[MS-FSMW]:
Middleware Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

= Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

= Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

= No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

= Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

= Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

= Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

1/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com

Revision Summary

Revision Revision

Date History Class Comments

11/06/2009 0.1 Major Initial Availability

02/19/2010 1.0 Major Updated and revised the technical content

03/31/2010 1.01 Editorial Revised and edited the technical content

04/30/2010 1.02 Editorial Revised and edited the technical content

06/07/2010 1.03 Editorial Revised and edited the technical content

06/29/2010 1.04 Editorial Changed language and formatting in the technical
content.

07/23/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

09/27/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

11/15/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

12/17/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

03/18/2011 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

06/10/2011 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

01/20/2012 1.5 Minor Clarified the meaning of the technical content.

04/11/2012 1.5 No change No changes to the meaning, language, or formatting of
the technical content.

07/16/2012 1.5 No change No changes to the meaning, language, or formatting of
the technical content.

2/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

Table of Contents

B N 1 3 o e Yo LT ot o'oY o R 7
3 A €] [0 111 | oV PP 7
B U= =1 <] Lo PP PP 7

1.2.1 NOIrmative Ref@rENCeS .. civiiiitii i e e e aees 7
1.2.2 INfOrmative REFEIENCES ... cuv i e e e e e ae e ns 8
1.3 Protocol OVErVIEW (SYNOPSIS) tuviiriiutiiiitiiii i ettt it e a e e et eae s ae e aaeane e aeeanannans 8
1.3.1 Remote Method Call MOdelciriiiiii e e e e 8
1.3.2 Localizing and BindiNg SEIVErSciuiiiiiiiii e 9
1.3.3 Fundamental INnterfacescooviiiiiiiiiii e 10
1.4 Relationship to Other ProtoCoIS.c.viiiiiiiii e 10
1.5 Prerequisites/PreCconditionNs ..ot 11
1.6 Applicability Statement... . ..o 11
1.7 Versioning and Capability Negotiation.......cccooiiiiiiii e 11
1.8 Vendor-Extensible Fields......oviiiiiiiii i 11
1.9 Standards ASSIGNMENTES ... e 11

7 =TT T 1T 12
A R I =Y 1] o Yo o o PP 12
P2 O] o [e g T Tt TRl I 0T 12

00 Rl o -) 13
000 Y 1 13
2.2.3 LengthPrefixedByteSEQUENCEvviii i e e e e e e e e e neans 13
A vl o T 13
2.2.5 LengthPrefiXedINt32S@qUENCE vttt e e e e e ee e e e eaeaeannans 14
2.2.6 LengthPrefiXedIntb4SeqUENCE ittt a e e e aeaaaens 14
2.2.7 LengthPrefixedStringSEqUENCEt e e e e e e e e e e e e eneennnns 14
2.2.8 LengthPrefixedFloatSequUENCEovviiiii i e e rae e 15
2.2.9 OULPULV AU Lo e e 15
B0 N O B @ =Y U | PP 16
2.2.11 CheetahValUe. . v 16
2.2.12 SYStEMEXCEPEION 1.t 17
D200 NG T U LY=o (ol =T o) o o] o R TR 17
2.2.14 AbstractObjectReferenCe ... 17
A R R O 1| VY e 18] g 1= o) PP PTPIP 18
2.2.16 ServerODbJECLURIviiitieit ittt e s e et e e e e e e e 19
2.2.17 ServerMethOdURI ... e e e e e s e e e e e e n e rne e e reananas 19
PV RS B e o | i o =10 a oY1= aV =T ol g E-Yo = To | PP PP 20
2.2.19 cht:iinameservermsg: iaor_liSt. . ..o 20
2.2.20 nameservice::nameserver::not_bound_exceptionccciiiiiiiiiiiiiiin 21
2.2.21 nameservice::nameserver::resolve_eXceptionc.coviiiiiiiiiiiiiiiii s 21
PPV o | Y ole Y~ o <T=Te 1 U1 g ol < o' =T o o v PP 21
2.2.23 ChEiiC0r@:iallOC cueiie i 21
L B o | i ol oY o/ = =T ol] o 1 AP 22
PP T ol o | i oo] & =T aT=1 0 8 110 HNYZ= 11U 1= 22
2.2.26 Cht:iCore: b0l _ValUe .ot i i e e e e e e 23
2.2.27 Chtiicore: ifloat _VallUe .oiiriiiiii i i i e e e as 23
2.2.28 chtiicore::istring_ValUe ...ovieiiiii e 23
2.2.29 cht:iicore:iloNg_ValUe ...uoeiiii i 23
2.2.30 cht::core::longlong_Value ..o 24
2.2.31 core::lifecyCle: iState . i 24
3/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

N = T Y oo Lol o I 0 = - 11 =S 25

3.1 Common Middleware Detailsoouiiiiiiiiii i e 25
3.1.1 Abstract Data Model ..o s 25
0 A I 0 1= = PP 27
3.1.3 INItAlizZation .o e 27
3.1.4 Message Processing Events and Sequencing RUlES.........c.coviiiiiiiiiiiiiiiiieens 27

3.1.4.1 FSIDL SpeCifiCations.....ciuiiiiiiiiiii i 27
3.1.4.2 Mapping FSIDL MethodDecl to Remote Method Specifications.............ccccvvnenn. 28
3.1.4.3 Mapping Remote Method ReqUESEciviiiiiiiiii e 29
3.1.4.4 Mapping Remote Method Reply......cccoiiiiiiiiiii e 29
3.1.4.5 Mapping FSIDL AtOmMiC Y Pe. ittt it sre e ane e raneeaneeas 29
3.1.4.6 Mapping FSIDL SeqUENCE T Y P . uiiiiti ittt i se e e et re e ane e aaeeaneean 29
3.1.4.7 Mapping FSIDL ENUMNAME . ..uiuiiiiiiii ittt e s 30
3.1.4.8 Mapping FSIDL CheetahEntityNamecccoiiiiiiiiiiii i 30
3.1.4.9 Mapping FSIDL InterfaceNamMecoiiiiiie i e eeee e 30
3.1.4.10 Mapping FSIDL EXCeptioNNamMe. . c.vi ittt e e ee e 30
0 T I o ¢ =Tl Y =T o 30
G I A ST @ ol o 1= il e Yor= | L 7= | 30

3.2 Middleware Server Details.....ciiiiiii i e 30
3.2.1 ADStract Data MoOdelviiiiiiii i i e 30
I T A N [1 0 1= = PP 31
G 207 T 1 o 1) = 172 o o 31
3.2.4 Message Processing Events and Sequencing RUIES.......ccovviiiiiiiiiiiiiceie s 32

3.2.4.1 Remote Method INVOCAtION ..iiviiriiii i e n s 32
TR0 o 1 o T 34
T T B [0 0 =T ol Y= | = PR 34
3.2.6 Other LOCal EVENES vttt i et e et ettt e e e eaa e aaneeas 34

3.3 Middleware ClHent Details . .ciiiiiiiiii i e et e aeaaeaas 34
3.3.1 AbStract Data MOlviiriiiii i 34
G 0G0 A N [1 0 1= = PP 35
G 2G5 T 1 o 1) =1 72 o o 35
3.3.4 Message Processing Events and Sequencing RUlES.........cocoviiiiiiiiiiiiiciineiieens 35

3.3.4.1 Remote Method INVOCationooiiiiiiii i e 35
G 200 2 T I o ¢ L=l V=T o 36
3.3.6 Other LOCal EVENTS .iiuiiiiii i e et eas 36

3.4 Name Server Server Details ..o s 37
3.4.1 Abstract Data MOdelcuiiriiiiiii i e 37
I T A N [0 0 = =T PP 37
G 2 T 1 o 1) = 72 o o 37
3.4.4 Message Processing Events and Sequencing RUIES.......ccoviiiiiiiiiiiiiiiiicei e 37

2 B N o/ <YYo | A 38
304.4.2 DN oo e 38
3.4.4.3 UNDING Lot 39
O 1 1= - 0 /2 39
S 113 o 0 [40
T S G T |1 il 1= o e 41
I T [o g =T ol Y= | = TR 42
G R ST @ ol o 1= gl e Yor= | I L 7= 1 42

3.5 Name Server CHent Details ..o.ciiiiiiiiii i e et e aeaaaaas 42
3.5.1 ADStract Data MOdelviiiiiiiii i e e i e e as 42
T 0 A [0 0 = = 42
3.5.3 INitializZation .o e 42
3.5.4 Message Processing Events and Sequencing RUIES.........cocoviiiiiiiiiiiiiiiceieae s 42

4/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

3.5 TIMEr EVENES et 42
3.5.6 Other LOCal EVENTS .oiuiiieiiiii i e et a e e aee e 43
3.6 core::fds_component Server Detailso.ouiiiiiiiiii e 43
3.6.1 Abstract Data MOdelcuiiiiiiiiii i e 43
G I G A 0 0 1= = PR 44
3.6.3 INItiAliZation .oveieiiie i 44
3.6.4 Message Processing Events and Sequencing RuUl@s.........ccciiiiiiiiiiiiiic i 44
3.6.4.1 gt _hOSTNAMIE . e e 45
G N I o [ol o =110 18 ol = oY) o v P 45
3.6.4.3 UPEIMIE i 46
G I I S o [o V=T =1 (o] o PN 46
3.6.4.5 get _MOdel _VEISION vttt 47
3.6.4.6 gL _fdS VEISION ..ttt ittt 47
3.6.4.7 get _middleWare POr ..ottt 47
3.6.4.8 Set_TraceleVel ..ovieii i s 48
G I R T 0 g =T ol Y= | = PP 48
G TSI ST O 1 g U= ol e or= | B =T ¥ 48
3.7 core::fds_component Client DeLailS......o.vuiuieiiiiii e ee e 48
3.7.1 Abstract Data MOdelc.iiiiiiiiii i e 48
T A 1 [0 2 1= = 49
3.7.3 INItiAalizZation .o e 49
3.7.4 Message Processing Events and Sequencing RUleS.........c.coviiiiiiiiiiiiiiiinenees 49
T T B [0 0 =T ol V7= | = PR 49
3.7.6 Other [Yo=Y = o | = 49
3.8 core::lifecycle Server DetailS.....ccucieie i 49
3.8.1 Abstract Data MOl ..ueiii i e 49
< T I 0 1= o= 50
3.8.3 INItialiZation oo e 50
3.8.4 Message Processing Events and Sequencing RUlES.........c.coviiiiiiiiiiiiiiineens 50
3.8.4. 1 13 oo o PP 50
3.8.4 =TT 0 <P 51
3.8.4. 3 L 813 0= o T [PP 51
3.8.4.4 get Stale . s 51
G T T I [0 1= ol V=T o P 52
3.8.6 Other LOCal EVENES it e 52
3.9 core::lifecycle Client Detailsoeiuiiiiiii e 52
3.9.1 Abstract Data MOl ..uiiiii i e 52
G IR A [1 0 = =T TP 52
3.9.3 INItiAliZation .ooviiiii i e 52
3.9.4 Message Processing Events and Sequencing RUIES.......ccovviiiiiiiiiiiiiicei e 52
3.0, TIMEr EVENES ¢ttt e e e 52
3.9.6 Other LOCal EVENTS .iiuiiiiiii i e e et aa 53
4 Protocol EXamplesS....icciiciiiiiiiii i i ns st s srs s s s ra s na s ra s raara s rnaREa R R R nERaREE 54
4.1 Resolve an Abstract Object Referencec.vvieiiiiiiiii e 54
L = 1 | I o 1o o [PP 56
L =T ol T o 58
5.1 Security Considerations for Implementers........ccoiiiiiiiii e 58
5.2 Index of Security Parameterso 58
6 Appendix A: FUll FSIDL.....ciciiiieriierasiarsssara s s s ssssassassssssasssssssssasssssssnsassnsnnnnsas 59
L N S 1 PP 59
5/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

7 Appendix B: Product Behavior......c.ciciirsimmsisssiss s s ssmsssssssmss s s ssmsa s s snmsnsnnnas 62

< J 0 o 1= T 5 e 1T I o T o] L T« e 63

T 1 1 T = e 64
6/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

1 Introduction

The Middleware Protocol provides a mechanism for an implementation to call methods that are
located in a different address space over the network. A protocol client constructs parameters that it
sends to the protocol server as part of the call message. The protocol server sends a return value to
the protocol client in the response. In addition to the basic data types, applications exchange
information encoded in the Cheetah data model. For more information, see [MS-FSCHT].

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also

normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

authentication

certificate

credential

Hypertext Transfer Protocol (HTTP)

Hypertext Transfer Protocol over Secure Sockets Layer (HTTPS)
Kerberos

NT LAN Manager (NTLM) Authentication Protocol

UTF-8

The following terms are defined in [MS-OFCGLOST:

abstract object reference (AOR)

channel URI

Cheetah checksum

Cheetah entity

client proxy

FAST Search Interface Definition Language (FSIDL)
host name

name server

server interface

The following terms are specific to this document:
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the technical documents, which are updated frequently. References
to other documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,

7/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

%5bMS-FSCHT%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com

http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[IEEE754] Institute of Electrical and Electronics Engineers, "Standard for Binary Floating-Point
Arithmetic", IEEE 754-1985, October 1985, http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-FSCHT] Microsoft Corporation, "Cheetah Data Structure".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol Specification".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.ietf.org/rfc/rfc2616.txt

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD
68, RFC 5234, January 2008, http://www.rfc-editor.org/rfc/rfc5234.txt

1.2.2 Informative References

[CORBA] Object Management Group, "Common Object Request Broker Architecture (CORBA/IIOP)
Specification", http://www.omg.org/technology/documents/formal/corba iiop.htm

[MSDN-MIDL] Microsoft Corporation, "Microsoft Interface Definition Language (MIDL)",
http://msdn.microsoft.com/en-us/library/ms950375.aspx

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary".

1.3 Protocol Overview (Synopsis)

This protocol specifies a mechanism for an application to call methods that are located in a different
address space over the network. Input values to the method are sent as part of the call message
and return values are sent in the response. In addition to the basic data types, applications
exchange information encoded as Cheetah entities. The procedure for serializing Cheetah entities
is described in [MS-FSCHT].

