

1 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

[MS-FSWASDS]:
WebAnalyzer/SPRel Data Serving Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain

Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com

2 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Revision Summary

Date

Revision

History

Revision

Class Comments

11/06/2009 0.1 Major Initial Availability

02/19/2010 1.0 Minor Updated the technical content

03/31/2010 1.01 Editorial Revised and edited the technical content

04/30/2010 1.02 Editorial Revised and edited the technical content

06/07/2010 1.03 Editorial Revised and edited the technical content

06/29/2010 1.04 Editorial Changed language and formatting in the technical
content.

07/23/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

09/27/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

11/15/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

12/17/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

03/18/2011 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

06/10/2011 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

01/20/2012 1.5 Minor Clarified the meaning of the technical content.

04/11/2012 1.5 No change No changes to the meaning, language, or formatting of
the technical content.

07/16/2012 1.5 No change No changes to the meaning, language, or formatting of
the technical content.

3 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Table of Contents

1 Introduction ... 5
1.1 Glossary ... 5
1.2 References .. 5

1.2.1 Normative References ... 5
1.2.2 Informative References ... 6

1.3 Protocol Overview (Synopsis) .. 6
1.4 Relationship to Other Protocols .. 7
1.5 Prerequisites/Preconditions ... 7
1.6 Applicability Statement ... 7
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor-Extensible Fields ... 8
1.9 Standards Assignments .. 8

2 Messages.. 9
2.1 Transport .. 9
2.2 Common Data Types .. 9

2.2.1 db_field .. 9
2.2.2 db_record ... 10
2.2.3 db_recordset ... 10
2.2.4 db_recordsetlist ... 10
2.2.5 db_keylist ... 10
2.2.6 db_stringfield... 11
2.2.7 internal_error .. 11
2.2.8 unknown_table_error .. 11
2.2.9 key_not_found ... 11

3 Protocol Details .. 13
3.1 storageservice::cache_manager Server Details ... 13

3.1.1 Abstract Data Model ... 13
3.1.2 Timers .. 13
3.1.3 Initialization .. 13

3.1.3.1 Schema ... 13
3.1.3.2 Database Tables ... 13
3.1.3.3 Partition Identifier... 13
3.1.3.4 Replication Identifier ... 14
3.1.3.5 Data Distribution Function ... 14
3.1.3.6 Registered Server Object Name .. 15
3.1.3.7 Middleware .. 15

3.1.4 Message Processing Events and Sequencing Rules .. 16
3.1.4.1 Receiving an access_factory Message .. 16
3.1.4.2 Receiving a get_random_read Message ... 16
3.1.4.3 Receiving a get_list Message .. 17

3.1.5 Timer Events ... 18
3.1.6 Other Local Events ... 18

4 Protocol Examples .. 19
4.1 Sequence Diagram ... 19
4.2 Client-Side Lookup ... 20
4.3 Protocol Server Initialization ... 21
4.4 Protocol Client Initialization ... 21

4 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

4.5 Protocol Client Database Query Message .. 21

5 Security .. 23
5.1 Security Considerations for Implementers ... 23
5.2 Index of Security Parameters .. 23

6 Appendix A: Full FSIDL ... 24

7 Appendix B: Full Cheetah Specification .. 25

8 Appendix C: Product Behavior .. 26

9 Change Tracking... 27

10 Index ... 28

5 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

1 Introduction

This document specifies the WebAnalyzer/SPRel Data Serving Protocol (WASDS), used to improve
search relevance by retrieving metadata about search items before they are indexed. Protocol
clients use this lookup protocol to retrieve information from a remote protocol server where the
meta information is associated with a unique key.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are

informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

big-endian
marshal

unmarshal

The following terms are defined in [MS-OFCGLOS]:

abstract object reference (AOR)
base port
Cheetah checksum
data distribution function
FAST Search Interface Definition Language (FSIDL)

name server
server interface

The following terms are specific to this document:

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or

SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the technical documents, which are updated frequently. References
to other documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[MS-FSCDCFG] Microsoft Corporation, "Component Distribution Configuration File Format
Specification".

[MS-FSCHT] Microsoft Corporation, "Cheetah Data Structure".

[MS-FSMW] Microsoft Corporation, "Middleware Protocol Specification".

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-FSCDCFG%5d.pdf
%5bMS-FSCDCFG%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSMW%5d.pdf

6 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992,
http://www.ietf.org/rfc/rfc1321.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary".

