On for Rows and Columns
PivotTableGrandTotalsOnForRowsOnly button On for Rows Only
PivotTableGrandTotalsOnForColumnsOnly button On for Columns Only
PivotTableBlankRowsInsert button Insert Blank Line after Each Item
PivotTableBlankRowsRemove button Remove Blank Line after Each Item
GroupChartCurrentSelection group Current Selection
GroupChartLabels group Labels

AlignTopExcel toggleButton Top Align

AlignMiddleExcel toggleButton Middle Align

AlignBottomExcel toggleButton Bottom Align

BevelTextGallery gallery Bevel

PictureCorrectionsDialog button Picture Corrections Options...
GroupTableStylesExcel group Table Styles
ConditionalFormattingNewRule button New Rule...
SmartArtAddShapeSplitMenu splitButton Add Shape Options
ViewRulerExcel checkBox Ruler

GroupInkFormat group Format

InkColorPicker gallery Color

BorderColorPickerExcel gallery Line Color
GroupSmartArtShapes group Shapes

GrouplnsertText group Text

ShapeOutlineColorPicker gallery Picture Border
TableDeleteRowsAndColumnsMenu splitButton Delete

AccountingFormatMenu splitButton

GroupChartProperties group Properties
PivotTableEditDataSource splitButton Edit Data Source
FileExcelServicesOptions button Excel Services Options
TableExportMenu menu Export

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

388 /523

Control

idMso Type Label
TableExportTableToVisioPivotDiagram button Export Table to Visio PivotDiagram...
PasteMenu splitButton Paste
GroupPictureStyles group Picture Styles
PictureStylesGallery gallery Quick Styles
GrouplnsertChartsExcel group Charts
ChartTypeColumnInsertGallery gallery Column
ChartTypeLinelnsertGallery gallery Line
ChartTypePielnsertGallery gallery Pie
ChartTypeBarInsertGallery gallery Bar
ChartTypeArealnsertGallery gallery Area
ChartTypeXYScatterInsertGallery gallery Scatter
ChartTypeOtherInsertGallery gallery Other Charts
ChartTypeAlllnsertDialog button All Chart Types...
PivotChartClearMenu menu Clear
PictureEffectsShadowGallery gallery Shadow
PictureEffectsGlowGallery gallery Glow
PictureEffectsSoftEdgesGallery gallery Soft Edges
PictureReflectionGallery gallery Reflection
PictureRotationGallery gallery 3-D Rotation
InkToolsClose button Close Ink Tools
SheetRowslInsert button Insert Sheet Rows
SheetColumnslInsert button Insert Sheet Columns
SheetRowsDelete button Delete Sheet Rows
SheetColumnsDelete button Delete Sheet Columns
GroupViewShowHide group Show/Hide
GroupWindow group Window
GroupWorkbookViews group Workbook Views
ViewHeadings checkBox View
RefreshAllMenu splitButton Refresh
HideAndUnhideMenu menu Hide & Unhide
DataValidationMenu splitButton Data Validation

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

389 /523

idMso

Control
Type

Label

FileDocumentEncrypt

toggleButton

Encrypt Document

WordArtFormatDialog button Format Text Effects...
ObjectRotationOptionsDialog button More Rotation Options...
MoreTextureOptions button More Textures...
TextFillColorMoreColorsDialog button More Fill Colors...
BorderTopNoToggle button Top Border
BorderBottomNoToggle button Bottom Border
BorderLeftNoToggle button Left Border
BorderRightNoToggle button Right Border

WindowSplitToggle

toggleButton

Split

FileEmailAsPdfEmailAttachment button E-mail as PDF Attachment
FileEmailAsXpsEmailAttachment button E-mail as XPS Attachment
GroupPrintPreviewZoom group Zoom

PictureEffectsMenu menu Picture Effects
PictureShapeGallery gallery Change Shape
GroupChartBackground group Background
GroupChartAnalysis group Analysis

ZoomToSelection button Zoom to Selection
GridlinesExcel checkBox View

UnmergeCells button Split Cells...

MenuPublish menu Publish

ViewSideBySide toggleButton View Side by Side
FileSaveAsOtherFormats button Save As
FileSaveAsExcelXIsx button Excel Workbook
FileSaveAsExcelXIsxMacro button Excel Macro-Enabled Workbook
FileSaveAsExcelXIsb button Excel Binary Workbook
PasteAsPictureMenu menu As Picture
GroupPivotActions group Actions
PivotTableSelectFlyout menu Select

ZoomCurrent100 button 100%
TextFillMoreTextures button More Textures...

