

1 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

[MS-FSDPD]:
Document Processing Distribution Protocol Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain

Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com

2 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Revision Summary

Date

Revision

History

Revision

Class Comments

11/06/2009 0.1 Major Initial Availability

02/19/2010 1.0 Major Updated and revised the technical content

03/31/2010 1.01 Editorial Revised and edited the technical content

04/30/2010 1.02 Editorial Revised and edited the technical content

06/07/2010 1.03 Editorial Revised and edited the technical content

06/29/2010 1.04 Editorial Changed language and formatting in the technical
content.

07/23/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

09/27/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

11/15/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

12/17/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

03/18/2011 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

06/10/2011 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

01/20/2012 1.5 Minor Clarified the meaning of the technical content.

04/11/2012 1.5 No change No changes to the meaning, language, or formatting of
the technical content.

07/16/2012 1.5 No change No changes to the meaning, language, or formatting of
the technical content.

3 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Table of Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 6

1.2.1 Normative References ... 7
1.2.2 Informative References ... 7

1.3 Protocol Overview (Synopsis) .. 7
1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 9
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields ... 9
1.9 Standards Assignments .. 10

2 Messages.. 11
2.1 Transport .. 11
2.2 Common Data Types .. 11

2.2.1 cht::documentmessages::action .. 13
2.2.2 cht::documentmessages::warning .. 13
2.2.3 cht::documentmessages::error .. 13
2.2.4 cht::documentmessages::processing_error ... 14
2.2.5 cht::documentmessages::format_error ... 15
2.2.6 cht::documentmessages::xml_error ... 15
2.2.7 cht::documentmessages::utf8_error .. 15
2.2.8 cht::documentmessages::server_unavailable .. 15
2.2.9 cht::documentmessages::operation_dropped .. 15
2.2.10 cht::documentmessages::operation_lost ... 16
2.2.11 cht::documentmessages::operation_set .. 16
2.2.12 cht::documentmessages::operation .. 16
2.2.13 cht::documentmessages::document ... 17
2.2.14 cht::documentmessages::key_value_collection .. 17
2.2.15 cht::documentmessages::document_id ... 17
2.2.16 cht::documentmessages::string_attribute ... 17
2.2.17 cht::documentmessages::bool_attribute ... 18
2.2.18 cht::documentmessages::float_attribute ... 18
2.2.19 cht::documentmessages::integer_attribute ... 18
2.2.20 cht::documentmessages::long_attribute ... 18
2.2.21 cht::documentmessages::bytearray_attribute .. 19
2.2.22 cht::documentmessages::string_collection .. 19
2.2.23 cht::documentmessages::bool_collection .. 19
2.2.24 cht::documentmessages::float_collection .. 20
2.2.25 cht::documentmessages::integer_collection .. 20
2.2.26 cht::documentmessages::long_collection .. 20
2.2.27 cht::documentmessages::bytearray_collection ... 20
2.2.28 cht::documentmessages::key_value_pair .. 21
2.2.29 cht::documentmessages::update_operation .. 21
2.2.30 cht::documentmessages::remove_operation ... 21
2.2.31 cht::documentmessages::partial_update_operation .. 21
2.2.32 cht::documentmessages::urlschange_operation ... 22
2.2.33 cht::documentmessages::failed_operation .. 22
2.2.34 cht::documentmessages::subsystem_id_set .. 23

4 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.2.35 cht::documentmessages::operation_status_info .. 23
2.2.36 cht::documentmessages::operation_state ... 23
2.2.37 processing::shutting_down .. 24
2.2.38 processing::system_resource_error .. 24
2.2.39 ProcessingStatistics .. 24
2.2.40 ModuleStatus ... 25
2.2.41 Statistics ... 25
2.2.42 LogMessage ... 26
2.2.43 ItemLog .. 26
2.2.44 ItemStatusLog ... 26

3 Protocol Details .. 27
3.1 processing::processor_server Server Details ... 27

3.1.1 Abstract Data Model ... 27
3.1.2 Timers .. 27
3.1.3 Initialization .. 27
3.1.4 Message Processing Events and Sequencing Rules .. 27

3.1.4.1 processing::processor_server::process ... 28
3.1.5 Timer Events ... 30
3.1.6 Other Local Events ... 30

3.2 processing::processor_server Client Details .. 30
3.2.1 Abstract Data Model ... 30
3.2.2 Timers .. 31
3.2.3 Initialization .. 31
3.2.4 Message Processing Events and Sequencing Rules .. 31

3.2.4.1 processing::processor_server::process ... 31
3.2.5 Timer Events ... 32
3.2.6 Other Local Events ... 32

3.3 processing::master_dispatcher Server Details ... 32
3.3.1 Abstract Data Model ... 32
3.3.2 Timers .. 32
3.3.3 Initialization .. 32
3.3.4 Message Processing Events and Sequencing Rules .. 33

3.3.4.1 processing::master_dispatcher::register_procserver 33
3.3.4.2 processing::master_dispatcher::assign_dispatcher 33
3.3.4.3 processing::master_dispatcher::unregister_procserver 34

3.3.5 Timer Events ... 34
3.3.6 Other Local Events ... 34

3.4 processing::master_dispatcher Client Details .. 34
3.4.1 Abstract Data Model ... 34
3.4.2 Timers .. 34
3.4.3 Initialization .. 35
3.4.4 Message Processing Events and Sequencing Rules .. 35
3.4.5 Timer Events ... 35
3.4.6 Other Local Events ... 36

3.5 processing::procserver_handler Server Details .. 36
3.5.1 Abstract Data Model ... 36
3.5.2 Timers .. 36
3.5.3 Initialization .. 36
3.5.4 Message Processing Events and Sequencing Rules .. 37

3.5.4.1 processing::procserver_handler::register_procserver 37
3.5.4.2 processing::procserver_handler::unregister_procserver 38
3.5.4.3 processing::procserver_handler::processed ... 39

5 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

3.5.4.4 processing::procserver_handler::renew .. 40
3.5.5 Timer Events ... 40
3.5.6 Other Local Events ... 42

3.6 processing::procserver_handler Client Details ... 42
3.6.1 Abstract Data Model ... 42
3.6.2 Timers .. 42
3.6.3 Initialization .. 42
3.6.4 Message Processing Events and Sequencing Rules .. 42
3.6.5 Timer Events ... 42
3.6.6 Other Local Events ... 42

3.7 Status Server Details ... 43
3.7.1 Abstract Data Model ... 43
3.7.2 Timers .. 45
3.7.3 Initialization .. 45
3.7.4 Message Processing Events and Sequencing Rules .. 45

3.7.4.1 ConfigurationChanged ... 45
3.7.4.2 GetModuleStatus .. 46
3.7.4.3 ResetContainer ... 46
3.7.4.4 FlushState ... 48
3.7.4.5 LeakDetect .. 48
3.7.4.6 GetStatistics .. 48
3.7.4.7 SetMemoryProfile ... 50
3.7.4.8 SetDocumentTracing ... 50
3.7.4.9 GetDocumentStatusLogs ... 50
3.7.4.10 GetDocumentStatusURIs ... 51
3.7.4.11 GetBatchStatus .. 51
3.7.4.12 GetBatchStatusIDs .. 52
3.7.4.13 SetLogLevel ... 52
3.7.4.14 Shutdown .. 52
3.7.4.15 ping .. 53

3.7.5 Timer Events ... 53
3.7.6 Other Local Events ... 53

4 Protocol Examples .. 54
4.1 Processing a Sequence of Item Operations .. 54

4.1.1 Example Code: Initializing the Content Distributor .. 55
4.1.2 Example Code: Initializing the Item Processing Component 55
4.1.3 Example Code: Dispatching Items .. 56
4.1.4 Example Code: Processing Items .. 57
4.1.5 Example Code: Shutting Down the Item Processing Component 57
4.1.6 Example Code: Shutting Down the Content Distributor 57

5 Security .. 58
5.1 Security Considerations for Implementers ... 58
5.2 Index of Security Parameters .. 58

6 Appendix A: Full FSIDL ... 59

7 Appendix B: Product Behavior .. 61

8 Change Tracking... 62

9 Index ... 63

6 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

1 Introduction

This document specifies the Document Processing Distribution Protocol, which is used to distribute
items between various item processing related components in a search service application.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

attribute
fully qualified domain name (FQDN)
UTF-8
XML

The following terms are defined in [MS-OFCGLOS]:

abstract object reference (AOR)
base port
callback message
Cheetah
Cheetah checksum
Cheetah entity

client proxy
content client
content distributor
document identifier
FAST Search Interface Definition Language (FSIDL)
host name

indexing dispatcher

indexing node
item
item processing
name server
search index

The following terms are specific to this document:

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because

links are to the latest version of the technical documents, which are updated frequently. References
to other documents include a publishing year when one is available.

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317

7 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We

will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[MS-FSCF] Microsoft Corporation, "Content Feeding Protocol Specification".

[MS-FSCHT] Microsoft Corporation, "Cheetah Data Structure".

[MS-FSCMW] Microsoft Corporation, "Configuration Middleware Protocol Specification".

[MS-FSCX] Microsoft Corporation, "Configuration (XML-RPC) Protocol Specification".

[MS-FSDP] Microsoft Corporation, "Document Processing Protocol Specification".

[MS-FSMW] Microsoft Corporation, "Middleware Protocol Specification".

[MS-FSNC] Microsoft Corporation, "Node Controller Protocol Specification".

[MS-FSPSCFG] Microsoft Corporation, "Processor Server Configuration File Format Specification".

[MS-FSSCFG] Microsoft Corporation, "Search Configuration File Format Specification".

[MS-FSST] Microsoft Corporation, "Spelltuning File Format Specification".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.ietf.org/rfc/rfc2616.txt

[XML-RPC] Winer, D., "XML-RPC Specification", June 1999, http://www.xmlrpc.com/spec

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary".

1.3 Protocol Overview (Synopsis)

The Document Processing Distribution Protocol enables communication between a content
distributor and an item processing component in a search service application. Specifically, this
protocol enables an item processing component to register with a content distributor, and it enables

a content distributor to dispatch item operations to an item processing component for item
processing.

The content distributor and item processing component belong to a larger, session-based item

feeding chain. A content client at one end of the chain sends information to an indexing service at
the other end of the chain. This information is about operations to be performed on items. The
indexing service adds, updates, and removes items. The content client receives a callback
message from the content distributor when the item operations have been processed, when they

have been stored to disk, and when they have been indexed. The feeding chain sequence consists of

mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-FSCF%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-FSCMW%5d.pdf
%5bMS-FSCX%5d.pdf
%5bMS-FSDP%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSNC%5d.pdf
%5bMS-FSPSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSST%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=113987
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

8 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

a content client, a content distributor, an item processing component, an indexing dispatcher, and
indexing nodes, as shown in the following diagram.

Figure 1: Item feeding chain

In the feeding chain, one or more item processing components register with the content distributor
by using two client/server interfaces: one as described in both processing::master_dispatcher Client
Details (section 3.4) and processing::master_dispatcher Server Details (section 3.3), and the other
as described in both processing::procserver_handler Client Details (section 3.6) and
processing::procserver_handler Server Details (section 3.5). After it registers, an item processing
component is ready for item processing. Examples of item processing include format detection and
conversion, linguistic analysis, and link analysis.

The role of the content distributor is to dispatch content from one or more content clients to the
available item processing components. It does so by using a client/server interface as described in
both processing::processor_server Client Details (section 3.2) and processing::processor_server
Server Details (section 3.1). The content exists in the form of item operations, such as those for
adding, updating, and removing items.

The item processing component sends the item operations to the indexing dispatcher for indexing.
The item processing component sends a callback message to the content distributor when the item

operations have been processed. The callback messages are communicated by means of the
client/server interface as described in both processing::procserver_handler Client Details (section
3.6) and processing::procserver_handler Server Details (section 3.5).

The content distributor monitors the item processing components that are registered. If an item
processing component is unresponsive, the content distributor contacts the node controller, as
described in [MS-FSNC], to terminate that item processing component, as described in Timer Events

(section 3.5.5).

The content distributor and the item processing components communicate with the configuration
component to obtain configuration data by using a server interface, as described in [MS-FSCMW]
section 3, and a configuration component XML-RPC interface, as described in [MS-FSCX] section 3.

Each item processing component also implements a status interface, as described in Status Server

Details (section 3.7), that other components query for item processing logs and statistics.

1.4 Relationship to Other Protocols

This protocol uses the Middleware Protocol, as described in [MS-FSMW]. Custom data types are
serialized by means of the Cheetah Data Format, as described in [MS-FSCHT].

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSNC%5d.pdf
%5bMS-FSCMW%5d.pdf
%5bMS-FSCX%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSCHT%5d.pdf

9 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

This protocol also uses XML-RPC by using HTTP for transporting messages in XML, as described in
[XML-RPC].

This protocol uses HTTP, as described in [RFC2616], over TCP/IP as the transport mechanism. The
following diagram shows the underlying messaging and transport stack that the protocol uses:

Figure 2: This protocol in relation to other protocols

1.5 Prerequisites/Preconditions

It is assumed that a protocol client and a protocol server using the Middleware Protocol [MS-FSMW]
as the transport mechanism both have the location and connection information for the shared name
server.

A protocol client using XML-RPC as the transport mechanism needs to be able to establish a
connection to the protocol server over TCP/IP. It is assumed that the protocol client knows the host
name and port that are associated with the protocol server prior to initiating the connection.

This document explains the use of one content distributor; it does not cover the use of multiple
content distributors.

1.6 Applicability Statement

This protocol enables a content distributor to dispatch items to one or more item processing
components. This protocol also enables the item processing components to use callback messages
to send status information regarding the processing and indexing of the submitted items back to the
content distributor.

This protocol is part of a feeding chain that contains an item-feeding content client at one end and
an indexing node at the other. The feeding chain components have the ability to send status

information about items back through the chain by using asynchronous callback messages.