1.3 Protocol Overview (Synopsis)

This protocol is a remote method lookup protocol that receives requests from protocol clients to

query a remote protocol server for records in a database table. Records contain metadata that is
defined in a schema, and each record is identified by a unique key.

For a large number of keys or a large body of metadata, the database can be partitioned across
multiple protocol servers. The protocol client chooses the appropriate protocol server based on a
prioritized data distribution function. To reduce the number of requests and responses, the
protocol client can request several keys in one request. The following overview diagram shows a

setup with one protocol client and four protocol servers, where the servers are split into two
partitions (partition 0 and 1).

For failure resilience and performance, one backup protocol server can be associated with each
partition. To the protocol client, the master and backup server are fully interchangeable, and the
client can choose which of the two servers to contact within a partition, for example by alternating
between the two for load-balancing purposes. In addition, if a particular server in a partition
becomes faulty or unreachable, the client can choose to not contact that server.

The partitioning and replication in this protocol is very simplistic: the servers do not detect each
other, and only the client stores the full set of server nodes. As shown in the following diagram, the
client has contacted the primary node (node 0_0) in partition 0 and the backup node (node 1_1) in

partition 1. It might have contacted the backup node if, for example, the primary node in partition 1
(node 1_0) was unresponsive.

This protocol cannot update the data on the servers. The data on the servers is populated out of
band by applying the data distribution function on input data and starting each server with its own

copy of the partition data; therefore, populating data on the servers is not covered in this protocol.

The schema of the data is implementation specific, but note that there are reserved attributes,
described in section 2.2.

http://go.microsoft.com/fwlink/?LinkId=90275
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

7 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Figure 1: Overview: A protocol client querying two replicated partitions

1.4 Relationship to Other Protocols

Interfaces in this protocol are written in the FAST Search Interface Definition Language
(FSIDL) described in [MS-FSMW]. This protocol relies on the Cheetah Data Format Specification, as
described in [MS-FSCHT], for serializing custom data types and the Middleware Protocol as
described in [MS-FSMW] for transport, binding, and name resolution.

Figure 2: This protocol in relation to other protocols

1.5 Prerequisites/Preconditions

This protocol depends on the protocol described in [MS-FSMW]. The initialization steps are described
in section 3.1.3.7.

1.6 Applicability Statement

This protocol is applicable for retrieving static attribute data stored on a remote protocol server. The
protocol is suitable for retrieval of static attribute data that is not updated frequently and where a
simplistic data distribution scheme and failure resiliency can be applied. This protocol has no
provisions for updates, transactions, or synchronization.

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSMW%5d.pdf

8 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

Version information: Versioning is described in [MS-FSMW], but for marshaled types the

Cheetah checksum and type identifiers are described in section 2.2. Versioning is determined
by the server interface name and server interface version strings that are registered with the
name server by the protocol client and protocol server, as described in the full FSIDL in section
6.

Capability negotiation: There are no provisions for capability negotiation in this protocol.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

9 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2 Messages

2.1 Transport

This protocol MUST use the Middleware Protocol, as specified in [MS-FSMW], to transmit method
requests and responses.

Transport security is provided in the Middleware Protocol. All security related parameters are
controlled by the Middleware Protocol.

Byte ordering is defined in the [MS-FSMW] and [MS-FSCHT], unless explicitly stated otherwise.

2.2 Common Data Types

The process to marshal and unmarshal (1) data MUST be performed as specified in [MS-FSCHT].
The FSIDL and Cheetah entities for this protocol are specified in section 6 and section 7.

The FSIDL data types are specified in [MS-FSMW]. The mapping of FSIDL types to native types is

also specified in [MS-FSMW].

Custom data types and Cheetah entities MUST be as specified in [MS-FSCHT] section 2. The version

number for the Cheetah messages MUST contain the constant value "-465339615". The type
identifier for the Cheetah entities MUST be as specified in the following table.

Cheetah entity Type identifier

db_field 0

db_record 1

db_recordset 2

db_recordsetlist 3

db_keylist 4

db_stringfield 12

The data served in this protocol contains sets of records, as defined by the db_recordsetlist data
type defined in 2.2.4. The schema of the data served is implementation-specific. There is, however,
a set of record attribute names that are reserved, as specified in the following table.