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

390/ 523

Control

idMso Type Label

GroupMacros group Macros

PlayMacro button Macros

MenuMacros splitButton Macros

AdvertisePublishAs button Find add-ins for other file formats
UpgradeWorkbook button Convert
ReviewProtectWorkbookMenu menu Protect Workbook

ReviewRestrictEditing

toggleButton

Protect Structure and Windows

AlternativeText button Size and Properties...
ThemeBrowseForThemes button Browse for Themes...
FileCheckOutDiscard button Discard Check Out
MdiChildSystemMenu menu Document
3.1.3 PowerPoint 2007
Control
idMso Type Label
Spelling button Spelling...
FileSave button Save
FilePrint button Print
TableInsert button Insert Table...
ChartInsert button Chart...
FileNew button New
Copy button Copy
Cut button Cut
Paste button Paste
FileOpen button Open
Clear button Clear

Superscript

toggleButton

Superscript

Subscript

toggleButton

Subscript

FileClose

button

Close

FormatPainter

toggleButton

Format Painter

FilePrintPreview

toggleButton

Print Preview

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

391 /523

Control

idMso Type Label
PickUpStyle button Pick Up Style
PasteApplyStyle button Apply Style
Bold toggleButton Bold

Italic toggleButton Italic
Underline toggleButton Underline
AlignLeft toggleButton Align Left
AlignRight toggleButton Align Right
AlignCenter toggleButton Center
AlignJustify toggleButton Justify

Undo gallery Undo

Redo gallery Redo
OutlinePromote button Promote
OutlineDemote button Demote
OutlineMoveUp button Move Up
OutlineMoveDown button Move Down
OutlineExpand button Expand
OutlineCollapse button Collapse
TextBoxInsert toggleButton Text Box
FindDialog button Find...
BorderTop toggleButton Top Border
BorderBottom toggleButton Bottom Border
BorderLeft toggleButton Left Border
BorderRight toggleButton Right Border

Borderlnside

toggleButton

Inside Borders

BorderOutside

toggleButton

Outside Borders

BorderNone toggleButton No Border
ObjectsGroup button Group
ObjectsUngroup button Ungroup
ObjectBringToFront button Bring to Front
ObjectSendToBack button Send to Back
ObjectBringForward button Bring Forward

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

392 /523

Control

idMso Type Label
ObjectSendBackward button Send Backward
ViewFullScreenView button Full Screen
ViewRulerPowerPoint checkBox Ruler

ObjectsSelect

toggleButton

Select Objects

MacroPlay button Macros
ObjectFlipHorizontal button Flip Horizontal
ObjectFlipVertical button Flip Vertical
ObjectRotateRight90 button Rotate Right 90°
ObjectRotatelLeft90 button Rotate Left 90°
GroupDrawing group Drawing
ObjectEditPoints toggleButton Edit Points

GridSettings

button

Grid Settings...

PropertySheet

button

Property Sheet

OutlineShowTextFormatting

toggleButton

Show Text Formatting

Strikethrough toggleButton Strikethrough
WindowsArrangeAll button Arrange All
WindowNew button New Window
Symbollnsert button Symbol...
ReplaceDialog button Replace...
PagePrevious button Previous Page
PageNext button Next Page

TextBoxInsertVertical

toggleButton

Vertical Text Box

RedoOrRepeat button Redo
ObjectsRegroup button Regroup
FontSizelncrease button Increase Font Size
FontSizeDecrease button Decrease Font Size
OleObjectctInsert button Object...
SnapToGrid toggleButton Snap to Grid
FindNext button Find Next
PasteDuplicate button Duplicate
SlideNew button New Slide

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

393 /523

idMso

Control
Type

Label

ClipArtInsert

toggleButton

Clip Art...

CreateHandoutsInWord button Create Handouts in Microsoft Office Word
Shadow toggleButton Shadow

ObjectRotateFree button Free Rotate

ShapesMoreShapes button More AutoShapes
SlideMasterMasterLayout button Slide Layout...

CollapseAll button Collapse All

OutlineExpandAll button Expand All

CombineCharacters toggleButton Yoko-Gumi

SlideHide toggleButton Hide Slide

AnimationCustom

toggleButton

Custom Animation...

PictureCrop

toggleButton

Crop

SlideShowRehearseTimings button Rehearse Timings
ViewSlideView toggleButton Slide

ViewOutlineView toggleButton Outline
ViewSlideSorterView toggleButton Slide Sorter
ViewNotesPageView toggleButton Notes Page
ViewSlideShowView button Slide Show
ViewSlideMasterView toggleButton Slide Master

FileSaveAs button Save As
AdvancedFileProperties button View Document Properties...
PasteSpecialDialog button Paste Special...