This section presents a brief overview of the following:
= The remote method call model.
» Localizing and binding protocol servers.

= Fundamental interfaces.

1.3.1 Remote Method Call Model

This protocol specifies how to call a method when the calling application and the target method are
located in different address spaces. The following figure is an example.

8/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-DTYP%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-NLMP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=123096
http://go.microsoft.com/fwlink/?LinkId=94411
http://go.microsoft.com/fwlink/?LinkId=90041
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSCHT%5d.pdf

Client Server

i SayHello(™World"™) i
E n Jr_______._-—-—-_'_-—i
H Hello World i

Figure 1: Middleware Protocol

This protocol specifies two roles: protocol client and protocol server. The protocol client initiates
communication by calling a remote method with input values and a client proxy. The server object
receives the request from the client proxy, processes the method as specified in the parameters in
the request, and sends a return value to the client proxy, which then sends it to the protocol client.

The remote method sends user exceptions to the protocol client when errors occur during processing
in the implementation-specific part of the protocol server. Generic protocol server errors such as
connection errors, data validity errors, and availability errors are returned to the protocol client as
system exceptions. Server objects and client proxies are represented as abstract object
references (AORs) when associated with remote methods as parameters or return values. The
following figure shows a protocol client that sends an abstract object reference to a protocol server,
where the protocol server uses the abstract object reference to call back to the protocol client.

lien Server
i CallMe(CallbackProxy) i
- —— Vo — |
Call with
: CallingBack i CallbackProxy
E"-_'_'_._._._-_-_ H
5'_'_'_'_‘_‘—‘—'—-—-—-void ﬂ_____________hh

Figure 2: An abstract object reference sent by the protocol client and then used by the
protocol server to call back the protocol client

1.3.2 Localizing and Binding Servers

A protocol client requires an abstract object reference to create a client proxy that communicates
with a specified server object. When a server object is instantiated, a server object URI is
constructed from the AOR, and includes information such as the network host name and port of the
server object. Likewise, client proxies create a server method URI from the AOR to call a remote
method.

A name server associates logical names with server objects so that protocol clients and protocol
servers do not explicitly manage AORs. Protocol clients contact the name server to request a server
object specified by its logical name. An example is shown in the following figure, where the protocol

9/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

client looks up the reference to the "Hello" server object in the name server, creates a client proxy
based on the AOR and calls the SayHello method on the server object.

Client

Server

. Bind server object ——
‘g— to name "Helio”

0k

———— Localize Server i
i named "Hello” ——pu;

Abstract Object ——
_a4—Reference to Server

Create Proxy to
Server Object
based on

Abstract Object | : i
Reference SayHello("World")

“Hello World”

Figure 3: Binding a server object to the logical name "Hello" in the name server

By using the name server, protocol clients and protocol servers explicitly manage only the AOR that
represents the name server. They use the name server to localize all other server objects. The
server interface implemented by the name server is described in section 3.4.

1.3.3 Fundamental Interfaces

In addition to the name server, this protocol specifies two fundamental server interfaces that are
implemented by applications that use this protocol. The first interface specifies controls and queries
for runtime states, including whether the protocol server is running, suspended, terminating, or
stopped. This interface is described in section 3.8.

The second interface queries the protocol server for runtime statistics such as the average duration
of method processing, or the values of implementation-specific parameters. The interface is
described in section 3.6.

1.4 Relationship to Other Protocols

This protocol specifies how to convert a remote method into an exchange of encoded messages.
User applications are layered on top of this protocol and use its services for application-specific
purposes.

This protocol depends on other structures and protocols to encode and transport its messages.
Cheetah entities specify additional data types to encode nested and tree-structured data structures.
Transmission on the wire is performed using the Hypertext Transfer Protocol (HTTP) or the
Hypertext Transfer Protocol over the Secure Sockets Layer (HTTPS), and protocol client

10/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

authentication (2) is optionally done through either the NT LAN Manager (NTLM) Authentication
Protocol (NTLM) or Kerberos.

1.5 Prerequisites/Preconditions
The protocol server deploys a certificate (1) if the HTTPS transport is used. Typically, protocol
clients and protocol servers are deployed with a nhame server protocol server to avoid managing
AORs explicitly.
This protocol does not specify any means to activate a protocol server or protocol client. The
protocol server is configured to listen on a channel URI as specified by the implementation. For
more information about channel URIs, see section 3.2.1, Abstract Data Model.

Protocol clients and protocol servers need to agree on the remote method specifications and the
Cheetah entity specifications.

1.6 Applicability Statement

This protocol calls remote methods in a distributed environment. It is designed for use on private
networks, and is not appropriate for use on public networks. For more information, see section 5.1.

1.7 Versioning and Capability Negotiation
This document covers versioning issues in the following areas:
= Supported transports: This protocol can be implemented on top of HTTP/HTTPS.
= Protocol versions: There is only one version of this protocol.

= Security and authentication methods: The protocol relies on the security provided by HTTPS,
NTLMv1, NTLMv2, and Kerberos. The protocol does not have any security provisions of its own.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

11/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

2 Messages

2.1 Transport

This protocol uses HTTP transport as specified in [RFC2616] to transmit method requests and
responses. The protocol client sends a message as part of an HTTP request, and the protocol server
replies with an HTTP response. Port 80 is the standard port assignment for HTTP and port 443 is the
standard port assignment for HTTPS. Use of other ports is implementation-dependent.

If the application that calls this protocol requires NTLM authentication [MS-NLMP] or Kerberos
authentication [MS-KILE], the application MUST provide implementation-specific credentials as
either a user name/password or a certificate. This protocol MUST NOT process the credentials or
authentication information, because processing is implementation-dependent.

The calling application MUST specify the maximum number of octets that the HTTP request and
response message body can contain.

2.2 Common Data Types

This section specifies the structures of the common types that are supported by this protocol. A
protocol type is identified by a case-sensitive name, and specifies the structure of data. This
protocol supports the BYTE, INT32 and INT64 types specified in [MS-DTYP] in addition to single-
precision IEEE floating-point. The byte-ordering of the INT32 and INT64 data types MUST be big-
endian. The signed data types use two's complement to represent the negative humbers.

The cht::core Cheetah entities specified by this protocol and the corresponding Cheetah type
identifiers are specified in the following table.

cht::core Cheetah entities Cheetah type identifier
alloc 0

named_value 1

bool_value 2

scope 5

resource_report 6

float_value 8

long_value 10

string_value 11

longlong_value 12

The Cheetah checksum for cht::core entities MUST be -1479218033.

The cht::nameservermsg Cheetah entities specified by this protocol and the corresponding
Cheetah type identifiers are specified in the following table.

cht::nameservermsg Cheetah entities Cheetah type identifier

aor 0

12/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-NLMP%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-OFCGLOS%5d.pdf

cht::nameservermsg Cheetah entities Cheetah type identifier

aor_list 1

The Cheetah checksum for cht::nameserver entities MUST be 277807848.

2.2.1 Float

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|(5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

Value

Value (4 bytes): A 32-bit single-precision floating-point field, as specified in [IEEE754]. Float
values range from negative 3.402823e38 to positive 3.402823e38.

2.2.2 Void

This represents an empty data value.

2.2.3 LengthPrefixedByteSequence

This represents a sequence of BYTE values.

0|1{2({3(4|5|/6|7(8|9|/0|12(3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

Length

ByteSequence (variable)

Length (4 bytes): An INT32 that represents the length of the sequence. The value MUST be 0
or a positive number.

ByteSequence (variable): A sequence of BYTE values. The number of BYTE values MUST be
equal to the Length field.

2.2.4 String

This represents a UTF-8 encoded string, and is prefixed by a value that specifies the humber of
BYTEs that represent the encoded string.

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|(5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

Length

ByteSequence (variable)

13/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-GLOS%5d.pdf

Length (4 bytes): An INT32 that represents the length of the sequence. The value MUST be 0
or a positive nhumber.

ByteSequence (variable): A sequence of BYTE values. The number of BYTE values MUST be
equal to the Length field.

2.2.5 LengthPrefixedInt32Sequence

This represents a sequence of INT32 values.

-
N
w

0|1|{2(3(4|5|/6|7(8|9|/0|1|2(3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

Length

Int32Sequence (variable)

Length (4 bytes): An INT32 that represents the length of the sequence. The value MUST be 0
or a positive nhumber.

Int32Sequence (variable): A sequence of INT32 values. The number of INT32 values is
specified in the Length field.

2.2.6 LengthPrefixedInt64Sequence

This represents a sequence of INT64 values.

-
N
w

0|1|{2(3(4|5|/6|7(8|9|/0|1|2(|3|4|5|6[7(8|9|0(1(2|3|4|5|/6(7|8|9|0(1

Length

Int64Sequence (variable)

Length (4 bytes): An INT32 that represents the length of the sequence. The value MUST be 0
or a positive number.

Int64Sequence (variable): A sequence of INT64 fields. The number of INT64 fields is
specified in the Length field.

2.2.7 LengthPrefixedStringSequence

This represents a sequence of String fields. The length MUST be of type INT32, and specifies the
number of String elements in the sequence.

14 /70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

0(1/2(3|4(5|6|7(8|9(0(1|2|3|4(5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

Length

StringSequence (variable)

Length (4 bytes): An INT32 that represents the length of the sequence. The value MUST be 0
or a positive number.

StringSequence (variable): A sequence of String fields, as specified in section 2.2.4. The
number of String fields is specified in the Length field.

2.2.8 LengthPrefixedFloatSequence

This represents a sequence of Float values.

0|1{2({3(4|5|/6|7(8|9|/0|1|2(3|4|5|6[7|8|9|0(1(2|3|4|5|/6(7|8|9|0(1

Length

FloatSequence (variable)

Length (4 bytes): An INT32 that represents the length of the sequence. The value MUST be 0
or a positive number.

FloatSequence (variable): A sequence of Float values, as specified in section 2.2.1. The
number of Float values is specified in the Length field.

2.2.9 OutputValue

This represents the protocol server response resulting from a remote method invocation at the
server object.

=

2 3
0(1/2(3|4(5|6|7(8|9|(0(1|2|3|4|5|6|7|8|9(0|1|2[3|4(5|6|7(8|9(0]1

ReturnType MessageContent (variable)

ReturnType (1 byte): A BYTE value that MUST contain the value 48, 49, or 50. If the value is
48, the MessageContent field contains a CallResult message. If the value is 49, the
MessageContent field contains a UserException. If the value is 50, the MessageContent
field contains a SystemException.

15/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

MessageContent (variable): MUST contain a CallResult, UserException, or
SystemException record.

2.2.10 CallResult

This represents the result value from invoking a remote method call.

0(1/2(3|4(5|6|7(8|9(/0(1|2|3|4|5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

ResultContents (variable)

ResultContents (variable): MUST be a field of one of the following types:
* Void
= BYTE
= INT32
= INT64
* Float
= String
* LengthPrefixedByteSequence
= LengthPrefixedStringSequence
* LengthPrefixedInt32Sequence
* LengthPrefixedInt64Sequence
* LengthPrefixedFloatSequence
= AbstractObjectReference

= CheetahValue

2.2.11 CheetahValue

This represents the Cheetah entity in serialized form, as specified in [MS-FSCHT] section 2.

=

2 3
0(1/2(3|4(5|6|7(8|9(0(1|2|3|4|(5|6|7|8|9(0|1(2[3|4(5|6|7(8|9(0]1

CheetahValueContents (variable)

CheetahValueContents (variable): MUST be a single Cheetah entity.

16 /70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

%5bMS-FSCHT%5d.pdf

2.2.12 SystemException

This represents a system exception thrown by the protocol server. The SystemException record is
identified with a Name field and a Description field.

-
N
w

0|1|{2(3(4|5|6|7(8|9|/0|1|2(3|4|5|6[7|8|9|0(1({2|3|4|5|6(7|8|9|0(1

Name (variable)

Description (variable)

Name (variable): A String field that MUST contain the value "system_exception".

Description (variable): A String field that contains the description of the system exception.

2.2.13 UserException

This represents an exception thrown by the implementation-specific part of a remote method in a
server object. The UserException record is identified with a Name field and, optionally, a set of
Attributes fields.

—
N
w

0|1{2({3(4|5|/6|7(8|9|/0|1|2|3|4|5|6[7|8|9|0(1(2|3|4|5|6(7|8|9|0(1

Name (variable)

Attributes (variable)

Name (variable): A String field that represents the name of the UserException.

Attributes (variable): This contains 0 or more fields of type BYTE, INT32, INT64, Float, or
String. If no fields are represented, the Attributes field MUST contain the value Void. Values
are not padded to a byte boundary when more than 1 value is represented.

2.2.14 AbstractObjectReference

This represents a server object that is sent between a protocol client and a protocol server.

17/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

2|3|4(5|6(7|8]|9

Host (variable)

Port

InterfaceType (variable)

InterfaceVersion (variable)

ServerObjectId

Host (variable): A String field that contains a host name.

Port (4 bytes): An INT32 field that contains a port number that MUST be in the range 0-65535.

InterfaceType (variable): A String field that contains the name of the server interface.
InterfaceVersion (variable): A String field that contains the server interface version.

ServerObjectld (8 bytes): An INT64 field that contains the server object identifier.

2.2.15 CallArguments

This represents the input values specified by the protocol client. The input values are specified by

one or more Arguments fields.

1 3
0({1(2|3(4|5|6|7|8|9(0|1(2|3|4|5|6|7|8]|9 01
Arguments (variable)

Arguments (variable): Contains 0 or more values of one of the following types:
= BYTE
= INT32
= INT64
18/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

* Float

= String

= CheetahValue

= AbstractObjectReference

* LengthPrefixedByteSequence
* LengthPrefixedInt32Sequence
* LengthPrefixedInt64Sequence
= LengthPrefixedFloatSequence
= LengthPrefixedStringSequence

If no values are represented, the Arguments field MUST be the Void value. Values are not
padded when more than 1 value is represented.

