[MS-CUSTOMUI]:
Custom UI XML Markup Specification

Intellectual Property Rights Notice for Open Specifications Documentation

Technical Documentation. Microsoft publishes Open Specifications documentation for protocols,
file formats, languages, standards as well as overviews of the interaction among each of these
technologies.

Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms
that are contained in the terms of use for the Microsoft website that hosts this documentation, you
may make copies of it in order to develop implementations of the technologies described in the
Open Specifications and may distribute portions of it in your implementations using these
technologies or your documentation as necessary to properly document the implementation. You
may also distribute in your implementation, with or without modification, any schema, IDL's, or
code samples that are included in the documentation. This permission also applies to any
documents that are referenced in the Open Specifications.

No Trade Secrets. Microsoft does not claim any trade-secret rights in this documentation.

Patents. Microsoft has patents that may cover your.implementations of the technologies described
in the Open Specifications. Neither this notice nor Microsoft's delivery of the documentation grants

any licenses under those or any other Microsoft patents. However, a given Open Specification may

be covered by Microsoft Open Specification Promise or the Community Promise. If you would prefer
a written license, or if the technologies described in the Open Specifications are not covered by the
Open Specifications Promise or Community Promise, as applicable, patent licenses are available by

contacting iplg@microsoft.com.

Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

Fictitious Names. The example companies, organizations, products, domain names, e-mail

addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with-any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than‘specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming
environments in order for you to develop an implementation. If you have access to Microsoft
programming tools and environments you are free to take advantage of them. Certain Open
Specifications are intended for use in conjunction with publicly available standard specifications and
network programming art, and assumes that the reader either is familiar with the aforementioned
material or has immediate access to it.

Preliminary Documentation. This Open Specification provides documentation for past and current
releases and/or for the pre-release version of this technology. This Open Specification is final
documentation for past or current releases as specifically noted in the document, as applicable; it is
preliminary documentation for the pre-release versions. Microsoft will release final documentation in
connection with the commercial release of the updated or new version of this technology. As the
documentation may change between this preliminary version and the final version of this technology,
there are risks in relying on preliminary documentation. To the extent that you incur additional

1/490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

development obligations or any other costs as a result of relying on this preliminary documentation,

you do so at your own risk.

Qﬁ

N
(e
O\Q

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

2/ 490

Revision Summary

Revision Revision

Date History Class Comments

1/15/2009 1.0 Major Initial Availability

7/13/2009 1.01 Major Revised and edited the technical content

8/28/2009 1.02 Editorial Revised and edited the technical content

11/6/2009 1.03 Editorial Revised and edited the technical content

2/19/2010 2.0 Editorial Revised and edited the technical content

3/31/2010 2.01 Editorial Revised and edited the technical content

4/30/2010 2.02 Editorial Revised and edited the technical content

6/7/2010 2.03 Editorial Revised and edited the technical content

6/29/2010 2.04 Editorial Changed language and formatting in the technical content.

7/23/2010 2.04 No Change No changes to the meaning, language, or formatting of the
technical content.

9/27/2010 2.04 No Change No changes to the meaning, language, or formatting of the
technical content.

11/15/2010 | 2.04 No Change No changes to the meaning, language, or formatting of the
technical content.

12/17/2010 | 2.04 No Change No changes to the meaning, language, or formatting of the
technical content.

3/18/2011 2.04 No Change No changes to the meaning, language, or formatting of the
technical content.

6/10/2011 2.04 No Change No changes to the meaning, language, or formatting of the
technical content.

1/20/2012 2.5 Minor Clarified the. meaning of the technical content.

4/11/2012 2.5 No Change No changes to the meaning, language, or formatting of the
technical content.

7/16/2012 2.5 No Change No changes to the meaning, language, or formatting of the
technical content.

10/8/2012 2.5 No Change No changes to the meaning, language, or formatting of the
technical content.

2/11/2013 2.5 No Change No changes to the meaning, language, or formatting of the
technical content.

7/30/2013 2.5 No Change No changes to the meaning, language, or formatting of the
technical content.

11/18/2013 | 2.5 No Change No changes to the meaning, language, or formatting of the
technical content.

2/10/2014 2.5 No Change No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 2.5 No Change No changes to the meaning, language, or formatting of the
technical content.

7/31/2014 2.6 Minor Clarified the meaning of the technical content.

10/30/2014 | 3.0 Major Significantly changed the technical content.

3/16/2015 4.0 Major Significantly changed the technical content.

3/490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

Table of Contents

B I 141 oo e 1T ot e T 6
1.1] (01T 6
1.2] =] /=T Lol PP 7

1.2.1 NOrMAtiVe REfEIENCES .i vttt et e e e aeanans 7
1.2.2 INfOrmative REFEIENCES .. vttt e e ae e 7

7] 1= o] 5 1 P 8

2.1 = | o S 8
2.1.1 Quick Access Toolbar Customizations Part........ccoiiiiiiiiiiiiiic i e eebe e 8
2.1.2 Ribbon Extensibility Part..... ..o e e 9