1.7 Versioning and Capability Negotiation

Regarding capability negotiation, although the Middleware Protocol [MS-FSMW] is connectionless,
every message that is sent via the Middleware Protocol needs to specify the correct interface
version. For more information, see Initialization (section 3.3.3), Initialization (section 3.5.3), and

Common Data Types (section 2.2).

1.8 Vendor-Extensible Fields

None.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113987
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSMW%5d.pdf

10 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

1.9 Standards Assignments

None.

11 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2 Messages

2.1 Transport

The content distributor MUST use the Middleware Protocol, as specified in [MS-FSMW], to send
messages to the item processing component, configuration server, and indexing dispatcher.

Messages from the content distributor to the node controller, from the item processing component
to the configuration component, and from a protocol client to a protocol server implementing the
Status interface MUST be sent via XML-RPC, as specified in [XML-RPC]. The protocol clients and

protocol servers that use XML-RPC MUST use HTTP, as specified in [RFC2616], over TCP/IP as the
transport mechanism. The XML body requests and responses MUST be formatted as specified in
[XML-RPC]. The HTTP GET path, as specified in [RFC2616], MUST be "/RPC2".

2.2 Common Data Types

The messages for this protocol are specified by using FAST Search Interface Definition

Language (FSIDL). The allowed FSIDL data types, as specified in [MS-FSMW], are encoded as

specified in [MS-FSMW] section 2. Cheetah entities are encoded as specified in [MS-FSCHT]
section 2. The Cheetah checksum and Cheetah type identifier for each Cheetah entity MUST both
be integers, as specified in the following table.

Cheetah entity

Cheetah type

identifier

Cheetah

checksum

cht::documentmessages::key_value_pair 0 211918678

cht::documentmessages::key_value_collection 1 211918678

cht::documentmessages::bool_attribute 2 211918678

cht::documentmessages::bool_collection 3 211918678

cht::documentmessages::bytearray_attribute 4 211918678

cht::documentmessages::bytearray_collection 5 211918678

cht::documentmessages::warning 6 211918678

cht::documentmessages::operation 7 211918678

cht::documentmessages::document_id 11 211918678

cht::documentmessages::document 12 211918678

cht::documentmessages::error 15 211918678

cht::documentmessages::failed_operation 18 211918678

cht::documentmessages::float_attribute 19 211918678

cht::documentmessages::float_collection 20 211918678

cht::documentmessages::processing_error 21 211918678

cht::documentmessages::format_error 22 211918678

cht::documentmessages::string_attribute 26 211918678

%5bMS-FSMW%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113987
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=113987
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSCHT%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

12 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Cheetah entity

Cheetah type

identifier

Cheetah

checksum

cht::documentmessages::integer_attribute 28 211918678

cht::documentmessages::integer_collection 30 211918678

cht::documentmessages::long_attribute 34 211918678

cht::documentmessages::long_collection 35 211918678

cht::documentmessages::operation_dropped 36 211918678

cht::documentmessages::operation_lost 37 211918678

cht::documentmessages::operation_set 38 211918678

cht::documentmessages::subsystem_id_set 39 211918678

cht::documentmessages::operation_status_info 40 211918678

cht::documentmessages::partial_update_operation 42 211918678

cht::documentmessages::remove_operation 45 211918678

cht::documentmessages::server_unavailable 47 211918678

cht::documentmessages::string_collection 49 211918678

cht::documentmessages::update_operation 52 211918678

cht::documentmessages::urlschange_operation 53 211918678

cht::documentmessages::utf8_error 54 211918678

cht::documentmessages::xml_error 55 211918678

For the messages sent via XML-RPC, the int, double, string, data, array, and struct data types
MUST be used as specified in [XML-RPC]. In addition, this protocol uses the data structures that are
specified in the following table.

Data structure

name Description

ProcessingStatistics The processing statistics for a single item processing stage or item processing
pipeline. For more details, see ProcessingStatistics (section 2.2.39).

ModuleStatus Information about the status of the protocol server. For more details, see
ModuleStatus (section 2.2.40).

Statistics The processing statistics for the protocol server. For more details, see Statistics
(section 2.2.41).

LogMessage Information about a single log event. For more details, see LogMessage (section
2.2.42).

ItemLog Information about all the log events for either a single item operation or a single
sequence of item operations. For more details, see ItemLog (section 2.2.43).

ItemStatusLog Log information for either several item operations or several sequences of item

http://go.microsoft.com/fwlink/?LinkId=113987

13 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Data structure

name Description

operations. For more details, see ItemStatusLog (section 2.2.44).

2.2.1 cht::documentmessages::action

The action Cheetah enumeration specifies actions that are used in error messages.

enum action {

 resubmit,

 limited_resubmit,

 drop,

 terminate

};

The action Cheetah enumeration contains the following constants:

resubmit: A constant specifying that the protocol client MUST resubmit the item operation.

limited_resubmit: A constant specifying that the protocol client MUST resubmit the item operation
for a limited number of times.

drop: A constant specifying that the protocol client MUST NOT resubmit the item operation.

terminate: A constant that the protocol client MUST NOT use.

2.2.2 cht::documentmessages::warning

The warning Cheetah entity contains warning information about a specific item operation.

entity warning {

 attribute int warning_code;

 attribute string description;

 attribute string subsystem;

 attribute int session_id;

 attribute longint operation_id;

};

warning_code: An integer that indicates the warning code.

description: A string that contains a description of the warning.

subsystem: A string that describes where the warning occurred. This string MUST have a value of
either "indexing" or "processing". If the warning was produced by either the content distributor or
the item processing component, the string value will be "processing". If the warning was produced
by either the indexing dispatcher or an indexing node, the string value will be "indexing".

session_id: An integer that uniquely identifies the session.

operation_id: A long integer that uniquely identifies the item operation.

2.2.3 cht::documentmessages::error

The error Cheetah entity contains error information for a specific item operation.

14 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

entity error {

 attribute int error_code;

 attribute action suggested_action;

 attribute string description;

 attribute string subsystem;

 attribute int session_id;

 attribute longint operation_id;

 collection string arguments;

};

error_code: An integer that contains the error code.

suggested_action: An action Cheetah enumeration value, as specified in
cht::documentmessages::action (section 2.2.1), containing the RECOMMENDED action that the
protocol client can perform to correct the item operation error.

description: A string that contains a description of the error.

subsystem: A string that describes where the error occurred. This string MUST have a value of
either "indexing" or "processing". If the error was produced by either the content distributor or the
item processing component, the string value will be "processing". If the error was produced by

either the indexing dispatcher or an indexing node, the string value will be "indexing".

session_id: An integer that uniquely identifies the session.

operation_id: An integer that uniquely identifies the item operation.

arguments: Unused. The value MUST consist of an empty Cheetah collection.

2.2.4 cht::documentmessages::processing_error

The processing_error Cheetah entity specifies when an error occurred during the processing of an

item operation.

The processing_error Cheetah entity is a subclass of the error Cheetah entity, which is specified
in cht::documentmessages::error (section 2.2.3). The processing_error Cheetah entity is also a
common superclass for:

The format_error Cheetah entity, which is specified in section

cht::documentmessages::format_error (section 2.2.5).

The server_unavailable Cheetah entity, which is specified in section

cht::documentmessages::server_unavailable (section 2.2.8).

The operation_dropped Cheetah entity, which is specified in section

cht::documentmessages::operation_dropped (section 2.2.9).

entity processing_error : error {

 attribute string processor;

};

processor: A string that specifies the name of the item processing stage during which the error

occurred.

15 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.2.5 cht::documentmessages::format_error

The format_error Cheetah entity is used to indicate that an item operation has an invalid format.

The format_error Cheetah entity is a subclass of the processing_error Cheetah entity, which is

specified in cht::documentmessages::processing_error (section 2.2.4). The format_error Cheetah
entity is also a common superclass for the xml_error Cheetah entity, which is specified in
cht::documentmessages::xml_error (section 2.2.6), and the utf8_error Cheetah entity, which is
specified in cht::documentmessages::utf8_error (section 2.2.7).

entity format_error : processing_error {

};

2.2.6 cht::documentmessages::xml_error

The xml_error Cheetah entity is used to indicate that an item operation contains invalid XML code.

The xml_error Cheetah entity is a subclass of the format_error Cheetah entity, which is specified
in cht::documentmessages::format_error (section 2.2.5).

entity xml_error : format_error {

};

2.2.7 cht::documentmessages::utf8_error

The utf8_error Cheetah entity is used to indicate that an item operation contains invalid UTF-8
encoding.

The utf8_error Cheetah entity is a subclass of the format_error Cheetah entity, which is specified
in cht::documentmessages::format_error (section 2.2.5).

entity utf8_error : format_error {

};

2.2.8 cht::documentmessages::server_unavailable

The server_unavailable Cheetah entity is used to indicate that a protocol client was unable to
connect to a protocol server during the processing of an item operation.

The server_unavailable Cheetah entity is a subclass of the processing_error Cheetah entity,

which is specified in cht::documentmessages::processing_error (section 2.2.4).

entity server_unavailable : processing_error {

};

2.2.9 cht::documentmessages::operation_dropped

The operation_dropped Cheetah entity is used to indicate that the item processing component has

identified an item operation that MUST NOT be indexed.

The operation_dropped Cheetah entity is a subclass of the processing_error Cheetah entity,
which is specified in cht::documentmessages::processing_error (section 2.2.4).

16 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

entity operation_dropped : processing_error {

};

2.2.10 cht::documentmessages::operation_lost

The operation_lost Cheetah entity is used to indicate that an item operation has been lost during
processing or indexing.

The operation_lost Cheetah entity is a subclass of the error Cheetah entity, which is specified in
cht::documentmessages::error (section 2.2.3).

entity operation_lost : error {

};

2.2.11 cht::documentmessages::operation_set

The operation_set Cheetah entity contains a set of operation objects, which are specified in
cht::documentmessages::operation (section 2.2.12).

entity operation_set {

 attribute longint completed_op_id;

 collection operation operations;

};

completed_op_id: A long integer that contains the highest operation identifier in the sequence of
operation identifiers for which the content client has received all callback messages.

operations: A collection of operation Cheetah entities.

2.2.12 cht::documentmessages::operation

The operation Cheetah entity is a common super class for the following Cheetah entities:

The update_operation Cheetah entity, which is specified in

cht::documentmessages::update_operation (section 2.2.29).

The partial_update_operation Cheetah entity, which is specified in

cht::documentmessages::partial_update_operation (section 2.2.31).

The remove_operation Cheetah entity, which is specified in

cht::documentmessages::remove_operation (section 2.2.30).

The urlschange_operation Cheetah entity, which is specified in

cht::documentmessages::urlschange_operation (section section 2.2.32)

entity operation {

 attribute longint id;

 collection warning warnings;

};

id: A long integer that uniquely identifies the item operation. The value MUST be equal to or greater

than 0.

17 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

warnings: A collection of warning Cheetah entities, which are specified in
cht::documentmessages::warning (section 2.2.2). This collection contains all the warnings for the

item operation that is identified by the id attribute (1).

2.2.13 cht::documentmessages::document

The document Cheetah entity contains information about a single item.

entity document {

 attribute document_id doc_id;

 collection key_value_pair document_attributes;

};

doc_id: A document_id Cheetah entity, as specified in cht::documentmessages::document_id

(section 2.2.15), that uniquely identifies the item.

document_attributes: A collection of key_value_pair Cheetah entities, as specified in

cht::documentmessages::key_value_pair (section 2.2.28), that contains the attributes (1) of the

item.

2.2.14 cht::documentmessages::key_value_collection

The key_value_collection Cheetah entity forms an association between a single key and a
key_value_pair collection.

The key_value_collection Cheetah entity is a subclass of the key_value_pair Cheetah entity,
which is specified in cht::documentmessages::key_value_pair (section 2.2.28).

entity key_value_collection : key_value_pair {

 collection key_value_pair values;

};

values: A collection of key_value_pair Cheetah entities.

2.2.15 cht::documentmessages::document_id

The document_id Cheetah entity uniquely identifies an item by representing the document
identifier (3) of the item.

entity document_id {

 attribute string id;

 collection key_value_pair routing_attributes;

};

id: A string that uniquely identifies the item.

routing_attributes: Unused. The value MUST be an empty Cheetah collection.

2.2.16 cht::documentmessages::string_attribute

The string_attribute Cheetah entity forms an association between a key and a string value.

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

18 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

The string_attribute Cheetah entity is a subtype of the key_value_pair Cheetah entity, which is
specified in cht::documentmessages::key_value_pair (section 2.2.28).

entity string_attribute : key_value_pair {

 attribute string value;

};

value: A string that contains the value.

2.2.17 cht::documentmessages::bool_attribute

The bool_attribute Cheetah entity forms an association between a key and a Boolean value.

The bool_attribute Cheetah entity is a subtype of the key_value_pair Cheetah entity, which is
specified in cht::documentmessages::key_value_pair (section 2.2.28).

entity bool_attribute : key_value_pair {

 attribute bool value;

};

value: A Boolean attribute that contains the value.

2.2.18 cht::documentmessages::float_attribute

The float_attribute Cheetah entity forms an association between a key and a floating point value.

The float_attribute Cheetah entity is a subtype of the key_value_pair Cheetah entity, which is
specified in cht::documentmessages::key_value_pair (section 2.2.28).

entity float_attribute : key_value_pair {

 attribute float value;

};

value: A floating point attribute that contains the value.

2.2.19 cht::documentmessages::integer_attribute

The integer_attribute Cheetah entity forms an association between a key and an integer value.

The integer_attribute Cheetah entity is a subclass of the key_value_pair Cheetah entity, which
is specified in cht::documentmessages::key_value_pair (section 2.2.28).

entity integer_attribute : key_value_pair {

 attribute integer value;

};

value: An integer that contains the value.

2.2.20 cht::documentmessages::long_attribute

The long_attribute Cheetah entity forms an association between a key and a long integer value.