Reserved attribute names

Status

Note that exceptions do not have type identifiers and are marshaled as defined in [MS-FSMW]

section 3.1.4.10.

2.2.1 db_field

This data type contains the name of an attribute in a record. The structure of this data type is
specified as follows:

entity db_field {

%5bMS-FSMW%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSMW%5d.pdf

10 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

 attribute string name;

};

name: This MUST be a string as defined in [MS-FSCHT] section 2.2

2.2.2 db_record

This data type contains the attributes that define a record. The structure of this data type is
specified as follows:

entity db_record {

 collection db_field fields;

};

fields: This MUST be a db_field collection. The db_field data type is defined in section 2.2.1; the
collection is defined in [MS-FSCHT] section 2.3.3.

2.2.3 db_recordset

This data type contains a key-records relationship. If the key exists in the database, the key MUST
map to only one db_recordset data type, where the db_recordset contains one or more records.
The structure of this data type is specified as follows:

root entity db_recordset {

 attribute string key;

 collection db_record records;

};

key: This MUST be a string, as specified in [MS-FSCHT] section 2.2.

records: This MUST be a db_record collection. The db_record data type is defined in section

2.2.2; the collection is defined in [MS-FSCHT] section 2.3.3.

2.2.4 db_recordsetlist

This data type contains a collection of db_recordset entities. The structure of this data type is
specified as follows:

root entity db_recordsetlist {

 collection db_recordset recordsets;

};

recordsets: This MUST be a db_recordset collection. The db_recordset data type is defined in

section 2.2.3; the collection is defined in [MS-FSCHT] section 2.3.3.

2.2.5 db_keylist

This data type contains multiple keys in a collection. The structure of this data type is specified as
follows:

root entity db_keylist {

 collection string keys;

%5bMS-FSCHT%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSCHT%5d.pdf

11 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

};

keys: This MUST be a string collection. The string data type is defined in [MS-FSCHT] section 2.2;

the collection is defined in [MS-FSCHT] section 2.3.3.

2.2.6 db_stringfield

This data type represents a string value of an attribute. Note that the attribute name is inherited
from the db_field data type, defined in section 2.2.1. All attributes communicated in this protocol
MUST be of this type. The structure of this data type is specified as follows:

entity db_stringfield : db_field {

 attribute string value;

};

value: This MUST be a string as defined in [MS-FSCHT] section 2.2.

2.2.7 internal_error

This data type represents an exception that implies that an internal error occurred. The structure of
this data type is specified as follows:

exception internal_error {

 string error;

 string traceback;

};

error: This MUST be a string as defined in [MS-FSCHT] section 2.2.

traceback: This MUST be a string as defined in [MS-FSCHT] section 2.2.

2.2.8 unknown_table_error

This data type represents an exception that implies that an attempt was made to open a database
table that does not exist. The structure of this data type is specified as follows:

exception unknown_table_error {

 string table;

};

table: This MUST be a string as defined in [MS-FSCHT] section 2.2.

2.2.9 key_not_found

This data type represents an exception that an attempt was made to look up a key that did not exist

in the database. The structure of this data type is specified as follows:

exception key_not_found {

 string key;

};

%5bMS-FSCHT%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSCHT%5d.pdf

12 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

key: This MUST be a string as defined in [MS-FSCHT] section 2.2.

%5bMS-FSCHT%5d.pdf

13 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

3 Protocol Details

3.1 storageservice::cache_manager Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

This protocol is stateless in the sense that no state is preserved across RPC method calls. The state
of the protocol server is specified by the following:

Schema: The database sends data in a fixed schema that is specified in section 3.1.3.1.

Database table: The database sends data from a database table whose name is available to both
the protocol client and the protocol server. The database table names are specified in section

3.1.3.2.

Partition identifier: If the dataset is split into multiple disjoint subsets, a dedicated protocol server
is associated with each partition by the unique partition identifier for the partition. Partition
identifiers are specified in section 3.1.3.3.

Replication identifier: If data is replicated within a partition, the replication identifier differentiates
the master from the backup protocol server. Replication identifiers are specified in section 3.1.3.4.

Data distribution function: When there are multiple partitions, data is partitioned between

protocol servers according to a fixed data distribution function. The data distribution function is
specified in section 3.1.3.5.

3.1.2 Timers

None.

3.1.3 Initialization

3.1.3.1 Schema

The metadata schema used for a request/response pair is implementation specific and MUST be
identifiable by the protocol client and protocol server.