2.2.16 ServerObjectURI

This represents the server object URI. The server object URI is the path segments of the HTTP
Request-URI that identifies a server object, and is thus a prefix of the ServerMethodURI. The
ServerObjectURI is a URI path that consists of the following three path segments, delimited by a
slash (/):

InterfaceType: Represents the protocol server interface.
InterfaceVersion: Represents the server interface version.
ServerObjectld: A 64-bit number in decimal digit form that represents the server object identifier.

The following string pattern using Augmented Backus-Naur Form (ABNF) syntax specified in
RFC5234] specifies the ServerObjectURI:

InterfaceType = 1* (ALPHA / DIGIT / " ") "::" 1*(ALPHA / DIGIT / " ")
InterfaceVersion = 1*DIGIT "." 1*DIGIT

ServerObjectId = 1*DIGIT

ServerObjectURI = InterfaceType "/" InterfaceVersion "/" ServerObjectId

For example, in the ServerMethodURI string "core::fds_component/1.2/42", the InterfaceType
field is "core::fds_component", the InterfaceVersion field contains "1.2", and the ServerObjectIld
field is 42.

2.2.17 ServerMethodURI

This represents a specific remote method. It MUST contain a ServerObjectURI that specifies which
server object contains the remote method.

MethodName: Represents the name of a remote method.

ServerMethodURI: URI specified in the following string pattern, using Augmented Backus-Naur
Form (ABNF) syntax specified in [REC5234].

19/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

http://go.microsoft.com/fwlink/?LinkId=113442
http://go.microsoft.com/fwlink/?LinkId=113442

MethodName = 1* (ALPHA / DIGIT / " ")
ServerMethodURI ServerObjectURI "/" MethodName

For example, in the ServerMethodURI string "core::fds_component/1.2/42/get_resource_report",
the MethodName is "get_resource_report" and the ServerObjectURI is
"core::fds_component/1.2/42".

2.2.18 cht::nameservermsg::aor

This represents an abstract object reference, and is specified by the following Cheetah entity:

root entity aor

{
attribute string host;
attribute int port;
attribute string interface type;
attribute string interface version;
attribute longint object id;
attribute string bound name;

}i

host: A string that represents the host name of the server object.

port: A field of type int that represents the port number of the server object.
interface_type: A string that represents the interface of the server object.
interface_version: A string that represents the version of the interface.

object_.id: A field of type longint that represents the identifier of the server object.

bound_name: A string that represents the name field in the logical name associated with this
abstract object reference, as specified in section 3.4.1.

The cht::nameservermsg::aor attributes are mapped to AbstractObjectReference fields except
the bound_name attribute, as specified in section 2.2.14, and in the following table.

cht::nameservermsg::aor attributes AbstractObjectReference fields
Host Host

Port Port

interface_type InterfaceType
interface_version InterfaceVersion

object_id ServerObjectld

The Cheetah entity attributes are the same as the corresponding AbstractObjectReference fields.

2.2.19 cht::nameservermsg::aor_list

This represents a collection of cht::nameservermsg::aor, and is specified by the following Cheetah
entity:

20/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

root entity aor list
{

collection aor aors;
}i

aors: A collection of cht::nameservermsg::aor Cheetah entities, as specified in section 2.2.18.

2.2.20 nameservice::nameserver::not_bound_exception
This states that there is no association between a given logical name, as specified in section 3.4.1,

and an AOR in the name server. The FAST Search Interface Definition Language (FSIDL)
specification for the exception is as follows:

exception not bound exception {};

2.2.21 nameservice::nameserver::resolve_exception

This states that a specified Logical Name, as specified in section 3.4.1, does not exist in the name
server. The FSIDL specification for the exception is as follows:

exception resolve exception {};

2.2.22 cht::core::resource_report

This represents a resource allocation report based on the resource allocation table, resource scope
table, and resource value table of the protocol server, as specified in section 3.6.1. The
cht::core::resource_report is specified by the following Cheetah entity:

root entity resource report {
attribute longint when;
collection alloc allocs;
collection scope scopes;
collection named value values;

bi
when: A field of type longint that represents the time in number of seconds since January 1, 1970.
allocs: A collection of cht::core::alloc Cheetah entities, as specified in section 2.2.23.

scopes: A collection of cht::core::scope Cheetah entities, as specified in section 2.2.24.

values: A collection of cht::core::named_value Cheetah entities, as specified in section 2.2.25.

2.2.23 cht::core::alloc

This represents an implementation-specific counter that counts named resources such as files or
memory units in the server object. The content is based on an entry of the resource allocation table,
as specified in section 3.6.1. The cht::core::alloc is specified by the following Cheetah entity:

entity alloc {
attribute string name;
attribute int current;

21/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

%5bMS-OFCGLOS%5d.pdf

attribute int total;
}i
name: A field of type string that represents the name of the resource allocation.
current: A field of type int that represents the current number of resource allocations.

total: A field of type int that represents the total number of resource allocations.

2.2.24 cht::core::scope

This represents an implementation-specific name specified by a well-formed set of programming
language statements, typically in a function or method within the server object. The content of a
resource scope is based on an entry in the resource scope table, as specified in section 3.6.1. The
cht::core::scope is specified by the following Cheetah entity:

entity scope {
attribute string name;
attribute int current;
attribute int total;
attribute int min time;
attribute int max time;
attribute int avg time;
bi
name: A string that represents the name of the resource scope.
current: A field of type int that represents the current number of calls for this resource scope.
total: A field of type int that represents the total number of calls for this resource scope.

min_time: A field of type int that represents the minimum time in milliseconds used for a call of
this resource scope.

max_time: A field of type int that represents the maximum time in milliseconds used for a call of
this resource scope.

avg_time: A field of type int that represents the average time in milliseconds used for a call of this
resource scope.

2.2.25 cht::core::named_value
This represents a resource value, which is an implementation-specific field that is associated with a
unique name within the server object. The content is based on an entry in the resource value table,
as specified in section 3.6.1.
The cht::core::named_value Cheetah entity is subtyped by the following Cheetah entities:
= cht::core::bool_value
= cht::core::float_value

= cht::core::string_value

= cht::core::long_value

22/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

= cht::core::longlong_value

The cht::core::named_value is specified by the following Cheetah entity:

entity named value {
attribute string name;
}i

name: A string that represents the name of the resource value.

2.2.26 cht::core::bool_value

This is a subtype of the cht::core::named_value that represents a resource value of type BOOL
and is specified by the following Cheetah entity:

entity bool value : named value {
attribute bool value;
bi

value: A field of type BOOL that represents the value.

2.2.27 cht::core::float_value

This is a subtype of the cht::core::named_value that represents a resource value of type float
and is specified by the following Cheetah entity:

entity float value : named value {
attribute float value;
}i

value: A field of type float that represents the value.

2.2.28 cht::core::string_value

This is a subtype of the cht::core::named_value that represents a resource value of type string
and is specified by the following Cheetah entity:

entity string value : named value ({
attribute string value;

bi

value: A string that represents the value.

2.2.29 cht::core::long_value

This is a subtype of the cht::core::named_value that represents a resource value of type int and
is specified by the following Cheetah entity:

entity long value : named value ({
attribute int value;

bi

23/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

value: A field of type int that represents the value.

2.2.30 cht::core::longlong_value

This is a subtype of the cht::core::named_value that represents a resource value of type longint
and is specified by the following Cheetah entity:

entity longlong value : named value {
attribute longint value;
}i

value: A field of type longint that represents the value.

2.2.31 core::lifecycle::state

This specifies the four runtime states for a protocol server process: initializing, running, suspended,
and terminating, as specified in section 3.8.1. The FSIDL specification for the enumeration is as
follows:

enum state {
initializing, running, suspended, terminating
}i

24 /70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

3 Protocol Details
3.1 Common Middleware Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The middleware data model represents defined data structures and values that are implementation-
specific, as well as the remote method invocation input values, return values, or any system or user
exceptions resulting from the invocation. FSIDL specifies the middleware data model instead of
mapping to a specific programming language. Section 3.1.4.1 contains information about FSIDL
specifications, and specifies how to map the FSIDL notation into the corresponding middleware
types.

Middleware type

A middleware type is identified by a case-sensitive name, and specifies the structure of data. FSIDL
notation refers to the name of the type. The middleware data model supports the BYTE, INT32,
and INT64 types specified in [MS-DTYP]. In addition, the middleware data model specifies the
following types:

= Float: Represents a 32-bit single-precision floating-point value, as specified in section 2.2.1.
= Void: A type that specifies no value, as specified in section 2.2.2.

= LengthPrefixedByteSequence: A sequence of BYTE values, as specified in section 2.2.3.

= String: A sequence of BYTE values that represents a String, as specified in section 2.2.4.

= LengthPrefixedInt32Sequence: A sequence of INT32 values, as specified in section 2.2.5.
= LengthPrefixedInt64Sequence: A sequence of INT64 values, as specified in section 2.2.6.
= LengthPredixedStringSequence: A sequence of String values, as specified in section 2.2.7.
= LengthPrefixedFloatSequence: A sequence of Float values, as specified in section 2.2.8.

= CheetahValue: A Cheetah entity, as specified in section 2.2.11.

= AbstractObjectReference: An abstract object reference, as specified in section 2.2.14.

= SystemException: A system exception, as specified in section 2.2.12.

= UserException: A user exception, as specified in section 2.2.13.

Middleware data value

A middleware data value is an instance of a middleware type.

Server interface

25/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

%5bMS-DTYP%5d.pdf

This encapsulates a set of method declarations. Multiple versions of the same protocol server
interface can be instantiated in the same protocol server.

Server interface version
This represents the version of a specific server interface.
Server object

An instance of a server interface that is associated with the specified version and server object
identifier.

Server object identifier

A number that is unique for each server object within the network host where the server object is
instantiated.

Client proxy

This sends information to the protocol server used to call the remote methods on the server object.
The client proxy uses an abstract object reference to refer to the server object.

Abstract object reference

This represents a server object that is sent between a protocol client and a protocol server. It
contains sufficient information to construct a client proxy that calls remote methods on the server
object. More specifically, an abstract object reference for a specified server object is identified by
the following:

= Host name: The host name where the server object executes.

= Port number: The port humber associated with the server object.

= Server interface: The server interface of the server object.

= Server interface version: The server interface version of the server object.
= Server object identifier: The identifier of the server object.

The abstract object reference is represented by the AbstractObjectReference record specified in
section 2.2.14.

Remote method

Represents a method that is called remotely and that is declared in a server interface. The
specification of a remote method contains the following:

= Name: The name of the remote method. A remote method is uniquely identified within a protocol
server interface by the remote method name.

= Arguments: An ordered collection of arguments, where each argument has a name and a
Middleware type.

= Exceptions: A collection of user exceptions that the remote method throws. Each user exception
has a name.

= Return type: The type of the value returned by the remote method.

The remote method request and response consist of the following:

26/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

= Name: The name of the remote method.

= Input values: An ordered collection of values, one for each remote method Argument field.
Each value is a Middleware data value. The input values are represented by the CallArguments
record specified in section 2.2.15.

= Return value: The value that contains the result of the remote method, in an OutputValue
record, as specified in section 2.2.9. The OutputValue record contains one of three possible
results from a remote method:

A value with the same type as the Return Type field returned by the remote method. The value
returned from a remote method is represented by the CallResult record specified in section 2.2.10.

A system exception that represents a processing error associated with a remote method. A system
exception contains a human-readable message that specifies the error. If a human-readable
message is not possible to infer from the underlying error, an empty message or the message "N/A"
is used. A system exception is represented by the SystemException record specified in section
2.2.12.

A user exception that represents an implementation-specific processing error associated with a
remote method. A user exception is represented by the UserException record specified in section
2.2.13.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Message Processing Events and Sequencing Rules

The following specifies the format of FSIDL specifications, how to map FSIDL specifications to
remote method specifications, and how data types in FSIDL specifications are mapped to the
corresponding middleware types.

3.1.4.1 FSIDL Specifications

Applications use this protocol to specify server interfaces with FSIDL specifications. An
implementation of this protocol does not require the use of FSIDL, whose notation specifies the
interfaces between protocol clients and protocol servers .