19 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

The long_attribute Cheetah entity is a subtype of the key_value_pair Cheetah entity, which is
specified in cht::documentmessages::key_value_pair (section 2.2.28).

entity long_attribute : key_value_pair {

 attribute longint value;

};

value: A long integer that contains the value.

2.2.21 cht::documentmessages::bytearray_attribute

The bytearray_attribute Cheetah entity forms an association between a key and a value that is
contained in a byte array.

The bytearray_attribute Cheetah entity is a subclass of the key_value_pair Cheetah entity,
which is specified in cht::documentmessages::key_value_pair (section 2.2.28).

entity bytearray_attribute : key_value_pair {

 attribute bytearray value;

};

value: A byte array that contains the value.

2.2.22 cht::documentmessages::string_collection

The string_collection Cheetah entity forms an association between a key and a string collection.

The string_collection Cheetah entity is a subtype of the key_value_pair Cheetah entity, which is

specified in cht::documentmessages::key_value_pair (section 2.2.28).

entity string_collection : key_value_pair {

 collection string values;

};

values: A string collection that contains the values.

2.2.23 cht::documentmessages::bool_collection

The bool_collection Cheetah entity forms an association between a key and a collection of Boolean
values.

The bool_collection Cheetah entity is a subtype of the key_value_pair Cheetah entity, which is
specified in cht::documentmessages::key_value_pair (section 2.2.28).

entity bool_collection : key_value_pair {

 collection bool values;

};

values: A collection that contains the Boolean values.

20 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.2.24 cht::documentmessages::float_collection

The float_collection Cheetah entity forms an association between a key and a collection of floating
point values.

The float_collection Cheetah entity is a subtype of the key_value_pair Cheetah entity, which is
specified in cht::documentmessages::key_value_pair (section 2.2.28).

entity float_collection : key_value_pair {

 collection float values;

};

values: A collection that contains the floating point values.

2.2.25 cht::documentmessages::integer_collection

The integer_collection Cheetah entity forms an association between a key and a collection of

integer values.

The integer_collection Cheetah entity is a subtype of the key_value_pair Cheetah entity, which
is specified in cht::documentmessages::key_value_pair (section 2.2.28).

entity integer_collection : key_value_pair {

 collection integer values;

};

values: A collection that contains the integer values.

2.2.26 cht::documentmessages::long_collection

The long_collection Cheetah entity forms an association between a key and a collection of long
integer values.

The long_collection Cheetah entity is a subtype of the key_value_pair Cheetah entity, which is
specified in cht::documentmessages::key_value_pair (section 2.2.28).

entity long_collection : key_value_pair {

 collection longint values;

};

values: A collection that contains the long integer values.

2.2.27 cht::documentmessages::bytearray_collection

The bytearray_collection Cheetah entity forms an association between a key and a collection of
byte arrays.

The bytearray_collection Cheetah entity is a subtype of the key_value_pair Cheetah entity,
which is specified in cht::documentmessages::key_value_pair (section 2.2.28).

entity bytearray_collection : key_value_pair {

 collection bytearray values;

21 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

};

values: A collection that contains the bytearray values.

2.2.28 cht::documentmessages::key_value_pair

The key_value_pair Cheetah entity is a common superclass that associates a key with a value that
can be one of various types. The key_value_pair Cheetah entity represents an attribute (1).

entity key_value_pair {

 attribute string key;

};

The key_value_pair Cheetah entity has the following attribute:

key: A string that contains the key.

2.2.29 cht::documentmessages::update_operation

The update_operation Cheetah entity either adds a specific item to the index or replaces that
item. If an item with the specified document identifier (3) already exists in the search index, it is
replaced.

The update_operation Cheetah entity is a subclass of the operation Cheetah entity, which is
specified in cht::documentmessages::operation (section 2.2.12).

entity update_operation : operation {

 attribute document doc;

};

doc: A document Cheetah entity, as specified in cht::documentmessages::document (section

2.2.13), that represents the item to add or replace.

2.2.30 cht::documentmessages::remove_operation

The remove_operation Cheetah entity removes a specific item from the index.

The remove_operation Cheetah entity is a subclass of the operation Cheetah entity, which is
specified in cht::documentmessages::operation (section 2.2.12).

entity remove_operation : operation {

 attribute document_id doc_id;

};

doc_id: A document_id Cheetah entity, as specified in cht::documentmessages::document_id
(section 2.2.15), that uniquely identifies the item.

2.2.31 cht::documentmessages::partial_update_operation

The partial_update_operation Cheetah entity updates one or more attributes (1) for a specific
item in the search index.

%5bMS-OFCGLOS%5d.pdf

22 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

The partial_update_operation Cheetah entity is a subtype of the operation Cheetah entity,
which is specified in cht::documentmessages::operation (section 2.2.12).

entity partial_update_operation : operation {

 attribute document doc;

};

doc: A document Cheetah entity, as specified in cht::documentmessages::document (section

2.2.13), that contains the attributes (1) to update.

2.2.32 cht::documentmessages::urlschange_operation

The urlschange_operation Cheetah entity updates one or more attributes for a specific item in the
search index.

The urlschange_operation Cheetah entity is a subtype of the partial_update_operation

Cheetah entity, which is specified in cht::documentmessages::operation (section 2.2.12).

entity urlschange_operation : partial_update_operation {

};

2.2.33 cht::documentmessages::failed_operation

The failed_operation Cheetah entity is used to notify the indexing dispatcher that an operation has

failed.

The failed_operation Cheetah entity is a subtype of the operation Cheetah entity, which is
specified in cht::documentmessages::operation (section 2.2.12).

entity failed_operation : operation {

 attribute string subsystem;

 attribute operation_state state;

 attribute string operation_type;

 attribute document_id doc_id;

 attribute error err;

};

subsystem: A string that describes where the operation failed. This string MUST have the value

"processing".

state: An operation_state Cheetah entity, as specified in
cht::documentmessages::operation_state (section 2.2.36), that contains the state of the operation.

operation_type: A string that describes the type of operation. This string MUST have the value
"failed_operation".

doc_id: A document_id, as specified in cht::documentmessages::document_id (section 2.2.15),

that uniquely identifies the item.

err: An error Cheetah entity, as specified in cht::documentmessages::error (section 2.2.3), that
contains information about the error that caused the operation to fail.

23 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.2.34 cht::documentmessages::subsystem_id_set

The subsystem_id_set Cheetah entity contains a collection of names.

entity subsystem_id_set {

 collection string ids;

};

ids: A collection that MUST consist of either an empty Cheetah collection or a single element that

contains the string "indexing".

2.2.35 cht::documentmessages::operation_status_info

The operation_status_info Cheetah entity, which contains status information about a set of
operations, is used to report the status of submitted item operations to the protocol client.

entity operation_status_info {

 attribute longint first_op_id;

 attribute longint last_op_id;

 attribute operation_state state;

 attribute string subsystem;

 collection error errors;

 collection warning warnings;

};

first_op_id: A long integer that contains the operation identifier of the first operation in the

sequence of item operations. This value MUST be equal to or greater than 0 as well as less than or
equal to the value of the last_op_id attribute.

last_op_id: A long integer that contains the operation identifier of the last operation in the

sequence of item operations. This value MUST be equal to or greater than 0 as well as equal to or
greater than the value of the first_op_id attribute.

state: An operation_state enumeration constant, as specified in
cht::documentmessages::operation_state (section 2.2.36), that represents the state of the
sequence of item operations.

subsystem: A string that describes where the operation status info was generated. This string

MUST have a value of either "indexing" or "processing". If the operation status info was produced by
either the content distributor or the item processing component, the string value will be
"processing". If the error was produced by either the indexing dispatcher or an indexing node, the
string value will be "indexing".

errors: A collection of error Cheetah entities, which are specified in cht::documentmessages::error
(section 2.2.3). This value contains the errors for the operations that are specified in the collection
of item operations.

warnings: A collection of warning Cheetah entities, which are specified in

cht::documentmessages::warning (section 2.2.2). This value contains the warnings for the set of
item operations that is specified by the first_op_id and last_op_id attributes.

2.2.36 cht::documentmessages::operation_state

The operation_state Cheetah enumeration specifies the possible states of an item operation.

24 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

enum operation_state {

 unknown,

 received,

 secured,

 completed,

 lost

};

unknown: A constant specifying that the item operation is in an unknown state.

received: A constant specifying that the protocol server has received the item operation.

secured: A constant specifying that the item operation has been saved to disk.

completed: A constant specifying that the item operation has finished running.

lost: A constant specifying that the item operation was lost during processing or indexing.

2.2.37 processing::shutting_down

The processing::shutting_down exception is raised by the protocol server if the protocol server is
in the process of shutting down when a protocol client calls the process method, as specified in
processing::processor_server::process (section 3.1.4.1).

exception shutting_down {

};

2.2.38 processing::system_resource_error

The system_resource_error exception is raised by the protocol server if the protocol server
receives an exception during processing that is related to a resource constraint. An example of such
a constraint is not enough memory being available.

exception system_resource_error {

 string what;

};

what: A description of the resource constraint that occurred.

2.2.39 ProcessingStatistics

The ProcessingStatistics structure contains statistics for a running item processing component or
item processing pipeline. The members of this structure are described in the following table.

Member name Type Description

OK int The number of items that have been successfully processed.

ERROR int The number of items that have been processed with an error.

WorkTime double The amount of time, in seconds, that has been spent on processing items.

UserTime double The amount of time, in seconds, that has been spent in user mode.

25 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Member name Type Description

SystemTime double The amount of time, in seconds, that has been spent in system mode.

PageSwaps int The number of page faults requiring input/output that have occurred.

VirtualMem int The amount of virtual memory, in bytes, that has been allocated.

ResidentMem int The amount of resident memory, in bytes, that has been allocated.

MemUsage int The amount of memory, in bytes, that has been allocated.

2.2.40 ModuleStatus

The ModuleStatus structure contains the status of the protocol server. The members of this
structure are described in the following table.

Member

name Type Description

Started int The time when the protocol server started. This time is expressed in number of
seconds since January 1, 1970.

Idletime int The number of seconds that the protocol server has been idle—that is, has not
been processing items.

Uptime int The number of seconds that has elapsed since the protocol server started.

CurrentWork int Whether the protocol server is currently processing items. The value MUST be 0
if the protocol server is not processing items, and the value MUST be 1 if the
protocol server is processing items.

Verbosity int The verbosity level, which controls how much logging will be performed. The
value MUST be one of the following:

1 for no statistics or item logging

2 for statistics and document logging

3 for statistics, document logging, and the logging of attribute changes to

items

2.2.41 Statistics

The Statistics structure is used to log item processing statistics. The members of this structure are
described in the following table.

Member

name Type Description

Elapsed int The amount of time, in seconds, that has elapsed since the last reset of the state.

Statistics array An array that MUST have two elements. The first element is a map containing the
names of the item processing stages and their associated ProcessingStatistics
structures, as specified in ProcessingStatistics (section 2.2.39). The second
element is a map containing the names of the item processing pipelines and their
associated ProcessingStatistics structures, as specified in ProcessingStatistics

26 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Member

name Type Description

(section 2.2.39).

2.2.42 LogMessage

The LogMessage array is used to log one event in a log. This array contains two elements, as
described in the following table.

Element

type Description

string The verbosity level of the log message. The value MUST be one of the following values:
"INFO", "WARNING", or "ERROR".

string The log message.

2.2.43 ItemLog

The ItemLog structure contains log messages for a single item or a sequence of item operations.
The members of this structure are described in the following table.

Member

name Type Description

Status string The status of the item or sequence of item operations. The value MUST be one of
the following:

"OK" if the item or sequence of item operations has been processed without

errors or warnings.

"WARNING" if the item or the sequence of item operations has been

processed with one or more warnings.

"ERROR" if the item or sequence of item operations has been processed with

one or more errors.

Modified int The time when the item or sequence of item operations was last modified. This
time is expressed in number of seconds since January 1, 1970.

Msgs array An array of LogMessage arrays, as specified in LogMessage (section 2.2.42).

Elapsed int The number of seconds that the protocol server spent on processing the item or
sequence of item operations.

2.2.44 ItemStatusLog

The ItemStatusLog array contains zero or more structures of type ItemLog, as specified in

ItemLog (section 2.2.43), that are associated with an item identifier variable in the log entry.

27 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

3 Protocol Details

This protocol consists of the following interfaces:

processing::processor_server

processing::master_dispatcher

processing::procserver_handler

Status

To use this protocol, the content distributor MUST implement the processing::master_dispatcher
interface, as specified in processing::master_dispatcher Server Details (section 3.3), and the
processing::procserver_handler interface, as specified in section processing::procserver_handler
Server Details (section 3.5). The item processing component acts as the protocol client for these
two interfaces, as specified in processing::master_dispatcher Client Details (section 3.4) and
processing::processor_server Client Details (section 3.2).

The item processing component MUST implement the processing::processor_server interface, as

specified in processing::processor_server Server Details (section 3.1). The content distributor acts
as the protocol client for the processing::processor_server interface, as specified in
processing::processor_server Client Details (section 3.2).

The item processing component MUST implement the Status interface, as specified in Status Server
Details (section 3.7).

The protocol client side of the Status interface is simply a pass-through. That is, no additional

timers or other states are necessary on the client side of this protocol. Calls made by the higher-
layer protocol or application are passed directly to the transport, and the results returned by the
transport are passed directly back to the higher-layer protocol or application.

3.1 processing::processor_server Server Details

The processing::processor_server interface uses the Middleware Protocol, as specified in [MS-
FSMW], as the transport mechanism.

3.1.1 Abstract Data Model

None.

3.1.2 Timers

None.

3.1.3 Initialization

The protocol server activates the Status interface, as specified in Status Server Details (section
3.7).

The protocol server is a processing::master_dispatcher protocol client and MUST register with
the processing::master_dispatcher protocol server, as specified in Initialization (section 3.4.3).

3.1.4 Message Processing Events and Sequencing Rules

This interface includes the method that is listed in the following table.