2.2] =] 0 01T Lo PR ST D 10
2.2.1 box (Box Grouping CONtaINEr)ivieiiiiiii et e e e e eeraans 11
2.2.2 BULEON (BULEON) ceneie e e 14
2.2.3 button (Unsized BULEON) ..o i e i e e e e 23
2.2.4 button (Button Inside of @ Split BULEON)oviiiiiiiiie e i e 32
2.2.5 buttonGroup (Button Grouping Container)ccvveiiiiiiiii i e i e 40
2.2.6 CheckBOX (CheCK BOX) ..uuiuiieiiiiiieiiiaie i e e e fane e e s s b e e e e aaae e 43
2.2.7 fole]pg]oTe] =T) QN (@le]1 0] 0 To T =10) I P P S PP 52
2.2.8 command (Repurposed Command)ciiuiiuiiriher et iae e i sietaetaeeaeraeeaeeaneaneanes 63
2.2.9 commands (List of Repurposed COmMmands) . .. uveiuieiiatin e eneneeeeneeeneeeeenes 64
2.2.10 contextualTabs (List of Contextual Tab Sets)....coiciiiiiiiiiiiii s 65
2.2.11 control (Unsized Control CIONE)uivisiiiti e i aee e 65
2.2.12 control (Control ClONE) .iuiiuiiii i it ce s ie b e e s ae e e et e e e st et e e st e aeeaaeaternens 73
2.2.13 control (Quick Access Toolbar Control Clone) ..iu.eieiiiiiiiiii e 82
2.2.14 customUI (Custom UI Document ROOL) . it 90
2.2.15 dialogBoxLauncher (Dialog Box Launcher) (..o e 91
2.2.16 documentControls (List of.Document-Specific Quick Access Toolbar Controls) 92
2.2.17 dropDown (Drop-down CONtrol)t e 93
2.2.18 dynamicMenu.(Unsized DynamiC MenU)ccoiiiiiiiieiiiniiiiinse e eease e 104
2.2.19 dynamicMenu (DYyNamiC MENU) i ettt sae e e ssaeraearananeraaens 113
2.2.20 editBOX (EAit BOX) teueueueiuetaeeneneaataeeeneaereanananeneeaeaeanrererernenenenenraeaeaeaeanananns 123
2.2.21 gallery (Gallery) v i et et ettt 131
2.2.22 gallery (UnSized Gallery) oo e as 146
2 T | £ o 18] o I (€] o1 UT o) I PP 160
2.2.24 item (SeleCtion TEemM) ... e 167
2.2.25 labelControl (Text Label)coieiiii e 169
2.2.26 mMeNU (UNSIZEAMENU) ..uviuiiiiitiiieiieit ettt ie st r s e e e sae s eararaereanens 177
2.2.27 . menu (Menu WIth Title) ... e 186
A I 0 1 1=T o 16T =T 1) P 195
2.2.29 menu (Dynamic Menu Root XML Element) ...ccovviiiiiiiiiiiiiiiei e 205
2.2.30 menuSeparator (Menu Separatior).....ccoviiieiiieiiiiii e 207
2.2.31° officeMenu (OffiCe MENU) ..uiuieiit it e e e e raaens 210
2.2.32 qgat (Quick AcCess TOOIDAr) ..o 211
2.2.33 rDbbON (RIDDON) .ttt 212
2.2.34 Separator (SEPArator) ..uieiiiei i 213
2.2.35 sharedControls (List of Shared Quick Access Toolbar Controls)ccccvievnnnens 216
2.2.36 splitButton (Unsized Split BULEON) ...c.cieieiiiii e e e 217
2.2.37 splitButton (Split Button with Title)coeiiiirii s 224
2.2.38 splitButton (Split BUEEON) . ..eeiiiiee e 232
2.2.39 @D (A tuiiiiiiiii i e 241
2.2.40 tabs (LiSt Of Tabs) .eueueieieiiiiii e 245
2.2.41 tabSet (Contextual Tab Set)......iiiiiiiiii e 245
2.2.42 toggleButton (Unsized Toggle BUtton)cveieiiiiiiiiii e 247

4 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

2.2.43 toggleButton (Toggle BUttON) ..icviieiieiiiii i e e e e e ea e 255

2.2.44 toggleButton (Toggle Button Inside of a Split Button).........cooooiiiiiiiiiiinnnnnns 264
2.3 1] [] 0] LS 57 0= 273
2.3.1 ST_BOXStYIE (BOX StYIE) . uiiiiiiiii i e e 273
2.3.2 ST_Delegate (Callback Function Name)ccoviiiiiiiiiiiii e 273
2.3.3 ST_GalleryltemWidthHeight (Gallery Item Width or Height)cccoocviieiiiininnn, 276
2.3.4 ST_GalleryRowColumnCount (Gallery Row or Column Count)cooviviniinnnnnn. 276
2.3.5 YL {2 (o a1 /o 1 B) 277
2.3.6 ST_ItemSize (MenU ItEM SiZE) .iiriiiiiii i e 278
2.3.7 ST_Keytip (KeYLIP) «iviuiiiiiiiiii i e eh e e 278
2.3.8 ST_LongString (LONG SErNG) .viiiiiiii i e e e e e e 279
2.3.9 ST_QID (Qualified Control ID) .uiuiieiiitii i e e e e e ines 279
2.3.10 ST_Size (CoNtrol SIiZ€) ..uviiiiiiiii it i s e i e e i e aeas 281
2.3.11 ST_String (Short String) ...ccoviiiiiiiiiii e fr e ea e 282
2.3.12 ST_Stringlength (String Length) ..o i e 283
2.3.13 ST_UniquelD (Custom Control ID) ..ccivuiiiiiiiiiiiii e e e ee e e e e 283
2.3.14 ST_Uri (Image Relationship ID)cuuiiieiiiiiiieiie e e e e e s et e s senaeaens 284

3 Appendix A: Custom UI Control ID Tablescccvarierumierariarsisasassassnsassnsassnsanasinssnsans 285
3.1 (Lo 1\ E=To T =1] [S P 285
3.1.1 LA o] e 4 0 L0 P L o TP 285
3.1.2 o= 2 010 I SO S PP 334
3.1.3 POWEIPOINE 2007 .viiiiiiiiii i st s s s e st s e s e s e s s e e e e aneeas 366
3.1.4 Word 2010, Excel 2010, PowerPoint 2010 ... ciii i iiitie v ea e 390
3.1.5 Word 2013, Excel 2013, PowerPoint 2013oiiiiiie i vene e neeea s 390
3.2 Laa=Te =117 F=To T =1 o] = PR 390
4 Appendix B: Product Behaviorcuvceieuismnssaasnnssesssssasnsssasssassnssasssnsasssnsanssnssnssnssnnsa 486
5 Change TracKing...cicieiaraererammersnsamansaisnssssssassssansissssssassssassnsasansassnsasansassnsasassassnsans 487
N 1 ' = gt 489

5/490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

1 Introduction

In creating an interoperable implementation, it is helpful to understand specific implementation
choices made by other products implementing the same standard. For example, portions of the
standard may provide only general guidance, leaving specific implementation choices up to the
application implementer; in some circumstances it may be helpful for other implementers to
understand those choices.