FSIDL specifications resemble MIDL specifications, as described in [MSDN-MIDL], and provide a
subset of the OMG IDL language, as described in [CORBA]. The following string pattern, using
Augmented Backus-Naur Form (ABNF) syntax specified in [REC5234], specifies the FSIDL
specifications:

FSIDLSpecification = (Cheetah / (Cheetah FSIDL) / FSIDL) LWSP ";"

Cheetah = "module" LWSP "cht" LWSP "{" LWSP l1l*CheetahModuleDecl LWSP ";" LWSP "}"
CheetahModuleDecl = "module" LWSP CheetahModule LWSP "{" LWSP CheetahTypedef LWSP
1*CheetahEntityTypeDef LWSP "}"

CheetahTypedef = "typedef" LWSP "sequence" LWSP "<" LWSP "octet" LWSP ">" LWSP "cheetah" LWSP
CheetahEntityTypedef = "typedef" LWSP "cheetah" LWSP CheetahEntity LWSP ";"

CheetahModule = Name

27/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

http://go.microsoft.com/fwlink/?LinkId=90041
http://go.microsoft.com/fwlink/?LinkId=163966
http://go.microsoft.com/fwlink/?LinkId=113442

CheetahEntity = Name

CheetahEntityName = "cht::" CheetahModule "::" CheetahEntity

FSIDL = "module" LWSP "interfaces" LWSP "{" LWSP 1*FSIDLModule LWSP "}"

FSIDLModule = "module" LWSP FSIDLModuleName LWSP "{" LWSP l*Definition LWSP "}" LWSP ";"
FSIDLModuleName = Name

Definition = EnumDecl LWSP ";" / TypedefDecl LWSP ";" / ExceptionDecl LWSP ";" / ForwardDecl
LWSP ";" / InterfaceDecl LWSP ";"

EnumDecl = "enum" LWSP EnumName LWSP "{" LWSP EnumList LWSP "}"

EnumList = Enum 1* (LWSP "," LWSP Enum)

EnumName = Name

Enum = Name

TypedefDecl = "typedef" LWSP TypeSpecification LWSP TypeName

TypeSpecification = AtomicType / SequenceType

TypeName = Name

AtomicType = IntegerType / CharType / BooleanType / FloatType / OctetType / StringType

SequenceType = "sequence" LWSP "<" LWSP (IntegerType / CharType / OctetType / FloatType /
StringType) LWSP ">"

IntegerType = ("long" / "long" LWSP "long")

CharType = "char"

OctetType = "octet"

FloatType = "float"

BooleanType = "bool"

StringType = "string"

ExceptionDecl = "exception" LWSP ExceptionName LWSP "{" LWSP [ExceptionAttributes] "}"

ExceptionName = Name
ExceptionAttributes = AtomicType LWSP TypeName LWSP ";"

ForwardDecl = "interface" LWSP InterfaceName

InterfaceDecl = "interface" LWSP InterfaceName LWSP [InheritsInterface] LWSP "{" LWSP
InterfaceBody LWSP "}"

InheritsInterface = ":" LWSP InterfaceName

InterfaceName = NamespaceName

NamespaceName = Name ["::" Name]

InterfaceBody = [InterfaceVersionDecl] 1*MethodDecl

InterfaceVersionDecl = "#pragma" LWSP "version" LWSP InterfaceVersion
InterfaceVersion = (1*DIGIT "." 1*DIGIT)

MethodDecl = ReturnType LWSP MethodName LWSP Arguments [LWSP RaisesDecl]
ReturnType = TypeSpecification / InterfaceName / CheetahEntityName / EnumName / "void"
MethodName = Name

RaisesDecl = "raises" LWSP " (" LWSP RaisesExceptions LWSP ")"

RaisesExceptions = NamespaceName * (LWSP "," LWSP NamespaceName)

Arguments = " (" LWSP Argument * (LWSP "," LWSP Argument) LWSP ")" / " (" LWSP "void" LWSP ")" /
" LRSP ")

Argument = "in" LWSP ArgumentType LWSP ArgumentName

ArgumentName = Name
ArgumentType = TypeSpecification / InterfaceName / CheetahEntityName / EnumName
Name = ALPHA * (ALPHA / DIGIT / "M

The following uses the notation "FSIDL RuleName" when referring to a rule RuleName that is
specified by the previous ABNF grammar.

3.1.4.2 Mapping FSIDL MethodDecl to Remote Method Specifications

The FSIDL MethodDecl specifies the name, arguments, exceptions, and return type of the remote
method. The FSIDL ReturnType statement specifies the return type of the remote method, the
FSIDL MethodName statement the name of the remote method, the FSIDL arguments specifies the
arguments of the remote method, and the FSIDL RaisesExceptions specifies the exceptions of the
remote method.

28/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

3.1.4.3 Mapping Remote Method Request

The name of the remote method is specified by the FSIDL ArgumentName. The middleware type for
each argument of the remote method Arguments is specified by the FSIDL ArgumentType. The
input values of the remote method MUST be serialized as a CallArguments record, as specified in
section 2.2.15. Each Argument field in the CallArguments record MUST contain the value that
corresponds to the type specified by the FSIDL ArgumentType. The input values of the remote
method MUST be serialized in same order as the FSIDL Arguments.

3.1.4.4 Mapping Remote Method Reply

This consists of a CallResult record which contains a value, a system exception, or a user
exception. The FSIDL ReturnType specifies the return type for the remote method Return Value.
The remote method Return Value MUST be serialized as a CallResult record, as specified in
section 2.2.10. The ResultContents field MUST contain the serialized Return Value.

3.1.4.5 Mapping FSIDL AtomicType

The following table specifies the mapping between types specified by the FSIDL AtomicType and the
corresponding protocol types.

For FSIDL BooleanType, the BYTE value O represents false, and the BYTE value 1 represents
true.

For FSIDL StringType, and empty string MUST be serialized as a String record, as specified in
section 2.2.4, with the Length field set to 0.

FSIDL atomic

type Protocol type

char BYTE, as specified in [MS-DTYP].

octet BYTE, as specified in [MS-DTYP].

boolean BYTE, as specified in [MS-DTYP]. The BYTE value 0 represents false, and the BYTE
value 1 represents true.

string String, as specified in section 2.2.4.

long INT32, as specified in [MS-DTYP].

long long INT64, as specified in [MS-DTYP].

float Float, as specified in section 2.2.1.

void Void, as specified in section 2.2.2.

3.1.4.6 Mapping FSIDL SequenceType

The following table specifies the mapping between types specified by the FSIDL SequenceType and
the corresponding protocol types.

FSIDL Sequence Type Protocol Type

sequence<char> LengthPrefixedByteSequence, as specified in section 2.2.3

29/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

%5bMS-DTYP%5d.pdf

FSIDL Sequence Type Protocol Type

sequence<octet> LengthPrefixedByteSequence, as specified in section 2.2.3
sequence<long> LengthPrefixedInt32Sequence, as specified in section 2.2.5.
sequence<long long> LengthPrefixedInt64Sequence, as specified in section 2.2.6.
sequence<string> LengthPrefixedStringSequence, as specified in section 2.2.7.
sequence<float> LengthPrefixedFloatSequence, as specified in section 2.2.8.

3.1.4.7 Mapping FSIDL EnumName
This specifies an integer whose values are associated with unique names specified by a FSIDL

Enum. A value MUST be serialized as an INT32 value that begins with the value 0, increasing by 1
in the order specified by the FSIDL EnumList.

3.1.4.8 Mapping FSIDL CheetahEntityName

The FSIDL CheetahEntityName specifies a Cheetah entity and MUST be serialized as a
CheetahValue record, as specified in section 2.2.11.

3.1.4.9 Mapping FSIDL InterfaceName

The FSIDL InterfaceName specifies a server interface as a remote method argument, or return
type. It is serialized as an AbstractObjectReference record, as specified in section 2.2.14, where
the InterfaceType field contains the FSIDL InterfaceName, and the InterfaceVersion field
contains the FSIDL InterfaceValue.

3.1.4.10 Mapping FSIDL ExceptionName

This specifies a user exception for a server interface. The FSIDL ExceptionName MUST be
serialized into the UserException record as specified in section 2.2.13. The FSIDL
ExceptionAttributes MUST map to the Attribute fields of the UserException record in the same
order they occur in the FSIDL ExceptionDecl.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.
3.2 Middleware Server Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

30/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

Server Object table
This table associates server object URIs with the corresponding server objects.
Channel table

This contains an association between a channel URI and a server object table. A channel URI is an
entry point from which a protocol server receives connection requests from a protocol client. A
protocol server hosts one or more channel URIs. The channel URI is specified with a URI scheme, a
network host name, and a port number. The channel URI scheme field MUST contain a value of
either "http" or "https".

3.2.2 Timers

None.

3.2.3 Initialization

The protocol server channel table MUST be initialized and associated with a server object table by
the higher layer. Higher-level protocols MUST specify the following information about the transport:

= If an authentication mechanism such as Kerberos or NTLM is required, the required credentials
MUST be specified. If HTTPS is required, a certificate MUST be specified.

= The maximum size of HTTP response and requests, specified in octets.

For each channel URI, the protocol server listens at the network host name and port number
specified by the channel URI, and uses the transport specified by the channel URI scheme.

The host network interface, port number, channel URI scheme, credentials, and certificate are
specified with command line options on the protocol server, or they can be specified in a
configuration file.

When the higher layer registers a server object, a server object URI represented by the
ServerObjectURI in section 2.2.16 MUST be constructed. The higher layer MUST provide values for
the InterfaceType and the InterfaceVersion fields. The protocol server MUST generate a server
object identifier for the ServerObjectld field. The protocol servers generate the server object
identifier by concatenating a random number, the number of registered server objects with this
server interface in the protocol server, and the thread identifier for the protocol server.

After the protocol server constructs the server object URI, it performs the following:

= If the server object URI does not exist in the server object table, the protocol server adds the
server object URI and server object to the server object table.

= If the server object URI is already present in the server object table, the protocol server notifies
the higher layer about the error.

When the higher layer unregisters a server object using the server object URI, a protocol server
MUST do the following:

= Remove the entry with the server object URI from the server object table.

= The requests that are being processed, if any, will finish processing. Because request processing
does not always finish in a timely manner, completing such requests is implementation-specific.

31/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

If the server object URI is not found in the server object table, the higher layer is notified about the
error.

3.2.4 Message Processing Events and Sequencing Rules

There are no sequencing rules in this protocol. This section specifies the methods described in the
following table.

Method Description
Remote Method Call Specifies how to receive, process, and respond to a remote method request.
__ping Determines whether a server object is responding.

3.2.4.1 Remote Method Invocation

A protocol server MUST perform the following actions when it receives a message from the protocol
client:

1. Receive the HTTP request.

2. Look up the server object.

3. De-serialize the request message content.
4. Validate and dispatch the call.

5. Serialize the response-message content.
6. Send the response.

Receive HTTP request

A protocol server MUST determine the channel URI associated with the received message in an
implementation-specific way. The protocol client request MUST be mapped to an HTTP request
message. The protocol server MUST accept HTTP request messages that are sent using HTTP/1.1. If
the HTTP method is not POST or if the Content-Type is not "application/octet-stream", a protocol
server sends a transport fault to the protocol client. The protocol server MUST format the transport
fault as follows:

= HTTP status code of the response is set to 200.

» The body of the response contains an OutputValue, with a b field whose value is 50 and a
MessageContent field of type SystemException.

If an HTTP request is not received before an implementation-specific time-out has elapsed, the
protocol server cancels the request.

Look up the server object

The message contains an HTTP Request-URI that specifies the protocol server method to which to
route the message, as specified in section 2.2.17. The server object URI is a prefix of the protocol
server method URI. A protocol server looks up the server object URI in the server object table. If
the server object URI is found in the Server Object Table, then the corresponding server object in
the table is used to dispatch the call.

32/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

If the server object URI is not found, then the protocol server sends an HTTP status code 404 to the
protocol client.

De-serialize the request message content

The message content is de-serialized from the CallArguments record, as specified in section
2.2.15. The remote method name MUST be parsed from the ServerMethodURI, as specified in
section 2.2.17.

If the message content does not conform to the expected message format or the association from
the serialization stream to the middleware data model resulted in an error, then this is a malformed
message. If the protocol server receives a malformed message, it constructs a SystemException,
and sends it back to the protocol client in the MessageContent field of an OutputValue. The
Description field MUST either convey the nature of the structural error or be a zero-length string.

Validate and dispatch the call

The protocol server locates the remote method in the server object using the name of the remote
method. If the remote method is not found, the protocol server constructs a SystemException and
sends it back to the protocol client in the MessageContent field of an OutputValue. The
Description field MUST either convey the nature of the error or be a zero-length string.

If the remote method can be located in the server object, a protocol server MUST call the remote
method with the remote method Input Values resulting from de-serializing the CallArguments
record..

Serialize the response message content

The completion of a remote method yields a return value, a user exception or a system exception. A
protocol server constructs an OutputValue record that contains either a CallResult record as
specified in section 2.2.10 based on the return value, a UserException record as specified in 2.2.13
based on the user exception, or a SystemException based on the system exception. The values
are serialized into the MessageContent field of the OutputValue, and the protocol server sends
the OutputValue to the protocol client.

If there is any error during serialization, then a protocol server constructs a SystemException
record, and sends it back to the protocol client. The SystemException is serialized into the
MessageContent field of the OutputValue. The Description field MUST either convey the nature
of the error or be a zero-length string.

A value that represents a server object or a client proxy MUST be sent as an
AbstractObjectReference record, as specified in section 2.2.14.

The implementation MUST provide a valid abstract object reference so that the server object can
construct the AbstractObjectReference record.

Send the response

The protocol server maps the remote method response to an HTTP response, which MUST contain
the following HTTP header fields:

= The Content-Type entity header of the response contains a value of "application/octet-stream".

= The Content-Length entity header of the response contains the length of the response body,
specified in decimal number of octets.

= The HTTP status code of the response is set to 200.

33/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

= The HTTP Reason-Phrase of the response contains a value of "OK".
The response body of the HTTP response message MUST contain an OutputValue record.

SystemException records are specified in section 2.2.12, and OutputValue records are specified
in section 2.2.9.

3.2.4.2 _ ping
The ___ping method MUST be implemented by all server objects, and is used by protocol clients to

determine whether specific server objects respond to requests. The method signature is specified by
the following FSIDL:

void ping(void);

Input values

Void: No input values.

Return value

Void: No return value.

Exception: No exceptions are raised other than system exceptions.

Client proxies that call the ___ping method assume the server object is responding if the method
does not return a SystemException record, as specified in section 2.2.12. The protocol server that
hosts a server object can be subject to a transient network failure, or process slowly because of
excessive load. Therefore, the outcome of a single ___ping message is not always sufficient to
establish whether a server object is responding.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.
3.3 Middleware Client Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Client Proxy table

The client proxy table associates a client proxy with a specific server object, transport, serialization
format, and the network address of the server object. It contains an entry for each client proxy
instance. Each entry contains the following items:

= Client Proxy: The instance of the client proxy to locate in the table.

34/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

= Abstract Object Reference: An abstract object reference for the server object.

3.3.2 Timers

None.

3.3.3 Initialization

When a higher-level implementation requests a client proxy, it MUST provide an abstract object
reference.

The higher layer requests a cht::nameservermsg::aor Cheetah entity from a name server by
calling the resolve method, and converting the resulting cht::nameservermsg::aor Cheetah
entity to an AbstractObjectReference record. Otherwise, the higher layer provides the
information required for an abstract object reference in a way that is implementation-specific. Some
protocol servers specify the abstract object reference for a name server with command line
arguments to the Middleware Protocol clients and protocol servers, or in a configuration file.

If the abstract object reference is not well-formed, the client proxy MUST raise a system exception
for the implementation, and include a description of the structural error.

The protocol client creates a new client proxy, and adds the client proxy and the abstract object
reference to the client proxy table. The protocol client can call the ___ping method to validate that
the server object associated with the client proxy is responding, before it adds the client proxy to
the client proxy table. However, calling the ___ping method is not required.