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf

28 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Method Description

process Processes a sequence of item operations.

3.1.4.1 processing::processor_server::process

The process method processes a sequence of item operations.

void process(in coreprocessing::session next_subsystem_session,

 in long session_id,

 in string collection,

 in cht::documentmessages::operation_set batch,

 in cht::documentmessages::subsystem_id_set subsystem_ids)

 raises (processing::shutting_down, processing::system_resource_error);

Input values:

next_subsystem_session: A client proxy for the coreprocessing::session server object to the
indexing dispatcher.

session_id: A long integer value that contains the session identifier.

collection: A string that contains the name of the collection with which to associate the sequence of
items.

batch: A Cheetah entity, as specified in cht::documentmessages::operation_set (section 2.2.11),
that contains the sequence of item operations.

subsystem_ids: A Cheetah entity, as specified in cht::documentmessages::subsystem_id_set
(section 2.2.34), that specifies where the item operations are sent after the processing has finished.
The value of this Cheetah entity MUST be set to "indexing".

Return value:

None.

Exceptions thrown: The possible exceptions are listed in the following table.

Exception Meaning

shutting_down This exception MUST be raised if the protocol server is in the process of
shutting down at the time that the process method call is made.

system_resource_error This exception MUST be raised if the protocol server is unable to process the
sequence of item operations because of a resource constraint, such as
insufficient memory.

When it enters this method, the protocol server MUST set the Processing state to 1 in the Status
interface, as specified in Status Server Details (section 3.7).

The protocol server MUST raise the processing::shutting_down exception if the Terminating

state in the Status interface is True.

The protocol server writes an entry to the Item Log Table of the Status interface for each item
that is processed during processing.

%5bMS-OFCGLOS%5d.pdf

29 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

If the Tracing state is True in the Status interface, as specified in Status Server Details (section
3.7), the protocol server MUST write changes to item attributes to the Item Log Table in the

Status interface.

For each item that is processed, the protocol server MUST create an Item Log Table in the Status

interface in which an association between the item identifier and the structure in the table is set to
the following values:

Status: A string that contains the value "OK" if the item was processed without errors; a string

that contains the value "WARNING" if the item was processed with one or more warnings; or a
string that contains the value "ERROR" if an error occurred during processing.

Last Modified: A value that MUST be the time, in number of seconds since January 1, 1970,

when the item was last modified.

Messages: A sequence that contains one entity for each logging event, where Verbosity Level

MUST be set to a string that contains either "OK", "WARNING", or "ERROR", depending on the
verbosity of the log entry. The Message entry MUST contain a textual message that describes

the logging event.

Elapsed: The number of seconds that it took to process the item.

For each sequence of item operations that is processed, the protocol server MUST create an Item
Operation Sequence Log Table in the Status interface in which an association between the
identifier of the sequence of item operations and the structure in the table is set to the following
values:

Status: A string that contains the value "OK" if the item operation sequence was processed

without errors; a string that contains the value "WARNING" if the sequence was processed with
one or more warnings; or a string that contains the value "ERROR" if an error occurred during
processing.

Last Modified: A value that MUST be the time, in number of seconds since January 1, 1970,

when the item was last modified.

Messages: A sequence that contains one entity for each logging event, where Verbosity Level

MUST be set to a string that contains either "OK", "WARNING", or "ERROR", depending on the
verbosity of the log entry. The Message entry MUST contain a textual message that describes
the logging event.

Elapsed: The number of seconds that it took to process the item.

For each item processing stage in the item processing pipeline, the protocol server MUST update the
Processing Stage Statistics Table in the Status interface, as specified in Status Server Details

(section 3.7), with the following values:

OK Items: A value that is incremented by 1 for every item that was processed without any

errors.

Error Items: A value that is incremented by 1 for every item that was processed with an error.

Work Time: A value that is incremented by the number of seconds that it took to process the

item during this item processing stage.

User Time: A value that is incremented by the number of seconds that the system was in user

mode during the processing of this item.

30 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

System Time: A value that is incremented by the number of seconds that the system was in

system mode during the processing of this item.

For each item processing stage in the item processing pipeline, the protocol server MUST update the

Content Pipeline Statistics Table in the Status interface, as specified in Status Server Details
(section 3.7), with the following values:

OK Items: A value that is incremented by 1 for every item that was processed without any

errors.

Error Items: A value that is incremented by 1 for every item that was processed with an error.

Work Time: A value that is incremented by the number of seconds that it took to process the

item during this item processing stage.

User Time: A value that is incremented by the number of seconds that the system was in user

mode during the processing of this item.

System Time: A value that is incremented by the number of seconds that the system was in

system mode during the processing of this item.

The protocol server MUST call the process method on the next_subsystem_session input value,
which serves as a client proxy for the coreprocessing::session server object (as specified in [MS-
FSDP] section 3), when the processing of the item operation sequence has finished.

The protocol server MUST call the procserver_handler::processed method, as specified in
processing::procserver_handler::processed (section 3.5.4.3), when the processing of the item
operation sequence has finished. Invoking procserver_handler::processed notifies the protocol
client of the outcome from processing the items.

The protocol server MUST set the Processing state to 0 in the Status interface, as specified in
Status Server Details (section 3.7), before it exits this method.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

3.2 processing::processor_server Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

busy state: A Boolean value that specifies whether this item processing component is processing
items. True means that the item processing component is processing items; False means that the
item processing component is not processing items.

%5bMS-FSDP%5d.pdf
%5bMS-FSDP%5d.pdf

31 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

item processing component identifier: A string that represents a unique identifier for the item
processing component.

3.2.2 Timers

None.

3.2.3 Initialization

The busy state MUST initially be set to False.

3.2.4 Message Processing Events and Sequencing Rules

This interface includes the method that is listed in the following table.

Method Description

process Processes a sequence of item operations.

3.2.4.1 processing::processor_server::process

The protocol client MUST extract the item identifier from every item operation in the
cht::documentmessages::operation_set input value, as specified in
cht::documentmessages::operation_set (section 2.2.11), to the
processing::processor_server::process method, as specified in

processing::processor_server::process (section 3.1.4.1). How the protocol client does so depends
on the type of item operation.

For each item operation in the cht::documentmessages::operation_set input value, the protocol
client MUST do the following:

Create an association between the id attribute of the item operation and the item identifier in

the item identifier holder, as specified in Abstract Data Model (3.5.1). How the protocol client

extracts the item identifier from the item operation depends on the type of item operation:

If the item operation is cht::documentmessages::update_operation, as specified in

cht::documentmessages::update_operation (section 2.2.29), the item identifier is the doc_id
attribute of the document attribute.

If the item operation is cht::documentmessages::partial_update_operation, as specified in

cht::documentmessages::partial_update_operation (section 2.2.31), the item identifier is the
doc_id attribute of the document attribute.

If the item operation is cht::documentmessages::urlschange_operation, as specified in

cht::documentmessages::urlschange_operation (section 2.2.32), the item identifier is the
doc_id attribute of the document attribute.

If the item operation is cht::documentmessages::remove_operation, as specified in

cht::documentmessages::remove_operation (section 2.2.30), the item identifier is the doc_id

attribute.

Append the id attribute to the list in the item operation holder, as specified in Abstract Data

Model (3.5.1), that is referenced by the item processing component identifier state.

32 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Create an association between the item operation identifier in the

cht::documentmessages::operation_set input value and the session_id input value, and

store that association in the session mapper state, as specified in Abstract Data Model (3.5.1).

When the protocol client calls the processing::processor_server::process method, it MUST set
the busy state variable to True.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

3.3 processing::master_dispatcher Server Details

The processing::master_dispatcher interface uses the Middleware Protocol, as specified in [MS-

FSMW], as the transport mechanism.

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

item processing component identifier holder: A collection of strings, each of which represents
the item processing component identifier that is associated with an item processing component.

dispatcher holder: A set of client proxies for processing::procserver_handler server objects,
where each server object can be referenced by a dispatcher identifier, as specified in Abstract

Data Model (section 3.5.1).

3.3.2 Timers

None.

3.3.3 Initialization

The protocol server MUST call the bind method of the Middleware Protocol, as specified in [MS-
FSMW] section 3, to register a processing::master_dispatcher server object in the name server.

The input values for the bind method are encapsulated in an abstract object reference (AOR),
as specified in [MS-FSMW] section 2. These input values MUST be as follows:

name: A string that contains the value "esp/subsystems/processing/dispatcher".

object_id: An integer that is unique for each server object.

host: A string that contains the fully qualified domain name (FQDN) of the server object on

the protocol server. The value is specific to the higher-level application.

port: The base port + 390.

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

33 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

interface_type: A string that contains the value "processing::master_dispatcher".

interface_version: A string that contains the value "5.0".

3.3.4 Message Processing Events and Sequencing Rules

This interface includes the methods that are listed in the following table.

Method Description

register_procserver Registers an item processing component with the protocol server.

assign_dispatcher Returns an identifier for a processing::procserver_handler interface.

unregister_procserver Unregisters an item processing component from the protocol server.

3.3.4.1 processing::master_dispatcher::register_procserver

The register_procserver method registers a protocol client with the protocol server.

void register_procserver(in string name);

Input values:

name: A string that represents a unique identifier for the item processing component.

Return value:

None.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying Middleware
Protocol, as specified in [MS-FSMW].

The protocol server MUST store the name string in the item processing component identifier
state.

3.3.4.2 processing::master_dispatcher::assign_dispatcher

The assign_dispatcher method returns the identifier of a processing::procserver_handler
interface.

long assign_dispatcher(in string name);

Input values:

name: A string that represents the unique identifier of the item processing component.

Return value:

The identifier of a processing::procserver_handler interface. If no

processing::procserver_handler interfaces are available in the dispatcher holder state, the
return value MUST be 1.

Exceptions thrown:

%5bMS-FSMW%5d.pdf

34 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

No exceptions are thrown beyond those thrown by the underlying Middleware Protocol, as specified
in [MS-FSMW].

The protocol server MUST return the identifier of the processing::procserver_handler interface
that was registered in the name server object, as specified in processing::procserver_handler Server

Details (section 3.5).

3.3.4.3 processing::master_dispatcher::unregister_procserver

The unregister_procserver method unregisters a protocol client from the protocol server.

void unregister_procserver(in string name);

Input value:

name: A string that represents the unique identifier of the item processing component.

Return value:

None.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying Middleware
Protocol, as specified in [MS-FSMW].

The protocol server MUST remove the name from the item processing component identifier
holder object.

3.3.5 Timer Events

None.

3.3.6 Other Local Events

None.

3.4 processing::master_dispatcher Client Details

3.4.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

dispatcher handle: A client proxy for a processing::procserver_handler server object, as
specified in processing::procserver_handler Server Details (section 3.5).

3.4.2 Timers

The Reregistration Lease timer forces the protocol client to reregister with the protocol server if it
has not been processing items when this lease expires. The default value for this lease SHOULD be
180 seconds.

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf

35 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

3.4.3 Initialization

The protocol client performs the following steps for initialization:

1. Create a client proxy for a processing::master_dispatcher server object, based on the

abstract object reference (AOR) that is retrieved from the name server.

2. Call the master_dispatcher::register_procserver method to register the protocol client with
the protocol server.

3. Call the master_dispatcher::assign_dispatcher method to receive an integer that the
protocol client uses to resolve a processing::procserver_handler interface in the name server.

4. Call the procserver_handler::register_procserver method to register with the
processing::procserver_handler interface.

The client side of the processing::master_dispatcher interface MUST use the resolve method of
the Middleware Protocol, as specified in [MS-FSMW] section 2, to get the client proxy for the
processing::master_dispatcher server object that is bound in the name server. The input values

for the resolve method MUST be as follows:

name: A string that contains the value "esp/subsystems/processing/dispatcher".

interface_type: A string that contains the value "processing::master_dispatcher".

interface_version: A string that contains the value "5.0".

The protocol client MUST call the processing::master_dispatcher::register_procserver method,
as specified in processing::master_dispatcher::register_procserver (section 3.3.4.1), with the name
input value that uniquely identifies this instance of the protocol client. The protocol client MUST then
call the processing::master_dispatcher::assign_dispatcher method, as specified in
processing::master_dispatcher::assign_dispatcher (section 3.3.4.2), with the same name input
value. The assign_dispatcher method returns a long integer value to the protocol client for use in

resolving a processing::procserver_handler client proxy. The protocol client MUST replace C in
the name input value with this returned value, as described in Initialization (section 3.6.3). The

protocol client MUST store the processing::procserver_handler client proxy in the dispatcher
handle state.

3.4.4 Message Processing Events and Sequencing Rules

None.

3.4.5 Timer Events

The Reregister Lease Timeout event reregisters the protocol client with the protocol server. To
perform this reregistration, the protocol client:

1. Calls the processing::master_dispatcher::unregister_procserver method, as specified in
processing::master_dispatcher::assign_dispatcher (section 3.3.4.2).

2. Calls the processing::procserver_handler::unregister_procserver method, as specified in

processing::procserver_handler::unregister_procserver (section 3.5.4.2), on the

processing::procserver client proxy that is stored in the dispatcher handle state.

3. Registers with the protocol server, as specified in Initialization (section 3.4.3).

%5bMS-FSMW%5d.pdf

36 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

3.4.6 Other Local Events

If the Middleware Protocol, as specified in [MS-FSMW], raises a system exception during
initialization, as specified in Initialization (section 3.4.3), the protocol client MUST restart the

initialization procedure.

3.5 processing::procserver_handler Server Details

The processing::procserver_handler interface uses the Middleware Protocol, as specified in [MS-
FSMW], as the transport mechanism.