The information contained in this document provides information about how to implement UI
customization in the context of ECMA-376 Office Open XML File Formats, as described in [ECMA-376].

1.1 Glossary
The following terms are specific to this document:

add-in: Supplemental functionality that is provided by an external application or macro to extend
the capabilities of an application.

KeyTip: A small, pop-up window that appears over commands on the ribbon when users press the
ALT key. By pressing the key that is displayed in a KeyTip, users can execute the command that
is associated with the KeyTip.

macro: A set of instructions that are recorded or written, and then typically saved to a file. When a
macro is run, all of the instructions are performed automatically.

XML fragment: Lines of text that adhere to XML tag rules, as described in [XML], but do not have
a Document Type Definition (DTD) or schema, processing instructions, or any other header
information.

XML namespace: A collection of names that is used to identify elements, types, and attributes in
XML documents identified/in a URI reference [RFC3986]. A combination of XML namespace and
local name allows XML documents to use elements, types, and attributes that have the same
names but come from different sources. For more information, see [XMLNS-2ED].

XML namespace prefix: An abbreviated form of an XML namespace, as described in [XML].

XML schema: A description of a type of XML document that is typically expressed in terms of
constraints on the structure and content of documents of that type, in addition to the basic
syntax constraints that are imposed by XML itself. An XML schema provides a view of a
document type at a relatively high level of abstraction.

XML schema definition (XSD): The World Wide Web Consortium (W3C) standard language that
is used in defining XML schemas. Schemas are useful for enforcing structure and constraining
the types of data that can be used validly within other XML documents. XML schema definition
refersto the fully specified and currently recommended standard for use in authoring XML

schemas.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [REC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

6 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90602
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90317

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[ECMA-376] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA-376, December
2006, http://www.ecma-international.org/publications/standards/Ecma-376.htm

[MS-CUSTOMUI2] Microsoft Corporation, "Custom UI XML Markup Version 2 Specification".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[XMLNS] Bray, T., Hollander, D., Layman, A., et al., Eds., "Namespaces-in. XML 1.0 (Third Edition)",
W3C Recommendation, December 2009, http://www.w3.0rg/TR/2009/REC-xml-names-20091208/

[XMLSCHEMA1] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML Schema Part
1: Structures", W3C Recommendation, May 2001, http://www:w3.0rg/TR/2004/REC-xmlschema-1-
20010502/

[XMLSCHEMAZ2] Biron, P.V., Ed. and Malhotra, A., Ed., "XML Schema Part 2: Datatypes", W3C
Recommendation, May 2001, http://www.w3.0rg/TR/2001/REC-xmlIschema-2-20010502/

1.2.2 Informative References

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI): Generic
Syntax", STD 66, RFC 3986, January 2005, http://www.ietf.org/rfc/rfc3986.txt

[XMLNS-2ED] World Wide Web Consortium, "Namespaces in XML 1.0 (Second Edition)", August 2006,
http://www.w3.0rg/TR/2006/REC-xml=names-20060816/

[XML] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0 (Fourth Edition)", W3C
Recommendation 16 August 2006, edited in place 29 September 2006,
http://www.w3.0rg/TR/2006/REC-xmI-20060816/

7 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-CUSTOMUI2%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=191840
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90610
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90602
http://go.microsoft.com/fwlink/?LinkId=90598

2 Custom UI

The subordinate clauses specify the semantics for the Custom UI XML markup contained within the
ECMA-376 Office Open XML File Formats, as specified in [ECMA-376]. These semantics describe
customization of the UI interface. Examples in the following clauses highlight customizations in the
context of the Microsoft Office Fluent interface (UI) but the concepts extend naturally to any user
interface.

Customization of the Ul is accomplished via the addition of parts containing Custom UI XML markup to
the containing document package.

2.1 Parts

The parts described in the subordinate sections detail the additional part types utilized by CustomUI in
an ECMA-376 Office Open XML File Formats [ECMA-376] file.

2.1.1 Quick Access Toolbar Customizations Part

Content application/xml

Type:

Root http://schemas.microsoft.com/office/2006/01/customui

Namespace:

Source http://schemas.microsoft.com/office/2006/relationships/ui/userCustomization
Relationship:

The syntax of the structures contained in this part uses XML schema definition (XSD), as specified
in [XMLSCHEMA1] and [XMLSCHEMA2].

This specification defines and references various XML namespaces by using the mechanisms
specified in [XMLNS].

An instance of this part type contains information about the quick access toolbar customizations
specific to the containing package.

For example, a user can customize the quick access toolbar for his WordProcessingML document to
contain.the UI controls that they commonly use.

A package is permitted to contain at most one Quick Access Toolbar Customizations part, and that
part is the target of a relationship in the package-relationship item for the document.

For example, the following package part-relationship item contains a relationship to a Quick Access
Toolbar Customizations part, which is stored in the ZIP item /userCustomization/customUI.xml:

<Relationships xmlns="..">

<Relationship Id="rId2"
Type="http://../2006/relationships/ui/userCustomization"
Target="/userCustomization/customUI.xml" />
</Relationships>

The root element for a part of this content type is customUI.