The abstract object reference is specified in section 2.2.14, the cht::nameservermsg::aor Cheetah
entity and the mapping table are specified in section 2.2.18, the resolve method is specified in
section 3.4.4.1, and the ___ping method is specified in section 3.2.4.2.

3.3.4 Message Processing Events and Sequencing Rules

3.3.4.1 Remote Method Invocation

When a higher layer calls a remote method using a client proxy that sends the name and call
arguments of the remote method, the protocol client MUST serialize the request, send the request to
the protocol server, read the response message, de-serialize the response message, and send the
de-serialized values to the caller.

Serialize the request

A protocol client looks up the abstract object reference in the client proxy table. If the client proxy is
not in the table, then the higher layer MUST be reported using an implementation-specific
procedure.

The abstract object reference, represented by the AbstractObjectReference record, is used to
create a ServerObjectURI, as specified in section 2.2.16. The ServerObjectURI MUST use the
InterfaceType, InterfaceVersion, and ServerObjectld fields from the
AbstractObjectReference record. The protocol client uses the resulting ServerObjectURI and the
remote method name to create a ServerMethodURI, as specified in section 2.2.17.

A protocol client creates a CallArguments record, as specified in section 2.2.15, based on the
remote method input values received from the higher layer. If the type of the values contained in
the remote method input values does not match the type of the remote method Arguments, the
higher-layer MUST be reported using an implementation-specific procedure.

35/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

Send the request to the protocol server

The protocol client MUST construct an HTTP Request-URI using the ServerMethodURI and the
AbstractObjectReference constructed in the previous paragraph, where the host name and port
fields of the Request-URI are the same as in the AbstractObjectReference.

The protocol client maps the remote method request to an HTTP request, which MUST contain the
following HTTP header values:

= An implementation MUST use HTTP/1.1.
= The HTTP Method MUST be a POST.

= The Request-URI of the HTTP request message MUST be the ServerMethodURI of the remote
method, as specified in section 2.2.17.

= The Content-Length entity header MUST contain the length of the request body in decimal
number of octets.

= The Content-Type entity header MUST be "application/octet-stream".
= The body of the HTTP request MUST be a CallArguments record, as specified in section 2.2.15.
Read the response from the connection

If the protocol client does not receive a response within a specified amount of time after sending a
request, it MUST cancel the request, raise a system exception with a description of the time-out,
and send the message to the higher layer. The timeout MUST be defined by the higher layer.

If the status code of the HTTP response is one of the successful codes as specified in [RFC2616
section 10.2, the protocol client MUST de-serialize the response message. If the status code is a
protocol client-error code as specified in [RFC2616] section 10.4, a protocol server-error code as
specified in [REC2616] section 10.5 or an unknown error code, the protocol client MUST stop
processing the response, and instead, use an implementation-specific procedure to notify the higher
layer of the error.

De-serialize the response message

The response message MUST contain an OutputValue record, as specified in section 2.2.9. The
protocol client de-serializes the OutputValue record to obtain the remote method return value,
system exception, or user exception. If the message content does not match the abstract data
model, then the protocol client stops processing the message and notifies the higher layer about the
error.

Return the de-serialized values to the caller

The protocol client MUST return the de-serialized return value to the calling application, or it MUST
raise a system exception or user exception. If the type of the de-serialized values does not match
the type of the remote method return type, then the higher-layer is also notified of the error.

3.3.5 Timer Events

None.

3.3.6 Other Local Events

None.

36/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372

3.4 Name Server Server Details

3.4.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Before a protocol client can communicate with a protocol server, the protocol client requires the
abstract object reference for the protocol server. The name server provides a mapping from a logical
name to an abstract object reference. A protocol client can then locate a specific server object by
querying the name server protocol server for a logical name that the protocol client and protocol
server have agreed to use for this server object.

Logical Name

The Logical Name is a triple that uniquely represents an abstract object reference in the name
server, and consists of the following three entries:

= Name: A symbolic name that represents the abstract object reference.

= Server interface: The server interface name of the abstract object reference.

= Server Interface Version: The server interface version of the abstract object reference.
Name Server Abstract Object Reference table

The name server AOR table associates logical name entries to AORs. The name server stores AORs
so that the protocol clients can find an AOR based on the logical name of that AOR. For each unique
logical name, there MUST be only one AOR.

3.4.2 Timers

None.

3.4.3 Initialization

A server object URI that represents the name server server object MUST be created and a mapping
from the server object URI to the name server server object MUST be inserted in the server object
table of the Middleware protocol server that hosts the name server protocol server.

The server object URI is represented concretely by the ServerObjectURI record specified in section
2.2.16, where the InterfaceType field MUST be "nameservice::nameserver", the ServerObjectld
field MUST be 0, and the InterfaceVersion field MUST be 1.0.

3.4.4 Message Processing Events and Sequencing Rules

There are no sequencing rules in this protocol. This interface includes the methods described in the
following table.

Method Description

resolve Looks up the information needed to construct an abstract object reference for a specified
server object.

37/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

Method Description

bind Associates an abstract object reference with a logical name in the name server.

unbind Removes the association between an abstract object reference and the associated logical
name in the name server

list_any Requests a collection of AORs that match all of the specified input values.

list_host Requests a collection of AORs that match a specific host name.

list_name | Requests a collection of AORs that match a specific logical name prefix.

3.4.4.1 resolve

The resolve method looks up a specified server object and returns the information needed to
construct an abstract object reference. The method signature is specified by the following FSIDL:

cht::nameservermsg: :aor resolve (in string name,
in string interface type,
in string version)
raises (resolve exception);

Input values

name: A string that represents the Name part of the Logical Name in the name server that is
associated with the abstract object reference.

interface_type: A string that represents the server interface of the server object.
version: A string that represents the server interface version of the server object.
Return value

cht::nameservermsg::aor: A Cheetah entity, as specified in section 2.2.18, that represents the
abstract object reference for the server object. This Cheetah entity can be converted to an
AbstractObjectReference record.

Exceptions
resolve_exception: No association exists between the requested server object and logical name.

The resolve method MUST return an abstract object reference encoded as a
cht::nameservermsg::aor Cheetah entity. The method looks for the abstract object reference in
the name server AOR table by using the input values for the logical name triple. If no abstract
object reference is found, the method MUST raise a
nameservice::nameserver::resolve_exception user exception, as specified in section 2.2.21.

If an abstract object reference is found, a cht::nameservermsg::aor Cheetah entity is constructed
from the AOR as specified in section 2.2.18 and sent to the protocol client.

3.4.4.2 bind

The bind method associates an abstract object reference with a logical name in the name server.
The method signature is specified by the following FSIDL:

38/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

void bind(in cht::nameservermsg::aor the aor);

Input values

the_aor: A Cheetah entity, as specified in section 2.2.18, that represents the abstract object
reference for the server object.

Return value
void: No value returned.
Exceptions: No exceptions are raised other than system exceptions.

The logical name triple MUST be constructed based on the attributes in. An abstract object reference
MUST be constructed from the the_aor based on the mapping table in section 2.2.18.

The name server AOR table MUST be updated to specify the mapping from the logical name to the
abstract object reference.

3.4.4.3 unbind

The unbind method removes the association between an abstract object reference and the
associated logical name in the name server. The method signature is specified by the following
FSIDL:

void unbind(in string name,
in string interface type,
in string version)

raises (not bound exception);

Input values

name: A string that represents the name field of the logical name triple that is associated with the
AOR in the name server.

interface_type: A string that represents the server interface of the server object.

version: A string that represents the server interface version of the server object.

Return value

void: No value returned.

Exceptions

not_bound_exception: The logical hame is not associated with an abstract object reference.

The abstract object reference MUST be removed from the name server AOR table. The logical name
MUST be used to locate and remove the abstract object reference. If no abstract object reference is
found, a not_bound_exception user exception, as specified in section 2.2.20, must be raised.

3.4.4.4 list_any

The list_any method requests a collection of AORs that matches all of the specified input values.
The method signature is specified by the following FSIDL:

39/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

cht::nameservermsg::aor list list any(in string name prefix,
in string interface type,
in string version,
in string host);

Input values

name_prefix: A string that represents a prefix of the name field in the logical name triple in the
name server.

interface_type: A string that represents the server interface of the server object.
version: A string that represents the server interface version of the server object.
host: A string that represents the host name of the server object.

Return value

cht::nameservermsg::aor_list: A collection of Cheetah entities, as specified in section 2.2.19,
that represents the AORs for the requested server objects.

Exceptions: No exceptions are raised other than system exceptions.

The protocol server MUST traverse the name server AOR table and return a
cht::nameservermsg::aor_list Cheetah entity. An entry in the table MUST fulfill the following
criteria to be included in the resulting return value:

= If the name_prefix field is not the empty string, the name field in the logical name triple MUST
begin with the value of name_prefix.

= If the interface_type field is not the empty string, the server interface of the logical name MUST
be equal to the value of interface_type.

= If the version field is not the empty string, the server interface version of the logical name MUST
be equal to the value of version.

= If the host field is not the empty string, the host name of the abstract object reference MUST be
equal to the value of host.

If one or more of the input values are the empty strings, fields with an empty string matches all
entries for that field in the name server AOR table. Thus, if all input values to list_any are the
empty strings, all entries of the name server AOR table MUST be included in the resulting
cht::nameservermsg::aor_list Cheetah entity.

3.4.4.5 list_host

The list_host method requests a collection of AORs matching a specific host name. The method
signature is specified by the following FSIDL:

cht::nameservermsg::aor list list host(in string host,
in string interface type);

Input values

host: A string that represents the host name of the server object.

40/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

interface_type: A string that represents the server interface of the server object.
Return value

cht::nameservermsg::aor_list: A collection of Cheetah entities, as specified in section 2.2.19,
that represent the AORs for the requested server objects.

Exceptions: No exceptions are raised other than system exceptions.

If both the host and interface_type input values are empty strings, a
cht::nameservermsg::aor_list Cheetah entity with an empty collection MUST be returned.

The protocol server MUST traverse the name server AOR table and return the
cht::nameservermsg::aor_list Cheetah entity.

An entry in the name server AOR table MUST fulfill the following criteria to be included in the
resulting return value:

= The host name of the abstract object reference MUST be the same as the value of the host field.

= If the interface_type field is not the empty string, the server interface of the logical name MUST
be equal to the value of interface_type.

3.4.4.6 list_name

The list_name method requests a collection of AORs matching a specific logical name prefix. The
method signature is specified by the following FSIDL:

cht::nameservermsg::aor_list list name (in string name prefix,
in string interface type);
Input values

name_prefix: A string that represents a prefix of the name field in the logical name triple in the
name server.

interface_type: A string that represents the server interface of the server object.
Return value

cht::nameservermsg::aor_list: A collection of Cheetah entities, as specified in section 2.2.19,that
represent the AORs for the requested server objects.

Exceptions: No exceptions are raised other than system exceptions.

The protocol server MUST traverse the name server AOR table and return the
cht::nameservermsg::aor_list Cheetah entity.

An entry in the table MUST fulfill the following criteria to be included in the resulting return value:

= If the name_prefix field is not the empty string, the name field in the logical name triple MUST
begin with the value of name_prefix.

= If the interface_type field is not the empty string, the server interface field in the logical name
triple MUST be equal to the value of interface_type.

41/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

If both input values for the list_name method are the empty string, all entries of the name server
AOR table MUST be included in the resulting Cheetah entity.

3.4.5 Timer Events

None.

3.4.6 Other Local Events

None.
3.5 Name Server Client Details

3.5.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

3.5.2 Timers

None.

3.5.3 Initialization

The name server protocol client is a client proxy that calls remote methods on a name server
protocol server. A protocol client creates a client proxy, based on an abstract object reference to the
name server object, to call remote methods on the name server protocol server as specified in
section 3.3.3.

An AbstractObjectReference record represents the abstract object reference for the name server
object, as specified in section 2.2.14. The implementation MUST specify that the InterfaceType
field of the AbstractObjectReference record is set to "nameservice::nameserver", the
ServerObjectld field is set to 0, and the InterfaceVersion is set to 1.0.

3.5.4 Message Processing Events and Sequencing Rules

Before calling the bind remote method (section 3.4.4.2), an implementation MUST first call the
resolve remote method (section 3.4.4.1), with the same logical name that the bind remote method
will use.

If the resolve method returns a cht::nameservermsg::aor (section 2.2.18), the protocol server
MUST create a client proxy as specified in section 3.3.3, and then call the ___ping method (section
3.2.4.2) using the client proxy.

If the ___ping method does not raise a system exception or a user exception, then another server

object has previously registered with the same logical name, and therefore the protocol server MUST
NOT call the bind method.

3.5.5 Timer Events

None.

42/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

3.5.6 Other Local Events

None.

3.6 core::fds_component Server Details

This interface is implemented by all protocol servers and is used by protocol clients to request status
and resource usage information from the protocol servers.

3.6.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Debug State Table

This represents the correspondence between a debug module and a debug level:

= Debug Module: A name that identifies an implementation-specific part of the protocol server.
= Debug Level: A number that specifies an implementation-specific debug level.

The protocol server uses the debug level to decide whether to output debug messages. Some
protocol servers configure debugging output through implementation-specific command line
arguments that override the debug module and debug level settings.

Resource Scope Table

A Resource Scope is an implementation-specific scope name defined over a well-defined set of
program statements, typically the program statements defining a function or method. The resource
scope table is a mapping between a scope name and an entry consisting of Current Invocations,
Total Invocations, Minimum Duration, Average Duration, and Maximum Duration fields.

= Scope Name: A name that uniquely identifies the resource scope.
= Current Invocations: The number of threads currently executing the resource scope.
= Total Invocations: The number of times the resource scope has been executed.

= Minimum Duration: The minimum amount of time spent executing the resource scope in
milliseconds.

= Average Duration: The average amount of time spent executing the resource scope in
milliseconds.

* Maximum Duration: The maximum amount of time the spent executing the resource scope in
milliseconds.