3.5.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

item processing component holder: A set of processing::processor_server client proxy
objects, where each proxy objet can be referenced by a string that contains the unique name of the

item processing component.

item processing component pid holder: A set of integer values that represents the process
identifiers for the item processing components, where each process identifier can be referenced by a
string that contains the unique name of the item processing component.

dispatcher identifier: An integer greater than or equal to 0 that uniquely identifies this instance of
the processing::procserver_handler interface.

item operation holder: A set of collections of item operation identifiers, where each collection can
be referenced by a string that represents the identifier of an item processing component. This state
holds which item processing component one or more item operations have been sent to.

item identifier holder: A set of string values that contains item identifiers, where each item
identifier can be referenced by a long integer that contains the item operation identifier. This state is
used to map item operation identifiers to item identifiers.

session mapper: A set of long integer values that represent session identifiers, where each session

identifier can be referenced by a long integer that represents an item operation identifier.

3.5.2 Timers

The Lease Timeout timer measures the amount of time between when the protocol client calls the
processing::processor_server::process method, as specified in
processing::processor_server::process (section 3.1.4.1), and when the
processing::procserver_handler::processed method is called. This is the amount of time that it

takes to process a sequence of item operations, and this time MUST not exceed the value of the
Lease Timeout timer. The default value SHOULD be 300 seconds. The protocol client sets the timer

by invoking the processing::procserver_handler::renew method, as specified in
processing::procserver_handler::renew (section 3.5.4.4).

3.5.3 Initialization

The protocol server MUST call the bind method of the Middleware Protocol, as specified in [MS-

FSMW] section 3, to register a processing::procserver_handler server object in the name server.

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf

37 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Note that the input values for the bind method are encapsulated in an abstract object reference
(AOR), as specified in [MS-FSMW] section 2. These input values MUST be as follows:

name: A string that contains the value "esp/subsystems/processing/dispatcher/C", where C is the
dispatcher identifier state.

object_id: An integer that is unique for each server object.

host: A string that contains the FQDN of the server object on the protocol server. The value is
specific to the higher-level application.

port: The base port + 390.

interface_type: A string that contains the value " processing::procserver_handler".

interface_version: A string that contains the value "5.0".

The protocol server MUST insert an association between the dispatcher identifier state and a

client proxy for this instance of the server object into the dispatcher holder state in the

processing::master_dispatcher interface, as specified in Abstract Data Model (section 3.3.1).

3.5.4 Message Processing Events and Sequencing Rules

This interface includes the methods that are listed in the following table.

Method Description

register_procserver Registers a protocol client with the protocol server.

unregister_procserver Unregisters a protocol client from the protocol server.

processed Notifies the protocol server that the protocol client has finished processing a
set of operations.

renew Extends the time allowed for a protocol client to process a set of operations.

3.5.4.1 processing::procserver_handler::register_procserver

The register_procserver method registers an item processing component with the protocol server.

void register_procserver(in processor_server procserver,

 in string name,

 in string hostname,

 in long pid,

 in long priority);

Input values:

procserver: A client proxy for an item processing component that implements the
processing::processor_server interface, as specified in processing::processor_server Server

Details (section 3.1).

name: A string that represents the unique identifier of the item processing component. The value
MUST match the one that was used when the item processing component called the
processing::master_dispatcher::register_procserver method, as specified in
processing::master_dispatcher::register_procserver (section 3.3.4.1).

%5bMS-FSMW%5d.pdf

38 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

hostname: The name of the host where the item processing component is running.

pid: A long integer that MUST contain the process identifier of the item processing component.

priority: A long integer that MUST contain 0.

Return value:

None.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying Middleware
Protocol, as specified in [MS-FSMW].

The protocol server MUST make an association in the item processing component holder state
between the client proxy contained in the procserver input value and the string contained in the
name input value. The protocol server MUST also set the item processing component identifier
state. For more information, see Abstract Data Model (section 3.2.1).

The protocol server MUST associate the pid input value with the name input value and store that

association in the item processing component pid holder state, as specified in Abstract Data
Model (section 3.5.1).

The protocol server MUST create an empty list that is referenced by the name input value and
stored in the item operation holder state, as specified in Abstract Data Model (section 3.5.1).

3.5.4.2 processing::procserver_handler::unregister_procserver

The unregister_procserver method unregisters a protocol client from the protocol server.

void unregister_procserver(in string name);

Input values:

name: A string that represents the unique identifier of the item processing component. The value of

this string MUST be the same as the value that was used when the item processing component
called the processing::master_dispatcher::register_procserver method, as specified in
processing::master_dispatcher::register_procserver (section 3.3.4.1).

Return value:

None.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying Middleware

Protocol, as specified in [MS-FSMW].

The protocol server MUST remove the processing::processor_server client proxy that is
associated with the name input value from the item processor holder state.

The protocol server MUST remove the process identifier that is associated with the name from the
item processor pid holder state.

The protocol server MUST remove the list that is referenced by the name input value from the item
operation holder state.

%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf

39 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

3.5.4.3 processing::procserver_handler::processed

The protocol client MUST call the processed method when it finishes processing a sequence of item
operations—that is, a sequence of item operations received in the

processing::processor_server::process method, as specified in
processing::processor_server::process (section 3.1.4.1).

void processed(in string name,

 in boolean completed,

 in cht::documentmessages::operation_status_info status);

Input values:

name: A string that represents the unique identifier of the item processing component. The value
MUST be the same as the value that was used when the item processing component called the

processing::master_dispatcher::register_procserver method, as specified in
processing::master_dispatcher::register_procserver (section 3.3.4.1).

completed: A Boolean value that MUST be False if the item processing component failed to send
item operations by calling the process method of the coreprocessing::session interface, as
specified in [MS-FSDP] section 3. Otherwise, the value MUST be True.

status: A cht::document_messages::operation_status_info Cheetah entity that contains the
following attributes:

first_op_id: The lowest identifier of the item operation of the

cht::documentmessages::operation_set Cheetah entity that was submitted by using the
processing::processor_server::process method, as specified in
processing::processor_server::process (section 3.1.4.1).

last_op_id: The highest identifier of the item operation of the

cht::documentmessages::operation_set Cheetah entity that was submitted by using the
coreprocessing::session::process method, as specified in

processing::processor_server::process (section 3.1.4.1).

state: A constant that MUST be the documentmessages::completed Cheetah enumeration

constant, as specified in cht::documentmessages::operation_state (section 2.2.36).

subsystem: A value that MUST be "processing".

errors: A value that MUST consist of the errors associated with the item operations processed by

the item processing component.

warnings: A value MUST consist of the warnings associated with the item operations processed

by the item processing component.

Return value:

None.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying Middleware
Protocol, as specified in [MS-FSMW].

The protocol server MUST set the busy state, as specified in section Abstract Data Model (section
3.2.1), to False for the client proxy object in the item processing component holder state that is
associated with the name input value.

%5bMS-FSDP%5d.pdf
%5bMS-FSMW%5d.pdf

40 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

The protocol server MUST remove the entries from the list that is referenced by the name input
value in the item operation holder state that are between the values of first_op_id and

last_op_id.

The protocol server MUST remove the session identifiers referenced by the identifiers of item

operations in the session mapper state that are between the values of first_op_id and
last_op_id.

The protocol server MUST make the callback messages in the status input value available to the
content client, as specified in [MS-FSCF] section 3.

3.5.4.4 processing::procserver_handler::renew

The renew method is called by the protocol client to set the Lease Timeout timer, as specified in

Timers (section 3.5.2).

void renew(in string name,

 in long period);

Input values:

name: A string that represents the unique identifier of the item processing component. The value
MUST be the same as the value that was used when the item processing component called the

processing::master_dispatcher::register_procserver method, as specified in
processing::master_dispatcher::register_procserver (section 3.3.4.1).

period: The new Lease Timeout timer value, in seconds.

Return value:

None.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying Middleware

Protocol, as specified in [MS-FSMW].

3.5.5 Timer Events

The Lease Timeout event restarts the item processing component. The remainder of this section
describes what needs to occur to restart the item processing component.

The protocol client running the configservice::config interface MUST call the resolve method of
the Middleware Protocol to get the AOR for the configservice::config server object that is bound in

the name server, as specified in [MS-FSMW] section 2. The input values for the resolve method
are:

name: A string that MUST contain the value "fds/configservice".

interface_type: A string that MUST contain the value "configservice::config".

interface_version: A string that MUST contain the value "5.2".

The configservice::config::get_active_module_list method, as specified in [MS-FSCMW] section

3, supplies the port number for the node controller. The protocol client MUST call this method with a
module_type_name string that contains the value "NodeControl".

%5bMS-FSCF%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSMW%5d.pdf
%5bMS-FSCMW%5d.pdf

41 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

The protocol server MUST then create an XML-RPC connection to the node controller by using the
port number that was just retrieved and the fully qualified domain name (FQDN) of the host where

the protocol server is running:

1. The protocol server MUST call the GetProcessList method on the node controller, as specified in

[MS-FSNC] section 2, which returns a ProcessList structure, as specified in [MS-FSNC] section
2.

2. From the ProcessList structure, the protocol server MUST get the ProcessInfo element, as
specified in [MS-FSNC] section 2, that has the process identifier corresponding to the parent
process identifier of the processor identifier that is associated with the name of the unresponsive
item processing component in the item processing component pid holder state.

3. The protocol server MUST call the RestartProcess method on the node controller, as specified in

[MS-FSNC] section 3, with the processes input value, which is an array that MUST only contain
one element. This element MUST be a string that contains the value of the name element
associated with the ProcessInfo element that was retrieved from the ProcessList structure.

The protocol server MUST create a cht::documentmessages::operation_set Cheetah entity that
contains one cht::documentmessages::failed_operation Cheetah entity, as specified in
cht::documentmessages::failed_operation (section 2.2.33), for each entry in the list from the item

operation holder state that is associated with the identifier of the item processing component that
has been restarted.

The protocol server MUST create each cht::documentmessages::failed_operation Cheetah
entity with the following attributes:

id: A value that MUST consist of the item operation that was found in the item operation

holder state for the specified item processing component.

subsystem: A string that MUST contain the value "processing".

state: A constant that MUST be the documentmessages::lost Cheetah enumeration constant,

as specified in cht::documentmessages::operation_state (section 2.2.36).

doc_id: A cht::documentmessages::document_id Cheetah entity, as specified in

cht::documentmessages::document_id (section 2.2.15). The item operation identifier is used to
get the item identifier in the item identifier holder state.

err: A cht::documentmessages::operation_lost Cheetah entity, as specified in

cht::documentmessages::operation_lost (section 2.2.10), in which the attributes are set as
follows:

error_code: An integer that MUST contain the value 4.

suggested_action: A cht::documentation::action Cheetah enumeration, as specified in

cht::documentmessages::action (section 2.2.1), that MUST have the value resubmit.

subsystem: A string that MUST contain the value "processing".

description: A string that MUST contain the value "failed to submit operation to next

subsystem".

session_id: A long integer that MUST have been retrieved from the session mapper state

referenced by the id attribute.

operation_id: A value that MUST be the same as that of the id attribute.

%5bMS-FSNC%5d.pdf
%5bMS-FSNC%5d.pdf
%5bMS-FSNC%5d.pdf
%5bMS-FSNC%5d.pdf

42 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

arguments: A value that MUST consist of an empty Cheetah collection.

The protocol server MUST send the cht::documentmessages::operation_set Cheetah entity to

the indexing dispatcher by calling the coreprocessing::session::process method, as specified in

[MS-FSDP] section 3.

3.5.6 Other Local Events

When the protocol server receives a sequence of item operations from the content client for item
processing, it MUST choose a processing::processing_server client proxy from the item
processing component holder state for which the busy state of the
processing::processing_server client interface is False. The protocol server MUST then use the

processing::processor_server client proxy to send the sequence of item operations to the item
processing component for item processing.

If no processor::processor_server client proxies exist for which the busy state is False, the
protocol server MUST notify the content client that it is unable to process the sequence of item
operations.

3.6 processing::procserver_handler Client Details

3.6.1 Abstract Data Model

None.

3.6.2 Timers

None.

3.6.3 Initialization

The client side of the processing::procserver_handler interface MUST call the resolve method of
the Middleware Protocol, as specified in [MS-FSMW] section 2, to get the AOR for the

processing::procserver_handler server object that is bound in the name server. The input values
for the resolve method MUST be as follows:

name: A string that contains the value "esp/subsystems/processing/dispatcher/C", where C is a
number greater than or equal to 0 that uniquely identifies this instance of the interface.

interface_type: A string that contains the value "processing::procserver_handler".

interface_version: A string that contains the value "5.0".

3.6.4 Message Processing Events and Sequencing Rules

None.

3.6.5 Timer Events

None.

3.6.6 Other Local Events

None.

%5bMS-FSDP%5d.pdf
%5bMS-FSMW%5d.pdf

43 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

3.7 Status Server Details

The Status interface uses XML-RPC, as specified in [XML-RPC], as the transport mechanism.

3.7.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Module Status Table: A structure that contains the following entries:

Start Time: The time when the protocol server was started.

Idle Time: The number of seconds that the protocol server has been idle—that is, not busy

processing items.

Processing: A Boolean value that indicates whether the protocol server is currently processing

items. A value of True means that the protocol server is processing items; a value of False

means that the protocol server is not processing items.

Logging Verbosity: A string that contains the level of logging.

Last Reset: The last time that the state of the protocol server was cleared. This time is expressed
in seconds since January 1, 1970.

Item Log Table: An association between an item identifier and a structure that contains the
following entries:

Status: A string that contains the status of the processing of the item.

Last Modified: The time that the item was last modified. This time is expressed in number of

seconds since January 1, 1970.

Messages: A sequence of entities, each of which contains two values:

Verbosity Level: A string that contains the level of logging for this log message.

Message: A string that contains the log message.

Elapsed: The number of seconds that it took to process the item.

Item Operation Sequence Log Table: An association between an item sequence identifier and a
structure that contains the following values:

Status: A string that contains the status of the processing of the item sequence.

Last Modified: The time that the item sequence was last modified. This time is expressed in

number of seconds since January 1, 1970.

Messages: A sequence of entities, each of which contains two values:

Verbosity Level: A string that contains the level of logging for this log message.