8/ 490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90610
http://go.microsoft.com/fwlink/?LinkId=191840

For example, the following Quick Access Toolbar Customizations content markup specifies that the
control with identifier "SpellingAndGrammar" is to be added to the quick access toolbar for the
package:

<mso:customUI xmlns:mso="http://schemas.microsoft.com/office/2006/01/customui">
<mso:ribbon>

<mso:gat>

<mso:documentControls>

<mso:control idQ="mso:SpellingAndGrammar" visible="true" />
</mso:documentControls>

</mso:gat>

</mso:ribbon>

</mso:customUI>

A Quick Access Toolbar Customizations part is located within the package containing the source
relationship. Expressed syntactically, the TargetMode attribute of the Relationship element is
"Internal".

A Quick Access Toolbar Customizations part does not have implicit or explicit relationships to any
other part defined by ECMA-376 Office Open XML File Formats, as specified in [ECMA-376].

2.1.2 Ribbon Extensibility Part

Content application/xml

Type:

Root http://schemas.microsoft.com/office/2006/01/customui

Namespace:

Source http://schemas.microsoft.com/office/2006/relationships/ui/extensibility
Relationship:

The syntax of the structures contained in this part uses XML schema definition (XSD), as specified in
[XMLSCHEMA1] and [XMLSCHEMA2].

This specification defines and references various XML namespaces by using the mechanisms specified

in [XMLNS].

An instance of this part type contains information about the ribbon customizations specific to the
containing package.

For example, a SpreadsheetML document that represents a timecard could contain custom UI controls
to guide the user in filling out the timecard.

A package is permitted to contain at most one Ribbon Extensibility part, and that part is the target of
a relationship.in the package-relationship item for the document.

For example, the following package part-relationship item contains a relationship to a Ribbon
Extensibility part, which is stored in the ZIP item /customUI/customUI.xml:

<Relationships xmlns="..">

<Relationship Id="rId5"
Type="http://../2006/relationships/ui/extensibility"
Target="/customUI/customUI.xml" />

</Relationships>

9/ 490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90610
http://go.microsoft.com/fwlink/?LinkId=191840

The root element for a part of this content type is customUI.

For example, the following Ribbon Extensibility content markup specifies that the ribbon tab with
identifier "TabHome" is to be hidden for the containing package:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon>

<tabs>

<tab idMso="TabHome" visible="false" />

</tabs>

</ribbon>

</customUI>

A Ribbon Extensibility part is located within the package containing the source relationship. Expressed
syntactically, the TargetMode attribute of the Relationship element is "Internal".

A Ribbon Extensibility part is permitted to have explicit relationships to the following parts defined by
ECMA-376 Office Open XML File Formats, as specified in [ECMA-376]:

= Image Part, as specified in [ECMA-376] Part 1 section15.2.13.

2.2 Elements

A Custom UI document contains customizations of an application's UI. Customizations are mainly of
two types:

= Modifications of the application's built-in‘UI, such as hiding or disabling built-in UI controls or
repurposing command actions.

= Creation of custom UI controls, such as a custom ribbon tab, menu item, or quick access
toolbar button.

For example, consider the following Custom UI document:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<commands>
<command idMso="Bold" enabled="false" />
</commands>
<ribbon>
<tabs>
<tab idMso="TabHome" visible="false" />
<tab id="CustomTab" label="Custom Tab">
<group id="CustomGroup" label="Custom Group">
<button id="CustomButton" label="Custom Button"
size="large" imageMso="HappyFace" onAction="OnButtonClick" />
</group>
</tab>
</tabs >
</ribbon>
</customUI>

This example disables the command with an identifier of "Bold", hides the ribbon tab with an identifier
of "TabHome", and creates a new custom ribbon tab with a custom button in it.

The full XML Schema Definition of the XML Schema fragments listed in this section is defined in
Appendix A of [MS-CUSTOMUI2].

10/ 490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-CUSTOMUI2%5d.pdf

2.2.1 box (Box Grouping Container)

This element specifies a grouping container control that can be used to align controls vertically or
horizontally. Box elements can be nested to create complex UI layouts.

For example, consider a group of controls that are laid out horizontally, as follows:

2 Button 1 28 Button 2

Custam Group

Figure 1: Controls grouped horizontally

This layout is specified using the following XML fragment:

<box id="box" boxStyle="horizontal">
<button id="buttonl" label="Button 1" imageMso="HappyFace" />
<button id="button2" label="Button 2" imageMso="HappyFace" />

</box>

This is contrasted to the default vertical layout that is used if the box element is not specified.

The following table summarizes the elements that are parents of this element.

Parent Elements Section
box 2.2.1
group 2.2.23

The following table summarizes the_ child elements of this element.
Child Elements Section
box (Box Grouping Container) 2.2.1
button (Button) 2.2.2
buttonGroup (Button Grouping Container) 2.2.5
checkBox (Check Box) 2.2.6
comboBox (Combo Box) 2.2.7
control (Control Clone) 2.2.12
dropDown (Drop-down Control) 2.2.17
dynamicMenu (Dynamic Menu) 2.2.19
editBox (Edit Box) 2.2.20
gallery (Gallery) 2.2.21
labelControl (Text Label) 2.2.25
menu (Menu) 2.2.28
splitButton (Split Button) 2.2.38
toggleButton (Toggle Button) 2.2.43

The following table summarizes the attributes of this element.

Attributes

Description

boxStyle (box
style)

Specifies the layout direction for the child controls inside of the box element.
If this attribute is omitted, the child controls SHOULD be laid out horizontally.