3.1.3.2 Database Tables

Protocol servers MUST have one or more named database tables from which to send data. The

database name is implementation specific, and MUST be identifiable by both the protocol server and
protocol clients. The database name MUST be a string as defined in [MS-FSCHT] section 2.1.

3.1.3.3 Partition Identifier

If the dataset is large, it can be partitioned with a data distribution function so that multiple protocol
servers can send data from their own partitions to the protocol client. Partitioning the protocol

servers creates an ordered finite set of partitions. Each partition MUST be assigned an integer value

%5bMS-FSCHT%5d.pdf

14 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

that specifies its position in the ordered set, where 0 represents the first partition. The partition
identifier MUST be 0 if there is only one partition. The diagram in section 1.3 earlier in this

document shows a setup with two partitions, and they have the partition identifier 0 and 1,
respectively.

The number of partitions and partition identifiers are defined by the contents of the Component
Distribution Configuration file, defined in [MS-FSCDCFG]. The set of partitions is defined by the set
of CT_host elements containing <CT_webanalyzer> elements, defined in [MS-FSCDCFG] section
2.3.2 and [MS-FSCDCFG] section 2.3.8, respectively. Partitions are numbered in the order they
appear in the Component Distribution Configuration file from zero to n, where n is the number of
partitions. The name of the host that a partition belongs to is defined by the name attribute of the
respective CT_host element.

3.1.3.4 Replication Identifier

Replication is enabled when the Component Distribution Configuration file, defined in [MS-
FSCDCFG], has the redundant-lookup attribute set in the CT_webanalyzer elements. When
replication is used, a primary protocol server exists for each partition in addition to a backup

protocol server. Primary protocol servers MUST have the replication identifier zero, and backup

protocol servers MUST have the replication identifier 1. The diagram in section 1.3 earlier in this
document shows a setup with two replicated partitions, where the primary and backup protocol
servers have the replication identifier 0 and 1, respectively.

Note that the primary and backup protocol servers are always located on different physical hosts, to
provide independent failure. As explained in section 3.1.3.3, a protocol server hosts a given
numbered partition p from a set of n partitions. When replication is enabled, a backup protocol
server hosting partition p+1 modulo n MUST exist on the same physical host.

3.1.3.5 Data Distribution Function

The protocol client MUST determine where information resides when multiple partitions are

associated with protocol servers, given the definitions. The protocol client associates a partition with
a key by applying a distribution function to the key for the metadata to retrieve. This function MUST

also be used when distributing data to the server nodes.

Input parameters for the distribution function MUST be the key and the ordered set of protocol
servers. The function MUST select an instance in the set of protocol servers. The number of protocol
servers and their ordering are defined by their partitions and partition identifiers, as defined in

section 3.1.3.3.

The data distribution function MUST first produce an MD5 digest of the key. MD5 digests are
defined in [RFC1321]. The digest MUST be interpreted as a big-endian 128-bit unsigned integer.
An array index value MUST then be produced by calculating the value of the checksum modulo the
number of protocol servers in the server set. Lastly, the protocol server is chosen by using the array
index value to select a server from the ordered set, where the first array index is zero.

The pseudocode for the data distribution function is specified in the following code. Inputs are

important to resolving and ordering the set of protocol servers in an array.

-- Initialize values

SET database_key TO the key that should be looked up

SET servers TO ordered array of available servers

SET number_of_servers TO servers.length

-- Obtain the MD5 checksum

CALL md5_init RETURNING md5_state

%5bMS-FSCDCFG%5d.pdf
%5bMS-FSCDCFG%5d.pdf
%5bMS-FSCDCFG%5d.pdf
%5bMS-FSCDCFG%5d.pdf
%5bMS-FSCDCFG%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90275
%5bMS-GLOS%5d.pdf

15 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

CALL md5_append WITH md5_state, database_key RETURNING md5_state

CALL md5_finish WITH md5_state RETURNING raw_digest

-- Convert the MD5 checksum to a 128 bit unsigned integer

CALL read_uint128be_from_buffer WITH raw_digest RETURNING uint128_digest

-- Obtain array index

CALL modulo WITH uint128_digest, number_of_servers RETURNING array_index

-- Index into array to obtain server that hosts the key

SET server TO value at array_index in servers array

3.1.3.6 Registered Server Object Name

The WebAnalyzer protocol server registers its server object in the Middleware Protocol name server
with a fixed-name prefix, a partition identifier, and a replication identifier. The fixed-name prefix

MUST be in the following format: fds/walookupdb

Partitioning is specified in section 3.1.3.3, and replication in section 3.1.3.4. The partition identifier
and the replication identifier MUST be a fixed-name prefix, separated by an underscore, as specified
in the following format: <partition ID>_<replication ID>.