SelectAll button Select All
FileLinksToFiles button Edit Links to Files
HeaderFooterInsert button Header & Footer...
DateAndTimelnsert button Date & Time...
NumberlInsert button Number...
BordersShadingDialog button Borders and Shading...
BulletsAndNumberingBulletsDialog button Bullets and Numbering...
SetLanguage button Set Language...
AutoCorrect button AutoCorrect Options...

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

394 /523

Control

idMso Type Label

MergecCells button Merge Cells
SplitCells button Split Cells...
TableRowSelect button Select Row
TableColumnSelect button Select Column
TableSelect button Select Table
ShowClipboard button Office Clipboard...
OutlookTaskCreate button Create Microsoft Office Outlook Task
WindowMinimize button Minimize
WindowRestore button Restore
WindowClose button Close
PrintPreviewClose button Close Print Preview
ZoomDialog button Zoom...

About button About
PictureInsertFromFilePowerPoint button Picture...
ExchangeFolder button Exchange Folder...
AddInManager button Add-Ins...
ChartEditDataSource button Select Data...

WindowMoreWindowsDialog

toggleButton

More Windows...

ObjectEditDialog button Object...
ObjectFormatDialog button Object...
Help button Help
WebGoBack button Back
WebGoForward button Forward
SmartArtInsert button SmartArt...

ShapeRerouteConnectors

toggleButton

Reroute Connectors

ObjectNudgeUp button Up
ObjectNudgeDown button Down
ObjectNudgeleft button Left
ObjectNudgeRight button Right

ShapeStraightConnector

toggleButton

Straight Connector

ShapeElbowConnector

toggleButton

Elbow Connector

[MS-CUSTOMUI] - v20161017
Custom UI XML Markup Specification

Copyright © 2016 Microsoft Corporation

Release: October 17, 2016

395 /523

Control

idMso Type Label
ObjectFillMoreColorsDialog button More Fill Colors...
ObjectBorderOutlineColorMoreColorsDialog button More Outline Colors...
LineStylesDialog button More Lines...
ArrowsMore button More Arrows...
WordArtVerticalText button Vertical Text
ContrastMore button More Contrast
ContrastLess button Less Contrast
BrightnessMore button More Brightness
BrightnessLess button Less Brightness
ShadowNudgeUpClassic button Nudge Shadow Up
ShadowNudgeDownClassic button Nudge Shadow Down
ShadowNudgelLeftClassic button Nudge Shadow Left
ShadowNudgeRightClassic button Nudge Shadow Right

ShapeRectangle

toggleButton

Rectangle

ShapeRoundedRectangle

toggleButton

Rounded Rectangle

ShapelsoscelesTriangle

toggleButton

Isosceles Triangle

ShapeOval toggleButton Oval
ShapeleftBrace toggleButton Left Brace
ShapeRightBrace toggleButton Right Brace
ShapeArc toggleButton Arc
ShapeRightArrow toggleButton Right Arrow
ShapeDownArrow toggleButton Down Arrow

ShapeRoundedRectangularCallout

toggleButton

Rounded Rectangular Callout

ShapeStar

toggleButton

5-Point Star

PictureReset

button

Reset Picture

SnapToShapes toggleButton Snap to Shape
ViewVisualBasicCode button View Code
MasterViewClose button Close
HyperlinkInsert button Hyperlink...
ReviewNewComment button New Comment
VisualBasic button Visual Basic

[MS-CUSTOMUI] - v20161017

Custom UI XML Markup Specification
Copyright © 2016 Microsoft Corporation
Release: October 17, 2016

396 / 523

Control

idMso Type Label

BordersAll toggleButton All Borders
SlideBackgroundFormatDialog button Format Background...
TableDrawBorderPenStyle dropDown Pen Style

Font comboBox Font:

FontSize comboBox Font Size:
ZoomClassic gallery Zoom:
DocumentLocation comboBox Address:

InsertTab button Tab

WindowsCascade button Cascade

BorderInsideHorizontal

toggleButton

Inside Horizontal Border

BorderInsideVertical

toggleButton

Inside Vertical Border

BorderDiagonalDown

toggleButton

Diagonal Down Border

BorderDiagonalUp

toggleButton

Diagonal Up Border

TextDirectionLeftToRight

toggleButton

Left-to-Right

Text