11 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

For example, consider a group of controls to be laid out vertically. This is specified using the
following XML:

<box id="box" boxStyle="vertical">

</box>

The possible values for this attribute are defined by the ST_BoxStyle simple type, as
specified in section 2.3.1.

getVisible
(getVisible
callback)

Specifies the name of a callback function that is called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id and idQ attributes are mutually exclusive. At least one of these attributes is to be
specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the ST_UniquelID simple type, as
specified in section 2.3.13.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes is to be
specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

12 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If that
tab cannot be found, it is created. A new group belonging to this file is added to the tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.

insertAfterMso
(identifier of built-
in control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built-in tab with an id of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control'is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.

insertBeforeMso
(identifier of built-
in control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be

13/ 490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome"/is to be hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Box">
<xsd:group ref="EG Controls" minOccurs="0" maxOccurs="1000"/>
<xsd:attributeGroup ref="AG IDCustom"/>
<xsd:attributeGroup ref="AG Visible"/>
<xsd:attributeGroup ref="AG PositionAttributes"/>
<xsd:attribute name="boxStyle" type="ST BoxStyle" use="optional"/>
</xsd:complexType>

2.2.2 button (Button)
This element specifies a standard push-button control that performs an action when clicked.

For example, consider a button control, as follows:

=) Button

Custom Group
Figure 2: A button control

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace" />

The following table summarizes the elements that are parents of this element.

14 / 490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

Parent Elements Section
box 2.2.1
group 2.2.23

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» o Button
Pty . v -
=0 This is averbose description that describes

the function of this control in detail.
This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are.defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD.default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider.the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.
The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function that is called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function that is called to determine the enabled state of
(getEnabled this control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

15/ 490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is to be called when the
application needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is to be called when the
application needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function that is called to determine the suggested KeyTip
(getKeytip of this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is to be called when the
application needs to determine the KeyTip of the button.

The possible values.for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.
The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is to be called when the application
needs to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is to be called when the
application needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

16 / 490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is to be called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is to be called when the
application needs to determine whether to display the label of the button.

The possible values for this‘attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of'a callback function to be called to determine the size of this control.
The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is to be called when the application
needs to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in_section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is to be called when the
application needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being visible.

17 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is to be called when the application
needs to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control is passed to callback functions to identify which control
corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<pbutton id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the' ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

18/ 490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image that is to be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri'simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image that is to be used as the.icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier.of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If hone of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

</tab>

In this.example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified.identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom

tab with a qualified identifier of "x:OtherTab".
The possible values for this attribute are defined by the ST_QID simple type, as specified

19/ 490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be‘inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD. be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values.for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider a button with KeyTip 'K', as follows:

i

=

This<is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label) Specifies a string that is to be used as the label for this control.
The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<putton id="button" label="Custom Button" />
This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.
onAction Specifies the name of a callback function to be called when this control is invoked by the

20/ 490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

(onAction callback)

user.
For example, consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

LR
bt

Button

C mw___ﬁh

This i5s the screentip

G_]I,I Bookl3.xlsx

1 Press F1 for more help.

=
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute. SHOULD. have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no ican

Custam Group
This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

21 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.
The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Ball

Custam Group
This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10.

supertip (supertip)

Specifies a string that is to be shown as the supertip of the control.
The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider‘a control with a supertip, as follows:
LN A

o .|
=t

Button

Custam Group

G_le Book3.xlsx
Press F1 far mare help,

=
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

22 / 490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the ButtonClicked
callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an id of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Button">
<xsd:complexContent>

<xsd:extension

base="CT_ ButtonRegular">

<xsd:attributeGroup ref="AG_ SizeAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.3 button (Unsized Button)

This element specifies

a push-button that, because of its location, cannot have its size changed. The

size attribute is not present. This element otherwise behaves like the regular button element, as
specified in section 2.2.2.

The following table summarizes the elements that are parents of this element.

Parent Elements Section
buttonGroup 2.2.5
dialogBoxLauncher 2.2.15
documentControls 2.2.16
dropDown 2.2.17
gallery 2.2.21
gallery 2.2.22
menu 2.2.28
menu 2.2.26
menu 2.2.29
menu 2.2.27
officeMenu 2.2.31
sharedControls 2.2.35

The following table summarizes the attributes of this element.

23 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

Attributes

Description

description

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

) Button

H:fl This is a verbose description that describes
the function of this cantral in detail,

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being-enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.
The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this controls

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified; the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this. example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is to be called when the
application needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.

24 / 490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

(getImage

The getImage, image, and imageMso attributes are mutually exclusive. If none of these

callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is to be called when the
application needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function that is called to determine the suggested KeyTip
(getKeytip of this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is to be called when the
application needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.
The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is to be called when the application
needs to determine the label of the button.

The possible values. for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is to be called when the
application needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage is to display the icon of this control.
callback)

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:

25/490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

<pbutton id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is to be called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is to be called when the
application needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is to be called when the
application ' needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is to be called when the application
needs to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the ST_UniquelID simple type, as

26 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab 1dQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, "ex" is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

27 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

For example, consider the following XML fragment:

<pbutton id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined.in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a.control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is inserted after the custom tab
with-a qualified identifier of "x:0OtherTab".

The possible values. for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to.insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is inserted before the built-in tab
with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be

28 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is inserted before the custom tab
with a qualified identifier of "x:0OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (Keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider a button with KeyTip 'K', as follows:

b

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (Label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" label="Custom Button" />

This specifies.a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.
For example; consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or
display no screentip at all.

For example, consider a button with a screentip, as follows:

29 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

LR
bt

Button

C Itillj—l—m———h-___

This is the screentip

GEI Book3.xlsx

1 Press F1 for more help.

=
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by 'the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider a button that does not display an icon, as follows:

Button with no ican

Custam Group
This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (Show
Label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.
The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (Supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

30/ 490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

._-] 'I
.'\:'fl./.

Button

Custam Group

G_le Book3.xlsx
Press F1 far mare help,

=
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (Tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the.control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example; consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ButtonRegular">
<xsd:complexContent>
<xsd:extension base="CT_ Control">
<xsd:attributeGroup ref="AG Action"/>
<xsd:attributeGroup ref="AG Enabled"/>
<xsd:attributeGroup ref="AG Description"/>
<xsd:attributeGroup ref="AG Image"/>
</xsd:extension>
</xsd:complexContent>

31/490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

</xsd:complexType>

2.2.4 button (Button Inside of a Split Button)

This element specifies

a push-button that is a child of a split button control. The visible and

getVisible attributes are not present because the visibility is controlled by the split button. This
element otherwise behaves in the same way as the unsized button element, as specified in section

2.2.3.