The number of protocol servers and their names is obtained by the file format specified in [MS-
FSCDCFG], as defined in sections 3.1.3.3 and 3.1.3.4. Protocol servers MUST be differentiated by
their partition identifiers. The assembled protocol server name MUST contain the partition and

replication identifier in the following format: fds/walookupdb<partition ID>_<replication ID>. If
there is only one protocol server, the assembled protocol server name MUST be
fds/walookupdb0_0. The full FSIDL for naming server objects is specified in [MS-FSMW].

3.1.3.7 Middleware

The protocol server MUST use the Middleware Protocol bind method to register its

storageservice::cache_manager server object in the Middleware Protocol name server. This is

achieved by calling the bind method on the Middleware Protocol name server, as specified in [MS-
FSMW] section 3.4.4.2. The parameter to this method is constructed by creating an abstract
object reference (AOR) that encapsulates the following parameters.

Correspondingly, the protocol client can obtain the AOR for a protocol server. This is achieved by
calling the resolve method on the Middleware Protocol name server, as specified in [MS-FSMW]
section 3.4.4.1. The parameters to this method are the name, interface_type and version
parameters.

host: This MUST be a string that contains the host name of the server object on the protocol server.
The value is implementation specific.

port: This MUST be an integer value that contains the port number of the server object on the
protocol server. The value is base port + 390.

interface_type: This MUST be a string that contains the literal storageservice::cache_manager.

interface_version: This MUST be a string that contains the literal 5.1.

object_id: This MUST be an integer that is unique for each server object.

%5bMS-FSCDCFG%5d.pdf
%5bMS-FSCDCFG%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf

16 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

name: This MUST be a string that contains the literal fds/walookupdb<P>_<R>, where P is the
partition identifier specified in section 3.1.3.3 and R is the replication identifier, as specified in

section 3.1.3.4.

3.1.4 Message Processing Events and Sequencing Rules

Message processing MUST be performed as defined in the Middleware Protocol defined in [MS-
FSMW], with custom data types marshaling as defined in [MS-FSCHT].

The protocol server interface includes the methods specified in the following table.

Method Description

access_factory Performed by the protocol client to initiate the protocol.

get_random_read Instructs the protocol server to open the named database table.

get_list Instructs the protocol server return the set of records identified by the given set of
keys.

The client MUST initiate the protocol by obtaining the AOR for the protocol server by issuing a
resolve command to the Middleware Protocol name server.

The protocol client MUST then send an access_factory message, defined in section 3.1.4.1, to obtain

an object with which it can request a database to be opened.

The protocol client MUST then send a get_random_read message, defined in section 3.1.4.2, which
specifies the which database the protocol server MUST open.

Lastly, the protocol client proceeds to send a sequence of get_list messages, defined in section
3.1.4.3.

Generic Middleware Protocol exceptions can be thrown from any method to return error messages,
as specified in [MS-FSMW] section 3.1.1. Otherwise, any custom exceptions raised are specified for

each message.

3.1.4.1 Receiving an access_factory Message

The access_factory method MUST initiate the protocol by creating a new access_factory server
object for the protocol client. The returned object is used to open the database.

db_access_factory access_factory();

Return values: This MUST be an instance of a db_access_factory object, which is used to open

the database.

Exceptions: This MUST NOT raise any exceptions beyond those raised by the underlying
Middleware Protocol, as specified in [MS-FSMW] section 3.

3.1.4.2 Receiving a get_random_read Message

The get_random_read method in the db_access_factory interface opens the database to be
queried. This method MUST return a new db_random_read server object identified by the table
name.

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf

17 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

db_random_read db_access_factory::get_random_read(in string table)

table: This MUST contain the name of the table to open. It MUST be a string, as specified in [MS-

FSCHT] section 2.1.

Return values: This MUST be an instance of a db_random_read interface that is used to query a
database.