Message: A string that contains the log message.

http://go.microsoft.com/fwlink/?LinkId=113987

44 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Elapsed: The number of seconds that it took to process the item.

Content Pipeline Statistics Table: A structure that acts as a store for statistical information about

the item processing that occurs in a content pipeline. This structure consists of an association

between the name of a content pipeline (in the form of a string) and an entity that consists of the
following values:

OK Items: The number of items that have been processed successfully.

Error Items: The number of items that have been processed with errors.

Work Time: The number of seconds that have been spent on processing items.

User Time: The number of seconds that have been spent in user mode.

System Time: The number of seconds that have been spent in system mode.

Page Swaps: The number of page faults that required input/output.

Virtual Memory: A number of bytes of virtual memory that have been allocated.

Resident Memory: A number of bytes of resident memory that have been allocated.

Memory Usage: A number of bytes of total memory that have been allocated.

Processing Stage Statistics Table: A structure that acts as a store for statistical information
about the item processing that occurs during an item processing stage. This structure consists of an
association between the name of an item processing stage (in the form of a string) and an entity
that consists of the following values:

OK Items: The number of items that have been processed successfully.

Error Items: The number of items that have been processed with errors.

Work Time: The number of seconds that have been spent on processing items.

User Time: The number of seconds that have been spent in user mode.

System Time: The number of seconds that have been spent in system mode.

Page Swaps: The number of page faults that required input/output.

Virtual Memory: A number of bytes of virtual memory that have been allocated.

Resident Memory: A number of bytes of resident memory that have been allocated.

Memory Usage: A number of bytes of total memory that have been allocated.

Terminating: A Boolean value that indicates whether the protocol server is currently in the process

of terminating. A value of True means that the protocol server is terminating; a value of False
means that the protocol server is not terminating.

Tracing: A Boolean value that indicates whether the protocol server will write attribute changes to
the Item Log Table. A value of True forces the protocol server to write item attribute changes; a
value of False prevents the protocol server from writing item attribute changes.

45 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

3.7.2 Timers

The Idle timer maintains the number of seconds during which the protocol server has not processed
item operations.

3.7.3 Initialization

The protocol server MUST set the Start Time entry in the Module Status Table state to the
number of seconds since January 1, 1970.

The protocol server MUST set the Log Verbosity entry in the Module Status Table state to the
string "normal".

The protocol server MUST set the Terminating state to False.

The protocol server MUST call the ResetContainer method, as specified in ResetContainer (section
3.7.4.3).

3.7.4 Message Processing Events and Sequencing Rules

This interface includes the methods that are listed in the following table.

Method Description

ConfigurationChanged Alerts the protocol server that a configuration change has occurred.

GetModuleStatus Returns the status of the protocol server.

ResetContainer Resets the internal state and

FlushState Resets the internal state.

LeakDetect Forces the logging of memory usage.

GetStatistics Returns statistics and the elapsed amount of time since the last reset.

SetMemoryProfile Enables or disables memory profiling.

SetDocumentTracing Enables or disables item tracing.

GetDocumentStatusLogs Returns the item logs for all logs.

GetDocumentStatusURIs Returns a list of the URIs that have item logs.

GetBatchStatus Returns the log for a single sequence of item operations.

GetBatchStatusIDs Returns a list of identifiers for item operation sequences that have logs.

SetLogLevel Sets the logging level at the protocol server.

Shutdown Shuts down the protocol server.

ping Checks whether the protocol server is responding.

3.7.4.1 ConfigurationChanged

The ConfigurationChanged method notifies the protocol server that the configuration has been
updated and that the protocol server MUST reinitialize with the new configuration.

46 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

int ConfigurationChanged(string alert_type, alert_args);

Input values:

alert_type: A string that contains the type of alert.

alert_args: Additional arguments about the alert. The protocol server MUST be able to handle any
data type for alert_args.

Return value: An integer that MUST be 1.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC
protocol, as specified in [XML-RPC].

If the alert_type input value is "configfile" and the alert_args input value consists of an array of
two elements, where the first element is a string containing "DocumentProcessor" and the second
element is a string containing "webcluster/reload_configfiles", the protocol server MUST call the
ResetContainer method, as specified in ResetContainer (section 3.7.4.3).

If the alert_type input value is not "configfile", the protocol server MUST call the ResetContainer
method, as specified in ResetContainer (section 3.7.4.3).

3.7.4.2 GetModuleStatus

The GetModuleStatus method returns the status of the protocol server.

struct GetModuleStatus();

Return value: A ModuleStatus structure, as specified in ModuleStatus (section 2.2.40).

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC
protocol, as specified in [XML-RPC].

This method returns a ModuleStatus XML-RPC structure. This method MUST create the structure
based on the entries in the Module Status Table state, such that the Started attribute maps to
the Start Time entry, the Idletime attribute maps to the Idle Time entry, the Uptime attribute
maps to the Uptime entry, the CurrentWork attribute maps to the Processing entry, and the
Verbosity attribute maps to the Logging Verbosity entry.

3.7.4.3 ResetContainer

The ResetContainer method resets the state of the protocol server and then notifies the
configuration component about its capabilities.

int ResetContainer();

Return value: An integer that MUST be 1.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC
protocol, as specified in [XML-RPC].

The protocol server MUST call the FlushState method, as specified in FlushState (section 3.7.4.4).

http://go.microsoft.com/fwlink/?LinkId=113987
http://go.microsoft.com/fwlink/?LinkId=113987
http://go.microsoft.com/fwlink/?LinkId=113987

47 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

If the higher-level implementation requires loading configuration files, the protocol server MUST call
the LoadConfigFile method on the configuration component three times, as specified in [MS-FSCX]

section 2, with the input values set as follows:

The module input value set to "DocumentProcessor" and the filepath input value set to

"formatdetector/user_converter_rules.xml". A specific file format MUST be used, as specified in
[MS-FSPSCFG] section 2.

The module input value set to "RTSearch" and the filepath input value set to

"webcluster/fixmlmappings.xml". A specific file format MUST be used, as specified in [MS-
FSSCFG] section 2.

The module input value set to "Schema" and the filepath input value set to

"webcluster/FieldProperties.xml". A specific file format MUST be used, as specified in [MS-
FSSCFG] section 2.

If the higher-level implementation requires loading configuration files, the protocol server MUST call
the LoadConfigFileBase64 method on the configuration component four times, as specified [MS-

FSCX] section 2, with the input values set as follows:

The module input value set to "DocumentProcessor" and the filepath input value set to

"ManagedProperties.xml". A specific file format MUST be used, as specified in [MS-FSPSCFG]
section 2.

The module input value set to "DocumentProcessor" and the filepath input value set to

"OptionalProcessing.xml". A specific file format MUST be used, as specified in [MS-FSPSCFG]
section 2.

The module input value set to "DocumentProcessor" and the filepath input value set to

"PropertyCategories.xml ". A specific file format MUST be used, as specified in [MS-FSPSCFG]
section 2.

The module input value set to "DocumentProcessor" and the filepath input value set to

"linguistics/spelltuning.cfg". A specific file format MUST be used, as specified in [MS-FSST]

section 2.

The protocol server MUST call the RegisterModule method on the configuration component, as
specified in [MS-FSCX] section 2, with a ModuleRegister structure, as specified in [MS-FSCX]
section 2, as an input value that contains the following members:

port: An integer that contains the port number on which the protocol server listens to XML-RPC

requests. This port number is specified as part of the higher-level implementation.

type: A string that contains the value "ProcessorServer".

version: A string that contains an implementation-specific value.

name: A string that contains the value "ProcessorServer".

alerts: An array of strings that contains the following values:

"pipelines"

"stages"

"collection"

"pipeline_added"

%5bMS-FSCX%5d.pdf
%5bMS-FSPSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSCX%5d.pdf
%5bMS-FSCX%5d.pdf
%5bMS-FSPSCFG%5d.pdf
%5bMS-FSPSCFG%5d.pdf
%5bMS-FSPSCFG%5d.pdf
%5bMS-FSST%5d.pdf
%5bMS-FSCX%5d.pdf
%5bMS-FSCX%5d.pdf

48 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

"pipeline_modified"

"pipeline_removed"

"PipelineLogger"

"configfile"

"ProcessorServer"

The protocol server MUST call the RegisterProcessorPipelines method on the configuration
component, as specified in [MS-FSCX] section 2, with the following input values:

processorserver: A tuple that MUST contain the fully qualified domain name (FQDN) and port

number on which the protocol server listens to XML-RPC requests. This port number is specified as
part of the higher-level implementation and MUST be the same port number as the one that was
used in the preceding RegisterMethod method call.

pipelines: An array that MUST contain a single element consisting of a string that contains the

value "Office14 (webcluster)".

3.7.4.4 FlushState

The FlushState method flushes the internal state of the protocol server.

int FlushState();

Return value: An integer that MUST be 1 if the method succeeded or 0 if the method failed.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC

protocol, as specified in [XML-RPC].

The protocol server MUST clear the Module Status Table, Item Log Table, Item Operation
Sequence Log Table, Content Pipeline Statistics Table, and Processing Stage Statistics

Table states. The protocol server MUST also reset the Idle timer.

The protocol server MUST set the Last Reset state to the number of seconds since January 1, 1970.

3.7.4.5 LeakDetect

The LeakDetect method activates memory leak detection on the protocol server.

int LeakDetect();

Return value: An integer that MUST be 1.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC

protocol, as specified in [XML-RPC].

How the protocol server performs memory leak detection is implementation-specific.

3.7.4.6 GetStatistics

The GetStatistics method returns statistics about the item processing on the protocol server.

%5bMS-FSCX%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113987
http://go.microsoft.com/fwlink/?LinkId=113987

49 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

struct GetStatistics();

Return value: A Statistics structure, as specified in Statistics (section 2.2.41).

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC
protocol, as specified in [XML-RPC].

The protocol server MUST create the Statistics XML-RPC structure so that the number of seconds
since the value in the Last Reset state maps to the value in the Elapsed attribute.

For each entry in the Processing Stage Statistics Table state, the protocol server MUST create a
ProcessingStatistics structure, as specified in ProcessingStatistics (section 2.2.39). The protocol

server MUST associate the name of the item processing stage with the structure and set that
association as the first element in the Statistics array of the Statistics structure, as specified in
Statistics (section 2.2.41). The protocol server MUST set the attributes of the ProcessingStatistics
structure as follows:

The OK Items entry maps to the OK attribute.

The Error Items entry maps to the ERROR attribute.

The Work Time entry maps to the WorkTime attribute.

The User Time entry maps to the UserTime attribute.

The System Time entry maps to the SystemTime attribute.

The number of page faults that required input/output is queried from the operating system and

inserted into the PageSwaps attribute.

The number of bytes of virtual memory that was allocated for the protocol server process is

queried from the operating system and inserted into the VirtualMem attribute.

The number of bytes of resident memory that was allocated for the protocol server process is

queried from the operating system and inserted into the ResidentMem attribute.

The number of bytes of total memory that was allocated for the protocol server process is

queried from the operating system and inserted into the MemoryUsage attribute.

For each entry in the Content Pipeline Statistics Table state, the protocol server MUST create a
ProcessingStatistics structure, as specified in ProcessingStatistics (section 2.2.39). The protocol
server MUST associate the name of the content pipeline with the structure and set that association
as the second element in the Statistics array in the Statistics structure, as specified in Statistics
(section 2.2.41). The protocol server MUST set the attributes of the ProcessingStatistics structure

as follows:

The OK Items entry maps to the OK attribute.

The Error Items entry maps to the ERROR attribute.

The Work Time entry maps to the WorkTime attribute.

The User Time entry maps to the UserTime attribute.

The System Time entry maps to the SystemTime attribute.

http://go.microsoft.com/fwlink/?LinkId=113987

50 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

The number of page faults that required input/output is queried from the operating system and

inserted into the PageSwaps attribute.

The number of bytes of virtual memory that was allocated for the protocol server process is

queried from the operating system and inserted into the VirtualMem attribute.

The number of bytes of resident memory that was allocated for the protocol server process is

queried from the operating system and inserted into the ResidentMem attribute.

The number of bytes of total memory that was allocated for the protocol server process is

queried from the operating system and inserted into the MemoryUsage attribute.

3.7.4.7 SetMemoryProfile

The SetMemoryProfile method enables or disables memory profiling on the protocol server.

int SetMemoryProfile(int level);

Input values:

level: An integer that specifies whether to enable or disable memory profiling. A level of 0 MUST
disable memory profiling, and a level of 1 (or any positive number greater than 1) MUST enable
memory profiling.

Return value: An integer that MUST be 1.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC
protocol, as specified in [XML-RPC].

3.7.4.8 SetDocumentTracing

The SetDocumentTracing method enables or disables item tracing on the protocol server. When
item tracing is enabled, the changes to an item during item processing are recorded in the Item

Log Table state.

int SetDocumentTracing(int level);

Input values:

level: A nonnegative integer for which a value of 0 MUST disable item tracing, and a value of 1 (or
any positive number greater than 1) MUST enable item tracing.

Return value: An integer that MUST be 1.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC
protocol, as specified in [XML-RPC].

If the level input value is 0, the protocol server MUST set the Tracing state to the value False. If

the level input value is any value other than 0, the protocol server MUST set the Tracing state to
the value True.

3.7.4.9 GetDocumentStatusLogs

The GetDocumentStatusLogs method MUST return all the log entries that exist in the Item Log

Table state.

http://go.microsoft.com/fwlink/?LinkId=113987
http://go.microsoft.com/fwlink/?LinkId=113987

51 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

array GetDocumentStatusLogs();

Return value: A value that MUST consist of an ItemStatusLog structure, as specified in

ItemStatusLog (section 2.2.44).

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC
protocol, as specified in [XML-RPC].

For each entry in the Module Status Table state, the protocol server MUST create an
ItemStatusLog structure in which the Status attribute maps to the Status entry, the Modified
attribute maps to the Last Modified entry, and the Elapsed attribute maps to the Processing

Time entry.