The following table summarizes the elements that are parents of this element.

Parent Elements Section
splitButton 2.2.38
splitButton 2.2.36
splitButton 2.2.37

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which.is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

o o BUtton
) | . —)
-:/ / This is a verbose description that describes

the function of this control in detail.
This is specified using.the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail.™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified; the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<pbutton id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.
The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

32 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

<pbutton id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD.be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values.for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.
The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip

Specifies the name of a callback function that is called to determine the screentip of this

33 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

(getScreentip
callback)

control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when.the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function that is called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon:
For example, consider the following XML fragment:

<button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function that is called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD. default to showing its label.
For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function that is called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function that is called to determine the visibility state of
(getVisible this control. This attribute is prohibited.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being visible.

34 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<pbutton id="MyButton" label="Button" />
This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the' ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

control identifier)

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

35/490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image that is used as the icon for this control.
This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded-image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri'simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image that is used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an id of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier.of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If hone of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

</tab>

In this.example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified.identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom

tab with a qualified identifier of "x:OtherTab".
The possible values for this attribute are defined by the ST_QID simple type, as specified

36 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be‘inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD. be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of x:OtherTab.

The possible values.for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider a button with KeyTip 'K', as follows:

i

=

This<is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

37 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.
For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

N
=7

Button

Cl |,tﬂ%

This is the screentip

GEI Book3.xlsx

1 Press F1 for mare help,

=
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group
This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

38/490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.
The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

N
=7

Button

Custam Group

Qﬁ? Book3.xlsx
Press F1 far mare help,

2
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control. This attribute is prohibited.
The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

39/490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT VisibleButton">
<xsd:complexContent>
<xsd:restriction base="CT ButtonRegular">
<xsd:attribute name="visible" use="prohibited"/>
<xsd:attribute name="getVisible" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.2.5 buttonGroup (Button Grouping Container)

This element specifies a grouping container that groups controls together visually. The child controls
are laid out horizontally.

For example, consider a group of buttons, as follows:

B I uf

Custam Group

Figure 3: A group of buttons

This is specified using the following XML fragment:

<buttonGroup id="buttonGroup">
<button id="buttonl" imageMso="Bold" />
<button id="button2" imageMso="Italic" />
<pbutton id="button3" imageMso="Underline" />

</buttonGroup>

The following table summarizes the elements that are parents of this element.

Parent Elements Section
box 2.2.1
group 2.2.23

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3

control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynamic Menu) 2.2.18

40/ 490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

gallery (Unsized Gallery) 2.2.22
menu (Unsized Menu) 2.2.26
splitButton (Unsized Split Button) 2.2.36
toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

control identifier)

Attributes Description
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the/ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idQ (qualified Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
Ul-documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, ‘consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

41 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is. to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in'the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified.identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an id of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

42 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ButtonGroup">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:element name="control" type="CT ControlCloneRegular"/>
<xsd:element name="button" type="CT ButtonRegular"/>
<xsd:element name="toggleButton" type="CT ToggleButtonRegular"/>
<xsd:element name="gallery" type="CT GalleryRegular"/>
<xsd:element name="menu" type="CT MenuRegular"/>
<xsd:element name="dynamicMenu" type="CT DynamicMenuRegular"/>
<xsd:element name="splitButton" type="CT SplitButtonRegular"/>
</xsd:choice>
</xsd:sequence>
<xsd:attributeGroup ref="AG IDCustom"/>
<xsd:attributeGroup ref="AG Visible"/>
<xsd:attributeGroup ref="AG PositionAttributes"/>
</xsd:complexType>

2.2.6 checkBox (Check Box)
This element specifies a standard checkbox control.

For example, consider a checkbox control, as follows:

CheckBox

Custom Graup
Figure 4: A checkbox control

This is specified using the following XML fragment:

<checkBox id="checkBox" label="CheckBox" />

The following table summarizes the elements that are parents of this element.

43 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

Parent Elements Section
box 2.2.1
group 2.2.23
menu 2.2.28
menu 2.2.26
menu 2.2.29
menu 2.2.27
officeMenu 2.2.31

The following table summarizes the attributes of this element.

Attributes

Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» o Button
\:-fl This is a verbose description that describes

the function of this contral in detail.
This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail.™ />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8.

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.
The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description
of this control.

callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:

<button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this

44 / 490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

(getEnabled

control.

callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine_the.icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive: If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<pbutton id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.
The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example,/consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the control SHOULD default to the off state.

For example, consider the following XML fragment:

<toggleButton id="toggle" getPressed="IsButtonToggled" />

In this example, the IsButtonToggled callback function is called when the application
needs to determine the toggle state of the button.

45 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)
The showImage and getShowlImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowlLabel displays the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible

Specifies the name of a callback function to be called to determine the visibility state of this
control.

46 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

callback)

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

control identifier)

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.
For example, consider the following XML fragment:
<button id="MyButton" label="Button" />
This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.
idMso (built-in Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If

47/ 490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and/SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button to use the built-in image with an id of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom

48 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

tab with a qualified identifier of "x:OtherTab".
The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified; the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider a button with KeyTip 'K', as follows:

4

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as

49 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

specified in section 2.3.11.