Exceptions: If the named database table does not exist, the protocol server MUST raise the
unknown_table_error exception. The table attribute in the exception MUST be set to an
informative message, and MUST NOT be parsed. The definition of the unknown_table_error

exception is specified in section 2.2.8.

3.1.4.3 Receiving a get_list Message

The get_list method in the db_random_read interface queries the database on the protocol
server for a sequence of keys. The protocol client MUST verify that the keys are associated with the

protocol server if there are multiple partitions.

db_recordsetlist get_list(in db_keylist keys)

keys: This MUST be a set of keys to retrieve from the database. The set MUST contain one or more

keys, as specified in section 2.2.5.

Return values: This MUST be a set of records that was retrieved from the database. The set MUST
contain one db_recordset for all keys in the keys parameter. The format of the db_recordsetlist

structure is specified in section 2.2.4. The schema of the records is implementation specific,
although the status attribute name is reserved, as defined in section 2.2. When a key is found in
the database, the status attribute of the corresponding record in the db_recordsetlist data type
MUST be set to the literal 'ok'. Conversely, when a key is not found, an empty dummy record MUST
be added to the db_recordsetlist data type with its status attribute set to the literal 'not found'.

Exceptions: The protocol server MUST NOT raise the key_not_found exception, defined in section
2.2.9, if one or more keys do not exist. Instead the status attribute of each record of the

db_recordsetlist data type defines whether a key was present, as described in the preceding
paragraph.

The protocol server MUST throw the internal_error exception, defined in section 2.2.7, if it cannot
perform the lookups requested. The protocol server MUST distinguish between the error states
defined in the following table, and set the error and traceback attributes accordingly.

Error condition Error attribute value

Traceback attribute

value

The table contains no rows. The table being served is
empty.

empty

A data structure in the database was
empty.

The data structure is empty. **ds_empty**

Any other condition. An unexpected error occurred. Unspecified

For the last error condition listed in this table, note that there is a spelling error in the error
attribute value ("occured" is used, rather than "occurred"). Also note that the traceback attribute

%5bMS-FSCHT%5d.pdf
%5bMS-FSCHT%5d.pdf

18 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

value MUST be set to a stack trace that describes the error condition, but that does not further
define its formatting. The traceback attribute value MUST NOT be parsed.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

19 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

4 Protocol Examples

4.1 Sequence Diagram

The following sequence diagram shows a protocol client, a name service, and two protocol servers.
Each server serves its own partition of the full set, identified by its name (fds/walookupdb0_0 and
fds/walookupdb0_1).

The protocol servers initiate by registering themselves under a name denoting their partition and
replication identifier. The protocol client then resolves the server names and contacts the servers.

The access_factory and get_random_read messages open the database to query, and the
get_list message retrieves the records the protocol client queries for.

In this diagram, the protocol client completes all communication with the first protocol server before
contacting the other, but this is not a requirement of this protocol.

20 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Figure 3: Name server and two protocol server partitions

4.2 Client-Side Lookup

This example describes the get_list method of the db_random_read interface, as described in
section 3.1.4.3. The protocol client sends a set of keys to the database protocol server, which
responds with a set of records it retrieved. This example contains only one protocol server; if there

were more protocol servers, they would register unique server names as described in section
3.1.3.6. The protocol client selects the appropriate protocol server by mapping the keys to protocol
server names using the data distribution function described in section 3.1.3.5.

The implementation-specific location of the shared name server and the symbolic name of the
WebAnalyzer server object are specified as a part of developing the implementation. When the

21 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

implementation is invoked, the protocol server creates a server object that implements the
cache_manager interface and registers it with the name server as described in section 3.1.3.7.

The protocol client then acquires a client proxy for this cache_manager interface by resolving the
server object with the name server, as described in section 3.1.3.7.

Next, the protocol client calls the access_factory method on the cache_manager object, which
returns a client proxy of a factory object that is used to open the database. The protocol client
opens the database by calling a get_random_read method on the factory object with the table
name it wishes to query. The protocol server returns a db_random_read client proxy object that
the protocol client uses to perform queries, in association with the get_list method described in
section 3.1.4.3.

4.3 Protocol Server Initialization

The following pseudocode describes how a protocol server creates an AOR that it registers in the
Middleware Protocol name server with the Middleware Protocol bind method.