For each entry in the Messages entity of the Module Status Table, the protocol server MUST
create a LogMessage structure, as specified in LogMessage (section 2.2.42), in which the
Verbosity Level entry maps to the first element and the Message entry maps to the second
element. The protocol server MUST insert all the LogMessage structures into the Msgs attribute of

the ItemStatusLog structure.

3.7.4.10 GetDocumentStatusURIs

The GetDocumentStatusURIs method MUST return an array of strings that contains all the item
identifiers in the Item Log Table state.

array GetDocumentStatusURIs();

Return value: An array of strings that contains all the item identifiers in the Item Log Table state.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC
protocol, as specified in [XML-RPC].

3.7.4.11 GetBatchStatus

The GetBatchStatus method MUST return the entry in the Item Operation Sequence Log Table
state that is associated with the specified identifier of an item operation sequence.

struct GetBatchStatus(int batchid);

Input values:

batchid: An integer that contains the identifier of an item operation sequence.

Return value: A value that MUST consist of an ItemLog structure, as specified in ItemLog (section

2.2.43).

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC
protocol, as specified in [XML-RPC].

For each entry in the Item Operation Sequence Log Table state, the protocol server MUST create
an ItemStatusLog structure in which the Status attribute maps to the Status entry, the Modified
attribute maps to the Last Modified entry, and the Elapsed attribute maps to the Processing
Time entry.

http://go.microsoft.com/fwlink/?LinkId=113987
http://go.microsoft.com/fwlink/?LinkId=113987
http://go.microsoft.com/fwlink/?LinkId=113987

52 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

For each entry in the Messages entity of the Module Status Table state, the protocol server MUST
create a LogMessage structure, as specified in LogMessage (section 2.2.42), in which the

Verbosity Level entry maps to the first element and the Message entry maps to the second
element. The protocol server MUST insert all the LogMessage structures into the Msgs attribute of

the ItemStatusLog structure.

3.7.4.12 GetBatchStatusIDs

The GetBatchStatusIDs method MUST return an array of strings that comprises the set of
operation identifiers contained in the Item Operation Sequence Log Table state.

array GetBatchStatusIDs();

Return value: An array of strings that contains the set of operation identifiers that the protocol

server has processed. That is, for each entry in the Item Operation Sequence Log Table state,
the array will contain a string representation of the identifier of the item operation sequence.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC
protocol, as specified in [XML-RPC].

3.7.4.13 SetLogLevel

The SetLogLevel method controls the logging level of the protocol server.

int SetLogLevel(string level);

Input values:

level: A string that MUST contain the value "normal" for normal logging or the value "debug" for
debug logging.

Return value: An integer that MUST contain the value 1.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC
protocol, as specified in [XML-RPC].

This method controls the level of logging for the Item Log Table and Item Operation Sequence

Log Table states. The protocol server MUST store the level input value in the Logging Verbosity
entry in the Module Status Table state.

3.7.4.14 Shutdown

The Shutdown method shuts down the protocol server.

int Shutdown();

Return value: An integer that MUST contain the value 1.

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC
protocol, as specified in [XML-RPC].

Upon the invocation of this method, the protocol server MUST set the Terminating state in the
protocol server to True.

http://go.microsoft.com/fwlink/?LinkId=113987
http://go.microsoft.com/fwlink/?LinkId=113987
http://go.microsoft.com/fwlink/?LinkId=113987

53 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

3.7.4.15 ping

The ping method determines whether the protocol server is responding to requests.

string ping();

Return value: A string that MUST contain the value "pong".

Exceptions thrown: No exceptions are thrown beyond those thrown by the underlying XML-RPC
protocol, as specified in [XML-RPC].

3.7.5 Timer Events

None.

3.7.6 Other Local Events

Upon termination, the protocol server MUST call the UnregisterModule method on the
configuration component, as specified in [MS-FSCX] section 2, with a ModuleRegister structure, as
specified in [MS-FSCX] section 2, as an input value that contains the following members:

port: An integer that contains the port number on which the protocol server listens to XML-RPC

requests. This port number is specified as part of the higher-level implementation.

type: A string that contains the value "ProcessorServer".

version: A string that contains an implementation-specific value. This MUST be the same string

as the version input value used in the RegisterModule method when used in ResetContainer

(section 3.7.4.3).

name: A string that contains the value "ProcessorServer".

alerts: An array of strings that contains the following values:

"pipelines"

"stages"

"collection"

"pipeline_added"

"pipeline_modified"

"pipeline_removed"

"PipelineLogger"

"configfile"

"ProcessorServer"

http://go.microsoft.com/fwlink/?LinkId=113987
%5bMS-FSCX%5d.pdf
%5bMS-FSCX%5d.pdf

54 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

4 Protocol Examples

4.1 Processing a Sequence of Item Operations

This example describes the three main steps that are involved in processing a sequence of item
operations:

1. An item processing component registers with the content distributor.

2. The content distributor sends a sequence of item operations to the item processing component
for item processing.

3. The item processing component unregisters.

Initialization

1. The content distributor creates and activates a server object that implements the
processing::master_dispatcher interface.

2. The content distributor creates and activates a server object that implements the
processing::procserver_handler interface.

3. The item processing component creates a server object that implements the

processing::processor_server interface.

4. The item processing component registers the server object with the content distributor by:

1. Invoking the processing::master_dispatcher::register_procserver method.

2. Getting a dispatcher identifier by invoking the
processing::master_dispatcher::assign_dispatcher method.

3. Using the dispatcher identifier, among other information, to resolve a

processing::procserver_handler interface.

4. Registering the processing::processor_server server object by invoking the
processing::procserver_handler::register_procserver method.

Item processing

1. The content distributor receives a sequence of item operations for item processing from the
content client.

2. The content distributor sends the sequence of item operations to the item processing component

by invoking the processing::processor_server::process method.

3. The item processing component processes the item operations

4. The item processing component sends the item operations to the indexing dispatcher and reports
the status back to the content distributor by invoking the
processing::procserver_handler::processed method.

Shutting down

The item processing component unregisters itself by first invoking

processing::procserver_handler::unregister_procserver and then invoking
processing::master_dispatcher::unregister_procserver.

55 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

4.1.1 Example Code: Initializing the Content Distributor

SET master_dispatcher_server_object_instance TO INSTANCE OF processing::master_dispatcher

SERVER OBJECT

SET master_dispatcher_server_object_host TO www.cohowinery.com

SET master_dispatcher_server_object_port TO 13328

SET master_dispatcher_server_object_interface_type TO "processing::master_dispatcher"

SET master_dispatcher_server_object_interface_version TO "5.0"

SET master_dispatcher_server_object_name TO "esp/clusters/webcluster/processing/dispatcher"

SET master_dispatcher_server_object_aor TO master_dispatcher_server_object_host,

master_dispatcher_server_object_port, master_dispatcher_server_object_interface_type,

master_dispatcher_server_object_interface_version AND

master_dispatcher_server_object_interface_name

CALL nameserver.bind WITH master_dispatcher_server_object_instance AND

master_dispatcher_server_object_aor

SET procserver_handler_server_object_instance TO INSTANCE OF processing::procserver_handler

SERVER OBJECT

SET procserver_handler_server_object_host TO www.cohowinery.com

SET procserver_handler_server_object_port TO 13328

SET procserver_handler_server_object_interface_type TO "processing::procserver_handler"

SET procserver_handler_server_object_interface_version TO "5.0"

SET procserver_handler_server_object_name TO

"esp/clusters/webcluster/processing/dispatcher/0"

SET procserver_handler_server_object_aor TO procserver_handler_server_object_host,

procserver_handler_server_object_port, procserver_handler_server_object_interface_type,

procserver_handler_server_object_interface_version AND

procserver_handler_server_object_interface_name

CALL nameserver.bind WITH procserver_handler_server_object_instance AND

procserver_handler_server_object_aor

WAIT FOR procserver_handler_server_object_instance.register_processor RETURNING

processor_server_instance, processer_server_name

4.1.2 Example Code: Initializing the Item Processing Component

SET master_dispatcher_object_name TO "esp/clusters/webcluster/processing/dispatcher"

SET master_dispatcher_object_interface_type TO "processing::master_dispatcher"

SET master_dispatcher_object_interface_version TO "5.0"

56 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

CALL nameserver.resolve WITH master_dispatcher_object_name,

master_dispatcher_object_interface_type AND master_dispatcher_object_interface_version

RETURNING master_dispatcher_client_proxy

SET procserver_id TO "procserver_1"

CALL master_dispatcher_client_proxy.register_procserver WITH procserver_id RETURNING void

CALL master_dispatcher_client_proxy.assign_dispatcher WITH procserver_id RETURNING

dispatcher_id

SET procserver_handler_object_name TO "esp/clusters/webcluster/processing/dispatcher/" +

dispatcher_id

SET procserver_handler_object_interface_type TO "processing::procserver_handler"

SET procserver_handler_object_interface_version TO "5.0"

CALL nameserver.resolve WITH procserver_handler_object_name,

procserver_handler_object_interface_type AND procserver_handler_object_interface_version

RETURNING procserver_handler_client_proxy

SET processor_server_server_object TO INSTANCE OF processor_server SERVER OBJECT

SET processor_server_hostname TO www.cohowinery.com

CALL get_process_identifier RETURNING pid

SET processor_server_priority TO 0

CALL procserver_handler.register_procserver WITH processor_server_server_object,

processor_server_hostname, pid AND processor_server_priority RETURNING void

4.1.3 Example Code: Dispatching Items

RECEIVE session, session_id, collection, operation_set, subsystem_id_set FROM CONTENT CLIENT

GET processor_server FROM item_processor_holder WHERE processor_server.busy == False

FOR EACH operation IN operation_set

 SET item_identifier_holder [operation.operation_id] = operation.document_id

 INSERT INTO item_operation_holder[processor_server] VALUES operation.operation_id

CALL processor_server.process WITH session, session_id, operation_set, collection,

subsystem_id_set RETURNING void

SET processor_server.busy TO True

WAIT FOR processor_server_server_object.processed CALL GIVING operation_set_status

SET processor_server.busy TO False

FOR EACH operation_id IN operation_set_status

 REMOVE FROM item_operation_holder[processor_server] VALUES operation_id

 REMOVE FROM item_identifier_holder[operation_id]

MAKE operation_set_status AVAILABLE TO CONTENT CLIENT

57 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

4.1.4 Example Code: Processing Items

WAIT FOR processor_server_object.process CALL GIVING session, session_id, collection,

operation_set, subsystem_ids

FOR EACH operation IN operation_set

 PROCESS operation GIVING operation_status

 INSERT operation_status INTO operation_status_set

CALL session.process WITH operation_set, "indexing"

CALL procserver_handler.processed WITH procserver_id, True, operation_status_set RETURNING

void

4.1.5 Example Code: Shutting Down the Item Processing Component

CALL procserver_handler.unregister_procserver WITH procserver_id RETURNING void

CALL master_dispatcher.unregister_procserver WITH procserver_id RETURNING void

4.1.6 Example Code: Shutting Down the Content Distributor

DEACTIVATE procserver_handler_server_object_instance

DEACTIVATE master_dispatcher_server_object_instance

58 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

59 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

6 Appendix A: Full FSIDL

For ease of implementation, the full FSIDL is provided below.

module interfaces {

 module processing {

 exception shutting_down {};

 exception system_resource_error {

 string message;

 };

 interface processor_server {

 # pragma version processor_server 5.2

 void process(in coreprocessing::session next_subsystem_session,

 in long session_id,

 in string collection,

 in cht::documentmessages::operation_set batch,

 in cht::documentmessages::subsystem_id_set subsystem_ids)

 raises (shutting_down, system_resource_error);

 void flush();

 void reassign();

 };

 interface procserver_handler {

 # pragma version procserver_handler 5.2

 void register_procserver(in processor_server procserver,

 in string name,

 in string hostname,

 in long pid,

 in long priority);

 void unregister_procserver(in string name);

 void processed(in string name,

 in boolean completed,

 in cht::documentmessages::operation_status_info status);

 void flush_pipelines();

 void renew(in string name,

 in long period);

 };

 interface master_dispatcher {

 # pragma version master_dispatcher 5.0

 void register_dispatcher(in long node_id);

 void unregister_dispatcher(in long node_id);

 void register_procserver(in string procserver_id);

60 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

 long assign_dispatcher(in string procserver_id);

 void unregister_procserver(in string procserver_id);

 };

 };

};

61 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft® FAST™ Search Server 2010

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

62 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

63 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

9 Index

A

Abstract data model
client (section 3.2.1 30, section 3.4.1 34, section

3.6.1 42)
server (section 3.1.1 27, section 3.3.1 32,

section 3.5.1 36, section 3.7.1 43)
Applicability 9

C

Capability negotiation 9
Change tracking 62
cht

documentmessages

action data type 13
bool_attribute data type 18
bytearray_collection data type 20
document data type 17
document_id data type 17
error data type 13
failed_operation data type 22
float_attribute data type 18
format_error data type 15
integer_attribute data type 18
key_value_collection data type 17
key_value_pair data type 21
operation data type 16
operation_dropped data type 15
operation_lost data type 16
operation_set data type 16
operation_state data type 23
operation_status_info data type 23
partial_update_operation data type 21

processing_error data type 14
remove_operation data type 21
server_unavailable data type 15
string_attribute data type 17
subsystem_id_set data type 23
update_operation data type 21
urlschange_operation data type 22
utf8_error data type 15
warning data type 13
xml_error data type 15

Client
abstract data model (section 3.2.1 30, section

3.4.1 34, section 3.6.1 42)
initialization (section 3.2.3 31, section 3.4.3 35,

section 3.6.3 42)
local events (section 3.2.6 32, section 3.4.6 36,

section 3.6.6 42)
message processing (section 3.2.4 31, section

3.4.4 35, section 3.6.4 42)
overview 27
processing::processor_server::process method