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.
For example, consider the following XML fragment:

<pbutton id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.
The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider a button with a screentip, as follows:

LN A

& _|
=t

Button

Custo dl_ll_il_m____‘_h

This is the screentip

li;_:ﬂl Book3.xlsx

1 Press F1 for more help.

=
This is specified using the following XML fragment:
<button id="button" imageMso="HappyFace" label="Button"

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group
This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

50/ 490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.
The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

N
=7

Button

Custam Group

Qﬁ? Book3.xlsx
Press F1 far mare help,

2
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The_possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

51 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an id of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT CheckBox">
<xsd:complexContent>
<xsd:restriction base="CT ToggleButtonRegular">
<xsd:attribute name="image" use="prohibited"/>
<xsd:attribute name="imageMso" use="prohibited"/>
<xsd:attribute name="getImage" use="prohibited"/>
<xsd:attribute name="showImage" use="prohibited"/>
<xsd:attribute name="getShowImage" use="prohibited"/>
<xsd:attribute name="showlLabel" use="prohibited"/>
<xsd:attribute name="getShowlLabel" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.2.7 comboBox (Combo Box)

This element specifies a standard combo box control that allows a user to input a text string or select
one from a list.

For example, consider a combo box control, as follows:

Combo Box tertl ™

| Ttem 1
Item 2
_ Item 3
L e orpe——————

Figure 5: A combo box control

This is specified using the following XML fragment:

<comboBox id="comboBox" label="Combo Box">
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 2" />
<item id="item3" label="Item 3" />
</comboBox>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

52 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

Attributes

Description

enabled (enabled

Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled

by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<pbutton id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application

needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getItemCount Specifies the name of a callback function to be called to determine the number of selection
(getItemCount items in thiscontrol.
callback) If this attribute is omitted, the control SHOULD display any selection items that are

specified as child elements. If no such items are specified, the control SHOULD be empty.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount" />

In this example, the GetGalleryItemCount callback function is called when the application

needs to determine the number of items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.
getItemID Specifies the name of a callback function to be called to determine the identifier of a
(getItemID specific dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD have empty

identifiers.
For example, consider the following XML fragment:

53 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemID="GetGalleryItemID" />

In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemImage Specifies the name of a callback function to be called to determine the icon of a specific
(getItemImage dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD NOT display icons.
For example, consider the following XML fragment:
<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemImage="GetGalleryItemImage" />
In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getItemLabel Specifies the name of a callback function to be called to determine the label of a specific
(getItemLabel dynamically-created selection item, identified by index.
callback) If this attribute is omitted, dynamically-created selection items SHOULD NOT display labels.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemLabel="GetGalleryItemLabel" />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically-created selection item, identified by index.

If this attribute is omitted, dynamically-created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

<gallery id="gallery" getItemCount="GetGalleryItemCount"
getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the

54 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

application needs to determine the supertip of a selection item.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.
The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a callback function to be called to determine the screentip of this
control.

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider the following XML fragment:
<button id="button" getScreentip="GetButtonScreentip" />
In this example, the GetButtonScreentip callback function is called when the application
needsto determine the screentip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in‘section 2.3.2.
getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback)

55/490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive: If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getText (getText
callback)

Specifies the name of a callback function to be called to determine the text that is displayed
in the control.
For example, consider the following XML fragment:

<editBox id="editBox" getText="GetEditBoxText" />

In this example, the GetEditBoxText callback function is called when the application needs
to determine the text to display in the control.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

56 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group 1d="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an. XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab.cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

57/490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

For example, consider the following XML fragment:

<pbutton id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined.in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none/of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">

</tab>

In thiscexample, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified. identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built-
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.
The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are

58 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

before)

mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control invalidates its contents and re-queries for them when the
user opens its drop-down menu.

If this attribute is omitted, its value SHOULD default to "false".

For example, consider the following XML fragment:

<comboBox id="comboBox" getItemCount="GetComboBoxItemCount"
getItemLabel="GetComboBoxItemLabel"
invalidateContentOnDrop="true" />

In this example, this combo box.clears out its items and re-calls the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip)

Specifies a string to be used-as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider a button with KeyTip 'K', as follows:

b

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

maxLength
(maximum input
string length)

Specifies an integer to be used as the maximum length of a string that can be entered
into the control.

If the maxLength attribute is omitted, the length of the input string SHOULD NOT be
limited, except by application-specific constraints.

For example, consider the following XML fragment:

59/490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

<editBox id="editBox" maxLength="10" />

This specifies an edit box control that can only accept strings up to 10 characters in
length.

The possible values for this attribute are defined by the ST_StringLength simple type, as
specified in section 2.3.12.

onChange
(onChange
callback)

Specifies the name of a callback function to be called when the text in the control has been
changed by the user.
For example, consider the following XML fragment:

<editBox id="editBox" onChange="EditBoxTextChanged" />

This specifies an edit box control that calls the EditBoxTextChanged callback function
when the user inputs a text string.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

N
=7

Button

Cl m-:%

This is the screentip

GIGI Book3.xlsx
Press F1 far more help.

1

=
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group
This is specified using the following XML fragment:

<button id="button" showImage="false"

60/ 490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemImage
(show item image)

Specifies whether this control displays icons on its selection items.
If this attribute is omitted, the items' icons SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showItemImage="false" >
<item id="iteml" label="Item 1" />
<item id="item2" label="Item 1" />
<item id="item3" label="Item 2" />
<item id="item4" label="Item 3" />
</gallery>

This specifies a gallery control that does not show any icons on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default toshowing its label.
For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.
The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is.omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

<editBox id="editBox" sizeString="WWWWWANWWWNWWW" />

This specifies an edit box control that SHOULD be wide enough to display the string
"WWWWWWWWWWWWW",

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

61 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

LA
1 "':fl./'.

Button

Custam Group

G_le Book3.xlsx
Press F1 far mare help,

=
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are-defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider.the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies.a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted; the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ComboBox">

<xsd:complexContent>

<xsd:extension base="CT_EditBox">

<xsd:sequence>

<xsd:element name="item" type="CT Item" minOccurs="0" maxOccurs="1000"/>

</xsd:sequence>

<xsd:attributeGroup ref="AG DropDownAttributes"/>

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

62 /490

<xsd:attributeGroup ref="AG DynamicContentAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.8 command (Repurposed Command)
This element specifies that a particular built-in command in the application is to be repurposed.
The enabled and getEnabled attributes can be specified to disable a command.