SET server_object_instance TO INSTANCE OF storageservice::cache_manager SERVER OBJECT

SET server_object_host TO "myserver.contoso.com"

SET server_object_port TO "1234"

SET server_object_interface_type TO "storageservice::cache_manager"

SET server_object_interface_version TO "5.1"

SET server_object_name TO "fds/walookupdb0_0"

SET server_object_aor TO server_object_host, server_object_port,

server_object_interface_type, server_object_interface_version AND server_object_name

CALL nameserver.bind WITH server_object_instance AND server_object_aor

4.4 Protocol Client Initialization

The following pseudocode describes how a protocol client obtains an AOR from the Middleware
Protocol name server that represents the protocol server.

SET server_object_name TO "fds/walookupdb0_0"

SET server_object_type TO "storageservice::cache_manager"

SET server_object_version TO "5.1"

SET table_name TO "default"

SET keys TO set_of_keys_to_look_up

CALL nameserver.resolve WITH server_object_name, server_object_type AND server_object_version

RETURNING server_object_aor

4.5 Protocol Client Database Query Message

The following pseudocode describes how a protocol client uses the AOR obtained in section 4.4 to
open a database on the server. The database name is contained in the table_name variable. The
client has a set of keys to look up in the set_of_keys_to_look_up variable, and concludes by

printing the values returned by the server for this set.

CALL server_object_aor.access_factory RETURNING db_access_factory_client_proxy

CALL db_access_factory_client_proxy.get_random_read WITH table_name RETURNING

db_random_read_client_proxy

22 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

CALL db_random_read_client_proxy.get_list WITH set_of_keys_to_look_up RETURNING

db_recordsetlist

FOR db_recordset in db_recordsetlist

 print db_recordset

END FOR

23 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

24 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

6 Appendix A: Full FSIDL

For ease of implementation, the full FSIDL is provided below. The syntax uses the IDL syntax
extensions described in [MS-FSMW].

module cht {

 module storageservice {

 typedef sequence<octet> cheetah;

 typedef cheetah db_recordsetlist;

 typedef cheetah db_keylist;

 };

};

module interfaces {

 module storageservice {

 interface db_random_read;

 interface db_access_factory;

 interface cache_manager;

 exception internal_error {

 string error;

 string traceback;

 };

 exception unknown_table_error {

 string table;

 };

 exception key_not_found {

 string key;

 };

 interface db_random_read {

 #pragma version db_random_read 5.1

 cht::storageservice::db_recordsetlist get_list(

 in cht::storageservice::db_keylist keys)

 raises (key_not_found, internal_error);

 };

 interface db_access_factory {

 #pragma version db_access_factory 5.1

 storageservice::db_random_read get_random_read(

 in string table)

 raises (unknown_table_error);

 };

 interface cache_manager {

 #pragma version cache_manager 5.1

 storageservice::db_access_factory access_factory();

 };

 };

};

%5bMS-FSMW%5d.pdf

25 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

7 Appendix B: Full Cheetah Specification

For ease of implementation, all the Cheetah entities are provided below. The syntax is described in
[MS-FSCHT].

entity db_field {

 attribute string name;

};

entity db_record {

 collection db_field fields;

};

root entity db_recordset {

 attribute string key;

 collection db_record records;

};

root entity db_recordsetlist {

 collection db_recordset recordsets;

};

root entity db_keylist {

 collection string keys;

};

entity db_stringfield : db_field {

 attribute string value;

};

%5bMS-FSCHT%5d.pdf

26 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

8 Appendix C: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft® FAST™ Search Server 2010

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

27 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

9 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

28 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

10 Index

A

Abstract data model
server (section 3.1.1 13, section 3.1.1 13)

access_factory message 16
Applicability (section 1.6 7, section 1.6 7)

C

Capability negotiation (section 1.7 8, section 1.7 8)
Change tracking 27
Cheetah specification 25
Client-side lookup example (section 4.2 20, section

4.2 20)
Common data types (section 2.2 9, section 2.2 9)

D

Data distribution function 14
Data model - abstract

server (section 3.1.1 13, section 3.1.1 13)
Data types

common - overview (section 2.2 9, section 2.2 9)
db_field 9
db_keylist 10
db_record 10
db_recordset 10
db_recordsetlist 10
db_stringfield 11
internal_error 11
key_not_found 11
unknown_table_error 11

Database tables 13
db_field data type 9
db_keylist data type 10
db_record data type 10
db_recordset data type 10
db_recordsetlist data type 10
db_stringfield data type 11