Resource Allocation table

A Resource Allocation is an implementation-specific counter used to count named resources such
as files or memory units. The Resource Allocation table is a mapping between an Allocation Name
field and an entry consisting of Current Allocations and Total Allocations fields.

43/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

= Allocation Name: A name that uniquely identifies the resource allocation.

= Current Allocations: Contains the current count for the specified Allocation Name field.
= Total Allocations: Contains the total count for the specified Allocation Name field.
Resource Value Table

A Resource Value is an implementation-specific value that is associated with a unique name. More
specifically, the resource value table specifies a mapping between a unique Value Name field and
the implementation-specific resource value.

3.6.2 Timers

None.

3.6.3 Initialization
The core::fds_component server object MUST be initialized by a higher-level implementation that
uses the protocol server. The protocol server MUST call the bind method, as specified in section
3.4.4.2.

The input values to the bind method is a cht::nameservermsg::aor Cheetah entity, as specified in
section 2.2.18.

name: A string value supplied by the higher-level application.

object_.id: A value that is implementation-specific, that is, determined by the higher-level
application.

host: A string that contains the host name of the server object on the protocol server. The value is
implementation-specific and determined by the higher-level application.

port: The port number used by the protocol server. It is implementation-specific and determined by
the higher level application.

interface_type: A string value that MUST be " core::fds_component ".
interface_version: A string value that MUST be "5.1".

The debug level MUST be initialized by the higher-level implementation.

3.6.4 Message Processing Events and Sequencing Rules

There are no sequencing rules in this protocol. This interface includes the methods described in the
following table.

Method Description

get_hostname Return the host name used for the channel URI of the protocol server.

get_resource_report Returns the content of the resource allocation table.

uptime Return the number of seconds that elapsed after the protocol server process
started.

get_version Return a string that represents the server version for a protocol server.

44/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

Method Description

get_model_version Return a version string for the protocol server interface versions in the protocol
server.
get_fds_version Return a version string that identifies the product version.

get_middleware_port | Return the port number used for the channel URI of the protocol server.

set_tracelevel Sets the debug log level for an implementation-specific module in the protocol
server.

3.6.4.1 get_hostname

The get_hostname method returns the host name for the channel URI of the protocol server. The
method signature is specified by the following FSIDL:

string get hostname (void);

Input values

Void: No input values.

Return value

string: A string that represents the host name for the channel URI of this server object.
Exceptions: No exceptions are thrown other than system exceptions.

Return the host name of the protocol server. The host name MUST be specified by the higher-level
implementation as part of the configuration.

3.6.4.2 get_resource_report

The get_resource_report method retrieves the contents of the resource allocation table. The
method signature is specified by the following FSIDL:

cht::core::resource report get resource report (void);

Input values
Void: No input values.
Return value

cht::core::resource_report: A Cheetah entity, as specified in section 2.2.22, that represents a
resource report from a protocol server.

Exceptions: No exceptions are raised other than system exceptions.

Returns a cht::core::resource_report Cheetah entity. The cht::core::resource_report is a
Cheetah entity that contains three collections with the type cht::core::alloc specified in section
2.2.23, cht::core::scope specified section 2.2.24 , and cht::core::named_value specified in
section 2.2.25.

45/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

The method constructs a cht::core::alloc Cheetah entity for each entry in the resource allocation
table, where the name attribute maps to the Allocation Name field, the current attribute maps to
the Current Allocations field, and the total attribute maps to the Total Allocations field.

The method constructs a cht::core::named_value Cheetah entity for each entry in the resource
value table, where the name attribute maps to the Value Name field, and the value attribute maps
to the corresponding value.

The method constructs a cht::core::scope Cheetah entity for each entry in the resource scope
table, where the name attribute maps to scope name, the current attribute maps to the Current
Invocations field, the total attribute maps to the Total Invocations field, the min_time attribute
maps to the Minimum Duration field, the max_time field maps to the Maximum Duration field,
and the avg_time field maps to the Average Duration field.

The method creates a cht::core::resource_report Cheetah entity with the cht::core::alloc,

cht::core::named_value and cht::core::scope collections. The when attribute of the
cht::core::resource_report contains the number of seconds since January 1, 1970.

3.6.4.3 uptime

The uptime method returns the number of seconds elapsed after the protocol server process was
started. The method signature is specified by the following FSIDL:

long uptime (void) ;

Input values
Void: No input values.
Return value

long: A long that represents the nhumber of seconds elapsed after the protocol server process was
started.

Exceptions: No exceptions are raised other than system exceptions.

Return the number of seconds elapsed after the protocol server process was started.

3.6.4.4 get_version

The get_version method retrieves the server version for a protocol server. The method signature is
specified by the following FSIDL:

string get version(void);

Input values

Void: No input values.

Return value

string: A string that represents an implementation-specific version for a protocol server. An empty

string or the string "N/A" is used when a meaningful value cannot be determined by the
implementation.

46/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

Exceptions: No exceptions are raised other than system exceptions.

Return an implementation-specific string that represents the version number for the protocol server
that contains the server object for the core::fds_component server interface.

3.6.4.5 get_model_version

The get_model_version method retrieves the version string for the protocol server. The method
signature is specified by the following FSIDL:

string get model version(void);

Input values

Void: No input values.

Return value

string: This represents an implementation-specific version for all interfaces implemented by this
protocol server. An empty string or the string "N/A" is used when a meaningful value cannot be
determined by the implementation.

Exceptions: No exceptions are raised other than system exceptions.

Return an implementation-specific string that uniquely represents the server interface version for all
server interfaces instantiated by the protocol server.

3.6.4.6 get_fds_version

The get_fds_version method retrieves a version string that identifies the product version. The
method signature is specified by the following FSIDL:

string get fds version(void);

Input values

Void: No input values.

Return value

string: This represents an implementation-specific version for all protocol servers constituting the
system. An empty string or the string "N/A" is used when the implementation can not determine a
meaningful value.

Exceptions: No exceptions are raised other than system exceptions.

Return an implementation-specific version string that identifies product version.

3.6.4.7 get_middleware_port

The get_middleware_port method retrieves the port number used for the channel URI in the
protocol server. See section 3.2.3 for details. The method signature is specified by the following
FSIDL:

47/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

long get middleware port (void);

Input values

Void: No input values.

Return value

long: The port number used by the channel URI of this protocol server.
Exceptions: No exceptions are raised other than system exceptions.

Return the port number used for all AORs contained in the protocol server. The port number MUST
be specified by the higher-level implementation as part of the configuration.

3.6.4.8 set_tracelevel

The set_tracelevel method sets the debug log level for an implementation-specific module in the
protocol server. The method signature is specified by the following FSIDL:

vold set tracelevel (in string module name, in long level);

Input values

module_name: A string that represents an implementation-specific module within the protocol
server.

level: A long that represents the debug level for the module specified by the module_name input
value. Debug logging is disabled when this field is set to 0. The verbosity of debug logging increases
with the level humber.

Return value

Void: No return value.

Exceptions: No exceptions are raised other than system exceptions.

This method MUST set the debug state for the Module Name entry that matches module_name in
the debug state table to the value represented by level.

3.6.5 Timer Events
None.
3.6.6 Other Local Events
None.
3.7 core::fds_component Client Details

3.7.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

48/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

3.7.2 Timers

None.

3.7.3 Initialization

The protocol client calls the resolve method, as specified in section 3.4.4.1 on a name server
protocol server with the following input values:

name: Specified by the higher-level implementation.
interface_type: A string with the value "core::fds_component".
version: A string with the value "5.1".

An abstract object reference is created based on the cht::nameservermsg::aor Cheetah entity
returned by the resolve method. A client proxy for the core::fds_component object is created
based on the abstract object reference, as specified in section 3.3.3.

3.7.4 Message Processing Events and Sequencing Rules

None.

3.7.5 Timer Events

None.

3.7.6 Other Local Events

None.
3.8 core::lifecycle Server Details

3.8.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Lifecycle State

This contains the current state for the protocol server. The value MUST be one of the values
specified by the core::lifecycle::state enumeration, as specified in section 2.2.31.

A higher-level implementation can modify the lifecycle state according to the runtime state of the
process hosting the protocol server. Some protocol servers do not adjust the runtime state of the
process correctly, and a malfunctioning protocol server can be prohibited from executing the code
that updates the lifecycle state.

49/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

3.8.2 Timers

None.

3.8.3 Initialization

The server object for core::lifecycle MUST be initialized by a higher-level implementation using the
protocol server. The protocol server calls the bind method, as specified in section 3.4.4.2.

The input parameter to the bind method is a cht::nameservermsg::aor Cheetah entity, as
specified in section 2.2.18. The cht::nameservermsg::aor Cheetah entity sets the interface_type
attribute to "core::lifecycle" and the interface_version attribute to "5.1".

The Lifecycle State field MUST be set to initializing, as specified by the enum in section 2.2.31.

3.8.4 Message Processing Events and Sequencing Rules

This interface includes the following methods:

Method Description

stop Sets the state of the protocol server to terminating.
resume Sets the state of the protocol server to running.
suspend Sets the state of the protocol server to suspended.
get_state Return the value of the Lifecycle State field.

The resume method is called only after the suspend method has been called. No method in this
interface is called after the stop method has been called. Protocol servers that do not adjust the
runtime state of the process hosting the protocol server are not required to follow the sequencing
rules.

3.8.4.1 stop

The stop method sets the state of the protocol server to terminating. The method signature is
specified by the following FSIDL:

void stop (void) ;

Input values

Void: No input values.

Return value

Void: No return value.

Exceptions: No exceptions are raised other than system exceptions.

The method sets the Lifecycle State field to the value represented by the terminating enum
specified in section 2.2.31. The protocol server can call the necessary procedures to terminate the
process hosting the protocol server, although this is implementation-specific. Some protocol servers
ignore terminating the process hosting the protocol server.

50/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

3.8.4.2 resume

The resume method sets the state of the protocol server to running. The method signature is
specified by the following FSIDL:

void resume (void) ;

Input values

Void: No input values.

Return value

Void: No return value.

Exceptions: No exceptions are raised other than system exceptions.

This method sets the Lifecycle State to the value represented by the running constant of the
enum specified in section 2.2.31. The protocol server can call the necessary procedures to resume
the execution of the process hosting the protocol server, although this is implementation-specific.

3.8.4.3 suspend

The suspend method sets the state of the protocol server to suspended. The method signature is
specified by the following FSIDL:

void suspend (void);

Input values

Void: No input values.

Return value

Void: No return value.

Exceptions: No exceptions are raised other than system exceptions.

This method sets the Lifecycle State to the value represented by the suspended constant of the
enum specified in section 2.2.31. The protocol server can call the necessary procedures to suspend
the execution of the process hosting the protocol server, although suspending is implementation-
specific.

3.8.4.4 get_state

The get_state method retrieves the state of the protocol server. The method signature is specified
by the following FSIDL:

state get state(void);

Input values

Void: No input values.

51/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

Return value

state: An enumerated type that represents the state of the protocol server, as specified in section
2.2.31.

Exceptions: No exceptions are raised other than system exceptions.

Returns the value of the Lifecycle State.

3.8.5 Timer Events

None.

3.8.6 Other Local Events

None.
3.9 core::lifecycle Client Details

3.9.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

3.9.2 Timers

None.

3.9.3 Initialization

The protocol client MUST call the resolve method, as specified in section 3.4.4.1, on a name server
protocol server with the following input values:

name: Specified by the higher-level implementation.
interface_type: A string with the value "core::lifecycle".
version: A string with the value "5.1".

An abstract object reference MUST be created based on the cht::nameservermsg::aor Cheetah
entity returned by the resolve method. A protocol server creates a client proxy for the
core::lifecycle server object based on the abstract object reference, as specified in section 3.3.3.

3.9.4 Message Processing Events and Sequencing Rules

None.

3.9.5 Timer Events

None.

52/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

3.9.6 Other Local Events

None.

53/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

4 Protocol Examples

The following two samples shows the remote methods that create a client proxy based on an
abstract object reference retrieved from a name server protocol server, similar to the procedure
described in section 3.3.3.

4.1 Resolve an Abstract Object Reference

This sample calls the resolve remote method, as described in section 3.4.4.1, on a name server
protocol server that implements the nameservice::nameserver interface, as described in section
3.4. The relevant parts of the nameservice::nameserver interface are specified by the following
FSIDL specification:

module interfaces {
module nameservice {
exception resolve exception { };

interface nameserver {
#pragma version nameserver 1.0
cht::nameservermsg::aor resolve (in string name,
in string interface type,
in string version)
raises (resolve exception);

The cht::nameservermsg::aor Cheetah entity is described in section 2.2.18.

root entity aor

{
attribute string host;
attribute int port;
attribute string interface type;
attribute string interface version;
attribute longint object id;
attribute string bound name;

bi

The protocol client calls the resolve method with the following parameters:

name = "esp/subsystems/processing/dispatcher/0"
interface type = "core::fds_ component"
version = "5.1"

The server object for the nameservice: :nameserver interface is located at
"http://www.cohowinery.com:16099/nameservice::nameserver/1.0/0".

The HTTP headers of the request are as follows:

POST /nameservice::nameserver/1.0/0/resolve HTTP/1.1
Content-Type: application/octet-stream
User-Agent: Middleware client/1.0

54 /70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

Host: www.cohowinery.com:16099
Content-Length: 72
Connection: Keep-Alive

The request is an HTTP/1.1 request. The HTTP headers are set as described in section 3.2.4.1. The

protocol server method URI is "/nameservice::nameserver/1.0/0/resolve", where the remote
method name is "resolve" and the server object URI "/nameservice::nameserver/1.0/0".