The onAction attribute allows the functionality of a command to be repurposed to run a callback
function. Only commands that execute simple actions (for example, commands represented as button
controls) can be repurposed using onAction.

For example, consider the following XML fragment:

<commands>

<command idMso="Bold" enabled="false" />

<command idMso="Paste" onAction="MyPasteFunction" />
</commands>

In this example, the Bold command is permanently disabled and that the callback function
MyPasteFunction is called when the Paste command is invoked.

The following table summarizes the elements that are parents of this element.

Parent Elements

commands (section 2.2.9)

The following table summarizes the-attributes of this element.

Attributes Description
enabled (enabled Specifies the enabled state of the control.
state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example; consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.
The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

<pbutton id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

63 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

idMso (built-in Specifies the identifier of a built-in control.
control identifier) The contents of this attribute are application-defined.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

onAction Specifies the name of a callback function to be called when this control is invoked by the

(onAction callback) | user.
For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.
The possible values for this attribute are.defined by the ST_Delegate simple type, as
specified in section 2.3.2.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT Command" mixed="false">
<xsd:attributeGroup ref="AG Action"/>
<xsd:attributeGroup ref="AG Enabled"/>
<xsd:attributeGroup ref="AG IDMso"/>
</xsd:complexType>

2.2.9 commands (List of Repurposed Commands)

This element specifies a list of repurposed commands. This element SHOULD NOT be specified if the
containing Custom UI XML document is.a Quick Access Toolbar Customizations part.

The following table.summarizes the elements that are parents of this element.

Parent Elements

customUI (section 2.2.14)

The following table summarizes the child elements of this element.

Child Elements Subclause

command (Repurposed Command) section 2.2.8

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_ Commands">
<xsd:sequence>
<xsd:element name="command" type="CT Command" minOccurs="1" maxOccurs="5000"/>
</xsd:sequence>

</xsd:complexType>

64 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

2.2.10 contextualTabs (List of Contextual Tab Sets)

This element specifies a list of contextual tab sets. This element SHOULD NOT be specified if the
containing Custom UI XML document is a Quick Access Toolbar Customizations part.

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

Child Elements Subclause

tabSet (Contextual Tab Set) section 2.2.41

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ContextualTabs">
<xsd:sequence>
<xsd:element name="tabSet" type="CT TabSet" minOccurs="1" maxOccurs="100"/>
</xsd:sequence>

</xsd:complexType>

2.2.11 control (Unsized Control Clone)

This element specifies a clone of a control that, because of its location, cannot have its size changed.
The size attribute is not present. The element/otherwise behaves like the regular control element, as
specified in section 2.2.12.

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the attributes of this element.

Attributes Description
enabled (enabled Specifies the'enabled state of the control.
state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built-in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.
The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

65 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage Specifies the name of a callback function to be called to determine the icon of this control.
(getImage The getImage, image, and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getImage="GetButtonImage" />
In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to/determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values.for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.
The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

66 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

getShowImage Specifies the name of a callback function to be called to determine whether the application
(getShowImage SHOULD display the icon of this control.
callback)
The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<pbutton id="button" getShowImage="IsButtonImageVisible" />
In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowlLabel SHOULD display the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<pbutton id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this
control.

callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In.this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.
The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

67/ 490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

For example, consider the following XML fragment:

<pbutton id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".
The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13.

idMso (built-in
control identifier)

Specifies the identifier of a built-in control.

The contents of this attribute are application-defined.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference/controls or containers created by other Custom
UI documents.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui”
xmlns:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:0therTab" label="Shared Tab">
<group id="MyGroup" label="My Group">

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case; ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

68 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14.

imageMso (built-in
image identifier)

Specifies the identifier of a built-in image to be used as the icon of this control.

The contents of this attribute are application-defined and SHOULD be ignored if not
understood.

The getImage, image, and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built-in image with an.identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built-in
control to insert
after)

Specifies the identifier of a built-in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an.id of "MyTab" is to be inserted after the built-in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built-in
control to insert
before)

Specifies the identifier of a built-in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the

69 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

built-in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso, insertAfterQ, insertBeforeMso, and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:0therTab" label="Custom Tab">

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider a button with KeyTip 'K', as follows:

b

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7.

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<pbutton id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

70/ 490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

LR
bt

Button

C Itillj—l—m———h-___

This is the screentip

GEI Book3.xlsx

1 Press F1 for more help.

=
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the/'ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider a button that does not display an icon, as follows:

Button with no ican

Custam Group
This is specified using the following XML fragment:

<button id="button" showImage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.
The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip)

Specifies a string to be shown as the supertip of the control.
The supertip and getSupertip attributes are mutually exclusive. If neither attribute is

71 /490

[MS-CUSTOMUI] - v20150316
Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation

Release: March 16, 2015

specified no supertip for this control SHOULD be shown.
For example, consider a control with a supertip, as follows:

LA
1 "':fl./'.

Button

Custam Group

G_le Book3.xlsx
Press F1 far mare help,

=
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string.
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built-in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT ControlCloneRegular">
<xsd:complexContent>
<xsd:restriction base="CT Control">
<xsd:attribute name="id" use="prohibited"/>
</xsd:restriction>

72 /490

[MS-CUSTOMUI] - v20150316

Custom UI XML Markup Specification
Copyright © 2015 Microsoft Corporation
Release: March 16, 2015

</xsd:complexContent>
</xsd:complexType>

2.2.12 control (Control Clone)

This element specifies a clone of an existing control. Built-in controls can be cloned using the idMso
attribute. Custom controls can be cloned using the idQ attribute. Custom controls cannot be created
using the control element.

When an existing contr