E

Events
local - server 18
timer - server 18

Examples
client-side lookup (section 4.2 20, section 4.2 20)
protocol client database query message (section

4.5 21, section 4.5 21)
protocol client initialization (section 4.4 21,

section 4.4 21)
protocol server initialization (section 4.3 21,

section 4.3 21)
sequence diagram (section 4.1 19, section 4.1

19)

F

Fields - vendor-extensible 8

FSIDL (section 6 24, section 6 24)
Full Cheetah specification 25
Full FSIDL (section 6 24, section 6 24)

G

get_list message 17
get_random_read message 16
Glossary 5

I

Implementer - security considerations 23
Index of security parameters 23
Informative references 6
Initialization

data distribution function 14
database tables 13
middleware 15
partition identifier 13
registered server object name 15
replication identifier 14
schema 13

internal_error data type 11
Introduction (section 1 5, section 1 5)

K

key_not_found data type 11

L

Local events
server 18

M

Message
access_factory 16
get_list 17
get_random_read 16

Message processing
server 16

Messages
common data types (section 2.2 9, section 2.2 9)
db_field data type 9
db_keylist data type 10
db_record data type 10
db_recordset data type 10
db_recordsetlist data type 10
db_stringfield data type 11
internal_error data type 11
key_not_found data type 11
transport (section 2.1 9, section 2.1 9)
unknown_table_error data type 11

Metadata schema 13
Methods

Receiving a get_list Message 17
Receiving a get_random_read Message 16

29 / 29

[MS-FSWASDS] — v20120630
 WebAnalyzer/SPRel Data Serving Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Receiving an access_factory Message 16
Middleware 15

N

Normative references 5

O

Overview (synopsis) (section 1.3 6, section 1.3 6)

P

Parameters - security index 23
Partition identifier 13
Preconditions (section 1.5 7, section 1.5 7)
Prerequisites (section 1.5 7, section 1.5 7)
Product behavior 26
Protocol client database query message example

(section 4.5 21, section 4.5 21)
Protocol client initialization example (section 4.4 21,

section 4.4 21)
Protocol server initialization example (section 4.3

21, section 4.3 21)

R

Receiving a get_list Message method 17
Receiving a get_random_read Message method 16
Receiving an access_factory Message method 16
References 5

informative 6
normative 5

Registered server object name 15
Relationship to other protocols (section 1.4 7,

section 1.4 7)
Replication identifier 14

S

Schema 13
Security

implementer considerations 23
parameter index 23

Sequence diagram example (section 4.1 19, section
4.1 19)

Sequencing rules
server 16

Server

abstract data model (section 3.1.1 13, section
3.1.1 13)

access_factory message 16
get_list message 17
get_random_read message 16
local events 18
message processing 16
Receiving a get_list Message method 17
Receiving a get_random_read Message method

16
Receiving an access_factory Message method 16
sequencing rules 16
timer events 18

timers 13
Standards assignments 8

T

Timer events
server 18

Timers
server 13

Tracking changes 27
Transport (section 2.1 9, section 2.1 9)

U

unknown_table_error data type 11

V

Vendor-extensible fields 8
Versioning (section 1.7 8, section 1.7 8)

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Protocol Overview (Synopsis)
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 db_field
	2.2.2 db_record
	2.2.3 db_recordset
	2.2.4 db_recordsetlist
	2.2.5 db_keylist
	2.2.6 db_stringfield
	2.2.7 internal_error
	2.2.8 unknown_table_error
	2.2.9 key_not_found

	3 Protocol Details
	3.1 storageservice::cache_manager Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.3.1 Schema
	3.1.3.2 Database Tables
	3.1.3.3 Partition Identifier
	3.1.3.4 Replication Identifier
	3.1.3.5 Data Distribution Function
	3.1.3.6 Registered Server Object Name
	3.1.3.7 Middleware

	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Receiving an access_factory Message
	3.1.4.2 Receiving a get_random_read Message
	3.1.4.3 Receiving a get_list Message

	3.1.5 Timer Events
	3.1.6 Other Local Events

	4 Protocol Examples
	4.1 Sequence Diagram
	4.2 Client-Side Lookup
	4.3 Protocol Server Initialization
	4.4 Protocol Client Initialization
	4.5 Protocol Client Database Query Message

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full FSIDL
	7 Appendix B: Full Cheetah Specification
	8 Appendix C: Product Behavior
	9 Change Tracking
	10 Index