The body of the request message is as follows:

00 00 00 26 65 73 70 2F ...&esp/
73 75 62 73 79 73 74 65 subsyste
6D 73 2F 70 72 6F 63 65 ms/proce
73 73 69 6E 67 2F 64 69 ssing/di
73 70 61 74 63 68 65 72 spatcher
2F 30 00 00 00 13 63 6F /0....co
72 65 3A 3A 66 64 73 5F re::fds
63 6F 6D 70 6F 6E 65 6E componen
74 00 00 00 03 35 2E 31 t....5.1

The interpretation of the preceding message content is as follows:

CallArguments:
name, String:
Length: 0x00000026
ByteSequence: subsystems/processing/dispatcher/0
interface type, String:
Length: 0x00000013
ByteSequence: core::fds_ component
version, String:
Length: 0x00000003
ByteSequence: 5.1

The HTTP headers of the response are shown as follows:

HTTP/1.1 200 OK

Content-Length: 115

Content-Type: application/octet-stream
Server: Microsoft-HTTPAPI/2.0

Date: Mon, 04 May 2009 10:50:56 GMT

The body of the response message is as follows:

30 10 8F 02 E8 00 00 00 0.7?.e...
00 00 00 00 12 77 77 77 WWW
2E 63 6F 68 6F 77 69 6E .cohowin
65 72 79 2E 63 6F 6D 00 ery.com.
00 3E E3 00 00 00 13 63 .>a....c
6F 72 65 3A 3A 66 64 73 ore::fds
5F 63 6F 6D 70 6F 6E 65 compone
6E 74 00 00 00 03 35 2E nt....5.
31 11 3D 33 BE 26 17 78 1.=3%&.x
01 00 00 00 26 65 73 70&esp
2F 73 75 62 73 79 73 74 /subsyst

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

55/70

65 6D 73 2F 70 72 6F 63 ems/proc
65 73 73 69 6E 67 2F 64 essing/d
69 73 70 61 74 63 68 65 ispatche
72 2F 30 r/0

The interpretation of the preceding message content is as follows:

OutputValue:
ReturnType: 0x30
MessageContent:
CallResult:
CheetahvValue:
CheetahValueContents:

Cheetah checksum: 0x108f02e8

Entity TypeId: 0x00000000

host, LengthPrefixString:
Length: 0x00000012
Bytes: www.cohowinery.com

port, INT32: 0x00003ee3

interface type, LengthPrefixString:
Length: 0x00000012
Bytes: core::fds_component

interface version, LengthPrefixString:
Length: 0x00000003
Bytes: 5.1

object id, INT64: 0x113D33BE26177801

bound name, LengthPrefixString:
Length: 0x00000026
Bytes: esp/subsystems/processing/dispatcher/0

4.2 Call __ping

The next sample uses the cht::nameservermsg::aor Cheetah entity returned by the resolve
method in the previous sample to call the ___ping remote method on the server object represented
by the cht::nameservermsg::aor.

The server object represented by the cht::nameservermsg::aor Cheetah entity is located at
"http://www.cohowinery.com:16099/core::fds_component/5.1/1242205964000000001".

The HTTP headers of the request are shown as follows:

POST /core::fds component/5.1/1242205964000000001/ ping HTTP/1.1
Content-Type: application/octet-stream

User-Agent: Python WinHTTP client/1.0

Host: www.cohowinery.com:16099

Content-Length: 0

Connection: Keep-Alive

The request is an HTTP/1.1 request. The HTTP headers are set as described in section 3.2.4.1. The
protocol server method URI is "/core::fds_component/5.1/1242205964000000001/__ping", where
the remote method name is "__ping" and the server object URI is
"/core::fds_component/5.1/1242205964000000001". The server object identifier part of the server
object URI, "1242205964000000001", is the hex value 0x113D33BE26177801 converted to base
10. The request has no further message content, as indicated by the Content-Length value 0.

56/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

The headers of the HTTP response are as follows:

HTTP/1.1 200 OK

Content-Length: 1

Content-Type: application/octet-stream
Server: Microsoft-HTTPAPI/2.0

Date: Mon, 04 May 2009 10:50:56 GMT

The body of the response message is as follows:

30 0

The interpretation of the preceding message content is as follows:

OutputValue:
ReturnType: 0x30
MessageContent:
CallResult:
Void:

57770

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

Security parameter Section
HTTP authentication See section 2.1.
HTTPS See section 2.1.

58/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

6 Appendix A: Full FSIDL

For ease of implementation, the full FSIDL and complete listing of Cheetah entities used in this
protocol are provided in the following sections.

6.1 FSIDL

For ease of implementation, the following full FSIDL is provided.

module interfaces {
module core {
interface fds component;
interface lifecycle;

enum state {
initializing, running, suspended, terminating
bi

exception unsupported guarantee set {
string message;

}i

interface fds component {
#pragma version fds component 5.1
string get hostname();
cht::core::resource report get resource report();
long uptime () ;
string get version();
string get model version();
string get fds version();
long get middleware port();
void set tracelevel (in string module name, in long level);

}i

interface lifecycle {
#pragma version lifecycle 5.1

void stop();
void resume () ;
void suspend() ;
state get_state();

}i

}i

module nameservice {

exception not bound exception { };

exception resolve exception { };

interface nameserver {

#pragma version nameserver 1.0
cht::nameservermsg::aor resolve(in string name,
in string interface type,
in string version)
raises (resolve exception);

void bind(in cht::nameservermsg::aor the aor);

void unbind(in string name, in string interface type, in string version)
raises (not bound exception);

59/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

6.2

cht::nameservermsg::aor_list list name (in

in

cht::nameservermsg::aor_list list host (in

in

cht::nameservermsg::aor_list list any(in

Cheetah Entities

root entity aor {
attribute string host;
attribute int port;
attribute string interface type;
attribute string interface version;
attribute longint object id;
attribute string name;

bi

root entity aor list {
collection aor aors;

bi

entity alloc {
attribute string name;
attribute int current;
attribute int total;
}i

entity scope {
attribute string name;
attribute int current;
attribute int total;
attribute int min time;
attribute int max time;
attribute int avg time;

}i

entity named value {
attribute string name;

}i

entity bool value : named value ({
attribute bool value;

bi

entity float value : named value ({
attribute float value;

bi

in
in
in

string
string

string
string

string
string
string
string

name prefix,
interface type);

host,
interface type);

name_prefix,
interface type,
version,

host) ;

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

60/ 70

entity long value : named value ({
attribute int wvalue;

}i

entity string value : named value ({
attribute string value;
i

entity longlong value : named value {
attribute longint value;
}i

root entity resource report {
attribute longint when;
collection alloc allocs;
collection scope scopes;
collection named value values;

61/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

= Microsoft® FAST™ Search Server 2010

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

62/70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

63/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

9 Index

ping method 34
A

Abstract data model
client (section 3.3.1 34, section 3.5.1 42, section

3.7.1 48, section 3.9.1 52)

client - core::fds component 48

client - core::lifecycle 52

client - Middleware 34

client - name server 42

core::fds component client 48

core::fds component server 43

core::lifecycle client 52

core::lifecycle server 49

Middleware client 34

Middleware common 25

Middleware server 30

name server client 42

name server server 37

server (section 3.2.1 30, section 3.4.1 37,

section 3.6.1 43, section 3.8.1 49)

server - core::fds component 43

server - core::lifecycle 49

server - Middleware 30

server - name server 37
AbstractObjectReference common data type 17
Applicability 11

B
bind method 38
(o

Call _ ping example 56
CallArguments common data type 18
CallResult common data type 16
Capability negotiation 11
Change tracking 63
CheetahValue common data type 16
cht::core::alloc common data type 21
cht::core::bool value common data type 23
cht::core::float value common data type 23
cht::core::long value common data type 23
cht::core::longlong value common data type 24
cht::core::named value common data type 22
cht::core::resource report common data type 21
cht::core::scope common data type 22
cht::core::string value common data type 23
cht::nameservermsg::aor common data type 20
cht::nameservermsg::aor _list common data type
20
Client
abstract data model (section 3.3.1 34, section
3.5.1 42, section 3.7.1 48, section 3.9.1 52)
initialization (section 3.3.3 35, section 3.5.3 42,
section 3.7.3 49, section 3.9.3 52)

local events (section 3.3.6 36, section 3.5.6 43,
section 3.7.6 49, section 3.9.6 53)
message processing (section 3.5.4 42, section
3.7.4 49, section 3.9.4 52)
overview 25
Remote Method Invocation method 35
sequencing rules (section 3.5.4 42, section 3.7.4
49, section 3.9.4 52)
timer events (section 3.3.5 36, section 3.5.5 42,
section 3.7.5 49, section 3.9.5 52)
timers (section 3.3.2 35, section 3.5.2 42,
section 3.7.2 49, section 3.9.2 52)
Client - core::fds_component
abstract data model 48
initialization 49
local events 49
message processing 49
sequencing rules 49
timer events 49
timers 49
Client - core::lifecycle
abstract data model 52
initialization 52
local events 53
message processing 52
sequencing rules 52
timer events 52
timers 52
Client - Middleware
abstract data model 34
initialization 35
local events 36
Remote Method Invocation method 35
timer events 36
timers 35
Client - name server
abstract data model 42
initialization 42
local events 43
message processing 42
seqguencing rules 42
timer events 42
timers 42
Common - Middleware
abstract data model 25
FSIDL specifications 27
initialization 27
local events 30
mapping FSIDL AtomicType 29
mapping FSIDL CheetahEntityName 30
mapping FSIDL EnumName 30
mapping FSIDL ExceptionName 30
mapping FSIDL InterfaceName 30
mapping FSIDL MethodDecl to remote method
specifications 28
mapping FSIDL SequenceType 29
mapping remote method reply 29
mapping remote method request 29
message processing 27

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

64/ 70

overview 25
sequencing rules 27
timer events 30
timers 27

Common data types 12

AbstractObjectReference 17
CallArguments 18

CallResult 16

CheetahValue 16
cht::core::alloc 21
cht::core::bool value 23
cht::core::float value 23
cht::core::long value 23
cht::core::longlong value 24
cht::core::named value 22
cht::core::resource report 21
cht::core::scope 22
cht::core::string value 23
cht::nameservermsg::aor 20
cht::nameservermsg::aor list 20
core::lifecycle::state 24

Float 13
LengthPrefixedByteSequence 13
LengthPrefixedFloatSequence 15
LengthPrefixedInt32Sequence 14
LengthPrefixedInt64Sequence 14
LengthPrefixedStringSequence 14
nameservice::nameserver::not bound exception

21
nameservice::nameserver::resolve exception 21
OutputValue 15
ServerMethodURI 19
ServerObjectURI 19
String 13
SystemException 17
UserException 17
Void 13

core::fds_component client
abstract data model 48
initialization 49
local events 49
message processing 49
seguencing rules 49
timer events 49
timers 49

core::fds component interface 43

core::fds_component server
abstract data model 43
get fds version method 47
get hostname method 45
get middleware port method 47
get model version method 47
get resource report method 45
get version method 46
initialization 44
local events 48
message processing 44
sequencing rules 44
set tracelevel method 48
timer events 48
timers 44

uptime method 46

core::lifecycle client

abstract data model 52
initialization 52

local events 53
message processing 52
sequencing rules 52
timer events 52

timers 52

core::lifecycle server

abstract data model 49
get state method 51
initialization 50

local events 52
message processing 50
resume method 51
sequencing rules 50
stop method 50

suspend method 51
timer events 52

timers 50

core::lifecycle::state common data type 24

D

Data model - abstract

client (section 3.3.1 34, section 3.5.1 42, section
3.7.1 48, section 3.9.1 52)

client - core::fds component 48

client - core::lifecycle 52

client - Middleware 34

client - name server 42

core::fds component client 48

core::fds component server 43

core::lifecycle client 52

core::lifecycle server 49

Middleware client 34

Middleware common 25

Middleware server 30

name server client 42

name server server 37

server (section 3.2.1 30, section 3.4.1 37,
section 3.6.1 43, section 3.8.1 49)

server - core::fds component 43

server - core::lifecycle 49

server - Middleware 30

server - name server 37

Data types

common - overview 12

Events

local - client (section 3.3.6 36, section 3.5.6 43,
section 3.7.6 49, section 3.9.6 53)

local - core::fds component client 49

local - core::fds component server 48

local - core::lifecycle client 53

local - core::lifecycle server 52

local - Middleware client 36

local — Middleware common 30

local - Middleware server 34

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

65/ 70

local - name server client 43

local - name server server 42

local - server (section 3.2.6 34, section 3.4.6 42,
section 3.6.6 48, section 3.8.6 52)

timer - client (section 3.3.5 36, section 3.5.5 42,
section 3.7.5 49, section 3.9.5 52)

timer — client - core::fds component 49

timer - client - core::lifecycle 52

timer - client - Middleware 36

timer - client - name server 42

timer — Common - Middleware 30

timer — core::fds component client 49

timer — core::fds component server 48

timer — core::lifecycle client 52

timer — core::lifecycle server 52

timer — Middleware client 36

timer — Middleware common 30

timer — Middleware server 34

timer — name server client 42

timer — name server server 42

timer - server (section 3.2.5 34, section 3.4.5 42,
section 3.6.5 48, section 3.8.5 52)

timer — server - core::fds component 48

timer — server - core::lifecycle 52

timer — server - Middleware 34

timer — server - name server 42

Examples

call _ ping 56

overview 54

resolve an abstract object reference 54

F

Fields - vendor-extensible 11
Float common data type 13
FSIDL 59

Full FSIDL 59

G

get fds version method 47

get hostname method 45

get middleware port method 47
get model version method 47
get resource report method 45
get state method 51

get version method 46
Glossary 7

I

Implementer - security considerations 58
Index of security parameters 58
Informative references 8
Initialization

client (section 3.3.3 35, section 3.5.3 42, section

3.7.3 49, section 3.9.3 52)

client - core::fds component 49

client - core::lifecycle 52

client - Middleware 35

client - name server 42

Common - Middleware 27

core::fds component client 49
core::fds component server 44
core::lifecycle client 52
core::lifecycle server 50
Middleware client 35
Middleware common 27
Middleware server 31
name server client 42
name server server 37
server (section 3.2.3 31, section 3.4.3 37,
section 3.6.3 44, section 3.8.3 50)

server - core::fds component 44
server - core::lifecycle 50
server - Middleware 31
server - name server 37