31

sequencing rules (section 3.2.4 31, section 3.4.4
35, section 3.6.4 42)

timer events (section 3.2.5 32, section 3.4.5 35,
section 3.6.5 42)

timers (section 3.2.2 31, section 3.4.2 34,
section 3.6.2 42)

Common data types 11
ConfigurationChanged method 45

D

Data model - abstract
client (section 3.2.1 30, section 3.4.1 34, section

3.6.1 42)
server (section 3.1.1 27, section 3.3.1 32,

section 3.5.1 36, section 3.7.1 43)
Data types

cht

documentmessages

action 13
bool_attribute 18
bytearray_collection 20
document 17
document_id 17
error 13
failed_operation 22
float_attribute 18
format_error 15
integer_attribute 18
key_value_collection 17
key_value_pair 21
operation 16
operation_dropped 15
operation_lost 16
operation_set 16
operation_state 23
operation_status_info 23
partial_update_operation 21

processing_error 14
remove_operation 21
server_unavailable 15
string_attribute 17
subsystem_id_set 23
update_operation 21
urlschange_operation 22
utf8_error 15
warning 13
xml_error 15

common - overview 11
ItemLog 26
ItemStatusLog 26
LogMessage 26
ModuleStatus 25
processing

shutting_down 24
system_resource_error 24

64 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

ProcessingStatistics 24
Statistics 25

dispatching items example 56

E

Events
local - client (section 3.2.6 32, section 3.4.6 36,

section 3.6.6 42)
local - server (section 3.1.6 30, section 3.3.6 34,

section 3.5.6 42, section 3.7.6 53)
timer - client (section 3.2.5 32, section 3.4.5 35,

section 3.6.5 42)
timer - server (section 3.1.5 30, section 3.3.5 34,

section 3.5.5 40, section 3.7.5 53)
Examples

dispatching items 56
initializing the content distributor 55
initializing the item processing component 55

processing a sequence of item operations 54
processing items 57
shutting down the item processing component

(section 4.1.5 57, section 4.1.6 57)

F

Fields - vendor-extensible 9
FlushState method 48
FSIDL 59
Full FSIDL 59

G

GetBatchStatus method 51
GetBatchStatusIDs method 52
GetDocumentStatusLogs method 50
GetDocumentStatusURIs method 51
GetModuleStatus method 46
GetStatistics method 48
Glossary 6

I

Implementer - security considerations 58
Index of security parameters 58
Informative references 7
Initialization

client (section 3.2.3 31, section 3.4.3 35, section
3.6.3 42)

server (section 3.1.3 27, section 3.3.3 32,
section 3.5.3 36, section 3.7.3 45)

initializing the content distributor example 55
initializing the item processing component example

55
Interfaces - server

processing::master_dispatcher 32
processing::processor_server 27
processing::procserver_handler 36
status 43

Introduction 6
ItemLog data type 26
ItemStatusLog data type 26

L

LeakDetect method 48
Local events

client (section 3.2.6 32, section 3.4.6 36, section
3.6.6 42)

server (section 3.1.6 30, section 3.3.6 34,
section 3.5.6 42, section 3.7.6 53)

LogMessage data type 26

M

Message processing
client (section 3.2.4 31, section 3.4.4 35, section

3.6.4 42)

server (section 3.1.4 27, section 3.3.4 33,
section 3.5.4 37, section 3.7.4 45)

Messages
cht

documentmessages

action data type 13
bool_attribute data type 18
bytearray_collection data type 20
document 17
document_id data type 17
error data type 13
failed_operation data type 22
float_attribute data type 18
format_error data type 15
integer_attribute data type 18
key_value_collection data type 17
key_value_pair data type 21
operation data type 16
operation_dropped data type 15
operation_lost data type 16
operation_set data type 16
operation_state data type 23
operation_status_info data type 23
partial_update_operation data type 21
processing_error data type 14
remove_operation data type 21
server_unavailable data type 15
string_attribute data type 17
subsystem_id_set data type 23
update_operation data type 21
urlschange_operation data type 22
utf8_error data type 15
warning data type 13
xml_error data type 15

common data types 11
ItemLog data type 26
ItemStatusLog data type 26
LogMessage data type 26
ModuleStatus data type 25
processing

shutting_down data type 24
system_resource_error data type 24

ProcessingStatistics data type 24

65 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Statistics data type 25
transport 11

Methods
ConfigurationChanged 45
FlushState 48
GetBatchStatus 51
GetBatchStatusIDs 52
GetDocumentStatusLogs 50
GetDocumentStatusURIs 51
GetModuleStatus 46
GetStatistics 48
LeakDetect 48
ping 53
processing::master_dispatcher::assign_dispatche

r 33
processing::master_dispatcher::register_procser

ver 33
processing::master_dispatcher::unregister_procs

erver 34
processing::processor_server::process (section

3.1.4.1 28, section 3.2.4.1 31)
processing::procserver_handler::processed 39
processing::procserver_handler::register_procser

ver 37
processing::procserver_handler::renew 40
processing::procserver_handler::unregister_proc

server 38
ResetContainer 46
SetDocumentTracing 50
SetLogLevel 52
SetMemoryProfile 50
Shutdown 52

ModuleStatus data type 25

N

Normative references 7

O

Overview (synopsis) 7

P

Parameters - security index 58
ping method 53
Preconditions 9
Prerequisites 9
processing

shutting_down data type 24
system_resource_error data type 24

Processing a sequence of item operations example
54

processing items example 57
processing::master_dispatcher interface 32
processing::master_dispatcher::assign_dispatcher

method 33
processing::master_dispatcher::register_procserver

method 33
processing::master_dispatcher::unregister_procser

ver method 34

processing::processor_server interface 27
processing::processor_server::process method

(section 3.1.4.1 28, section 3.2.4.1 31)
processing::procserver_handler interface 36
processing::procserver_handler::processed method

39
processing::procserver_handler::register_procserve

r method 37
processing::procserver_handler::renew method 40
processing::procserver_handler::unregister_procser

ver method 38
ProcessingStatistics data type 24
Product behavior 61

R

References 6
informative 7
normative 7

Relationship to other protocols 8
ResetContainer method 46

S

Security
implementer considerations 58
parameter index 58

Sequencing rules
client (section 3.2.4 31, section 3.4.4 35, section

3.6.4 42)
server (section 3.1.4 27, section 3.3.4 33,

section 3.5.4 37, section 3.7.4 45)
Server

abstract data model (section 3.1.1 27, section
3.3.1 32, section 3.5.1 36, section 3.7.1 43)

ConfigurationChanged method 45
FlushState method 48
GetBatchStatus method 51
GetBatchStatusIDs method 52
GetDocumentStatusLogs method 50
GetDocumentStatusURIs method 51
GetModuleStatus method 46
GetStatistics method 48
initialization (section 3.1.3 27, section 3.3.3 32,

section 3.5.3 36, section 3.7.3 45)
LeakDetect method 48
local events (section 3.1.6 30, section 3.3.6 34,

section 3.5.6 42, section 3.7.6 53)
message processing (section 3.1.4 27, section

3.3.4 33, section 3.5.4 37, section 3.7.4 45)
overview (section 3 27, section 3.1 27, section

3.3 32, section 3.5 36, section 3.7 43)
ping method 53
processing::master_dispatcher interface 32
processing::master_dispatcher::assign_dispatche

r method 33
processing::master_dispatcher::register_procser

ver method 33
processing::master_dispatcher::unregister_procs

erver method 34
processing::processor_server interface 27

66 / 66

[MS-FSDPD] — v20120630
 Document Processing Distribution Protocol Specification

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

processing::processor_server::process method
28

processing::procserver_handler interface 36
processing::procserver_handler::processed

method 39
processing::procserver_handler::register_procser

ver method 37
processing::procserver_handler::renew method

40
processing::procserver_handler::unregister_proc

server method 38
ResetContainer method 46
sequencing rules (section 3.1.4 27, section 3.3.4

33, section 3.5.4 37, section 3.7.4 45)
SetDocumentTracing method 50
SetLogLevel method 52
SetMemoryProfile method 50
Shutdown method 52
status interface 43
timer events (section 3.1.5 30, section 3.3.5 34,

section 3.5.5 40, section 3.7.5 53)
timers (section 3.1.2 27, section 3.3.2 32,

section 3.5.2 36, section 3.7.2 45)

SetDocumentTracing method 50
SetLogLevel method 52
SetMemoryProfile method 50
Shutdown method 52
shutting down the content distributor example 57
shutting down the item processing component

example 57
Standards assignments 10
Statistics data type 25
status interface 43

T

Timer events
client (section 3.2.5 32, section 3.4.5 35, section

3.6.5 42)
server (section 3.1.5 30, section 3.3.5 34,

section 3.5.5 40, section 3.7.5 53)
Timers

client (section 3.2.2 31, section 3.4.2 34, section
3.6.2 42)

server (section 3.1.2 27, section 3.3.2 32,
section 3.5.2 36, section 3.7.2 45)

Tracking changes 62
Transport 11

V

Vendor-extensible fields 9
Versioning 9

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Protocol Overview (Synopsis)
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 cht::documentmessages::action
	2.2.2 cht::documentmessages::warning
	2.2.3 cht::documentmessages::error
	2.2.4 cht::documentmessages::processing_error
	2.2.5 cht::documentmessages::format_error
	2.2.6 cht::documentmessages::xml_error
	2.2.7 cht::documentmessages::utf8_error
	2.2.8 cht::documentmessages::server_unavailable
	2.2.9 cht::documentmessages::operation_dropped
	2.2.10 cht::documentmessages::operation_lost
	2.2.11 cht::documentmessages::operation_set
	2.2.12 cht::documentmessages::operation
	2.2.13 cht::documentmessages::document
	2.2.14 cht::documentmessages::key_value_collection
	2.2.15 cht::documentmessages::document_id
	2.2.16 cht::documentmessages::string_attribute
	2.2.17 cht::documentmessages::bool_attribute
	2.2.18 cht::documentmessages::float_attribute
	2.2.19 cht::documentmessages::integer_attribute
	2.2.20 cht::documentmessages::long_attribute
	2.2.21 cht::documentmessages::bytearray_attribute
	2.2.22 cht::documentmessages::string_collection
	2.2.23 cht::documentmessages::bool_collection
	2.2.24 cht::documentmessages::float_collection
	2.2.25 cht::documentmessages::integer_collection
	2.2.26 cht::documentmessages::long_collection
	2.2.27 cht::documentmessages::bytearray_collection
	2.2.28 cht::documentmessages::key_value_pair
	2.2.29 cht::documentmessages::update_operation
	2.2.30 cht::documentmessages::remove_operation
	2.2.31 cht::documentmessages::partial_update_operation
	2.2.32 cht::documentmessages::urlschange_operation
	2.2.33 cht::documentmessages::failed_operation
	2.2.34 cht::documentmessages::subsystem_id_set
	2.2.35 cht::documentmessages::operation_status_info
	2.2.36 cht::documentmessages::operation_state
	2.2.37 processing::shutting_down
	2.2.38 processing::system_resource_error
	2.2.39 ProcessingStatistics
	2.2.40 ModuleStatus
	2.2.41 Statistics
	2.2.42 LogMessage
	2.2.43 ItemLog
	2.2.44 ItemStatusLog

	3 Protocol Details
	3.1 processing::processor_server Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 processing::processor_server::process

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 processing::processor_server Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 processing::processor_server::process

	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 processing::master_dispatcher Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 processing::master_dispatcher::register_procserver
	3.3.4.2 processing::master_dispatcher::assign_dispatcher
	3.3.4.3 processing::master_dispatcher::unregister_procserver

	3.3.5 Timer Events
	3.3.6 Other Local Events

	3.4 processing::master_dispatcher Client Details
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Message Processing Events and Sequencing Rules
	3.4.5 Timer Events
	3.4.6 Other Local Events

	3.5 processing::procserver_handler Server Details
	3.5.1 Abstract Data Model
	3.5.2 Timers
	3.5.3 Initialization
	3.5.4 Message Processing Events and Sequencing Rules
	3.5.4.1 processing::procserver_handler::register_procserver
	3.5.4.2 processing::procserver_handler::unregister_procserver
	3.5.4.3 processing::procserver_handler::processed
	3.5.4.4 processing::procserver_handler::renew

	3.5.5 Timer Events
	3.5.6 Other Local Events

	3.6 processing::procserver_handler Client Details
	3.6.1 Abstract Data Model
	3.6.2 Timers
	3.6.3 Initialization
	3.6.4 Message Processing Events and Sequencing Rules
	3.6.5 Timer Events
	3.6.6 Other Local Events

	3.7 Status Server Details
	3.7.1 Abstract Data Model
	3.7.2 Timers
	3.7.3 Initialization
	3.7.4 Message Processing Events and Sequencing Rules
	3.7.4.1 ConfigurationChanged
	3.7.4.2 GetModuleStatus
	3.7.4.3 ResetContainer
	3.7.4.4 FlushState
	3.7.4.5 LeakDetect
	3.7.4.6 GetStatistics
	3.7.4.7 SetMemoryProfile
	3.7.4.8 SetDocumentTracing
	3.7.4.9 GetDocumentStatusLogs
	3.7.4.10 GetDocumentStatusURIs
	3.7.4.11 GetBatchStatus
	3.7.4.12 GetBatchStatusIDs
	3.7.4.13 SetLogLevel
	3.7.4.14 Shutdown
	3.7.4.15 ping

	3.7.5 Timer Events
	3.7.6 Other Local Events

	4 Protocol Examples
	4.1 Processing a Sequence of Item Operations
	4.1.1 Example Code: Initializing the Content Distributor
	4.1.2 Example Code: Initializing the Item Processing Component
	4.1.3 Example Code: Dispatching Items
	4.1.4 Example Code: Processing Items
	4.1.5 Example Code: Shutting Down the Item Processing Component
	4.1.6 Example Code: Shutting Down the Content Distributor

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full FSIDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