Interfaces - server
core::fds component 43
fundamental 10

Introduction 7

L

LengthPrefixedByteSequence common data type 13
LengthPrefixedFloatSequence common data type 15
LengthPrefixedInt32Sequence common data type
14
LengthPrefixedInt64Sequence common data type
14
LengthPrefixedStringSequence common data type
14
list any method 39
list host method 40
list name method 41
Local events
client (section 3.3.6 36, section 3.5.6 43, section
3.7.6 49, section 3.9.6 53)
client - core::fds component 49
client - core::lifecycle 53
client - Middleware 36
client - name server 43
Common - Middleware 30
core::fds component client 49
core::fds component server 48
core::lifecycle client 53
core::lifecycle server 52
Middleware client 36
Middleware common 30
Middleware server 34
name server client 43
name server server 42
server (section 3.2.6 34, section 3.4.6 42,
section 3.6.6 48, section 3.8.6 52)
server - core::fds component 48
server - core::lifecycle 52
server - Middleware 34
server - name server 42

Message processing
client (section 3.5.4 42, section 3.7.4 49, section
3.9.4 52)

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

66/ 70

client - core::fds component 49

client - core::lifecycle 52

client - name server 42

Common - Middleware 27

core::fds component client 49

core::fds component server 44

core::lifecycle client 52

core::lifecycle server 50

Middleware client 35

Middleware common 27

Middleware server 32

name server client 42

name server server 37

server (section 3.2.4 32, section 3.4.4 37,
section 3.6.4 44, section 3.8.4 50)

server - core::fds component 44

server - core::lifecycle 50

server - Middleware 32

server - name server 37

Messages

AbstractObjectReference common data type 17

CallArguments common data type 18

CallResult common data type 16

CheetahValue common data type 16

cht::core::alloc common data type 21

cht::core::bool value common data type 23

cht::core::float value common data type 23

cht::core::long value common data type 23

cht::core::longlong value common data type 24

cht::core::named value common data type 22

cht::core::resource report common data type 21

cht::core::scope common data type 22

cht::core::string value common data type 23

cht::nameservermsg: :aor common data type 20

cht::nameservermsg::aor_list common data type
20

common data types 12

core::lifecycle::state common data type 24

Float common data type 13

LengthPrefixedByteSequence common data type
13

LengthPrefixedFloatSequence common data type
15

LengthPrefixedInt32Sequence common data type
14

LengthPrefixedInt64Sequence common data type
14

LengthPrefixedStringSequence common data type

14
nameservice::nameserver::not bound exception
common data type 21
nameservice::nameserver::resolve exception
common data type 21
OutputValue common data type 15
ServerMethodURI common data type 19
ServerObjectURI common data type 19
String common data type 13
SystemException common data type 17
transport 12
UserException common data type 17
Void common data type 13

Methods

ping 34

bind 38

get fds version 47

get hostname 45

get middleware port 47

get model version 47

get resource report 45

get state 51

get version 46

list any 39

list host 40

list hame 41

Remote Method Invocation (section 3.2.4.1 32,
section 3.3.4.1 35)

Remote Method Invocation - Middleware client
(section 3.3.4.1 35, section 3.3.4.1 35)

Remote Method Invocation - Middleware server
(section 3.2.4.1 32, section 3.2.4.1 32)

resolve 38

resume 51

set tracelevel 48

stop 50

suspend 51

unbind 39

uptime 46

Middleware client

abstract data model 34

initialization 35

local events 36

Remote Method Invocation method 35
timer events 36

timers 35

Middleware common

abstract data model 25

FSIDL specifications 27

initialization 27

local events 30

mapping FSIDL AtomicType 29

mapping FSIDL CheetahEntityName 30

mapping FSIDL EnumName 30

mapping FSIDL ExceptionName 30

mapping FSIDL InterfaceName 30

mapping FSIDL MethodDecl to remote method
specifications 28

mapping FSIDL SequenceType 29

mapping remote method reply 29

mapping remote method request 29

message processing 27

overview 25

sequencing rules 27

timer events 30

timers 27

Middleware server

ping method 34
abstract data model 30

initialization 31

local events 34

message processing 32

Remote Method Invocation method 32

seqguencing rules 32

67/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

timer events 34
timers 31

name server client
abstract data model 42
initialization 42
local events 43
message processing 42
sequencing rules 42
timer events 42
timers 42
name server server
abstract data model 37
bind method 38
initialization 37
list any method 39
list host method 40
list hame method 41
local events 42
message processing 37
resolve method 38
sequencing rules 37
timer events 42
timers 37
unbind method 39
nameservice::nameserver::not bound exception
common data type 21
nameservice::nameserver::resolve exception
common data type 21
Normative references 7

o

OutputValue common data type 15

Overview (synopsis) 8
fundamental interfaces 10
localizing and binding servers 9
remote method call model 8

P

Parameters - security index 58
Preconditions 11

Prerequisites 11
Product behavior 62

R

References 7

informative 8

normative 7
Relationship to other protocols 10
Remote method call model 8

Remote Method Invocation method (section 3.2.4.1

32, section 3.3.4.1 35)
client - Middleware 35
Middleware client 35
Middleware server 32
server - Middleware 32
Resolve an abstract object reference example 54

resolve method 38
resume method 51

S

Security
implementer considerations 58
parameter index 58
Sequencing rules
client (section 3.5.4 42, section 3.7.4 49, section
3.9.4 52)
client - core::fds component 49
client - core::lifecycle 52
client - name server 42
Common - Middleware 27
core::fds component client 49
core::fds component server 44
core::lifecycle client 52
core::lifecycle server 50
Middleware client 35
Middleware common 27
Middleware server 32
name server client 42
name server server 37
server (section 3.2.4 32, section 3.4.4 37,
section 3.6.4 44, section 3.8.4 50)
server - core::fds component 44
server - core::lifecycle 50
server - Middleware 32
server - name server 37
Server
ping method 34
abstract data model (section 3.2.1 30, section
3.4.1 37, section 3.6.1 43, section 3.8.1 49)
bind method 38
binding 9
core::fds component interface 43
get fds version method 47
get hostname method 45
get middleware port method 47
get model version method 47
get resource report method 45
get state method 51
get version method 46
initialization (section 3.2.3 31, section 3.4.3 37,
section 3.6.3 44, section 3.8.3 50)
list any method 39
list host method 40
list name method 41
local events (section 3.2.6 34, section 3.4.6 42,
section 3.6.6 48, section 3.8.6 52)
localizing 9
message processing (section 3.2.4 32, section
3.4.4 37, section 3.6.4 44, section 3.8.4 50)
overview (section 3.1 25, section 3.6 43)
Remote Method Invocation method 32
resolve method 38
resume method 51
sequencing rules (section 3.2.4 32, section 3.4.4
37, section 3.6.4 44, section 3.8.4 50)
set tracelevel method 48

stop method 50

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

68/ 70

suspend method 51
timer events (section 3.2.5 34, section 3.4.5 42,

section 3.6.5 48, section 3.8.5 52)
timers (section 3.2.2 31, section 3.4.2 37,
section 3.6.2 44, section 3.8.2 50)

unbind method 39
uptime method 46

Server - core::fds_component
abstract data model 43
get fds version method 47
get hostname method 45
get middleware port method 47
get model version method 47
get resource report method 45
get version method 46
initialization 44
local events 48
message processing 44
sequencing rules 44
set tracelevel method 48
timer events 48
timers 44
uptime method 46

Server - core::lifecycle
abstract data model 49
get state method 51
initialization 50
local events 52
message processing 50
resume method 51
seguencing rules 50
stop method 50

suspend method 51
timer events 52
timers 50

Server - Middleware

ping method 34

abstract data model 30
initialization 31
local events 34
message processing 32
Remote Method Invocation method 32
seguencing rules 32
timer events 34
timers 31

Server - name server
abstract data model 37
bind method 38
initialization 37
list any method 39
list host method 40
list name method 41
local events 42
message processing 37
resolve method 38
sequencing rules 37
timer events 42
timers 37

set tracelevel method 48

Standards assignments 11

stop method 50
String common data type 13

suspend method 51
SystemException common data type 17

T

Timer events

client (section 3.3.5 36, section 3.5.5 42, section
3.7.5 49, section 3.9.5 52)

client - core::fds component 49

client - core::lifecycle 52

client - Middleware 36

client - name server 42

Common - Middleware 30

core::fds component client 49

core::fds component server 48

core::lifecycle client 52

core::lifecycle server 52

Middleware client 36

Middleware common 30

Middleware server 34

name server client 42

name server server 42

server (section 3.2.5 34, section 3.4.5 42,
section 3.6.5 48, section 3.8.5 52)

server - core::fds component 48

server - core::lifecycle 52

server - Middleware 34

server - name server 42

Timers

client (section 3.3.2 35, section 3.5.2 42, section
3.7.2 49, section 3.9.2 52)

client - core::fds component 49

client - core::lifecycle 52

client - Middleware 35

client - name server 42

Common - Middleware 27

core::fds component client 49

core::fds component server 44

core::lifecycle client 52

core::lifecycle server 50

Middleware client 35

Middleware common 27

Middleware server 31

name server client 42

name server server 37

server (section 3.2.2 31, section 3.4.2 37,
section 3.6.2 44, section 3.8.2 50)

server - core::fds component 44

server - core::lifecycle 50

server - Middleware 31

server - name server 37

Tracking changes 63
Transport 12

unbind method 39 U
ServerMethodURI common data type 19
ServerObjectURI common data type 19

unbind method 39
uptime method 46

69/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

UserException common data type 17

\'}

Vendor-extensible fields 11

Versioning 11
Void common data type 13

70/ 70

[MS-FSMW] — v20120630
Middleware Protocol Specification

Copyright © 2012 Microsoft Corporation.

Release: July 16, 2012

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Protocol Overview (Synopsis)
	1.3.1 Remote Method Call Model
	1.3.2 Localizing and Binding Servers
	1.3.3 Fundamental Interfaces

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Float
	2.2.2 Void
	2.2.3 LengthPrefixedByteSequence
	2.2.4 String
	2.2.5 LengthPrefixedInt32Sequence
	2.2.6 LengthPrefixedInt64Sequence
	2.2.7 LengthPrefixedStringSequence
	2.2.8 LengthPrefixedFloatSequence
	2.2.9 OutputValue
	2.2.10 CallResult
	2.2.11 CheetahValue
	2.2.12 SystemException
	2.2.13 UserException
	2.2.14 AbstractObjectReference
	2.2.15 CallArguments
	2.2.16 ServerObjectURI
	2.2.17 ServerMethodURI
	2.2.18 cht::nameservermsg::aor
	2.2.19 cht::nameservermsg::aor_list
	2.2.20 nameservice::nameserver::not_bound_exception
	2.2.21 nameservice::nameserver::resolve_exception
	2.2.22 cht::core::resource_report
	2.2.23 cht::core::alloc
	2.2.24 cht::core::scope
	2.2.25 cht::core::named_value
	2.2.26 cht::core::bool_value
	2.2.27 cht::core::float_value
	2.2.28 cht::core::string_value
	2.2.29 cht::core::long_value
	2.2.30 cht::core::longlong_value
	2.2.31 core::lifecycle::state

	3 Protocol Details
	3.1 Common Middleware Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 FSIDL Specifications
	3.1.4.2 Mapping FSIDL MethodDecl to Remote Method Specifications
	3.1.4.3 Mapping Remote Method Request
	3.1.4.4 Mapping Remote Method Reply
	3.1.4.5 Mapping FSIDL AtomicType
	3.1.4.6 Mapping FSIDL SequenceType
	3.1.4.7 Mapping FSIDL EnumName
	3.1.4.8 Mapping FSIDL CheetahEntityName
	3.1.4.9 Mapping FSIDL InterfaceName
	3.1.4.10 Mapping FSIDL ExceptionName

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Middleware Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Remote Method Invocation
	3.2.4.2 __ping

	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 Middleware Client Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 Remote Method Invocation

	3.3.5 Timer Events
	3.3.6 Other Local Events

	3.4 Name Server Server Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Message Processing Events and Sequencing Rules
	3.4.4.1 resolve
	3.4.4.2 bind
	3.4.4.3 unbind
	3.4.4.4 list_any
	3.4.4.5 list_host
	3.4.4.6 list_name

	3.4.5 Timer Events
	3.4.6 Other Local Events

	3.5 Name Server Client Details
	3.5.1 Abstract Data Model
	3.5.2 Timers
	3.5.3 Initialization
	3.5.4 Message Processing Events and Sequencing Rules
	3.5.5 Timer Events
	3.5.6 Other Local Events

	3.6 core::fds_component Server Details
	3.6.1 Abstract Data Model
	3.6.2 Timers
	3.6.3 Initialization
	3.6.4 Message Processing Events and Sequencing Rules
	3.6.4.1 get_hostname
	3.6.4.2 get_resource_report
	3.6.4.3 uptime
	3.6.4.4 get_version
	3.6.4.5 get_model_version
	3.6.4.6 get_fds_version
	3.6.4.7 get_middleware_port
	3.6.4.8 set_tracelevel

	3.6.5 Timer Events
	3.6.6 Other Local Events

	3.7 core::fds_component Client Details
	3.7.1 Abstract Data Model
	3.7.2 Timers
	3.7.3 Initialization
	3.7.4 Message Processing Events and Sequencing Rules
	3.7.5 Timer Events
	3.7.6 Other Local Events

	3.8 core::lifecycle Server Details
	3.8.1 Abstract Data Model
	3.8.2 Timers
	3.8.3 Initialization
	3.8.4 Message Processing Events and Sequencing Rules
	3.8.4.1 stop
	3.8.4.2 resume
	3.8.4.3 suspend
	3.8.4.4 get_state

	3.8.5 Timer Events
	3.8.6 Other Local Events

	3.9 core::lifecycle Client Details
	3.9.1 Abstract Data Model
	3.9.2 Timers
	3.9.3 Initialization
	3.9.4 Message Processing Events and Sequencing Rules
	3.9.5 Timer Events
	3.9.6 Other Local Events

	4 Protocol Examples
	4.1 Resolve an Abstract Object Reference
	4.2 Call __ping

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full FSIDL
	6.1 FSIDL
	6.2 Cheetah Entities

	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

